Air Permit Reference Guide

APDG 5942

Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites

Air Permits Division Texas Commission on Environmental Quality Revised May 2012

Table of Contents

Backgrou	ınd	1
Guidance		1
Table 1:	Flash Loss Estimation Methods	2
Append	ix A	4
Append	ix B	6
Laborato	ry Analysis	6
Append	ix C	8
1.	Direct Measurement	8
2.	Process Simulator Software	8
3.	E&P Tanks Software, using option that requires sampling	
	Example of E & P Tank Report	11
4.	Laboratory measurement of Gas-Oil-Ratio (GOR) from Pressurized Liquid Sample:	14
5.	Vasquez-Beggs Equation (VBE):	14
6.	E&P Tanks software, Geographical Database Option	17
7.	Griswold and Ambler Gas-Oil-Ratio (GOR) Chart Method (SPE Paper 7175):	20

Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites

Background

One of the largest sources of VOC emissions from an oil and gas production site is oil or condensate storage tanks. Please note this guidance is <u>not</u> applicable to produced water tanks. Also, this guidance focuses only on VOC emissions, not hydrogen sulfide emissions, which may also occur, but will be addressed in a separate guidance.

There are three types of emissions generated by a storage tank:

<u>Breathing</u> losses (also called STANDING losses) which is the normal evaporation of liquid in a tank. Breathing losses will increase if the temperature increases;

<u>Working</u> losses are an increase in evaporation due to agitation of liquid from activities such as filling the tank;

Flash losses occur when the pressure of a liquid is decreased or the temperature is increased.

Flash emissions occur when produced liquid (crude oil or condensate) is exposed to temperature increases or pressure decreases during the transfer from the production separators (or similar sources) into atmospheric storage tanks. New information and technology has led to many questions recently as to the various methodologies and their accuracy to estimate flash emissions at oil and gas sites from the oil and condensate tanks.

Sources for the information in this document, as well as further information, can be obtained at:

www.tceq.state.tx.us/assets/public/comm_exec/pubs/rg/rg360/rg-360-05/techsupp_6.pdf
www.epa.gov/ttn/chief/eiip/techreport/volume02/ii10.pdf
www.epa.gov/gasstar/documents/fall2004update.pdf
www.nmenv.state.nm.us/aqb/FAQ.html
deq.state.wy.us/aqd/Oil%20and%20Gas/GUIDANCE2001.pdf
www.deq.state.ok.us/factsheets/air/CalculationLosses.pdf
www.kdheks.gov/bar/download/flashcalculationfactsheet.pdf
www.api.org/Publications/

Guidance

This guidance is being provided to help evaluate flash emissions and the methodologies used to estimate those emissions. There are several methods to calculate or measure emissions from storage tanks; some are more accurate than others. Even though working, breathing, and flash losses are almost always mixed together and exit the tank vent at the same time, some methods only calculate working and breathing losses, while some methods only calculate flash losses. However, there are also several methods to calculate all three types of emissions simultaneously.

Note: Vapor Recovery Units (VRUs) and Flares are very efficient control devices for VOC emissions. These devices are good at controlling high VOC emission rates, especially the VRUs, and their use is encouraged. There is an informative article by the EPA regarding the cost savings associated with VRUs, which can be found at: www.epa.gov/gasstar/documents/ll_final_vap.pdf

The Air Permits Division of the Texas Commission on Environmental Quality (TCEQ) is aware of the following methods to estimate emissions (seen in the table below). Each method for estimating emissions has specific constraints. Regardless of which method is used, all supporting data used to calculate the emissions, including identification of the calculation method, description of sampling methods, and copies of lab sampling analysis, must be provided with the emissions estimate. The relative accuracy of the methods shown below is a preliminary opinion only.

No.	Method	Emissions Calculated	Comments
1	Direct measurement of tank emissions	Working, Breathing, Flash	Sampling and analysis are expensive, but the results are relatively accurate.
2	Process Simulator computer programs	Flash only	There are several different process simulators (e.g. WinSim, Designer II, HYSIM, HYSIS, VMG, and PROMAX, etc.). The software is expensive, but the results are accurate when based on site-specific sample and analysis .
3	E&P Tanks Software, V 2.0, using an option that requires site-specific sampling	Working, Breathing, Flash	A pressurized liquid and/or gas sample analysis from a separator will be needed. This choice does not include the Geographical Data base option.
4	Laboratory measurement of the Gas-Oil-Ratio (GOR) from a Pressurized Liquid Sample	Flash only	This is direct laboratory analysis of the flash gas emitted from a pressurized oil/condensate sample.
5	Vasquez-Beggs Equation (VBE):	Flash only	A calculation method based on empirical data. The VBE variables must be supported with a lab sampling analysis that verifies the API gravity, separator gas gravity, stock tank gas molecular weight, and VOC fraction. If an operating variable used in the VBE calculations falls outside of the parameter limits, the applicant must use another method to calculate flash emissions.
6	E&P Tanks Software, V 2.0, Geographical Database Option	Working, Breathing, Flash	Emissions are based on choosing an example case that closely matches operating parameters at the site in question. A justification for using this method must be included if the site is existing. The geographical database is based on 103 sampled sites and is a very poor estimate of emissions from any particular storage tank.
7	Griswold and Ambler GOR Chart Method	Flash only	A graph developed by Griswold and Ambler (1978) can be used to approximate total potential vapor emissions from a barrel of oil based on pressure differentials. The curves were constructed using empirical flash data from laboratory studies and field measurements.

Table 1: Flash Loss Estimation Methods

The TCEQ always prefers that the most accurate emission estimates be submitted, based on sitespecific, representative worst-case data when possible. Therefore we would prefer, but do not require, that methods 1-4 be used rather than other available methods. If applicants choose to use a less accurate method, they should be aware of the risk of potentially underestimating emissions at a site. More details about each of these methods, and the appropriate way to use these methods, are given in the appendix to this document. Remember, no matter which method is used to calculate flash emissions, verification of the inputs and calculation methods are required. State the calculation method used and any critical parameters in the project description so they are available to program personnel. If at an existing production site, the emission calculations should be determined from site-specific sampling or analysis. If a site is not yet in operation, information from sister-sites, nearby sites on the same field, or other empirical data may be used with a justification as to why that information is appropriate. The E/CR Equation was removed from the list of acceptable methods because it is an older method that is no longer supported.

The TCEQ always recommends that once site specific information is available that the permitted emissions be re-evaluated if other generic information, defaults or a database were used in calculating the emissions initially. If you find that the emissions are greater than what was originally represented in a Certified Permit by Rule (PBR) or Standard Permit, you must revise your emissions to reflect the increase.

Appendix A

This is an example of a generic Oil and Gas Production Site. Not all expected emissions or sources are represented.

<u>Note</u>: Lab analysis may be labeled as "inlet" or "separator" gas analysis. Initial Production sites where pressure is too high to safely sample will need to sample at the separator. If it is a process site where the gas is received conditioned, the sample needs to be taken at the inlet.

APDG 5942v2 (Revised 05/2012) Calculating Volatile Organic Compounds (VOC)

SIMPLE OIL AND GAS SITE

For a typical tank that receives condensate or oil from a separator, emissions will include working, breathing, and flash losses:

If a site has multiple tanks, the types of emissions from each tank will depend on whether the tanks are in series or parallel:

Appendix B

Laboratory Analysis

There are many types of samples that can be taken at an Oil & Gas site, and there are many different analytical methods that can be used on these samples. It is very important that the type of sample and the type of analysis used are appropriate to the calculation method used. For example, the following sample types can be used for various purposes:

Sample Type	Uses
Separator Inlet gas sample	 Vasquez-Beggs equation - for inlet gas specific gravity variable only (not MW or VOC content); Fugitive emission VOC content; H₂S content of gas to determine if site is sweet or sour (but only if H₂S is specifically measured in the analysis).
Pressurized Separator oil sample	 For E&P TANK, Low Pressure Oil or High Pressure Oil option: to get separator oil composition; GOR measurement (a flash gas analysis can also be made at the same time, which can be used to calculate flash losses directly, or can be used in Vasquez-Beggs equation for the MW and VOC content variables); For E&P TANK, Low Pressure Gas option: to get API gravity, RVP, C7:C8:C9:C10+ molar ratio, C10+ MW, and C10+ SG of condensate/oil.
Outlet Separator gas sample	• For E&P TANK, Low Pressure Gas option: to get separator gas composition.
Sales oil sample	 API gravity measurement; RVP measurement; For E&P TANK, Low Pressure Gas option: to get API gravity, RVP, C7:C8:C9:C10+ molar ratio, C10+ MW, and C10+ SG of condensate/oil.
Direct vent sample	Direct measurement of emissions coming from a tank.

Whenever an analysis from a laboratory is used as a basis for a calculation, you must submit a copy of the original laboratory analysis. Please also make sure that the following information about the lab analysis is submitted along with the original analysis itself:

- Where at the site the sample was taken (i.e. from wellhead, separator, tank, etc.);
- Whether the sample was taken from the actual site or from a representative site. (If the sample is taken from a representative site, a justification must be given as to why it is representative. Whether or not another site would be considered representative will depend on factors such as distance from actual site, if it draws from the same gas field, formation and depth);
- The date the sample was taken (if not on lab report).

30 Texas Administrative Code (TAC) § 25.6 discusses when laboratory analysis may be accepted by the Commission and when accreditation of a laboratory is required and when no accreditation of a laboratory is required. Please check the TCEQ website to determine if accreditation is offered for the laboratory and method required. This information can be found at: www.tceq.state.tx.us/compliance/compliance_support/qa/eny_lab_accreditation.html

The following is a list of typical lab analyses that would be needed at an Oil and Gas site. As TCEQ becomes more aware of different analyses, they will be added to the memo.

<u>Gases</u>

Analyses: GPA 2261 – Regular gas analysis utilizing a Thermal Conductivity Detector. Breakout of components through pentanes and the heavy ends reported as hexanes plus (C6+). Properties of plus fraction are weighted and assigned according to published methods.

GPA 2286 – Extended gas analysis utilizing a Flame Ionization Detector. The FID cannot detect N_2 or CO_2 .

<u>Oils</u>

Analysis: - GPA 2186 Modified - Extended oil analysis. As with the extended gas, it requires two analyses (TCD & FID). The published method is for an analysis to C15

Follow GPA & API methodology to obtain the liquid samples, such as GPA 2174.

Note that there may be equivalent methods published by ASTM or others.

Appendix C

Discussion of the different types of calculation methods.

1. Direct Measurement

- Measures <u>working</u>, <u>breathing</u>, and <u>flash</u> losses, consistent with the sampling and analysis methods as published in the "VOC Emissions from Oil and Condensate Storage Tanks Final Report" October 31, 2006. Additional specific guidance on this method will be updated at the conclusion of the 2nd report on this issue, expected in 2009;
- If this method is used, please coordinate any measurements and sampling with the appropriate Regional office to give them the opportunity to observe and coordinate any specific guidance on site-specific issues;
- This method involves:
 - Routing all emissions from a tank (or tanks) to a single emission point (sealing all other vents or sources of leaks);
 - Taking a direct sample of vapors from this point;
 - Measuring the gas flow rate through this point;
 - Measuring the temperature of the gas at this point;
 - Analyzing the composition of the sampled vapor using extended gas chromatography (equivalent to Test Method GPA 2286-95);
- Ideally, the sample is taken when conditions at the site would be either representative of normal conditions or slightly more conservative. Sampling should not occur in the winter or early spring. Sampling should occur only while the tank is receiving liquid from the separator at or above the average production rate. In addition, consider that separator pressure fluctuates at different times during the day or different times during the year, and the sample should be taken when the separator pressure is either at an average or higher-than-average value;
- If this method is used to estimate tank emissions, the following information must be submitted to Air Permits and the appropriate regional office:
 - Description of where and how the sample was taken, and how measurements were made;
 - > Copy of original laboratory analysis of tank vapors;
 - > Flow rate of tank vapors, with documentation to verify the values;
 - > Temperature of tank vapors, with documentation to verify the values;
 - > Supporting calculations for all emission estimates.

2. <u>Process Simulator Software</u>

(e.g. WinSim Designer II, HYSIM, HYSIS, VMG, and PROMAX)

- Calculates <u>flash</u> losses only (some programs can also calculate emissions from certain process units, such as amine units);
- The inputs to these programs are often from an inlet gas analysis, along with the operating parameters and arrangement of the various processing equipment at the site. The programs use complex equations of state to estimate emissions,
- If this method is used, the following information must be submitted:
 - Copy of the report (if not a complete report, then at least the portions of the report listing all the inputs and outputs);
 - Copy of original laboratory analysis used as inputs to the program.

3. E&P Tanks Software¹, using option that requires sampling

- Calculates <u>working</u>, <u>breathing</u>, and <u>flash</u> losses;
- There are several ways to run this program, depending on the type of information available:
 - If unable to get actual sampling data, it may be possible to use the E&P Geographical Database option. If so, follow the guidance that begins on page 17 of this document;
 - If an actual liquid or gas sample can be taken, follow the guidance in this section.
- If this method is used, the following information must be submitted:
 - Complete printout of the report (not just the results page);
 - > Original copies of <u>all</u> required laboratory analyses (see table below)

¹ Designed by the American Petroleum Institute (API). Available from the IHS Standards Store at www.global.ihs.com

There are several ways to use this program, depending on the type of samples available. The options are chosen the on Project Setup page of the program. These options are summarized, along with the information that is required for this option, in the table below:

Flowsheet Selection	Known Separator Stream Information	Model Selection for W&S losses	Types of emissions calculated	Required Information	Comments	
Tank with Separator	Low Pressure Oil	AP-42	Flash Working Breathing	 Laboratory analysis of liquid sample from low pressure separator; Tank specifications and location 	These options will give the most accurate results.	
Tank with Separator	Low Pressure Oil	RVP Distillation	Flash Working Breathing	 Laboratory analysis of liquid sample from low pressure separator 	(Preferred Method.)	
Tank with Separator	High Pressure Oil	AP-42	Flash Working Breathing	 Laboratory analysis of liquid sample from high pressure separator; Tank specifications and location 	Similar to above options, but only used if separator	
Tank with Separator	High Pressure Oil	RVP Distillation	Flash Working Breathing	 Laboratory analysis of liquid sample from high pressure separator 	that sample was taken from is not the last separator before storage tank, unless only separators at the site.	
Tank with Separator	Low Pressure Gas	AP-42	Flash Working Breathing	 Laboratory analysis of gas sample from low pressure separator; Laboratory analysis of gas oil ratio (GOR); Laboratory analysis of hydrocarbon liquid produced (to obtain API gravity, RVP, and C7 - C10+ characteristics)\; Tank specifications and location 	Make sure all three required laboratory analyses are submitted: separator gas, GOR, and liquid in tank. This method is	
Tank with Separator	Low Pressure Gas	RVP Distillation	Flash Working Breathing	 Laboratory analysis of gas sample from low pressure separator; Laboratory measurement of gas oil ratio (GOR) Laboratory analysis of hydrocarbon liquid produced (to obtain API gravity, RVP, and C7 - C10+ characteristics) 	preferred for sour sites because H ₂ S can more easily be measured in a gas sample.	
Stable Oil Tank	n/a	AP-42	Working Breathing (not flash)	 Laboratory analysis of composition of liquid in tank, up to C10+; Tank specifications and location 	Do not use default composition from E&P Tank	

• If the AP-42 option is chosen, a separate run of E&P Tanks needs to be performed for each tank. Combining the throughput of several tanks into one run may underestimate standing/breathing emissions.

- If tank emissions are routed to a flare, the E&P Tanks report gives several outputs that make calculating flare emissions relatively straightforward: flow rate of tank vapors, heat value of vapors, VOC emission rate, and H₂S emission rate. The example E&P report notes where this information can be found.
- Make sure to double check <u>all</u> inputs used in E&P Tanks; it has been discovered sometimes slight errors can make a big difference. See tables below for information on inputs:

If low pressure oil or high pressure oil option chosen:

Input Variable	Located on Lab Analysis?	Comments
Separator pressure	probably yes	Make sure value on E&P report equals value on lab analysis.
Separator temperature	probably yes	Make sure value on E&P report equals value on lab analysis.
Chemical composition of liquid or gas sample	yes	Make sure values on E&P report equals values on lab analysis.
C10+ MW (molecular weight of components with at least 10 carbon atoms)	probably yes	Make sure value on E&P report equals value on lab analysis.
C10+ SG (specific gravity of components with at least 10 carbon atoms)	probably yes	Make sure value on E&P report equals value on lab analysis.
API gravity of sales oil sample	probably yes	Make sure value on E&P report equals value on lab analysis.
Ambient Temperature (estimate total annual emissions)	probably no	Small changes can make a huge difference, be sure to use a reasonable value. You can check on the web at a site such as: www.weatherbase.com/weather/city.php3?c=US&s=TX&refer=
Average Ambient pressure	probably no	Normal pressure is ~14.7 psia, but can vary by ~ 1-2 psia.
Estimated Annual Production Rate	no	Make sure value used is consistent with other representations in the file
Reid Vapor Pressure (RVP)	probably no	Not normally measured, but if requested, a laboratory can test this value.
Bulk Temperature	no	
Days of Annual Operation	no	Should be 365-if not please explain
All the tank specifications and nearest city (if AP-42 option chosen)	no	Make sure tank specifications are reasonable, and make sure correct nearest city is chosen

If low pressure gas option chosen, some information above will be the same, but there will be some differences:

Molar GOR or Volumetric GOR	yes (will be on GOR laboratory analysis)	Volumetric GOR (SCF/bbl) can be converted to Molar GOR as long as you also have oil density (g/cm ³) and oil molecular weight (lb/lb-mole)
C7, C8, C9, C10+ molar ratios in separator oil	yes (will be on laboratory	These values will be the ratios of the mol% values, for each of these components, to each other.
C10+ MW and C10+ SG of separator oil	analysis of hydrocarbon liquid)	Make sure value on E&P report equals value on lab analysis.
API gravity		Make sure value on E&P report equals value on lab analysis.
Reid Vapor Pressure (RVP)		Not normally measured, but if requested, a laboratory can test this value.

Example of E&P Tank Report

Example of E&P Tank Report (continued)

Emission Summary Item Uncontrolled Uncontrolled
[ton/yr] [lb/hr] Total HAPs 12.090 2.760
Total HC 686.156 156.657
VOCs, C2+ 577.798 131.917 VOCs, C3+ 498.049 113.710 VOC emissions from tank from tank
Uncontrolled Recovery Info. Vapor 40.9200 [MSCFD]
HC Vapor 37.8200 [MSCFD] GOR 20.46 [SCF/bb]] ca
GOR 20.46 [SCF/bbl]
Emission Composition
[ton/yr] [lb/hr] 10
1 H2S 4.573 1.044 2 02 0.000 0.000
$3 \text{ CO2} \qquad 56.266 \qquad 12.846 \qquad \qquad$
4 N2 2.271 0.518 5 C1 108.358 24.739 (from tank)
6 C2 79.749 18.208
7 C3 161.162 36.795 8 i-C4 48.744 11.129
9 n-C4 138.471 31.614
10 i-C5 45.852 10.468 11 n-C5 54.040 12.338
12 C6 15.650 3.573
13 C7 14.964 3.416 14 C8 5.679 1.297
15 C9 1.106 0.253
16 C10+ 0.289 0.066 17 Benzene 1.123 0.256
18 Toluene 0.138 0.032
19 E-Benzene 0.017 0.004 20 Xylenes 0.144 0.033
21 n-C6 10.672 2.437
22 224Trimethylp 0.000 0.000 Total 749.268 171.066
Stream Data
mol % mol % mol % mol % mol % mol %
1 H2S 34.80 0.0508 0.0358 0.0353 0.6793 0.7369 0.6812 2 O2 32.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 CO2 44.01 0.2437 0.0950 0.0901 6.4933 6.3414 6.4884
4 N2 28.01 0.0102 0.0005 0.0003 0.4189 0.1814 0.4114 5 C1 16.04 0.9543 0.1553 0.1346 34.5319 26.5975 34.2787
6 C2 30.07 0.6701 0.3661 0.3555 13.4456 13.8885 13.4597
7 C3 44.10 2.1827 1.7950 1.7801 18.4760 20.7381 18.5482 8 i-C4 58.12 1.1269 1.0530 1.0499 4.2332 4.9494 4.2561
9 n-C4 58.12 4.6091 4.4328 4.4251 12.0182 14.2885 12.0906
10 i-C5 72.15 3.1066 3.1043 3.1037 3.2018 3.9344 3.2252 11 n-C5 72.15 5.0558 5.0864 5.0867 3.7713 4.7063 3.8012
12 C6 86.16 4.1726 4.2496 4.2520 0.9366 1.2162 0.9455
13 C7 100.20 10.3655 10.5937 10.6012 0.7742 1.0458 0.7829 14 C8 114.23 10.8426 11.029 0.2563 0.3607 0.2596
15 C9 128.28 5.5127 5.6428 5.6472 0.0450 0.0658 0.0456
16 C10+ 166.00 45.9695 47.0631 47.1001 0.0087 0.0143 0.0088 (Can be used for MW of be used for
18 Toluene 92.13 0.2132 0.2181 0.2183 0.00/5 0.0103 0.00/6
19 E-Benzene 106.17 0.0711 0.0728 0.0028 0.0012 0.0008 IPuck loading 20 Xylenes 106.17 0.6802 0.6962 0.6968 0.0068 0.0069 vapors
21 n-C6 86.18 3.5939 3.6646 3.6668 0.6222 0.8182 0.6285
22 224Trimethylp 114.24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MW 123.89 125.93 125.93 37.91 41.44 38.03 Stream Mole Ratio 1.0000 0.9768 0.9760 0.0232 0.0008 0.0240
Stream Mole Ratio 1.0000 0.9788 0.9780 0.0232 0.0008 0.0240 Heating Value [BTU/SCF] 2001.39 2196.12 2007.60 Flare calculations
Gas Gravity [Gas/Air] 1.31 1.43 1.31 (Heat Value of /
RVP @ 100F [psia] 126.75 80.50 78.33
Spec. Gravity @ 100F 0.800 0.803 0.803

4. Laboratory measurement of Gas-Oil-Ratio (GOR) from Pressurized Liquid Sample:

- Calculates <u>flash</u> losses only;
- This method involves:
 - Collecting a pressurized liquid sample (condensate or oil) from a gas/oil separator;
 - Taking the sample to a lab;
 - In the lab, the conditions at the site (temperature and pressure) are simulated;
 - The liquid is allowed to flash;
 - The flash gas is captured;
 - The volume of flash gas is measured in order to determine the GOR. The GOR is the volume of flash gas produced (in standard cubic feet) per barrel of liquid;
 - The composition of the flash gas is analyzed;
 - Flash emissions are calculated based on the GOR (SCF/bbl) and the VOC content of the flash gas.
- If this method is used, the following information must be submitted:
 - > Laboratory Analysis that contains the following information:
 - Gas-Oil-Ratio (in SCF/bbl)
 - Composition of flash gas
 - > Supporting calculations for all emission estimates.

5. <u>Vasquez-Beggs Equation (VBE)²:</u>

- Calculates <u>flash</u> losses only;
- If this method is used, the following information must be submitted:
 - All inputs used in the VBE calculation;
 - If a VOC fraction of less than 1.0 (100%), or a stock tank gas molecular weight that does not match the vapor molecular weight from the corresponding working and breathing loss calculation method (such as Tanks 4.0), then a laboratory <u>flash</u> gas analysis must also be submitted.
- If submitting emissions where the VBE is used, please:
 - 1. **Verify that all inputs are in valid ranges** (see "Valid Range" section of table on page 16). Some variables may be adjusted so that the VBE can be used; other variables cannot be adjusted. See "Explanation" section of the table to determine which variables are critical. If a variable is outside of the acceptable range, and no adjustments can be made, the VBE <u>cannot</u> be used.
 - 2. **Verify origin of all inputs** (see "How to Verify" section of table on page 16). If asked, you must provide any available documentation that will verify the values used in the VBE. If unable to verify the inputs, another method to calculate flash (whose inputs will also have to be verified) must be used.

² A spreadsheet that will calculate flash emissions using this method is available at the following site: www.deq.state.ok.us/AQDnew/resources/Calculations11.xls

- If a site specific analysis is not available, APD will accept:
 - 1. A recent analysis for a representative site, as long as an explanation is provided as to why the analysis used is representative of the site in question.
 - 2. Whether or not a site would be considered representative will depend on factors such as distance from site under review, whether it draws from the same production field, formation and depth.

APD will not accept any generic stream speciation, regardless of the source.

Appropriate Inputs for the Vasquez-Beggs Equations

Variable	Valid Range	Explanation	If you have questions about a variable, how to verify:
API Gravity	16 - 40°	If API below range, they can increase to minimum (16°API) If API over 40°, CANNOT USE VBE	 If asked, you must submit documentation to verify the API gravity, such as: an actual lab analysis; a copy of an oil sales receipt; a copy of Form W-2 (if oil well) or G-1 (if gas well) submitted to the Texas Railroad Commission
Separator Pressure	50 - 5250 <u>psia</u> or ~35.3 - 5235.3 <u>psig</u> * The VBE spreadsheet uses psig (psig = psia - P _{atm})	If below range, you may increase to minimum (50 psia / 35.3 psig).	This value will depend upon the well characteristic and the facility design. Please be aware that you must be able to demonstrate to TCEQ personnel, if a site inspection were to occur, that the value used here is an accurate representation of the actual value.
Separator Temperature	70 - 295°F	If outside of range, cannot use VBE!	This is the temperature inside the separator itself, <u>not</u> the temperature of the storage tank. This value will depend upon the well characteristic and the facility design. Please be aware that you must be able to demonstrate to TCEQ personnel, if a site inspection were to occur, that the value used here is an accurate representation of the actual value.
Separator Gas Gravity at Initial Conditions (a.k.a. specific gravity, SG)	0.56 - 1.18	If below range, you may increase to minimum (0.56). If SG over 1.18, cannot use VBE.	This is the SG of the <u>inlet</u> gas. An inlet gas analysis should be submitted to verify this information.
Barrels oil per day	(no limits)	N/A	Should be consistent with all other calculations (working, breathing, and truck loading).
Stock tank gas Molecular Weight (MW)	18 - 125 lb/lb-mole	a MW outside of this range should not be seen	If a <u>flash</u> gas analysis (not inlet gas) is not available, use the default "Vapor Mol. Weight" value from Tanks 4.0 report, pg 2. For example: For RVP 5, $MW = 50$. This is the only default from another program that can be used.
VOC fraction	0.5 - 1.0 (50% - 100%)	Should almost always use 1.0 (100%)	This is the percent of the flash gas that is VOC. If a value other than 100% is used, you must submit a flash gas analysis (<u>not</u> inlet gas) to verify the fraction used.
Atmospheric Pressure	(no limits)	Average P _{atm} = 14.7 psia.	Should be close to 14.7, unless at an elevated location. The actual P_{atm} will be on pg. 1 of a Tanks 4.0 report.

6. <u>E&P Tanks software, Geographical Database Option</u>

- Calculates <u>working</u>, <u>breathing</u>, and <u>flash</u> losses;
- This optional way to use E&P Tanks is very different from the E&P options discussed above. Unlike the other options, the Geographical Database does not rely on site-specific data. Therefore, this option is considered a completely different flash calculation method;
- To use the Geographical database, 1 of 103 cases is chosen. These cases represent actual runs of E&P Tanks based on the composition of oil/condensate samples taken from 103 actual oil and gas sites throughout the United States. However, the composition of the oil/condensate can make a huge impact on emissions. If a case is chosen whose composition is very different from the actual composition at the site in question, then the emissions may be very different. Therefore, this option could potentially give very inaccurate emissions;
- A particular case is chosen based on information from the site in question:
 - Geographical region of the United States (NW, NE, SW, SE);
 - API Gravity of the oil/condensate;
 - RVP of the oil/condensate;
 - Separator Pressure;
 - Separator Temperature;
- If this option is used, the following information must be submitted:
 - A complete copy of the E&P Tanks report (not just the results) including case # chosen and an explanation as to why this case should be considered the most equivalent to the project;
 - **The** <u>actual</u> expected API Gravity, RVP, separator pressure, and separator temperature.

2 NW case 2 17 2.0 22 155 1.239 3 NW case 3 18 0.6 20 160 0.569 4 NW case 4 19 2.3 53 101 1.229 5 NW case 6 20 1.2 23 79 0.062 7 NW case 6 20 3.3 17 106 0.333 8 NW case 7 20 3.3 17 106 0.333 9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 1.8 35 76 0.015 11 NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.275 13 NW case 12 24 0.6 20 122 0.014 14 NW case 12 24 4.8 20 68 2.177	E&P National Case #	E&P Regional Case #	API Gravity (°API)	RVP (psia)	Separator Pressure (psig)	Separator Temperature (°F)	VOC emissions if throughput = 10 bbl/day (tpy)
3 NW case 3 18 0.6 20 160 0.569 4 NW case 4 19 2.3 53 101 1.229 5 NW case 5 19 4.8 15 120 1.029 6 NW case 6 20 1.2 23 79 0.062 7 NW case 7 20 3.3 17 106 0.353 8 NW case 8 20 3.8 18 75 0.226 9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 0.2 8 154 0.023 12 NW case 10 23 0.2 8 154 0.023 13 NW case 12 24 0.6 20 122 0.104 14 NW case 13 24 3.9 20 88 2.192 15 NW case 14 24 4.6 22 86 1.383 16 NW case 17 25 4.9 30 60 1.775	1	NW case 1	15	0.8	45	106	0.124
4 NW case 4 19 2.3 53 101 1.229 5 NW case 5 19 4.8 15 120 1.029 6 NW case 6 20 1.2 23 79 0.062 7 NW case 7 20 3.3 17 106 0.333 8 NW case 8 20 3.8 18 75 0.226 9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 0.2 8 154 0.023 11 NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.275 13 NW case 13 24 3.9 20 88 2.192 14 NW case 13 24 4.8 20 68 1.383 16 NW case 17 25 4.9 30 60 1.789	2	NW case 2	17	2.0	22	155	1.239
5 NW case 5 19 4.8 15 120 1.029 6 NW case 6 20 1.2 23 79 0.062 7 NW case 6 20 3.3 17 106 0.353 8 NW case 8 20 3.8 18 75 0.226 9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 1.8 35 76 0.165 11 NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.275 13 NW case 12 24 0.6 20 122 0.104 14 NW case 13 24 4.6 22 86 1.383 16 NW case 14 24 4.6 22 86 1.383 16 NW case 16 25 4.1 19 133 0.512 <td>3</td> <td>NW case 3</td> <td>18</td> <td>0.6</td> <td>20</td> <td>160</td> <td>0.569</td>	3	NW case 3	18	0.6	20	160	0.569
6 NW case 6 20 1.2 23 79 0.062 7 NW case 7 20 3.3 17 106 0.353 8 NW case 8 20 3.8 18 75 0.226 9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 0.2 8 154 0.023 11 NW case 10 23 0.2 8 154 0.023 12 NW case 12 24 0.6 20 122 0.104 14 NW case 13 24 3.9 20 88 2.192 15 NW case 16 25 4.1 19 133 0.512 16 NW case 16 25 4.1 19 133 0.512 18 NW case 16 27 5.2 31 64 2.202 20 NW case 12 29 4.8 17 86 3.299 <	4	NW case 4	19	2.3	53	101	1.229
7 NW case 7 20 3.3 17 106 0.353 8 NW case 8 20 3.8 18 75 0.226 9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 0.2 8 154 0.023 11 NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.775 13 NW case 13 24 3.9 20 88 2.192 15 NW case 15 24 4.8 20 68 2.117 17 NW case 16 25 4.1 19 133 0.512 18 NW case 18 27 3.3 25 136 0.926 20 NW case 12 29 4.8 17 86 3.299 21 SE case 2 29 4.9 20 120	5	NW case 5	19	4.8	15	120	1.029
8 NW case 8 20 3.8 18 75 0.226 9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 1.8 35 76 0.165 11 NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.275 13 NW case 12 24 0.6 20 122 0.104 14 NW case 13 24 3.9 20 88 2.192 15 NW case 14 24 4.6 22 86 1.383 16 NW case 14 24 4.8 20 68 2.117 17 NW case 16 25 4.1 19 133 0.512 18 NW case 17 25 4.9 30 60 1.789 19 NW case 19 27 5.2 31 64 2.00 <	6	NW case 6	20	1.2	23	79	0.062
9 NW case 9 21 1.1 54 125 1.494 10 SE case 1 23 1.8 35 76 0.165 11 NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.275 13 NW case 12 24 0.6 20 122 0.104 14 NW case 13 24 3.9 20 88 2.192 15 NW case 14 24 4.6 22 86 1.383 16 NW case 16 25 4.1 19 133 0.512 18 NW case 16 25 4.1 19 133 0.512 18 NW case 18 27 3.3 25 136 0.926 20 NW case 18 27 5.2 31 64 2.002 21 SE case 2 29 3.1 2.3 79 0.257	7	NW case 7	20	3.3	17	106	0.353
10 SE case 1 23 1.8 35 76 0.165 11 NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.275 13 NW case 12 24 0.6 20 122 0.104 14 NW case 13 24 3.9 20 88 2.192 15 NW case 14 24 4.6 22 86 1.383 16 NW case 15 24 4.8 20 68 2.117 17 NW case 16 25 4.1 19 133 0.512 18 NW case 17 25 4.9 30 60 1.789 19 NW case 18 27 5.2 31 64 2.002 21 SE case 2 29 4.8 17 86 3.299 22 SW case 1 29 4.8 17 86 6.605 22 SW case 2 29 4.9 20 120 2.776	8	NW case 8	20	3.8	18	75	0.226
NW case 10 23 0.2 8 154 0.023 12 NW case 11 23 4.0 30 66 1.275 13 NW case 12 24 0.6 20 122 0.104 14 NW case 12 24 3.9 20 88 2.192 15 NW case 13 24 4.6 22 86 1.383 16 NW case 14 24 4.6 22 86 1.383 16 NW case 15 24 4.8 20 68 2.117 17 NW case 16 25 4.1 19 133 0.512 18 NW case 17 25 4.9 30 60 1.789 19 NW case 18 27 5.2 31 64 2.202 20 NW case 11 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026	9	NW case 9	21	1.1	54	125	1.494
12NW case 11234.030661.27513NW case 12240.6201220.10414NW case 13243.920882.19215NW case 14244.622861.38316NW case 15244.820682.11717NW case 16254.1191330.51218NW case 17254.930601.78919NW case 18275.231642.20220NW case 19275.231642.20221SE case 2293.123790.25722SW case 1294.817863.29923SW case 2294.9201202.77624SW case 3304.82801066.60525SE case 3304.82.01066.60526SW case 4302.64800.08527NW case 20302.7251802.50028NW case 21302.864700.96730SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.71880	10	SE case 1	23	1.8	35	76	0.165
13 NW case 12 24 0.6 20 122 0.104 14 NW case 13 24 3.9 20 88 2.192 15 NW case 14 24 4.6 22 86 1.383 16 NW case 15 24 4.8 20 68 2.117 17 NW case 16 25 4.1 19 133 0.512 18 NW case 17 25 4.9 30 60 1.789 19 NW case 18 27 3.3 25 136 0.926 20 NW case 19 27 5.2 31 64 2.202 21 SE case 2 29 3.1 23 79 0.257 22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026 25 SE case 3 30 2.6 4 80 0.085 <	11	NW case 10	23	0.2	8	154	0.023
14 NW case 13 24 3.9 20 88 2.192 15 NW case 14 24 4.6 22 86 1.383 16 NW case 15 24 4.8 20 68 2.117 17 NW case 16 25 4.1 19 133 0.512 18 NW case 17 25 4.9 30 60 1.789 20 NW case 18 27 3.3 25 136 0.926 20 NW case 19 27 5.2 31 64 2.202 21 SE case 2 29 3.1 23 79 0.257 22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 20 6.2 22 98 3.026 25 SE case 3 30 2.6 4 80 0.085 27 NW case 20 30 2.7 25 180 2.500 <	12	NW case 11	23	4.0	30	66	1.275
NW case 14 24 4.6 22 86 1.383 16 NW case 15 24 4.8 20 68 2.117 17 NW case 16 25 4.1 19 133 0.512 18 NW case 17 25 4.9 30 60 1.789 19 NW case 18 27 3.3 25 136 0.926 20 NW case 19 27 5.2 31 64 2.202 21 SE case 2 29 3.1 23 79 0.257 22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026 25 SE case 3 30 2.6 4 80 0.085 27 NW case 20 30 2.7 25 180 2.500 28 NW case 1 30 2.8 64 70 0.967	13	NW case 12	24	0.6	20	122	0.104
16NW case 15244.820682.11717NW case 16254.1191330.51218NW case 17254.930601.78919NW case 18273.3251360.92620NW case 19275.231642.20221SE case 2293.123790.25722SW case 1294.817863.29923SW case 2294.9201202.77624SW case 3296.222983.02625SE case 3304.82801066.60526SW case 4302.64800.08527NW case 20302.7251802.50028NW case 21302.864700.96729SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7343.2401100.83134SW case 6354.718803.73235NW case 23354.5151082.73436NW case 23354.5151082.73436NW case 23354.5150.68 <td>14</td> <td>NW case 13</td> <td>24</td> <td>3.9</td> <td>20</td> <td>88</td> <td>2.192</td>	14	NW case 13	24	3.9	20	88	2.192
17NW case 16254.119133 0.512 18NW case 17254.93060 1.789 19NW case 18273.325136 0.926 20NW case 19275.23164 2.202 21SE case 2293.12379 0.257 22SW case 1294.81786 3.299 23SW case 3296.22298 3.026 24SW case 3296.22298 3.026 25SE case 3304.8280106 6.605 26SW case 4302.6480 0.085 27NW case 20302.725180 2.500 28NW case 21302.86470 0.967 29SE case 4332.28077 3.371 30SE case 5333.120115 0.980 31SE case 6342.06078 0.424 32SE case 7343.240110 0.831 33SW case 5343.240110 0.831 34SW case 6354.71880 3.732 35NW case 23354.917100 2.430 37SE case 10363.85068 0.654 39SE case 1036<	15	NW case 14	24	4.6	22	86	1.383
NW case 17 25 4.9 30 60 1.789 19 NW case 18 27 3.3 25 136 0.926 20 NW case 19 27 5.2 31 64 2.202 21 SE case 2 29 3.1 23 79 0.257 22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026 25 SE case 3 30 4.8 280 106 6.605 26 SW case 20 30 2.7 25 180 2.500 28 NW case 21 30 2.8 64 70 0.967 29 SE case 4 33 2.2 80 77 3.371 30 SE case 5 33 3.1 20 115 0.980	16	NW case 15	24	4.8	20	68	2.117
NW case 18 27 3.3 25 136 0.926 20 NW case 19 27 5.2 31 64 2.202 21 SE case 2 29 3.1 23 79 0.257 22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026 25 SE case 3 30 4.8 280 106 6.605 26 SW case 4 30 2.6 4 80 0.085 27 NW case 20 30 2.7 25 180 2.500 28 NW case 21 30 2.8 64 70 0.967 29 SE case 4 33 2.2 80 77 3.371 30 SE case 5 33 3.1 20 115 0.980	17	NW case 16	25	4.1	19	133	0.512
20 NW case 19 27 5.2 31 64 2.202 21 SE case 2 29 3.1 23 79 0.257 22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026 25 SE case 3 30 4.8 280 106 6.605 26 SW case 4 30 2.6 4 80 0.085 27 NW case 20 30 2.7 25 180 2.500 28 NW case 21 30 2.8 64 70 0.967 29 SE case 4 33 2.2 80 77 3.371 30 SE case 5 33 3.1 20 115 0.980 31 SE case 6 34 2.0 60 78 0.424 <td>18</td> <td>NW case 17</td> <td>25</td> <td>4.9</td> <td>30</td> <td>60</td> <td>1.789</td>	18	NW case 17	25	4.9	30	60	1.789
21 SE case 2 29 3.1 23 79 0.257 22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026 25 SE case 3 30 4.8 280 106 6.605 26 SW case 4 30 2.6 4 80 0.085 27 NW case 20 30 2.7 25 180 2.500 28 NW case 21 30 2.8 64 70 0.967 29 SE case 4 33 2.2 80 77 3.371 30 SE case 5 33 3.1 20 115 0.980 31 SE case 6 34 2.0 60 78 0.424 32 SE case 7 34 2.2 18 70 0.193 33 SW case 5 34 3.2 40 110 0.831	19	NW case 18	27	3.3	25	136	0.926
22 SW case 1 29 4.8 17 86 3.299 23 SW case 2 29 4.9 20 120 2.776 24 SW case 3 29 6.2 22 98 3.026 25 SE case 3 30 4.8 280 106 6.605 26 SW case 4 30 2.6 4 80 0.085 27 NW case 20 30 2.7 25 180 2.500 28 NW case 21 30 2.8 64 70 0.967 29 SE case 4 33 2.2 80 77 3.371 30 SE case 5 33 3.1 20 115 0.980 31 SE case 6 34 2.0 60 78 0.424 32 SE case 7 34 2.2 18 70 0.193 33 SW case 6 35 4.7 18 80 3.732 34 SW case 6 35 4.7 18 80 3.732	20	NW case 19	27	5.2	31	64	2.202
23SW case 2294.9201202.77624SW case 3296.222983.02625SE case 3304.82801066.60526SW case 4302.64800.08527NW case 20302.7251802.50028NW case 21302.864700.96729SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.422432SE case 7342.218700.19333SW case 6354.718803.73235NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	21	SE case 2	29	3.1	23	79	0.257
24SW case 3296.222983.02625SE case 3304.82801066.60526SW case 4302.64800.08527NW case 20302.7251802.50028NW case 21302.864700.96729SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	22	SW case 1	29	4.8	17	86	3.299
25SE case 3304.82801066.60526SW case 4302.64800.08527NW case 20302.7251802.50028NW case 21302.864700.96729SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 23354.9171002.43037SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	23	SW case 2	29	4.9	20	120	2.776
25SE case 3304.82801066.60526SW case 4302.64800.08527NW case 20302.7251802.50028NW case 21302.864700.96729SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 23354.9171002.43037SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	24	SW case 3	29	6.2	22	98	3.026
27NW case 20302.7251802.50028NW case 21302.864700.96729SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	25	SE case 3	30	4.8	280	106	6.605
28NW case 21302.864700.96729SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	26	SW case 4	30	2.6	4	80	0.085
29SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	27	NW case 20	30	2.7	25	180	2.500
29SE case 4332.280773.37130SE case 5333.1201150.98031SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	28	NW case 21	30	2.8	64	70	0.967
30SE case 5333.120115 0.980 31SE case 6342.06078 0.424 32SE case 7342.21870 0.193 33SW case 5343.240110 0.831 34SW case 6354.71880 3.732 35NW case 22354.515108 2.734 36NW case 23354.917100 2.430 37SE case 8362.530125 0.332 38SE case 9363.85068 0.654 39SE case 10363.957801.13340SE case 11364.17581 2.158 41SW case 7363.82860 2.013	29	SE case 4	33	2.2	80	77	3.371
31SE case 6342.060780.42432SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	30					115	
32SE case 7342.218700.19333SW case 5343.2401100.83134SW case 6354.718803.73235NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	31						
33SW case 5343.240110 0.831 34SW case 6354.71880 3.732 35NW case 22354.515108 2.734 36NW case 23354.917100 2.430 37SE case 8362.530125 0.332 38SE case 9363.85068 0.654 39SE case 10363.957801.13340SE case 11364.17581 2.158 41SW case 7363.82860 2.013	32				18	70	
34SW case 6354.718803.73235NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	33						
35NW case 22354.5151082.73436NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	34						
36NW case 23354.9171002.43037SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	35						
37SE case 8362.5301250.33238SE case 9363.850680.65439SE case 10363.957801.13340SE case 11364.175812.15841SW case 7363.828602.013	36						
38 SE case 9 36 3.8 50 68 0.654 39 SE case 10 36 3.9 57 80 1.133 40 SE case 11 36 4.1 75 81 2.158 41 SW case 7 36 3.8 28 60 2.013	37						
39 SE case 10 36 3.9 57 80 1.133 40 SE case 11 36 4.1 75 81 2.158 41 SW case 7 36 3.8 28 60 2.013	38						
40 SE case 11 36 4.1 75 81 2.158 41 SW case 7 36 3.8 28 60 2.013	39						
41 SW case 7 36 3.8 28 60 2.013	40						
	41						
	42						

E&P Geographical Databases Default Cases (RVP Distillation Model):

APDG 5942v2 (Revised 05/2012) Calculating Volatile Organic Compounds (VOC)

E&P National Case #	E&P Regional Case #	API Gravity (°API)	RVP (psia)	Separator Pressure (psig)	Separator Temperature (°F)	VOC emissions if throughput = 10 bbl/day (tpy)
43	SE case 12	37	3.9	18	98	0.916
44	SW case 9	37	3.0	190	70	2.526
45	SW case 10	37	4.9	22	50	11.976
46	SE case 13	38	3.6	24	68	1.421
47	SE case 14	38	4.5	60	72	1.073
48	SW case 11	38	3.0	32	149	0.752
49	SW case 12	38	5.2	62	80	3.625
50	SW case 13	38	5.7	13	113	2.984
51	SW case 14	38	7.4	28	45	2.072
52	NW case 24	38	3.1	22	114	11.432
53	SE case 15	39	3.7	66	89	3.239
54	SE case 16	39	5.6	60	80	1.953
55	SE case 17	39	6.8	60	58	4.760
56	SW case 15	39	6.4	33	60	3.831
57	NE case 1	39	5.4	42	110	4.096
58	SE case 18	40	3.0	66	83	0.875
59	SE case 19	40	4.1	66	90	2.228
60	SW case 16	40	4.8	13	110	2.037
61	NW case 25	40	3.9	64	74	1.267
62	NW case 26	42	4.2	28	78	3.086
63	NE case 2	42	8.1	95	118	11.568
64	SW case 17	44	5.7	29	60	4.116
65	SW case 18	44	7.0	44	71	1.795
66	NW case 27	44	10.1	60	60	4.867
67	SE case 20	45	5.2	41	72	1.582
68	NW case 28	45	8.1	20	68	4.483
69	SW case 19	46	4.7	23	85	8.751
70	SW case 20	46	5.0	24	114	5.060
71	SE case 21	47	5.3	52	108	4.091
72	SE case 22	47	6.0	45	140	19.753
73	NW case 29	47	10.6	40	76	7.667
74	SW case 21	49	5.0	31	76	2.710
75	NE case 3	49	8.9	50	125	22.932
76	NW case 30	50	7.4	700	100	46.622
77	NW case 31	50	9.4	20	48	7.991
78	SW case 22	51	11.2	98	40	18.802
79	SW case 23	54	5.3	115	73	3.506
80	SW case 24	54	9.4	30	100	13.307
81	SW case 25	54	10.3	15	86	9.672
82	NW case 32	55	7.8	770	100	67.726
83	SE case 23	57	5.7	39	66	1.552
84	SE case 24	57	9.6	38	95	12.798
85	SW case 26	57	4.8	65	80	15.144

E&P National Case #	E&P Regional Case #	API Gravity (°API)	RVP (psia)	Separator Pressure (psig)	Separator Temperature (°F)	VOC emissions if throughput = 10 bbl/day (tpy)
86	SW case 27	57	13.1	54	60	15.006
87	SW case 28	57	13.1	870	78	48.132
88	NW case 33	57	7.5	600	70	37.853
89	SW case 29	58	8.0	780	70	28.792
90	NW case 34	58	8.0	60	56	6.643
91	NW case 35	58	9.1	500	84	29.895
92	NE case 4	58	10.6	300	80	41.859
93	SW case 30	59	10.0	110	72	7.896
94	NW case 36	60	9.4	750	90	57.537
95	SW case 31	61	7.0	85	85	4.475
96	NW case 37	61	9.8	730	84	73.168
97	SW case 32	62	10.4	57	82	14.693
98	SW case 33	63	7.0	72	80	3.167
99	NW case 38	63	11.9	730	80	54.645
100	NW case 39	64	6.4	580	77	21.334
101	NW case 40	64	11.0	730	80	113.571
102	NW case 41	66	11.8	807	96	85.523
103	NE case 5	68	12.5	170	75	12.461

* The gray cases are in the northwestern and northeastern United States. These sites are unlikely to be representative of a site in Texas.

7. Griswold and Ambler Gas-Oil-Ratio (GOR) Chart Method (SPE Paper 7175):

- Calculates <u>flash</u> losses only;
- Emissions are estimated using a graph developed by Griswold and Ambler (1978), which was based on empirical data from lab studies and field measurements;
- Requires three inputs:
 - API Gravity;
 - Separator Pressure;
 - Oil/Condensate Throughput;
 - To calculate flash using this method:
 - 1. Determine the range that the actual API gravity falls into (under 30, 30-39, or 40+);
 - 2. Consult the graph; find the line that corresponds to the correct API gravity range;
 - 3. Find the point on the line that corresponds to the separator pressure (on X axis);
 - 4. Determine where on the Y axis this point is, this is the GOR (SCF/bbl).
- Knowing the oil throughput, the total volume of flash gas emitted can be determined;
- To calculate VOC emissions, more information about the composition of the flash gas would need to be known (the molecular weight and VOC content). This method will <u>not</u> give this data.

Example: If API Gravity = 38 °API Separator pressure = 40 psig Throughput = 1000 bbl/day

