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Motivation: Characterize uncertainty 
in attainment modeling 

• SIPs rely upon models for 
attainment demonstrations & 
strategy selection 

• Models known to be uncertain, but 
applied deterministically 

• Goal: Characterize probabilistic 
responsiveness of ozone to controls 
– Identify inputs that most influence 

uncertainty 
– Efficient Monte Carlo simulations of 

concentrations & sensitivities 
– Use observations to weight cases 

Base 

Future 

“RRF” = Future/Base 

Attainment?? 



Causes of Uncertainty in AQMs 

Uncertainty in 
AQM 

Structural 
Uncertainty 

Model/User 
Errors  

Parametric 
Uncertainty 

Imperfections in numerical 
representations of 
atmospheric processes: 
 Chemical mechanism 
 Deposition scheme 
 Vertical mixing scheme 
 Grid resolution 
 Input models (emissions, 
boundary conditions, 
meteorology) 

Error in model input 
parameters: 
 Emission rates 
 Reaction rate constants 
 Boundary conditions 
 Deposition velocities 
 Meteorology parameters 
 

3 



Prior Work: Reduced Form Model to 
parametric uncertainty characterization 

4 
Digar et al., ES&T 2011 

How can we use observations to weight or screen the cases?? 



Prior work: Probabilistic evaluation of 
control strategies in Georgia 

5 
Digar et al., ES&T 2011 Example of ranking reversal 



Cohan et al., Atmos. Environ. (2010), 3101-3109 

Motivation: Large Δ(Sens O3_Emis) for 
modest Δ(inputs) in Texas 



Motivation: Large Δ(Sens O3_Emis) for 
modest Δ(inputs) in Texas 

Xiao et al., 
JGR, 2010 

Sens to ANOx           Sens to AVOC 

Uncertain 
BVOC 

 
 
 
 
 
 

Uncertain 
ANOx 



STUDY GOALS 

• Improved understanding of how structural and 
parametric uncertainties influence ozone SIP 
modeling in Texas non ‐attainment regions 
 

• Prioritize model inputs whose improvement is 
most critical to reliable predictions of ozone 
concentration and sensitivity 
 

• Use observations to evaluate which model cases 
best represent ozone‐precursor response in Texas 

8 



Alternate inputs for Texas 2006 Ozone SIP 
modeling in DFW & Houston 

GloBEIS vs MEGAN biogenic emissions model 

MOZART vs GEOSChem boundary conditions 

Default vs Zhang deposition scheme 

CB‐05 vs CB‐6 (and modCB‐6) chemical mechanism 

Satellite‐based photolysis rates (2‐weeks only) 
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GEOS-Chem: higher O3 at boundaries 

10 

West Boundary   East Boundary 

Aug‐Sept 2006 
episode 



MEGAN: Higher biogenic NMVOC, 
lower biogenic NOx 
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GloBEIS (default)   MEGAN 

Species 36-km Domain 12-km Domain 

GloBEIS MEGAN GloBEIS MEGAN 

NOx 6,932 2,168 1,123 590 

NMVOC 159,943 185,059 48,176 59,527 

CO 16,622 19,684 4,457 5,723 
Aug‐Sept 2006 
episode 



Screening for Structural Factors: 
Chemical mechanism & biogenic model 

most influence O3 sensitivities to emissions 
STRUCTURAL CASES 

Base CHEM BIO DEP BC 

Comparison of each structural case against the observations for 8-hour O3 concentration in DFW 

RMS (ppb) 13.01 13.21 13.63 12.95 13.01 

BIAS (ppb) ‐0.61 4.59 -1.06 1.88 0.02 

NMB (%) ‐1.04 7.83 -1.82 3.22 0.04 

NME (%) 17.79 16.88 18.85 17.08 17.76 

Comparison of each alternate case against the Base case for DFW 8-hour O3 sensitivity to DFW ANOX 

RMS (ppb) ‐ 0.79 1.37 0.12 0.16 

BIAS (ppb) ‐ -0.40 0.75 ‐0.01 ‐0.09 

NMB (%) ‐ -12.07 22.81 ‐0.25 ‐2.81 

NME (%) ‐ 15.35 26.08 2.13 2.83 

Comparison of each alternate case against the Base case for DFW 8-hour O3 sensitivity to DFW AVOC 

RMS (ppb) ‐ 0.44 0.17 0.02 0.02 

BIAS (ppb) ‐ 0.26 -0.08 ‐0.00 0.01 

NMB (%) ‐ 63.35 -19.33 ‐0.80 1.88 

NME (%) ‐ 63.45 21.90 2.04 2.14 
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DFW sensitivities under each structural case 
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Zhang(Z)
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GEOS(G)
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• All show predominately NOx‐limited 
• CB‐6 favors VOC sensitivity 
• MEGAN favors NOx sensitivity 
• Boundary conditions do not affect sensitivities 
• Zhang deposition affects sensitivities only at night 
• Similar trends for Houston sensitivities (Aug‐Sept episode) 

CB‐6 CB‐6 

MEGAN 

MEGAN 

Zhang 



Reduced Form Model to consider 
parametric uncertainties 

•  Apply Reduced Form Model to estimate C and S(1) 
under alternate settings of input parameters 

 

 

 

• Accuracy of Reduced Form Model demonstrated by 
Digar and Cohan (2010) 

• Here: Monte Carlo sampling of 1000 input parameter 
settings  (1000 parametric * 4 structural = 4000 cases) 
 



Screening for Parametric Uncertainty 
Parameter1 

Uncertainty2 
(1σ) 
L-N 

Reference 
Impact3 on O3 
concentration 

Impact3 on O3 
sensitivity to 

ANOX 

Impact3 on  
O3 sensitivity  

to AVOC 
Emission Rates: 
Domain‐wide NOX 0.336 

Deguillaume, 2007 

0.105 -0.463 0.496 
Domain‐wide biogenic 
VOC 

0.405 0.026 0.216 -0.319 

Domain‐wide 
anthropogenic VOC 

0.336 0.006 0.073 -0.150 

Reaction Rate Constants: 

All photolysis frequencies 0.347 Hanna, 2001 0.091 0.401 0.091 

R(OH+NO2) 0.131 Sander, 2006 -0.017 -0.057 0.029 
R(NO+O3) 0.095 Hanna, 2001 -0.023 -0.058 -0.024 

R(All VOCs+OH) 0.095 Deguillaume, 2007 0.003 0.021 0.014 

Boundary Conditions: 

BC (O3) 0.203 

Deguillaume, 2007 

0.036 0.006 -0.042 
BC (NOX) 0.549 0.002 ‐0.001 ‐0.001 
BC (HNO3) 0.549 0.001 ‐0.000 ‐0.000 
BC (PAN) 0.549 0.008 ‐0.003 ‐0.002 
BC (HONO) 0.549 0.000 ‐0.000 ‐0.000 
BC (N2O5) 0.549 0.000 ‐0.000 0.000 

( )‘ ’ ‘ ’ = ϕ 1
j jImpact factor for the influence of a parameter j  on concentration C S C

( ) ( ) ( )
,‘ ’ ϕ1 2 1

j k j k jImpact factor for the influence of a parameter k  on  sensitivity S = S S 15 



Final Ensemble 
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BASE BIO 

CHEM CHEM+BIO 

4 Structural Members 1000 Parametric Values 

4000 Scenarios 

O3 conc. or sens. 



Observation-Constrained Monte Carlo 
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A priori 
uncertainties 

in input 
parameters 

A priori 
uncertainties 

in model 
formulations 

Monte Carlo 
simulations 

A priori conc & sens 
without constraints 

Weighting by 
observations 

Uncertainties in 
observations 

A posteriori 
distributions of 

inputs and outputs 

Standard Monte Carlo 

adapted from 
Deguillaume et al., 2007 

Assumption: Simulation that 
well matches observed 
concentrations is also most 
reliable for sensitivities 



Bayesian Inference to “weight”  
relative likelihoods of Monte Carlo cases  

• Use observational evidence to update the estimated 
likelihood of probabilistic predictions 

• Initially assume each prediction is equally likely 

• Apply Bayes Theorem to assign relative likelihood to 
each model case Xi, given observation O 

 

 

• Assign standard error (σ) to each observation, but 
not to the model results 
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Metrics for Bayesian Analysis 
in AQRP Report 

• Metric 1: 8‐hr ozone at each target monitor (Denton, 
Eagle Mt. Lake and Keller) on each day, considering 
only monitor‐days > 70 ppb 
– Truncated likelihood function (N=48) 

• Metric 2: 8‐hr ozone averaged across all DFW 
monitors on each day 
– Normal likelihood function (N=30) 

• Note: If each Ok is assumed independent, function 
essentially multiplies together likelihoods 
– Results in huge range in weights 
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Bayesian Likelihood Functions 
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Normal Likelihood Function of ozone prediction (     ) given observations (    ): 

Truncated Normal Likelihood Function of ozone prediction (     ) given that observation (     ) 
exceeds a threshold concentration (a) : 
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σk is the observation standard error 

Bergin and Milford, ES&T, 2000 

If threshold is applied to observations, need an alternate approach: 

Approach of most past studies: 



Non-Bayesian Metric 3 
in AQRP report 
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Ozone monitors considered in metrics 

22 

Denton 

Eagle Mt. 
Lake Kaufman 



Estimate observation standard error 
based on grid cells with multiple monitors 
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Thus, we chose σ = 8 ppb for Metric 1 to be near the midpoint of this range. 
Metric 2 should have less uncertainty due to its averaging across sites, and 
thus σ = 5 ppb was chosen for this metric. 

Standard deviation 
between observed 8hr 
ozone values at these 
same‐grid‐cell sites ranges 
from 3.0 to 10.5ppb 

Figure courtesy: K. Foley, US EPA 



Results in AQRP Report:  
Weighting of structural cases 

• Weightings differed widely by metric, and if 
parametric uncertainty was included 

• Metrics 1 & 2 placed most weight on handful of 
cases (unrealistic??) 

• Metric 3 had flatter distribution 
  a posteriori probabilities 
  BASE CB6 (C) MEGAN (M) C+M 

Metric 1  
(N = 48) 

structural only 0.00% 16.34% 0.00% 83.66% 

w/ parametric 14.91% 5.26% 65.01% 14.82% 

Metric 2  
(N = 30) 

structural only 0.19% 80.06% 0.16% 19.58% 

w/ parametric 0.00% 25.32% 0.00% 74.68% 

Metric 3  
(non-Bayesian, N=356) 

w/ parametric 21.63% 29.57% 21.42% 27.39% 

 



Results: Scaling of input parameters 
in weighted ensembles 

• Weightings differ across metrics 

• Metric 1 sought to overcome low bias for [O3] 

• Metric 3 assigned flat distribution of weights 
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Input Parameters 
a posteriori 
mean ± 1σ 

Metric 1 Metric 2 Metric 3 
ENOX 1.05 ± 0.16 0.90 ± 0.07 1.06 ± 0.25 
EBVOC 1.07 ± 0.27 0.85 ± 0.14 1.03 ± 0.25 
R(photolysis) 1.06 ± 0.07 1.11 ± 0.07 1.01 ± 0.08 
R(NO2+OH) 0.89 ± 0.24 1.45 ± 0.16 1.03 ± 0.27 
R(NO+O3) 0.97 ± 0.06 1.04 ± 0.08 1.00 ± 0.08 
BC(O3) 1.23 ± 0.13 1.30 ± 0.05 1.02 ± 0.16 
 

Weighted mean scaling factor for each input parameter 



Results: Predicted sensitivities to 
DFW NOx and VOC 

  SANOx (ppb) SAVOC (ppb) 

 
a priori  

mean ± 1σ 
a posteriori  
mean ± 1σ 

a priori  
mean ± 1σ 

a posteriori  
mean ± 1σ 

Denton 
Metric 1 

6.79 ± 2.59 
9.23 ± 1.64 

1.10 ± 0.82 
0.73 ± 0.29 

Metric 2 6.21 ± 1.01 1.12 ± 0.30 
Eagle Mt. 

Lake 
Metric 1 

6.79 ± 2.46 
9.17 ± 1.58 

0.95 ± 0.76 
0.60 ± 0.28 

Metric 2 6.28 ± 0.94 0.98 ± 0.27 

Kaufman 
Metric 1 

3.39 ± 0.57 
3.92 ± 0.34 

0.05 ± 0.06 
0.01 ± 0.02 

Metric 2 3.22 ± 0.17 0.06 ± 0.02 
 



Results: Weighted and unweighted ensemble 
predictions of ozone sensitivity at Denton 

Metric 1 Metric 2 Metric 3 

NOx 

VOC 



Performance of Ensembles vs. DFW  
8-hour Ozone Observations 

Statistics Base Case 
(deterministic) 

Equal weighted 
full ensemble 

Bayesian 
(Metric-1) 

Bayesian 
(Metric-2) 

Non-
Bayesian 

(Metric-3) 
RMS (ppb) 12.62 11.50 11.58 10.23 11.45 
NMB (%) -7.81 -2.44 3.21 -0.31 -0.46 

Correlation 0.759 0.770 0.769 0.819 0.770 
 

• Base model already performed well 

• Equal‐weight ensemble corrected bias by including 
CB‐6 cases with higher [O3] 

• Weightings achieved low bias but did not substantially 
improve error or correlation 



Structural ensemble was “underdispersive”: 
Ensemble range did not capture some observations 

Daily 8‐hour ozone averaged over DFW monitors 



WORK SINCE AQRP: PUBLICATION 
IN PREPARATION FOR JGR 
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Observations (8-h O3 & 24-h NOX) 

Note: NOX concentrations were bias‐corrected for interference with other nitrogen species 
based on the work of Lamsal et al., JGR, 2008. 31 



JGR paper Metric 1 (Bayesian) 
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• Episode‐average 8‐hr O3 and 24‐hr NOx at 11 sites 
(N = 11) 
• Set σ = 7.2 ppb (8‐hr O3) and 8.2 ppb (24‐hr NOx), 
based on data from monitors in same grid cells 
• Applied Bayesian likelihood function 
 



Screening cases that pass all of the following test criteria for 8‐hr Ozone, 

N

1

Model Obs1MNGE 100
N Obs

%
 −

= ×  
 

∑

N

1

1 Model ObsMNB 100
N Obs

% −
= × 

 
∑

Model Obs
UPA 100

Obs
max max

max

%
−

= ×

Note: MNB and MNGE were computed for model results (Model) when O3 observations (Obs) 
were greater than the recommended threshold of 60 ppb [USEPA, 2007] 

Mean Normalized Gross Error 

Mean Normalized  Bias 

Unpaired Peak Accuracy 

‐5% < MNGE < +5% 

MNB < 30% 
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8-hr O3 at all sites and days 
 

N = 289 

JGR paper Metric 2 (EPA-based screening) 
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CDF of x 
G(y) 

x1 x2 xn y1 y2 yn yi xi 

CDF of y 

F(x) 

One rejects the null hypothesis that F(x)≡G(y) if T is too large 

We select only those cases that yields p‐values > 0.1, 
for both of the observational constraints (O3 and NOX) 

N  
Model 

Predictions 
(x) 

N 
Observations 

(y) 

The Cramér‐von Mises (CvM) criterion [Anderson, 1962] provides a non‐parametric test of the 

null hypothesis (H0) that two samples are drawn from the same (unspecified) distribution 

34 

8-hr O3 (N = 289) 
and 24-hr NOx (N = 303) 

at all sites and days 

F(yi) G(xi) 

For each mth simulation, 

JGR paper Metric 3 (CvM screening) 



Episode-Average 8-hr Ozone  
Prediction at Denton 

Metric 

O3 Concentration (ppb) 
Obs = 70.11 ppb 

a priori  
(µ ± σ) 

a posteriori  
(µ ± σ) 

Metric 1 
65.51 ± 7.33 

65.53 ± 2.16 
Metric 2 69.04 ± 2.03 
Metric 3 68.85 ± 1.87 
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Metrics Method 
Constrained by 
Measurements 

of  
Base CHEM BIO CHEM+BIO 

Metric 1 Bayesian O3 and NOX 19.37% 35.37% 16.14% 29.12% 

Metric 2 
EPA 

Performance 
O3 16.14% 33.69% 17.99% 32.19% 

Metric 3 CvM Test O3 and NOX 12.92% 37.08% 16.97% 33.03% 

All metrics gave more weight to simulations using CB-6 chemical mechanism  

36 

Distribution of Posterior Weights 
across Structural Cases 



Metrics 2 and 3 favored cases with scaled-up ENOx 

Metric 1 favored cases with ENOx near base inventory 
37 

Posterior distribution of NOx 
Emission Scaling Factors 

ENOX 



Obs‐based constraints did not significantly 
change reaction rate distributions 
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R(photolysis)                R(NO2 + OH)                   R(NO + O3) 



A posteriori result for SNOx : SVOC 

 Negative shift in the posterior CDFs (particularly for Metric 2 and 3) indicate slight preference 

towards SVOC, although the region is predominantly NOx‐limited (i.e. SNOx : SVOC > 1.0 ) 

39 

Cumulative Distribution Functions for Ratio (SNOx : SVOC) 



‐ All metrics gave more weight to simulations using CB‐6 chem,  

 

‐ CB‐6 favors VOC controls 

 

‐ Higher NOx emissions were needed to better match with 
observations 

 

‐ Slight preference for VOC controls → higher SVOC compared to 
SNOx, hence lower SNOx:SVOC  

40 

SNOx:SVOC decreases because.. 



CONCLUSIONS 

• Demonstrated Bayesian and non‐Bayesian approaches 
for observation‐constrained Monte Carlo probabilities 

• Developed probability distributions for response of 
DFW ozone to local NOx and VOC emissions 

• Identified structural and parametric choices that most 
influence concentrations and sensitivities 

• Choice of observational metric is crucial to results 

• Future work could consider additional uncertainties 
(e.g., meteorology; ensemble of models) and metrics 
(e.g., using data from satellites or aircraft) 
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