Application of satellite observations to ozone attainment planning in Texas: Update on NASA project

Daniel Cohan
SETPMTC Meeting
December 16, 2010
Project Team

RICE

DANIEL COHAN (PI)
DR. XUE XIAO
WEI TANG

UAHuntsville

ARASTOO POUR-BIAZAR

Funding: NASA (Earth Sciences for Decision-Making in Gulf of Mexico Region) ROSES grant (pending)
Ozone Photochemical Modeling

Ozone and its sensitivity to ΔEmissions

Could satellite-based NO$_x$ and photolysis inputs improve ozone modeling??
Project Objectives

- GOES cloud data to improve photolysis rates
- OMI NO$_2$ columns and other data to create top-down NO$_x$ inventory via inverse modeling
- CAMx-HDDM to assess how satellite-derived inputs influence ozone-precursor response in Texas SIP modeling episodes
 - Seek stakeholder input on how to target these analyses to inform decision-making
Approach

1. Photolysis Rates assimilated using GOES data
2. NOx Emissions inverted from OMI and TexAQS-II data
3. Model how revised inputs affect ozone responsiveness metrics
4. Provide results to TCEQ and stakeholders for upcoming attainment planning
Motivation: Misplacement of clouds by meteorology models

Figure 1. MM5 predicted and satellite observed cloud fields for (a) 24 August 2000, 2100 UT, and (b) 28 August, 1900 UT.

Pour-Biazar et al., JGR, 2007
Motivation: Impact of satellite-based clouds on NOx & O3 concentrations

Figure 7. Largest differences in (a) NOx and (b) O3 between assimilation and control simulations (assim-control) for the entire period of study covering from 0000 UT, 24 August 2000, to 0000 UT, 1 September 2000.
Motivation: Influence of Photolysis Rates on Ozone-NOx Sensitivity

Fig. 5. Sensitivity of ozone to Houston anthropogenic NOx emissions, if the rate of all photolysis reactions is 30% smaller (L) or larger (R) than in base case, for June 21 (top) and June 23 (bottom). Contours show O₃ > 85 ppb in each case.
Motivation: Influence of NO\textsubscript{x} inventory on O3 sensitivity to NOx

- O3 sens to NOx under a 50% smaller NOx inventory
- O3 sens to NOx under a 50% larger NOx inventory

Xiao et al., JGR 2010
Motivation: Influence of NO$_x$ inventory on O$_3$-precursor response

O$_3$ Sens to NOx as Function of Baseline ENOx
(Harris County average, 9/1/2006, 3pm)

Xiao et al., JGR 2010
Approach: GOES-based photolysis rates

- Derive transmissivity fields based on GOES data (cloud albedo & cloud top pressure)
- Use original MM5-CAMx photolysis rates when satellite data unavailable
- Compute adjusted photolysis rates in CAMx-TUVRM
GOES-based photolysis rates in CAMx

GOES-CAMx INTERFACE

Cloud transmissivity (calculated from satellite retrieved cloud albedo), cloud top pressure, and cloud fraction are prepared for input to MM5CAMx

\[tr_{cld} = 1 - (alb_{cld} + abs_{cld}) \]

MODIFIED MM5CAMx

GOES retrievals replaces MM5 cloud information being passed to CAMx. Cloud fraction, transmissivity, cloud base and top heights are used to calculate cloud transmissivity to be passed to CAMx.

READINP in CAMx

In subroutine READINP, clear sky photolysis rates will be adjusted for cloud cover based on GOES cloud fraction and cloud transmissivity information.

\[
J_{below} = J_{clear}[1 + cfrac(1.6tr \cos(\theta) - 1)] \\
J_{above} = J_{clear}[1 + cfrac((1-tr) \cos(\theta))]
\]

Interpolated in between.

Cloud Base According to Lifting Condensation Level

\[
T_c = B \ln \left[\frac{A \varepsilon}{wp_0 \left(\frac{T_o}{T_c} \right)^{1/k}} \right]
\]
Limitations of satellite-based photolysis rates

• Missing data at some times/locations
• Inconsistency between photolysis rates and other cloud properties (wet deposition, cloud processing)
Approach: NOx inverse modeling

1. Baseline SIP modeling inputs from TCEQ
2. Photolysis rates assimilated using GOES data
3. NO₂ column densities (OMI satellite retrievals)
4. NO₂ observations (aircraft & surface monitors)
5. Simulated NO & NO₂ concentrations and their sensitivities to emissions
6. Convert NO₂ column densities
7. Kalman Filter Optimal Estimator
8. Updated Emission Inventory \(E_{n+1} \)
9. \(|E_{n+1} - E_n| < \delta \) ?
10. Final Emission Inventory
Approach: NOx Inverse Modeling

• Similar to Napelenok et al (ACP, 2008) Kalman filter inversion, except:
 – Use data from newer, higher-resolution OMI instead of SCIAMACHY
 – Incorporate other observations (including TexAQS2 field campaign) into inversions
3-D measurements of air pollutants

OMI satellite

NOAA R/V vessel

NOAA P-3 aircraft

NO2 monitors
Ozone Monitoring Instrument (OMI)

- NO₂ spectral range (405-465 nm)
- Over-pass time: 13:45 local time (North America)
- Daily global coverage
- Spatial resolution: 13km × 24km (nadir-view point)
- Products: OMI_DP, OMI_ST, OMI_DP_GC (Lamsal et al., 2010, JGR)

Source: OMI Guide 2009
Challenges in NOx Inversions

• How to “weight” different data sources
• How to define source regions and categories
 – Invert emissions in every cell?
 – Retain spatial patterns of bottom-up inventory?
• Comparing 3D gridded model results with satellite column pixels
• Poor model performance in upper troposphere
 – See next slide
Challenge: Upper Tropospheric NO\textsubscript{x} \n
- Poor model performance for upper tropospheric NO\textsubscript{2}
 - Important in rural areas
- Will use Lightning Detection Network data with Kaynak et al. scheme for lightning NO
 - Places NO where cloud-to-ground flashes observed
 - Scales to include cloud-to-cloud
 - Vertical profile from Pickering
- CB-6 may address CB05 NO\textsubscript{x} chemistry problems noted by Henderson et al (2010)

Fig. 7. Vertical distribution of NO\textsubscript{2} concentrations observed by NASA INTEX DC-8 flights over the eastern United States compared to model predictions matched in space and time. Error bars

Napelenok et al, 2008
Assessing the impact of satellite-based inputs

- Run CAMx-HDDM with original and satellite-based inputs to compare O$_3$ concentrations & sensitivities to emissions in TCEQ episodes
 - August-September 2006 for HGB/TexAQS2
 - June 2006 for DFW

- Model future year (2018) to explore impacts on relative reduction factors
Progress to Date

• Obtained both episodes from TCEQ
• Validated CAMx results on Rice system
 – Updated to CAMx v. 5.20; awaiting v. 5.30
 – Working on 3-D CAMx-HDDM outputs
• Obtained DOMINO-GC OMI NO₂ data from Dalhousie U. (L. Lamsal & R. Martin)
 – Mapped onto CAMx domain
 – Scattering weights to compare CAMx vs. OMI
• Obtained Lightning Detection Network data
DOMINO-GC data mapped onto TCEQ 12-km domain

September 2006 average
Units: 10^{15} molecules/cm2
Linkage to Texas AQRP Grant

• “Factors influencing ozone-precursor response in Texas attainment modeling”
 – Grant to Rice U. (PI D. Cohan) and ENVIRON (B. Koo and G. Yarwood), 10/2010 – 8/2011
 – Will consider various structural and parametric uncertainties in same CAMx SIP episodes
 • Alternate inputs: Satellite-based photolysis rates and inverse NO$_x$, along with alternate boundary conditions, biogenic VOC, and % changes in parameters
 • Bayesian approaches will use observations to assess the relative likelihood of each case
 • Probability distribution of O3-emissions sensitivities
Comments and Feedback

- How to define NO$_x$ source regions and categories?
- Control scenarios for sensitivity modeling?
- Suggested modifications or extensions?
Contact Information

Daniel Cohan, Ph.D.
Assistant Professor
Dept. of Civil & Environmental Engineering
Rice University
713-348-5129
cohan@rice.edu
http://cohan.rice.edu