Local Gains in Wetlands

- Losses in emergent wetlands in some areas were partly offset by gains in emergent wetlands in other areas. Conversion of uplands to emergent wetlands, in part due to subsidence, accounted for an increase of about 21,000 acres. Additional increases in emergent wetlands resulted from the spread of emergent vegetation over areas previously mapped as intertidal flats.

- Although newly established wetlands provide some measure of areal offset to net wetland loss, there is not necessarily a corresponding offset in terms of functional value. Some researchers suggest that several years of development may be necessary for newly formed marshes to reach overall functional equivalency to older marshes (Minello and Zimmerman, 1992). It is possible that they may never become totally equivalent.

- The declining rate of loss of wetlands over the more recent period (1979–1989), coupled with local gains in wetland habitats in some areas, provide a cautionary measure of hope that planning and proper management of wetlands can help mitigate the trend toward net loss of these valuable resources in the Galveston Bay system.

ACKNOWLEDGMENTS

This study was sponsored by the Galveston Bay National Estuary Program, funded by the U.S. Environmental Protection Agency under assistance agreement with the Texas Water Commission.

Numerous people were involved in various phases of this study. The authors would like to recognize Todd Mecklenborg of Geonix Martel who was the primary aerial photo interpreter for all wetland and upland habitats delineated on 1989 photographs. Other personnel from the U.S. Fish and Wildlife Service that had major roles in photointerpretation and field checking 1989 delineations on photographs and draft maps, included Larry Handley (National Wetlands Research Center) and Curtis Carley and Warren Haggenbuck (National Wetlands Inventory). Others involved in fieldwork included Bill White and Jeff Paine (Bureau of Economic Geology), Warren Pulich (Texas Parks and Wildlife Department), and Melvin Fuhrmann (USFWS—National Wetlands Research Center). Field support from local USFWS Wildlife Refuges was provided by Jim Neaville and Ed Jackson of the Anahuac National Wildlife Refuge, and Ron Bisbee, Mike Lange, and Richard Antonette of the Brazoria National Wildlife Refuge.

The authors wish to thank the following scientists who reviewed the draft report and provided helpful comments that improved the quality of the final report: Donald Moore (National Marine Fisheries Service and GBNEP designated reviewer), Thomas Calnan (General Land Office), Albert Green (Texas Parks and Wildlife Department), Bill Jackson (National Marine Fisheries Service), Geoffrey Matthews (National Marine Fisheries Service), Kenneth Teague (Environmental Protection Agency), Eddie Seidensticker (Soil Conservation Service), James Webb (Texas A&M University at Galveston), and Roger Zimmerman (National Marine Fisheries Service). The authors also recognize Russell Kiesling (Research Administrator of GBNEP) for his help with the Executive Summary.

Special thanks go to personnel of the Bureau of Economic Geology who helped in the preparation of this report. Assistance with figures and photographs was provided by Richard L. Dillon, Chief Cartographer, and David Stephens. Paste-up of figures was completed by Jamie H. Coggin and Margaret L. Evans. Editing was by Kitty Challstrom and Amanda R. Masterson, and final word processing was by Susan Lloyd.

128
REFERENCES


Chabreck, R. H., 1972, Vegetation, water, and soil characteristics of the Louisiana coastal region: Louisiana State University and Agricultural and Mechanical College Bulletin 664, 72 pp.


Gould, F. W., 1975, Texas plants—a checklist and ecological summary: Texas Agricultural Experiment Station, MP-585/Revised, College Station, Texas, 121 pp.


Kreitler, C. W., 1977, Faulting and land subsidence from ground-water and hydrocarbon production, Houston–Galveston, Texas: The University of Texas at Austin, Bureau of Economic Geology Research Notes 8, 22 pp.


McAtee, J. W., 1976, Autecological aspects of Gulf cordgrass [Spartina spartinae (Trin.) Hitchc.] communities of the Texas coastal prairie, in Range ecological and management research on the coastal prairie, progress report of cooperative studies: Sinton, Welder Wildlife Foundation and Texas A&M University, Texas Agricultural Experiment Station, p. 2–12.


Texas Forest Service, 1963, Forest trees of Texas, how to know them: College Station, Texas A&M University Bulletin 20, 156 pp.

Thomas, G. W. 1975, Texas plants—an ecological summary, in Gould, F. W., ed., Texas plants—a checklist and ecological summary: College Station, Texas Agricultural Experiment Station MP-585/Revised, p. 7–14.


White, W. A., and Calnan, T. R., 1990, Sedimentation and historical changes in fluvial-deltaic wetlands along the Texas Gulf Coast with emphasis on the Colorado and Trinity River deltas: The University of Texas at Austin, Bureau of Economic Geology, final report prepared for the Texas Parks and Wildlife Department, 124 pp., 7 appendices.


