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The Stochastic Emissions Inventory Generator: Methodology and Assumptions
1. Overview

This Appendix details the methods and assumptions for constructing the stochastic emissions
inventory generator. This tool has been developed as a part of project H13 under the Houston
Advanced Research Consortium (HARC). Project H13 develops tools and methods to support
the mid-course correction of the ozone state implementation plan (SIP) for the Houston-
Galveston, Texas region. One of the primary goals of project H13 is to improve the models’
ability to represent the large amount of temporal variability observed in VOC emissions, to test
the effect of variability in emissions on ozone exceedences, and to test potential regulatory
designs for reducing the frequency and/or magnitude of ozone exceedences. This document
describes the tool developed to simulate the variability in VOC emissions from industrial point
sources.

The layout of this Appendix is as follows. In Section 2, we describe the different types and
relative contributions of industrial point sources of VOC emissions. In section 3, we describe the
point sources for which we currently have observations available, and show the variability that
occurs in individual sources. Section 4 outlines the approach used to model and simulate the
stochastically varying emissions from each sample source. Section 5 describes the method for
simulating emissions from the entire Houston-Galveston point source emissions inventory. The
estimated parameters and probability distributions for each observation set are given in detail in
the attachments.

2. Industrial VOC Point Sources

Figure 1 shows a rough breakdown of industrial sources of VOC emissions in Houston by source
type. Half of the emissions are considered “fugitives”, a blanket term for multiple, small leaks
within an industrial facility. About a third come from flares, emission points that can be fed
from a variety of processes in the facility. Under ideal conditions, the flare combusts up to 99%
of the outgoing VOCs. Nevertheless, these flares exhibit extremely wide variability, as shown in
the next section. The other two large categories are cooling towers and vents, each contributing
about 8% of the annual total VOC emissions.

Not all flares have emissions of the same magnitude. In fact the largest 8 flares account for
nearly a third of annual emissions (Figure 2). The top 19 account for 50% of annual emissions.
And of course the speciation, the percentage of emissions that are the highly reactive VOCs,
varies among sources, and for each source, varies over time.
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Figure 1: Relative Contribution of VOC Emissions by Point-Source Type in Houston
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Figure 2: Cumulative Distribution of VOC Emissions from Flares in Houston
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3. Observed Variability in Individual Point Sources

Figure 3 shows the hourly measurements of VOC emissions over the course of a year
from a typical flare at an industrial facility. Although the annual mean emissions are in fact
lower than the permitted level, this allows occasional high spikes of emissions. All but two of
these spikes were above the daily permitted level. We have obtained similar sample sets for 16
sources from different facilities, mostly flares and a few cooling towers (Table 1). All exhibit
significant variability, although the details of the pattern also vary from one flare to another.
Figure 5 shows the emissions from four different sources; note that each one has a different
pattern of variability. The temporal pattern of emissions from each source is given in the
attachments (along with simulations of each source).

Figure 3: VOC mass flow from a typical flare
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Table 1: Sample Sets for Emission Sources

Name Type # of Observations

Flare 1 Flare 8208
Flare 2 Flare 720

Flare 5 Flare 3624
HC Flare Flare 1800
Olefins Flare Flare 1800
FCCU Flare 17533
SRU Flare Flare 17543
Merox Flare Flare 17543
Low Pressure Flare Flare 17543
General Service #1 Flare 17543
General Service #2 Flare 17543
Cooling Tower 1 Cooling Tower 314

Cooling Tower 2 Cooling Tower 340

Olefins OP3 Total Flare 10799
ALKY Flare Flare 10799
ESO Flare Flare 10799

30

Figure 4: Emissions from two Flares and two Cooling Towers
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4. Simulating Individual Point Sources

The simplest approach is to fit the emissions to a probability distribution, and generate random
samples from that distribution. For example, the emissions of Flare 1 (Figure 3) can be well
approximated by a lognormal distribution (Figure 5a). But random generation from that
lognormal produces an emissions pattern (Figure 5b) with no resemblance to the actual behavior
of Flare 1.

To develop a reasonable model of emissions, need to explicitly represent more detail about the
emissions behavior. Upon closer examination of Flare 1 emissions (Figure 6), we can see that
there are several different distinct “modes” of variability. There is one component, which we will
refer to as “nearly constant”, where both the mean and the variance are lowest. This may in fact
correspond to some “base” operation level for the plant processes. The second component we
label as “routinely variable”. This mode will have higher mean and higher variability in
emissions than the “nearly constant” mode, and include moderate emission spikes that are still
within the legal permitted level. The third mode we call “allowable episodic”, which consists of
shorter periods of much higher emissions spikes, and larger variability. These are also within
permitted levels, but can release significantly large amounts of VOCs within an hour. This mode
usually corresponds to minor mechanical failures within the process, which can sometime take
hours or days before it is corrected. Finally, the highest mode, “emission events” or “upsets”,
will be treated separately. These emissions do exceed permitted levels, and there are currently
rules in place to address them. We focus on the other three modes in order to test whether the
legally permitted variability in emissions is contributing to ozone exceedences.

To model these different components, we apply statistical mixture theory. In other words, we
identify each hourly emission as belonging to one of the components, fit probability distributions
to each component separately, and model the probability of switching from one component to
another.

Figure 5: Simulation from Simple Univariate Distribution
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Figure 6: Different “Modes” or “Components” of Emissions Variability
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The first step to building a model of this behavior is to assign each hour’s emissions as belonging
to one of the components. Once we can subdivide the observations, we can then estimate the
parameters for each component distribution from its observations. The current version uses a
simple graphical statistical technique, as illustrated in Figure 7. The observations from the
source (e.g., Flare 1) are sorted in order of size, rather than by time. Each size-ordered emission
value is then assigned its number in the order (e.g., 1 to 8208). The inverse normal is then
calculated this rank number divided by the total number (n/8208). We then graph the emissions
against the inverse normal of the rank of the emissions, as shown in Figure 7a. If any segment of
this curve is a straight line, it is reasonable to assume that that range of emissions are normally
distributed. Furthermore, the mean and standard deviation can be estimated by the range
midpoint and the slope, respectively. We also repeat this procedure with the natural log of the
emissions, and graph again versus the inverse normal (Figure 7b). A straight line segment on
this graph indicates a lognormal distribution. Looking at the graphs for Flare 1 in the figure, it
appears that the first component (“nearly constant”) is normally distributed, and the second and
third components (“routinely variable” and “allowable episodic”) are lognormally distributed. A
least-squares regression line is fit to each line segment to estimate the slope, and thereby the
standard deviation. The fitted regression equation is given in the table in the attachments for
each component for every source.
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Figure 7: Locating the Component Boundaries
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Once the boundaries between components have been identified, we can fit probability
distributions to each component, either normal or lognormal. Figure 8a shows probability
distributions fit to each of the three components of Flare 1 emissions. Since the process is in
each component some fraction of the time, we can show the resulting total emissions uncertainty
by scaling each pdf by its proportion of total emissions (Figure 8b).

Finally, we model the temporal behavior by combining three elements: using state transition
probabilities, probabilistic time within one mode, and imposing autocorrelation during emissions
sampling. In any of the observed emission examples, one can see that the process often tends to
remain in one mode for some period of time, the length of which also varies. Having identified
which component each emission value “belongs to”, we can resort by time and obtain the
number of hours the process remains in one state before switching to another. Using this data,
we fit exponential probability distributions to the number of hours a process will remain in each
mode. Figure 9 shows these distributions for the time within each component for Flare 1. The
transition probabilities are not derived for a full Markov model for this version. We simply use
the relative proportion of hours in each component as the probabilities of moving to that state at
the next transition time. Finally, the emissions are highly autocorrelated, both within and across
components. Since they result from a continuous industrial process, this should not be
surprising. Based on the samples obtained, we impose an autocorrelation of 0.99 (with the
previous hour’s emissions) on each emissions sample generated.
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Figure 8: Component Distributions for Flare 1
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Figure 9: Time within each Component before next Transition
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To summarize, the representation of any single point source includes the following information:
Three probability distributions of emissions, one for each component,

either Normal or Lognormal, with mean and standard deviation

Three exponential distributions of the time in hours spent within each component

The proportion of emissions associated with each component.

The algorithm for generating emission samples is:

1. Use proportions to randomly select which component is current.
Randomly draw the number of hours to remain in this component

3. Randomly draw emissions from the distribution for this component, imposing a
correlation of 0.99 with the previous hour’s emissions

4. If number of hours to remain here are zero, repeat from Step 1), otherwise repeat from

step 3).

This procedure is drawn schematically in Figure 10 as a flow chart.
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Figure 10: Procedure for Simulation Emissions from a Point Source

Figure 11: Actual Emissions and Three Simulations for Flare 2
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Figure 11 shows an example of the results obtained from this simulation method. One of the
panels is the actual emissions measured at “Flare 2”. The other three are simulated from the
estimated stochastic model. Can you guess which one is the real Flare 2 (answer given in the
attachments)?

5. Simulating Houston-Galveston Emissions Inventory

The final step in the procedure is to apply these models to the full point source emission
inventory for Houston-Galveston. The Stochastic Emission Generator (SEG) is designed to read
in the standard emission inventory database used by TCEQ. For all flares and cooling towers,
we then assign one of the known source models, just described. Currently, we make this
assignment randomly. In future versions, we hope to combine knowledge of process and facility
types to make deliberative assignments for each point source in the inventory. The assigned
mixture model is then scaled so that the mean will be the annual average emissions from the
inventory, and preserves the relative variance (the ratio of the standard deviation to the mean is
preserved in the scaling). This allows SEG to simulate time-varying VOC emissions from all
point sources in Houston. These results will then be used as inputs to air quality models to
explore the effects on ozone production.

In this section we present the variability in aggregate VOC emissions that results from imposing
variability in each individual source. Figure 12 shows one possible hourly profile of total VOC
emissions for 200 days. This is an “instance” or random sample for the aggregate of all VOC
emissions over all of Houston. Many other instances are possible. One way to describe the
variability in total VOC emissions is with a probability density function, as shown in Figure 13.

Figure 12:
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Figure 13:
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The variability in total VOC emissions for the Houston area is an initial way to get a sense of

the variation in drivers of ozone formation.

However, because ozone formation at any

location will depend on the local concentrations of NOx and VOC, the Houston-wide
aggregate will probably underestimate the local variability. We can focus instead on a
specific geographic sub-region of interest. As an example, we present here the results for a
region south of the ship channel and including Deer Park (Figure 14). Ignoring transport for
simplicity, we can extract the VOC emissions within these latitude-longitude boundaries.
Figure 15a shows an instance of total VOC emissions for this region. We can also examine
specific VOC species of interest, particularly the highly reactive species. Figure 15b shows
the ethylene emissions for the region during the same instance.
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Finally, we can use these initial results to look at which point sources, in terms of relative
size, are driving the variability in total emissions.
emissions from flares in order of increasing size of annual average emissions. The largest 50
flares, out of 410 flares total in the emissions inventory, are driving the majority of the
variability. Again, even more relevant for ozone formation is the variability within a small
region. Figure 17 shows the same cumulative emissions graph for the 32 flares within the “deer
park” subregion. Of these, the largest 8 flares cause most of the observed variation.

Cumulative VOC Emissions (tons/hr)

Figure 16:
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Attachments

Appendix 1: Table of Fitted Parameter Values for Sample Sources
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FCCU 21.871 10.13] 23.95 1.30] 20.00 y= 12,383 70.6/0.7000] 195.31
3.1284x% +
21.012
Obs. 17533 2 23.96] 45.69) 14.53| 29.38 = 4270 24.310.2990| 17.85
11.929x +
14.798
3 4596 47.71 1.20| 54.02] 3.97|y= 12 0.110.0010] 12.60
1.1989x +
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Flare 0.5317x +
1.94
Obs. 1800 2 2.14] 12.46 3.10 4.91 y= 7001 38.9] 0.389] 14.58
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0.4231x +
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2.025
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0.3834x% +
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Draft

0.427x +
2.3818
unused 13 0.1
General 17.85 11.05] 20.7& 1.31] 17.80 V= 17.322] 98.7] 0.650] 548.65
Service #2 1.3142x +
17839
Obs. 17543 2277 2142 008 2103] 3.05|y= 141 0.8] 0.250 4.00
0.07Gx +
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21.43] 3897 290| 2B26| 3.26|y=0.7T8x 70 0.4] 0100 0.90
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Merox (50021 0.33) 247 84| B74.TE] 483 ¥= 307 1.8] 0.056] 10.65
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Flare 41571
Obs. 17543 22.81] 200B] 004] 2543] 323y= 16,6301 95.3| 0.900] 250.58
0.05633x +
3.2359
ZB.0B] 35488 0501 MA8T] 348|y= 314 1.8] 0.018]162.683
0.5167x +
2.3408
unused 189 1.2] 1.000
Flare 1 292 1.56)] 279 034] 243 V= 4913 59.9] 0.599 T7.41
0.3436x +
28523
Obs. 8208 280 644 035 349 123v= 3,223 193] 0.393 4.41
0.3587x +
0.8993
6.58] 1B.15] 0800 9.18] 218|y= BB 0.8] 0.008 1.15
0.8048x +
0.0375
unused 4 0.0
Cooling 0.75 0.007] 0338] 8300 023 ¥ = 98| 28.8] 0291 3.30
Tower 2 5.309x% -
280549
Obs. 340 0.3536] 04873 039 087 = 148] 43.5] 0439 1761
0.3822% +
06638
0.B32] 3.098] 068 139] 028|y= 91| 25.8] 0270 2.29
0.EB775x -
0.5141
unused 3 0.9
Flare 5 |[1391.8 224 43 1021.9) 230.52| T58.83 V= 1.757] 48.5] 0.512 2.09
1 T 221.52x +
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Obs. 3624 2 | 1022.1) 2738 4] 1250.5] 1621.7 ¥ = 1. 706] 47.1] 0.447 5.38
1] 3 1] 2 1197 5z +
B45 63
{limear) 3 |2741.8] 5903.5] 2641.0] 3303.6 y = 2641x 147 4.1] 0.041 1.40
2 2 1] g - 20653
{log) 3 081 BOBly =
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3x +
5.538
33
unused 14 0.3] 1.000
Flare 2 3T 0.200] 2.808] 080 1489 V= J80| =0.001 0501 2.80
0.90902x +
2E739
Obs. 720 2 28101 10.376] 200 499 ¥ = 331] 46.0] 0460 3.50
410132 +
2.1949
3 |10.439) 14.704] 033 1185] 245)v= 28 3.9 0.039 2.63
0.2643x +
1.8878
unused 1 o1
HC Flare 24TN 0.2 158 1200 115 007|y= 128 7.1] 0.071 0.10
1.1226x +
2.2007
Obs. 1800 2 1.58] 412 030 251 0.80(y = 1.625] 90.3] 0.903 2.28
0.2567x +
0.8758
3 4.21 671 0.30] 4.88] 1.58(y= 45 26| 0.026 0.35
0.2857x +
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unused 1 0.0
FUS98THZ | 4571 0.008] EB57] 360 417 = 8.379] TT.E| 0.B8T] 41.36
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10 073652 +
1.2253
a18)3 21.28] 3258] 030 2380] 3145)y= 71l 0.01]0.0:000 1.77
0.2881x + g
2.3182
unused 1,2B0] 12.5] 1.000
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Appendix 2: Graphs of Fitted Component Distributions
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Appendix 3: Graphs of Distributions of Time Within Compomnent
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Appendix 4; Comparisons of Actual vs. Simulated Emissions
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