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Project Overview

 Under this Work Order, NERA used simple prospective cohort simulations to start to 

explore the validity and robustness of common methods for assessing concentration-

response (C-R) relationships between long-term air pollution exposures and mortality risk.

– PM2.5 is used as the illustrative pollutant, but the study could be applicable to any of a range of 

criteria pollutants.

 Primary focus under this Work Order was on reliability of common statistical methods for 

detecting population-wide C-R thresholds in the face of inaccurate observations of 

population-average exposures (“measurement error”).

 Meaningful patterns were difficult to discern in initial simulation runs, requiring confirmation 

by studying several different types of simulations:

– Limiting the cohort to a single age and sex stratum (Men, 60 years old at year 1 of simulation)

– Examining unrealistically “pristine” cohorts (where there are no differences in individual mortality 

outcomes across cities reflecting random manifestations of the shared baseline risk).

– Considering a very wide range of hazard ratios and levels of measurement error.

 Relationships between the detectability estimation of thresholds and measurement error 

have now emerged that are described in this slide deck.
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Key Conclusions

 For the type of measurement error we have simulated, as measurement 

error increases, 

– Ability to detect a “statistically significant” threshold in the C-R function is 

progressively reduced  

– When a threshold is detected, its level is progressively more likely to be 

underestimated.

 Even when a threshold is detected, the slope of the C-R function remains 

underestimated, to a degree that is also increased with increased 

measurement error.

 These distortions hold at policy-relevant parameter values even in a 

relatively non-noisy simulation (i.e., where only variability in addition to the 

assumed measurement error is in actual dates of death of individuals facing 

same mortality risk).  For example:  

– We find poor detectability of a threshold of 9.5 µg/m3 (i.e., at about the mean of 

the PM exposures across all cities) when the hazard ratio is in the range of 1.005 

per µg/m3

– See next slide for details of results of simulations for this case
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Simulation Results for Threshold = 9.5
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2. Overview of the Simulation Method
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Setting Up the Simulated Cohorts

 Large numbers of hypothetical individuals for each city are generated, and their 

survival over time is simulated to create a “cohort” database for statistical study. 

– Results presented here are from cohorts of men aged 60 at the start of the study (for 

purposes of understanding underlying reasons for unusual results)

– Patterns in our results would also hold for cohorts with more varied age & sex mix

 100 cities, each with 20,000 simulated individuals. (2 million total in cohort,    

~900,000 deaths observed after 20 years follow up).

– Assumes cohort first forms in year 2000, is followed for 20 years.

– Baseline mortality based on the US Census life tables for all-cause mortality.  

– “Non-noisy” cohort simulation:

 Same baseline mortality risk is applied in every city

 Same sensitivity to PM is applied to every individual in every city (no variability in C-R)

 As in the real world, actual dates of death of individuals facing same mortality risk can 

vary randomly across cities

 We also studied a set of unrealistically “pristine” cohorts to better understand 

dynamics underlying our findings

– Pristine simulations eliminated even the random variation in actual dates of death across 

cities for a given level of mortality risk – differences in mortality across cities are due to PM 

only

– Results using these “pristine” simulations are presented in sections 7-10 
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PM Exposure Levels

 Except for one analysis presented below, “true” PM in each of 100 

generic cities was assumed to be constant over time.  

– The distribution was consistent with the US-wide distribution from 2000 to 2017 (see 

figure below)

– The mean PM across all cities was approximately 9.3 µg/m3.
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The Concentration-Response Function

 The “true” PM level in each city is used to alter the observed survival 

outcomes in the cohort according to an assumed “true” hazard ratio 

(HR)

– For example, a hazard ratio of 1.005 means that for every µg/m3 of true PM2.5 in a 

given city, we multiply the baseline mortality probability of each individual in that city 

by 1.005.

– We assume risk is a function of total PM2.5 mass, with no differences due to mix of 

PM2.5 constituents.

 The C-R functions we focused on in the Work Order have well-defined, 

population-wide thresholds, such that PM below the threshold has no 

effect on mortality, and PM above the threshold has a linear effect as 

before.

 We ran simulations for a wide range of true C-Rs:

– Three alternative “true” threshold levels: 7 µg/m3, 8.5 µg/m3, and 9.5 µg/m3.

– Five alternative “true” HRs above the threshold:  1.0025, 1.005, 1.01, 1.02, 1.05
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Example of True Relative Risk 
Function With a Threshold
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A Note on 
Hazard Ratios versus Relative Risks 

 Note that hazard ratios (HR) and relative risks (RR) are not the same thing.  

Hazard ratios are instantaneous risk, relative risk is cumulative.

 The RR observed between two populations will usually be lower than the HR 

experienced by one of those populations.

– For example, for our illustrative cohort of 60 year old men, a HR of 1.05, 

comparing two cities with a 1 unit difference in PM2.5, leads to a RR of about 1.03 

after 20 years in this population.

 We suspect that RR and HR may have become inappropriately conflated in 

the long-term risk epidemiology literature.  

– The estimate of the β coefficient in a Cox PH model is an estimate of the HR, not 

of the RR.  However, authors of Cox PH studies are describing their β coefficient 

estimates as “relative risks”  (See for example Pope et al. 2002, Table 2)

– The risk analysis literature computes the “attributable fraction” of deaths, which is 

a function of RR, not the HR in a survival curve analysis.

 If true, the risk analysis profession has been overestimating long-term 

premature deaths from the results of Cox PH studies. 

– This possibility needs further study to confirm or refute.
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Application of Measurement Error

 We studied impacts of a type of measurement error that is interpreted as the potential that 

the PM exposure assigned to a group of people (“city” in this case) deviates from the true 

population-weighted average experienced by that group of people.  

– This is consistent with the concept of “classical” error

 “Observed” PM measures for each city were simulated by adding a random draw to the 

“true” PM value. 

– The random draws came from a truncated normal with bounds at +/- 4 µg/m3. 

– We considered impacts of standard deviations of 1, 2, and 4.

 For each SD, 100 sets of observed PM values were generated, and then used for all 

simulations with the same assumed true C-R parameters. 
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Example of Relative Risk Evidence 
When Observed PM Contains 
Measurement Error
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3. Tests for Thresholds With Cox 
Proportional Hazard Models Under 
Measurement Error
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Detecting Thresholds with the Cox 
Proportional Hazard Tests: 
Summary of Results

 With moderate amounts of measurement error (sd = 2), 

and a threshold higher than the mean PM level (9.5), 

there was only a 50% chance of detecting the threshold 

at HR=1.005.

 The ability to detect the threshold increases as the 

threshold increases.

 The ability to detect the threshold increases as the 

hazard ratio increases.

 The ability to detect the threshold decreases as 

measurement error increases.
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Cox Proportional Hazard 
Threshold Tests

 This test searches for thresholds using a “grid search” 

type method.

1. Examine a range of alternative threshold estimates incremented 

by 1 µg/m3 around the true threshold, over a range of ± 4 µg/m3.

2. For each potential threshold, subtract it from the PM measure to 

create a new PM measure that should capture a E-R curve with 

that threshold.

3. Estimate a Cox proportional hazards model with the new PM 

measure.

4. Select the best fitting model across the range of thresholds as 

the “threshold model.”

5. Compare the fit of the threshold model to the fit of a no-

threshold model.
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Testing for the Statistical 
Significance of the Threshold

 We compare the fit of the threshold model to the fit of a 

no-threshold model.

 The test statistic is 2 times the difference in log-

likelihoods between the threshold model and the no-

threshold model (2 × ΔLL).  Larger differences indicate a 

relatively better fit for the threshold model.

 Three standards have been proposed for concluding the 

threshold model is a better fit. Conclude the threshold 

model is a better fit if 2 × ΔLL is greater than:

 2 

 The natural log of the number of deaths, or ln(events).

 The natural log of the number of individuals, or ln(n).
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The Specific Threshold Tests 
Undertaken

 We examined all 45 combinations of:

– Hazard ratios: 1.0025, 1.005, 1.01, 1.02, and 1.05.

– Thresholds: 7, 8.5, and 9.5.

– Measurement error: 1, 2, and 4 standard deviations.

 We ran 100 simulations for each test, each with a different 

set of values for observed PM.  The same set of 100 

observed PM values was used for all simulations involving 

the same level of measurement error. 
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Threshold Test Results

 The results of these threshold tests across 100 

simulations are presented in the 9 plots below:

– One plot for each combination of threshold and standard for 

significance.

– The vertical axis indicates the number of simulations (out of 100) 

in which we would conclude there is a threshold.

– The horizontal axis indicates different hazard ratios.

– Each line indicates a different level of measurement error.

 Points to keep in mind:

– Due to random variation across cohorts, results may not be 

monotonically increasing or decreasing when the relationship is 

weak.

– Only about 15% of cities have PM less than 7.
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Threshold = 7,  
2 × ΔLL > 2
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Threshold = 7, 
2 × ΔLL > ln(nevents)
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Threshold = 7, 
2 × ΔLL > ln(n)
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Threshold = 8.5, 
2 × ΔLL > 2
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Threshold = 8.5, 
2 × ΔLL > ln(nevents)
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Threshold = 8.5, 
2 × ΔLL > ln(n)
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Threshold = 9.5, 
2 × ΔLL > 2
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Threshold = 9.5, 
2 × ΔLL > ln(nevents)
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Threshold = 9.5, 
2 × ΔLL > ln(n)
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4. Estimated Threshold Locations With 
Cox Proportional Hazard Models Under 
Measurement Error
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Estimating Threshold Location with 
the Cox Proportional Hazard Tests: 
Summary of Results

 With moderate amounts of measurement error (sd = 2), 

HR=1.005, and a threshold higher than the mean PM 

level (9.5), over 75% of the estimated threshold values 

were too low.

 Underestimates of the threshold increase in magnitude 

and frequency as measurement error increases.

 Underestimates of the threshold decrease in magnitude 

and frequency as the threshold increases.

 Underestimates of the threshold increase in magnitude 

and frequency as the hazard ratio increases.
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Threshold Estimation Results

 The plots below are boxplots.  

– The thick black line is the median estimate.

– The colored box indicates the interquartile range (the middle 50% 

of the estimates).

– The “whiskers” indicate the complete range of the data, excluding 

outliers.

– The dots are outliers (defined as further than 1.5 times the 

interquartile range from the end of the interquartile range). 
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Estimated Thresholds 
When True Threshold = 7
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Estimated Thresholds 
When True Threshold = 8.5
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Estimated Thresholds 
When True Threshold = 9.5



5. Estimated Hazard Ratios With Cox 
Proportional Hazard Models Under 
Measurement Error
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Estimating Hazard Ratios with the 
Cox Proportional Hazard Tests: 
Summary of Results

 With moderate amounts of measurement error (sd = 2), 

and a threshold higher than the mean PM level (9.5), all 

of the estimated hazard ratios were too low when the true 

HR=1.005, with the median estimate approximately half 

of the true HR. 

 The hazard ratios become more attenuated as 

measurement error increases.

 The hazard ratios become more attenuated as the 

threshold increases.
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.0025
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.005
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.01
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.02
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.05



6. Using Nonparametric Regressions to 
Examine Mortality Data for Thresholds
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Nonparametric Regression 
Techniques

 Splines fit piecewise polynomial functions between a set 

of “knots.”

– Knots are usually set at the quantiles of the data (e.g., 3 knots 

would be at the 25th, 50th, and 75th quantiles of PM).

– More knots = more “wiggly” lines.

 Loess runs a series of regressions on a “span” of data 

(e.g., 20%) around each data point.  The loess line 

connects the predicted points.

– Data further from the point being predicted gets a lower weight.

– Smaller spans = more “wiggly” lines.

 Splines and loess can be made to resemble each other 

arbitrarily closely.  We examine splines below.
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Examples of Splines
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Fitting Splines to the Simulated Data

 We fit splines to the PM mortality data. 

 The dependent variable is relative risk, with relative risk 

defined as 1 for the lowest level of PM.  We estimate the 

spline on the increase in risk (we subtracted 1 from RR –

this makes no different to model fit).

 Our splines had 4 knots.  There is no agreed upon 

standard in the literature – fit is as much “art” as science.

 Some literature has tested for nonlinearity or thresholds 

by testing a spline against a linear regression.  The 

properties of these tests aren’t clear, especially since the 

fit of the spline depends in part of the judgement of the 

researcher.
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Examples of Splines in the 
Simulated Data

 Below we plot all splines estimated across 100 

simulations for a threshold of 9.5 and a hazard ratio of 

1.005, for varying levels of measurement error.

 As measurement error increases, the increasing 

attenuation of the hazard ratio and the decreasing ability 

to detect the threshold are clear. 

 Note the increases in risk are positive for most cities 

because a few low PM cities had relatively low mortality.  

Nevertheless, the threshold shape is still apparent at 

sd=1.
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Splines Across 100 Simulations, 
Threshold = 9.5, HR = 1.005, SD=1
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Splines Across 100 Simulations, 
Threshold = 9.5, HR = 1.005, SD=2
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Splines Across 100 Simulations, 
Threshold = 9.5, HR = 1.005, SD=4



7. Tests for Thresholds With Cox 
Proportional Hazard Models Under 
Measurement Error, No Random 
Variation Across Cities



51

Threshold = 7,  
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Threshold = 7, 
2 × ΔLL > ln(nevents)
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Threshold = 7, 
2 × ΔLL > ln(n)
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Threshold = 8.5, 
2 × ΔLL > 2
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Threshold = 8.5, 
2 × ΔLL > ln(nevents)
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Threshold = 8.5, 
2 × ΔLL > ln(n)
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Threshold = 9.5, 
2 × ΔLL > 2

0

10

20

30

40

50

60

70

80

90

100

1.0025 1.005 1.01 1.02 1.05

C
o

u
n

t 
o

f 
d

if
fL

*2
 >

 2

Hazard Ratio

σ = 1 σ = 2 σ = 4



58

Threshold = 9.5, 
2 × ΔLL > ln(nevents)
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Threshold = 9.5, 
2 × ΔLL > ln(n)
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8. Estimated Threshold Locations With 
Cox Proportional Hazard Models Under 
Measurement Error , No Random 
Variation Across Cities
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Estimated Thresholds 
When True Threshold = 7
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Estimated Thresholds 
When True Threshold = 8.5
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Estimated Thresholds 
When True Threshold = 9.5



9. Estimated Hazard Ratios With Cox 
Proportional Hazard Models Under 
Measurement Error , No Random 
Variation Across Cities
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.0025
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.005
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.01



68

Estimated Hazard Ratios 
When the True Hazard Ratio is 1.02
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Estimated Hazard Ratios 
When the True Hazard Ratio is 1.05



10. Using Nonparametric Regressions 
to Examine Mortality Data for 
Thresholds, No Random Variation 
Across Cities
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Splines Across 100 Simulations, 
Threshold = 9.5, HR = 1.005, SD=1
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Splines Across 100 Simulations, 
Threshold = 9.5, HR = 1.005, SD=2
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Splines Across 100 Simulations, 
Threshold = 9.5, HR = 1.005, SD=4



11. Estimated Hazard Ratio Using a 
“Snapshot” of PM From a Single Year 
When True PM Trends Downward Over 
Time



75

Variation in PM Over Time in 20 US 
Cities

 “True” PM in each city was assumed to trend downward 

over 20 years.

 Given mortality in year 20, the estimated relationship 

between mortality and PM will depend on which year of PM 

data is used in the Cox proportional hazards model.
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Effect of Using “Snapshot” of PM
Concentration in Given Year

 We use a simulated cohort of 60 year old men for 20 cities, 

each with 100,000 identical people (2 million total 

observations).  

 “True” PM in each city for each year was based on the 

previous slide

– Cohort mortality outcomes were simulated assuming a linear/no 

threshold true C-R relationship

– The true HR was assumed to be 1.005

 We estimated two Cox proportional hazards models, one 

using the PM measures from year 1, and one using the PM 

measures from year 20

 Using year 1: HR = 1.0023

 Using year 20: HR = 1.0047
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