Evaluation of EPA’s Modeled Attainment Test Software (MATS) for Modeled Future Design Value (DV_F) Calculation in HGB

Jim Smith
Southeast Texas Photochemical Modeling Technical Committee
February 18, 2009
CAMx Ozone Modeling in SIP Development

The Big Picture

- **Base Case**: Day-specific meteorology and emissions; replicate what actually happened
- **Baseline Case**: Day-specific meteorology and typical emissions; used in RRF to predict future design values
- **Future Base Case**: Apply future growth + on-the-books controls to estimate future ozone
- **Control Strategy Testing**: Determine control strategies that will effectively reduce ozone
- **SIP**: Document modeling procedures
Background

• EPA developed Model Attainment Test Software (MATS) for calculation of future design values for attainment demonstrations.
• Prior to the release of the software, TCEQ modelers developed in-house procedures to implement the EPA guidance for performing this calculation.
• Some stakeholders and modeling researchers contend TCEQ should be using MATS because
 – EPA has devoted considerable resources in providing the software for states to use
 – Other states are using MATS
 – There appear to be some minor inconsistencies between MATS’ and TCEQ’s calculations.
Background (Continued)

• The question - Is TCEQ justified in continuing to use its own PERL script after evaluation of MATS?

• To address this question, we used MATS to process output from the 1c baseline and the CS02 2018 future case model runs, and compared MATS’ D_{VF} values with our own.
DV_F and RRF Primer

- **Regulatory Design Value (DV_R):**
 - Average of three consecutive years’ fourth highest 8-hour ozone concentrations measured at an individual monitor
 - Highest DV_R in an area determines attainment status, classification

- **Baseline Design Value (DV_B):**
 - Average of three years’ DV_R values, as per EPA Guidance
 - Basis for modeled attainment test

- **Relative Response Factor (RRF):**
 - A ratio estimating the model’s response at a monitoring site
 - Based on modeled baseline and future ozone concentrations in a neighborhood near the monitor

- **Future Design Value (DV_F):**
 - The product of the RRF and the DV_B: \(DV_F = RRF \times DV_B \)
 - Used to demonstrate attainment of the ozone NAAQS
Baseline Design Value Example

- To calculate the DV_B for 2005 at Deer Park, we need the three DV_R values which include 2005:
 - The 2005 DV_R is the average 4th highest ozone concentration for 2003, 2004, and 2005. For Deer Park,
 The 2005 DV_R is $(113 + 97 + 92) / 3 = 100$ (truncated)
 The 2006 DV_R is $(97 + 92 + 101) / 3 = 96$ (truncated)
 The 2007 DV_R is $(92 + 101 + 86) / 3 = 93$

- The DV_B for 2005 is then the average of the three DV_R values: $(100 + 96 + 93) / 3 = 96.3$
2005 Base Year

Average of 2005 DV, 2006 DV, and 2007 DV - weights the 2005 4th high 8-hour ozone value as most influential
How RRF is calculated at a monitor

- Select a suitable area surrounding the monitor, usually 3X3, 5X5, or 7X7 grid cells, depending on grid cell size.
- For each day modeled, find the maximum modeled baseline 8-hour ozone concentration in the selected area.
- Select days to use in the RRF calculation. EPA recommended method is:
 1. Select days with max modeled baseline 8-hour ozone concentration ≥ a threshold value T_1 (default 85 ppb)
 2. If < 10 days selected in Step 1, then reduce threshold progressively until either:
 a) Ten days are selected, or
 b) a lower threshold T_2 (default 70 ppb) is reached.
 c) If T_2 is reached before 10 days are selected for a monitor, Guidance recommends states discuss with regional office.
How RRF is calculated at a monitor (cont.)

- After days are selected, the baseline and future case modeled ozone concentrations* are averaged across days for each monitor.

\[
\text{Average modeled future case concentration} = \frac{1}{n} \sum_{i=1}^{n} \text{Concentration}_i
\]

- RRF = \[
\frac{\text{Average modeled future case concentration}}{\text{Average modeled baseline concentration}}
\]

* maximum baseline and future case modeled concentrations within nearby grid cells
Modeled Attainment Test Software (MATS)

• MATS is provided by EPA to help states use model output in their attainment demonstrations
 – Performs RRF and DV$_F$ calculations
 – Performs an “unmonitored area analysis” (see Dave Westenbarger’s SIM presentation from March 20, 2008).

• MATS is a Windows-based interactive program which supports a limited number of choices in performing RRF/DV$_F$ calculations:
 – Lets you choose the size of the area around the monitor from which to pick 8-hour ozone maximum concentration
 – Lets you try different thresholds for selecting days (T$_1$ and T$_2$).
MATS

Choose Desired Output

Scenario Name: MATS Test

Point Estimates
Forecast
- Temporarily adjust ozone levels at monitors

Spatial Field
Baseline
- Interpolate monitor data to spatial field
- Interpolate gradient-adjusted monitor data to spatial field
POSTOCCUS
- Interpolate monitor data to spatial field; Temporarily adjust ozone levels
- Interpolate gradient-adjusted monitor data to spatial field; Temporarily adjust

Calculate DVF Values
Monitor locations (lat/long) and \(D_{V_R} \) values for at least three years

Modeled ozone concentrations by grid cell, with lat/long coordinates

Use maximum concentration in 7X7 grid cell neighborhood
Use 2005-2007 DVₚ values to calculate DVₜ
MATS

Thresholds T1 and T2 for selecting days to use in RRF calculation (set to 80 & 0 for test)
<table>
<thead>
<tr>
<th>Monitor*</th>
<th>MATS 2005 DVb</th>
<th>RRf</th>
<th>DVf</th>
<th>TCEQ 2005 DVb</th>
<th>RRf</th>
<th>DVf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danciger</td>
<td>81.5</td>
<td>0.8504</td>
<td>69.3</td>
<td>81.5</td>
<td>0.85</td>
<td>69.305</td>
</tr>
<tr>
<td>Houston Aldine</td>
<td>88</td>
<td>0.8835</td>
<td>77.7</td>
<td>88</td>
<td>0.884</td>
<td>77.751</td>
</tr>
<tr>
<td>Channelview</td>
<td>85.7</td>
<td>0.9391</td>
<td>80.4</td>
<td>85.67</td>
<td>0.939</td>
<td>80.45</td>
</tr>
<tr>
<td>Northwest Harris Co.</td>
<td>91.7</td>
<td>0.844</td>
<td>77.3</td>
<td>91.67</td>
<td>0.841</td>
<td>77.105</td>
</tr>
<tr>
<td>Houston Bayland Park</td>
<td>100.7</td>
<td>0.8619</td>
<td>86.7</td>
<td>100.67</td>
<td>0.862</td>
<td>86.768</td>
</tr>
<tr>
<td>Houston Monroe</td>
<td>95.3</td>
<td>0.8944</td>
<td>85.2</td>
<td>95.33</td>
<td>0.894</td>
<td>85.261</td>
</tr>
<tr>
<td>Wallisville Road</td>
<td>94</td>
<td>0.9254</td>
<td>86.9</td>
<td>94</td>
<td>0.925</td>
<td>86.983</td>
</tr>
<tr>
<td>HRM-3</td>
<td>88</td>
<td>0.9332</td>
<td>82.1</td>
<td>88</td>
<td>0.933</td>
<td>82.124</td>
</tr>
<tr>
<td>Lynchburg Ferry</td>
<td>89</td>
<td>0.9482</td>
<td>84.3</td>
<td>89</td>
<td>0.947</td>
<td>84.252</td>
</tr>
<tr>
<td>Houston East</td>
<td>82.7</td>
<td>0.9223</td>
<td>76.2</td>
<td>82.67</td>
<td>0.922</td>
<td>76.217</td>
</tr>
<tr>
<td>Clinton</td>
<td>86.3</td>
<td>0.9252</td>
<td>79.8</td>
<td>86.33</td>
<td>0.925</td>
<td>79.869</td>
</tr>
<tr>
<td>Hou.DeerPrk</td>
<td>96.3</td>
<td>0.921</td>
<td>88.6</td>
<td>96.33</td>
<td>0.921</td>
<td>88.716</td>
</tr>
<tr>
<td>Conroe Relocated</td>
<td>85</td>
<td>0.8554</td>
<td>72.7</td>
<td>85</td>
<td>0.855</td>
<td>72.706</td>
</tr>
</tbody>
</table>

* Selected HGB Monitors
Why the Difference?

• While MATS and PERL script results are very close, the difference of .003 in the RRF at NW Harris County is too big to attribute solely to round-off error.
• Further investigation showed MATS used 22 days in its RRF calculation, while PERL script used 21 (21 is correct). MATS actually showed other monitors in the wrong grid cells.
Calculation Differences

<table>
<thead>
<tr>
<th>Monitor</th>
<th>MATS</th>
<th>TCEQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2005 DVb</td>
<td>RRf</td>
</tr>
<tr>
<td>Danciger</td>
<td>81.5</td>
<td>0.8504</td>
</tr>
<tr>
<td>Houston Aldine</td>
<td>88</td>
<td>0.8835</td>
</tr>
<tr>
<td>Channelview</td>
<td>85.7</td>
<td>0.9391</td>
</tr>
<tr>
<td>Northwest Harris Co.</td>
<td>91.7</td>
<td>0.844</td>
</tr>
<tr>
<td>Houston Bayland Park</td>
<td>100.7</td>
<td>0.8619</td>
</tr>
<tr>
<td>Houston Monroe</td>
<td>95.3</td>
<td>0.8944</td>
</tr>
<tr>
<td>Wallisville Road</td>
<td>94</td>
<td>0.9254</td>
</tr>
<tr>
<td>HRM-3</td>
<td>88</td>
<td>0.9332</td>
</tr>
<tr>
<td>Lynchburg Ferry</td>
<td>89</td>
<td>0.9482</td>
</tr>
<tr>
<td>Houston East</td>
<td>82.7</td>
<td>0.9223</td>
</tr>
<tr>
<td>Clinton</td>
<td>86.3</td>
<td>0.9252</td>
</tr>
<tr>
<td>Hou.DeerPrk</td>
<td>96.3</td>
<td>0.921</td>
</tr>
<tr>
<td>Conroe Relocated</td>
<td>85</td>
<td>0.8554</td>
</tr>
</tbody>
</table>
Analysis and Possible Explanation

• Since MATS is a “Black Box”, it’s difficult to know for sure why the RRF/DVF calculations differ subtly from TCEQ’s.
• Best guess is that discrepancy is due to using different map projections:
 – We conduct our modeling on a Lambert Conformal Grid, but
 – MATS requires input in Latitude/Longitude.
• Since the map projections are tilted a few degrees with respect to each other, it seems likely that some monitors might “move” when converting from LCP to Lat/Long, causing different sets of model output to be used in MATS’ calculations.
MATS Advantages

- MATS is easy to use and runs quickly.
- It is EPA’s preferred tool for performing the unmonitored area analysis.
- MATS threshold values can be easily manipulated to test various combinations of values.
MATS Disadvantages

- MATS is Windows-based and cannot easily be incorporated into our LINUX-based runstream; it has to be run separately on a Windows-based PC.
- MATS requires input in latitude and longitude which means extra processing of model output.
- MATS is not set up to handle baseline modeling for multiple years (2005 and 2006 in our case). It had to be “tricked” to work for us.
- MATS is a “black box” – it’s impossible to know what it’s really doing without some serious detective work.
- MATS gives close (but not exact) approximations of the true RRF and DV_F values.