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Motivation: Characterize uncertainty 
in attainment modeling 

• SIPs rely upon models for 
attainment demonstrations & 
strategy selection 

• Models known to be uncertain, but 
applied deterministically 

• Goal: Characterize probabilistic 
responsiveness of ozone to controls 
– Identify inputs that most influence 

uncertainty 
– Efficient Monte Carlo simulations of 

concentrations & sensitivities 
– Use observations to weight cases 

Base 

Future 

“RRF” = Future/Base 

Attainment?? 



Causes of Uncertainty in AQMs 

Uncertainty in 
AQM 

Structural 
Uncertainty 

Model/User 
Errors  

Parametric 
Uncertainty 

Imperfections in numerical 
representations of 
atmospheric processes: 
 Chemical mechanism 
 Deposition scheme 
 Vertical mixing scheme 
 Grid resolution 
 Input models (emissions, 
boundary conditions, 
meteorology) 

Error in model input 
parameters: 
 Emission rates 
 Reaction rate constants 
 Boundary conditions 
 Deposition velocities 
 Meteorology parameters 
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Prior Work: Reduced Form Model to 
parametric uncertainty characterization 

4 
Digar et al., ES&T 2011 

How can we use observations to weight or screen the cases?? 



Prior work: Probabilistic evaluation of 
control strategies in Georgia 

5 
Digar et al., ES&T 2011 Example of ranking reversal 



Cohan et al., Atmos. Environ. (2010), 3101-3109 

Motivation: Large Δ(Sens O3_Emis) for 
modest Δ(inputs) in Texas 



Motivation: Large Δ(Sens O3_Emis) for 
modest Δ(inputs) in Texas 

Xiao et al., 
JGR, 2010 

Sens to ANOx           Sens to AVOC 

Uncertain 
BVOC 

 
 
 
 
 
 

Uncertain 
ANOx 



STUDY GOALS 

• Improved understanding of how structural and 
parametric uncertainties influence ozone SIP 
modeling in Texas non ‐attainment regions 
 

• Prioritize model inputs whose improvement is 
most critical to reliable predictions of ozone 
concentration and sensitivity 
 

• Use observations to evaluate which model cases 
best represent ozone‐precursor response in Texas 
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Alternate inputs for Texas 2006 Ozone SIP 
modeling in DFW & Houston 

GloBEIS vs MEGAN biogenic emissions model 

MOZART vs GEOSChem boundary conditions 

Default vs Zhang deposition scheme 

CB-05 vs CB-6 (and modCB-6) chemical mechanism 

Satellite-based photolysis rates (2-weeks only) 
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GEOS-Chem: higher O3 at boundaries 
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West Boundary   East Boundary 

Aug-Sept 2006 
episode 



MEGAN: Higher biogenic NMVOC, 
lower biogenic NOx 
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GloBEIS (default)   MEGAN 

Species 36-km Domain 12-km Domain 

GloBEIS MEGAN GloBEIS MEGAN 

NOx 6,932 2,168 1,123 590 

NMVOC 159,943 185,059 48,176 59,527 

CO 16,622 19,684 4,457 5,723 
Aug-Sept 2006 
episode 



Screening for Structural Factors: 
Chemical mechanism & biogenic model 

most influence O3 sensitivities to emissions 
STRUCTURAL CASES 

Base CHEM BIO DEP BC 

Comparison of each structural case against the observations for 8-hour O3 concentration in DFW 

RMS (ppb) 13.01 13.21 13.63 12.95 13.01 

BIAS (ppb) -0.61 4.59 -1.06 1.88 0.02 

NMB (%) -1.04 7.83 -1.82 3.22 0.04 

NME (%) 17.79 16.88 18.85 17.08 17.76 

Comparison of each alternate case against the Base case for DFW 8-hour O3 sensitivity to DFW ANOX 

RMS (ppb) - 0.79 1.37 0.12 0.16 

BIAS (ppb) - -0.40 0.75 -0.01 -0.09 

NMB (%) - -12.07 22.81 -0.25 -2.81 

NME (%) - 15.35 26.08 2.13 2.83 

Comparison of each alternate case against the Base case for DFW 8-hour O3 sensitivity to DFW AVOC 

RMS (ppb) - 0.44 0.17 0.02 0.02 

BIAS (ppb) - 0.26 -0.08 -0.00 0.01 

NMB (%) - 63.35 -19.33 -0.80 1.88 

NME (%) - 63.45 21.90 2.04 2.14 
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DFW sensitivities under each structural case 
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• All show predominately NOx-limited 
• CB-6 favors VOC sensitivity 
• MEGAN favors NOx sensitivity 
• Boundary conditions do not affect sensitivities 
• Zhang deposition affects sensitivities only at night 
• Similar trends for Houston sensitivities (Aug-Sept episode) 

CB-6 CB-6 

MEGAN 

MEGAN 

Zhang 



Reduced Form Model to consider 
parametric uncertainties 

•  Apply Reduced Form Model to estimate C and S(1) 
under alternate settings of input parameters 

 

 

 

• Accuracy of Reduced Form Model demonstrated by 
Digar and Cohan (2010) 

• Here: Monte Carlo sampling of 1000 input parameter 
settings  (1000 parametric * 4 structural = 4000 cases) 
 



Screening for Parametric Uncertainty 
Parameter1 

Uncertainty2 
(1σ) 
L-N 

Reference 
Impact3 on O3 
concentration 

Impact3 on O3 
sensitivity to 

ANOX 

Impact3 on  
O3 sensitivity  

to AVOC 
Emission Rates: 
Domain-wide NOX 0.336 

Deguillaume, 2007 

0.105 -0.463 0.496 
Domain-wide biogenic 
VOC 

0.405 0.026 0.216 -0.319 

Domain-wide 
anthropogenic VOC 

0.336 0.006 0.073 -0.150 

Reaction Rate Constants: 

All photolysis frequencies 0.347 Hanna, 2001 0.091 0.401 0.091 

R(OH+NO2) 0.131 Sander, 2006 -0.017 -0.057 0.029 
R(NO+O3) 0.095 Hanna, 2001 -0.023 -0.058 -0.024 

R(All VOCs+OH) 0.095 Deguillaume, 2007 0.003 0.021 0.014 

Boundary Conditions: 

BC (O3) 0.203 

Deguillaume, 2007 

0.036 0.006 -0.042 
BC (NOX) 0.549 0.002 -0.001 -0.001 
BC (HNO3) 0.549 0.001 -0.000 -0.000 
BC (PAN) 0.549 0.008 -0.003 -0.002 
BC (HONO) 0.549 0.000 -0.000 -0.000 
BC (N2O5) 0.549 0.000 -0.000 0.000 

( )‘ ’ ‘ ’ = ϕ 1
j jImpact factor for the influence of a parameter j  on concentration C S C

( ) ( ) ( )
,‘ ’ ϕ1 2 1

j k j k jImpact factor for the influence of a parameter k  on  sensitivity S = S S 15 



Final Ensemble 
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BASE BIO 

CHEM CHEM+BIO 

4 Structural Members 1000 Parametric Values 

4000 Scenarios 

O3 conc. or sens. 



Observation-Constrained Monte Carlo 

17 

A priori 
uncertainties 

in input 
parameters 

A priori 
uncertainties 

in model 
formulations 

Monte Carlo 
simulations 

A priori conc & sens 
without constraints 

Weighting by 
observations 

Uncertainties in 
observations 

A posteriori 
distributions of 

inputs and outputs 

Standard Monte Carlo 

adapted from 
Deguillaume et al., 2007 

Assumption: Simulation that 
well matches observed 
concentrations is also most 
reliable for sensitivities 



Bayesian Inference to “weight”  
relative likelihoods of Monte Carlo cases  

• Use observational evidence to update the estimated 
likelihood of probabilistic predictions 

• Initially assume each prediction is equally likely 

• Apply Bayes Theorem to assign relative likelihood to 
each model case Xi, given observation O 

 

 

• Assign standard error (σ) to each observation, but 
not to the model results 
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Metrics for Bayesian Analysis 
in AQRP Report 

• Metric 1: 8-hr ozone at each target monitor (Denton, 
Eagle Mt. Lake and Keller) on each day, considering 
only monitor-days > 70 ppb 
– Truncated likelihood function (N=48) 

• Metric 2: 8-hr ozone averaged across all DFW 
monitors on each day 
– Normal likelihood function (N=30) 

• Note: If each Ok is assumed independent, function 
essentially multiplies together likelihoods 
– Results in huge range in weights 
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Bayesian Likelihood Functions 
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Normal Likelihood Function of ozone prediction (     ) given observations (    ): 

Truncated Normal Likelihood Function of ozone prediction (     ) given that observation (     ) 
exceeds a threshold concentration (a) : 
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σk is the observation standard error 

Bergin and Milford, ES&T, 2000 

If threshold is applied to observations, need an alternate approach: 

Approach of most past studies: 



Non-Bayesian Metric 3 
in AQRP report 
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Ozone monitors considered in metrics 

22 

Denton 

Eagle Mt. 
Lake Kaufman 



Estimate observation standard error 
based on grid cells with multiple monitors 
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Thus, we chose σ = 8 ppb for Metric 1 to be near the midpoint of this range. 
Metric 2 should have less uncertainty due to its averaging across sites, and 
thus σ = 5 ppb was chosen for this metric. 

Standard deviation 
between observed 8hr 
ozone values at these 
same-grid-cell sites ranges 
from 3.0 to 10.5ppb 

Figure courtesy: K. Foley, US EPA 



Results in AQRP Report:  
Weighting of structural cases 

• Weightings differed widely by metric, and if 
parametric uncertainty was included 

• Metrics 1 & 2 placed most weight on handful of 
cases (unrealistic??) 

• Metric 3 had flatter distribution 
  a posteriori probabilities 
  BASE CB6 (C) MEGAN (M) C+M 

Metric 1  
(N = 48) 

structural only 0.00% 16.34% 0.00% 83.66% 

w/ parametric 14.91% 5.26% 65.01% 14.82% 

Metric 2  
(N = 30) 

structural only 0.19% 80.06% 0.16% 19.58% 

w/ parametric 0.00% 25.32% 0.00% 74.68% 

Metric 3  
(non-Bayesian, N=356) 

w/ parametric 21.63% 29.57% 21.42% 27.39% 

 



Results: Scaling of input parameters 
in weighted ensembles 

• Weightings differ across metrics 

• Metric 1 sought to overcome low bias for [O3] 

• Metric 3 assigned flat distribution of weights 

25 

Input Parameters 
a posteriori 
mean ± 1σ 

Metric 1 Metric 2 Metric 3 
ENOX 1.05 ± 0.16 0.90 ± 0.07 1.06 ± 0.25 
EBVOC 1.07 ± 0.27 0.85 ± 0.14 1.03 ± 0.25 
R(photolysis) 1.06 ± 0.07 1.11 ± 0.07 1.01 ± 0.08 
R(NO2+OH) 0.89 ± 0.24 1.45 ± 0.16 1.03 ± 0.27 
R(NO+O3) 0.97 ± 0.06 1.04 ± 0.08 1.00 ± 0.08 
BC(O3) 1.23 ± 0.13 1.30 ± 0.05 1.02 ± 0.16 
 

Weighted mean scaling factor for each input parameter 



Results: Predicted sensitivities to 
DFW NOx and VOC 

  SANOx (ppb) SAVOC (ppb) 

 
a priori  

mean ± 1σ 
a posteriori  
mean ± 1σ 

a priori  
mean ± 1σ 

a posteriori  
mean ± 1σ 

Denton 
Metric 1 

6.79 ± 2.59 
9.23 ± 1.64 

1.10 ± 0.82 
0.73 ± 0.29 

Metric 2 6.21 ± 1.01 1.12 ± 0.30 
Eagle Mt. 

Lake 
Metric 1 

6.79 ± 2.46 
9.17 ± 1.58 

0.95 ± 0.76 
0.60 ± 0.28 

Metric 2 6.28 ± 0.94 0.98 ± 0.27 

Kaufman 
Metric 1 

3.39 ± 0.57 
3.92 ± 0.34 

0.05 ± 0.06 
0.01 ± 0.02 

Metric 2 3.22 ± 0.17 0.06 ± 0.02 
 



Results: Weighted and unweighted ensemble 
predictions of ozone sensitivity at Denton 

Metric 1 Metric 2 Metric 3 

NOx 

VOC 



Performance of Ensembles vs. DFW  
8-hour Ozone Observations 

Statistics Base Case 
(deterministic) 

Equal weighted 
full ensemble 

Bayesian 
(Metric-1) 

Bayesian 
(Metric-2) 

Non-
Bayesian 

(Metric-3) 
RMS (ppb) 12.62 11.50 11.58 10.23 11.45 
NMB (%) -7.81 -2.44 3.21 -0.31 -0.46 

Correlation 0.759 0.770 0.769 0.819 0.770 
 

• Base model already performed well 

• Equal-weight ensemble corrected bias by including 
CB-6 cases with higher [O3] 

• Weightings achieved low bias but did not substantially 
improve error or correlation 



Structural ensemble was “underdispersive”: 
Ensemble range did not capture some observations 

Daily 8-hour ozone averaged over DFW monitors 



WORK SINCE AQRP: PUBLICATION 
IN PREPARATION FOR JGR 
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Observations (8-h O3 & 24-h NOX) 

Note: NOX concentrations were bias-corrected for interference with other nitrogen species 
based on the work of Lamsal et al., JGR, 2008. 31 



JGR paper Metric 1 (Bayesian) 
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• Episode-average 8-hr O3 and 24-hr NOx at 11 sites 
(N = 11) 
• Set σ = 7.2 ppb (8-hr O3) and 8.2 ppb (24-hr NOx), 
based on data from monitors in same grid cells 
• Applied Bayesian likelihood function 
 



Screening cases that pass all of the following test criteria for 8-hr Ozone, 

N

1

Model Obs1MNGE 100
N Obs

%
 −

= ×  
 

∑

N

1

1 Model ObsMNB 100
N Obs

% −
= × 

 
∑

Model Obs
UPA 100

Obs
max max

max

%
−

= ×

Note: MNB and MNGE were computed for model results (Model) when O3 observations (Obs) 
were greater than the recommended threshold of 60 ppb [USEPA, 2007] 

Mean Normalized Gross Error 

Mean Normalized  Bias 

Unpaired Peak Accuracy 

-5% < MNGE < +5% 

MNB < 30% 
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8-hr O3 at all sites and days 
 

N = 289 

JGR paper Metric 2 (EPA-based screening) 
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x1 x2 xn y1 y2 yn yi xi 

CDF of y 

F(x) 

One rejects the null hypothesis that F(x)≡G(y) if T is too large 

We select only those cases that yields p-values > 0.1, 
for both of the observational constraints (O3 and NOX) 

N  
Model 

Predictions 
(x) 

N 
Observations 

(y) 

The Cramér-von Mises (CvM) criterion [Anderson, 1962] provides a non-parametric test of the 

null hypothesis (H0) that two samples are drawn from the same (unspecified) distribution 
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8-hr O3 (N = 289) 
and 24-hr NOx (N = 303) 

at all sites and days 

F(yi) G(xi) 

For each mth simulation, 

JGR paper Metric 3 (CvM screening) 



Episode-Average 8-hr Ozone  
Prediction at Denton 

Metric 

O3 Concentration (ppb) 
Obs = 70.11 ppb 

a priori  
(µ ± σ) 

a posteriori  
(µ ± σ) 

Metric 1 
65.51 ± 7.33 

65.53 ± 2.16 
Metric 2 69.04 ± 2.03 
Metric 3 68.85 ± 1.87 
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Metrics Method 
Constrained by 
Measurements 

of  
Base CHEM BIO CHEM+BIO 

Metric 1 Bayesian O3 and NOX 19.37% 35.37% 16.14% 29.12% 

Metric 2 
EPA 

Performance 
O3 16.14% 33.69% 17.99% 32.19% 

Metric 3 CvM Test O3 and NOX 12.92% 37.08% 16.97% 33.03% 

All metrics gave more weight to simulations using CB-6 chemical mechanism  

36 

Distribution of Posterior Weights 
across Structural Cases 



Metrics 2 and 3 favored cases with scaled-up ENOx 

Metric 1 favored cases with ENOx near base inventory 
37 

Posterior distribution of NOx 
Emission Scaling Factors 

ENOX 



Obs-based constraints did not significantly 
change reaction rate distributions 
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R(photolysis)                R(NO2 + OH)                   R(NO + O3) 



A posteriori result for SNOx : SVOC 

 Negative shift in the posterior CDFs (particularly for Metric 2 and 3) indicate slight preference 

towards SVOC, although the region is predominantly NOx-limited (i.e. SNOx : SVOC > 1.0 ) 

39 

Cumulative Distribution Functions for Ratio (SNOx : SVOC) 



‐ All metrics gave more weight to simulations using CB-6 chem,  

 

‐ CB-6 favors VOC controls 

 

‐ Higher NOx emissions were needed to better match with 
observations 

 

‐ Slight preference for VOC controls → higher SVOC compared to 
SNOx, hence lower SNOx:SVOC  

40 

SNOx:SVOC decreases because.. 



CONCLUSIONS 

• Demonstrated Bayesian and non-Bayesian approaches 
for observation-constrained Monte Carlo probabilities 

• Developed probability distributions for response of 
DFW ozone to local NOx and VOC emissions 

• Identified structural and parametric choices that most 
influence concentrations and sensitivities 

• Choice of observational metric is crucial to results 

• Future work could consider additional uncertainties 
(e.g., meteorology; ensemble of models) and metrics 
(e.g., using data from satellites or aircraft) 
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