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PROJECT SUMMARY 
 
Realistic representation of surface characteristics in a mesoscale model is critically 
important to the production of meteorological inputs used for air quality modeling. 
Improving the accuracy of soil moisture prediction should improve simulations of 
meteorological processes, particularly the exchange of heat, momentum, and moisture 
between the surface and atmosphere. Indirect assimilation of soil moisture and soil 
temperature is available in the Pleim and Xiu land-surface model (PX LSM) to overcome 
difficulties in the initialization and long-term tracking evolution of soil moisture and soil 
temperature fields in the mesoscale model. The continuous Newtonian relaxation method 
is used for the adjustment of soil moisture/temperature according to the errors in modeled 
2-m temperature (2m T) and relative humidity (2m RH) and the gridded analyses of 
surface-based observations. The WRF modeling system is the next generation mesoscale 
meteorological model that has started to be used widely in operational and research 
weather simulations and is the meteorological driver for air quality studies. We need to 
develop a localized WRF modeling system that inherits and further improves the current 
MM5 versions used by TCEQ and others for Texas air quality studies and projects.  
 
Simulations utilizing WRF-ARW with PX LSM were performed for May 31 – July 2, 
2006 over eastern and central Texas with and without soil nudging to investigate the 
response of indirect assimilation in PX LSM. The analysis shows a significant reduction 
of 2-m temperature bias in the simulation with soil nudging. A persistent nighttime cold 
bias exists in the two sensitivity runs that utilize the Noah LSM and the 5-layer thermal 
diffusion model, both coupled with the YSU PBL scheme and Monin-Obukhov similarity 
theory for surface scheme and no soil nudging. Among all simulations, 10-m wind speed 
errors were minimized by nudging U/V components of wind throughout the layers. The 
over-prediction of nighttime wind was still persistent even though the nudging attempted 
to overcome the limitation of simulating low wind speeds. 
 
When compared with in-situ SCAN data, the case with soil nudging better simulates 
nighttime deep soil temperatures than the case without soil nudging. Better simulation of 
deep soil moisture by indirect assimilation in PX LSM gives better 2-m temperature 
estimation in vegetated areas. A lack of direct soil moisture measurements makes the 
verification difficult in the Texas region. Satellite-based soil moisture data from AMSE-E 
onboard AQUA was used for comparisons with model and SCAN data. The soil moisture 
distribution in the model matched the pattern detected by the satellite, but the magnitudes 
were bigger in the modeled field than in the satellite-based one. There was a large 
discrepancy shown in the comparison of AMSE-E and SCAN data. Satellite-based soil 
moisture measurements show smaller variations compared with in-situ observations 
(SCAN) and the model results.  
 
To incorporate the newly processed land-use/land cover data in 30-m resolution for the 
Texas region in the WRF modeling system, an IDL tool was developed to handle the raw 
dataset and map the NLCD LULC types to USGS indices originally used in WRF model. 
Since the raw LULC dataset is huge, the IDL tool was designed to directly access the sub 



regions in the original file for generating dominant and fractional values of land-use types 
for model cells. Based on the approaches in Byun et al. 2007 and 2008, the mapping to 
the corresponding USGS LULC types was done for updating the fractional land use in the 
WRF input. The vegetation fraction update was also tested but not implemented in the 
WRF system since a significant discrepancy was shown compared with the original WRF 
vegetation fraction input, which is based on several years’ AVHRR observation 
climatology. Further investigation will be needed for proper mapping of NLCD to USGS 
indices, vegetation fraction information update and the eventual impact of LULC changes 
in the land surface model.  
 
 
.    
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1. Introduction 
All meteorological processes (wind flow, planetary boundary layer development, 
temperature inversions, cloud formation, latent and sensible heat fluxes, etc) are 
influenced by the planet’s land-surface characteristics.  The TCEQ has improved many 
land-surface characteristic inputs to meteorological models, but soil moisture data has 
been lacking.  Improving the accuracy of soil moisture prediction should improve 
simulations of meteorological processes, particularly the exchange of heat, momentum, 
and moisture between the surface and atmosphere. Due to difficulties in the initialization 
and long-term tracking evolution of soil moisture and soil temperature in the mesoscale 
model, data assimilation is needed for the dynamical adjustment of those fields. The 
current technique available in the Advanced Weather Research and Forecasting (WRF) 
model (ARW, Skamarock et al., 2005) for improving soil moisture simulation uses the 
indirect assimilation of 2-meter temperature and relative humidity biases, rather than 
direct temperature and humidity measurements (Pleim and Xiu, 2003).  Pleim and 
Gilliam (2009) extended this scheme to nudge the deep soil temperature prediction with 
2-meter temperature biases at night.  For eastern Texas, a lack of direct soil moisture 
measurements makes verification of this method difficult.  Satellite-based soil moisture 
data can provide an alternative source for model evaluation and model input.  
 
In previous years (2007 & 2008) while the PI and his research scientists were with the 
University of Houston (UH), the team developed a method to incorporate high resolution 
satellite observation-based land use and land cover (LULC) data from the University of 
Texas Center for Space Research (UT-CSR) for the Mesoscale Model Version 5 (MM5) 
modeling of the East Texas area.  To develop the localized MM5 for the eastern Texas 
region, we improved key model inputs characterizing the land surface conditions such as 
land-sea masks, vegetation fractions, and clay subsoil types to be consistent with the 
highly accurate LANDSAT-based LULC data.  As NCAR has announced no further 
development of the Fifth-Generation PSU/NCAR Mesoscale Model (MM5), it would be 
necessary to prepare for the WRF model as the meteorological driver for air quality 
modeling.  The WRF modeling system is a next generation mesoscale meteorological 
model that has started to be used widely in operational and research weather simulations.  
We need to develop a localized WRF modeling system that inherits and further improves 
the current MM5 versions used by TCEQ and others for the Texas air quality studies and 
projects. 
 
The primary goal of this project is to improve meteorological model simulations used for 
the State Implementation Plan, computer modeling studies, the rules of the TCEQ, the 
Clean Air Act, and other ad-hoc requirements. The main objectives of this project are (1) 
to investigate the indirect assimilation techniques described by Pleim and Xiu (2003) and 
Pleim and Gilliam (2009), (2) to assess the WRF model performance with various land-
surface parameterizations with standard meteorological measurements as well as satellite-
based and in-situ soil moisture data for Eastern Texas, and (3) to implement and evaluate 
the high resolution land-use and land cover data in the WRF model.  
  



2. Overview of Pleim-Xiu land surface model and indirect soil 
moisture/temperature assimilation scheme 

 
The Pleim-Xiu land surface model (hereafter PX LSM; Xiu and Pleim 2001; Pleim and 
Xiu 2003) was designed according to the Interactions between Soil, Biosphere and 
Atmosphere (ISBA) model (Noilhan and Planton, 1989). The land surface model’s 
evaporation parameterization is crucial to realistically simulating sensible and latent heat 
flux partitioning. The PX LSM is a two-layer soil model considering a 1-cm surface layer 
(shallow layer) and a 1-m root zone layer (deep layer).  There are three pathways for 
evaporation: soil-surface evaporation, vegetative evapotranspiration and wet canopies. In 
highly vegetated areas where evapotranspiration dominate surface moisture flux, the 
canopy resistance calculation is the key factor in accurate simulation of 
evapotranspiration. The PX LSM considers the shading effects of other leaves in dense 
canopies for deriving the canopy resistance from leaf area index and leaf-scale stomatal 
resistance, which is parameterized according to root-zone soil moisture, air temperature 
and humidity, photosynthetically active radiation (PAR), and several vegetative-type 
dependent variables. The 1-cm layer temperature is computed from the residual of 
surface energy balance, in which the soil heat flux is parameterized as a restoring force 
according to the deep soil temperature with a 10-day timescale.  
 
Based on the fractional land use data of each grid cell, the PX LSM computes surface and 
vegetative parameters such as roughness length, leaf area index, vegetation coverage, 
albedo and minimum stomatal resistance. The most common land use data for current 
mesoscale meteorological models is the U.S. Geological Survey (USGS) Land Use-Land 
Cover (LULC) system (Anderson et al. 1976) composed of 24 vegetation/land use types 
which are based on 1-km Advanced Very High Resolution Radiometer data spanning 
April 1992 – March 1993. For soil parameters including saturation, field capacity and 
wilting point, the grid cell aggregation approach, which is similar to that used for 
vegetative parameters, is based on fractional soil texture data taken from the USDA State 
Soil Geographic Database in 1-km resolution.  
 
The need for dynamic adjustment of soil moisture fields has been addressed to overcome 
difficulties in the initialization and tracking of long-term evolution of soil moisture fields 
in regional meteorological modeling (Chen and Dudia 2001 and Pleim and Xiu 2003). 
Direct assimilation of observations works effectively with a widespread distribution of 
data points however current in-situ measurements of soil moisture and temperature 
cannot provide. Satellite-based measurements give large coverage spatially but not at root 
depths. The indirect soil moisture and deep soil temperature nudging accompanies the PX 
LSM available in the WRF-ARW model, followed by the indirect assimilation scheme 
described in Bouttier et al. 1993 a & b. It uses continuous Newtonian relaxation (so-
called nudging, Stauffer and Seaman, 1990) method for the adjustment of surface and 
root-zone soil moisture according to the errors in modeled 2-m temperature (2m T) and 
relative humidity (2m RH) and the gridded analyses of surface-based observations (Pleim 
and Xiu 2003):  



 

∂wg

∂t
= α1 Tobs − Tm( )+ α2 RHobs − RHm( ) 

 

∂w2

∂t
= β1 Tobs − Tm( )+ β2 RHobs − RHm( ) 

where 

 

wg  = surface layer (1-cm layer) soil moisture 
           

 

w2 = root-zone layer (1-m layer) soil moisture 
           

 

α1,  α2  = surface nudging coefficients acting on non-vegetated areas 
            

 

β1,  β2  = root-zone nudging coefficients acting on vegetated areas 
The erroneous partitioning of latent and sensible heat fluxes, which is due to an 
unrealistic representation of soil moisture in the land surface model, may result in the 
inaccurate prediction of near-surface temperature and humidity. This is especially true in 
areas with strong coupling between soil moisture and near-surface temperature and 
humidity through evaporation and evapotranspiration. Thus, instead of statistical 
analyses, the nudging coefficients are defined depending on model parameters such as 
soil texture type, surface insolation, aerodynamic resistance, leaf area index and canopy 
resistance. All of these parameters are indicators of air-surface coupling and ensure that 
nudging only occurs when and where it should be done. Since the deep soil moisture w2

 

 
has a long timescale and dominates the partitioning of surface fluxes in vegetated areas, 
the root-zone nudging coefficients were set larger than the surface layer coefficients so 
that the nudging scheme more deeply affected the deep soil moisture. According to the 
study presented in Pleim and Xiu 2003, the deep-soil nudging coefficient for temperature 
( ) is strongly correlated with insolation in the range of 0.002 – 0.005 at grass sites and 
0.002 – 0.01 for forest sites. There is basically no effect on the soil moisture due to the 
nighttime temperature bias.  

The soil moisture nudging works well in heavily vegetated areas during growing seasons, 
such as the summer period over Eastern/Southeastern US, for reducing bias in modeled 
temperature and relative humidity (Pleim and Xiu 2003). However, it is not effective in 
more arid and sparsely vegetated areas since evapotranspiration is not a major component 
of the surface energy balance. Thus, the deep soil temperature adjustment according to 
the errors in the model and the gridded analyses of 2-m temperature was introduced in the 
PX LSM (Pleim and Gilliam, 2009):  

 

 

∂T2

∂t
= −NT 2 Tm − Tobs( )

 

 

NT 2 = G 1− 5
Rg
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NT 2 ≥ 0.0  

 where 

 

Rg  = solar radiation absorbed by ground 
            

 

G =1×10−5  
 
The nudging equation shows that assimilation only depends on 2-m temperature bias.  
The nudging strength is a constant at night, ramping down to zero as solar radiation 
approaches 274 w/m2. Surface forcing weakens and the restorative term dominates, 
which causes ground and near-surface temperature to be influenced mostly by deep soil 
temperature. Thus, the deep soil temperature nudging scheme is mainly for improving 
nighttime temperature bias.   



3. DATA 
The project required preparation and maintenance of various datasets for the model 
simulations and evaluations. The routine meteorological measurements including surface 
and upper levels served for the objective analysis process, assimilation during the run and 
the analysis of the results. Satellite-based and in-situ soil moisture/temperature data were 
collected and used for comparisons. For LULC inputs used in the WRF system, the 
TAMU LULC data covering the Texas area were processed and implemented for the 
simulations.  
 

3.1 Satellite-based soil moisture data (AMSR-E) 

There are various sources of the soil moisture measurements from satellite.  For example, 
the potential sources of soil moisture data are as follows (instrument name/satellite 
name): 

• AMSR-E/Aqua 
(http://nsidc.org/data/docs/daac/ae_land3_l3_soil_moisture.gd.html) 

• Microwave Imager (TMI) / Tropical Rainfall Measuring Mission (TRMM)  
(http://disc.gsfc.nasa.gov/fieldexp/SGP99/trmm-tmi.shtml) 

• Scanning Multi-channel Microwave Radiometer (SMMR) / Nimbus-7 
(http://nsidc.org/data/docs/daac/smmr_instrument.gd.html) 

• Thermatic Mapper (TM) / Landsat 
(http://www.tucson.ars.ag.gov/salsa/research/research_1997/AMS_Posters/soi
l_moisture_evaluation/soil_moisture_evaluation.html) 

• ASTER (Advanced Spaceborne Thermal Emission and Reflection 
Radiometer) / Terra 
(http://gsa.confex.com/gsa/2006SC/finalprogram/abstract_99903.htm) 

 
For this task, ARL has investigated potential sources of satellite-based and in-situ 
measurement of soil moisture data for applicability to WRF model evaluation in the 
Houston and Dallas-Fort Worth (DFW) areas.  ARL reviewed characteristics of available 
soil moisture dataset(s), such as horizontal resolution, sub-surface resolution, temporal 
resolution, data availability (2005 and later), and ease of input to WRF (including data 
assimilation).  After reviewing related products from Earth-observing satellites, ARL has 
chosen the soil moisture data from AMSR-E, onboard the AQUA satellite.   
 
The Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) 
instrument on the NASA Earth Observing System (EOS) Aqua satellite provides global 
passive microwave measurements of terrestrial, oceanic, and atmospheric variables, 
including soil moisture and other land surface variables. The gridded Level-3 land 
surface product (AE_Land3) includes daily measurements of surface soil moisture and 
vegetation/roughness water content interpretive information. Data are stored in HDF-
EOS format, and are available from 19 June 2002 to the present via FTP. Data is gridded 
in Equal-Area Scalable Earth (EASE-Grid) cell spacing. 
 
This gridded Level-3 land surface product (AE_Land3) includes daily measurements of 
surface soil moisture and vegetation/roughness water content interpretive information, as 

http://nsidc.org/data/docs/daac/ae_land3_l3_soil_moisture.gd.html�
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well as brightness temperatures and quality control variables. Ancillary data include time, 
geo-location, and quality assessment. Input brightness temperature data, corresponding to 
a 56-km mean spatial resolution, are re-sampled to a global cylindrical 25 km Equal-Area 
Scalable Earth Grid (EASE-Grid) cell spacing. An example of AMSR-E/Aqua soil 
moisture data for June 1, 2006 is given in Figure 3.1. The raw data, shown in Figure 3.1a, 
has global coverage on the global cylindrical 25 km Equal-Area Scalable Earth Grid 
(EASE-Grid), and Figure 3.1b shows same data gridded onto the CONUS 36 km domain. 
IDL tools are prepared for easy access of HDF-EOF files. 
 
(a) 

 
(b) 

 
Figure 3.1 Example of AMSR-E/Aqua Soil moisture data for (a) raw data with global coverage, and 
(b) data regridded onto CONUS 36 km domain. 



Key features of AMSR-E/ Aqua data are summarized below: 
• 12-km mean spatial resolution for frequencies 36.5 GHz and 89 GHz, re-sampled 

to a global cylindrical 25 km Equal-Area Scalable Earth Grid (EASE-Grid) cell 
spacing 

• Global cylindrical EASE-Grid projections (586 rows x 1383 columns) 
• Soil moisture at 10.7 GHz resolution (g cm-3

• 1-cm depth soil moisture representation 
) 

• Onboard Aqua satellite (1:30 pm local time) 
 

3.2 In-situ soil moisture and soil temperature measurements 

Soil Climate Analysis Network (SCAN) is operated by Natural Resources Conservation 
Service (NRCS) and provides in-situ soil moisture and soil temperature measurements as 
well as regular meteorological observations including temperature, relative humidity, 
pressure, wind speed and wind direction. Data is available for public download through 
the SCAN website (http://www.wcc.nrcs.usda.gov/scan/) in ASCII format. An IDL 
program has been created to download the monthly data for all stations. Figure 3.2 shows 
the location of SCAN stations in the targeted WRF simulation domain. The soil moisture 
and soil temperature measurements are done in five layers 2”, 4”, 8”, 20” and 40” below 
ground.  
 

 
Figure 3.2 The location of SCAN stations available during the study period. 
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3.3 Meteorological measurement data 

For performing the four-dimensional data assimilation (i.e., nudging) process during the 
meteorological simulation and modeling evaluations afterward, observations of 
temperature, moisture, wind speed and wind direction are required. The Meteorological 
Assimilation Data Ingest System (MADIS) from the National Oceanic and Atmospheric 
Administration (NOAA) provides a good platform to get observations. Through the 
MADIS’s ftp site, we are able to access the archives of surface datasets, sounding data 
and profiler data. The data is stored in NETCDF format. IDL programs were created to 
extract the data from the files by specifying date and domain. The meteorological 
parameters in these datasets used for this study include temperature, dew point 
temperature, wind speed and wind direction. Within the Texas domain, the Continuous 
Air Monitoring Stations (CAMS) operated by TCEQ are available for use. The 
simulation was beneficial for getting the meteorological measurements of CAMS 
included for the objective analysis and nudging.   
 

 
Figure 3.3 MADIS surface observation distribution during study period. 



 
Figure 3.4 MADIS upper level observation distribution during study period. Red: sounding, light 
blue: NOAA profiler network, and blue: cooperative agency profilers.  

 

3.4 Land use and land cover data 

a. Preparation of the new LULC data 
As an optional test for the sensitivity of the land surface model, a newly processed LULC 
for the Texas region has been included in the simulation. ARL has received 30m Texas 
lulc data from Clint Harper (TCEQ) and Jared Stukey (Texas A&M).  The data was in 
TIFF (geotiff) format, and has a dimension of 62903x45606. Its total pixel number is 
around 3 billion points, and the file size is around 3 Gb.  Figure 3.5 shows geographical 
coverage of the new data set. It covers all of Texas and some parts of Mexico. Geotiff 
information inside the file also shows that the raw data is stored in “Albers Conic Equal 
Area” (hereafter, “Albers”) map projection. 
 
The data has 26 land types (excluding “unclassified”=0). Index 1= “open water,” and 
urban locations are classified into four types: 2=“Developed – open space”, 3= 
“Developed – Low intensity”, 4= “Developed – Medium intensity” and 5= “Developed – 
High intensity”. The right panel in Figure 3.5 shows the complete list of available indices 
in the raw data. The distribution of number counts for each category is also shown in 
Figure 3.6. These indices are different from the USGS 24 lulc types, so mapping of these 
indices onto the USGS 24 types will be a necessary step for model-ready outputs. 
 



In order to handle this huge data set, we have developed an IDL tool which enables direct 
access of sub regions from the original TIFF file. This tool is designed to generate 
dominant or fractional values of land types for each cell of any given domain. Figure 3.7 
shows examples of TAMU LULC raw data (30-m resolution, left) and the processed 
results for ‘dominant’ lulc type (right).   
 
The IDL tool performs the following algorithm: 
 Check target domain and define necessary range in lat/lon 
 Convert domain lat/lon to “Albers ” map projection 
 Calculate pixel locations for necessary sub region 
 Do direct access and read sub region lulc values 
 Get geospatial information (in “Albers”) for sub region 
 Convert geo-information to lat/lon and then to Lambert Conformal Conic (LCC) 

map projection 
 Calculate cell index for each data point 
 Choose ‘dominant’ types for each cell 

 
The IDL routine is designed to minimize memory use and to maximize processing speed. 
As reading the whole data set into the machine’s memory could cause serious memory 
failure, we added an option to separate lulc processing into several parts to limit 
maximum usage of memory. Users with enough memory can run the routine with one 
process, which provides fastest performance. For machines with lesser memory, the 
routine can process the lulc data part by part, and then later assemble outputs 
automatically without any memory failure. 
 
Similar to the National Land Use Data (LNCD) there are 26 original land use types, 
which need to be remapped onto the 24 USGS types. ARL has utilized the same mapping 
table used for UTCSR 30 m LULC data processing (Byun et al., 2007 & 2008). TABLE 
3.1 shows the mapping table from 26 NLCD lulc types to 24 USGS lulc types. It should 
be noted that the 4 types of ‘developed regions’ are classified into ‘Urban’, ‘Residential’, 
and ‘Grass’ in USGS (TAMU02 “Developed Open Space”  USGS07 “Grass”, 
TAMU03 “Developed Low Intensity”  USGS28 “Residential”, TAMU04 “Developed 
Medium Intensity”  USGS28 “Residential”, and TAMU05 “Developed High Intensity” 
 USGS01 “Urban”). The ‘residential’ area is not defined in the original USGS 24 
types, but added for better representation of the areas that are ‘developed but with many 
trees and vegetation’. Figure 3.8 shows selected examples of TAMU 30m lulc data 
processing before mapping to USGS lulc types with spatial distributions of pixel counts 
(upper left), water fraction (upper right), and the four ‘developed’ types: developed open 
space (middle left), developed low intensity (middle right), developed medium intensity 
(lower left), and developed high intensity (lower right). 
 
  



 
Figure 3.5 TAMU Texas 30-m data. Location coverage (left) and list of indices (right). 

 
Figure 3.6 Distributions of pixel counts for TAMU Texas 30-m LULC data.  List of indices are shown 
in Figure 3.5. 

 
Figure 3.7 Example of TAMU Texas LULC processing. Raw data (left) and dominant lulc (right) are 
shown. 



 

 

 
Figure 3.8 Examples of TAMU 30 m lulc data processing (before mapping to USGS types). 
Distributions for (a) total pixels, (b) water fraction, (c) developed open space, (d) developed low 
intensity, (e) developed medium intensity, and (f) developed high intensity. 

  



b. Issues in LULC data processing 
In the 30-m LULC data processing, we basically tried to follow similar approaches done 
for UTCSR lulc processing (Byun et al., 2007 & 2008), but two approaches that were 
tested were eventually discarded. First, we did not use TFS2000 data for additional 
updates of urban fraction because it is a very out-dated data set and covers only eight 
Houston counties. It could have worked for the previous study which focused only on the 
Houston-Galveston Area (HGA), but was not used in the new simulation for better 
consistency with other urban areas like Dallas and San Antonio. 
 
Second, vegetation fraction update was also tested and not used in the new simulation. In 
the previous study, vegetation fraction was updated with a calculation based on UTCSR 
lulc data. This calculation was done based on the descriptions of LNCD’s impervious 
surfaces fractions in each land use category. For example, in the description of NLCD 2, 
“Developed Open Space”, the fraction of impervious surface is mentioned as 20%, so 
80% of the cell area was explained as vegetational fraction. All the fractional factors are 
listed in the 5th

 

 column of Table 3.1. When we tested this method with the new TAMU 
lulc data, we found a significant discrepancy with the original WRF vegetation fraction 
input, which is based on several years’ AVHRR observation climatology. Figure 3.9 
shows a comparison of vegetation fractions between WRF vegetation fraction input (for 
June) and recalculated vegetation fractions using TAMU lulc data. We have decided not 
to use this update because there is no strong scientific background for this method, which 
is only based on the impervious surface fractions of NLCD, and we cannot expect any 
seasonal variation in vegetation fraction. Further investigation utilizing the latest satellite 
observations will be needed to develop better vegetation fraction information. 

Figure 3.9 Distributions of vegetation fraction from original WRF June input (left), and update 
based on a calculation using TAMU 30m lulc (right). There exist significant differences in Central 
and Western Texas region. 



 
TABLE 3.1 LULC categories from TAMU 30-m LULC data, and corresponding USGS LULC types. 

  



 

c. Data deliverables 
ARL has collected AMSR-E/Aqua satellite measured soil moisture products and in-situ 
soil moisture data from SCAN and surface meteorological data for the Eastern Texas 
4km modeling domain.  An electronic copy of the data is available on the ftp site 
“205.156.4.182”. 
 
The data package includes three data sets: 
 
“AMSR-E_level3_soil_moisture_200605-06.tgz” has a two-month (May-June, 2006) 
AMSR-E level3 soil moisture data set and IDL reading utilities. Please, refer to 
“sample_rd_amsr_soil.pro” for an example of data access. The “rd_amsr_soil.pro” 
routine can read the AMSR-E soil moisture data in the raw data or re-gridded format 
depending on the target domain. 
 
“NRCS-SCAN-200605-200607.tar.gz” includes three months, a file listing SCAN station 
information called “site_soil_moisture.txt”, an IDL routine “download_scan.pro” for 
downloading the monthly SCAN data by specifying starting date and “rd_scan.pro” for 
extracting data from the SCAN raw file. 
 
“little_r_obs_TCEQ.tar.gz” includes meteorological data in little_r format which is ready 
to be used by the WRF pre-processor “OBSGRID” for objective analysis.  



4. Experiment Design 
The publically available codes of the state-of-art meteorological model, the Advanced 
Research WRF (WRF-ARW), version 3.2 (Skamarock et al 2008) was utilized in this 
study. The modeling episode covered May 31 – July 2, 2006 period, which is used for the 
current Dallas-Fort Worth State Implementation Plan (SIP) modeling and the next ozone 
standard. 
 

4.1 Model configurations 

The modeling domain structure consists of nested domains of different resolutions: a 
coarse grid domain (36-km cell size) that covers the continental United States, a regional 
domain (12-km cell size) over the Texas and neighboring the Gulf of Mexico areas, and a 
fine domain (4-km cell size) covering the Eastern Texas area (Figure 4.1, TABLE 4.1). 
They were defined on a Lambert Conformal mapping projection with the first true 
latitude (alpha) at 30oN, second true latitude (beta) at 45oN, central longitude (gamma) at 
97oW, and the projection origin at (97oW, 40o

 

N).  Following the TCEQ’s SIP model set 
up, we used 43 vertical sigma layers extending the surface to the 50-hPa level, with 
higher resolution near the ground to better understand the atmospheric structure in the 
lower boundary layer. The first half sigma level is around 17 m above ground level. 

 
Figure 4.1 Map showing Lambert 36-km, 12-km and 4-km grid nests used for WRF modeling: the 
36-km resolution Conterminous US domain (NA36), the 12-km South U.S. domain (SUS12), and the 
4-km Eastern Texas domain (TX04). 

 



TABLE 4.1 The horizontal modeling domain grid structure consists of a coarse grid continental 
domain and three nested subdomains: U.S. Domain, South U.S. Domain, and East Texas Domain. 

Domain 
Name 

South-west corner 
(km) Number of Cells Cell Size (km) 

X-origin Y-origin Easting Northing Easting Northing 
NA36 -2916 -2304 162 128 36 36 
SUS12 -1188 -1800 174 138 12 12 
TX04 -408 -1632 216 288 4 4 

 
NCEP GFS analysis was used as the first guess fields for OBSGRID, which is the 
objective analysis package in WRF-ARW. The tool ingested the surface and upper level 
meteorological observations from Meteorological Assimilation Data Ingest System 
(MADIS) and Continuous Air Monitoring Stations (CAMS) to generate objective 
reanalysis with a tighter fit to the observations. The objective analyzed fields provided 
initial and boundary conditions for WRF, as well as 3D temperature, moisture and wind 
analyses for four-dimensional data assimilation (FDDA, or so-called nudging). In 
addition, the 2-m temperature and 2-m mixing ratio analysis is used for the indirect soil 
nudging in PX LSM (Pleim and Gilliam 2009, Pleim and Xiu 2003).  
 
The physics options used in this study for the base case were Rapid Radiative Transfer 
Model (RRTM) longwave radiation scheme, Dudhia shortwave radiation scheme, Kain-
Fritsch 2 scheme for convective precipitation, WSM 6-class scheme for microphysics, 
Pleim-Xiu surface layers, Pleim-Xiu land surface model and Asymmetrical Convective 
Model 2 for PBL parameterization. All domains were run with 3D grid nudging, surface 
analysis nudging and observational nudging following the configurations suggested in 
Stauffer et al. (1991), Otte (2008a) and Gilliam and Pleim (2010); no temperature and 
moisture nudging were done within the PBL, wind nudging applied for all layers, and 
analysis nudging strength for temperature and wind is 3.0 x 10-4 and for moisture is 1.0 x 
10-5

 

. The parameters required in PXLSM for indirect soil moisture nudging, 2-m 
temperature and 2-m mixing ratio, were provided by the surface analysis file generated 
by OBSGRID.  

Observational nudging depends on the radius of influence (Robs) in km to determine the 
area influenced by single stations. If the radius of influence is too large, the model value 
will be nudged by irrelevant signals. However, the influence of observations will be too 
little if Robs is too small. The default setting for Robs is 150 km, but the radius of influence 
used in this study was 25 km. In the mountainous areas, the elevation of observation 
stations varies a lot within a small distance. Sensitivity simulations for the P1 run 
segment using Robs = 150 km, Robs = 50 km and Robs = 25 km were performed to test 
what radius of influence was most appropriate for the CONUS domain simulation. 
Lowering the radius of influence to 50 km could reduce the temperature bias over the 
eastern US, but only slight improvement could be seen over the mountain area. Much 
smaller errors for surface temperature as well as wind speed were seen in the simulation 
using Robs
 

 = 25 km (not shown).  



 
The model was run in 6.5 day segments and re-initialized every 6 days with 12 hours 
overlapping between each run segment. All simulations were spun up by starting 10 days 
before the study period. The soil moisture and temperature fields in the first run segment 
came from NCEP GFS analysis. For other segments, the results from the previous 
segment were used to initialize the current simulation. An IDL program was made to pass 
the soil moisture and temperature values from the result of one segment to the next 
(TABLE 4.2 ).   
 
TABLE 4.2 The WRF simulation segments. 

Run segment Period Note 
PP 5/20 00 UTC – 5/31 12 UTC Spin up period 
P1 5/31 00 UTC – 6/6 12 UTC  
P2 6/6 00 UTC – 6/12 12 UTC  
P3 6/12 00 UTC – 6/18 12 UTC  
P4 6/18 00 UTC – 6/24 12 UTC  
P5 6/24 00 UTC – 6/30 12 UTC  
P6 6/30 00 UTC – 7/3 12 UTC  

 

4.2 Sensitivity experiment design  

The highlights of each sensitivity case are listed in TABLE 4.3. Physical options and 
parameters not shown in the table were identical among all cases. “PXUSGS” was set as 
the base case with the configuration listed in the previous section. For a pilot study of 
utilizing the TAMU 30-m LULC data in WRF model, the “PXTAMU” case was 
employed. “PXnoSOIL” was designed to study the impact of indirect assimilation in the 
PX LSM by deactivating the soil nudging process in the code. The WRF-ARW model 
was run for 43 days including the 1st

TABLE 4.4

 10-day spin up time. The other two sensitivity cases 
performed with different land surface scheme configurations were “NoahYSU,” which 
used the Noah LSM (Chen and Dudhia, 2001a & 2001b), and “SlabYSU,” which used 
the 5-layer thermal diffusion model inherited from MM5 (the so-called slab model, 
Dudhia 1996). Both of them were coupled with the YSU PBL scheme and Monin-
Obukhov similarity theory for surface scheme, and run for 22 days including the 10-day 
spin up time. Note that other land surface processes in WRF-ARW do not have the 
mechanism for soil moisture and soil temperature nudging.  lists the highlight 
features of the three land-surface schemes in WRF-ARW. 
 
 
 
 
 
 
 
 



TABLE 4.3 Physics options for each sensitivity case. The details of base case (PXUSGS) are 
described in section

Case # 
 4.1. 

Nickname Highlight 

  LULC Land surface 
model PBL Soil 

nudging 
Simulation 
period 

TSM27 PXUSGS USGS PX LSM ACM2 yes 5/31 – 7/2 
TSM28 PXTAMU TAMU PX LSM ACM2 yes 5/31 – 7/2 
TSM29 PXnoSOIL  USGS PX LSM ACM2 deactivated  5/31 – 7/2 
TSM4 NoahYSU USGS Noah LSM YSU not avail. 5/31 – 6/11 
TSM5 SlabYSU USGS Slab model YSU not avail. 5/31 – 6/11 

 
TABLE 4.4 Highlight features of PX LSM, Noah LSM and 5-layer thermal diffusion model in WRF-
ARW. 

Pleim-Xiu Land Surface 
Model 

Noah Land Surface 
Model 

5-layer Thermal Soil 
Diffusion Model 

Vegetation effects included Vegetation effects included - 
Provides heat & moisture 
fluxes for PBL 

Provides heat & moisture 
fluxes for PBL 

Provides heat & moisture 
fluxes for PBL 

Simple snow-cover model Predicts snow cover & 
canopy moisture 

- 

Predicts soil temperature & 
moisture for 2 layers 

Predicts soil temperature & 
moisture for 4 layers 

Predicts soil temperature 
Fixes soil moisture with 
landuse and season 

- Available for coupling with 
urban canopy model 

- 

Available for soil 
temperature/moisture 
nudging 

- - 

Uses fractional land-use Uses dominant land-use Uses dominant land-use 
Operates with PX surface 
scheme and ACM2 PBL 
scheme 

Operates with MM5-
similarity surface scheme 
and YSU PBL scheme (or 
ETA-similarity surface 
scheme and MYJ PBL 
scheme) 

 

2 soil layers 4 soil layers 5 soil layers 
Soil layer thickness (m): 
0.01 and 0.99 

Soil layer thickness (m): 
0.1, 0.3, 0.6 and 1.0 

Soil layer thickness (m): 
0.01, 0.02, 0.04, 0.08 and 
0.16 

 

4.3 Use of TAMU LULC in WRF-ARW  

The TAMU 30-m LULC processed in the previous section was implemented in WRF. 
Variables LU_INDEX (Land-use category), LANDMASK (land water mask) and 
LANDUSEF (land-use fraction by category) in the “wrfinput” were replaced with the 



updated LULC data. The comparisons of the default USGS LULC and updated TAMU 
LULC distribution in SUS12 domain (12-km resolution) and TX04 domain (4-km 
resolution) are shown in Figure 4.2 and Figure 4.3. The Land-use categories and their 
corresponding colors used in the figures are listed in TABLE 4.5. In the updated LULC 
map, wetland categories were identified in larger areas – “herbaceous wetland” types 
cover the coastal regions of southeastern TX and LA and “wooded wetland” types cover 
the rivers in eastern TX and LA. “Dry cropland”, #2 in the original LULC in eastern TX, 
was changed to mostly mixed grassland and “Deciduous Broadleaf Forest” (#11 in 
yellow color). Forested areas were expanded not only in northeastern TX but in central 
TX.  
 
In the updated inputs for WRF simulation, the “residential” land-use type was put into 
#23 which was “Bare Ground Tundra” in the default USGS table and did not exist in our 
domains. The parameter table used in PX LSM for computing vegetation and land-use 
characteristics by fractional land-use weighting was modified to reflect the new land-use 
type. Since the table was coded in the PX LSM subroutine in the WRF system, this 
modification involved re-compilation of the model. The values of land-use related 
parameters, including Rstmin (minimum stomatal resistance), Z0 (roughness length), 
Mxfr (maximum vegetation fraction), Mnfr (minimum vegetation fraction), MxLA 
(maximum leaf area index), MnLA (minimum leaf area index), SNUP0 (physical snow 
depth depending on landuse) and ALBF (albedo) for “urban”, “grassland” and 
“residential” are shown in TABLE 4.6. In the updated LULC map, significant amounts of 
residential fraction can be seen but the urban fraction was reduced compared to the 
default LULC. 
 
TABLE 4.5 Land use-related parameter for “urban”, “grassland” and “residential” categories. 

LULC 
Category 

Rstmin Z0 Mxfr Mnfr MxLA MnLA SNUP0 ALBF 

#1 Urban 150. 50. 40. 20. 2.0 0.5 0.04 15. 
#7 Grassland 100. 7. 95. 70. 2.5 1.0 0.04 19. 
#23 Residential 120. 30. 70. 40. 2.5 1.0 0.04 15. 

 
  



TABLE 4.6 The Land-use categories and their corresponding colors used in the figures below. 

LULC 
Categories 

Color 
Index 

Description for USGS LULC 

1  Urban and Built-Up Land 
2  Dryland Cropland and Pasture 
3  Irrigated Cropland and Pasture 
4  Mixed Dryland/Irrigated Cropland and Pasture 
5  Cropland/Grassland Mosaic 
6  Cropland/Woodland Mosaic 
7  Grassland 
8  Shrubland 
9  Mixed Shrubland/Grassland 
10  Savanna 
11  Deciduous Broadleaf Forest 
12  Deciduous Needleleaf Forest 
13  Evergreen Broadleaf Forest 
14  Evergreen Needleleaf Forest 
15  Mixed Forest 
16  Water Bodies 
17  Herbaceous Wetland 
18  Wooded Wetland 
19  Barren or Sparsely Vegetated 
20  Herbaceous Tundra 
21  Wooded Tundra 
22  Mixed Tundra 
23  Bare Ground Tundra  

( “residential” in updated TAMU LULC) 
24  Snow or Ice 

 
  



USGS (original) TAMU LULC (updated) 

  

  

  
Figure 4.2 The comparison default USGS LULC data (left) and updated TAMU LULC data (right) 
for dominant land-use index (LU_INDEX) in top row, urban fraction in middle row and residential 
fraction in the bottom row for SUS12 domain (12-km resolution). 

 
 



            USGS (original)     TAMU LULC (updated) 

  

  

  
Figure 4.3 same as Figure 4.2 for TX04 domain (4-km resolution).  



5. Results and discussions 

To evaluate the performance of meteorological and air quality model simulations, 
graphical measures and a number of generally accepted statistical methods are used to 
determine how closely the predicted values match the observed ones. The observations 
were paired with the corresponding model results in space and time to compute 
correlation coefficient (R2), bias, root-mean-square error (RMSE) and Index of 
Agreement (IOA) shown in Wilks (2006) 
 

5.1 Surface-based meteorological evaluations 

 
The statistics of model performance summarized in TABLE 5.1 utilized MADIS surface 
observations available in the 4-km resolution domain and throughout the whole study 
period (typically 150 – 160 stations). Of the three cases utilizing PX LSM (TSM27 – 
PXUSGS, TSM28 – PXTAMU, and TSM29 – PXnoSOIL), the TSM27 case had the best 
statistics score. The analyses done with the CAMS data (not shown here) draw the same 
conclusion as the analyses made with MADIS. The time series RMSE and domain 
average 2-m temperature in Figure 5.1 show the WRF-ARW simulations with PX LSM 
had smaller errors in the 2-m temperature at night and in the morning while the error 
peaks happened in the evening. The PXnoSOIL case (TSM29), PX LSM without indirect 
soil moisture and temperature nudging, has a persistent cold bias during nighttime. It 
tended to predict minimum 2-m temperatures that were 0.5 – 1.0 degree C colder than the 
cases with soil moisture and temperature nudging. Daytime temperature was very well 
simulated but there was occasional over-prediction during the first half of the study 
period. The PXUSGSG case had better matches with the observations than the other 
cases. In the PXTAMU case with the TAMU LULC (TSM28), slight over-estimation of 
the maximum temperature was present during June 3 – 15 when it was mostly sunny and 
lacking in precipitation in eastern and central Texas. In the second half of June, the model 
under-estimated the maximum temperature on several days. The difference of daytime 
temperature among all cases is small.  
 
For 10-m wind speed, errors were quite similar among the three simulations as expected 
since all layers of wind were nudged through analysis, surface and observational FDDA 
(Figure 5.2). However, over-prediction of nighttime wind was still persistent even though 
the nudging attempted to overcome the limitation of simulating low wind speed. On the 
days with minimum domain-average wind speed larger than 2 m/s, the over-predictions 
were much smaller than on other days.  
 
Another set of comparisons are shown in Figure 5.3, and a statistics summary in TABLE 
5.2 includes the sensitivity runs for PX LSM, Noah LSM and Slab model for the period 
of May 31 – July 11. The PXUSGS case (TSM27) gave the smallest 2-m temperature 
RMSE compared with the other two cases, NoahYSU (TSM4) and SlabYSU (TSM5). 
NoahYSU under-predicted maximum temperature for most of the study period with an 
overall bias around 0.5 – 1 degree C cooler than the observed temperature. The other two 
cases matched quite well with the surface measurement. A substantial cold bias of the 



nighttime temperature was generated in the NoahYSU and SlabYSU cases. On some days 
(June 3, 4, 8 and 9), the under-prediction was as large as 2 degrees C. Surface wind speed 
errors were minimized by the nudging capability. There are some differences in the 
RMSE among cases: PXUSGS (TSM27) was smaller in daytime but larger at night than 
the others.   
 
Figure 5.5 shows a spatial distribution of the RMSE differences between the PXUSGS 
case and the other simulations. Negative values (cold colors) in the plots represent lower 
RMSE in PXUSGS than the compared sensitivity cases, while the percentage indicates 
how many sites in the domain have lower RMSE in the PXUSGS case. The PXUSGS has 
a lower-temperature RMSE than the PXnoSOIL and SlabYSU at most of the sites (more 
than 90%) across the TX04 domain. Comparing with the NoahYSU case, PXUSGS 
reduced errors at 80% of sites for 2-m temperature.  
 
TABLE 5.1 Summary of surface-based model performance statistics for 2-m temperature (2-m T) 
and 10-m wind speed (10-m WS) for PXUSGS, PXTAMU and PXnoSOIL cases over the period of 
May 31 – July 2 (33 days in total).  

 R2 Bias RMSE IOA 
 2-m T 10-m WS 2-m T 10-m WS 2-m T 10-m WS 2-m T 10-m WS 

TSM27 
(PXUSGS) 

0.935 0.669 -0.300 0.038 1.265 1.329 0.981 0.881 

TSM28 
(PXTAMU) 

0.928 0.662 -0.238 0.022 1.311 1.346 0.980 0.876 

TSM29 
(PXnoSOIL) 

0.917 0.663 -0.678 0.016 1.551 1.345 0.973 0.876 

Number of sample for 2-m T: 124357 
Number of sample for 10-m WS: 124613 
 

TABLE 5.2 Summary of surface-based model performance statistics for 2-m temperature (2-m T) 
and 10-m wind speed (10-m WS) for PXUSGS, NoahYSU and SlabYSU over the period of May 31 – 
June11 (12 days in total).  

 R2 Bias RMSE IOA 
 2-m T 10-m WS 2-m T 10-m WS 2-m T 10-m WS 2-m T 10-m WS 

TSM27 
(PXUSGS) 

0.951 0.631 -0.289 0.100 1.135 1.268 0.986 0.861 

TSM4 
(NoahYSU) 

0.943 0.614 -0.996 0.042 1.572 1.284 0.976 0.864 

TSM5 
(SlabYSU) 

0.923 0.601 -0.876 0.021 1.721 1.305 0.972 0.856 

Number of sample for T2: 46758 
Number of sample for WSPD10: 46820 



a) May 31 – June 15, 2006 

 

 
b) June 16 – July 2, 2006 

 

 

Figure 5.1 Time series RMSE (top) and mean 2-m temperature (bottom) for 4-km resolution domain 
covering the whole study period (May 31 – July 2). Black line: MADIS surface observations, red line: 
TSM27 (PXUSGS), blue line: TSM28 (PXTAMU), green line: TSM29 (PXnoSOIL).   



a) May 31 – June 15, 2006 

 

 
b) June 16 – July 2, 2006 

 

 
Figure 5.2 Same as Figure 5.1 but for 10-m wind speed.  

 



 

 
Figure 5.3 Time series RMSE (top) and mean 2-m temperature (bottom) for 4-km resolution domain 
covering the study period May 31 – June 11. Black line: MADIS surface observations, red line: 
TSM27 (PXUSGS), blue line: TSM4 (NoahYSU), green line: TSM4 (SlabYSU).   

 

 
Figure 5.4 Same as Figure 5.3 but for 10-m wind speed.  



  

  
Figure 5.5 The spatial distribution of simulated 2-m temperature RMSE differences between 
PXUSGS and PXTAMU (top left), PXnoSOIL (top right), NoahYSU (bottom left), SlabYSU (bottom 
right). Cold (warm) colors or negative (positive) values indicate PXUSGS case has a lower (larger) 
RMSE. 

  



5.2 SCAN sites comparisons 

 
There are a total of 82 SCAN sites available for May – July, 2006 in the NA36 domain. 
Five of them are located within the TX04 domain but only three sites are away from the 
domain boundary and are used for the comparison of 4-km domain WRF results. They 
are Prairie View #1, TX (2016), Little Washita #1, OK (2023) and Uapb Point Remove, 
AR (2090). The observed soil moisture at different depths of these three sites is shown in 
Figure 5.6. Unfortunately, the precipitation data was not available on site to verify the 
jumps in the soil moisture time series. MADIS surface measurements that were examined 
(not shown) indicate that the soil moisture spikes at the shallow layers were due to 
precipitation. However, many of the spikes may not penetrate to the deep layers. For 
example, the increase of soil moisture can be seen on May 31, June 14, 17 and July 2 in 
the shallow layer at SCAN site 2016 due to rain events, but there is no signal shown in 
the deep layer reflecting these events. At the other two sites, only the precipitation on 
June 17 affected the deep soil moisture. Occasionally, the measurements in different layer 
depths were inconsistent, such as soil moisture spikes found in the 20-inch layer that 
were not present in the shallow layer on May 31 and June 1 at SCAN site 2023. 
 
 

 

 

 
Figure 5.6 Soil moisture observations at different depths at SCAN site 2016 – Prairie View #1 station, 
TX (top), SCAN site 2023 – Little Washita #1, OK (middle) and SCAN site 2090 – Uapb Point 
Remove, AR (bottom). 



To compare the soil moisture and soil temperature of SCAN measurements, the closest 
soil layers in the model results were selected for sensitivities (TABLE 5.3). The first soil 
layer in the SCAN observations is 5.08 cm (2 inches) and the corresponding model soil 
layer is 0.5 cm in PX LSM and Slab model, and 5 cm in Noah LSM. For deep soil, the 
measurements at 50.08 cm (20 inches) are used to compare with the second soil layer in 
PX LSM (50.5 cm) and the third soil layer in Noah LSM (70 cm). Note that there is no 
soil moisture prediction in the 5-layer diffusion model (slab model).  
 
Figure 5.7 is the soil temperature comparison at SCAN site 2016 which is located in 
southeastern Texas. The modeled soil layer depth in PX LSM and Slab model is 
shallower than the observations, so the increase of near-surface soil temperature in the 
model was faster than the SCAN data. The SlabYSU case produced the largest daily 
variation among all cases but an obvious under-prediction can be seen at night. The 
pattern of soil temperature variations in NoahYSU simulation matched better to the 
observed one since the soil layer depth is similar, but the magnitude was off. Without soil 
nudging in PX LSM (TSM29), the soil temperature was lower at night as the deep soil 
temperature showed bias compared to the simulation with soil nudging (TSM27) during 
the first half of the study period (May 31 – June 16).  
 
Figure 5.8 shows the time series of soil moisture in the first soil layer, deep soil layer and 
modeled precipitation. The near-surface model soil moisture was sensitive to rain events. 
The pattern predicted by the PX LSM matched quite well with the SCAN data. The 
diurnal variation of near-surface soil moisture could be seen in the simulations utilizing 
PX LSM due to the very shallow soil layer depth (0.5 cm) defined in the model. There 
was some unrealistic precipitation causing an increase of soil moisture on June 1, 5, 15-
16, 19-22 and 30 in the TSM27 case (PXUSGS). The first soil layer in Noah LSM was 
also reflecting the model precipitation on June 1 and 5, but the soil moisture was wetter 
than the observations in both the first soil layer and deep soil layer. 
 
TABLE 5.3 Layer depth of the SCAN measurement and soil layer in different land-surface model. 

 SCAN PX LSM Noah LSM Slab 
1st 5.08 cm  soil layer 

(2 inches) 
0.5 cm 5 cm 0.5 cm 

Deep soil layer 50.08 cm 
(20 inches ) 

50.5 cm 
(2nd

70 cm 
 layer) (3rd

Constant 
 layer) 

 
 
  



 

 
Figure 5.7 Time series of soil temperature at 1st

 

 soil layer (top) and soil temperature at deep soil layer 
(middle) at SCAN site 2016 - Prairie View #1 station, TX. Black line: observations, red line: TSM27 
(PXUSGS), blue line: TSM4 (NoahYSU), green line: TSM29 (PXnoSOIL) and orange line: TSM5 
(SlabYSU). Model results are in 4-km resolution (TX04 domain). 

Figure 5.8 Same as Figure 5.7 but for soil moisture at 1st soil layer (top), soil moisture at deep soil 
layer (middle) and precipitation (bottom). 



To understand the soil nudging impact on 2-m temperature bias, we compare the deep 
soil moisture and soil temperature measured at a depth of 20 inches (50.8 cm) at two 
SCAN sites: Uapb Point Remove, AR (2090) and Adams Ranch #1, NM (2015). Site 
2090 is a heavily vegetated model cell defined as 83 % vegetation coverage. The 
comparison with WRF results in the 36-km resolution for air temperature and deep soil 
moisture is illustrated in Figure 5.9. The soil nudging scheme was responding primarily 
to the over-prediction of daytime 2-m temperature. The time series of root-zone soil 
moisture shows that the deep soil moisture was adjusted in the PXUSGS simulation for 
getting close to the observations. The other two simulations had drier root-zone soil 
moisture than PXUSGS. In the cases utilizing PX LSM, high biases for maximum 
temperature could be seen in the non-soil-nudging simulation (PXnoSOIL) throughout 
the study period while nighttime temperature prediction was nicely done in the both 
cases. 
 
Site 2015 is less vegetated with only 24 % vegetation fraction defined in the WRF model. 
There was not much difference in deep soil moisture prediction in neither the simulations 
with and without soil nudging nor in daytime air temperature (Figure 5.10). For 2-m 
temperature at night, simulations showed substantial under-prediction. PXUSGS case had 
better estimation of deep soil temperature than PXnoSOIL. As a result, it had less cold 
bias on most of the days.  
 
The 33-day study period was run in 6 segments as described in section 4.1. June 12th

 

 00 
UTC was one of the re-initialization times. Instead of getting soil moisture and soil 
temperature from GFS analyses for the initial condition, the parameters – SMOIS (soil 
moisture) and TSLB (soil temperature) in the WRF input file were updated with the 
values from the previous segment output. However, there is a default flag for computing 
deep soil moisture based on the soil texture inside the PX LSM code. In order to initialize 
the model with the deep soil moisture from the inputs, the flag has to be dismissed with 
corresponding flag (pxlsm_smois_init) set in the namelist used by WRF. Otherwise, the 
root-zone soil moisture will be always set to the certain level and lost tracking the 
evolution in the previous running segments.  

 
  



 
Figure 5.9 Time series comparison of air temperature (top) and soil moisture at deep soil layer 
(bottom) at SCAN site 2090 – Uapb Point Remove, AR. Black line: observations, red line: TSM27 
(PXUSGS), blue line: TSM4 (NoahYSU) and green line: TSM29 (PXnoSOIL).  Model results are in 
36-km resolution (NA36 domain). 

 
Figure 5.10 Time series comparison of air temperature (top), soil moisture at deep soil layer (middle) 
and soil temperature at deep soil layer (bottom) at SCAN site 2015 – Adams Ranch #1, NM.  



 
5.3 Satellite-based measurement comparisons 

Figure 5.11 shows comparisons between satellite-observed soil moisture data from 
AMSR-E/Aqua (top) and WRF results with soil nudging (TSM27, bottom left) and 
without soil nudging (TSM29, bottom right), during June 2006. As Aqua satellite passes 
over 1:30PM local time, WRF outputs between 1PM to 2PM in local time have been 
averaged. For fair comparison, we also discarded WRF outputs where AMSR-E reported 
missing values. As expected, soil moisture distribution generally matched the locations of 
well-vegetated areas. High soil moistures were observed in the Southeastern US, Eastern 
Texas, Northwestern US, and Canadian regions, and relatively dry regions are shown in 
the Western US.  
 
The magnitude, however, showed a big discrepancy. In most regions, WRF simulated soil 
moisture showed much higher water content than that of satellite-based observations. It is 
not a surprising result, considering the difficulties in remote measurements of soil 
moisture, and possible differences in the definition of soil moisture in the model and 
observations. In general, this discrepancy explains why indirect assimilation of soil 
moisture, through temperature, is preferred over direct assimilation of soil moisture.  
 
Figure 5.12 shows time series comparisons between soil moisture measurements in 
SCAN sites and satellite measurements from AMSR-E /Aqua in 6 SCAN sites in Texas. 
Due to totally different characteristics of measuring methods in in-situ SCAN sites and 
remote-sensing AMSR-E measurements, and also due to the differences in horizontal 
resolutions, the correlation between the two data sets was very weak. However, we could 
see considerable signals in response to the precipitation. The cases on June 25 (SCAN 
2006), June 18 (SCAN 2016), and June 23 (SCAN 2106 & 2107) showed enhanced soil 
moisture values in both SCAN site measurements and AMSR-E satellite measurements. 
 
  



 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.11 Comparisons of soil moisture measurement from satellite and WRF simulation. The first 
row shows satellite-based soil moisture measurement from AMSR-E/Aqua, and the second row 
shows soil moisture simulation from WRF using PX LSM with soil nudging  (TSM27, left) and 
without soil nuding (TSM29, right). 

  



 



 
Figure 5.12 Soil moisture comparison between SCAN site (black) and AMSR-E satellite 
measurement (red). SCAN sites in Texas are shown.  



6. Conclusive Remarks 
 
In this project, WRF-ARW with PX LSM incorporating with the ACM2 PBL scheme 
was performed for May 31 – July 2, 2006 over eastern and central Texas in 4-km 
resolution. The RMSE is 1.882 for 2-m temperature and 1.524 for 10-m wind speed. 
They are within the reasonable range of RMSE summarized in Gilliam and Pleim (2010), 
that is, 2.0 for 2-m temperature and 1.6 – 1.9 for 10-m wind speed. A sensitivity 
simulation was employed to investigate the response of the indirect assimilation in the 
PX LSM by deactivating the soil nudging process in the model. The analysis shows a 
significant reduction of 2-m temperature bias in the simulation with soil nudging. A 
persistent cold bias at night exists in the two sensitivity runs that utilize Noah LSM and 
the 5-layer thermal diffusion model, both coupled with the YSU PBL scheme and Monin-
Obukhov similarity theory for surface scheme. Among all simulations, 10-m wind speed 
errors were minimized by nudging U/V components of wind throughout the layers. The 
over-prediction of nighttime wind was still persistent even though the nudging attempted 
to overcome the limitation of simulating low wind speed. 
 
In-situ comparison with the SCAN data shows better simulation of deep soil temperature 
at night in cases with soil nudging. Better simulation of deep soil moisture by the indirect 
assimilation in PX LSM gives better 2-m temperature estimation in vegetated areas. A 
lack of in-situ soil moisture measurements makes the verification difficult in the Texas 
region. Satellite-based soil moisture data from AMSR-E was used for comparisons with 
the model and SCAN data. The soil moisture distribution in the model matched the 
pattern detected by the satellite but the magnitudes were bigger in the model field than 
the satellite-based one. There was a discrepancy shown in the comparison of AMSR-E 
and SCAN data. Satellite-based soil moisture measurement shows smaller variations 
compared with in-situ observations (SCAN) and the model results.  
 
To incorporate the newly processed land-use/land cover data in 30-m resolution for Texas 
region in the WRF modeling system, an IDL tool was developed to handle the raw 
dataset and map the NLCD LULC types to USGS indices originally used in the WRF 
model. Since the raw LULC dataset is huge, the IDL tool was designed to directly access 
the sub regions in the original file for generating dominant and fractional values of land-
use types for model cells. Based on the approaches in Byun et al. 2007 and 2008, the 
mapping to the corresponding USGS LULC types was done for updating the fractional 
land use in the WRF input. The vegetation fraction update was also tested but not 
implemented in the WRF system since a significant discrepancy was shown compared 
with original WRF vegetation fraction input, which is based on several years’ AVHRR 
observation climatology. Further investigation will be needed for proper mapping of 
NLCD to USGS indices, vegetation fraction information update and the eventual impact 
of LULC changes in land surface model.  
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