Continuous measurements of O_3 and NO_2 at two heights in Houston, TX

James Flynn1, Barry Lefer1, Angus Sun1, Jochen Stutz2

1University of Houston

2UCLA
Background

- Monthly reports of the five H-NET sites include comparisons of 1:00 pm hourly O₃ to nearby CAMS
- Moody Tower comparison shows good correlation with nearby sites but often is higher than nearby CAMS (slope ±10-15%)
- Possibilities for the observed differences included calibration issues, O₃ titration, O₃ deposition, or differences in O₃ production
- In 2011 & 2012 TCEQ funded additional measurements of NO & NO₂ at the Moody Tower and O₃, CO, NO, and NO₂ at a surface site on the UH campus with the goal of examining Oₓ (O₃ + NO₂) differences between the two heights
Site descriptions

- Moody Tower – Roof of 18-story dorm, sample height ~70m, daily zero/span, biweekly multipoint checks
 - Ozone – TEI 49C (± 3%)
 - CO – TEI 48i-TLE, hourly autozero (± 4%)
 - NO/NO\textsubscript{x} – TEI 42i-TL with AQD blue light photolytic converter (± 5%)

- Launch Trailer – converted truck trailer, sample height ~5m, daily zero/span, weekly multipoint checks, \textit{jNO}_2, PBL lidar
 - Ozone – TEI 49C (± 3%)
 - CO – TEI 48i-TLE, hourly autozero (± 4%)
 - NO – TEI 42c, hourly autozero (± 5%)
 - NO\textsubscript{x} – TEI 42c-TL with AQD blue light photolytic converter, hourly autozero (± 5%)
Measurement period

- Data examined was collected between 10/7-12/12/2011 (66 days) and 9/17-11/13/2012 (57 days).
- Both periods were dominated by southeasterly winds however 2012 saw more northeasterly winds than in 2011.
2012 1:00 pm O$_3$ at UH

- Moody Tower and Launch Trailer 1:00 pm hourly O$_3$ during the 2012 period examined agrees very well, 2011 yielded similar results.

- Sites are close together and daytime vertical mixing minimizes the afternoon differences.

![Graph showing correlation between Moody Tower 1 pm O$_3$ and Launch Trailer 1 pm O$_3$.]
O₃ vs. Oₓ

• Site to site variability in O₃ may be due in part to localized titration, however Oₓ (O₃ + NO₂) is more likely to be preserved and allows for better comparability.
\(l \) = length of light path
\(C \) = concentration of trace gases
O$_3$ and O$_x$

- Long-path DOAS measurements by UCLA between Moody Tower and Downtown (~4-5 km) at three heights show good agreement in O$_x$ during 2006 & 2009.
High/Low O₃ days in 2012

High days 1h O₃ > 70 ppbv (8 days)
Low days 1h O₃ < 40 ppbv (7 days)

Agreement during midday but significant differences during the overnight hours, up to 20 ppbv on high O₃ days.

Titration of O₃ by NO from surface emissions causes higher NO₂ at the surface when vertical mixing is weak.

Nighttime differences in Oₓ on high O₃ days are reduced by ~50% compared to differences in O₃. Agreement is good throughout low O₃ days.
Overnight differences in O_x tend to occur on nights when boundary layer heights approach the height of the Moody Tower, indicating that O_3 from the residual layer may be sampled.

Differences in O_x on some mornings seem to be driven by a loss of NO$_2$ at the Launch Trailer which occurs with strong plumes from the northeast before sunrise, possibly from mobile sources ($CO/NO_x \sim 5.3 \pm 0.05$). (Parrish, D. D. (2006), Critical evaluation of US on-road vehicle emission inventories, *Atmospheric Environment*, 40(13), 2288-2300.)
MT vs. other CAMS fall 2011

- Left graph: $R^2 = 0.87$
 - Offset: -0.65 ± 1.8
 - Slope: 0.83 ± 0.04

- Middle graph: $R^2 = 0.81$
 - Offset: -5.1 ± 2.5
 - Slope: 0.87 ± 0.05

- Right graph: $R^2 = 0.83$
 - Offset: -2.2 ± 2.8
 - Slope: 1.03 ± 0.06
There are times when we would not expect O_3 to agree between sites, especially at high O_3.

In general Moody Tower agreement is better with most urban Houston sites where we saw larger differences before.
Conclusions

• Differences in measured O$_3$ and O$_x$ are smallest during the day when vertical mixing is strongest, largest at night and early AM.

• Titration of O$_3$ to NO$_2$ accounts for ~50% of the nighttime difference between O$_3$ measured at 5 and 70m on the UH campus.

• O$_3$ dry deposition is a likely candidate for remainder of nighttime O$_x$ difference.

• Long-path DOAS data show that O$_x$ is conserved over a broader area and range of altitudes.

• Significant differences seen between Moody Tower and some Houston area O$_3$ monitors during 2010 and 2011. Improved agreement with troublesome monitors observed in 2012.

Future Work

• Preparing to measure through the whole O$_3$ season in 2013 and add NO$_y$ measurements to both heights.

• Calculate O$_x$ at nearby CAMS sites and compare to results from UH campus.

• Measure/calculate O$_3$ dry deposition near surface.
I would like to thank TCEQ for their funding.

These results have not been subject to the TCEQ’s scientific and policy review and therefore do not necessarily reflect the views of the Agency and no official endorsement should be inferred.