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EXECUTIVE SUMMARY

This project evaluated the influence of the application of dom: zstic effluent
treated with septic tanks and constructed wetlands using a subsurface drip dispersal
system on soil chemica! and hydraulic properties. Four different resi-lential systems,
located in different climatic regions of Texas, were evaluated during this project. Soil
samples were collected for chemical and hydraulic evaluation along two transects from a
drip emitter, a transect along the drip lateral and a transect perpendicular to the drip
lateral emitter. Samples for chemical analyses were disturbed soil cores and soil cores
for hydraulic evaluation were undisturbed soil cores. Control samples were collected
from an area adjacent to the drip drain field with similar soil characteristics.

The quantity and distribution of chemical constituents in the soil profile are
influenced by soil properties, soil structure that affect water movement patterns, crop
uptake, concentration of the chemical in applied effluent, concentration of the chemical
in the original soil, and distance from the emitter. The most important concern was
elevation of Na concentration in soil when Na was presented in large quantities in the
applied effluent. It is known that increasing Na in soil could cause deterioration of soil
physical properties, especially if the increase in soil Na occurred in conjunction with
reduction in Ca and Mg concentration. Phosphorus concentrations were significantly
increased near the emitter and close to soil surface where the drip line was installed at
shallow depth. This could pose a hazard for surface water pollution by erosion and
runoff. There were no drastic change in soil TN, Ca, Mg, K, EC, and TOC. Generally,
there was slightly more build up of the chemical constituents in the cross section along
the drip line than in the cross section perpendicular to the drip line. This difference in
chemical distribution in both cross sections was more pronounced for chemicals with
low crop uptake such as P (compared to nitrogen and potassium) and Na.

Application of treated effluent resulted in an increase in soil water retention, a
decrease in the volume of pores with large radii, and a decrease in saturated hydraulic
conductivity. These results were consistent with previous research findings (De Vries,
1972; Sigriest, 1978). The areal extent of influence of applied effluent on soil hydraulic
properties depended on effluent quality, actual application rate, and soil type. At site 2
application of effluent had a more pronounced impact due to high Na content and a
greater actual application rate. At this site, the impact of applied treated effluent on
saturated soil hydraulic conductivity decreased with increasing distance from the emitter.
More reduction in K, occurred along the drip line than perpendicular to the drip line.
At both sites, the greatest impact of effluent application occurred in the area located
beneath the emitter. The subsurface drip system did not exhibit a severely clogged layer
like those observed within drain fields of conventional septic systems.
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Characteristics of Soil Media Where Subsurface Drip Systems
Are Being Used to Distribute Residential Wastewater

INTRODUCTION

On-site wastewater treatment systems serve as the land based treatment method
for residential systems utilizing a decentralized approach to wastewater management. In
1990, approximately 25 % of the population of the United States relied on individual on-
site wastewater systems (Bureau of Census, 1993). However, the 1997 response to
congress on Decentralized Management identified on-site systems servicing 37% of new
construction. The most common type of on-site wastewater treatment system used in the
United States was a septic tank with a conventional distribution system for final
treatment and disposal. The conventional distribution system typically consists of a 4 in
diameter perforated pipe placed in a trench of gravel located about 2 feet below the soil
surface. The effluent flows by gravity from the septic tank to the perforated pipe. The
combination of septic tank and conventional distribution system is referred to as a septic
system in this study. An underlying assumption for the septic system is that effluent will
receive initial treatment by anaerobic digestion in the septic tank and final treatment is
accomplished during effluent movement through the soil matrix by the processes of
adsorption, ﬁltration, and microbiological decomposition (Bouma et al., 1972).

In some places, septic systems have functioned properly for decades; however, at
many sites, systems have failed to provide adequate treatment and allowed partially

treated effluent to reach the soil surface and/or groundwater. A major cause of septic



system failure is that the 4 in diameter perforated pipe provides very oct distribution of
effluent in the drainfield. Most of the effluent exits the pipe near the inlzt, resulting in a
localized overloading of effluent in a small area of the drainfield. Thiscreatesa
continuous saturated condition resulting in rapid effluent movement and inadequate
treatment by the soil. An alternative to the conventional distribution system is needed
which will result in a uniform distribution of effluent in the drainfield. This will
improve the performance of on-site wastewater treatment systems and reduce the risk of
groundwater contamination and effluent surfacing.

Subsurface drip dispersal systems have been used in many areas of the United
States as an alternative to the perforated pipe and conventional trench drainfield.
Subsurface drip dispersal provides better control of the application rate and distributes
effluent evenly throughout the land application area. Subsurface drip dispersal systems
consist of a pretreatment device, pump chamber, a mechanical filter, small diameter
tubing, and emission devices (emitters) which are placed at equal intervals along the
tubing. Emitters are designed to dissipate fluid pressure and discharge at a rate that does
not vary significantly because of minor differences in pressure along the drip lateral. Ifa
large difference in pressure is expected along the drip lateral, pressure compensating
emitters, which discharge water at a constant rate over a wide range of pressure, can be
used. Thus,.the design strategy for subsurface drip dispersal systems focuses on
achieving high emission uniformity. Research witha subsurface drip irrigation system

shows that a uniformity coefficient greater than 90% can be achieved (Phene at al., 1992

, Camp et al., 1993).



A major concern when using subsurface drip dispersal systems for effiuent
distribution is the potential for emitter clogging. A potential solution is jroviding
secondary treatment (aerobic treatment unit, sand filter, constructed v-e:l. nd) io improve
effluent quality before entering the subsurface drip dispersal system. If the subsurface
drip dispersal systems are designed properly, an equal distribution of effluent over the
entire drainfield can be achieved, avoiding overloading of soil and associated adverse
environmental impacts.

Criteria specifically developed for the design and operation of subsurface drip
dispersal systems are not available because of a lack of information about changes in soil
hydraulic properties around subsurface drip emitters. Soil hydraulic properties in the
drainfield of an on-site disposal system exhibit great variability due to chemical,
physical, and biological impacts of the applied effluent. Studies on drain fields of
conventional septic systems showed that a clogged layer tended to develop at the
interface between soil and gravel fill and extended into the upper few centimeters of soil
(Thomas et al., 1966; Jones and Taylor, 1965; DeVries, 1972). As aresult, soil
hydraulic properties, such as saturated hydraulic conductivity, and soil water retention
are altered in the upper few centimeters of the soil (Magdoff and Bouma, 1974). This
impacts the soil moisture distribution within the drainfield. The alteration of soil
hydraulic cﬂmacteﬁstics by effluent applications should be considered in the design of
an effluent distribution system. Bouma (1975) suggested that the design application rate

for a septic system should be based on the hydraulic characteristics of the clogged soil



layer and the relationship between hydraulic conductivity and moisture content in the
soil below the élogged layer.

Since subsurface drip dispersal provides a more uniform spatial distribution of
effluent and flow from subsurface emitters is essentially three-dimensional, subsurface
drip is expected to exhibit different soil clogging characteristics than conventional drain
fields. Wastewater enters the soil at the emitter and moves through the soil away from
the emitter. Wastewater is treated as it moves through the soil pores. Subsurface drip
design loading rates are based an areal loading rate, which is the soil surface area, and
the assumption of complete use of the soil matrix for wastewater treatment. Water
movement in the soil follows mass flow through the matrix or preferential flow paths.
Wastewater moving through the soil will follow the path of least resistance. One
potential preferential flow path is along the drip lateral. Flow along the drip lateral
improves wastewater distribution along the drip lateral but would have limited
wastewater movement perpendicular to the drip lateral. Because drip systems in Texas
require 12 inches of soil below the emitter, wastewater treatment must occur in this soil
depth (TNRCC, 1997).

No previous study has documented the impact of effluent application on the
alternation of soil hydraulic characteristics in the drainfield of a subsurface drip dispersal
system. Suc;h information is essential for the proper design and operation of a
subsurface drip dispersal system. To understand what causes the change in soil

hydraulic properties, soil chemical properties must be considered.



Objectives
The focus of this research was to characterize changes in soil hydraulic and
chemical properties associated with the application of effluent by a subsurface drip
dispersal system. The pretreatment devices consisted of septic tank followed by a
subsurface flow constructed wetland. The specific research objectives were:
1) Evaluate changes in soil chemical properties caused by application of septic tank
effluent through a subsurface drip dispersal systems, and
2) Evaluate changes in soil hydraulic properties caused by application of effluent
through subsurface drip dispersal systems. This will include
— Evaluate water retention curves for soil around drip emitters,
— Evaluate pore size distribution around drip emitters, and

_ Evaluate saturated hydraulic conductivity of the soil around drip emitters.



LITERATURE REVIEW

Nonuniformity of Conventional Distribution System

Several studies document the non-uniform distribution of effluent discharged
from conventional distribution systems. Bouma et al. (1972) evaluated twenty septic
systems in twelve major types of soil in Wisconsin. They indicated that most of the
effluent is discharged from the 4 in diameter perforated pipe at a point close to the inlet.
The soil near the pipe inlet receives a continuous trickle of effluent. This leads to soil
crusting and consequent reduction of effluent movement into soil, and ponding of
effluent at that point. The effluent then flows along the bottom of the trench until it
encounters uncrusted soil. This movement progresses until the whole bottom area is
crusted (Figure 1).

To verify the field findings of poor distribution, Converse et al. (1974) conducted
a laboratory experiment to investigate effluent distribution from the 4 in diameter
perforated pipe. They constructed a full-size gravel trench in which effluent flowed
from the septic tank to the perforated pipe by gravity. The distribution of effluent was
analyzed at 18 in intervals. They tried different configurations, sizes, and perforation

spacing. The distribution of effluent discharge along the pipe was highly non-uniform in

all studied situations.



Figure 1-Progress of soil crusting below the perforated pipe used in the drainfield of
conventional septic system (Bouma et al., 1972).



In another laboratory study, Machmeier and Anderson (1987) reported that, fora
flow rate of 1 gpm, only two perforations discharged water. Similarly for a flow rate of
8 gpm, the majority of the liquid was discharged by the first four perforations. Ver Hey
and Woessner (1987) examined groundwater quality below the drainfield of a septic
system in a coarse texture soil. They reported that, even though all legal requirements
were met, i.e. depth to the groundwater below the drainfield was greater than four feet
and the percolation rate was greater than 1 min/inch, no significant decrease in
phosphorous and nitrogen occurred before the effluent reached groundwater.
Exploratory excavation in the site showed the effluent was entering the soil from the
beginning of the perforated pipe only. They suggested that there was a need for a

distribution system utilizing the entire drainfield to improve septic system performance.

Subsurface Drip Dispersal Systems

Research on subsurface drip dispersal systems has been limited to the evaluation
of system performance in terms of hydraulic uniformity, system efficiency, and
environmental consequences (Hoover and Amozegar, 1989; Stewart and Reneau, 1988;
Rubin et al., 1994).

Ste\;vart et al. (1983) used a subsurface drip system for distribution of septic tank

effluent after it was treated by a sand filter and chlorination. The study period was only
five months in 1982 and three months in 1983. They reported good performance of the

system during this short period. Oron (1991) conducted four years of field



experimentation to evaluate using a subsurface drip dispersal system for irrigation,
utilizing domestic secondary-treated wastewater. He found that the system operated
without any failure during the entire study period, and the effluent was -venly
distributed in the irrigated soil. Rubin et al. {1994) monitored the conc-ntration of
nitrate nitrogen in shallow groundwater below a drip system in North Carolina. They

reported that the effluent only marginally affected the groundwater.

Soil Clogging

Factors that result in soil clogging can be classified as chemical, biological, and
physical (Rice, 1974). Chemical clogging is caused mainly by interaction between
dissolved salts in the water and the soil, resulting in decreased pore diameter and,
consequently, lower hydraulic conductivity. Chemical clogging occurs when the sodium
(Na) content of water is high. High Na concentration may result in the deterioration of
soil physical properties through clay particle swelling and dispersion. This in turn
causes a reduction in soil porosity and hydraulic conductivity (Feigin et al., 1991). The
adverse influences of Na are moderated by calcium (Ca) and magnesium (Mg). The

potential hazards of Na is estimated using the Sodium Adsorption Ratio (SAR) (Ayers

and Westcot, 1976):

[Na']

SAR =
J[Ca*?]+[Mg*]

)



10

where [Na*], [Ca**], and [Mg**] are the concentration (mmol/l) of these ions in the
applied effluent.

Biological clogging occurs when bacterial growth or its by-products reduce pore
diameters. Biological clogging frequently is associated with anaerobic conditions.
However, aerobic bacteria may also play an important role in soil clogging (Vandevivere
and Baveye, 1992).

Physical clogging results from suspended solids blocking the pores when the soil
pore size is smaller than the diameter of the solid. Vinton et al. (1983) labeled the
suspended solid in sewage effluent to determine distribution of solids in the soil profile.
He found the majority of solids remained in the upper 0.2 in of the soil profile.

Significant research has been conducted to understand the impacts of wastewater
on the clogging of soils in an effort to design better delivery systems. Most of the
research has been focused on surface application of waste. In a laboratory study,
McGauhey and Winneberger (1964) constructed a 1 ft by 1 ft by 2 ft steel lysimeter and
filled it with sandy soil. They applied primary-settled wastewater on the surface of soil
within the lysimeter. After 338 hours of effluent application, a clogged surface layer
developed which was less than 0.75 in thick. They found that both suspended solids and
biological gomh were major factors in soil clogging. Thomas et al. (1966) and DeVries
(1972) applied septic tank effluent on a column filled with sand and gravel. They

observed that a thin layer developed at the gravel/sand interface due to deposition of

organic material.
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Laak (1970) applied septic tank effluent to soil columns 6 in in diameter.
Complete soil clogging occurred within 180 days of effluent application. The clogging
zone was in the upper 0.2 in. The clogging material consisted of ab-w: &) % bacteria
cells. He found that there was a linear relationship between the sum o1 ital suspended
solids (TSS) and biochemical oxygen demand (BODs) load and the noncapillary porosity
of the soil.

Rice (1974) investigated soil clogging in soil columns located in a greenhouse.
He applied secondary wastewater effluent with different suspended solids concentrations
onto six columns, 24.5 in long and 4 in in diameter. A clogged layer formed at the soil
surface. Physical clogging caused by deposition of suspended solids on the soil surface
was the major cause of infiltration reduction.

To confirm the laboratory results, Simons and Magdoff (1979) monitored soil
moisture tension below the gravel/sand interface in the drainfield of a septic system.

The pattern of measured soil moisture tension indicated development of a crust layer at
the gravel/sand interface. They attributed the development of this crust layer to build-up
of organic solids. Most recently, in a pilot-scale study, Siegrist (1987) applied septic
effluent to 0.9 m (36 in) diameter cells installed in structured silty loam soil. They
applied the effluent at three different rates: 0.5 in/day, 1 in/day, and 2 in/day. During 18
to 24 month; of effluent application, the soil in the cells exhibited substantial clogging at
all three loading rates. He observed that the infiltrative surface zones, where wastewater

was applied, exhibited significant accumulation of organic materials within the first few

millimeters of soil matrix.
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Because using subsurface drip systems for wastewater distribuiic. is relatively
new, there have been no studies published on the development of a cloz:.ed layer in the

receiving soil of such a system.

Application Rate

The primary factor affecting the design of a septic system drain field is the
determination of the proper application rate. The most comprehensive study to
determine application rates for conventional drainfields was provided by Bouma (1975).
Based on clogged layer thickness, soil matric potential under the clogged layer, and the
relationship between hydraulic conductivity and moisture content for the soil below the
clogged layer, he determined a long-term application rate for four different types of soil
(Table 1). Perkins (1989) introduced a procedure for determining hydraulic loading
based on the infiltration capacity of the soil. Carlile and Sanjines (1996) suggested using
a hydraulic rate less than 10% of the mean saturated hydraulic conductivity to allow for
adequate treatment after rainfall events. In Texas, the maximum allowable hydraulic
loading is defined based on textural classification of the most restrictive soil layer (Table
1) (TNRCC, 1997).

Design application rates for subsurface drip dispersal disposal systems have not
been develo.ped yet. In Texas, the same application rate developed for conventional
septic systems is used for design of subsurface drip dispersal disposal systems (TEEX,
1998). Georgia’s regulations for drip irrigation of domestic wastewater require a design

loading rate of no more than 12% of the mean saturated hydraulic conductivity of the
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most restrictive soil horizon if the seasonal high water table is greater than 1.5 m (60 in),
and no more than 10% of the mean saturated hydraulic conductivity otherwise.
However, such application rates were developed based on the assumption that a clogged
layer will develop at the application surface. Bouma et al. (1974) stated that “in any
case, sizing criteria derived for the conventional type of subsurface bed do, of course not
necessarily have to apply to innovative systems. New criteria may have to be developed.
It would be necessary to based criteria on an analysis of the hydraulic properties of the

soil.”

Table 1-Application rates for septic system drainfields for four different soil types.

Application Rate
Soil type Soil Texture Bouma (1975) TNRCC (1997)*
g/day/ft” g/day/ft’
Typel Sand 1.65 0.38
Typell Sandy loam, loam 0.27 0.25
Type I  Silt loam, some silty clay loam 0.19 0.20
Type IV Clay, some silty clay loam 0.12 0.10

* Texas Natural Resource Conservation Commission.

Soil chemical characteristics

Since septic tank effluent is usually rich with nutrients and other chemical
constituents, it is expected to alter the soil chemical properties in the application field.
To date, several reports documented the impact of effluent application on soil chemical
propetties, but almost all dealt with flood irrigation (Waly et al., 1987, Liu et al., 1998),
furrow irrigation (Hinrichs et al., 1974), or sprinkler application (King et al., 1990,

Hayes et al., 1990, Mancino and Pepper, 1992). Since the use of subsurface drip
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dispersal systems for wastewater disposal is relatively new, little information is available
on the impact of wastewater on the chemical properties of the soil surrounding the drip
emitter. Oron et al. (1991) applied treated domestic effluent for five years using a
subsurface drip dispersal system. However, they reported only limited information
concerning distribution of chemical constituents around subsurface drip emitters.
Papadopoulos and Stylianou (1991) evaluated the impact of application of secondary
treated urban effluent using a subsurface drip irrigation system on soil chemical
properties. However, fertilizer nitrogen (N), phosphorous (P), and potassium (K) were
added to the applied effluent. Moreover, the examined soil chemical properties were

limited to N, P, and electrical conductivity (EC).
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MATERIALS AND METHODS

Sites Description

This project was conducted at four on-site residential wastewater treatment
systems located throughout Texas.  Each system consists of a septic tank for primary
treatment, a constructed wetland for advanced treatment, and subsurface drip dispersal
system for land application of the treated wastewater. The first system (site 1) is located
in D’Hanis, Texas, and treats domestic wastewater from a three-bedroom residence. The
wastewater flows from the home into a 1000 gallon septic tank and then into a
subsurface flow constructed wetland. From the constructed wetland, the water flows
into a 550 gallon pump tank and is then distributed to the drip dispersal system
Appendix A, Figure Al). The entire treatment system is designed to treat and apply 350
gallons of wastewater per day. The drip dispersal system is comprised of a wastewater
effluent filtration system and two subsurface drip application areas. Each 800 ft?
application area is 16 ft x 50 ft. The east area (Field I) contains 1 gal/h emitter rate drip
tubing on 2 ft centers with a 2 ft emitter spacing. The emitters in Field I are non-
pressure compensating. The west area (Field I) contains 0.5 gal/h emitter rate drip
tubing with the same emitter spacing as Field I. The emitters in Field II are pressure
compensatir.lg. The drip dispersal system irrigates a small pasture plot of coastal
bermudagrass. Operation of the system began in July 1994. Only Field I was used in

this study and hence it will be referred to as site 1. The soil at this site is Castroville silty
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clay loam with weak medium subangular blocky structure and 14% sand, 38% silt, and
48% clay.

The second system (site 2) is located in Weslaco, Texas. The system treats
domestic wastewater from a two-bedroom residence. The wastewater flows from the
home into a 750 gallon septic tank and then into a subsurface flow constructed wetland.
From the constructed wetland, the water flows into a 500 gallon pump tank and is then
distributed to the subsurface drip dispersal system (Appendix A, Figure A2). The entire
treatment system is designed to treat and apply 250 gallons of wastewater per day. The
drip dispersal system is comprised of an effluent filtration system and two drip
application areas. Each 1000 fi? application area is 20 ft by 50 ft. The west area (Field
T) contains 0.5 gal/h emitter rate drip tubing on 2 ft centers with a 2 ft emitter spacing
and an installation depth of 3 in. The emitters in Field I are non-pressure compensating.
The east area (Field II) contains 0.9 gal/h emitter rate drip tubing with the same emitter
spacing and installation depth as in Field I. The emitters in Field Il are pressure
compensating. The drip system irrigates common bermudagrass. System operation
began in January 1994. Only Field II was used in this study and it will be referred to as
site 2. The soil at this site is a Willacy fine sandy loam with weak fine granular structure
and 71% sand 16% silt, and 13% clay.

The Md system (site 3) is located in Stephenville, Texas. The system treats
domestic wastewater from a three-bedroom residence, a recreational vehicle (RV) dump
station, and a dog kennel. The wastewater flows from the home into a 1250 gallon

septic tank, while wastewater from the RV dump station and the dog kennel flows into a
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500 gallon septic tank and then into the 1250 gallon tank. From the 1250 gallon septic
tank, the water flows into a subsurface flow constructed wetland. From the constructed
wetland, the water flows into a 500 gallon pum; tank and is then distributed to the
subsurface drip dispersal system (Appendix A, i'igure A3). The entire treatment system
was designed to treat and apply 300 gallons of wastewater per day. The land application
site is comprised of two areas of 920 fi? each. The south area (Field I) contains 1 gal/h
emitter rate drip tubing on 2 ft centers with a 2ft emitter spacing. The emitters in Field I
are non-pressure compensating. The north area (Field IT) contains 0.5 gal/h emitter rate
drip tubing with the same spacings as Field I. The emitters in Field II are pressure
compensating. The subsurface drip dispersal system irrigates common bermudagrass,
fescue, and several other types of landscape vegetation. Operation of the system began
in July 1994. Only Field I was investigated in this study and it will be referred to as site
3. The soil at this site is Waurika fine sandy loam with weak fine granular structure and
48% sand, 24% silt, and 28% clay.

The fourth system (site 4) is located in College Station, Texas. The system treats
domestic wastewater from a three-bedroom residence. The wastewater flows from the
home into a 1000 gallon septic tank and then into a subsurface flow constructed wetland.
From the constructed wetland, the water flows into a 500 gallon pump tank and is then
distributed t'o the subsurface drip dispersal system (Appendix A, Figure A4). The land
application site isicomprised of two areas. The east area (Field I) which is 1200 fi2
contains 0.5 gal/h emitter rate drip tubing on 2 ft centers with a 2 ft emitter spacing. The

emitters in Field I are pressure compensating. The west area (Field II) contains 1 gal/h
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emitter rate drip tubing with the same spacings as Field I. The emitters in Field Il are
non-pressufe compensating. The subsurface drip dispersal system irrigates common
bermudagrass. Only Field IT was investigated in this study and it will be referred to as
site 4. Operation of the system began in July 1996. The soil is Lufkin fine clay loam
with 30% sand, 19% silt, and, 51% clay. A summary of operational characteristics for

the four sites is given in Table 2.

Table 2-Operational characteristics for four subsurface drip dispersal fields
receiving domestic effluent in Texas.

Emitter Average Emitter  System Operation
Site Location Rate Application Rate Depth (years)
(gal/hr) (gal/day/f?) (inches)
1 D'Hanis 1 0.02 12 5
2 Weslaco 0.9 0.04 3 6
3 Stephenville 1 0.08 12 6
4 College Station 1 0.41 7 4

Soil Chemical Characteristics Data Collection and Analysis

Triplicate soil samples were collected in January 1999 from each drip field at
four depths: at the emitter, 3 in above the emitter, 3 in below the emitter, and 12 in
below the emitter. Due to the shallow installation depth of drip tubing at site 2, the soil
samples were collected at 1 in above the emitter instead of 3 in. At site 4, no soil
samples were collected at 12 in below the emitter. At each depth, the samples were
taken at an emitter, 3 in, 6 in, 9 in, and 12 in horizontally away from the emitter. The
soil samples were collected in two directions, one parallel and one perpendicular to the

drip lateral. Additional soil samples were collected from a non-irrigated area of



19

bermudagrass adjacent to the drip field. These samples were collected at similar depths
to those collected within the drip field.

The collected soil samples were analyzed for phosphorus (P), total nitrogen (TN),
sodium (Na), calcium (Ca), magnesium (Mg), soluble sulfate (SO4), potassium (K), salt
content (EC), and total organic carbon (TOC). Soil samples were air dried and sent to
the Environmental Analytical Research Laboratory at Texas A&M University system
Agricultural Research and Extension Center at El Paso, Texas. Ca, K, Mg, and Na were
analyzed using 1:2 soil:water extract and atomic absorption spectrometry (Prince, 1982).
P was analyzed using OLSEN extraction (0.5 M NaHCO3) (Olsen and Sommers, 1982).
TN and TOC were analyzed using the dynamic composition method. EC was

determined by conductivity meter (YSI model 32) and 1:2 soil:water extract.

Soil Hydraulic Characteristics

Average of seven replicates of undisturbed soil cores, 3 in diameter and 3 in,
long were obtained using an Uhland core sampler (Blake and Hartge, 1986) for each site.
At site 1, the soil cores were obtained from four different depths: 4 in above the emitter
level, at the emitter level, 6 in below the emitter, and 12 in below the emitter level. At
site 2, the core samples were taken 1 in above the emitter level, 3 in below the emitter
level, and lé in below the emitter level. Sampling depths were not matched due to
differences in installation depth of drip lateral (Table 2). At each depth, core samples
were obtained at five locations: location A next to the emitter, location B 6 in from the

drip emitter along the drip lateral, and location C midway between two emitters, location
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D at 6 in from the emitter along a transect perpendicular to the drip lateral, and location
E at the midpoint between two drip laterals (Figure 2). At sites 3 and 4, soil cores were
collected at 4 in above the emitter, at the emitter level, and 6 in below the emitter. At
each depth, core samples were obtained at three locations with respect to the drip lateral:
location A, next to the emitter; location C, midway between two emitters along the drip
lateral; and location E, midway between two drip laterals.

Control soil samples were obtained from a non-irrigated area of bermudagrass
adjacent to the drip field (location O in Figure 2) where the soil had the same
characteristics as within the drip fields but was not subjected to wastewater application.
These core samples were collected at depths similar to those sampled within the drip
field.

Saturated hydraulic conductivity and water retention values were determined for
all undisturbed soil cores. Soil cores were saturated from the bottom by soaking in water
for five days. Saturated hydraulic conductivity was determined using the constant head
method (Klute and Dirksen, 1986). Water retention was determined successively at 1, 3,
7, 10, 14, 20, 27, 34, and 51 kpa, using a pressure cell extractor (Klute, 1986). The mean
pore radius at a given matric potential was estimated from water retention data using the

equation by Ghildyal and Tripathi (1978)

h=2ocosp)/rgp 2)
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where h is the matric potential (m), o is the water surface tension (m)/m?), ¢ is the
contact angle between liquid and solid (assumed to be zero), g is acceleration due to
gravity (m/sec?), and p is the density of water (Mg/m®). The calculated pore radius was
partitioned into pore radius interval of >22 pm, between 3 and 22 pm and <3 pm and
the relative pore volume for each pore size interval was determined. The relative pore

volume is defined as the portion of the pore volume occurring within a given pore size

interval divided by total soil volume.



Figure 2- Location of soil core samples collected for hydraulic
characteristics analysis

22
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Effluent Quality

One-liter effluent grab samples were collected monthly from the pump tank of
the drip dispersal system and immediately chilled below 4° C until analyzed to slow
microbial activity. A portion of each sample was removed for direct analysis of BODs,
which were initiated within 24 hrs after collection. The remainder of the sample was
frozen and analyzed for Chemical Oxygen Demand (COD), ammonium (NH,), total
salts, and nutrients. Details of the analytical procedures were reported by Lesikar et al.
(1998). Effluent quality data were determined only during the September 1, 1993, to
June 1, 1998 time period. Samples numbers for Cl, HCOs, and EC were low because
these parameters were tested following experimentation. Fresh water supplies for
residences at sites 1, 3, and 4 originated with ground water having relatively stable
constituents. The fresh water supply for the residence at site 2 was surface water from
the Rio Grande. Residents remained consistent during and after the experimentation,
consequently the effluent quality for the parameters should have been relatively stable

with the possible exception of EC for site 2. The average concentrations of constituents

in the effluent are provided in Table 3.
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Table 3-Chemical properties of the applied treated effluent for time
period of September 1, 1993 to June 1, 1998.

Constituent Site 1 Site 2 Site 3 Site 4
TN (ppm) 37 29 33 12*
P (ppm) 0.9 0.7 0.9 0.6
K (ppm) 22 29 26 10*
Ca (ppm) 96 113 104 41*
Mg (ppm) 22 32 27 10*
Na (ppm) 109 305 207 342*
SO4 (ppm 44 280 162 NA
Cl (ppm) 120 199 NA NA
HCO; (ppm) ] 457 578 NA NA
COD (ppm)* 55 76 66 NA
NH4 (ppm) 30 40 34 12
BOD;s (ppm) 15 23 20 8
EC (ds/cm) 8 1.12 1.24 0.93 1.52*
TSS (ppm) 5 5 30 7
SAR* 2.6 6.5 4.7 12.4*

"Data for two samples in July and August 2000

"Data for one sample in January 2000

* Chemical Oxygen Demand

SElectrical conductivity

*Sodium Adsorption Ratio
Data Analysis

Change in soil chemical properties, saturated hydraulic conductivity, water

retention, and pore size distribution due to wastewater application were evaluated using
analysis of variance (ANOVA). Separation of the means was performed using Fisher’s
least significant difference at the 0.05 level of significance for chemical properties data
and 0.05 and 0.10 level of significance for hydraulic properties data. Nielsen et al.
(1973) and Freeze and Cherry (1979) found the hydraulic conductivity to be

logarithmically distributed. Therefore, logarithms of saturated hydraulic conductivity

values were used in the statistical analysis.
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RESULTS AND DISCUSSION
The information gained through the evaluation of the subsurface drip dispersal
drain fields was presented in terms of the chemical analysis data and the soil hydraulic

information collected at each site.

Phosphorus (P)

Generally, at all four sites, P concentration in the vicinity of the emitter was
significantly greater than that in the control area (Table 4, Figures 3-6) while there was
no significant effect of applied effluent on soil P noted at 12 in below the emitter. This
result was expected and agrees with other researcher's findings (Liu et al., 1998;
Papadopoulos, 1991; King et al., 1990; and Reddy et al. 1980). Phosphate ions rapidly
undergo precipitation and adsorption reaction in the soil, thus, the movement of P
through the soil is restricted. Therefore, most of the phosphorous accumulation occurs
in the vicinity of the emitter. However, movement of P for larger distance could occur
when the soil adsorption capacity of P is reached. At site 2, P concentration in the area
located above the emitter was significantly greater than that in the control area. The drip
line at this site was installed only 3 in below the soil surface. Moreover, the saturated
hydraulic conductivity of the soil layer immediately below the emitter was only 60 % of
that at or ab.ove the emitter (Table 19). Therefore accumulation of P near the soil surface
could be the result of upward and lateral movement of water by capillary flow and
subsequent deposition of P as the water evaporates. At site 4, the high concentration of

P in the irrigated area compared to the control area could be attributed to the high clay
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content, and low saturated conductivity of soil at this site (Table 1). Moreover,
the application rate at this site was considerably higher than those at the other three sites.

In general, there was more movement of P along the drip lateral than
perpendicular to the drip lateral. Due to soil disruption during drip tubing installation
using a trencher, the soil along the drip lateral would have a higher saturated hydraulic
conductivity than in the direction perpendicular to the drip lateral. This, in turn, would

lead to faster movement of water along the drip lateral.

Total Nitrogen (TN)

Most nitrogen in septic system effluent is in the form of ammonium (Feigin et
al., 1991). However, when effluent reaches the soil, NHj4 is typically oxidized to NOs.
High NO; concentrations in drinking water are potentially hazardous and can cause
methemoglobinemia in infants (Feigin et al., 1991). Being an anion, NO; is easily
leached through the soil profile.

At sites 1, 3, and 4, the concentration of TN in the vicinity of the emitter (Table
5, Figures 7, 9 and 10) was slightly greater than in the control area. However, in the rest
of the soil profile, TN concentrations were lower than in the control area. This lower
soil TN could be caused by irrigation induced NO; leaching (Feigin et al., 1991). At site
2, similar to‘ that noted for P (Table 5, Figure 8), the concentration of TN in the area
above the emitter was appreciably greater than in the control area. Again, this was

attributed to enhanced upward movement of soil water. There were no significant
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difference between TN distribution in the transect along the drip lateral and the one

perpendicular to the drip lateral.

Sodium (Na)

High Na concentrations in soil may cause clay particle swelling and dispersion,
resulting in the deterioration of soil physical condition. This, in turn, reduces soil
porosity and hydraulic conductivity (Feigin et al., 1991).

At sites 1, 2, and 3, the difference in Na concentration in the irrigated area and
control area were directly related to Na content in the applied effluent. At site 1, where
the Na concentration in the applied effluent was relatively low (108 ppm), there were
only a slight difference between Na concentration in the irrigated area and that in the
control area (Table 6, Figure 11). However, at site 2, where Na concentration in the
applied effluent (305 ppm) was high, Na concentrations in the irrigated area were
SiprHieanily sieaies fhom in the contiol 2 (Table §, Figuel?). Atthis site there was
considerably more lateral movement of Na along the drip lateral than perpendicular to

the drip lateral. At site 3, Na concentration increased significantly above the emitter and
at the emitter level (Table 6, Figure 13). At site 4, no significant difference was

observed between soil Na concentration in the irrigated area and in the control area

(Table 6, Figure14). This could be due to high initial soil Na concentration or the high
application rate of effluent, which might cause leaching of Na deeper in the soil profile.
Prior to effluent application at this site, the soil was irrigated with water that had a high

Na concentration (250 ppm). Consequently, this could have elevated the Na
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concentration in the soil before applying wastewater. More Na moved along the drip

lateral than perpendicular to the drip lateral at this site.

Calcium (Ca)

At site 1, where the soil is calcareous (ASCS, 1970), above the emitter, at the
emitter, and at 3 in below the emitter, Ca concentration in the irrigated area was greater
than in the control area (Table 7, Figure 15). However, this difference in Ca
concentration was not statistically significant. At 12 in below the emitter, at all
distances from the emitter, Ca concentration in irrigated area was less than in the control
area. At site 2, in the majority of the soil profile, Ca concentration in the irrigated area
was significantly less than in the control area (Table 7, Figure 16). A greater difference
in Ca concentration between the irrigated and control area occurred at the lower depths
of the soil profile. The reduction in soil Ca at this site could be due to reaction of Ca
with carbonate and sulfate which were present in high concentrations in the applied
effluent (Table 3), and precipitation. At site 3, Ca concentrations in the irrigated area
were generally less than in the control area but, the difference was significant only at 12
in below the emitter (Table 7, Figure 17). At site 4, near the emitter and in the area
above the emitter, soil Ca concentration in the irrigated area was greater than in the
control area. (Table 7, Figure 18). However, at 3 in below the emitter, Ca concentration
in the irrigated area was significantly less than in the control area. The lower
concentration of Ca observed in the lower soil profile at the four sites could be due to

displacement of Ca with sodium. This explanation or concept is supported by the
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observation that the greatest reduction in Ca occurred at lower depths in the soil profile,
where a significant increase in Na concentration also occurred. Calcium is known to
moderate the influence of Na on soil physical properties. Therefore, Ca removal from

soil solution by precipitation, exchange, or crop uptake would lead to a potential increase

in Na damage or influence on soil.

Magnesium (Mg)

At sites 1, 2, and 3, in most of the soil profile, Mg concentration in the irrigated
area was greater than in the control area (Table 8 Figures 19-21). More accumulation in
soil Mg was observed near the emitter. At site 4, the differences between Mg
concentration in the irrigated area and in the control area were large (Table 8, Figure 22)
but, due to wide variation among replications, this difference was not significant. As
with calcium, Mg moderates the influence of Na on soil physical properties. Therefore,

an increase of Mg concentration will reduce Na damage or influence on soil.

Sulfate (SO4)

Because sulfate is a soluble ion and is readily leached from soil, sulfate
concentration was lower compared to the control in most of the soil profile at sites 1, 3,
and 4 (Tablé 9, Figures 23, 25, and 26). The soil SO, concentration was directly related
to SO4 content in the applied effluent. At site 1, where SO, concentration in the applied
effluent was relatively low (43 ppm), soil SOy in the irrigated area was significantly

below that in the non-irrigated soil. However, at site 3 where SO4 concentration in the
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applied effluent was 162 ppm, the difference in soil SO4 between the irrigated area and
the control area was significantly lower only at 30 cm below the emitter. At site 2, in the
majority of the soil profile, SO, concentration in the irrigated area was appreciably
greater than in the non-irrigated area (Table 9, Figure 24). This was mainly due to the
high content of SO, in the applied effluent at this site (280 ppm).

If SO, exists in high concentrations, it could result in calcium precipitation and

formation of gypsum according to the following equation:

Ca?* +SO* +2H,0 ——p CaS04.2H,0 ()
If the concentration products of Ca and SO, ions are greater than the solubility product
constant, gypsum precipitation will occur. The solubility product constant for gypsum is
10744, So, if the concentration products of Ca and SO, ions are greater than 10'4'64,

gypsum precipitation will occur.

Potassium (K)

The differences between K concentrations in the irrigated area and that in the
control area at the investigated sites were related directly to the K concentration in the
control area.and to the K content of the applied effluent. At site 1, and 3 where soil K
averaged 4.2 and 6.3 ppm, respectively, soil K in the majority of the soil profile in the
irrigated area was greater than in the control area (Table 10, Figures 27 and 29). A

greater accumulation of K was noted in the vicinity of the emitter. At site 2 soil K was
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elevated in the area above the emitter and at all depth at the midpoint between the two
drip lines and reduces in most of the rest of the soil profile (Table 10, Figure 28). Atsite
4 which had relatively high K concentration in the control area (average 27.9 ppm) and
low concentration of K in the applied effluent (Table 2), soil K concentration was
elevated near the emitter and reduced in the rest of the soil profile (Table 10, Figure30).
The difference in K concentration in the irrigated soil and the control area was not

statistically significant at any of the four sites.

Electrical Conductivity (EC)

Soil EC is typically used to indicate soluble salt concentrations in soil. Because
crops only remove small quantities of salt, salt movement and distribution in soil is
directly related to water movement (Nakayamn and Bucks, 1986).

At all four sites, in the majority of the soil profile EC values in the irrigated area
were greater than in the control area. The difference in soil EC between the irrigated
area and the control area was directly related to the EC value of tﬁe applied effluent. At
site 1, where the applied effluent had an EC value of 1.12 ds/cm, the increase in soil EC
was significant only in the area located beneath the emitter (Table 11, Figure 31). At
site 2 which received effluent with an EC value of 1.24 ds/cm, EC values at all distances
from the enﬁtter in the area above and below the emitter were significantly greater than
in the control area (Tablel1, Figure 32). As mentioned earlier, there was probably more
water movement in the area above the emitter at this site due to differences in soil

hydraulic conductivity of soil layers and enhanced upward movement of water by



-ouij duip 3y 03 Jemorpuddiad (@
pue ‘ourj duip oy Suoe (q ‘aae [01)u0d Y} UI (B :p IS J& UORNQLYSIP UOIBIJUIIUOD WINISSBIO-(E N3

©) @ (®)

wo ‘aoue)st
st wo ‘aouelsi(q . wo ‘aouessiq

Jopiuryg
duqg



“[9A9] 9ouBdYTUSIS §O°( Y} I8 JJJIP JOU Op ISNS] Jwres 3y} £q pamorjo} mo1 uaAId Aue ui saneA 1
_ “IONIWS 9y} MO[3q Ut Z] Je Ysdop AT Pue “IORIWS oY) Mojaq ul ¢ je yydap
I “[2AS] JonTwa 3y} 18 yidap II ‘g 91 J& JOPIWS S} 9AOQE UL | pUe i PUe °¢ ‘] SAJIS Je JoNIUIS 93 9A0qE Ul ¢ j8 yidop 14

91°0 42670 q0¥'0 q0v°0 arv°0 q.e0 qgee’0  920€’0 98¢0 ary'0  qL€0 IO
%610 QzT0 99970 ®'IYO QIy0 qe6E0 297'0  99ZE€'0 °qezE’0  qe6E0 qeet’0 1T
Bee’o L3249 BEE0 B6T0 e6v0 BIV0 B6C°0 BOL'0 BLY0 BIE’0  ®BIYO I
pous 1y
e861°0  ®BESI'0 ®6I9I'0 BE9I'0  BSSI'O  ®BSLIO BG0Z'0 . BY9I'0  BL9T'0 BISI'O0 ®BSLI0O Al
Qe9I1°0 9BLZI0 9qZI1'0 98691°0 9qBELI'0 ®BSBIO qezz1'0 qecyl’'0 qe99l’0 qeecl’0 ©s81°0 I
epSI°0  BSIT'0  ®B9PI°0  BOLI'O0  BLLI'O  ®BILLO BOGI'0 ®B6SI'0 ®BOET'0  B69L'0 ®BILTO I
2[81°0  ®BSST'0 ®CSI'0 ®eSyl'0 ®By8I'0  ®I9T0 e6S1°0  ®BIST'0 BEST'O  ®BOEI'O0  BIILO I
g IV
e[11°0 ®BEOI'0 ®BEOI'0 ®BSET'0  ®8Y1'0 EBYELO eEEI'0  BBEI'0  ®BO9L'O0  BYSI'0  BYELO Al
q601°0 9eoy1'0 qezv1’'0 9eesI’'0 qeesl’o  ®C81°0 qegzi’0 qeyy1'0 QBISI'0 9eszi’0 ®C8l'0 I
®GL1°0 ®BYTI'0  ®BOSI'0  ®B8SI'0  BLLI'O  ®80T0 e6CI'0 ©BZOTO ®BLTI'0 ®BL8I'0 ®BOTO II
qQpL0°0 9e891°0 ®BLOTO ®BIYTO  ®99T'O0  ®BOOTO e0IZ'0 9qe881°0 9qe991'0 ®BYETO0 BOOTO 1
¢aNsIy
BIT0 L7ANY ®91°0 291°0 €91°0 e91°0 e81'0 e61°0 e61°0 e81°0  BOI'0 Al
3LT0 °q81°0  9LI'0  °981°0  ®STO  qBETO 981°0 OL1°'0  2961°0 °9e0C’0 4qeeT’0 I
e81'0 8610 eo1°0 BLT'0 BIC°0 e0T'0 291°0 e61°0 BLT°O €81°0  ®BOTO II
BL1°0 eIZ°0 e1T0 e81°0 BLTO BET'0 BLTO 20C'0 B0C0 eoz0 fecco 4
_ [ 2181y
4! 6 9 £ 0 ¢l 6 9 £ 0
(ur) Iop1WS 9Y} WO I9UeISI] (ur) JopIws Y} WO Idue)SIq mdo
eoIe
[onuo) Tesare] dup oy 03 re[noipuadisd [e1ove] dup ay) Suory

“[e1aye] dip oy 03 Je[ndipuadiad pue [eraje] duip dy) suoje
199SUEL) € U] JOJTWD a7} woay syydop pue sodUE)SIp SNOLILA je (Wd/sp)sonjea AJADONPUOD [BILIIIII IZBIIAY -] dqeL

L9



-oury duip ayy 03 Jenorpuadiad
(3 pue ‘auyy duip 2y Suoje (q ‘3.8 [0.13U0d Y Ul (® ] 931S J& UONQLYSIP APNAPINPUOD [BILHN[Y-IE a3y

©) @ (®)

wo ‘ouelsiq wo ‘doue)siq wd ‘oueisi(q

un ‘pdag

Jopnuyg
dug



©)

wo ‘aoue)si(q

0002 0004

C)

wo ‘QouelsIq

[ 1224 000Z 005t

oy
dug

-aurj dup oy 03 Jemarpuadaad
(o pue ‘aur| dup ay) Suoge (q ‘8a18 [01JU0D ) Ul (& 17 9)1s J8 UOHNQLUSIP AIANINPUOI [BILI[H-TE aandiy

(®)

wo ‘aouelsiq

i\

(/1)

L :.a/>¢f.o\|<|/

[t T

0o

(S Loo

aad 104



70

evaporation. At site 3, which received effluent with an EC value of 0.93 ds/cm, the
 difference between EC values in the irrigated area and control area was not significant at
any distance from the emitter (Table 11, Figure 33). The applied effluent at site 4 had a
relatively high EC value (1.52 ds/cm). This resulted in appreciable greater soil EC
through the entire soil profile when compared to EC values in the control area (Table 11,
Figure 34).

The influence of Na on soil particle swelling and dispersion depends on the total
electrolyte concentration in the soil solution (Feigin et al., 1991). Therefore, increased

salinity reduces the potential of soil dispersion due to increased soil sodicity.

Total Organic Carbon (TOC)

At sites 1, 2, and 4, TOC concentration in the entire soil profile in the irrigated
area was less than in the control area (Table 12 Figures 35, 36, and 38). Atsite 3, TOC
concentration in the irrigated area was greater than in the control area (Table 12, Figure
37), but this difference was not statistically significant.

Application of septic tank effluent with high BODs concentration could result in
significant accumulation of TOC in the soil profile. However, at the investigated sites
the septic tank effluent was treated with a constructed wetland prior to application in the
subsurface cirip dispersal field. Therefore, BODs concentrations for the applied effluents
were relatively low (Table 3), and so was the TOC concentration in the soil profile. The

reduction in TOC concentration could also be due to microbial activity in the soil profile.
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Water Retention and Pore Size Distribution

Atsite 1, application of treated effluent did not significantly effect pore size
distribution (Table 13) or soil water retention (Figure 39) above or at the emitter level.
At 6 in below the emitter, there was significantly less relative volume of pores with radii
>22 pm at location A than in the control area, while the relative volume of pores with
smaller radii was significantly greater at location A than in the control area. This, in
turn, resulted in greater soil water retention at location A than in the control area for all
matric potentials greater than 0 kpa, but this difference was not statistically significant.
At 12 in below the emitter, application of effluent caused an appreciable effect on pore
size distribution at location A and B only. The relative volume of pores with radii > 22
pm at these two locations was less than in the control area, while the relative volume of
pores with radii between 3 and 22 pm was greater than in the control area. This shift in
pore size distribution resulted only in a slightly greater water retention at these two
locations compared to values in the control area for all matric potentials greater than 0
kpa.

At site 2, there was no significant difference in pore size distribution (Table 14)
or soil water retention (Figure 40) between the irrigated area and the control area at 1 in
above the emitter. At a depth of 3 in below the emitter, there was significantly less
relative voh;me of pores with radii > 3 um over the majority of the irrigated area than in
the control area. This, in turn, resulted in greater water retention in the irrigated area than
in the control area for all matric potentials greater than 10 kpa (Figure 40). At a depth of

12 in below the emitter, there was significantly less relative volume of pores with radii >
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Table 13-Comparison of relative pore volumes occurring within selected size classes
(£6/£6) at site 1.

Pore radii, Location}

Sample depth um A B C D E )
>22 0.147 0.143 0.126  0.161 0.128 0.130
1 in above emitter 3-22 0.061 0.055 0.058 0.101 0.089 0.062
<3 0.289 0.308 0304 0.060  0.060 0.307
>22 0.172 0.139 0.173 0.162 0.155 0.152
At the emitter 3-22 0.056 0.068 0.055 0.066  0.053 0.051
<3 0.290 0.292 0.274 0.272 0.276 0.280
>22 0.116*  0.147 0.139 0.170  0.123 0.147
6 in below emitter 3-22 0.068 0.057 0.054  0.046  0.057 0.062
<3 0.287 0.265 0.275 0270  0.275 0.271
>22 0.134 0.119* 0.156 0.155 0.177 0.156
12 in below emitter 3-22 0.055 0.056 0.049 0.046 0.055 0.047
<3 0.261 0.260 0254  0.246 0.252 0.258

* ** Relative pore volume at selected location is significantly different from the pore
volume at location O at 0.05 and 0.10 level, respectively.

t Locations A- next to the emitter, B- 6 in from the emitter along the drip lateral, C- at

~ the midpoint between two emitters, D- 6 in from the emitter perpendicular to the drip
lateral, E- 12 in from the emitter perpendicular to the drip lateral, and O-outside the drip
field.
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Figure 39 -Water retention curves at site 1 at four depths: a) at 4 in above the emitter,
b) at the emitter, c) at 6 in below the emitter, and d) at 12 in below the emitter for six
locations A- next to the emitter, B-6 in from the emitter along the drip lateral, C-at the
midpoint between two emitters, D- 6 in from the emitter along a transect
perpendicular to the drip lateral, E- 12 in from the emitter along a transect
perpendicular to the drip lateral, and O-outside the drip field.



Table 14-Comparison of relative pore volumes occurring within selected size classes

(fE/£2%) at site 2.
Sample depth Pore Location
radii, A B C D E O
pum
>22 0.124 0.125 0.157 0.156 0.152 0.141
1in above emitter  3-22  0.096 0.089 0.097 0.113 0.091 0.091
<3 0.182 0.192 0.182 0.192 0.174 0.177
>22  0.094** 0.096** 0.091** 0.123 0.093** 0.136
At the emitter 3-22 0.083** 0.084** 0.082** 0.098 0.093** 0.104
<3 0.198 0.194 0.192 0.181 0.185 0.190
>22  0.089** 0.084** 0.107 0.106 0.078** 0.128
6 in below emitter  3-22  0.072 0.071 0.068 0.082 0.064 0.077
<3 0.237* 0.242* 0.231* 0213 0244* 0.199

12 in below emitter

* ** Relative pore volume at selected location is significantly different from the pore

volume at location O at 0.05 and 0.10 level, respectively.

1 Locations A- next to the emitter, B- 6 in from the emitter along the drip lateral, C- at

the midpoint between two emitters, D- 6 in from the emitter perpendicular to the drip

lateral, E- 12 in from the emitter perpendicular to the drip lateral, and O-outside the drip

field.
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Figure 40-Water retention curves at site 2 at three depths: a) at 1 in above the
emitter, b) at 3 in below the emitter, and c) at 12 in below the emitter for four for
six locations A- next to the emitter, B- 6 in from the emitter along the drip lateral,
C-at the midpoint between two emitters, D- 6 in from the emitter along a transect
perpendicular to the drip line, E- 12 in from the emitter along a transect
perpendicular to the drip line, and O-outside the drip field.
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22 um at locations A, B, and E than in the control area while the relative volume of

pores with radii < 3 um was significantly greater at locations A, B, C, and E than in the
control area. This shift of soil pore volume resulted in significantly greater water
retention at locations A, B, C, and E compared to values in the control area for all matric
potentials greater than 10 kpa (Figure 40). The greater impact of the applied effluent at
location E compared to location D, which is closer to the emitter, could have been
influenced by the high variability in pore volume values for selected size classes at this
location.

Equation 1 shows that there is an inverse relationship between soil matric
~ potential and pore size, which means smaller pores require greater tension to drain
compared to larger pores. Therefore, increasing the number of small pores will increase
the volume of water held at greater matric potentials. Previous research shows
application of wastewater to soil may reduce the size of soil pores due to 1)
accumulation of suspended solids and biological growth (Bouma, 1975), 2) deposition of
organic matter on the surface of the soil pores (Siergrist, 1987), and 3) increase in Na
concentration in the soil and associated clay particle dispersion (Patteson, 1997,
Amoozegar et al., 1998).

Soil chemical analyses at site 1, presented in detail in Jnad et al. (2001) and
summarized in Table 15, did not reveal significant increases in TOC or Na contents in
the soil profile. Therefore, reduction in the volume of soil pore at this site could be due

to microbial activity. Eliot (1975) and Johnson (1957) indicated that decomposition of
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Table 15-Change in the concentration of selected chemicals in the irrigated area
compared to that in the control area (%) at site 1.

. Location}
Constituents N B C D B
At 4 in above the emitter
Na -17 16 -7 -23 -23
Ca 17 7 50 1 8
Mg 29 50 300 29 21
TOC -41 -55 -39 -54 -47
EC 35 18 59 6 24
At the emitter
Na -24 -33 -52 -47 -55
Ca 15 -5 -1 4 -1
Mg 150 108 25 42 0
TOC -43 -48 -38 -40 -34
EC 11 -6 -11 -6 -17
At 6 in below the emitter
Na -8 -37 -49 -25 -50
Ca 16 14 -90 4 -1
Mg 243 136 0 143 -14
TOC -52 -44 -61 -42 -51
EC 35 12 6 6 6
At 12 in below the emitter
Na 23 15 -9 25 -21
Ca -29 -32 -19 -26 -11
Mg 35 -26 1 -46 -46
TOC -49 -51 -50 -56 -41
EC -24 -10 -14 -24 -19

+Locations A- next to the emitter, B- 6 in from the emitter along the drip lateral, C- at
the midpoint between two emitters, D- 6 in from the emitter perpendicular to the drip
lateral, and E- 6 in from the emitter perpendicular to the drip lateral.
organic matter by microbial activity could result in clogging of soil pores because of
gases and solid that would result from decomposition.

At site 2, soil chemical analyses (Table 16) showed significantly greater Na
concentrations in the soil profile. These increases in Na concentrations were associated

with decreases in Ca concentrations at depths of 3 in and 12 in below the emitter. An

increase in Na concentration associated with reduction in Ca concentration will increase
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the hazard of clay particle swelling and dispersion. This, in turn, could lead to a
reduction in soil pore size and, consequently, an increase in soil water retention. Since
there was no significant increase in TOC concentration in the soil profile (Table 16), an
increase in organic matter most likely was not a factor in reduction of pore size at this

site. However, decomposition of organic matter could cause clogging of pores because

of gases or solids from the decomposition products.

Saturated Hydraulic Conductivity (Ks.¢)

Application of effluent through the subsurface drip dispersal system at site 1 did
not have a significant effect on hydraulic conductivity values over the majority of the
soil profile (Table 17). At 3 in above the emitter, the saturated hydraulic conductivity all
distances from the emitter were greater than in the control area. However this difference
in K, values was not statistically significant. This increase in K, at this depth could be
caused by an increase in Ca and Mg concentration in conjunction with a reduction in Na
concentration (Table 15). At the emitter level, there was no significant difference in Ky

between the irrigated area and the control area. At 6 in below the emitter, at all distances
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Table 16-Change in the concentration of selected chemicals in the irrigated area
compared to that in the control area (%) at site 2.

_ Locationt
Constituents A B C D E
At 1 in above the emitter
Na 247 165 237 91 -5
Ca 2 -5 2 37 26
Mg 97 87 187 229 187
TOC 7 3 3 11 42
EC 170 124 184 226 127
At 3 in below the emitter
Na 500 450 475 425 83
Ca -19 -38 -49 -19 -18
Mg 59 32 23 26 112
TOC -6 -5 -20 -29 22
EC 67 39 17 40 34
At 12 in below the emitter
Na 418 600 380 477 215
Ca -60 -42 -70 -65 -67
Mg -25 246 76 -89 -34
TOC -85 -47 -43 -60 -69
EC 21 44 20 22 -5

+ Locations A- next to the emitter, B- 6 in from the emitter, and C- at the midpoint
between two emitters, D- 6 in from the emitter perpendicular to the drip lateral, and E-
12 in from the emitter perpendicular to the drip lateral.
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Table 17-Comparison of average saturated hydraulic conductivity (K, [cm/day]
Lgal/ftz-day) at site 1.

Location Number Average Kix Average Kz Standard Standard Coefficient of

of deviation deviation variability
sample  [cm/day] (gal/ﬁz-day) [cm/day] (gal/ﬁz-day) (%)
At 4 in above the emitter
A 4 593 223 91 22.3 15
B 9 757 185.7 800 196.3 106
C 3 666 163.4 275 67.4 41
D 4 1059 259.9 611 149.9 58
E 7 848 208.1 839 2059 99
0] 9 593 145.5 491 120.5 83
At the emitter
A 5 577 141.6 185 454 32
B 9 325 79.7 273 67.0 84
C 5 546 134.0 274 67.2 50
D 4 345 84.6 139 34.1 40
E 5 360 88.35 152 37.3 42
0] 9 414 101.6 318 78.0 77
At 6 in below the emitter
A 8 143* 35.0 128 314 89
B 10 331 81.2 138 33.87 42
C 9 316 77.5 364 89.3 115
D 4 247 60.62 82 20.1 33
E 6 293 71.9 307 75.3 105
0] 11 376 92.2 223 54.7 59
At 12 in below the emitter
A 5 214 52.5 111 27.2 52
B 7 220 53.9 124 30.4 57
C 6 178 43.6 57 13.9 32
D 4 262 64.3 100 24.54 38
E 3 214 52.5 117 28.71 54
0] 10 377 92.5 250 61.35 66

* **value of the saturated hydraulic conductivity at selected location is significantly

different from the saturated hydraulic conductivity at location O at 0.05 and 0.10 level,
respectively.

from the emitter, the K, values were less than in the control area. However, the
difference between K, in the irrigated area and that in the control area was significant

only in the area located directly below the emitter. Concentrations of Na and TOC at
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this depth were not significantly different from those in the control area (Table 15).
Therefore, the reduction in K was most likely due to microbial activity. Water moves
beneath the emitter via gravitational and capillary forces. Thus, this area was expected
to have consistently high moisture content, which stimulated the bacterial activity. At 12
in below the emitter, the K, value throughout the irrigated area was not significantly
different from the control area.

The minimal impact of effluent application on the saturated hydraulic
conductivity at this site could be attributed to several factors: 1) low application rate
(Table 1), 2) low Na and BODs concentration in the applied effluent (Table 2), and 3)
calcareous soils (ASCS, 1970).

At site 2, application of treated effluent through a subsurface drip dispersal
system resulted in K, values throughout much of the soil profile less than in the control
area (Table 18). The reduction in K, values varied spatially as well as with déi)th. A
greater reduction in Ky, occurred close to the emitter. At 1 in above the emitter, the
difference between K, value in the irrigated area and in the control area was only
significant at location A. However, at a depth of 3 in below the emitter, the Ksa value, at
all three locations located along the drip lateral were significantly less than in the control
area. At a depth of 12 in below the emitter, the Ky, values at locations A and B were

significantly less than in the control area.
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Table 18-Comparison of average saturated hydraulic conductivity (Ks,) (cm/day)
at site 2.

Location Number Average Kz Average Kz Standard Standard Coefficient of

of deviation  deviation variability
sample [cm/day] (gal/ftz-day) [cm/day] (gal/ﬁz-day) (%)
At 1 in above the emitter
A 7 91 ** 22.3 68 16.6 75
B 7 129 31.6 99 24.2 76
C 7 199 48.8 166 40.7 83
D 3 165 40.4 67 16.4 40
E 6 216 53.0 218 53.5 101
(0] 10 159 39.0 55 13.4 35
At 3 in below the emitter
A 5 14* 34 20 49 146
B 10 47* 11.5 65 15.9 137
C 6 53* 13.0 61 14.9 115
D 3 74 18.1 34 8.3 46
E 6 93 22.8 74 18.1 84
0 9 93 22.8 41 10.0 44
At 12 in below the emitter
A 7 56* 13.7 67 16.4 121
B 10 67** 16.4 66 16.1 99
C 6 69 16.9 90 22.0 131
D 3 100 24.5 78 19.1 78
E 7 75 18.4 89 21.8 118
0) 9 104 25.5 58 14.2 56

* **value of the saturated hydraulic conductivity at selected location is

significantly different from the saturated hydraulic conductivity at location O at 0.05 and
0.10 level, respectively.

The reduction in saturated hydraulic conductivity at this site could be due to
microbial activity and Na-induced clay dispersion. As mentioned earlier, microbial
activity stimulated by the nutrients and persistent moisture provided with wastewater can
result in decreased K, either by producing gases or organic materials or by
decomposing the binding agents responsible for stabilizing soil structure (Otis, 1985).
The Sodium Adsorption Ratio (SAR) is used to predict sodium hazard. Ayers and

Westcot (1976) reported that when SAR values are above 6, irrigation water can reduce
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hydraulic conductivity. In the case of irrigation with septic tank effluent, the effect of
Na on soil physical properties is aggravated by the presence of carbonate, bicarbonate,
and sulfate (Feigin et al., 1991). These components cause precipitation of Ca and
consequently increase SAR values. Patterson (1997) reported that effluent with SAR
values of 3 could significantly reduce soil hydraulic conductivity. Therefore, effluent
with a SAR value of 6.5, as in this study (Table 3), can be expected to reduce hydraulic
conductivity. Accumulation of TOC could also be a factor in Ky, reduction; however,
soil chemical analyses at this site did not show such accumulation. Variation in K,
values among replications was high but was with the normal range (Warrick and
Nielsen, 1980)

At sites 3 and 4, undisturbed soil samples were collected. However, due to the
low K only a few samples would accept water to become fully saturated in order to

conduct the K, test. Tables 19 and 20 present the value of the measured Ky, at sites 3

and 4, respectively.
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Table 19-Measured saturated hydraulic conductivity at site 3 (Ks,) [cm/day]

gal/ft’-day)*.
Location Sample Setl Sample Set2 - Sample Set3

At 4 in above the emitter

A 16 39 27 6.6 86 21.0

C 227 55.6 26 6.37 NA NA

E 1486 364.0 NA NA 30 7.3

@) 25 6.1 233 57.0 689 168.8

At the emitter level

A 2 0.49 NA NA NA NA

C NA NA NA NA NA NA

E NA NA NA NA NA NA

@) 77 18.8 186 455 183 448
At 6 in below the emitter

A NA NA NA NA NA NA

C 1 0.24 2 0.49 NA NA

E NA NA 2 0.49 NA NA

6] 8 1.9 25 6.1 36 8.8

* Due to the low saturated hydraulic conductivity of the soil at this site, the
hydraulic conductivity of several samples was below the measurement capability

of the testing method.
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Table 20-Measured saturated hydraulic conductivity at site 4 (Ks,¢) [cm/day]
(gal/ftz-day)*.

Location Sample Setl Sample Set 2 Sample Set 3

At 4 in above the emitter

A 1.6 0.39 NA NA NA NA

C 4 0.98 7.06 1.7 NA NA

E NA NA NA NA NA NA

0 2.6 0.63 2.8 0.68 NA NA

At the emitter level

A 0.6 0.14 NA NA NA NA

C 0.2 0.04 NA NA NA NA

E NA NA NA NA NA NA

0] 0.57 0.13 NA NA NA NA
At 6 in below the emitter

A 11.2 2.7 NA NA NA NA

C 10.9 2.6 NA NA NA NA

E NA NA NA NA NA NA

0) 0.61 0.14 34 0.83 NA NA

* Due to the low saturated hydraulic conductivity of the soil at this site, the

hydraulic conductivity of several samples was below the measurement capability
of the testing method.

Comparison with Conventional Septic Systems

Several researchers (Bouma et al. 1972; Bouma et al. 1975; Simons and
Magdoff, 1979) reported development of a severely clogged layer along the absorptive
surface of the trench in conventional septic systems. Data presented by Bouma et al.
(1975) (Table 21) show that the K, value of native soil in the drainfield of a septic
system was four orders of magnitude higher than K, in the clogged layer.

In the subsurface drip dispersal systems investigated in this study, all of the
measured values of K¢, were within the same order of magnitude as in the control area
(Tables 17 and 18). Moreover, excluding the area located directly below the emitter at

site 2, all the measured hydraulic conductivities were greater than 50% of values in the
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control area. This indicates that the subsurface drip dispersal field did not exhibit a
severely clogged layer such as that associated with conventional septic systems. Use of
a constructed wetland to improve effluent quality and uniform application of effluent via
a subsurface drip dispersal system were probably the main factors that prevented

development of a clogging layer.

Table 21-Data used in calculating saturated hydraulic conductivity of the clogged
layer developed in the two septic systems presented by Bouma et al. (1975).

System Age Ho h' q* Kan® Kauo
(year) (in) (in) (in/day)  (in/day)  (in/day)

1 1.5 13.4 0.8 0.23 0.007 16

2 3 8 0.8 0.40 0.013 16

* H, is depth of ponded water above the clogged layer.

' h is matric potential below the clogged layer.

Iq is the flow rate through the clogged layer.

§ Kauis the calculated saturated hydraulic conductivity of the clogged layer using
Darcy's law.

Kgp is the saturated hydraulic conductivity of the original soil.
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SUMMARY AND CONCLUSIONS

This project evaluated the influence of the application of effluent treated with
septic tanks and constructed wetlands using a subsurface drip dispersal system on soil
chemical and hydraulic properties. The quantity and distribution of chemical
constituents in the soil profile are influenced by soil properties, soil structure that affect
water movement patterns, crop uptake, concentration of the chemical in applied effluent,
concentration of the chemical in the original soil, and distance from the emitter. The
most important concern was elevation of Na concentration in soil when Na was
presented in large quantities in the applied effluent. It is known that increasing Na in
soil could cause deterioration of soil physical properties, especially if the increase in soil
Na occurred in conjunction with reduction in Ca and Mg concentration. Phosphorus
concentrations were significantly increased near the emitter and close to soil surface
where the drip line was installed at shallow depth. This could pose a hazard for surface
water pollution by erosion and runoff. There were no drastic change in soil TN, Ca, Mg,
K, EC, and TOC. Generally, there was slightly more build up of the chemical
constituents in the cross section along the drip lateral than in the cross section
perpendicular to the drip lateral. This difference in chemical distribution in both cross
sections was more pronounced for chemicals with low crop uptake such as P (compared
to nitrogen and potassium) and Na.

Application of treated effluent resulted in an increase in soil water retention, a
decrease in the volume of pores with large radii, and a decrease in saturated hydraulic

conductivity. These results were consistent with previous research findings (De Vries,
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1972; Sigriest, 1978). The areal extent of influence of applied effluent on soil hydraulic
properties depended on effluent quality, actual application rate, and soil type. At site 2,
application of effluent had a more pronounced impact due to high Na content and a
greater actual application rate. At this site, the impact of applied treated effluent on
saturated soil hydraulic conductivity decreased with increasing distance from the emitter.
More reduction in K¢, occurred along the drip lateral than perpendicular to the drip
lateral. At both sites, the greatest impact of effluent application occurred in the area
located beneath the emitter. The subsurface drip dispersal system did not exhibit a

severely clogged layer like those observed within drain fields of conventional septic

systems.
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APPENDIX A
Drawings for the sites were provided as a general description of the layout for the
on-site wastewater treatment systems. These drawings cover both the treatment and land
application systems. Each site has two subsurface drip drain fields. Soil samples were

collected from within the subsurface drip drain field having the greater flow rate

emitters.
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Figure A3- Drawing for site 3 on-site system located in Stephenville, Texas.
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