Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX 79901

Report Date: August 12, 2009

 Work Order:
 9080634

Project Location:El Paso, TexasProject Name:2009 Split Sampling

			Date	Time	Date
\mathbf{Sample}	Description	Matrix	Taken	Taken	Received
204898	EP-62 (GW)	water	2009-08-04	08:07	2009-08-04
204899	EP-66 (GW)	water	2009-08-04	08:41	2009-08-04
204900	EP-5 (GW)	water	2009-08-04	09:04	2009-08-04
204901	EP-6 (GW)	water	2009-08-04	10:01	2009-08-04
204902	EP-7 (GW)	water	2009-08-04	10:16	2009-08-04
204903	SEP-4 (SW)	water	2009-08-04	10:52	2009-08-04

Sample: 204898 - EP-62 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204899 - EP-66 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		0.0110	m mg/L	0.0100

Sample: 204900 - EP-5 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204901 - EP-6 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100
Sample: 204902 - EP-7 (GW	V)			
Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100
Sample: 204903 - SEP-4 (SV	N)			
Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	$\mathrm{mg/L}$	0.0100

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX 79901

Report Date: August 12, 2009

 Work Order:
 9080635

Project Location:El Paso, TexasProject Name:2009 Split Sampling

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
204904	SEP-9 (SW)	water	2009-08-04	13:10	2009-08-06
204905	SEP-7 (SW)	water	2009-08-04	13:40	2009-08-06
204906	EP-111 (SW)	water	2009-08-04	14:20	2009-08-06
204907	EP-112 (SW)	water	2009-08-04	14:50	2009-08-06
204908	SEP-11 (SW)	water	2009-08-04	15:10	2009-08-06
204909	SEP-3 (SW)	water	2009-08-04	15:35	2009-08-06
204910	FD-2	water	2009-08-04	11:40	2009-08-06

Sample: 204904 - SEP-9 (SW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204905 - SEP-7 (SW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204906 - EP-111 (SW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204907 - EP-112 (SW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100
Sample: 204908 - SEP-11 (S	W)			
Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100
Sample: 204909 - SEP-3 (SV Param	V) Flag	Result	Units	BL
Sample: 204909 - SEP-3 (SV	N) Flag	Regult	Units	BL
Hexavalent Chromium		0.0140	m mg/L	0.0100
Sample: 204910 - FD-2				
Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX 79901

Report Date: August 12, 2009

 Work Order:
 9080637

Project Location:El Paso, TexasProject Name:2009 Split Sampling

			Date	Time	Date
\mathbf{Sample}	Description	Matrix	Taken	Taken	Received
204915	FD-3 (GW)	water	2009-08-05	06:30	2009-08-05
204916	EP-20 (GW)	water	2009-08-05	07:55	2009-08-05
204917	EP-35 (GW)	water	2009-08-05	08:30	2009-08-05
204918	EP-29 (GW)	water	2009-08-05	$09{:}04$	2009-08-05

Sample: 204915 - FD-3 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	$\mathrm{mg/L}$	0.0100

Sample: 204916 - EP-20 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204917 - EP-35 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204918 - EP-29 (GW)

Report Date: August 12, 2009		Work Order: 9080637		Page Number: 2 of 2	
Param	Flag	Result	Units	RL	
Hexavalent Chromium		< 0.0100	$\mathrm{mg/L}$	0.0100	

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX 79901

Report Date: August 12, 2009

 Work Order:
 9080418

Project Location:El Paso, TexasProject Name:2009 Split Sampling

			\mathbf{Date}	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
204592	EP-110 (GW)	water	2009-08-03	08:00	2009-08-03
204593	EP-126 (GW)	water	2009-08-03	08:55	2009-08-03
204594	EP-129 (GW)	water	2009-08-03	09:41	2009-08-03
204595	EP-94(GW)	water	2009-08-03	10:41	2009-08-03
204596	EP-49(GW)	water	2009-08-03	11:26	2009-08-03

Sample: 204592 - EP-110 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204593 - EP-126 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204594 - EP-129 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	$\mathrm{mg/L}$	0.0100

Sample: 204595 - EP-94(GW)

Report Date: August 12, 2009		Work Order: 9080418	Page	Page Number: 2 of 2	
Param	Flag	Result	Units	RL	
Hexavalent Chromium		< 0.0100	m mg/L	0.0100	
Sample: 204596 - EP-49(GW	V)				
Param	Flag	Result	Units	RL	
Hexavalent Chromium		0.0200	mg/L	0.0100	

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX 79901

Report Date: August 12, 2009

 Work Order:
 9080419

Project Location:El Paso, TexasProject Name:2009 Split Sampling

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
204597	EP-71 (GW)	water	2009-08-03	13:17	2009-08-03
204598	EP-51 (GW)	water	2009-08-03	13:55	2009-08-03
204599	EP-81 (GW)	water	2009-08-03	14:35	2009-08-03
204600	EP-80 (GW)	water	2009-08-03	14:57	2009-08-03
204601	FD-1	water	2009-08-03	06:00	2009-08-03

Sample: 204597 - EP-71 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204598 - EP-51 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

Sample: 204599 - EP-81 (GW)

Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	$\mathrm{mg/L}$	0.0100

Sample: 204600 - EP-80 (GW)

Report Date: August 12, 2009		Work Order: 9080419	Page	Number: 2 of 2
Param	Flag	Result	Units	RL
Hexavalent Chromium	_	< 0.0100	m mg/L	0.0100
Sample: 204601 - FD-1				
Param	Flag	Result	Units	RL
Hexavalent Chromium		< 0.0100	m mg/L	0.0100

6701 Aberdeen Avenue, Suite 91200 East Sunset Road, Suite E15002 Basin Street, Suite A116015 Harris Parkway, Suite 110Ft

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

800 • 378 • 1296 806 • 794 • 1296 888 • 588 • 3443 915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260 aceanalysis.com FAX 806•794•1298 FAX 915•585•4944 FAX 432•689•6313

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX, 79901

Report Date: August 12, 2009

Work Order: 9080634

Project Location:El Paso, TexasProject Name:2009 Split SamplingProject Number:2009 Split Sampling

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Lime	Date
Sample	$\mathbf{Description}$	Matrix	Taken	Taken	$\operatorname{Received}$
204898	EP-62 (GW)	water	2009-08-04	08:07	2009-08-04
204899	EP-66 (GW)	water	2009-08-04	08:41	2009-08-04
204900	EP-5 (GW)	water	2009-08-04	09:04	2009-08-04
204901	EP-6 (GW)	water	2009-08-04	10:01	2009-08-04
204902	EP-7 (GW)	water	2009-08-04	10:16	2009-08-04
204903	SEP-4 (SW)	water	2009-08-04	10:52	2009-08-04

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 $\,B\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project 2009 Split Sampling were received by TraceAnalysis, Inc. on 2009-08-04 and assigned to work order 9080634. Samples for work order 9080634 were received intact at a temperature of 4.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$\rm QC$	Analysis
Test	Method	Batch	Date	Batch	Date
Chromium, Hexavalent	SM 3500-Cr B	53193	2009-08-04 at 12:03	62354	2009-08-04 at 12:03

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9080634 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 204898 - EP-62 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexaval	ent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62354		Date Analyzed:	2009-08-04	Analyzed By:	MD
Prep Batch:	53193		Sample Preparation:	2009-08-04	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	m mg/L	1	0.0100

Sample: 204899 - EP-66 (GW)

Prep Batch:	53193		Sample Preparation:	2009-08-04	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	hromium		0.0110	mg/L	1	0.0100

Sample: 204900 - EP-5 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexava	alent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62354		Date Analyzed:	2009-08-04	Analyzed By:	MD
Prep Batch:	53193		Sample Preparation:	2009-08-04	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	m mg/L	1	0.0100

Sample: 204901 - EP-6 (GW)

Laboratory:	El Paso				
Analysis:	Chromium, Hexavalent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62354	Date Analyzed:	2009-08-04	Analyzed By:	MD
Prep Batch:	53193	Sample Preparation:	2009-08-04	Prepared By:	$_{\rm JR}$

Report Date 2009 Split Sa	: August 12, ampling	2009	Work Or 2009 Sp	rder: 908 blit Samp	Page Number: 5 of El Paso, Texa			
Parameter		Flag	RL Result		Units	Dilution	RL	
Hexavalent C	Chromium		< 0.0100		m mg/L	1	0.0100	
Sample: 20	4902 - EP-7	(GW)						
Laboratory: Analysis: QC Batch: Prep Batch:	El Paso Chromium, 62354 53193	Hexavalent	Analytical M Date Analyze Sample Prepa	ethod: ed: aration:	SM 3500-Cr B 2009-08-04 2009-08-04	Prep Met Analyzed Prepared	hod: N/A By: MD By: JR	
D /			RL		TT		DI	
Parameter Hovewalent (hromium	Flag	Result		Units mg/I	Dilution		
Laboratory: Analysis: QC Batch: Prep Batch:	El Paso Chromium, 62354 53193	Hexavalent	Analytical M Date Analyze Sample Prepa	ethod: ed: aration:	SM 3500-Cr B 2009-08-04 2009-08-04	Prep Met Analyzed Prepared	hod: N/A By: MD By: JR	
Denemator		Flor	RL Descult		I.n.ita	Dilution	DI	
Hexavalent C	Chromium	r lag	<0.0100		mg/L	1	0.0100	
Method Bl QC Batch: Prep Batch:	ank (1) 62354 53193	QC Batch: 62354	Date Analyzed: QC Preparation:	2009-08 2009-08	-04 -04	Analyzed Prepared	l By: MD By: MD	
Parameter		Fla	g	${ m MD} { m Resu}$	L lt	Units	RL	
Hexavalent C	hromium	,	٠	< 0.0059	94	mg/L	0.01	

Laboratory Control Spike (LCS-1)

QC Batch:	62354	Date Analyzed:	2009-08-04	Analyzed By:	MD
Prep Batch:	53193	QC Preparation:	2009-08-04	Prepared By:	MD

Report Date: August 12, 2009 Split Sampling	2009			Page	Page Number: 6 of 6 El Paso, Texas					
Param Hoverslent Chromium		LCS Result	t.	Units	Dil.	Spike Amount	Mat Resi	rix 1lt Rec	. 05	Rec. Limit 4 105
	.1. 1	0.490	י תתנ		1 1	0.000	1. 1	100	90	.4 - 105
Percent recovery is based	on the spike	result. F	(PD 1s	based of	n the spike a	ina spike au	ipiicate	result.		
	L	CSD			$\mathbf{S}\mathbf{pike}$	Matrix		Rec.		RPD
Param	R	lesult	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Hexavalent Chromium	().491 i	mg/L	1	0.500	< 0.00594	98	95.4 - 105	1	20
Percent recovery is based	on the spike	result. F	RPD is	based or	n the spike a	nd spike du	iplicate	result .		
Matrix Spike (MS-1)	Spiked Sa	mple: 204	899							
QC Batch: 62354		I	Date A	nalvzed	2009-08-0)4		Ana	lvzed Bv	· MD
Prep Batch: 53193		(DC Pre	eparation	2009-08-0)4		Pret	ared By	: MD
00100				- F				r		
		MS				Spike	Mat	rix		R.ec.
Param		Resul	t	Units	Dil.	Amount	Res	sult Rec		Limit
Hexavalent Chromium		0.562		mg/L	1.11	0.556	0.0	11 99	80	.1 - 118
Percent recovery is based	on the spike	result. F	RPD is	based or	n the spike a	nd spike du	iplicate	result.		
	1	MSD			Snike	Matrix		Bec		BPD
Param	F	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Hexavalent Chromium	(0.572	mg/L	1.11	0.556	0.011	101	80.1 - 118	2	20
Percent recovery is based	on the spike	result. F	RPD is	based or	n the spike a	nd spike du	ıplicate	result .		
Standard (CCV-1)										
QC Batch: 62354		Ι	Date A	nalyzed:	2009-08-04	ł		Ana	lyzed By	: MD
				CCVs	CCVs	CCV	Vs	Percent		
				True	Found	Perce	ent	Recovery		Date
Param	Flag	Units		Conc.	Conc.	Recov	very	Limits	Ar	nalyzed
Hexavalent Chromium		mg/L		0.500	0.507	101	<u> </u>	90 - 110	200	9-08-04
Standard (CCV-2)										
QC Batch: 62354		Ι	Date A	nalyzed:	2009-08-04	1		Ana	lyzed By	: MD
				CCVs	CCVs	CCV	Vs	Percent		
				True	Found	Perce	ent	Recovery		Date
Param	Flag	Units		Conc.	Conc.	Recov	very	Limits	Ar	nalyzed
Hexavalent Chromium		m mg/L		0.500	0.495	99		90 - 110	200	9-08-04

OTBlvd. West, Suite 180	7678, 76116 201-5260) 560-4336	~		pard	oneta	mont t	ifferen	b îi ə	miT bnuc	דערח א רכ Hold									、后个、		G	
age	Ft. Worth Tel (817) Fax (817)	UEST		(17	n 'é	<i>>) </i>	12	2-,	Hq ,225 9 Conten 5 Conten	T, JOB Moisturd Moisturd	\$ ×	×	< ×	×	~~	. ×			nois dure ?		uired d rting	
т Ш	1	REQ	~ _					809 /	68 808 / 60	PCB's E									- un		Require Require	aded
t Rd., Su	cas 7992 85-3443 85-4944 88-3443	TASIS) 2 _ 0 _			92	9702 77	28 0 29 / 0	Vol. 826	CC/W2 CC/W2 BC/W2							 	ARKS:	AII		Veight Ba P Report k If Spec	S Are Net
ast Sunse	Paso, Tex el (915) 5 ax (915) 5 ax (915) 5 1 (888) 58	ANA	- - 					səlit	sloV ime sebioitse	LCLP F TCLP E								REM		~	Dry V TRRF Checi	
200 E	,	, i	- 	g /200.7	H 98	Cr Pb	a Cr Pl	Ba Co	als Ag As Metals Ag Selities	TCLP V TCLP A								USE		N Y/N/NA	IEW MAL	
Suite A1	9703 301 313					л он/	<u>\</u> \ L / O	<u>אס</u> /	12 GKO	28 HAT 28 HAT							-	LAB	NO	ntact()	-og-in-Revi	
n Street, S	1, Texas 7 32) 689-6(32) 689-6(32) 689-6			(<u>c</u>	¢(C3	002 E> 954 \ 954	/ LX4 560 /	1002 / 8 07 / 8	XT \ 1.8	TPH 41 BTEX									° ° •			5
5002 Basil	Midland Tel (4 Fax (4						0300	509 209 209		TIME	3:07	14:2	1.04	10;0	0:K	0:2		INST	OBS COR	INST OBS COR	INST OBS COR	55
uite 9	स्र	964	070	1.17	2	170		SAMPI		JTA	3 20/1/	14/04 C	14/0/ 0	14/09	14/09	14/001		Time:	144	Time:	Time:	
wenue, St	xas 7942 94-1296 794-1298 78-1296	4-41	1-4	1. 23		2		, E		NONE	×	×	× ×	X	X X	X		ate:	14109	ate:	ite:	
erdeen /	oock, Te (806) 7 × (806) 7 (800) 3 (800) 3	83	834	2. Z		4.	ire:	RVATI		ICE N ^g OH	×	×	×	×	×	×			$\hat{\varphi}$	ŏ	Õ	
6701 Ab	Lub Fa	#: 915.	915-		1	Name:	r Signat	PRESE	¥	⁺OS ^z H °ONH						ş		ompany:		ompany:	ompany:	
		Phone "	rax #:	L mail:)	Project	Sample			HCI									7	ŭ	ŭ	
5	: د		1	- de		2	11:2	MATRIX	36	SFND VIK 20IF								eived by:	7 Acr	eived by:	eived by:	
	E E		2990	Lo Lo			4		В	ataw 103	X	×	×	×	×	×		 Rece	U	Rece	Rece	
	alysis.co	0	8		Š		256	n tr	RANIATI	Volum + COI	1 20					→ 、		 Time:	1:43	Time:	Time:	
Mer	Laly traceana	egior	te 51	La.			14	\			5			•				ate:	69 /1)ate:	ate:	
A A	LAN lab@t	×	Sui	700			X	4	DE	,	ne)	Gw	2 h)	3	(1)	E.			8/1			
1061	email		KLD 1	Q .	(1)		ding state)	-	FIELD CC		-62	601	S S	5	Z	.402		Company	1069	Company	Company	
		ne: A	- lan	los Vos	above		ion (inclu				E D	- <u>/</u> -	-d=	:P-C	-di	EP-		, pć	lin ,	by:	by:	
		ompany Nar ddress	401 E	ontact Perso	voice to: different fro	roject #:	roject Locati		LAB #		24 898 L	894 2	9007	N 00	40.1 2	5 M		linquished	dert ti	elinquished	elinquished	

6701 Aberdeen Avenue, Suite 91200 East Sunset Road, Suite E15002 Basin Street, Suite A116015 Harris Parkway, Suite 110Ft

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

800 • 378 • 1296 806 • 794 • 1296 888 • 588 • 3443 915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260 aceanalysis com FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX, 79901

Report Date: August 12, 2009

Work Order: 9080635

Project Location:El Paso, TexasProject Name:2009 Split SamplingProject Number:2009 Split Sampling

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	$\mathbf{Description}$	Matrix	Taken	Taken	$\operatorname{Received}$
204904	SEP-9 (SW)	water	2009-08-04	13:10	2009-08-06
204905	SEP-7 (SW)	water	2009-08-04	13:40	2009-08-06
204906	EP-111 (SW)	water	2009-08-04	14:20	2009-08-06
204907	EP-112 (SW)	water	2009-08-04	14:50	2009-08-06
204908	SEP-11 (SW)	water	2009-08-04	15:10	2009-08-06
204909	SEP-3 (SW)	water	2009-08-04	15:35	2009-08-06
204910	FD-2	water	2009-08-04	11:40	2009-08-06

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch

basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 8 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael about

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 ${\bf B}\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project 2009 Split Sampling were received by TraceAnalysis, Inc. on 2009-08-06 and assigned to work order 9080635. Samples for work order 9080635 were received intact at a temperature of 4.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
Chromium, Hexavalent	SM 3500-Cr B	53197	2009-08-04 at $16:20$	62359	2009-08-04 at 16:20
Chromium, Hexavalent	SM 3500-Cr B $$	53198	2009-08-05 at $11:35$	62360	2009-08-05 at $11:35$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9080635 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 204904 - SEP-9 (SW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexaval	ent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62359		Date Analyzed:	2009-08-04	Analyzed By:	MD
Prep Batch:	53197		Sample Preparation:	2009-08-04	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	Chromium		< 0.0100	m mg/L	1 (0.0100

Sample: 204905 - SEP-7 (SW)

			DI			
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	hromium	-	< 0.0100	mg/L	1	0.0100

Sample: 204906 - EP-111 (SW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexav	ralent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62360		Date Analyzed:	2009-08-05	Analyzed By:	MD
Prep Batch:	53198		Sample Preparation:	2009-08-05	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	\mathbf{Result}	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	$\mathrm{mg/L}$	1	0.0100

Sample: 204907 - EP-112 (SW)

Laboratory:	El Paso				
Analysis:	Chromium, Hexavalent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62360	Date Analyzed:	2009-08-05	Analyzed By:	MD
Prep Batch:	53198	Sample Preparation:	2009-08-05	Prepared By:	$_{\rm JR}$

Report Date 2009 Split Sa	x August 12, 2009 ampling		Work Order: 908 2009 Split Samp	30635 bling	Page Number El Pasc	: 5 of 8 , Texas
Parameter		Flag	$\operatorname{RL}_{\operatorname{Result}}$	Units	Dilution	RL
Hexavalent C	Chromium		< 0.0100	m mg/L	1	0.0100
Sample: 20	4908 - SEP-11 ((\mathbf{SW})				
Laboratory: Analysis: QC Batch: Prep Batch:	El Paso Chromium, Hexa 62360 53198	avalent	Analytical Method: Date Analyzed: Sample Preparation:	SM 3500-Cr B 2009-08-05 2009-08-05	Prep Method: Analyzed By: Prepared By:	N/A MD JR
-			RL			
Parameter	N1. ·	Flag	Result	Units	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	El Paso Chromium, Hexa 62360 53198	avalent	Analytical Method: Date Analyzed: Sample Preparation:	SM 3500-Cr B 2009-08-05 2009-08-05	Prep Method: Analyzed By: Prepared By:	N/A MD JR
Devemeter		Flor	RL Bogult	Unita	Dilution	DI
Hexavalent C	Chromium	Flag	0.0140	mg/L	1	0.0100
Sample: 20 Laboratory: Analysis: QC Batch:	4910 - FD-2 El Paso Chromium, Hexa 62359	avalent	Analytical Method: Date Analyzed:	SM 3500-Cr B 2009-08-04	Prep Method: Analyzed By:	N/A MD
Prep Batch:	53197		Sample Preparation:	2009-08-04	Prepared By:	$_{\rm JR}$
Denene		El	RL Data k	TT:+-		דת
Parameter	hromium	Flag	Kesult	Units mg/I	Dilution	KL 0.0100
mexavalent C	momun		<0.0100	шg/ь	1	0.0100

Method Bla	nk (1)	QC Batch: 62359				
QC Batch: Prep Batch:	$62359 \\ 53197$		Date Analyzed: QC Preparation:	2009-08-04 2009-08-04	Analyzed By: Prepared By:	MD MD

Report Date: August 12, 2009 2009 Split Sampling		Work 2009	Order: 90 Split Sam	80635 pling		Page	Numbe El Pas	r: 6 of 8 o, Texas
Parameter	Flag		MI Res	DL ult		Units		RL
Hexavalent Chromium			< 0.005	94		mg/L		0.01
Method Blank (1) QC Ba	atch: 62360							
QC Batch: 62360 Prep Batch: 53198	Dar QC	te Analyzed Preparatio	: 2009-0 n: 2009-0	8-05 8-05		Anal Prep	yzed By ared By	: MD : MD
Parameter	Flag		MI Res	DL ult		Units		RL
Hexavalent Chromium			< 0.005	94		mg/L		0.01
Laboratory Control Spike (L	α CS-1)							
QC Batch: 62359 Prep Batch: 53197	Dat QC	te Analyzed Preparatio	: 2009-0 n: 2009-0	8-04 8-04		Anal Prep	yzed By ared By	: MD : MD
Param	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	${f Matr} {f Resu}$	ix lt Rec.		Rec. Limit
Hexavalent Chromium Percent recovery is based on the	0.497	mg/L D is based of	$\frac{1}{2}$	0.500	< 0.00	594 99	95	.4 - 105
referit feedvery is based on the			Spike	Motriy	ipiicate i	Poe		חסס
Param	Result Ur	its Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Hexavalent Chromium	0.499 mg	g/L 1	0.500	< 0.00594	100	95.4 - 105	0	20
Percent recovery is based on the	spike result. RP	D is based o	on the spike	e and spike du	iplicate i	result.		
Laboratory Control Spike (L	CS-1)							
QC Batch: 62360 Prep Batch: 53198	Dat QC	te Analyzed Preparatio	: 2009-0 n: 2009-0	8-05 8-05		Anal Prep	yzed By ared By	: MD : MD
Param	$egin{array}{c} { m LCS} \\ { m Result} \end{array}$	Units	Dil.	Spike Amount	Matr Resu	ix lt Rec.		Rec. Limit
Hexavalent Chromium	0.489	mg/L	1	0.500	< 0.00	594 98	95	4 - 105
Percent recovery is based on the	spike result. RP	D is based o	on the spike	e and spike du	iplicate i	result .		
Param	LCSD Besult Ur	uite Dil	Spike A mount	Matrix Bosult	Bog	Rec.	חסס	RPD Limit
	1000410 01.	\mathbf{D}	Amount	rtesuit	ILEC.		ni D	Linno

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

2009 Split Sampling	009			Work O 2009 S	order: 9080 plit Sampl	0635 ling			Page	Number El Pase	:: 7 of 8 5, Texas
Matrix Spike (MS-1)	Spiked Sar	nple: 20	4904								
QC Batch: 62359 Prep Batch: 53197			Date A QC Pr	analyzed: eparation:	2009-08- 2009-08-	-04 -04			Analy Prepa	yzed By ared By:	MD MD
		MS				Spike	Ma	trix			Rec.
Param		Resu	lt 7	Units	Dil.	Amount	Re	sult	Rec.	80	$\frac{\text{Limit}}{1, 119}$
Hexavalent Unromium	.1 .1	0.08	(mg/L	1.11	0.550	0.1	.48	97	80	.1 - 118
Percent recovery is based or	n the spike	result.	RPD is	s based on	the spike	and spike d	uplicate	result.			
Param	N R	MSD .esult	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec Lim	:. it	RPD	RPD Limi†
Hexavalent Chromium	0	0.680	mg/L	1.11	0.556	0.148	96	80.1 -	118	1	20
Tep Daten: 55196			QUIT	eparation.	2009-08-	-05			гтера	ared Dy:	MD
		MS				${ m Spike}$	Mat	rix			Rec.
Param		MS Resul	t	Units	Dil.	Spike Amount	Mat Res	rix ult	Rec.]	Rec. Limit
Param Hexavalent Chromium		MS Resul 0.492	t 2	Units mg/L	Dil. 1.11	Spike Amount 0.556	Mat Res <0.0	ult 0659	Rec. 88	80	Rec. Limit .1 - 118
Param Hexavalent Chromium Percent recovery is based or	n the spike	MS Resul 0.492 result.	t 2 RPD is	Units mg/L s based on	Dil. 1.11 the spike	Spike Amount 0.556 and spike d	Mat Res <0.0 uplicate	rix ult 0659 result.	Rec. 88	80	Rec. Limit .1 - 118
Param Hexavalent Chromium Percent recovery is based or Param	n the spike M R	MS Resul 0.492 result. ISD esult	t 2 RPD is Units	Units mg/L s based on Dil.	Dil. 1.11 the spike Spike Amount	Spike Amount 0.556 and spike d Matrix Result	Mat Res <0.00 uplicate Rec.	rix ult 0659 result. Re- Lim	Rec. 88 c. nit	80 RPD	Rec. Limit .1 - 112 RPE Limi
Param Hexavalent Chromium Percent recovery is based or Param Hexavalent Chromium	n the spike N R 0	MS Resul 0.492 result. ISD esult .488	t 2 RPD is Units mg/L	Units mg/L s based on Dil. 1.11	Dil. 1.11 the spike Spike Amount 0.556	Spike Amount 0.556 and spike d Matrix Result <0.00659	Mat Res <0.0 uplicate <u>Rec.</u> 88	rix ult 0659 result. Re Lim 80.1 -	Rec. 88 c. 118	80 RPD 1	Rec. Limit .1 - 118 RPD Limi ⁻ 20
Param Hexavalent Chromium Percent recovery is based on Param Hexavalent Chromium Percent recovery is based on Standard (CCV-1)	n the spike N R 0 n the spike	MS Resul 0.492 result. ISD esult .488 result.	t RPD is <u>Units</u> mg/L RPD is	Units mg/L s based on Dil. 1.11 s based on	Dil. 1.11 the spike Spike Amount 0.556 the spike	Spike Amount 0.556 and spike d Matrix Result <0.00659 and spike d	Mat Res uplicate <u>Rec.</u> 88 uplicate	rix ult 0659 result. Re Lim 80.1 - result.	Rec. 88 c. 1118	80 RPD 1	Rec. Limit 1 - 111 RPI Limi 20
Param Hexavalent Chromium Percent recovery is based on Param Hexavalent Chromium Percent recovery is based on Standard (CCV-1) QC Batch: 62359	n the spike N R 0 n the spike	MS Resul 0.492 result. ISD esult 488 result.	t RPD is <u>Units</u> mg/L RPD is Date A	Units mg/L s based on Dil. 1.11 s based on	Dil. 1.11 the spike Spike Amount 0.556 the spike 2009-08-0	Spike Amount 0.556 and spike d Matrix Result <0.00659 and spike d	Mat Res uplicate <u>Rec.</u> 88 uplicate	rix ult 0659 result. Red Lim 80.1 - result.	Rec. 88 c. 111 Analy	RPD 1 yzed By	Rec. <u>Limit</u> <u>.1 - 11.</u> <u>RPE</u> <u>Limi</u> <u>20</u> : MD
Param Hexavalent Chromium Percent recovery is based or Param Hexavalent Chromium Percent recovery is based or Standard (CCV-1) QC Batch: 62359 Param	n the spike N R 0 n the spike Flag	MS Resul 0.492 result. 4SD esult 488 result.	t RPD is <u>Units</u> mg/L RPD is Date A	Units mg/L s based on Dil. 1.11 s based on analyzed: CCVs True Conc.	Dil. 1.11 the spike Spike Amount 0.556 the spike 2009-08-0 CCVs Found Conc.	Spike Amount 0.556 and spike d Matrix Result <0.00659 and spike d 04 CC Perc Reco	Mat Res 20.00 uplicate <u>Rec.</u> 88 uplicate	rix ult 0659 result. Re- Lim 80.1 - result. Perc Reco- Lim	Rec. 88 c. 1118 Analy ent very its	RPD 1 yzed By	Rec. <u>Limit</u> .1 - 118 RPE <u>Limi</u> 20 : MD Date alyzed
Param Hexavalent Chromium Percent recovery is based on Param Hexavalent Chromium Percent recovery is based on Standard (CCV-1) QC Batch: 62359 Param Hexavalent Chromium	n the spike N R 0 n the spike Flag	MS Resul 0.492 result. ISD esult .488 result. Units mg/L	t RPD is mg/L RPD is Date A	Units mg/L s based on Dil. 1.11 s based on analyzed: CCVs True Conc. 0.500	Dil. 1.11 the spike Spike Amount 0.556 the spike 2009-08-0 CCVs Found Conc. 0.496	Spike Amount 0.556 and spike d Matrix Result <0.00659 and spike d 04 CC Perc Reco 99	Mat Res 20.00 uplicate Rec. 88 uplicate Vs ent very	rix ult 0659 result. Re Lim 80.1 - result. Perc Reco Lim 90 -	Rec. 88 c. iit 118 Analy ent very its 110	RPD 1 yzed By An 200	Rec. Limit 1 - 11 RPI Limi 20 : MD Date alyzed 9-08-0

Report Date: August 12, 2009 Split Sampling	2009		Work 0 2009 S	Order: 9080635 Split Sampling	5	Page I	Number: 8 of 8 El Paso, Texas
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Hexavalent Chromium		$\mathrm{mg/L}$	0.500	0.496	99	90 - 110	2009-08-04
Standard (CCV-1)							
QC Batch: 62360		Dat	e Analyzed:	2009-08-05		Analy	zed By: MD
Param	Flag	Units	CCVs True Conc	CCVs Found Conc	CCVs Percent Becovery	Percent Recovery Limits	Date Analyzed
Hexavalent Chromium	Tag	mg/L	0.500	0.489	98	90 - 110	2009-08-05
Standard (CCV-2)							
QC Batch: 62360		Dat	e Analyzed:	2009-08-05		Analy	zed By: MD
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Hexavalent Chromium		$\mathrm{mg/L}$	0.500	0.501	100	90 - 110	2009-08-05

TraceAnalysis, Inc. TraceAnalysis, Inc. <thtraceanalysis, inc.<="" th=""> TraceAnalysis, Inc.</thtraceanalysis,>	TaccAnalysis, Inc. Пилования и продукти и проду	Order ID # 70800	35																age	/ of	~		r
Панк С. Е. 2 Монк С. С. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Пани, Т. С. С. М. А. Полов,	TraceA1 email: lab@	1aly traceana	SľS , lysis.co		ic.	670	1 Aberde Lubboch Tel (80 Fax (80 1 (80	en Aver , Texas 6) 794- 06) 794- 1) 378-1	nue, Suite 9 79424 1296 1298	5002 Basin St Midland, Te Tel (432) Fax (432)	rreet, Si exas 79 689-63 689-63	uite A1 3703 01	20	D East El Pas Tel (Fax (8	Sunset o, Tex 115) 58 915) 58 88) 588	Rd., Su s 7992 5-3443 5-4944 -3443	щ	8808 Camp E Ft. W Tel	sowie Blv forth, Tex I (817) 20 x (817) 56	1. West, S as 76116 1-5260 80-4336	uite 180	
Парти	Поли и солонии солонии Поли и солонии <t< td=""><td>ame: TCEQ</td><td>Cotan</td><td>9</td><td></td><td>d </td><td>hone #:</td><td>834</td><td>- 40</td><td>964</td><td></td><td></td><td></td><td>~: (</td><td>(</td><td>ANAI</td><td>YSIS</td><td>REC</td><td>DUEST</td><td></td><td></td><td></td><td></td></t<>	ame: TCEQ	Cotan	9		d	hone #:	834	- 40	964				~: ((ANAI	YSIS	REC	DUEST				
Total End End </td <td>The matrix The ma</td> <td>(Street, City, Zip)</td> <td>Ser to</td> <td>560</td> <td>799</td> <td>'0 / F</td> <td>ax #: タゲ-</td> <td>£39</td> <td>5</td> <td>940</td> <td></td> <td></td> <td></td> <td>)</td> <td>\$ 0</td> <td>0 5 —</td> <td>0 0 0</td> <td>>_</td> <td></td> <td>6 –</td> <td></td> <td></td> <td></td>	The matrix The ma	(Street, City, Zip)	Ser to	560	799	'0 / F	ax #: タゲ-	£39	5	940)	\$ 0	0 5 —	0 0 0	>_		6 –			
Interfactor Interfactor <thinterfactor< th=""> <thinterfactor< th=""></thinterfactor<></thinterfactor<>	Половон Половон Половон Половон Половон Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон: Половон:	rson: Jose Olcha			0	ieda en	-mail: toop	あた。	+x,	5		(9		-19 7,200.7					()	<i>j</i>		ndard	
Point Hand Point Hand Project Hand Project Hand Project Hand <	Point land Point land Priori dama Priori dama Priori dama	from above)			K							sxt(C3)109 g					Λ <i>Λ</i> ;			nste n	
altony/including attei: FE L Hour Sunder Signature: FE L FE L Construction Hour Accound Time & diameters FE L Construction SARPUNDE SARPUNDE SARPUNDE FE L Construction SARPUNDE SARPUNDE SARPUNDE Hour FE L Construction SARPUNDE SARPUNDE SARPUNDE SARPUNDE FE L Hour FE L Construction SARPUNDE SARPUNDE SARPUNDE SARPUNDE FE L Hour Hour FE L Construction SARPUNDE K SARPUNDE SARPUNDE FE L Hour Hour Hour Hour Hour FE L Construction K K SARPUNDE K SARPUNDE FE L Hour	allog functioning train. An Number Signature. allog functioning train. An Number Signature. FELO COE FELO COE FELO COE An Number Signature. An Number Signature. An Number Signature. An Number Signature. An Number Signature. FELO COE BITX. Soci. 1000.155.01 FELO COE BITX. Soci. 1000.105.02 FELO COE BITX. Soci. 1000.105.05 FELO COE BITX. Soci. 1000.05					a.	roject Nan 2009	e:	1	So a /m	1 624	002 E 954	ЛНС	Cr Pł b Se H			925		7) N			nonî tro	
FIED COOR FIED COOR FIED COOR	FEL Company: Company: Company: Company: Control is a discrete of the company: Control is a discrete of the company: Control is a discrete of the company: MATRX MATRX <t< td=""><td>ation (including state):</td><td></td><td>HEW</td><td>X</td><td>SURGES</td><td>ampler Sig</td><td>nature:</td><td>13</td><td>r holdlen</td><td>1 8560</td><td>2760 /</td><td>τ / ΟΣ</td><td>Ba Cd</td><td></td><td></td><td>520 / 6 25</td><td>8</td><td></td><td></td><td></td><td>differe</td><td></td></t<>	ation (including state):		HEW	X	SURGES	ampler Sig	nature:	13	r holdlen	1 8560	2760 /	τ / ΟΣ	Ba Cd			520 / 6 25	8				differe	
FELD CODE IELD CODE FELD CODE FELD CODE FELD CODE FELD CODE SEEP -1 (St) SEEP -2 (St) SEEP -2 (St) SEEP -2	FELD CODE RELD CODE FELD CODE FELD CODE			tur SS		MATRIX	R R	ESERV	ATIVE	SAMP	POS	900L) 905 / 8	2 0 \ DH) s8 s I sA g	səlitel	S	9 / 09 9 / 09	80	- 0 ju			i ti əm	
SEP Company: Company: Company: Company: Company: Company: SEP Company: Date: Company: Company: Company: Company: Company: SEP Company: Date: Time: RST_110 RTPL RPL RC SEP Company: Date: Time: RST_110 RTPL RPL RC SEP Company: Date: Time: RST_110 RTPL RPL RC SEP Company: Date: Time: RST_110 RTPL REMARKS: SEP Company: Date: Time: RST_110 RTPL RC SEP Company: Date: Time: RST_110 RTPL RC SEP Company: Date: Time: RST_110 RC RC SEP Company: Date: Time: RST_1110 RTL RC SEP	SEP-7 L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	FIELD CODE		AJNIATV 	8	GE			2 		/ 1208	8 / 1208 XT / 1.81	270 / 625 015 GRC	etals Ag As A sliste M	Volatiles Semi Vol	Pesticide	5 Vol. 826 V jm92 5	19 \ S808 1808 s9b	Hd ,225 re Conte			round Tir	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				TAW	SULD SUIL	HNO ³ HCI	HO ^p N 'OS ^z H	NONE ICE	ЭТАД	MTBE	TPH 4	8 H9T 8 HA9	TCLP	TCLP :	RCI TCLP	GC/W8 GC/W8	Pestici	BOD, "			A nruT bloH	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5EP-9 (51	()	520	\times				\times	814/01	01:1						ļ		\times				· · · · · ·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	USI L-d 7.5	2		~				$\frac{1}{2}$	4/4/00	1:40								\times				T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	EP-111 (6W	$\overline{\langle}$		\times				$\frac{X}{X}$	8/4/09	2:20								\times				1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{aligned} \mathcal{E}\mathcal{E}\mathcal{P}-\mathcal{I} & \mathcal{S}\mathcal{W} & \mathcal{K} & $	EP-112 (GW	0		\times				$\times \times$	5/4/09	2:50								×				
$\begin{aligned} \mathcal{E}\mathcal{P}-\mathcal{Z}\mathcal{L}\mathcal{S}\mathcal{W}\mathcal{T}\mathcal{L}\mathcal{R}\mathcal{M}\mathcal{L}\mathcal{R}\mathcal{R}\mathcal{M}\mathcal{M}\mathcal{R}\mathcal{R}\mathcal{M}\mathcal{M}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{M}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{M}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{R}\mathcal{R}R$	SEP-3 LS w) K Wyly 3:3.4 K Wyly 3:3.4 SEP-3 LS w) K Wyly 3:3.5 K K K K SEP-3 CSw) (ms/m4d) K K Wyly 3:3.5 K <td>SEP-11 (SW</td> <td>, </td> <td>Closed Co.</td> <td>\times</td> <td></td> <td></td> <td></td> <td>XX</td> <td>8/4/09</td> <td>3:10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\times</td> <td></td> <td></td> <td></td> <td>·1</td>	SEP-11 (SW	, 	Closed Co.	\times				XX	8/4/09	3:10								\times				·1
$\frac{FD-C}{SEP-3}(Sw)(m_S/m_SA) = \frac{X}{K} = \frac{X}{N} = X$	F.DC. K.M. (11:40) K.M. (11:40) K.M. (11:40) K.M. (11:40) SEP-3 (SW) (m. / m. d.) K.K.M. (11:40) K.K.M. (11:40) K.K.M. (11:40) K.K.M. (11:40) SEP-3 (SW) (m. / m. d.) K.K.M. (11:40) K.K.M. (11:40) K.K.M. (11:40) K.K.M. (11:40) SEP-3 (SW) (m. / m. d.) K.K.M. (11:40) K.K.M. (11:40) K.K.K.K.K.K.K.K.K.K.K.K.K.K.K.K.K.K.K.	5EP-3 [SW]			\leq				X X	5/4/24	3:37								~				
SEP-3 (SW) (ms/msd) V K W/vol 3:05 K W/vol 3:05 K ed by: Company: Date: Time: NST TAP K K K ed by: Company: Date: Time: NST TAP K K K ed by: Company: Date: Time: NST TAP K K K ed by: Company: Date: Time: NST TAP C C K K K ed by: Company: Date: Time: NST TAP C </td <td>SEP-3 (Sw) (ms/ms/d) W k</td> <td>FD-2</td> <td></td> <td></td> <td>\geq</td> <td></td> <td></td> <td></td> <td>$\frac{\times}{\times}$</td> <td>6/4/49</td> <td>11:40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\geq</td> <td></td> <td></td> <td></td> <td>r</td>	SEP-3 (Sw) (ms/ms/d) W k	FD-2			\geq				$\frac{\times}{\times}$	6/4/49	11:40								\geq				r
ed by: Company: Date: Time: Received by: Company: Date: Time: INST TY I Company: Date: Time: INST Company: Date: Ti	ed by:: Company: Date: Time: Received by: Company: Date: Time: INST TY	SEP-3 (SW) (ms/m	<i>A</i>	>	X				X	Py 101	305												
ed by: Company: Date: Time: Received by: Company: Date: Time: NST TY N LAB USE REMARKS: ed by: TCE VB (ray / ray V S M SI 1/L 5, Y 06 COR 7 ° C ONLY A 11 Anal 1, J: J: J d o net in El ed by: Company: Date: Time: NST 7 M A 11 Anal 1, J: J: J d o net in El ed by: Company: Date: Time: NST 7 ONLY A 11 Anal 1, J: J: J d o net in El ed by: Company: Date: Time: NST ° ONLY A 11 Anal 1, J: J: J d o net in El ed by: Company: Date: Time: NST ° ONLY A 11 Anal 1, J: J: J d o net in El ed by: Company: Date: Time: NST ° ONLY A 11 Anal 1, J: J: J d o net in El G ed by: Company: Date: Time: NST ° Dry Weight Basis Required Or On ° Or G G G G G G G G G G G	ed by: Company: Date: Time: Received by: Company: Date: Time: INST TY Company: Date: Time: INST Company: Date: Time: INST Date: Time: Tim																						<u>r</u>
ed by: Company: Date: Time: Received by: Company: Date: Time: INST TY CAB USE REMARKS: Company: Date: Time: Received by: Company: Date: Time: INST A II and I J J J d one in El bd by Company: Date: Time: Received by: Company: Date: Time: INST A II and I J J J d one in El con con construction and by Company: Date: Time: INST A II and I J J J J J J J J J J J J J J J J J J	ed by: Company: Date: Time: Received by: Company: Date: Time: NST TY LAB USE REMARKS: Company: Tree US low by Company: Date: Time: NST TY CONCY All and Ly: Down in CA ed by: Company: Date: Time: Received by: Company: Date: Time: NST max CA N ed by: Company: Date: Time: Received by: Company: Date: Time: INST max CA N ed by: Company: Date: Time: Received by: Company: Date: Time: INST max CA N ed by: Company: Date: Time: Received by: Company: Date: Time: INST max CA N ed by: Company: Date: Time: Received by: Company: Date: Time: A CO N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N family the Needed Basis Required by: Company: Date: Time: INST max CA N N family the Needed Basis Required by: Company: Date: Time: INST max CA N N family the Needed Basis Required by N family the Needed Basis Required by: Con C. C. Carrier # A O N N N family the Needed Basis Required by INST max CA N N N family the Needed Basis Required by N N fam																						
Matrix	Image: Second any: Date: Time: NIT(s, Y06 Control NIT(s, Y06 NIT(s, Y06 Control NIT(s, Y06	led by: Company:	Date:	Time:	Rec	eived by:	Comp	any:	Date	Time:	INST TY OBS 3		LAB	s u s	ш	REM	ARKS:		-		60		1
ied by: Company: Date: Time: Received by: Company: Date: Time: INSTOBSC OBSC CORC Headspace <u>Y IN / NA</u> Dry Weight Basis Required ied by: Company: Date: Time: INST Dry Weight Basis Required OBSC Log-in-Review M & Check If Special Reporting CORC Log-in-Review M & Limits Are Needed	Held by: Date: Time: Received by: Company: Date: Time: INST Inaction Ind by: Company: Date: Time: Inaction Dry Weight Basis Required Ind by: Company: Date: Time: INST Dry Weight Basis Required Ind by: Company: Date: Time: INST Dry Weight Basis Required Ind by: Company: Date: Time: INST Dry Weight Basis Required Ind by: Company: Date: Time: INST Dry Weight Basis Required Ind by: Company: Date: Time: INST Dry Weight Basis Required Ind by: Company: Date: Time: Inaction Dry Weight Basis Required Ind by: Company: Date: Time: Inaction Dry Weight Basis Required Ind by: Company: Date: Inaction Dry Weight Basis Required Ind by: Company: Date: Time: Inaction Ind by: Company: Date: Dry Weight Basis Required Ind by:	Dellar rea a	12 100 (D)			2			21	1102 100	COR 4	°	ō	Z		A	an	درام	505 C	<u>í</u>	2		
led by: Company: Date: Time: Received by: Company: Date: Time: INST DBS C COR C Log-in-Review M&C Check If Special Reporting COR C Log-in-Review M&C Concert Reporting COR C C Log-in-Review M&C COR C C C C C C C C C C C C C C C C C	Index Date: Time: Received by: Company: Date: Time: INST Dry Weight Basis Required Index	etaby an company:	Date:	Time:	Rec	eived by:	Comp	any:	Date	r: Time:	INST OBS COR		ntac(Ö	L N ce <u>Y/N</u>	(NA								
	of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C. C. Carrier # CACOV o Le	ed by: Company:	Date:	Time:	Rec	eived by:	Comp	any:	Date	Time:	INST OBS COR	° °	.og-in-Re	sview N	3	Dry M TRRF Check	eight B Report (If Spec Are Ne	asis Re Requir sial Rep eded	quired ed orting			\Diamond	

6701 Aberdeen Avenue, Suite 9200 East Sunset Road, Suite E5002 Basin Street, Suite A16015 Harris Parkway, Suite 110

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

800 • 378 • 1296 806 • 794 • 1296 888 • 588 • 3443 915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260 aceanalysis.com FAX 806•794•1298 FAX 915•585•4944 FAX 432•689•6313

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX, 79901

Report Date: August 12, 2009

Work Order: 9080637

Project Location:El Paso, TexasProject Name:2009 Split SamplingProject Number:2009 Split Sampling

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	$\mathbf{Description}$	Matrix	Taken	Taken	Received
204915	FD-3 (GW)	water	2009-08-05	06:30	2009-08-05
204916	EP-20 (GW)	water	2009-08-05	07:55	2009-08-05
204917	EP-35 (GW)	water	2009-08-05	08:30	2009-08-05
204918	EP-29 (GW)	water	2009-08-05	09:04	2009-08-05

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety, without written approval of

TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 $\,B\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project 2009 Split Sampling were received by TraceAnalysis, Inc. on 2009-08-05 and assigned to work order 9080637. Samples for work order 9080637 were received intact at a temperature of 8.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$\rm QC$	Analysis
Test	Method	Batch	Date	Batch	Date
Chromium, Hexavalent	SM 3500-Cr B	53198	2009-08-05 at 11:35	62360	2009-08-05 at 11:35

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9080637 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 204915 - FD-3 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexavale	ent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62360		Date Analyzed:	2009-08-05	Analyzed By:	MD
Prep Batch:	53198		Sample Preparation:	2009-08-05	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	Chromium		< 0.0100	m mg/L	1	0.0100

Sample: 204916 - EP-20 (GW)

Laboratory:	El Paso				
Analysis:	Chromium, Hexavalent	Analytical N	Method: SM 3500-Cr	B Prep M	fethod: N/A
QC Batch:	62360	Date Analyz	zed: 2009-08-05	Analyz	ed By: MD
Prep Batch:	53198	Sample Prep	paration: 2009-08-05	Prepar	ed By: JR
		RL			
Parameter	Fla	g Result	Units	Dilution	RL
Hexavalent C	hromium	< 0.0100	m mg/L	1	0.0100

Sample: 204917 - EP-35 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexava	lent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62360		Date Analyzed:	2009-08-05	Analyzed By:	MD
Prep Batch:	53198		Sample Preparation:	2009-08-05	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	$\rm mg/L$	1	0.0100

Sample: 204918 - EP-29 (GW)

Laboratory:	El Paso				
Analysis:	Chromium, Hexavalent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62360	Date Analyzed:	2009-08-05	Analyzed By:	MD
Prep Batch:	53198	Sample Preparation:	2009-08-05	Prepared By:	$_{\rm JR}$

Report Date: August 12, 2009 Split Sampling	2009	Work Order: 9080637 2009 Split Sampling					Page Number: 5 of 6 El Paso, Texas			
Parameter Hexavalent Chromium	Flag		RL Result <0.0100		Units mg/L		Dilutior 1	1		RL 0.0100
Method Blank (1)	QC Batch: 62360									
QC Batch: 62360 Prep Batch: 53198		Date A QC Pre	nalyzed: eparation:	2009-08 : 2009-08	8-05 8-05			Analy Prepa	zed By: red By:	MD MD
Parameter Hayayalant Chromium	Fla	g		MI Rest	DL 1lt		Units			RL
Laboratory Control Sp QC Batch: 62360 Prep Batch: 53198	pike (LCS-1)	Date A QC Pre	nalyzed: eparation:	2009-08 : 2009-08	8-05 8-05			Analy Prepa	zed By: red By:	MD MD
Param	LC Res	S ult	Units	Dil.	Spike Amount	Matr Resu	ix lt	Rec.	! I	Rec. Limit
Hexavalent Chromium Percent recovery is based	0.48 on the spike result.	$\frac{89}{\text{RPD is}}$	mg/L based on	1 the spike	0.500 e and spike du	<0.008	594 result.	98	95.	4 - 105
Param Hexavalent Chromium	LCSD Result 0.483	Units mg/L	Dil.	Spike Amount 0.500	Matrix Result <0.00594	Rec. 97	Rec. Limi 95.4 - 1	t 105	RPD 1	RPD Limit 20
Percent recovery is based Matrix Spike (MS-1)	on the spike result. Spiked Sample: 2	RPD is 04907	based on	the spike	e and spike du	plicate 1	esult.			
QC Batch: 62360 Prep Batch: 53198		Date A QC Pre	nalyzed: eparation:	2009-08 : 2009-08	8-05 8-05			Analy Prepa	zed By: red By:	MD MD
Param	MS Rest	$\frac{1}{100}$	Units	Dil.	Spike Amount	Matr Resu	ix lt	Rec.	I 80	Rec.
Percent recovery is based	on the spike result.	RPD is	based on	the spike	e and spike du	plicate r	esult.	00	00.	1 - 110
Param Hexavalent Chromium	MSD Result 0.488	Units mg/L	Dil. 1.11	Spike Amount 0.556	Matrix Result <0.00659	Rec.	Rec. Limi 80.1 - 1	t 118	RPD	RPD Limit 20
Democrat measurement is hered	on the anile nearly		hazad	the mile	and anile de	nliaata -	lt			

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: August 12, 2009 Split Sampling	2009		Work 9 2009 \$	Page I	Page Number: 6 of 6 El Paso, Texas			
Standard (CCV-1)								
QC Batch: 62360		Dat	e Analyzed:	2009-08-05		Analy	zed By: MD	
			CCVs	CCVs	CCVs	Percent	Dete	
Param	Flag	Units	Conc	Conc	Percent Becovery	Limits	Date Analyzed	
Hexavalent Chromium	1 1005	mg/L	0.500	0.489	98	90 - 110	2009-08-05	
Standard (CCV-2)								
QC Batch: 62360		Dat	te Analyzed:	2009-08-05		Analy	zed By: MD	
			CCVs	CCVs	CCVs	Percent		
			True	Found	Percent	Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Hexavalent Chromium		$\mathrm{mg/L}$	0.500	0.501	100	90 - 110	2009-08-05	

	Suite 180 16		piet	onete n	nt fror	differei) îi əmi	T bnuo	Turn Ard								ドレ		4	\mathbb{N}
/	np Bowie Blvd. West t. Worth, Texas 761 Tel (817) 201-5260 Fax (817) 560-4336	od No.)			27	81		252	WS		·×		 				10 200			
age	808 Can	UEST		·	·····		jue I	-lq ,22 e Cont	BOD, T Moistun							-	と・くみ		uired d rting	
۵.	е Ш 8	REQ				8	809 / 19 808) \	PCB's 8							-	5		sis Requ Required al Repo ded	
	sunset Rd., Suit o, Texas 79922 115) 585-3443 315) 585-4944 38) 588-3443	ANALYSIS			925	520 / 6	8 . 10V 260 / 6 8	esticid Vol. 8 Semi.	GC/WS GC/WS RCI TCLP P							REMARKS:	を二の		Dry Weight Ba TRRP Report Check If Speci Limits Are Nee	
	El Past S El Past S Tel (9 Fax (9	0	6	н өс (14.10	bJ 68	i zA gA s s9litslo	v etatev volatiles v imeš	TCLP S TCLP V							ВШ	~	N/NA	Å.	A
	e A1	0	2.002	0109 g	H 9S q	A Cr Pl	48 Ba C	70 / 02 70 / 02	S8 HA9 9M listoT							ABU	ONL	dspace <u>Y</u>	-in-Review	7000
	treet, Suit exas 797 689-6301 689-6313		(9	xt(C36	ЛНС 002 Е 954	/ 0928 XT / 1 T / 05	O \ DE X1002 805 \ 8	1 1 208 7 1 7 1 7 5 6 7 7 9 5 1 (81EX 1PH 41 191 80											rrier # _/
	02 Basin S Midland, 1 Tel (432) Fax (432			1	1 624	/ 8560	\ 602	1208	TIME	. S	i SS	3	10			INST D	COR &	INST OBS COR	INST OBS COR	Cal
	e 9 50				5.		SAMPLII		JTAO	5/0/106	5/69 07	6709 05	514 01		 	Time:	2560	Time:	Time:	
	enue, Suit as 79424 4-1296 3-1298		2442		+ 70	11	ш		INON	< 8	2	X				te:	15/03	te:	te:	
	erdeen Av bock, Tex I (806) 79 X (806) 79 (800) 378	496	- 2-	1	2	rie:	ERVATIV		ICE N ^g OH	$\widehat{\times}$	Â	×	Ż			 Da	٤.5 ه	Da	Da	C. O. C.
	6701 Ab Lub Te Fa	e#: 834-	× - ×		ct Name:	ler Signati	PRESI		H ³ 20 ⁴ HNO ³ HCI							Company	Analy	Company	Company	se side of
		Phone Phone Fax #	E-mai		Projec	Samp	×	ЭЕ	зглас							p j j j	1	by:	by:	on rever
	mc.		1040			11. and	MATR		AIR SOIL							teceived	3	eceived	eceived	ons listed
	S, Ss. S. Com					+ 6.	Junc	bmA\a	omuloV	200	~	\times	\geq			ne:	09.3	ne: R	ne:	d Conditio
E	IVSi analysi	, i	1 56			N3	୍ <u></u> ୟ	aniati	# CON	~	1	~] F \ 	G S C	Ē	Ē	erms and
2003	NNA @trace			87.												Date:	NED	Date:	Date:	ment to T
806	TaceA email: lab	at, City, Zip)	and lin	re)		uding state):		FIELD CODE	Ŷ	3 694	20 (AU)	35 (94)	19 (Chu)			Company:	at Cilla	Company:	Company:	constitutes agree
rder ID #	Curred	/ Name: ////////////////////////////////////	Person:	o: nt from abov		ocation (incl		erð for húr ú sval gur sælir nær	<u></u>	5 12-	EP-	162-	EP.			shed by:	ÚU Zs	shed by:	shed by:	of samples
LAB O		Compan) Address:	Contact	Invoice tu (If differe	Project #	Project L		LAB #	(LAB US	201915	ЗГ.	je j	9118			Relinqui	I.	Relinqui	Relinqui	Submittal

6701 Aberdeen Avenue, Suite 91200 East Sunset Road, Suite E15002 Basin Street, Suite A116015 Harris Parkway, Suite 110Ft

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

800 • 378 • 1296 806 • 794 • 1296 888 • 588 • 3443 915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260 aceanalysis com FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX, 79901

Report Date: August 12, 2009

Work Order: 9080418

Project Location:El Paso, TexasProject Name:2009 Split SamplingProject Number:2009 Split Sampling

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
\mathbf{Sample}	Description	Matrix	Taken	Taken	Received
204592	EP-110 (GW)	water	2009-08-03	08:00	2009-08-03
204593	EP-126 (GW)	water	2009-08-03	08:55	2009-08-03
204594	EP-129 (GW)	water	2009-08-03	09:41	2009-08-03
204595	EP-94(GW)	water	2009-08-03	10:41	2009-08-03
204596	EP-49(GW)	water	2009-08-03	11:26	2009-08-03

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 $\,B\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project 2009 Split Sampling were received by TraceAnalysis, Inc. on 2009-08-03 and assigned to work order 9080418. Samples for work order 9080418 were received intact at a temperature of 3.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$\rm QC$	Analysis
Test	Method	Batch	Date	Batch	Date
Chromium, Hexavalent	SM 3500-Cr B	53187	2009-08-03 at 14:40	62347	2009-08-03 at 14:40

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9080418 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 204592 - EP-110 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexa	valent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62347		Date Analyzed:	2009-08-03	Analyzed By:	MD
Prep Batch:	53187		Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	Chromium		< 0.0100	m mg/L	1	0.0100

Sample: 204593 - EP-126 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexavalent		Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62347		Date Analyzed:	2009-08-03	Analyzed By:	MD
Prep Batch:	53187		Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$
			RL			
Parameter	\mathbf{Fl}	lag	Result	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	m mg/L	1	0.0100

Sample: 204594 - EP-129 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexav	ralent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62347		Date Analyzed:	2009-08-03	Analyzed By:	MD
Prep Batch:	53187		Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	$\mathrm{mg/L}$	1	0.0100

Sample: 204595 - EP-94(GW)

Laboratory:	El Paso				
Analysis:	Chromium, Hexavalent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62347	Date Analyzed:	2009-08-03	Analyzed By:	MD
Prep Batch:	53187	Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$

Report Date 2009 Split Sa	: August 12 ampling	, 2009		Work C 2009 S	Order: 908 plit Samp	80418 pling		Page Number: 5 of 6 El Paso, Texas			
Parameter	100000	Flag		RL Result		Units		Dilutic	<u>)n</u>		RL
Hexavalent (hromium			< 0.0100		mg/L			1		0.0100
Sample: 20	4596 - EP-	-49(GW)									
Laboratory: Analysis: QC Batch: Prep Batch:	El Paso Chromium 62347 53187	, Hexavalent	Ar Da Sa	nalytical M ate Analyz mple Prep	Method: zed: paration:	SM 3500-Cr 2009-08-03 2009-08-03	В		Prep Analy Prepa	Method: zed By: ared By:	N/A MD JR
				RL							
Parameter	11 .	Flag		Result		Units		Dilutic	n 1		RL
Hexavalent (hromium			0.0200		mg/L			1		0.0100
Method Bl QC Batch: Prep Batch:	ank (1) 62347 53187	QC Batch: 62347	Date A QC Pro	nalyzed:	2009-08 2009-08	8-03 8-03			Analy Prepa	yzed By: ared By:	MD MD
Parameter		Fla	g		MI Resi	DL ult		Units			RL
Hexavalent (hromium				< 0.005	94		mg/L			0.01
Laboratory QC Batch: Prep Batch:	Control S 62347 53187	pike (LCS-1)	Date A QC Pre	nalyzed: eparation:	2009-08 2009-08	8-03 8-03			Analy Prepa	yzed By: ared By:	MD MD
Param	N1 ·	LC Res	S ult	Units	Dil.	Spike Amount	Mat: Resu	rix 1lt	Rec.		Rec.
Hexavalent (hromium	0.50	J1	mg/L	1	0.500	< 0.00	0594	100	95.4	4 - 105
Percent recov	very is based	l on the spike result.	RPD is	based on	the spike	e and spike du	plicate	result.			
Param	1h no mi	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Red Lim	c. lit	RPD	RPD Limit
Hexavalent (nromium	0.498	mg/L	1	0.500	< 0.00594	100	95.4 -	105	1	20
Percent recov	very is based	l on the spike result.	RPD is	based on	the spike	e and spike du	plicate	result .			

Matrix Spike (MS-1) Spiked Sample: 204592

QC Batch: 62347	62347 Date Analyzed						Ana	alyzed By	: MD
Prep Batch: 53187		QC Pr	reparation	: 2009-08	2009-08-03				: MD
	MS	5			${ m Spike}$	Mati	rix		Rec.
Param	Resu	ılt	Units	Dil.	Amount	$\operatorname{Res}\iota$	ılt Re	з.	Limit
Hexavalent Chromium	0.56	5	$\mathrm{mg/L}$	1.11	0.556	< 0.00	659 10	2 80	.1 - 118
Percent recovery is based on the s	pike result.	RPD i	s based or	n the spike	e and spike du	plicate	result .		
	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Hexavalent Chromium	0.578	$\mathrm{mg/L}$	1.11	0.556	< 0.00659	104	80.1 - 118	2	20
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.									

Standard (CCV-1)

QC Batch: 62347	Date A			2009-08-03	Analyzed By: MD		
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hexavalent Chromium		$\mathrm{mg/L}$	0.500	0.498	100	90 - 110	2009-08-03

Standard (CCV-2)

QC Batch:	62347	D		e Analyzed:	2009-08-03		Analyzed By: MD		
				CCVs True	CCVs Found	$\begin{array}{c} \mathrm{CCVs} \\ \mathrm{Percent} \end{array}$	$\operatorname{Percent}$ Recovery	Date	
Param		Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Hexavalent (Chromium		$\mathrm{mg/L}$	0.500	0.506	101	90 - 110	2009-08-03	

	Nest, Suite 180 76116 5260 4336		рлер	nete n	noti jn	differe	ti əm	iT bruorA r I	nuT NoH														
/ of	np Bowie Blvd. \ it. Worth, Texas Tel (817) 2014 Fax (817) 560-	00	(In-	-222	2	. Cr	-00	58 U	(5)	0 ×	0	×	×	\times	\times	~		 	- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2				
age	308 Car	JEST leth					tue	D, TSS, pH sture Conte	IO8											ارو	irred	d rting	
Ĕ	е Ш о	REQ W				8	808 1 \ 60	808 2 808 2 1 6	bes bCI										14		sis Req	Require al Repo ded	
	id., Suite 79922 -3443 -4944 3443	YSIS peci			925	520 / 6 974	9 / 09; 8 .loV	/MS_Vol. 82	'09 '09	_									AKS:		eight Ba	Report I If Speci Are Nee	
	unset R , Texas 15) 585 15) 585 15) 585 15) 585	NAL					se	P Pesticide	LCI LCI										REMA	•	Dry We	TRRP Check Limits	
	East S El Paso Tel (9 Fax (9 1 (88						səlitsi	P Semi Volatiles P Semi Vo													VN/		Â
	200	- S	ا£ //2007	0109 6	Ct BP	Ba Cd	eB ev eA g	A gA sløfeM li A sløfeM 9_	eloT IDT												N/X 90	view	- 55
	nite A1 703 01	-			лнс	T \ 05	9 0 / DI	4 8570 / 62 4 8015 GR	lq⊤ IA9										R S	5 0	feadspac	Log-in-R€	J
	rreet, St axas 79 689–631 689–63		(g	xf(C3	002 E 954	1 X 1 / 9 8560 /	×100€ 205 \	T / 1.814 H	178														rrier #
	asin St and, T (432) x (432)	· ·		1	1 624	1 85e0	709 /	1208 38	TM	25	2	5	3		energe	J		 	STIC S	6 F 8	œ ;	5 S K	Ca
	5002 B Midi Te	1	5 6				LING	э	AIT 2	5 %	0.0	s. X	S S	3	- <u>7</u>	N.S.			N B	S ž đ			
	6 9 T	196/	1 1 1 4	2	1		SAMF	ar,	AG 1.	21212	1/3/07	12/09	136	13/07	2/2/09	149			Time	Time	Time		
	nue, Su s 7942/ -1296 1-1298 1-1298		10)				7.54			Z	XX XX	$\frac{\times}{\sim}$	2		~		 	te:	te:	\ į	à	
ļ	ien Ave k, Texa 06) 794 06) 794 0) 378-	121			N N		OD			λ I	5	A	4	2	$\overline{\times}$	\geq		 	⊳ Dai	a a	\e	1	0
	Aberde ubbocl Tei (8(Fax (8 1 (80			t	0	inter la	SERV	HO VOS	en ² H										ž	:Kur		Ĩ	e of C.
	6701 L		14		Name	r Sigt	PRE	03	NH								_	 	dwo	amp	Canol		se sid
		hone ax #:	-mail:	-	rojeci	ample V									<u> </u>			 		J.			reven
	•						RIX	ndee	ns 		_							 _	i hy		hu hu		ted on
	Ů	8				ł	MAT	יור יור											eceive *	eceive	acoive		ons list
	L L		à Z		>	11.00		NTER	7M > 0	< >/	<u>¢</u>	X	α	<u>×</u>	\times	\times		 	R V				onditio
	sis.co	$ \mathcal{Y} $	9 Ø			13	Jun	omA \ amu	IOV 13	ŭ									Time: // <		Lime		and C
-	analy	, lok	U T			He was	SF		D#				$\overline{\mathbf{A}}$		N. Contraction of the local data	~~~agengadese		 		<u>s</u>			Terms
18	DA		1	2		Į.K					2/11/2	~	Suns,	~	5				Date	Date			nent to
Zo	IAN lab@					X		DE	7	5		3	Š	S S	De l	200			25		Ń		agreer
D8	mail:	Nig.	ĮΟ	3		state):	ĺ	0) Q) <u>,</u> (3	S	S	0	N N	2			mpany				titutes
	je o			6)	-	uding		Ш Ш	~	120	S S	6 10	26	120	6	6%-			S	N OS		5	s cons
#		Stree		n abov		include			and a second	10	1	R	21	0		N			by:	(بن by:			ample
rder II		Name /	erson	o: nt fron		ocatio)	Į.i		41	Ú	N)	N	N V	14	11			ished	uished			tal of s
AB O		idress:	mtact F	voice tr differe	oject #	oject L		LAB #		10%		Ŝ		595	595	5%		- program de la des Versennes - à la séc		telinqu		Zelinqi	Submit
		δ A	ပိ	li 1	4	م				8]						 <u>_</u>	Tax /		ſ		

6701 Aberdeen Avenue, Suite 91200 East Sunset Road, Suite E15002 Basin Street, Suite A116015 Harris Parkway, Suite 110Ft

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

800 • 378 • 1296 806 • 794 • 1296 888 • 588 • 3443 915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260 aceanalysis.com FAX 806•794•1298 FAX 915•585•4944 FAX 432•689•6313

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Jose Ojeda TCEQ Region 6 401 E. Franklin Suite 560 El Paso, TX, 79901

Report Date: August 12, 2009

Work Order: 9080419

Project Location:El Paso, TexasProject Name:2009 Split SamplingProject Number:2009 Split Sampling

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
204597	EP-71 (GW)	water	2009-08-03	13:17	2009-08-03
204598	EP-51 (GW)	water	2009-08-03	13:55	2009-08-03
204599	EP-81 (GW)	water	2009-08-03	14:35	2009-08-03
204600	EP-80 (GW)	water	2009-08-03	14:57	2009-08-03
204601	FD-1	water	2009-08-03	06:00	2009-08-03

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 $\,B\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project 2009 Split Sampling were received by TraceAnalysis, Inc. on 2009-08-03 and assigned to work order 9080419. Samples for work order 9080419 were received intact at a temperature of 3.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$\rm QC$	Analysis
Test	Method	Batch	Date	Batch	Date
Chromium, Hexavalent	SM 3500-Cr B	53189	2009-08-03 at 17:50	62349	2009-08-03 at 17:50

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9080419 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 204597 - EP-71 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hex	avalent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62349		Date Analyzed:	2009-08-03	Analyzed By:	$_{\rm JR}$
Prep Batch:	53189		Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	\mathbf{Result}	Units	Dilution	RL
Hexavalent C	Chromium		< 0.0100	m mg/L	1	0.0100

Sample: 204598 - EP-51 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexavalent		Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62349		Date Analyzed:	2009-08-03	Analyzed By:	$_{\rm JR}$
Prep Batch:	53189		Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$
			RL			
Parameter	\mathbf{F}	lag	Result	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	m mg/L	1	0.0100

Sample: 204599 - EP-81 (GW)

Laboratory:	El Paso					
Analysis:	Chromium, Hexav	alent	Analytical Method:	SM 3500-Cr B $$	Prep Method:	N/A
QC Batch:	62349		Date Analyzed:	2009-08-03	Analyzed By:	$_{\rm JR}$
Prep Batch:	53189		Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Hexavalent C	hromium		< 0.0100	$\mathrm{mg/L}$	1	0.0100

Sample: 204600 - EP-80 (GW)

Laboratory:	El Paso				
Analysis:	Chromium, Hexavalent	Analytical Method:	SM 3500-Cr B	Prep Method:	N/A
QC Batch:	62349	Date Analyzed:	2009-08-03	Analyzed By:	\mathbf{JR}
Prep Batch:	53189	Sample Preparation:	2009-08-03	Prepared By:	$_{\rm JR}$

Report Date: Augu 2009 Split Samplin	st 12, 2009 g			Work 2009	Order: 908 Split Samp	80419 pling			Page 1	Number: El Paso	5 of 6 Texas				
Parameter		Flag		RL Result		Units		Dilutio	n		RL				
Hexavalent Chromi	ım			< 0.0100		m mg/L			1		0.0100				
Sample: 204601 -	FD-1														
Laboratory: El Pa Analysis: Chro: QC Batch: 62349 Prep Batch: 53189	so mium, Hexaval))	ent	A D S	nalytical ate Analy ample Pre	Method: vzed: eparation:	SM 3500-Cr 2009-08-03 2009-08-03	В		Prep M Analyz Prepar	vlethod: zed By: red By:	$_{ m JR}^{ m N/A}$ JR				
				RL											
Parameter		Flag		Result		Units		Dilutio	<u>n</u>		$\frac{\text{RL}}{0.0100}$				
QC Batch: 62349 Prep Batch: 53189 Parameter))	${ m Fla}_i$	Date QC P	Analyzed: reparatio:	2009-0 n: 2009-0 MI Resu	8-03 8-03 DL 1lt		Units	Anal Prep	yzed By ared By:	JR JR RL				
Hexavalent Chromi	ım		-		< 0.005	94		m mg/L		Analyzed By: JR Prepared By: JR RL 0.01 Analyzed By: JR Prepared By: JR					
Laboratory Cont QC Batch: 62349 Prep Batch: 53189	rol Spike (LC))	CS-1)	Date QC P	Analyzed: reparatio:	2009-0 n: 2009-0	8-03 8-03			Anal Prep	yzed By ared By:	JR JR				
Param		LC Res	S 1lt	Units	Dil.	Spike Amount	Matr Resu	ix lt	Rec.	I L	Rec. imit				
Hexavalent Chromi	ım	0.50)3	$\mathrm{mg/L}$	1	0.500	< 0.00	594	101	95.4	4 - 105				
Percent recovery is	based on the s	pike result.	RPD i	s based o	n the spike	e and spike du	plicate 1	result.			0.05				
Param Hexavalent Chromi	ım	LCSD Result 0.505	Units mg/L	Dil. 1	Spike Amount 0.500	Matrix Result <0.00594	Rec.	Rec Lim 95.4 -	e. it 105	RPD 0	RPD Limit 20				
Percent recovery is	based on the s	pike result.	RPD i	s based or	n the spike	e and spike du	olicate i	esult .							

Report Date: August 12, 2009	Work Order: 9080419	Page Number: 6 of 6
2009 Split Sampling	$2009 \; { m Split} \; { m Sampling}$	El Paso, Texas

Matrix Spike (MS-1) Spiked Sample: 204597

QC Batch: Prep Batch:	$62349 \\ 53189$		Date A QC Pr	analyzed: eparation:	2009-08- 2009-08-	.03 .03		An Pre	alyzed B epared B	y: JR y: JR
Param		M	S	Units	Dil	Spike Amount	Mat Res	rix ult Bec		Rec. Limit
Hexavalent C	hromium	0.5	70	mg/L	1.11	0.556	0.0	47 94	. 80	.1 - 118
Percent recov	very is based on the s	spike result.	RPD is	based on [*]	the spike a	and spike d	uplicate	result .		
		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Hexavalent C	hromium	0.567	mg/L	1.11	0.556	0.047	94	80.1 - 118	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (CCV-1)

QC Batch: 62349		Ι	Date Analyzed:	2009-08-03		Anal	yzed By: JR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hexavalent Chromium		$\mathrm{mg/L}$	0.500	0.506	101	90 - 110	2009-08-03

Standard (CCV-2)

QC Batch:	62349			Date Analyzed:	2009-08-03		Anal	yzed By: JR
				CCVs	CCVs Found	CCVs Bergent	Percent	Data
				Irue	round	Percent	Recovery	Date
Param		Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Hexavalent	Chromium		mg/L	0.500	0.505	101	90 - 110	2009-08-03

munomA\emuloV 8 4 3 5 3 5 3 5 3 5 3 5 3 5 1 5 1 5 1 5 1 5	Date: Tr Date: Tr Dat	Jer ID # JO80419 TraceAnalysis IntraceAnalysis email: lab@traceanalysis Introm above Itrom above	Page / of /	Image: Solution 6701 Aberdeen Avenue, Suite 9 5002 Basin Street, Suite A1 200 East Sunset Rd., Suite E 8808 Camp Bowie Blvd. West, Suite 180 Image: Solution Eubbook, Texas 7924 Midland, Texas 79703 El Paso, Texas 7922 Ft. Worth, Texas 7616 Fax (806) 794-1296 Fax (432) 689-6301 Fal (815) 585-3443 Ft. Worth, Texas 7616 Fax (806) 794-1296 Fax (432) 689-6313 Fax (915) 585-3443 Fax (817) 560-4336 .com 1 (808) 586-3443 Fax (817) 560-4336	Phone #: (2) 834 4564 (Circle or Specify Method No.)	7461 (915) 834 145 40 11 1 1 1 1 1 1 1 1 1 1 1 1 1	E-mail:			differe ampler Signature: 224 2270 / 0 224 2270 / 0 224 2270 / 0 224 2270 / 0 2260 / 1 2260 / 1	Int MATRIX MATRI	UomA) ====================================	Hold Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Pesticic Potal Me Pesticic Potal Me Pesticic Potal Me Pesticic Potal Me Pesticic Potal Me Pesticic Potal Me Pesticic Potal Me Pesticic Potal Me Pesticic Potal Me Potal M	X 835/0 1/1 -	200 X + + + + X + X + X + 500 + 500 + 100 + + + + + + + + + + + + + + + +	X X X X X X X X X X X X X X X X X X X	500 X 4 X 4 213J	X X X X X X X X X X X X X X X X X X X	520 X X 8/3/69 61:00			ne: Received by: Company: Date: Time: INST 22 LAB USE REMARKS: DBS 2 0 DNIV PL PARE 5 205 2 5	ne: Received by: Company: Date: Time: INST		ne: Received by: Company: Date: Time: INST	
	Date: Time:	Ger ID # PORONIC TraceAnalysis.com name: TraceAnalysis.com name: Name: Street. Cly. Zip Name FED-11 (Cu) # counter EP-71 (Cu) # counter FED-11 (Cu) # counter FED-28 (Cu) # counter FED-38 (Cu) # counter FED-38 (Cu) # counter Make Time: Make Time: Match S S S S S S S S S S S S S S S S S S S		6701 Aberde Lubbod Fax (8 1 (80	Phone #:	10/2/ 100 (9/5)	E-mail:	and the second of the second sec	Project Name:	Sampler Signature	MATRIX PRESERV		матер 400 400 4003 4003 4003 4003 4003 4003									Received by: Company:	Received by: Company:	,	Received by: Company:	