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CMAS 2010

Although primarily focused on the Community
Model for Air Quality (CMAQ), the CMAS conference
offers much for all photochemical modelers.

The majority of papers are directly relevant to
regulatory modeling applications.

78 technical presentations and 62 posters.

Presenters from several countries, EPA, private
industry, states, and universities.
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Notable Papers
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Uncertainties Influencing Health-based

Prioritization Of Ozone Abatement Options

Daniel S. Cohan, Antara Digar & Wei Tang, Rice University
Michelle L. Bell, Yale University

e Studied uncertainty in health benefit estimates as a
function of parametric uncertainties in Air Quality
model inputs and concentration-response (C-R)
function.

e Used a reduced-form model to characterize
parametric model uncertainties.

e Uncertainties in AQ model leading drivers of
uncertainty in benefits estimation

* Urban NO, emissions tend to have larger and more
uncertain health impacts.
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Parametric Uncertainty of Sensitivities
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Linking Uncertain Sensitivities and C-R Functions
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Averted mortalities per O3 season per tpd

Uncertainty Of Health Benefits
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* Uncertainties are large relative to median impacts
* Outliers driven by uncertainty in E,, E,.;.vocr @and photolysis rates

(Results based on 8-hour metric, with uncertain ¢ and )
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Temporal Source Apportionment of
Policy-Relevant Air Quality Metrics

Nicole MacDonald & Amir Hakami, Carelton University

 Used CMAQ-Adjoint to relate modeled ozone
concentrations to emissions as a function of time.

Sensitivity Ratios

Time Evolution of SRs
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Proof-of-Concept Evaluation of Use of
Photochemical Grid Model Source Apportionment
Techniques for Prevention of Significant

Deterioration of Air Quality Analysis Requirements
Bret Anderson, USFS; Kirk Baker & Erik Snyder, USEPA; Ralph
Morris & Chris Emery, Environ; Andy Hawkins, State of Kansas

* Explored using a photochemical grid model (CAMx) with
source apportionment for PSD permit applications instead of
the guideline CalPuff/CalMet system.

« PGMs employ much better science, but are also much more
resource-intensive.
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Issues with CALMET Meteorology

Collapsing CBL’s
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Issues with CALPUFF Chemistry
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Investigating Differences in O; Production from

CB05 and CBMIV Versions of the NAQFC

Rick Saylor, Hsin-Mu Lin, Pius Lee, Binyu Wang, Tianfeng Chai,
Ariel Stein, Daniel Tong, Hyun-Cheol Kim, Yunsoo Choi,
Fantine Ngan, Daewon Byun, NOAA

* Running the National Air Quality Forecast Center model with
CBO5 produces higher ozone concentrations than using CB-IV.

* Several differences o R

between mechanisms,

but largest portion of & ..[

ozone differential is due ¢ NMW A
g 0: A !

to nitrate recycling in 2T
CB-05.
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Evaluation of the Simulated Planetary

Boundary Layer in Eastern Texas
Jenna Kolling UNC), Jonathan Pleim (USEPA), William
Vizuete (UNC), Harvey Jeffries (UNC)

 Compared East Texas median hourly PBL values (Aug 13 — Oct.
11, 2006) simulated with WRF/ACM2 with those simulated
using MM5/Eta.

 The two methods produced comparable predicted PBL values
at three coastal sites, but MM5/Eta tended to produce PBL
depths that were too low inland; WRF/ACM?2 appears to
produce more accurate PBL depths at these inland sites.
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How sensitive are trace gas concentrations to
the method used to parameterize clouds within
CMAQ?

Christopher P. Loughner, Dale J. Allen, Russell R. Dickerson, Da-

Lin Zhang, & Kenneth E. Pickering, University of Maryland; Yi-
Xuan Shou, China Meteorological Administration

* Most interesting results were obtained through high-
resolution (0.5 km) simulations.
* Higher resolution simulations result in a stronger bay breeze.

* Astronger bay breeze prevents pollutants from being
transported near the surface from land to water resulting in
lower near surface ozone concentrations over the water and
higher ozone concentrations near the bay breeze convergence
zone.
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Impact of Ozone-Alkene Reactions on
Formaldehyde Mixing Ratios during the Texas Air

Quality Study 2006

Beata Czader, Bernhard Rappenglick, Daewon W. Byun,
Soontae Kim, Fong Ngan, University of Houston

* Used CMAQ process analysis to study pathways for
nighttime Formaldehyde formation during TexAQS II.

 Up to 5 ppbv of formaldehyse may be formed during
the course of the night.

 Ozone-alkene reactions are most important to
nighttime formaldehyde production, but NO-
methylperoxy radical reactions also important.
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The Community Multiscale Air Quality (CMAQ)
Modeling System: Ongoing and Planned

Developments
Rohit Mathur, EPA/AMAD

CMAQv4.7, June 2008

CMAQv4.7.1, June 2010

CAMAQv5.0, Fall 2011

SAPRO7TB (toxics version B) — more explicit compounds
Updated CBO5 toluene mechanism, Whitten (2010)
Improved photolysis, albedo

Organic carbon for more SOA

Improved PM, aerosol, and fugitive dust

Improved aqueous chemistry, dry deposition
MEGAN-based biogenic emissions, lightning NOx
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Two-Way Coupled WRF-CMAQ Modeling System

Design and Model Features

Feedback
Aerosol optical

AQ Model
CMAQ Mo.delin_.tem ‘with

Flexible design of model coupling allows
e data exchange through memory resident buffer-files
e flexibility in frequency of coupling

Aerosol Optics & Feedbacks

® VVolume weighted refractive indices
for 19 wavelength intervals based on
- Composition and size distribution
-S0,%, NOy, NH,*, Na*, CI;, EC, POA,
anthropogenic and biogenic SOA,
other primary, water

¢ CAM and RRTMG Shortwave radiation
schemes inWRF

e Effects of aerosol scattering and
absorption on photolysis

* Effects of O, on long-wave radiation

* Indirect effects (see presentation by S.

Yu)

e identical on-line and off-line computational paradigms with minimal code changes

e both WRF and CMAQ models to evolve independently;
qMaintains integrity of WRF and CMAQ
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2-Way Coupled WRF-CMAQ Modeling System: Early Results (8/6/06: 22Z7)
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Simulating the Annual-Average PM2.5 Mass
Concentrations and Composition Using CMAQ:

A Decade in Review
Prakash Bhave, EPA/AMAD

* Tries to answer the question: “Has CMAQ
performance for PM2.5 improved?”

* A: Yes, in general, by assessing in order:
— Emissions
— PBL height
— Clouds
— Wet removal
— SOA chemistry
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Conclusions
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* Model performance has improved substantially!

* I’'ve reviewed 8 major refinements to the modeling system.

—Meteorology inputs (2)
—Emissions & deposition (4)
—Atmospheric chemistry (2)
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Updates to the Carbon Bond Mechanism for

Version 6: CB6

Greg Yarwood and Jaegun Jung, ENVIRON; Gookyoung Heo, UT
Austin; Gary Z. Whitten, SmogReyes; Jocelyn Mellberg, and
Mark Estes, TCEQ

e CB last updated in 2005 (CBO5)

e Update the core to 2010 state-of-science

 New aromatics chemistry (including toluene)

* New isoprene chemistry

* New ketone chemistry

* Explicit (non-lumping) of several species

e Optional Nitryl chloride (from sea salt) chemistry
* Optional Lightning NO,
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Summary of CB6 and CBO5

CB05 CB6 Change

Gas-phase reactions 156 218 +40%
23 28 +22%
51 +50%
Emissions species for ozone 16 21 +31%

Some notable reaction rate changes from CBO5 to CB6:

OH + NO, = HNO; increased by 5% => greater radical sink

HCHO + hv = 2 HO, + CO increased by 23% => greater radical source
NO, + hv=NO + O increased by 7% => more ozone

* N,O¢+ H,O (+ H,0) = 2 HNO, decreased by ~80%

- Less NOx removal at night

- Very important to include N,O. reaction on aerosol surfaces
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Use of Geostationary Satellite Observations for
Dynamical Support of Model Cloud Fields

Arastoo Pour Biazar, Dick McNider, Kevin Doty, Yun-Hee Park,
University of Alabama in Huntsville, Maudood Khan, The
Universities Space Research Assoc., Bright Dornblaser, TCEQ

* The problem in cloud prediction is particularly frustrating in
air quality SIP modeling since they are retrospective
simulations in which the observed cloud field is known from
satellite observations but models have significant differences
in cloud placement.

®* The overall purpose of the current effort is to improve model
location and timing of clouds in the Weather Research and
Forecast (WRF) meteorological model which is widely used in
the air quality planning community.
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Preliminary Results

Control WRF
simulation: August
19, 2006, 20 GMT
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Air Pollution Health Studies:
Tying Air Quality to Epidemiology and Exposure

panels of experts and individual presentations
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Exposure science in risk
assessment and risk
management is critical to EPA’s
mission to promote public health
and welfare

EPA conducts exposure
assessments to determine the
route, magnitude, frequency,
and distribution of exposure
Epidemiology studies are vital in
estimating the risk and the
impact of air pollution on human
health.

Latest research in epidemiology
emphasizes the need for more
reliable estimates or surrogates
of human exposures

Role of Exposure Science and
Epidemiology in EPA

Air Quality |—> Epidemiology

\“ Exposure /

!

* Integrated Science Assessment
» Risk and Exposure Assessment

* Risk Management
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Average Time Spent in Each Microenvironment

OUTDOORS (7.6%b)

IN VEHICLE (5.5%0) TOTAL

INDOORS:

OTHER INDOOR (11%b) 56 00
. (0]

National Human Activity Pattern Survey (NHAPS)

Adapted by Klepeis et al., 2001
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Complexity

Tiers of Exposure Metrics
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Microenvironmental Time Spent in

Concentrations Microenvironments
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