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1. Introduction
1.1 Purpose and Objective

In June 1998, TNRCC expressed initia interest in expanding a preliminary version of
a coupled meteorological-hydrological-emission-air quality modeling system, the
Advanced Texas Air Quality Model (ATAQM), then under development at MCNC
(McHenry et a., 1999). During the spring of 1999, project plans were formalized and
MCNC embarked on a Phase 1 Demonstration Case utilizing a standard version of the
MM5 Mesoscale Meteorological Modd (V2.12, Grell et a., 1995), the SMOKE
emissions processing system, and MCNC’'s MAQSIP Air Quality Model.

Having successfully produced the base case using these standard models, Phase 2 was
proposed to bring in the fully-distributed hydrological component, the TOPMODEL-
based Land-Atmosphere Transfer Scheme (TOPLATS, Famiglietti and Wood, 1994;
Peters-Lidard et al., 1997). A companion sea-surface transfer scheme designed by MCNC
and Georgia Ingtitute of Technology (Georgia Tech), the Sea-Surface Atmosphere
Transfer Scheme (SSATS) was added to the system during Phase 2. Following
development and implementation of hydrological and sea-surface temperature databases
(Peters-Lidard, 20014, b, c, d, €), the now coupled MM5/TOPLATS/SSATS system was
to be tested and then applied to a case study of interest to TNRCC. Following that, case
evaluation was to be undertaken without the emission and air quality components of
ATAQM. In this report, ATAQM refers only to the meteorological/hydrological
components of the system.

This report describes the successful application of the MM5/TOPLATS/SSATS
modeling system to an ozone exceedance event that occurred in August 1998, compl eting
the Phase 2 work. Head-to-head evaluation with an identical uncoupled version of the
modeling system ranks the coupled system higher in both quantitative and qualitative
metrics. For convenience, all Phase 2 work that was performed after August 31, 2001, is
referred to as Phase 2b in this report, whereas work performed before that date is referred
toas“original” or “initia” Phase 2 work.

1.2 Rationale for Model Formulation

Since aland-surface model (LSM) isintegrated into Version 3.4 of the MM5 modeling
system, it is reasonable to ask why MM5 V3.4 is not used instead of TOPLATS. The
TOPLATS model has been re-designed by MCNC and Georgia Tech to run as an offline
hydrological/surface-flux model driven by observational data (satellite-derived
downward solar radiation, and remotely-sensed, gauge corrected precipitation). Both of
these primary surface driving-variables are suspect in meteorologica models, and the
LSM is not configured to use any remotely sensed data. Further, using MM5 with LSM
“asis’ is problematic because there are rarely well-distributed, vertically discrete soil
moisture data available for initialization. TOPLATS avoids this problem by spinning up
the model using seven months of observational data. Such a spin-up run can execute in



just a few hours on the TNRCC typhoon computer, once the data have been quality
assured.

Other schemes exist within MM5 that couldn’t be fully coupled with TOPLATS for
this project, but could be coupled in the future. Two in particular are the Mid-range
Forecast (MRF) model, a boundary layer parameterization scheme, and the Rapid-
Radiative Transfer Model (RRTM), a longwave radiation parameterization scheme. The
Blackadar-based high-resolution PBL scheme (HIRPBL, Grell et al., 1995) for planetary
boundary layer (PBL) processes was used instead of the MRF model because applications
at MCNC showed that PBL heights were often too high in MRF-based runs, and that the
sea breeze was often too strong. This could have detrimental effects on photochemical
simulations. Because the RRTM was released too late in the project to develop the
coupling interface, the Dudhia LWRAD scheme (Dudhia, 1989) was used for longwave
coupling.

The results presented here suggest that the MMS5/TOPLATS/SSATS system is ready
for application as a photochemical model driver, having achieved demonstrable
improvements over its uncoupled counterpart, MM5. Additional benefits could be gained
by applying and evaluating the model for a case that features an intensive field program;
this would allow exploration and validation of the many qualitative advantages discussed
herein.

In the rest of this document, references to MM5 refer to V3.4 of the modeling system
and its pre- and post-processing programs. Further, “outer domain” refers to the two-grid
36 km12 km MM5 simulations and “inner domain” refers to the single-grid 4-km
simulations that use the boundary conditions from the 12-km outer domain grid.

1.3 Case Study: The August 1998 Houston-Galveston Ozone Exceedance Episode

The chosen episode occurred during the period August 25-31, 1998, in the
Houston/Galveston (HGA) region proximate to Galveston Bay in southeastern Texas.
Table 1.1 shows the hourly average ozone characteristics during that period.

The meteorological scenario for this episode was fairly typical, characterized by
surface high pressure with only weak regional-scale meteorological disturbances creating
day-to-day ozone concentration differences. On August 25, the day prior to the first
exceedance day, there were surface Highs in western Wyoming, Nebraska, and northern
Georgia. A therma Low over the Mexican highlands helped create a synoptic-scale flow
from the south-southeast, which favored a well-developed afternoon sea breeze. Low-
level moisture was abundant, and as the sea-breeze front moved inland along the entire
Texas Gulf-coast, convection began to form, with shallow cloud streets dominating most
of central-eastern Texas. By 2000 UTC, numerous deep convective cells and clusters
were well developed and moving northwestward along the leading edge of the sea-breeze
front. The front continued to propagate inland more than 130 km before the convection
began to dissipate near 2300 UTC, leaving trailing anvil plumes stretched out to the



Tablel.1. Houston ozone exceedances during the August 1998 episode.

Date Highest Hourly Number of Stations

Average Ozone (ppb) | Exceeding 124 ppb
August 25 98 0
August 26 150 1
August 27 203 4
August 28 146 2
August 29 206 5
August 30 162 3
August 31 82 0

Source: Texas Natural Resource Conservation Commission

southwest under weak northwesterly 300-mb flow. Figure 1.1 shows this regional pattern
at 1800 UTC on August 25.

On August 26 (Figure 1.2), the high pressure had moved to the west and strengthened,
weakening the gradient and cutting off the persistent southerly flow. This movement was
partly due to the expansion of the High to the north and the approach of Hurricane
Bonnie aong the Carolina coast. Low-level moist flow fromthe Gulf was restricted to a
band centered near Corpus Christi, Texas, where convection similar to that on the
previous day developed between 1500 UTC and 2000 UTC. Farther north, from Palacios,
Texas, north toward HGA and Beaumont-Port Arthur, Texas, (BPA) weak morning
northwesterly flow was supplanted by a far weaker (than the day before) sea breeze by
around 2000 UTC. In addition, the proximity of the High and its subsidence began to dry
out the moist boundary layer from the previous day, suppressing cloud formation over the
Gulf proximate to Houston, such that with the onset of the weak afternoon sea breeze, the
sky cleared. Mid-afternoon temperatures were well into the low 90's on both days, but
the weaker flow and stronger high pressure on August 26 ushered in the beginning of the
episode.

On August 27 (Figures 13a and 13b), the High strengthened, moving farther to the
west, with mid-afternoon temperatures reaching the mid-90's. The anti-cyclonic
circulation of the High centered near Houston is evident in the curved cloud streets
visible in the 1800 UTC satellite imagery (not shown). Houston Sugarland (SGA)
reported 97°F at 1800 UTC. doud development was further suppressed, with no deep
convection occurring anywhere in eastern Texas. Modest shallow convection had formed
by 1800 UTC, but was more widely scattered than on the previous day. The sea breeze
was not well organized, but by mid-afternoon a weak breeze had formed south of
Palacios and gradually expanded northeast toward the Houston Gulf Coast. The strong
high pressure, suppression of cloud formation, and weak daytime flow near Houston
contributed to a maximum X-hour ozone concertration of 203 ppb (at Continuous Air
Monitoring Station—CAMS—35), with four monitors exceeding 124 ppb (CAMS 10,
34, 35, and 53). Figure 1.3c shows the locations of various CAMS monitors in the
Houston area.



On August 28, a very weak, dry, surface trough approached from the northwest
(Figures 1.4ab), dlowing a dlightly more organized sea breeze to form from near
Angleton/Lake Jackson, Texas, south along the Gulf Coast, although surface pressures
remained high, near 1016 mb. Shallow clouds formed ahead of the sea breeze, with much
of interior eastern Texas pockmarked by cloud streets moving northeastward in weak
southwesterly flow near the top of the PBL, in association with the trough. The trough
passage represented a modest change of air mass, with a stronger High to the northwest
replacing the westernmost side of the eastern United States high as a controlling feature.
This is likely the reason ozone levels were suppressed somewhat on August 28, despite
abundant sunshine, weak winds, and afternoon high temperatures in the mid-90’s.

August 29 was the most intriguing day of the episode. Overnight on August 28, the
previous day’s weak frontal boundary apparently propagated northward, becoming
stationary along an east-west axis about 200 km north of the HGA. An area of mid-level
clouds that developed overnight accompanied this boundary, contributing moisture to it.
This boundary developed as the western edge of the Bermuda High, now recovering after
the passage of Hurricane Bonnie, re-strengthened, while the southeastern edge of the
Pacific High flattened, and a surface low began to develop in the south-central Gulf of
Mexico (Figures 1.5a b). The convection formed aong the boundary, oriented
southwest-northeast about 150 km to the north-northwest of the HGA. Because the
surface boundary moved back to the north, it is likely that the HGA was again exposed to
some of the same airmass that had been present on August 27, enabling development of
the highest ozone values of the episode. Further, the presence of the deep convection
proximate to, but not within, the HGA suppressed cloud formation, further enhancing the
0zone production potential.

August 30 (Figure 1.6a) was the last exceedance day of the period, with the peak
hourly average ozone concentration reported as 162 ppb (CAMS 26). Three monitors
exceeded the 124-ppb hourly standard (CAMS 1, 8, and 26) on this day. The boundary
between the two Highs became ill-defined over east-central Texas, with moisture
remaining along the previous day’s convergence zone to the north. The Gulf low
strengthened somewhat, with pressures at the two central-Gulf offshore buoys depicted in
Figures 1.5a and 1.6a falling about a millibar, and central-Gulf winds becoming more
cyclonic and dlightly stronger. Further, subtropical moisture, located southwest of the
HGA, began moving northeastward from off the Mexican coast toward the HGA Gulf
coast under the influence of weak southwesterly upper-level flow (Figure 1.6b). The
weak high pressure near the HGA was “squeezed” between the previous day’'s
convergence zone, the approaching subtropical moisture from the southwest, and the
strengthening low in the central Gulf. By late in the day, precipitation had begun in and
near the area. This was the only significant precipitation during the six-day episode, and
it served to bring it to a close.

1.4 Background for Work Order 5, Phase 2b

Phase 2b of Work Order 5 includes all work conducted after August 31, 2001, that was
necessary to complete the Phase 2 Work Plan. Though a version of the coupled model



system had been demonstrated and delivered as of that date, time constraints had not
permitted the full integration of the satellite-derived downward solar radiation capability
described in the Work Plan. During Phase 2b, this integration was completed by using
GOES-derived downward surface radiation budget (SRB) data as forcing data for
TOPLATS, in accordance with the Work Plan. Phase 2b also completed the model re-
runs needed as a result of the new SRB capability, along with the evaluation of the
coupled moddl system.

While development of the SRB capability was being completed, review of the initial
Phase 2 MM5/TOPLATS coupled runs was undertaken in order to make additional
system improvements. Thisreview led to further refinements to the modeling protocol :

(1) The interior 4km MMS5 grid size was reduced dlightly (from 100 x 100 grid
points to 70 x 70 grid points) to fully fit within the TOPLATS watershed domain
in order to eliminate spurious effects occurring at the (irregular) TOPLATS
boundary.

(2) Two additional outer domain (36 km-12 km) MM5 runs were conducted due to
the presence of anomalous parameterized convection near the 4-km boundariesin
the original Phase 2 36 km12 km simulation.

(3) Improvements to the one-way TOPLATS coupling methodology in MM5 were
implemented to permit better interna miter-step computations in the Blackadar
PBL scheme (Grell et al., 1995).

These improvements led to the construction of a matrix of nine runs used for inter-
comparison. Three outer domain 36 km-12 km runs were separately used to drive both
coupled and uncoupled 4km runs, producing six 4km runs. An additional three 4km
coupled runs were added using an improved u parameterization, for atotal of nine 4-km
runs. Each of the coupled runs utilized the results of TOPLATS re-runs which made use
of the new remotely-sensed SRB data.

This document describes the Phase 2b activity, its results, and conclusions. This
includes the evaluation of the results of the nine TOPLATS/MM5 runs using surface
observations and satellite imagery, using both quantitative statistica and qualitative
analysis techniques. The coupled model results discussed represent the state-of-the-
science for the meteorol ogical-hydrological component of the ATAQM.

1.5 Structure of the Report

This report is organized into eight sections and three appendices. Figures for each
section or subsection can be found at the end of the section or subsection. Section 2
discusses the integration of GOES-derived SRB data into TOPLATS, including temporal
interpolation, SRB data filters, and the SRB reader method developed in TOPLATS.
Section 3 documents the TOPLATS results using the new SRB data and compares them
to the results based onthe original surface solar radiation measurements.



Section 4 describes the Phase 2b MM5 configuration, including the refinements to the
36 km-12 km MMS5 outer domain runs and the rationale for using them, the model
domains, and the additional preprocessing that was required. The MM5 physics and run-
time configurations used for both the outer 36 km-12 km and inner 4km domains are
also described. Section 5 presents the MM5/TOPLATS/ISSATS coupling strategy and
variables.

Section 6 contains the model evaluation for the August 1998 episode. It describesin
detail the nine 4-km runs used to evaluate the system, and the evaluation approach. Time-
series statistics at individual surface observing stations (in order to measure performance
at asample of locations) and time-series aggregates averaged over all available stationsin
the domain (to look at domainwide performance) are described. This section aso
presents episode mean statistics to assess gross model performance for the episode.

Following presentation of the quantitative statistics, Section 6 provides a qualitative
comparison of uncoupled-versus-coupled results in order to develop better insight into
the dtatistical results. First, the modeled surface sensible and latent heat fluxes are
compared. The boundary-layer depth and evolution in the various 4-km simulations are
then discussed and key similarities and differences are pointed out. Next, the models
representation of the sea breeze as depicted in satellite imagery and surface station data
are evaluated because of the important role the sea breeze plays in HGA air quality.
Further, a qualitative analysis of cloud representation in the various 4km models that
compares model results against satellite observations is provided. Quadlitative
comparisons are provided with a view toward the effects the various processes (surface
fluxes, PBL, sea-bay-land breezes, and clouds) have on air quality and on air quality
model simulations that would be driven by the 4-km runs. Upper-air winds from the
Ellington Field (EFD) Radar Wind Profiler (RWP) were also used to qualitatively
evaluate the model’ s performance.

Section 7 provides overall conclusions about the results of the runs, based on both the
guantitative and qualitative analyses, and the authors experience in developing and using
meteorological models as drivers for ar quality simulations. Section 8 provides
references for the report. Appendix A provides a list of Phase 2b terrain names,
Appendix B provides MM5 compile options, Appendix C provides the MM5 run-time
namelist, and Appendix D contains enlarged plots from Figures 6.9.1 through 6.9.5—
day-by-day comparison of the RWP data with the model predictions.



1.6 Figuresfor Section 1
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Figure 1.1. Regiond surface weather map, 1800 UTC, August 25, 1998.
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Figure 1.2. Regiond surface weather map, 1800 UTC, August 26, 1998.
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Figure 1.6a. Regional surface weather map, 1800 UTC, August 30, 1998.
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2. Integration of GOES-derived SRB Data into TOPLATS

Phase 2b undertook revisions to TOPLATS and development of “data filters,”
enabling the use of remotely sensed downward solar radiation data products. The
products used are derived from GOES satellites by the Global Energy and Water Cycle
Experiment (GEWEX) Continental Scale International Project (GCIP) and GEWEX
Americas Prediction Project (GAPP) Surface Radiation Budget (SRB) project (Pinker
and Lazslo, 1992; Pinker et al., 2001). According to the online documentation at
<http://metosrv2.umd.edu/~srb/gcip>, these datasets have the following potentia
variables, with one variable and time period per file:

Surface downward flux (denoted RSD in MM5 and TOPLATS)
Surface downward photo-synthetically active radiation

Top of atmosphere downward flux

Top of atmosphere upward flux

Cloud cover fraction

Surface skin temperature

Surface albedo

The following file types are generadly available: instantaneous, hour-average, and
daily. The instantaneous values at the instant of observation were not properly time-
stepped, and would have required further pocessing to generate time-stepped output
usable by TOPLATS. Daily average data were not useful for Phase 2b, although they
might be useful for later analysis. The hourly average data were most appropriate, and
can be time-stamped on the half-hour so that time-interpolation without phase error was
possible.

Note also that this dataset contains at least two different grids. For Phase 2b, the pre-
July 2001 grid definition was used.

2.1 Temporal Interpolation

MCNC learned that the hour-average data were constructed from the instantaneous
satellite scan data by renormalizing RSD by the hour-mean cosine of the solar zenith
angle (MUBAR; Pinker, 2001). However, the formula used was not strictly correct.
When going from the instantaneous to the hour-average solar fluxes, the factor

mu(t) / MEAN(from t=H to t=H+1(mu(t)))

was applied, where mu(t) is the cosine of the solar zenith angle at time t and H is hour.
Negative values were replaced by a "missing”-flag value of -999.0. When this was done,
cancellations in the computation of that mean for hours when mu takes on both positive
and negative values (i.e., during hours that contain a sunrise or sunset) occurred, yielding
unrecoverable underestimates of RSD for sunrise/sunset hours, an unacceptable situation
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for high-resolution coupled modeling. Instead, the following factor should have been
used:
mu(T) / MEAN(from t=H to t=H+1 (MAX(mu(t), 0.0))

2.2 SRB Data Filters

Two data filters were developed to deal with the above problem as well as with the
problem of missing and/or defective records in the input data (as determined by extensive
manual quality assurance [QA] examination).

The first filter, SRB2IOAPI, reads potentially multiple SRB files for a common grid
and time period, and merges them into a single gridded Models-3 input/output
Application Program Interface (I1/O API) file over that time period. MCNC'’ s Package for
Analysis and Visuaization of Environmental Data (PAVE) is then used to analyze and
QA the data. At thispoint, it is essential that the output of this filter undergo manua QA.
For example, manual QA of the August 25-31, 1998, SRB data with PAVE shows that
there are several missing daytime hours, as well as one hour that has clearly erroneous
satellite-scan values. Once “missing” or “unacceptable” values were identified, they were
removed by the second SRB filter program.

This second filter, GSW2SOLAR, reads the SRB/MUBAR data set produced by the
SRB2IOAPI filter and then “zeros-out” RSD for a user-selected set of time steps that fail
the manua QA step. Further, GSW2SOLAR *zeros-out” sunrise/sunset hours, where the
existing renormalization is incorrect, as described above.

At each valid column, row, and hour, GSW2SOLAR calculates the variable
SOLAR(c,r,h) = SRB(c,r,h)/ MUBAR(c,r,h) that represents the solar radiation incident
(SOLAR) on a zenith-normal plane; SOLAR(c,r,h) isinitialized to zero elsewhere, where
¢ = column number, r = row number, and h = hour. For each row and column in the grid,
GSW2SOLAR fillsin the holesin SOLAR by time interpolation from valid values in the
interior of the time period, and by extension-by-constant for the initial and terminal
segments—e.g., if h is the first hour for which SOLAR(c,r,h) > 0, al vaues from
SOLAR(c,r,1) to SOLAR(c,r,h-1) were set to SOLAR(c,r,h).

Finally, GSW2SOLAR writes variable SOLAR out to a second gridded file, denoted
SOLAR_CRO_ 2D, which is the final form used by the SRB readers. For this file,
variable SOLAR is defined everywhere, and time interpolation is handled properly
following the discussion above.

2.3 SRB Reader Method in TOPLATS

The implementation of SRB data within TOPLATS is accomplished in a manner
similar to that for the Next-Generation Radar (NEXRAD) data: the SRB data may be
selected as an input method at run-time as part of a list of reader methods in the
TOPLATS run script.
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The SRB reader method interpolates the value of SOLAR to the center of the current
time step, calls a subroutine MUFACTOR (described below) to compute the correct time-
step mean solar zenith angle cosine factor, MUFAC, and multiplies the two to arrive at
current time-step mean values or RSD for the SRB grid. Note that since MUFACTOR
correctly deals with sun-over-the-horizon effects, sunrise and sunset are resolved
correctly even with very short TOPLATS time steps. The TOPLATS SRB reader then
performs bilinear interpolation of the resulting RSD to the TOPLATS superpixel
centroids in amanner similar to other reader methods.

Subroutine MUFACTOR calculates the gridded value of
MUFAC(c,r,T,DT) = MEAN(t=T t=T+DT (MAX(mu(t), 0.0)))

(where ¢ = column, r = row, T =time, and DT = time step) which has the property that
SOLAR(c,r,T+DT/2)-MUFAC(c,r,T,DT) is the correctly normalized mean value of RSD
for the time step from T to T+DT, where SOLAR(c,r,T+DT/2) is the time-interpolated
value at the center of that time step. Figure 2.1 shows an example SRB image from the
Houston/Galveston region.
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2.4 Figuresfor Section 2
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Figure 2.1. Example SRB downward solar radiation (RSD) image for the Houston/Galveston,
Texasregion.
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3. Resultsof TOPLATS RerunsUsing SRB Data

Because surface measurements of RSD were limited in the HGA, the use of RSD from
SRB data was investigated. This section describes that investigation and its results.

3.1 SRB Data Example

Figure 3.1 shows RSD on August 29, 1998, at 1900 UTC from interpolated surface
stations and as calculated by the uncoupled MM5 V3.4. The figure indicates upwards of
200 Wm? low biases in the station data in some locations. Overall, the scarcity of
stations with RSD measurements in the HGA leads to a nearly uniform interpolated field
a locations far away from the stations. The MM5-calculated values on the right side of
the figure show significant areas of lower radiation values associated with spurious
clouds produced by the simulation.

In contrast to Figure 3.1, Figure 3.2 shows RSD from the SRB data on
August 29, 1998. Because the surface flux data are given as hourly averages, Figure 3.2
illustrates two time periods. from 1800-1900 UTC and from 1900-2000 UTC. A
comparison of Figure 3.1 with Figure 3.2 illustrates the following general conclusions
about the SRB data. First, the native spatial resolution of the SRB data (approximately
0.5 deg) is coarser than MM5's (4 km), but able to resolve much more spatial detail than
interpolation of the available station data. Second, the values in and around Galveston
Bay are generally 200-300 Wm? higher in the SRB data compared to the MM5 output
due to the presence of spurious clouds in the MM5 simulation without TOPLATS.
Finally, the low values observed at the station to the northwest of Houston are not
verified by the SRB data.

Given that the SRB RSD values appear to be superior to interpolated station data, the
following subsections describe the effects of these differences on TOPLATS-modeled
surface fluxes.

3.2 Domain-averaged SRB Versus Station Data Comparisons

Consistent with the example presented in Section 3.1, the domain-averaged
comparisons of SRB-based RSD and station data-based RSD confirm a low bias in the
station data relative to the SRB data (Figure 3.3). The magnitude of this bias ranges from
0 to almost 200 Wm? (approximately 0-20%); however, it does not follow a clear pattern
with time.

These differences have a large effect on the TOPLATS-modeled sensible heat flux
(HFX), as shown in Figure 3.4. The magnitude of the HFX and the difference in HFX as
reported using both SRB and station data grow during the episode. The physical process
of soil dry-down, as modeled in TOPLATS, contributes to this growth. This dry-down is
also reflected in the latent heat flux, which decreases over time, as shown in Figure 3.5.
However, given that HFX is the primary determinant of PBL heights, it is important to
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note that errors in RSD are primarily reflected in HFX rather than in latent heat flux.
Thus, the negative impact of low-biased station-based RSD was reflected in unacceptably
low PBL heightsin the initial Phase 2 results.

3.3 Spatial SRB versus Station Data comparisons

Given that the domain-averaged solar radiation fluxes indicate substantial differences
depending onthe radiation data source, it is useful to explore the spatia patterns of these
differences and their relation to the sensible heat flux pattern. Figure 3.6 illustrates
differences in RSD and associated differences in HFX for August 25 at 1900 UTC (near
solar noon). Similar results are obtained for the other days in the episode. For example,
on August 27, the domain-averaged bias depicted in Figure 3.3 is small, but, as shown in
Figure 3.7, differences near the stations are quite large, suggesting potential issues with
the observations, especially since this was nearly a cloud-free day.

The end of the episode reflects the largest domain-averaged bias. Figure 3.8 illustrates
this for August 29, 1998, at 1900 UTC. In this case, the convection mentioned above is
brushing the northeastern part of the domain, but it is not reflected in the station data; all
stations are in the Houston vicinity. Additionally, in the Houston/Galveston area and
southwest, a consistent low bias in the station data relative to the SRB data is seen—
hence the large domain-averaged bias, particularly in the morning hours. This bias would
seriously degrade the ability to properly model the morning transition from stable to
unstable PBL.

The preceding discussion indicates that there are substantial differences between the
downward solar radiation forcing and associated sensible heat fluxes when using SRB
products versus spatially interpolated station data. It should be noted that the SRB
products are not error-free, and may not always represent “ground-truth.” However, given
that the spatial pattern of energy fluxes is critical for resolving circulations in a weakly
forced environment typical of ozone exceedance episodes, the benefits of using the SRB
data likely substantially outweigh the disadvantages.
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3.4 Figuresfor Section 3
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Figure 3.1. Downward surface flux of solar radiation (RSD) on August 29, 1998, at 1900 UTC from
interpolated surface stations (left) and as calculated by MM5 V3.4 (right).
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Figure 3.2. Downward surface flux of solar radiation (RSD) on August 29, 1998, from SRB data. Theleft
panel shows hourly average RSD from 1800-1900 UTC, and the right panel shows hourly average RSD
from 1900-2000 UTC. Comparison with Figure 3.1 demonstratesthe potential for correcting surface flux
biases caused by station data and/or MM5 internal calculations.
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Figure 3.4. TOPLATS domain-averaged HFX using the SRB data versus that estimated by station data
using inverse-distance weighting. The August 25-30, 1998, episode is depicted.
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Figure 3.6. Differencesin RSD and HFX for August 25, 1998, at 1900 UTC. These figuresillustrate the
presence of cloudy (gray-blue) and cloud-free (yellow-orange) areasthat are resolved with the SRB data
but not with the station data.
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Figure 3.7. Differencesin RSD and HFX for August 27, 1998, at 1900 UTC. Thesefiguresillustrate the
presence of cloudy (gray-blue) and cloud-free (yellow-orange) areas that are resolved with the SRB data
but not with the station data
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4. Phase 2b MM5 Configuration

As noted in Section 1, all MM5 preprocessing and model runs were performed with
V3.4 of the modeling system. The episode was divided into two segments (S1 and S2),
S1 consisting of the first 84 hours, and S2 consisting of the final 60 hours. Runs began at
0000 UTC on August 25 and ended at 0000 UTC on August 31. For S1, only Global Data
Assimilation System (GDAS) data were available for initialization, boundary conditions,
and nudging. For S2, archived Eta Data Assimilation System (EDAS) data were
available.

4.1 Outer-Domain (36 km-12 km) MM5 refinements

In the initial Phase 2 effort, one outer-domain 36 km-12 km run was conducted
(hereafter denoted case “van”) using one-way nest interaction and the NESTDOWN
program to produce 4-km initial and boundary conditions. However, analysis of that run
showed the production of substantia spurious parameterized Kain-Fritsch (KF)
convection (on August 25 and 29) near the 4-km domain boundary, resulting in
undesirable advection effects. Figures 4.1 and 4.2 show examples from August 25 at
1600 UTC and August 29 at 2300 UTC, respectively. On August 25, the model output
showed that convection began early in the day, just inland of the coast, while the satellite
observed that convection began later in the day (along with the sea breeze) and
propagated inland. This was not of major concern because the first exceedance did not
occur until August 26.

On August 29, the effect was more serious. On this day, satellite and surface data
indicated the formation of a cluster of convective clouds well north of Houston around
1900 UTC, propagating along a surface-convergence axis extending southwest-northeast.
This convection was far enough away from HGA that its anvil-outflow-subsidence
probably prevented cloud formation in the area during the latter half of the afternoon.
Though the initial Phase 2 run does initiate some convection, the location (too near HGA)
and evolution (separate “rings’ of outflow-based convection propagating in opposite
directions across the domain) of the convection is severely compromised. Figure 4.3
shows the effects of the August 29 spurious-convection event on the interior 4-km
domain winds, where winds are strongly converging toward the domain interior from
three directions (east, north, and west) in an unrealistic manner.

Sensitivity studies were run with the 36 km-12 km model to determine an appropriate
approach to correcting the problem. Experience with the KF scheme suggested that the
ring-like patterns shown in Figure 4.2 could be the result of the interaction of the default
downdraft formulation and a weak synoptic environment. The default formulation forces
the parameterized downdraft to detrain mass entirely within the lowest model level,
which in the present 43-layer implementation, confinesit to alayer about 35 meters thick.
For strong storms whose downdraft equivalent potential temperature is significantly
lower than their immediate environment, this might be realistic. But, in general, the
downdraft is likely to entrain enough surrounding air to mix-out some of the initial
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difference in density, effectively detraining itself as it subsides. By allowing it to detrain
through a dlightly deeper layer, in this case 50 mb, the “overactive” downdraft and its
effects are suppressed. Simulations that used this formula were denoted “kf5.

Independently, the effect of two-way nesting was tested, because this had not been
used in the initial Phase 2 configuration. Some modest improvements were noted (not
shown). The most significant improvements were achieved by combining the downdraft
modifications with two-way nesting (Figure 4.4). Denoted case “kf5.2w,” it was chosen
as a second outer-domain simulation.

Finally, a third ssimulation (denoted case “kf5.2w.c2”) in which TOPLATS/SSATS
one-way coupling to the 12-km domain was added to the “kf5.2w” configuration, was
conducted. It too provided improvement (Figure 4.5). Since MM5 used the Rapid
Radiation Transfer Model (RRTM) for all 36 km-12 km runs (but not the 4km runs),
TOPLATS coupling to longwave radiation was turned off for case “kf5.2w.c2”. The
potential inconsistency in longwave parameterizations between the outer 36 km12 km
model (using RRTM) and the inner 4km model (using LWRAD) would be expected to
produce only slight nocturnal near-surface boundary condition effects. Thus, these effects
were ignored for this study.

Table 4.1 summarizes the overall strategy used to produce the outer-domain runs, their
differences, and their associated naming conventions. As discussed, the two 36 km-12 km
runs added for Phase 2b utilized two-way nesting as opposed to one-way nesting in the
original run. Since two-way nesting provides an interactive feedback mechanism in the
grid interior, FDDA was not used on the 12-km grid for these two runs. Further, analysis
nudging is suspect at the finer scales because it may result in suppression of fine-scale
structure; that is, the analyses themselves are provided on relatively coarse grids, and the
nudging in the model is a relatively strong constraint, so that matching of the
gpatial/temporal scales of the analyses and the simulation is an important consideration.
Though no formal data quality analysis was conducted on the analysis fields used for
FDDA, they were from the best available archived NCEP analyses. The procedures used
to process these data are discussed in Section 4.3.

Table4.1. MM5 V3.4 36 km-12 km runs.

Nest KF Convective Cloud :
Case Strategy Formulation FDDA Strategy Coupling Strategy
“van’ One-way | Standard GRID-nudging, both Uncoupled
(Origina Phase2) 36-km and 12-km grids
“kf5.2w” Two-way | Downdraft modified to |GRID nudging on 36-km |Uncoupled
detrain over 50-mb deep |grid only
level
“kf5.2w.c2" Two-way | Downdraft modified to |GRID nudging on 36-km | One-way coupled on
detrain over 50-mb deep|grid only 12-km domain,
level longwave radiation not
coupled
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4.2 Phase 2b Moddling Domains

The Phase 2b four-nest configuration of MM5 V3.4 is shown in Figure 4.6. The map
projection is Lambert-conformal with central latitude/longitude at 39°N/98°W. The outer,
36-km domain has 112 x 140 grid points, and the inner, 12-km domain has
121 x 121 grid points. The 4km domain has 70 x 70 grid points. A fourth, very-high
resolution 1.33-km domain was configured but not used. The TERRAIN program
namelist defining all of the domains and input data is provided in Appendix A. Terrain
and U.S. Geologica Survey (USGS) 24-category land-use datasets available from the
National Center for Atmospheric Research (NCAR) were used for the outer domains.

4.3 Phase 2b Preprocessing

The MM5 modeling system includes a series of preprocessors that are used to prepare
the input files needed to run the MM5 meteorological model. This section describes the
preprocessing performed. The names of the preprocessor programs are listed below along
with adescription of their function.

TERRAIN - domain configuration, create terrestrial fields

REGRID - create first-guess meteorological fields on MM5 grid
RAWINS - perform objective analysis (add observations to the first-guess)
INTERPF - interpolate pressure-level datato model coordinate
NESTDOWN - create one-way nest or nested model input

INTERPB - interpolate model sgma-level datato pressure levels

A particular dataset issue relevant to MM5 was the lack of availability of EDAS
analysis fields for the first part of the episode, August 25-28, 1998. Therefore, as
indicated previoudly, the episode was run as two segments.

For S1, the analysis fields were only available at 12-hour intervals. Thus, the
36 km-12 km grids (two-way nesting) were run twice. The first pass used analysis
nudging at 12-hour intervals. In the second pass, these results were fed into the INTERPB
programto produce 3-hour fields. These fields were fed back through the RAWINS and
INTERPF programs, and the results were used to nudge MM5 with 3-hour analysis
fields. For S2, the EDAS analysis fields were fed into REGRID, then RAWINS,
INTERPF, and finally MM5.

Reconfiguration of the 4-km domain between Phase 2 and Phase 2b led to the need for
additional processing with the TERRAIN and NESTDOWN programs. TERRAIN was
configured as described in Section 4.2 and re-run in order to supply all of the uncoupled
simulations with appropriate lower boundary land-use data and supply all of the runs with
modified 4-km terrain data. NESTDOWN was run using the original 36 km-12 km “van”
runs to produce new boundary condition data for the new “van” 4-km runs. Additiona
NESTDOWN runs were conducted to extract boundary condition data for the “kf5.2w”
and “kf5.2w.c2” sets of 4-km runs. Since the reconfigured 4-km domain was designed to
completely cover all of the TOPLATS/SSATS geographic extent (Figures 5.1 and 5.2),
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every MM5 grid cell was coupled to the independent land- and sea-surface flux models,
providing for complete consistency within the 4-km domain.

4.4 Phase 2b MM5 Physics Configuration

MM5 physics options are configured at compile time using the configure.user file. The
relevant portions of the 36 km12 km configure.user file for the coupled mode are
presented in Appendix B. This configuration was used for the uncoupled model as well.

In the uncoupled case, libiocpl.ais simply not utilized. Table 4.2 shows the major physics
options used in the outer domain runs.

Table4.2. Mgjor physics options used in 36 km-12 km MM5 simulations.

Parameterization Process Represented Scheme Used
Explicit Moisture Grid-scale Clouds and Reisner-1
Precipitation
Convection Convective Clouds and Kain-Fritsch
Precipitation
Boundary Layer PBL Mixing Effects Blackadar with SMRAQ
Modifications
Longwave Radiation Thermal Radiative Emission Rapid Radiative Transfer Model
Shortwave Radiation Solar Radiative Input Dudhia (Grell et al., 1995)
Sail Land-Surface Atmosphere Fve-layer for Uncoupled Runs;
Interaction TOPLATS (12 km only) for
coupled runs
Shallow Convection Shallow Convective Cloud None
Mixing

Minor changes were made to the model configuration prior to making the 4-km runs.
The Dudhia Longwave Radiation Scheme (LWRAD) replaced the RRTM scheme for
terrestrial radiation, since TOPLATS is coupled with LWRAD. Further, no convective
parameterization was used. That is, KF was turned off, allowing the Reisner mixed phase
explicit moisture scheme (Reisner et al., 1998) to produce all clouds at the grid scale.
This change, necessitated by the change in grid scale, plays an important role in the
relative success of fine-scale runs at grid resolutions of 4 km or less. In both cases, the
Blackadar-based HIRPBL—with Seasonal Model for Regional Air Quality (SMRAQ)
modifications—was used since it, too, couples with TOPLATS. TOPLATS itself
replaced the five-layer soil model for coupled runs.

The SMRAQ modifications to HIRPBL were introduced by MCNC during the
SMRAQ project (http://www.emc.mcnc.org/SMRAQ) in order to improve deficienciesin
the default version contained in MM5, which tended to produce too-rapid late-afternoon
collapses in PBL height, and caused other problems.
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The approach proposed by Holtslag (1990) is implemented in the revision. Here, the
Bulk Richardson (BR) number is calculated for every model level starting from the
lowest. Then, the vertical level for which the BR number exceeds the Critical Richardson
number (=0.25) is determined. For example, if the BR number for levels 15 and 16 is
respectively 0.31 and 0.18, then the PBL top lies in between the heights of those two
levels, and can be estimated by linearly interpolating to a height at which the BR number
isexactly 0.25. Thislinearly interpolated height is considered to be the height of the PBL
above ground level.

Figure 4.7 shows a comparison of the difference between the default scheme and the
SMRAQ-modified scheme for a reference simulation conducted as part of the SMRAQ
project. The figure depicts a 66-hour section of a 5-day run that clearly shows
improvements in the behavior of the calculated PBL depth at a grid cell in far SW
Louisiana, representative of typica HGA conditions. The modifications result in
smoother PBL growth and decay along with alonger-lasting daytime mixed layer.

In addition to these major parameterizations, MM5 was configured with 43 vertical
layers. These are described by McHenry et a., 2001, and are not repeated here.

4.5 Phase 2b MM5 Run-Time Configuration

There are numerous rur-time switches, generaly input as namelist variables, with
which to turn on or off various features of MM5 V3.4. In Appendix C, the namelist
portion of the job-deck shows the options used for the 36 km-12 km domain. For the
4-km domain, the three-dimensional Coriolis force, nest feedback, and FDDA options
were turned off. Otherwise, the run-time switches were identical for the outer and inner
domains.

The three-dimensional Coriolis terms were neglected in the 4-km domain because it
was decided that differences between the coupled and uncoupled model results would be
easier to physically interpret if the standard horizontal Coriolis approximation was used.
In the standard approximation, terms in the cross product of the Earth’s rotation vector
and the three-dimensional wind vector, which either contain the vertical velocity, w, or
are directed in the vertical direction of the unit vector k, are neglected. These terms
involve the cosine of the latitude and 2 increase in magnitude toward 2V from pole to
equator. For horizontal motions, they lead to small upward or downward accelerations
proportiona to the grid-scale vertical velocity, which is typicaly one to two orders of
magnitude smaller than the horizontal wind. For vertical motions, they lead to small
westward or eastward accelerations. The standard approximation neglects these vertica
terms because they are mostly small compared to other terms in the respective horizontal
and vertical momentum equations.

Since the inertia period, given as 24-hours/2sinj , is approximately 1 day at 30°N
latitude (approximately the latitude of the HGA), large-scale inertial oscillations--induced
by both diurnal frictional differences and unequal heating effects in the presence of a
weak synoptic pressure gradient--are typically in-phase with the diurnal cycle. Neilson-
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Gammon (2001a, 2001b) notes that preliminary analyses of data from the Texas Air
Quality Study-2000 (TXAQS-2000) indicate evidence of such oscillations and that the
two causes mentioned may have been contributing factors, thereby playing a role in
determining the evolution of the surface and aloft winds during that study.

The scale of the inertial oscillations observed during TXAQS-2000 are similar to the
type reported in Moore (2002), who describes them in relationship to the evolution of
low-level jets. Moore notes that in the south-central Midwest, a nocturnal inversion wind
maximum forms during the late spring-summer months at the top of the nocturnal
inversion under synoptically quiescent conditions, reaching maximum intensity around
1-3 am. This feature may be manifested as “adverse wind shear” during the following
morning, in which the low-level jet mixes down to the surface after PBL growth has
begun but before it has entrained (from aoft) air with much less (synoptic-scale)
momentum, resulting in a stronger morning surface wind. Moore (2002) shows how,
under these circumstances, such a frictional decoupling will lead to an inertial oscillation
of the wind vector as the momentum attempts to regain geostrophic balance. This is
shown in Figure 4.8.

Variations upon this general theory exist, some of which are cited in Moore (2002)
and in Neilson-Gammon (2001a, 2001b), but none make reference to the vertical Coriolis
terms, no doubt for the same scaling reasons cited above. Thus, neglect of these termsin
the 4-km domain ssimulations was deemed unlikely to affect MM5'’s &bility to simulate
the dynamic effects resulting from heterogeneous frictional and thermal surface forcing.
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4.6 Figuresfor Section 4

File Interact Control Hap
Cell Range {20,19)->(93,111)

Layer 1 KFTOPa

a=MET_CRO_2D_G2.199823700.hlk van

16000.0011
14000.002
12000.001
10000.000
8000.000
£000.000
4000.000
2000.000

0.000 b A

m zu il

20

s August 25,1998 16:30.00
uciilin=_0.000 at (20,20), Max=15459.203 at (B

Figure4.1. Spurious KF 12-km convection on August 25, 1998, for case “van” for the
hour beginning 1600 UTC.
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Figure 4.2. Poorly-represented 12-km KF convection on August 29, 1998, for case “van” for the
hour beginning 2300 UTC.
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Figur e 4.3. Effects of oppositely-propagating, spurious rings of KF-based 12-km convection on 4-km
winds on August 29 at about 2300 UTC.
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Figure 4.4. Re-run 36 km-12 km uncoupled case “kf5.2w” depicting the location and intensity of modeled KF
convection on August 25 (left) and August 29 (right). This shows significant improvement over the structure,
timing, and evolution of the convection compared to earlier model runs depicted in Figures 4.1 and 4.2.
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Figure4.5. Re-run 36 km-12 km uncoupled case “kf5.2w.c2" depicting the location and intensity of
modeled KF convection on August 25 (left) and August 29 (right). This shows significant improvement
over the structure, timing, and evolution of the convection compared to earlier model runs depicted in

Figures4.1,4.2,and 4.4.

Figure 4.6. ATAQM Phase 2b MM5 36-km (D01), 12-km (D02), and 4-km (D03) domains.
The 1-km domain (D04) was not used.
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Figure 4.7. Depth of HIRPBL-calculated PBL height for an example grid cell in extreme SW Louisiana
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the Holtdag (1990) method.
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Figure 4.8. Theoretical diagram of theinertia oscillation (using an idealized Ekman-layer) of the
ageostrophic wind vector about a constant geostrophic wind. Vg is the geostrophic wind, VH is the actual
wind, and V4 is the ageostrophic component. In panel (b), the ageostrophic component results from
frictional retardation acting opposite to the mean surface wind. Upon decoupling, the wind, no longer
feeling the retarding effects of friction, accelerates (at the top of the nocturnal inversion) and beginsto
swing back toward a geostrophic force balance (¢) and then overshoots (d). From Moore, 2002.
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5. MM5/TOPLATS/ISSATS Coupling Strategy and Variables

5.1 Strategy

Inthe ATAQM, TOPLATS and SSATS are both one-way coupled with MM5 V3.4. In
one-way coupling, TOPLATS and SSATS are run offline first, and flux data from them
ae fed into MM5. Figure 51 shows the combined coverage fractions of
TOPLATS/SSATS in relationship to the Phase 2b 4km MM5 domain, portraying the
geographic extent of the earth-surface models that are one-way coupled with MM5. With
the domain refinements described above, the combined coverage fraction is 100%.

The one-way coupling strategy permits the use of observational meteorological datato
drive the earth-surface models, which in turn solve for the surface “skin” temperature and
soil moisture. Since SSATS provides observed sea-surface temperatures (SSTs), the
energy balance does not need to be calculated. Given the observations, both TOPLATS
and SSATS calculate surface sensible and latent heat fluxes, which can then be ingested
by MM5'’s surface physics routines.

5.2Variables

Table 5.1 depicts the coupled variables and the MM5 routines in which the coupling
occurs. Variables are interpolated from synchronized TOPLATS output to the MM5
advection time-step in all routines. The run-scripts may be used to decouple or couple
any one of the variables listed, permitting sensitivity studies. A brief discussion of each
coupling variable follows the table.



Table5.1. TOPLATS and SSATS coupling variables and associated MM5 physics routines.

Subroutine
Variable Units Definition ingested within Function within MM5
MM5
Used with XLEPET to estimate
XLEACT W/m? Actual latent heat flux HIRPBL “moisture availability” for
internal mitering cdculation
Used with XLEACT to estimate
XLEPET W/m?  |Potential latent heat flux HIRPBL “moisture availability” for
internal mitering calculation
HACT W/n?  |Actua sensibleheat flux|  HIRPBL | Bottom sensiblefluxboundary
condition
QFX kg/s/n? Kinematic latent heat HIRPBL Bottom latent fl_ux boundary
flux condition
RNACT W/ Net radiation at the SLAB Echo values from _TOPLATS to
surface output files
TKACT K Skin temperature A | ReplacesMMS skin temperature
at coupled cells
Replaces emissivity within
s MMS5; used to calculate upward-
EMISG None Earth surface emissivity LWRAD reflected component of
downward longwave flux
RLU_EARTH_ 2 Earth upward grey-body Replaces earth upward grey-
ACT Wim longwave radiation flux LWRAD body longwave flux

XLEACT and XLEPET. TOPLATS ratio of the actual to the potential evapo-
transpiration is expected to be a better measure of the soil moisture availability
(MAVAIL) than the default MAVAIL values provided with MM5. In Phase 2b, thisratio
isused to calculate the “internal” latent-flux “kernel.” This kernel is used to help estimate
the number of mitering steps (sub-time-steps) needed by HIRPBL. The equations are
somewhat complex and so are not shown here, but the internal kernel is closely related to
the MM5 User’s Guide (Grell et a., 1995) equation 5.4.3.15. In addition, the ground
virtual potential temperature is decoupled to more faithfully represent evaporative
processes taking place at the surface.

HACT. TOPLATS' surface sensible heat flux is ingested by HIRPBL, replacing its
native calculation at al coupled cells. This flux is used to solve for the surface-layer
temperature tendency in the PBL. Positive fluxes provide a heat source, during periods
when the surface is heating more rapidly than the surface-layer atmosphere. Negative
fluxes provide a heat sink. Nonlocal mixing during the rapid daytime surface-layer
heating results in PBL growth.

QEX. TOPLATS' surface latent flux is ingested by HIRPBL, providing a moisture

source (positive flux) or sink (negative flux) for the surface layer. The 0.0 floor on QFX
has been removed in HIRPBL for coupled runs, since TOPLATS provides for dew
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formation. Again, daytime nonlocal mixing efficiently transports surface-based moisture
throughout the PBL.

RNACT. This TOPLATS net radiation term isingested for QA purposes.

TKACT. TOPLATS surface temperature is ingested into the SLAB multi-layer soil
model, for all coupled cells. Within SLAB, the internal MM5 energy balance calculation
is ignored. TKACT replaces MM5's T, and is used in HIRPBL, most importantly to
determine the Bulk Richardson number (BRNUM) of the surface layer. This, in turn, is
used to determine the stability class, stability functions, and, ultimately, u- which affects
the momentum fluxes. (Currently, TOPLATS is not used to couple the momentum terms
directly, for theoretical reasons.) Once u- is determined, the surface momentum fluxes are
calculated. In HIRPBL, the following relation is used to solve for u:

o MAX(&710)
a?og?% 6.y ¢
& Zyis ¥ "o

where k is Von Karman's constant, é&Uf is the magnitude of the wind, Z, is the layer-1
half-sigma height in m, Zis the roughness length, and y . is the stability function for
momentum. In the standard MM5, the MAX function is apparently implemented to
prevent the momentum fluxes, equal to r u- U, from becoming small. However, during
the transition from nighttime to daytime, too large a value for u. can prevent the wind
from initially accelerating under the influence of land-surface-based heating, because of
the delicate balance between and interdependence among the variables in the above
equation (the denominator becomes smaller with increasing instability). Once the
instability islarge, frictional dissipation remains large and PBL winds may not accelerate,
even with downward mixing of momentum. Thus, the lighter the nocturnal surface winds,
the more likely a problem is to occur with the MAX function implemented as above.
Figure 5.2 shows a comparison of the uncoupled models and coupled models' u- with
overlaid wind vectors at 1250 UTC on August 25, illustrating the morning transition
issue.

The lack of daytime wind acceleration problem occurred repeatedly in theinitial set of
Phase 2b 4km coupled runs, no matter which set of boundary conditions was used
(“van,” “kf5.2w,” or “kf5.2w.c2”). Removing the MAX function corrected the problem,
by allowing u- to scale appropriately, as it should, with light morning winds.

Thislack of daytime wind acceleration effect has aso been observed with the standard
uncoupled Gayno-Seaman PBL (GSPBL) scheme at 4 km, and it is believed to be caused
by the same problem. As a result, three additional 4km runs were added using the
corrected formulation, denoted by adding the acronym “wspd” (for wind speed) to this set
of 4-km runs. The run naming convention is presented in Table 6.1 in the following
section.
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EMISG. TOPLATS' aggregated surface emissivity is used in place of the MM5 value,
in order to fully replace MM5's land surface. It is used in LWRAD, together with
RLU_EARTH_ACT, to estimate the gross upward longwave radiation.

RLU_EARTH_ACT. This is TOPLATS edtimate of the earth-upward grey-body
longwave radiative flux. Together with EMISG, it is used to caculate the longwave
heating tendency resulting from land-surface properties.

Note that no shortwave coupling is necessary because in MM5 V3.4 outgoing
shortwave radiation is lost to space.
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5.3 Figuresfor Section 5
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Figureb5.1. SSATS (left) and TOPLATS (right) coverage fractions in the Phase 2b HGA 4-km domain.
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Figure5.2. Uncoupled (left) and coupled (right) plots of the magnitude of u. with wind vectors overlaid
during the morning transition. The right-hand frame depicts an area of large u- values in the northeast
quadrant, associated with an area of light winds. If u. values are not allowed to scale appropriately with the
light winds, daytime PBL wind acceleration may not occur appropriately, and daytime wind speeds may be
biased low over land.
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6. MM5 4-km Uncoupled and Coupled Run Evaluation

6.1 Evaluation Approach

The evauation of the coupled versus the uncoupled runs is broken down into
guantitative (first) and qualitative (second) sections. It is important to conduct both
because standard statistics do not always accurately reflect model performance,
particularly since minor spatial-temporal phase errors create poor point-location statistics.
Also, station data are typically sparse and not fully representative of surface conditions
throughout an entire modeling domain. Finally, factors that are important to air quality
simulations—the timing and location of clouds, the evolution and depth of the boundary
layer, the diurnal surface flux pattern, and the cycling of the sea breeze—may not be
reflected in standard statistics.

The motivation for conducting the three outer-domain 36 km-12 km runs with which
to drive the interior, 4-km domain runs is described in Section 1.4. By using
NESTDOWN to produce 4-km boundary conditions, the effects of the larger-scale
domains on the 4-km domain were isolated.

Table 61 provides the 4km run naming conventions and descriptions. As noted in
Section 5.2, the wind-speed related u* problem created the need to conduct two sets of
coupled runs. In all cases, run names that end with “.c2” are coupled and run names that
end in “.van” are uncoupled. The prefixes describe the 36 km12 km “parent” run. The
suffix “c2” was chosen because other sets of coupled runs, using various coupling
strategies, were also tried. The “c2” runs provided the best theoretical combination of
coupling variables and best overall coupling results to date. The acronym “wspd” is
added to designate the corrected u* formulation and the additional identifier “blk” is
added to denote the use of the Blackadar-based HIRPBL in the runs. The 4-km run
suffixes are highlighted in bold lettering in Table 6.1. An alternate designation for the
“wspd” coupled runs is included to clarify some of the figure labels in the sections that
follow.

A large number of different data types were considered for objective use in either the
modeling or evaluation parts of the project. Though a complete list is provided in
McHenry et al. (2001), the part of this list relevant to evauating the 4-km runs is
presented in Table 6.2.
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Table6.1. MM5 V3.4 4-km run naming conventions and descriptions.

36 km-12 km Parent Run
Prefix 4-km Full Run Designation 4C Erunpl(id/'(il\t) Comments
(see Table4.1)
“van” “blk.van.van” N
“van” “blk.van.c2” Y
“van” “blk.van.wspd.c2’ Y Removes wspd
alternatively MAX function
“blk.wspd.van.c2’
“kf5.2w” “blk.kf5.2w.van” N
“kf5.2w” “blk.kf5.2w.c2” Y
“kf5.2w” “blk.kf5.2w.wspd.c2” Y Removes wspd
alternatively MAX function
“blk.wspd.kf5.2w.c2”
“kf5.2w.c2” “blk.kf5.2w.c2.van” N
“kf5.2w.c2” “blk.kf5.2w.c2.c2” Y
“kf5.2w.c2" “blk.kf5.2w.c2wspd.c2” Y Removeswspd
alternatively MAX function
“blk.wspd.kf5.2w.c2.c2"
Table6.2. Objective data sources and their dispositions.
Page 1 of 2

Objective Data
Type/Source/Comments

Usein Evauation of 4-km Runs and Other Comments on Disposition

DS353.4: NCEP Global
Upper-air Observations,
Aug 1998; Y 46895
(12- and 6-hourly)

Used for creating objective analysesfor MM5 initial and boundary
conditions and for upper-air FDDA. Not used in 4-kmevaluation.

DS464.0 NCEP Global
Surface Observations:

Y 46892 and Y 46893 (land
6- and 3-hourly)

Used for creating objective analysesfor MM5 initial and boundary
conditions. Not used for nudging since no surface nudging was performed.
Not used in 4-km evaluation.

DS464.0 NCEP Global
Surface Observations:
Y 46894 (all ship)

Used for creating objective analysesfor MM5 initial and boundary
conditions. Not used for nudging since no surface nudging was performed.
Not used in 4-km evaluation.

DS083.0 NCEP Glabal
tropospheric analyses:
Y 46505, August 1998

(GDAS) Used asfirst guessfield for segment S1 objective analyses. Not
used in4-km evaluation.

EtaEDAS Andysis Data

(EDAS) Used asfirst guess field for segment S2 objective analyses. Not
used in4-km evaluation.

Raw Hourly Surface
Station Observations
(ds472.0; dataset
hrel199808-asc.Z) from
NOAA Techniques
Development Lab (TDL)

Station data was used for 4-km mode! surface evaluation.

US EPA “Aerometric
Information Retrieval
System (AIRS) datasets:
1 per episode-day

Not used. Some redundancy over Techniques Devel opment Laboratory data.
Not used in 4-km evaluation.
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Table6.2. Objective data sources and their dispositions.

Page 2 of 2
Objective Data . . . -
Type/Source/Comments Usein Evaluation of 4-km Runs and Other Comments on Disposition
NEXRAD Stage IV Used for driving TOPLATS. Not used in 4-km eval uation.
Precipitation Data
TNRCC Radar Wind Used for low-level upper-air wind evaluation.
Profiler Data
NOAA Radar Wind None located. See http://www-dd.fsl.noaa.gov/online.html
Profiler Data
TNRCC Sounding Acoustic | Considered for low-level upper-air wind evaluation, but not used due to

Radar (SODAR) Data

limited vertical extent.

TNRCC Continuous Air
Monitoring Station
(CAMS) Data; 5-minute
intervals

Considered for surface evaluation, but not used due to uncertain shelter
conditions.

Houston Regional
Monitoring (HRM)

Considered for surface evaluation, but not used due to uncertain shelter
conditions.

Network Data
Land-Surface Data
a 4-kmSkin
Temperature None available.
b. 1-km Skin
Temperature None available.
c. Surface Heat Flux
Data None available.
d. Surface Radiation
Budget Data Incorporated to drive TOPLATS. Not used in 4-kmevaluation.
Cloud Drift Winds None located.

DMSP SSM/I low level
winds

Speed only, no direction, elevation 19.5 m. Not obtained.
See: http://wwwo2c.nesdis.noaa.gov/owindswinds_info_framed.htm

DMSP ERS-2 Active None obtained.

Microwave-derived Ocean | See http://wwwo2c.nesdis.noaa.gov/owinds/winds_info_framed.htm
Surface Winds

DMSP QuickSCAT None obtained.

Derived Ocean Surface
Winds

See http://wwwo2c.nesdis.noaa.gov/owindswinds_info_framed.htm

NOAA National Ocean
Service (NOS) Water
Temperature Data

Obtained and used to drive SSATS. Not used in 4-km evaluation.

NOAA Physica
Oceanography Red -Time
System (PORTYS)

Datafor Aug/Sep 1998 requested from NOAA but not delivered.

NOAA Polar Orhiting
Satellite (POES)
“Coastwatch” SST Data

Data obtained and processed, but geo-registration problems resulted in large
uncertainties. Not used in 4-kmevaluation.

NEXRAD WSR88D
Volume Azimuth Display
(VAD) Datafrom League
City Texas

None obtained.
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The table shows that there were two primary data sources used for evaluating the 4-km
runs. The first was the set of hourly surface observations processed by the NOAA
Techniques Development Lab (TDL). These data contain objective shelter-level
observations of winds (speed and direction), temperature, and relative humidity. The
second, provided by TNRCC, was a set of radar wind profiler (RWP) half-hourly time-
height observations from Ellington Field, Houston.

Many other potential data sources were considered. For example, NCEP Global Upper
Air and surface observations were used in combination with NCEP Global tropospheric
analyses (for S1) and NCEP Eta tropospheric analyses (for S2) to develop MM5-system:
based objective tropospheric analyses to drive MM5. Hypothetically, portions of these
datasets could have been used for evauation, but were not because of (1) potential
redundancies at the surface with the TDL dataset and (2) resource constraints. The first
factor was aso a consideration in not using the EPA AIRS data, in addition to the fact
that the meteorological data in the AIRS datasets tend to be less-well quality assured. No
source of NOAA-based RWP data was located, though an attempt was made. TNRCC
provided some very low-level acoustic sounder data (Galveston Airport and Wharton
Power Plant), but the backscatter data were not deemed useful beyond about 10:30 am.
LDT, since acoustic sounding does not normally provide any information about mixing
heights during summer high ozone days (per e-mail note from B. Lambeth, TNRCC,
November, 2000).

TNRCC Continuous Air Monitoring Station (CAMS) data were available, some of
which were incorporated as surface observations to drive TOPLATS (Peters-Lidard,
20014a). Uncertainties about shelter conditions in the CAMS (and HRM) data resulted in
these data not being used for the evaluation. The availability of various high-resolution
(<10 km) land-surface data types was investigated, and none was located, with the
exception of station-based RSD data, discussed in Section 3. These data were not
appropriate for the evaluation effort. The disposition of other kinds of data considered,
including Cloud Drift Winds, various Defense Meteorological Satellite Program (DM SP)
datasets, NOAA National Ocean Service (NOS), NOAA Physical Oceanography Real-
Time System (PORTS), NOAA Polar Orbiting Earth Satellite (POES), and Volume
Azimuth Display (VAD) datasetsis provided in Table 6.3.

Quantitative evaluation followed a fairly standard approach. Time-series statistics
from individual observing stations were produced, along with spatial-aggregate time-
series plots. To construct the time-series plots, MM5 data were bi-linearly interpolated
from the latitudes and longitudes of the grid-cell centersto the latitudes and longitudes of
the stations, using the four nearest surrounding cells. Wind components were rotated
from map-north and map-east to true north and east, respectively.

Table 6.3 provides the location and name of the observing stations by grid cell, while
Figure 6.1.1 shows the location of the surface stations within the domain.
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Table6.3. Observation stations, 1D’ s, and locations by grid cell (col, row) in the
MM54-km MM5TOPLATSSSATS domain.

Map ID COL ROW Reference Name
BTP 55 44 Beaumont/Port Arthur Jefferson County Airport
CXO 21 54 Conroe, Montgomery County Airport
DWH 18 46 Houston, Hooks Memorial Airport
EFD 28 34 Houston/Ellington
GLS 35 24 Galveston, Scholes Field
HOU 25 35 Houston, Houston Hobby Airport
IAH 23 43 Houston, Houston Intercontinental Airport
LBX 21 20 Angelton/Lake Jackson, Brazoria County Airport
PSX 2 8 Palacios Municipa Airport
SRG 16 34 Houston, Sugar Land Municipal/Hull Field Airport
uUTS 17 65 Huntsville, Huntsville Municipal Airport

1 67

Figure6.1.1. Observation station locations and 1D’ s within the 4-km domain.

Sections 6.2 and 6.3 discuss the time-series plots. Section 6.4 discusses the episodic
mean results, constructed by calculating the bias and root-meansquare errors (RMSES)
over al data pairs in space and time. These data are presented in both tabular and bar-
graph form. The bar graphs are particularly useful for discerning the overall, gross
performance of the runs.



Sections 6.5 through 6.8 provide the qualitative part of the evaluation. The modeled
surface sensible and latent heat fluxes are compared, and then the models' representation
of the sea breeze as depicted in satellite imagery and surface station data are discussed.
An analysis of cloud representation is provided that compares model results against
satellite observations, and boundary-layer depth and evolution are described along with
their key similarities and differences. The qualitative comparisons are presented with a
view toward the effects the various processes (surface fluxes, PBL, sea-bay-land breezes,
and clouds) have on air quality and on air quality model simulations that would be driven
by the 4-km runs.

6.2 Time-series Plots at I ndividual Surface Observing Stations

Even for the small number of stations evaluated, the amount of data and number of
time-series plots is significant. Six stations were selected as representative of different
locations in the domain. These six are (1) Conroe (CXO), a northern rural location;
(2) Houston Hobby (HOU), a central urban location; (3) Ellington Field (EFD), a Bay-
proximate location; (4) Galveston (GLS), a gulf-coast location; (5) Brazoria County
Airport (LBX), arural coastal plain location; and (6) Palacios Municipal Airport (PSX), a
far south-west gulf-coast location.

Each of these locations represents a somewhat distinct regional climatology in that
they differ in land-use types and in proximity to significant bodies of water. For each of
these locations, 10-m wind speed and direction (Figures a and b), 2m mixing ratio
(Figures c), and 2-m temperature (Figures d) time-series plots are provided. Other
variables, such as west-to-east (U) and south-to-north (V) wind components and dew-
point temperature were plotted but are not presented because of their similarity to the
above four parameters. In al cases, the “wspd” coupled runs are compared with the
uncoupled runs. In the plots, the ordinate labels designate which parent 36 km-12 km run
was used to provide boundary conditions for the 4km run being evaluated; i.e., either
“van,” “kf5.2w,” or “kf5.2w.c2.” The blue and red time-series depict the uncoupled
(*van”) versus coupled (“wspd.c2”) runs being compared, and the black lines show the
observations. By appending the time-series labels to each of the ordinate labels, the full
bol dface run designation shown in Table 6.1 is obtained.

6.2.1 CXO (Conroe) - rural north

Figure 6.2.1a shows the 10-m wind speed time-series plots at Conroe. Just after
0000 UTC on August 30, both “kf5” run sets miss the 10-kt peak, whereas the “van” runs
are nore realistic. Wind speed is seen to have a diurnal signal, becoming calm and/or
light and variable on many nights. The models capture this well after 0000 UTC on
August 26, but only the “kf5.2w.c2” run capturesit on August 27.

Figure 6.2.1b shows wind direction. Since the wind-direction plots fluctuate when the
wind changes between the northwest and northeast quadrants, caution is advised in
interpreting the directional plots. The modeled wind direction tracks reasonably well at
Conroe, particularly between 1200 UTC on August 26 and 1200 UTC on August 27.



Mixing ratio time-series plots are presented in Figure 6.2.1c. The models are fairly
consistent with the observations through 0000 UTC on August 27. After 1200 UTC on
August 28, when the models were re-initialized, a phase lag is seen, most notably in the
coupled runs. The “van” runs appear to reproduce the observed signal more faithfully
during this period, and the uncoupled “kf5” runs appear to be too moist from about
1200 UTC on August 2 until the end of the episode (this is the only one of the six
stations discussed where a significant moist bias was observed). In contrast, the two
“kf5” coupled runs become driest near sunrise with a moisture peak thereafter, especialy
after 1200 UTC on August 28.

Figure 6.2.1d shows the 2-m temperature time-series plots. Immediately evident is the
weak diurnal amplitude in the uncoupled model. In contrast, the coupled models
amplitudes are much more consistent with the observations.

6.2.2 HOU (Houston Hobby) - central urban

Figure 6.2.2a shows the 10-m wind speed time-series plots at Houston. Both sets of
“kf5” runs seem to capture the speed amplitude better than the “van” run on August 25,
26, and 27, when clear afternoon maximum values and overnight minimum values are
observed. Later in the period, from about 0000 UTC on August 28 onward, the speed
does not contain a clear diurnal signal. All of the models miss the peak in wind speed
before sunrise on August 30. It is not known whether this feature was rea or not, ror
what physical process was responsible. Generally, the speed traces are fairly consistent
between coupled and uncoupled models, with mostly minor differences.

Figure 6.2.2b shows wind-direction. For the most part, the directional differences
between the models and the observations are minor prior to about 1800 UTC on
August 28. At that point, especially in the “kf5.2w” run (middle panel), the uncoupled
models predict wind with a more easterly component, more consistent with the
observations, than do the coupled models. Toward the end of the episode, both uncoupled
and coupled models have too much northerly component, especialy in the “van” runs.

Mixing ratio time-series plots are presented in Figure 6.2.2c. In contrast to the data at
Conroe, these time-series plots reveal that all of the runs are essentially too dry, and that
they become drier over time. However, both “van” runs are somewhat better, especially
through about 0000 UTC on August 27. Interestingly, the models all recover at
1200 UTC on August 28, when they were re-initialized. This suggests that MM5 has
some difficulty maintaining the proper level of moisture near the surface, whence it may
be mixing down too much dry air from aloft, or not evaporating enough from the surface.

Figure 6.2.2d shows the 2-m temperature time-series plots. As at Conroe, the coupled
runs are somewhat better than the uncoupled runs, with the latter being too warm at night.
The uncoupled runs aso exhibit a phase “lead,” warming too quickly in the early
morning. This is consistent with the observation, discussed below, that the uncoupled
models tend to “kick on” the boundary layer earlier than do the coupled models, probably
in response to more rapidly increasing surface sensible heat fluxes.
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6.2.3 EFD (Ellington Field) - Bay proximate

Ellington Field is the surface station most proximate to the Bay and the major
emission sources of concern to the TNRCC. Figure 6.2.3a shows the 10-m wind speed
time-series plots, Figure 6.2.3b the wind-direction, Figure 6.2.3c the mixing ratio, and
Figure 6.2.3d the temperature. In contrast to Houston and Conroe, Ellington Field reports
a positive wind speed most of the time, suggesting that its proximity to the Bay may not
alow a true surface-based inversion at night. If so, some downward mixing of
momentum to the surface would occur nocturnally. The time-series plots show that, from
a magnitude point of view, there is not much difference between the runs: the two “kf5”
coupled runs overestimate the wind-speed slightly between 1800 UTC and 2300 UTC on
August 30. For both wind speed and direction, there are more data gaps (e.g., between
0001 UTC and 1600 UTC on August 26) than for other stations. Near 1800 UTC on
August 27, there are significant discrepancies between model runs and observations, but
there are not enough data to fully confirm significant model errors during this period.
Both uncoupled and coupled models have too much northerly component between
0006 UTC and 1500 UTC on August 2, but the uncoupled model is somewhat better
directionally (depending on the run) between 1800 UTC on August 28 and 0006 UTC on
August 29. The “van” runs do a poor job in capturing wind direction on August 30: after
1500 UTC, modeled wind direction is nearly opposite that observed. A sub-tropical
complex was moving northeast toward the region and the observed wind shifted from
easterly to southwesterly around 1600 UTC on August 30 but the models did not capture
this shift.

Modeled mixing ratios are not as dry as at Houston Hobby, relatively speaking. The
model re-initialization at 1200 UTC on August 28 is still noticeable, however. Also, the
trend toward drying out as the simulation progresses, especially during the first segment,
is still clearly present. Both “van” runs appear to be less dry-biased than the two “kf5”
run sets. The driest periods in the two “kf5” run sets are overnight, with the models
observed mixing ratios dropping (briefly) near sunrise. Toward the end of the episode,
the dry-biasisleast offensivein the “kf5.2w.c2” runs.

The temperature data at Ellington Field suggest increasingly warm daytime highs
(with the exception of August 30) throughout the episode. As at Houston Hobby and
Conroe, the coupled models again outperform the uncoupled models both in amplitude
and temperature phase, although the phase-lead noted at Houston Hobby in the uncoupled
models is not as obvious here. This phase-lead is also apparent in the uncoupled models
Conroe time-series plots, discussed above.

6.24 GLS (Galveston) - Gulf coast

Galveston is a coastal station that exhibits a distinctly different regional climatology
than the other stations. Influenced by both the Bay and near-shore Gulf, the winds tend to
blow much more steadily than at interior rural sights. Further, the temperature amplitude
may not be as great due to near-shore effects.

Both sets of “kf5” runs outperform the “van” runs with respect to wind-speed, shown
in Figure 6.2.4a. In particular, the “van” runs underestimate wind speeds between
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1800 UTC on August 28 and 1200 UTC on August 29, and then overestimate its
magnitude on much of August 30. The “kf5” run sets track much more smoothly with the
observations. There is not a notable difference between the uncoupled and coupled runs
for any of the runsin thisfigure.

However, in a manner similar to the Ellington Field data, wind direction tracks better
in the “van” runs (top panel, Figure 6.2.4b). The observed wind veers (clockwise) from
about 100° to about 270° between 0000 UTC on August 27 and 1800 UTC on August 28,
probably in association with the approach of the weak, dry trough on that day. However,
the two “kf5” runs back the wind counterclockwise, finaly arriving at the same direction
around 1800 UTC on August 28. This would lead to significantly different parcel
trajectories. All models fail profoundly on August 30, with modeled winds in near
opposition to observed winds through much of that day.

Mixing ratio time-series plots are presented in Figure 6.2.4c. Galveston’s proximity to
the water allows for a nearly constant moist environment. MM5's dry bias is obvious.
However, on average, the coupled models appear to be somewhat less biased. The
coupled “van” run in particular is moister during the daytime, a good example being the
period from 1200 UTC to 2300 UTC on August 27.

Figure 6.2.4d shows the 2m temperature time-series plots, which reveal that none of
the models capture the observed diurnal temperature amplitude. Nonetheless, each of the
coupled models is clearly superior to its uncoupled counterpart, in most cases reaching
daily maxima closer to that observed, as well as many nocturnal minima. Thisis no doubt
areflection of the careful land-water mask developed for the coupled model.

6.2.5 LBX (Brazoria County Airport) - rural southwest

Figure 6.2.5a shows the 10-mwind speed time-series plots at Brazoria County Airport,
a site located in the coastal plain southwest of metropolitan Houston. This area is often
subject to the passage of high ozone plumes that form in metropolitan Houston and are
transported down the coast on weak northeasterly winds. Much like Conroe, Brazoria
exhibits a diurnal speed cycle, in which winds die off at night and re-develop during the
day, in accordance with more classic land-based PBL behavior. For the most part, the
models capture this, though they have trouble capturing the calm winds overnight on
August 26.

There were not a lot of useful directional wind data at Brazoria (Figure 6.2.5b).
Mixing ratio time-series plots are presented in Figure 6.2.5c. The coupled model shows a
clear propensity © recover during the day, but is significantly drier than the uncoupled
model at night.

Figure 6.2.5d shows the 2-m temperature time-series plots. Again, the uncoupled
model exhibits two features. awarm bias at night and a phase-lead in the morning. While
the coupled models are in phase, their diurnal amplitude is dlightly too wide: the
nocturnal minimum is alittle cool, and the daytime maximum alittle warm. Thisis likely
areflection of MM5's dry bias. Without the dry bias, the uncoupled model would not
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warm as much during the daytime, and would not cool as much at night, i.e., the weak
diurnal temperature amplitude would be weaker. Together with the phase-leads already
noted, the combined warm-dry biases in the model suggest a fundamental problem in the
surface-flux physics in the uncoupled models, at least with the parameterizations
explored in this study.

6.2.6 PSX (Palacios Municipal) - Gulf Coast southwest

Palaciosis near the southwest border of the 4-km domain and is located on Matagorda
Bay. Of the six stations selected for review, Palacios is expected to be most influenced by
the boundary conditions, and thus show greater differences between the “van” runs and
the two sets of “kf5” runs. Figure 6.2.6a shows the 10-m wind-speed time-series plots.
During the day on August 20—the day when spurious KF convection was a significant
problem—the wind speed appears to be better represented in the two sets of “kf5” runs.
All model-runs underestimate the wind-speed maximum during the afternoon of
August 26; the wind-speed maximum may have been sea-breeze related (eg.,
Figure 6.2.6a).

Interestingly, Palacios exhibits a rather constant wind direction (Figure 6.2.6b), out of
the east-southeast, through most of the first 72 hours of the episode, and this is tracked
exceedingly well by all the models. This may be a reflection of good boundary-condition
winds at this point in the domain. The wind changes direction, veering to the south, west,
and northwest after 0000 UTC on August 28, and this is captured very effectively by the
“van” runs (top panel). Large swings in direction around 360° after 0000 UTC make it
difficult to interpret the rest of the time-series plots.

Mixing ratio time-series plots are presented in Figure 6.2.6¢c. Both uncoupled and
coupled models perform similarly, but again, the “van” runs outperform the two sets of
“kf5” runs, the latter being much too dry during the daylight hours on August 26 and 27.
Again, at the beginning of S2, the mixing ratios return to match the observations. This
recovery a model re-initialization, present in most mixing ratio time-series plots,
strongly suggests that model processes, rather than initial conditions, are responsible for
the various dry-biases noted.

Figure 6.2.6d shows the 2m temperature time-series plots. Both models overpredict
the daytime maxima, especially for the second half of the episode. It is likely that
Palacios wasinfluenced more from Matagorda Bay and the Gulf than was captured by the
models. The boundary conditions may also play arole. The “van” models show the most
error, with a lessening of the errors in the two sets of “kf5” runs, supporting the latter
argument. Only at Palacios and Galveston did the uncoupled models not exhibit a phase-
lead in early morning temperature rise. This is likely due to Palacios and Galveston’'s
proximity to the water.
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6.2.7 Figuresfor Section 6.2

6.2.7.1 Conroe Time-Series Plots

MME 4-km (Vanilla vs Wspd Coupled runs at stn: CX0O) Wind Speed time series from 00Z Aug 25, 1998
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Figure 6.2.1a. Conroe 10-m wind speed time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black) from
August 25 at 0000 UTC to August 31 at 0000 UTC.
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MMS 4-km (Vanilla vs Wspd Coupled runs at stn: CX0O) Wind Dir time series from 00Z£ Aug 25, 1998
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Figure 6.2.1b. Conroe 10-m wind directiontime-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black) from

August 25 at 0000 UTC to August 31 at 0000 UTC.
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MMS 4-km (Vanilla vs Wspd Coupled runs at stn: CXO) Mixing Ratio time series from 00Z Aug 25, 1988
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Figure 6.2.1c. Conroe 2-m mixing ratio time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black) from
August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (Vanillavs Wspd Coupled runs at stn: CXO) Temp time series from 00Z Aug 25, 1998
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Figure 6.2.1d. Conroe 2-m temperature time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black) from



6.2.7.2 Houston (Hobby) Time-Series Plots

MME 4-km (Vanilla vs Wspd Coupled runs at stn: HOU) Wind Speed time series from 00Z Aug 25, 1998
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Figure 6.2.2a. Houston Hobby 10-m wind speed time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black)
from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (Vanilla vs Wspd Coupled runs at stn: HOU) Wind Dir time series from 00Z Aug 25, 1998
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Figure 6.2.2b. Houston Hobby 10-m wind direction time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black)
from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (WVanilla vs Wspd Coupled runs at stn: HOU) Mixing Ratio time series from 00Z Aug 25, 1888
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Figure 6.2.2c. Houston Hobby 2-m mixing ratio time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black)
from August 25 at 0000 UTC to August 31 at 0000 UTC.



JAS]

MME 4-km (Vanilla wvs Wspd Coupled runs at stn: HOU) Temp time series from 00Z Aug 25, 1988
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Figure 6.2.2d. Houston Hobby 2-m temperature time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations (black)
from August 25 at 0000 UTC to August 31 at 0000 UTC.
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6.2.7.3

Ellington Field Time-Series Plots

MME d-km (Vanilla vs Wspd Coupled runs at stn: EFD) Wind Speed time series from 00Z Aug 25, 1988
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runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.

Figure 6.2.3a. Ellington Field 10-m wind speed time-series plots comparing three sets of coupled
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MME 4-km (Vanillavs Wspd Coupled runs at stn: EFD) Wind Dir time series from 00Z Aug 25, 1998
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Figure 6.2.3b. Ellington Field 10-m wind direction time-series plots comparing three sets of coupled
runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (Vanilla vs Wspd Coupled runs at stn: EFD) Mixing Ratio time series from 00Z Aug 25, 1988
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Figure 6.2.3c. Ellington Field 2-m mixing ratio time-series plots comparing three sets of coupled

runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (Vanilla vs Wspd Coupled runs at stn: EFD) Temp time series from 00Z Aug 25, 1998
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Figure 6.2.3d. Ellington Field 2-m temperature time-series plots comparing three sets of coupled
runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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6.2.7.4

Galveston Time-Series Plots

MME 4-km (Vanilla vs Wspd Coupled runs at stn: GLS) Wind Speed time series from 00Z Aug 25, 1998
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runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.

Figure 6.2.4a. Galveston 10-m wind speed time-series plots comparing three sets of coupled
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MMS 4-km (Vanillavs Wspd Coupled runs at stn: GLS) Wind Dir time series from 00Z Aug 25, 18998
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Figure 6.2.4b Galveston 10-m wind direction time-series plots comparing three sets of coupled
runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (Vanilla ve Wspd Coupled runs at stn: GLS) Mixing Ratio time series from 00Z Aug 25, 1898
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Figure 6.2.4c. Galveston2-m mixing ratio time-series plots comparing three sets of coupled

runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME d-km (Vanillavs Wspd Coupled runs at stn: GLS) Temp time series from 00Z Aug 25, 1898
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Figure 6.2.4d. Galveston 2-m temperature time-series plots comparing three sets of coupled
runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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6.2.7.5

MME 4-km (Vanilla vs Wspd Coupled runs at stn: LBX) Wind Speed time series from 00Z Aug 25, 1988
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Figure 6.2.5a. BrazoriaCounty Airport 10-m wind speed time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations
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MME 4-km (Vanillavs Wspd Coupled runs at stn: LBX) Wind Dir time series from 00Z Aug 25, 1998
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Figure 6.2.5b. Brazoria County Airport 10-m wind direction time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and
observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (WVanilla vs Wspd Coupled runs at stn: LBX) Mixing Ratic time series from 00£ Aug 25, 1998
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Figure 6.2.5c. Brazoria County Airport 2-m mixing ratio time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations
(black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (Manilla vs Wspd Coupled runs at stn: LBX) Temp time series from 00Z Aug 25, 1988
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Figure 6.2.5d. Brazoria County Airport 2-m temperature time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations
(black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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6.2.7.6 Palacios Municipal Airport Time-Series Plots

MME 4-km (Vanilla vs Wspd Coupled runs at stn: PSX) Wind Speed time series from 00Z Aug 25, 1998
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Figure 6.2.6aPalacios 10-m wind speed time-series plots comparing three sets of coupled
runs (red), uncoupled runs (blue), and observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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Figure 6.2.6b

MME 4-km (Vanillavs Wspd Coupled runs at stn: PSX) Wind Dir time series from 00Z Aug 25, 1858
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observations (black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MME 4-km (Vanilla vs Wspd Coupled runs at stn: PEX) Mixing Ratic time series from 00Z Aug 25, 1998
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Figure 6.2.6¢. Palacios Municipa Airport 2-m mixing ratio time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations
(black) from August 25 at 0000 UTC to August 31 at 0000 UTC.
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MWME 4-km (Vanilla vs Wspd Coupled runs at stn: PSX) Temp time series from 00£ Aug 25, 19598
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Figure 6.2.6d. Palacios Municipal Airport 2-m temperature time-series plots comparing three sets of coupled runs (red), uncoupled runs (blue), and observations
(black) from August 25 at 0000 UTC to August 31 at 0000 UTC.



6.3 Spatial Aggregate Time-SeriesPlotsfor Mean, Bias, and Error

Spatial aggregate, bias, and error time-series plots are discussed in this section. These
time-series plots smooth out the station-to-station differences and reveal the spatial-mean
signal, spatial-mean bias, and spatial-mean absolute errors as functions of time. For each
of the three 36 km-12 km cases (“van’, “kf5.2w”, and “kf5.2w.c2”) four figures are
presented, one for each of the four variables (wind speed, wind direction, mixing ratio,
and temperature) discussed in Section 6.2. The upper panel of each figure shows the
gpatial-mean observed and modeled (in all cases coupled versus uncoupled) values, the
middle panel compares the uncoupled versus coupled spatial-mean biases, and the bottom
panel compares the uncoupled versus coupled mean-absolute error. The number of
observationsis also presented in the bottom panel of each figure.

6.3.1 Wind Speed

For parent case “van” (Figure 6.3.1a), the wind speed mean time-series, bias, and error
plots are remarkably similar. The most notable exception occurs the afternoon of
August 27, when the coupled model is clearly superior. The bias is variable and changes
sign, typically being positive (too windy) at night and negative (too calm) during the day.
This is especially true for S1. Between 1200 UTC on August 29 and 0000 UTC on
August 30, the models perform well, though they overestimate the wind speed slightly.
After 0000 UTC on August 30, both models significantly overestimate wind speed
(4-5 kts). This period had the worst statistics of the runs.

For parent case “kf5.2w” (Figure 6.3.1b), two features stand out in contrast to parent
case “van.” The first is the significant improvement in the coupled model on the
afternoon of August 25. The overestimate by the uncoupled model is likely related to its
vigorous cloud production (see also Figures 6.7.3 and 6.8.10), which tends to generate
wind. The second feature is the improvement starting near 0000 UTC on August 30. This
is thought to be aresult of the boundary condition improvement in the “kf5” versus “van”
36 km-12 km parent runs.

As in the first two cases, there is not a substantial difference between the coupled and
uncoupled models in parent case “kf5.2w.c2” (Figure 6.3.1c). There are a couple of short
periods where one outperforms the other, but these are relatively brief and balanced, and
reflected in both bias and error time-series plots. Overall, the two “kf5” cases appear to
outperform case “van.” The better performance is dominated by improvements during
and after late afternoon on August 29. Neither the coupled nor uncoupled models are
clearly superior with respect to wind speed. Both would result in about the same amount
of ventilation if used to drive an air quality model for this episode.

6.3.2 Wind Direction

As Neilson-Gammon has described, wind hodographs tend to precess about a mean
wind vector with arotational frequency tied to the phase equivalency of both the diurnal
and inertial periods at about 30° north (Neilson-Gammon, 2001a, 2001b). Though no
hodographs were plotted, the mean observed time-series plots for the parent case “van”
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reveal such a precession on most days of the episode (Figure 6.3.2a). Thisis most clearly
seen between 1200 UTC August 26 and 1200 UTC August 27, when the wind veered
steadily between 50° (east-northeast) and 270° (west); and between 1200 UTC August 27
and 1200 UTC August 28, when the wind first exhibited about an 8-hour light-and-
variable period followed by a “reset” to around 120° (east-southeast) and then veered
steadily to about 320° (west-northwest).

Parcel tragjectories tend to follow precessing spirals which “blow” aong the mean
wind vector. Under a scenario in which the mean wind is light and doesn’t change
direction, parcels can approximate a circle in 24 hours. Both coupled and uncoupled
models do a remarkable job following this directional precession through the beginning
of the “reset” period at 1200 UTC on August 27. During this time, the coupled model has
a bit more trouble adjusting, until it recovers at around 0000 UTC on August 28. Note
that this was one of the two highest ozone days, and, further, that the calm-followed-by
reset was associated with the strengthening High and its weak anticyclonic flow over
Houston The mean observed wind speed during the calm period was about 2 kts.

Another reset occurs during the afternoon of August 28, with the approaching trough,
when the mean wind shifts from about 300° (west-northwest) to 150° (south-southeast).
Here, the timing of the coupled model “reset” is better than the uncoupled, the uncoupled
adjusting much too soon. In general, the directional bias and errors are remarkably low
through about 1800 UTC on August 27, during the middle of the calm. From after the
second reset on the afternoon of August 28 through the end of the episode, statistics for
both models degrade, retaining their similarity in this regard too. Since the land-surface
formulation was the only difference between the runs, and they are so similar, almost
none of the bias/error can be attributed to the land-surface formulation in either model
after 0000 UTC on August 29. Rather, boundary condition/large-scale forcing is thought
to be the most important factor here. It is possible that the switch to the EDAS analysis
data at 1200 UTC on August 28 played arole in the poorer directional performance after
that time. For large blocks of time on August 30, both models predicted winds blowing in
opposition to those observed.

Prior to the first “reset,” statistics for parent case “kf5.2w” (Figure 6.3.2b) are similar
to those for case “van.” The first notable difference occurs during the first reset on
August 27, when both coupled and uncoupled models shift the wind first to the
north-northeast and then gradually “catch up” over the next 18 hours.

Parent case “kf5.2w.c2” (Figure 6.3.2¢) adjusts more quickly after the first reset than
does case “kf5.2w”. Both “kf5" cases are similar following the second “reset” during the
afternoon of August 28. Case “kf5.2w.c2” and case “van” appear superior during the
reset on August 27. Because case “van” is superior in wind speed, it would be expected to
produce the optimal surface mean flow characteristics during S1. Further, there is not a
lot of difference in bias/error statistics between the two “kf5” cases and the “van” case
during most of S2. For S2, speed statistics were better in the “kf5” runs, with no clear
winner between the two directionaly, nor between coupled and uncoupled models.
Because speeds were similar, one would expect similar ventilation effects during S2 from
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either coupled or uncoupled “kf5” runs. Directiona differences in the mean appear
minor, with both models continuing to do poorly on the afternoon of August 30. Because
the “kf5” cases were superior to case “van” for wind speed, they should be better choices
for S2, from awind perspective.

6.3.3 Mixing Ratio

For parent case “van,” mixing ratio mean, bias, and error reveal that MM5 output is,
on average, too dry (Figure 6.3.3a). This is most true for the uncoupled model; the
coupled model recovers during the afternoons of most days, whereas the uncoupled
model’s dryness persists. The dry errors are larger at night for the uncoupled model,
likely because of its dew formation capability. On average, errors range up to
3.5- 4.0 g/kg, but return to nominal at model initialization. This suggests a fundamental
surface moisture problem, especially in the uncoupled model which does not allow dew
formation.

Both parent case “kf5.2w” (Figure 6.3.3b) and parent case “kf5.2w.c2” (Figure 6.3.3c)
reveal increases in moisture on August 30 when compared to the “van” runs. Correction
of the KF-induced boundary condition being the only difference, this illustrates the
importance of boundary conditions for scalar moisture variables. Overall, it appears that
the “kf5” run sets handled S2 better than the “van” run sets, whereas, case “van” appears
dightly better for S1 moisture. Finaly, the coupled model appears to do a better job than
the uncoupled model during the day, but isdrier at night.

6.3.4 Temperature

In all cases, the coupled model outperforms the uncoupled model with respect to 2-m
temperature. The two are closest for case “van” (Figure 6.3.44), less close for case
“kf5.2w” (Figure 6.3.4b), and farthest apart (the coupled model is better) for case
“kf5.2w.c2” (Figure 6.3.4c). Both models are warmer on August 30 for the “kf5” cases,
with the coupled model bias near zero, and the uncoupled model bias near +3.0°F.
Temperature appears improved in the “kf5” run sets compared to the “van” case for S2.

The uncoupled model temperature bias is worst (warm) at night and somewhat better,
though still too cool, during the day. Given that photochemical reactions are extrenely
sensitive to temperature, negative biases on August Z7 and 29 during daylight hours
could retard reaction rates.

In the mean, the phase-lead in morning temperature rise in the uncoupled models is
barely discernable. The TOPLATS-coupled runs follow the observed mean temperature
curves with no discernable phase difficulty.

The coupled model reveals a modest cold bias at night and warm bias during the day.
The latter is likely a reflection of its somewhat warmer surface temperatures, and the
former areflection of the model’s nocturnal dry bias. As mentioned above, increasing the
moisture in the coupled model would further improve its temperature performance, but
further degrade the uncoupled model’s performance. This suggests that the coupled
model provides a fundamental correction to problems related to the surface physics
formulation in the uncoupled model.
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6.3.5 Figuresfor Section 6.3

6.3.5.1 Wind Speed

MME 4-km van (Vanilla vs Wspd Coupled run) Wind Speed stats from 00Z Aug 25, 1998
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Figure 6.3.1a. Domain average 10-m wind speed time-series plot (top), bias time-series plot (middle), and absolute error time-series plot (bottom)
for case“van”. The number of observationsis shown in the bottom panel.
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MMSE 4-km kfS. 2w (Wanilla vs Wspd Coupled run) Wind Speed stats from 002 Aug 25, 1998
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Figure 6.3.1b. Domain average 10-m wind speed time-series plot (top), bias time-series plot (middle), and
absolute error time-series plot (bottom) for case “kf5.2w”.
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MMS 4-km kfs.2w.c2 (Vanillavs Wspd Coupled run) Wind Speed stats from 00Z Aug 25, 1988
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Figure 6.3.1c. Domain average 10-m wind speed time-series plot (top), bias time-series plot (middle), and
absolute error time-series plot (bottom) for case “kf5.2w.c2”.
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6.3.5.2 Wind Direction

MME 4-km van (Vanillavs Wspd Coupled run) Wind Dir stats from 00Z Aug 25, 1988
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Figure 6.3.2a. Domain average 10-m wind direction time-series plot (top), bias time-series plot (middle), and absolute error
time-series plot (bottom) for case “van”. The number of observationsis shown in the bottom panel.
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MME 4-km kf5. 2w (Vanilla vs Wspd Coupled run) Wind Dir stats from 00Z Aug 25, 1998
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Figure 6.3.2b. Domain average 10-m wind direction time-series plot (top), bias time-series plot (middle), and
absolute error time-series plot (bottom) for case “kf5.2w”.
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MME 4-km kf5. 2w.c2 (Vanilla vs Wspd Coupled run) Wind Dir stats from 00Z Aug 25, 1998
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Figure 6.3.2c. Domain average 10-m wind direction time-series plot (top), biastime-series plot (middle), and
absolute error time-series plot (bottom) for case “ kf5.2w.c2”.
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6.3.5.3
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MMSE d-km wan (Vanilla vs Wspd Coupled run) Mixing Ratico stats from 002 Aug 25, 1998
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Figure 6.3.3a. Domain average 2-m mixing ratio time-series plot (top), biastime-series plot (middl€), and absolute
error time-series plot (bottom) for case “van”. The number of observationsis shown in the bottom panel.
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MME 4-km kf5.2w (Vanilla vs Wspd Coupled run) Mixing Ratio stats from 00Z Aug 25, 1998
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Figure 6.3.3b. Domain average 2-m mixing ratio time-series plot (top), bias time-series plot (middle), and

absolute error time-series plot (bottom) for case “kf5.2w”.
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MME 4-km kfs. 2w.c2 (Vanilla vs Wspd Coupled run) Mixing Ratio stats from 00Z Aug 25, 1988
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Figure 6.3.3c. Domain average 2-m mixing ratio time-series plot (top), bias time-series plot (middle), and
absolute error time-series plot (bottom) for case “ kf5.2w.c2”.
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6.3.5.4 Temperature

MME 4-km van (Vanillavs Wspd Coupled run) Temp stats from 00Z Aug 25, 1898
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Figure 6.3.4a. Domain average 2-m temperature time-series plot (top), bias time-series plot (middl€), and absolute error
time-series plot (bottom) for case “van”. The number of observationsis shown in the bottom panel.
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MME 4-km kf5. 2w (Vanilla vs Wspd Coupled run) Temp stats from 002 Aug 25, 1998
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Figure 6.3.4b. Domain average 2-m temperaturetime-series plot (top), biastime-series plot (middle), and
absolute error time-series plot (bottom) for case “kf5.2w”.
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MME 4-km kf5.2w.c2 (Vanilla vs Wspd Coupled run) Temp stats from 00Z Aug 25, 1958
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Figure 6.3.4c. Domain average 2-m temperature time-series plot (top), bias time-series plot (middle), and
absolute error time-series plot (bottom) for case “kf5.2w.c2".
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6.4 Episode M ean Statistics over the 4-km Domain

This section discusses the episodic mean results, constructed by calculating the bias
and RMSEs over all data pairsin space and time. These data are presented in both tabular
and bar-graph form. The bar graphs are particularly useful for discerning the overall,
gross performance of the runs.

Bias and error statistics are calculated as follows:

N
Absolute Bias. Bias(t) :% é_ V06,1 - V, (%, 1)}
i=1

N
Mean Absolute Error:  MAE(t) = % a Vo (%, 1) - Vo (%, );
i=1

N
Root Mean Square Error:  RMSE(t) = %é_ V(%10 - {V, (%, D}
i=1

where V(%) is any model variable at the i surface-station-location x, V(x;t) is the
observation of that same variable at the same time, N=11 is the number of surface
stations, and t is time (on the hour). For the episodic statistics, N is the total number of
data pairs over all stations and time, and the statistics are no longer time functions.

Because of distinct differencesin nocturnal versus daytime behavior as revealed in the
time-series plots in the previous sections, these statistics were broken down into daytime
(1200-0000 UTC) and nighttime (0000-1200 UTC) components, as well as the episode
mean.

6.4.1 Tables

Tables 6.4 through 6.12 show the episode, daytime, and nighttime mean bias, mean
RMSE, and mean absolute error for the temperature (T), dew-point temperature (Td), and
mixing ratio (Q) at 2 m, and for the wind-speed (Spd), west-to-east wind component (U),
and south-to-north wind component (V) at 10 m. For completeness, both the wind-speed
corrected coupled runs and the standard u- coupled runs have been included, even though
the authors believe the coupled results with the standard formula would not be suitable
for application in an air quality model (because of the overly-light daytime winds over
land). Further, wind statistics for the coupled standard-u- runs can be counter-intuitive:
nearly calm modeled winds can result in smaller daytime errors and biases in some cases.
Nevertheless, this type of wind field, which is also observed in many 4-km runs using the
standard GSPBL scheme, would promote over-stagnation and over-production of ozone
inan air quality model.
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Table6.4. Episodic statistics for case blk.van.van (uncoupled).

T(°F) Td(°F) | Q(g/kg) | Spd (kts) | U (kts) | V (kts)
Episode average bias 0.414 -2.184 -1.151 0.843 -1.293| -1.171
Episode average RMSE 3.385 4211 2.567 3.220 3.369 3.808
Episode average abs error 2.667 3.296 2.017 2.548 2.562 2.868
Daytime average bias -0.328 -2.395 -1.291 0.124 -1.286| -1.941
Daytime average RMSE 3.388 4515 2737 3.176 3.599 4.328
Daytime average abs error 2.625 3.518 2134 2.485 2.684 3.227
Nighttime average hias 1.426 -1.908 -0.968 1711 -1.302 -0.241
Nighttime average RMSE 3.381 3.780 2.328 3.272 3.070 3.065
Nighttime average abs error 2.724 3.006 1.865 2.625 2416 2.436
Table6.5. Episodic statistics casefor blk.van.c2 (coupled).
TR Td(°F) | Q(g/kg) | Spd(kts) | U (kts) | V(kts)
Episode average bias -0.381 -2.540 -1.329 -0.947 -0.325 -1.336
Episode average RMSE 2.710 4.688 2.786 3.786 3.263 3.630
Episode average abs error 2.144 3.686 2.179 2.961 2.498 2.668
Daytime average bias 0.087 -1.628 -0.792 -2.522 0.443 -1.725
Daytime average RMSE 2.669 4.369 2.673 4.306 3.483 4131
Daytime average abs error 2.076 3.397 2.080 3.410 2.642 2.999
Nighttime average bias -1.026 -3.727 -2.027 0.951 -1.250 -0.868
Nighttime average RMSE 2.765 5.073 2.926 3.044 2.976 2913
Nighttime average abs error 2.239 4.061 2.307 2421 2.324 2.270
Table6.6. Episodic statistics for case blk.wspd.van.c2 (coupled with u. correction).
TCH Td(°h Q(gkg) | Spd(kts) | U (kts) | V (kts)
Episode average bias -0.822 -2.090 -1.040 0.907 -1.261 -2.069
Episode average RMSE 2.799 4.680 2.800 3.184 3.413 4.216
Episode average abs error 2.224 3.652 2.185 2.526 2.606 3.154
Daytime average bias -0.523 -0.828 -0.296 0.442 -1.166 -3.063
Daytime average RMSE 2.789 4.274 2.671 3.156 3.562 4.977
Daytime average abs error 2191 3.342 2.101 2479 2.650 3.791
Nighttime average bias -1.233 -3.733 -2.007 1.468 -1.376 -0.870
Nighttime average RM SE 2.813 5.162 2.959 3.218 3.223 3.057
Nighttime average abs error 2.270 4.055 2.293 2.582 2.553 2.387
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Table6.7. Episodic statistics for case blk.kf5.2w.van (uncoupled).

T(°P Td(°P | Q(g/kg) | Spd(kts) | U (kts) | V (kts)
Episode average bias 1421 -2.091 -1.107 0.795 -1.759 -1.645
Episode average RMSE 3.629 4.634 2.843 3.009 3.473 3.742
Episode average abs error 2910 3.723 2291 2.426 2.625 2.896
Daytime average bias 0.505 -2.484 -1.353 0.687 -2.141 -2.598
Daytime average RMSE 3.467 5.019 3.053 3.165 4.045 4.306
Daytime average abs error 2.740 3.973 2414 2539 3.052 3.373
Nighttime average bias 2.682 -1.580 -0.786 0.925 -1.298 -0.495
Nighttime average RMSE 3.842 4,078 2.545 2.810 2.622 2.922
Nighttime average abs error 3.145 3.397 2.130 2.290 2.110 2.321
Table6.8. Episodic statistics for case blk.kf5.2w.c2 (coupled).
T(°F) Td(°F) | Q(g/kg) | Spd(kts) | U (kts) | V (kts)
Episode average bias 0.217 -2.595 -1.398 -0.989 -0.623 -1.715
Episode average RMSE 2.466 4,986 3.025 3.611 3.170 3.693
Episode average abs error 1.930 4.010 2417 2.866 2434 2.801
Daytime average bias 0.566 -1.971 -1.020 -2.255 0.124 -2.138
Daytime average RMSE 2.537 5.089 3.122 4.139 3.483 4.186
Daytime average abs error 1.946 3.998 2454 3.313 2.622 3.190
Nighttime average bias -0.265 -3.408 -1.890 0.537 -1.523 -1.205
Nighttime average RMSE 2.363 4.849 2.895 2.846 2.746 2.993
Nighttime average abs error 1.909 4.025 2.368 2.327 2.206 2.332

Table6.9. Episodic statistics for case blk.wspd.kf5.2w.c2 (coupled with u. correction).

T(CF Td(°F) | Q(gkg) | Spd(kts) | U (kts) | V (kts)
Episode average bias -0.020 -2.425 -1.293 0.896 -1.811 -2.535
Episode average RMSE 2.456 5.020 3.062 3.021 3.468 4.333
Episode average abs error 1.933 4.094 2.485 2418 2.615 3411
Daytime average bias 0.256 -1.496 -0.731 0.881 -1.958 -3.614
Daytime average RMSE 2534 4.999 3.116 3.183 3.913 5111
Daytime average abs error 1.956 3.992 2.493 2.525 2.873 4.176
Nighttime average bias -0.400 -3.634 -2.023 0.914 -1.634 -1.235
Nighttime average RM SE 2.344 5.048 2.990 2.813 2.841 3.150
Nighttime average abs error 1.902 4.227 2475 2.288 2.304 2.489
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Table6.10. Episodic statistics for case blk.kf5.2w.c2.van (uncoupled).

T(CF Td(°F) | Q(g/kg) | Spd(kts) | U (kts) | V (kts)
Episode average bias 1.530 -2.266 -1.206 0.595 -1.509 -1.171
Episode average RMSE 3.519 4722 2.883 2.963 3.326 3.555
Episode average abs error 2.800 3.843 2.351 2.324 2.509 2.686
Daytime average bias 0.638 -2.557 -1.390 0.202 -1.691 -2.190
Daytime average RMSE 3.248 5.040 3.057 3.125 3.802 4.096
Daytime average abs error 2.548 4.004 2.426 2.443 2.840 3.127
Nighttime average bias 2.759 -1.886 -0.965 1.070 -1.290 0.057
Nighttime average RMSE 3.861 4.273 2.640 2.755 2.641 2.767
Nighttime average abs error 3.148 3.634 2.255 2.180 2111 2154
Table6.11. Episodic statisticsfor case blk.kf5.2w.c2.c2 (coupled).
TP Td(°F) | Q(g/kg) | Spd(kts) | U (kts) | V (kts)
Episode average bias 0.322 -2.644 -1.411 -1.064 -0.486 -1.412
Episode average RMSE 2.494 5.057 3.045 3.705 3.256 3.582
Episode average abs error 1.929 4.093 2.459 2.8834 2.491 2.673
Daytime average bias 0.667 -1.890 -0.958 -2.524 0.371 -2.003
Daytime average RMSE 2.620 4.974 3.046 4.326 3.560 4.115
Daytime average abs error 1.988 3.959 2430 3.401 2.654 3.096
Nighttime average bias -0.152 -3.626 -2.001 0.698 -1.519 -0.699
Nighttime average RMSE 2.310 5.163 3.044 2779 2.845 2.809
Nighttime average abs error 1.848 4.268 2.496 2.260 2.295 2.163

Table6.12. Episodic statigtics for case blk.wspd.kf5.2w.c2.c2 (coupled with u. correction).

T(°F) Td(°F) | Q(g/kg) | Spd(kts) | U (kts) | V (kts)
Episode average bias 0.026 -2.538 -1.338 0.712 -1.586 -2.029
Episode average RMSE 2.448 5.219 3.142 2.963 3.339 4.090
Episode average abs error 1.916 4.236 2.558 2371 2.556 3.144
Daytime average bias 0.280 -1.461 -0.691 0.433 -1.559 -3.116
Daytime average RMSE 2.585 5.028 3.119 3.107 3.687 4.849
Daytime average abs error 1.993 4.020 2.505 2.467 2.715 3.869
Nighttime average bias -0.324 -3.939 -2.179 1.049 -1.618 -0.719
Nighttime average RMSE 2.247 5.457 3.171 2.780 2.864 2.924
Nighttime average abs error 1811 4517 2.627 2.255 2.363 2.270
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Bar charts showing the bias and RMSE corresponding to the above tables are
presented in Figures 6.4.1 through 6.4.6. These figures facilitate interpretation of the
tabular numbers and serve as the basis for the following discussion.

6.4.2 Discussion
Temperature: Figures 6.4.1athrough 6.4.1f

The episode-mean temperature bias is clearly best for the two “kf5” coupled runs. The
“van” coupled run is biased slightly cold. The best uncoupled run was case “van.” Both
during the day and at night, the coupled “kf5” runs outperformed the uncoupled runs.

Though the uncoupled “van” temperature bias may be dightly better than the coupled
“van” bias, the RMSESs reveal that the TOPLATS-coupled runs are better for all cases,
with an average RMSE difference approaching 1.0°F. This means that there are more
large temperature errors, in addition to the mean errors, in the uncoupled model. Both
SRB and NEXRAD which drive TOPLATS, aong with TOPLATS superior spatial
land-use and land-surface physics, no doubt play a major role in thisimprovement.

Moisture: Figures 6.4.2athrough 6.4.2f

Overal, the coupled model case “van” performs best in the mean, improving over the
uncoupled model significantly during daylight hours when photochemistry is active. Of
less significance is the dry bias at night, which is worse in the coupled model. The two
“kf5” coupled runs are marginally worse in the mean, but are still better during the
critical daytime hours. The daytime RMSEs are essentially equivalent; thus, given better
mean daytime biases, the coupled models will give a better overall estimate of absolute
daytime moisture.

Wind Speed: Figures 6.4.3athrough 6.4.3f

All six coupled and uncoupled runs reveal episodic mean positive speed biases of
between 0.5 kts and 1.0 kts. Over a 10-hour daytime period, when four of the six biases
are under 0.5 kts, a parcel will travel two to four miles farther than it would in nature.
This may be an unavoidable consequence of scale: it is hard not to overestimate the wind
slightly in a mesoscale model. At night, the speed biases are greatest, with the uncoupled
“van” case exceeding 1.5 kts. RMSEs are virtually identical between the uncoupled and
coupled models. Thus, from a purely ventilation/dispersion viewpoint, neither coupled
nor uncoupled model would be expected to outperform the other.

Wind Direction: Figures 6.4.4athrough 6.4.5f

Both U-components and V-components were evaluated. The episodic mean
U-component biases are nearly identical between all coupled and uncoupled runs,
averaging around —1.5 kts. For a mean wind blowing out of the southeast, this suggests a
counterclockwise bias (more out of the east). During the day, this bias is dightly smaller
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for the coupled model than for the uncoupled model and slightly larger at night. Thereis
no significant U-component RM SE difference in the mean at night or during the day.

The uncoupled model is clearly better at replicating the observed V-component of the
wind, with a mean negative bias of around —1.3 kts, as opposed to a mean negative bias
of around —2.2 kts for the coupled model. This again suggests a counterclockwise bias for
a mean wind blowing out of the southeast. During the day, the coupled model
performance is worst, with biases of around —3.3 kts (versus —2.3 kts for the uncoupled
model). At night, the biases decrease to less than —1.0 kts for al models; the coupled
model is, on average, about .5 kts worse. RMSEs are dlightly worse for the coupled
model, averaging around 4.2 kts as opposed to 3.6 kts for the uncoupled model. Both
night and day RMSEs are worse in the coupled than in the uncoupled model for the
V component.

Overall, the U- and V-component biases suggest a counterclockwise model bias, with
the coupled model showing a dightly greater bias than the uncoupled model. This is
shown in Figure 6.4.6, which presents the observed episode mean wind vectors compared
to modeled episode mean wind vectors for al nine cases evaluated. The mean U and V
components were cal culated and then the mean wind vectors were resolved, where the U-
and V-component means were obtained over all observing stations throughout the
duration of the episode.

The mean observed wind vector blew out of the southeast. During the day, the
counterclockwise bias was not as large as it was at night, when the mean observed wind
was southerly, despite land-breeze forcing. As indicated in Section 6.3, much of the mean
directiona forcing was likely due to boundary conditions/large-scale forcing, i.e., the
synoptic competence of the outer-domain model. However, differences in the mean
direction between the coupled and uncoupled model smulations within the 4-km domain
are due to the different land surface models and can be explained ssimply by noting that
the coupled model simulations contain less daytime sea-breeze forcing due to warmer
(observed) coastal waters, and more nighttime land-breeze forcing due to cooler land
surfaces (also observed). By contrast, the uncoupled model simulations display a band of
“too cold” SSTs (Figures 6.5.9, 6.5.10, and 6.8.9) which hug the Gulf shore, creating
greater daytime sea-breeze forcing. Notwithstanding, anomalies in modeled mean wind
direction do not ater the ability of the models to smulate the precession of the wind
vector around the diurnal/inertial period. As indicated in the directional time-series plots
presented in Section 6.3, both models capture diurnal wind vector rotation adequately.
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Figure 6.4.1a. Episodic-mean 2-m temperature performance comparison: overall bias (al hours).
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Figure 6.4.1b. Mean 2-m temperature performance comparison: daytime bias.
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Temperature Bias: Highttime Average
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Figure 6.4.1c. Mean 2-m temperature performance comparison: nighttime bias.
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Figure 6.4.1d. Episodic-mean 2-m temperature performance comparison: overall RMSE (al hours).

96



Temperature [deqg F]

Temperature [deq F)

05 4

Temperature RMS Error: Daytime Average

kil

25 4

05 -

1

Temperature RMS Error: Nighttime Average

el

258

B Case: blkwanwan

O Case: blk.wan.c?

O Caze: blk kF5.2wwan

B Case: blk kfG.2w.c2

O Case: blk kfE.2w.c2van

W Caze: blk k5 2wc2 o2

B Case: blkwspd.van.c2

O Caze: blkwspd ki5.2w.c2

O Casze: blkwspd kIS 2wclc2

Figure 6.4.1e. Episodic-mean 2-m temperature performance comparison: daytime RMSE.
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Figure 6.4.1f. Episodic-mean 2-m temperature performance comparison: nighttime RMSE.
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Figure 6.4.2a. Episodic-mean 2-m mixing ratio performance comparison: overall bias (al hours).
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Figure 6.4.2b. Episodic-mean 2-m mixing ratio performance comparison: daytime bias.
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Figure 6.4.2c. Episodic-mean 2-m mixing ratio performance comparison: nighttime bias.
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Figure 6.4.2d. Episodic-mean 2-m mixing ratio performance comparison: overall RMSE (al hours).
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Figure 6.4.2e. Episodic-mean 2-m mixing ratio performance comparison: daytime RMSE.
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Figure 6.4.2f. Episodic-mean 2-m mixing ratio performance comparison: nighttime RMSE.
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Figure 6.4.3a. Episodic-mean 10-m wind speed performance comparison: overal bias (all hours).
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Figure 6.4.3b. Episodic-mean 10-m wind speed performance comparison: daytime bias.
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Wind Speed Bias: Nighttime Average
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Figure 6.4.3c. Episodic-mean 10-m wind speed performance comparison: nighttime bias.
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Figure 6.4.3d. Episodic-mean 10-m wind speed performance comparison: overall RMSE (al hours).
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Figure 6.4.3e. Episodic-mean 10-m wind speed performance comparison: daytime bias.
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Figure 6.4.3f. Episodic-mean 10-m wind speed performance comparison: nighttime bias.
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U Component Bias: Episode Average
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Figure 6.4.4a. Episodic-mean 10-m U-component performance comparison: overal bias (al hours).
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Figure 6.4.4b. Episodic-mean 10-m U-component performance comparison: daytime bias.
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Figure 6.4.4c. Episodic-mean 10-m U-component performance comparison: nighttime bias.
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Figure 6.4.4d. Episodic-mean 10-m U-component performance comparison: overall RMSE (al hours).
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Figure 6.4.4f. Episodic-mean 10-m U-component performance comparison: nighttime bias.
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Figure 6.4.5a. Episodic-mean 10-m V-component performance comparison: overal bias (al hours).
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Figure 6.4.5b. Episodic-mean 10-m V-component performance comparison: daytime bias.
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Figure 6.4.5c. Episodic-mean 10-m V-component performance comparison: nighttime bias.
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Figure 6.4.5d. Episodic-mean 10-m V-component performance comparison: overall RMSE (al hours).
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Figur e 6.4.5e. Episodic-mean 10-m V-component performance comparison: daytime bias.
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Figure 6.4.5f. Episodic-mean 10-m V-component performance comparison: nighttime bias.
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Figure 6.4.6. Observed mean wind vectors (Obs) and mean wind vectors for
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6.5 Earth Surface Flux Comparison: Uncoupled Versus Coupled

This section presents qualitative comparisons of the surface fluxes, with a focus on
sensible heat flux (HFX) in the uncoupled versus coupled runs. The subsections below
provide examples of flux differences for the entire domain Issues related to sea-surface
flux differences are also discussed.

6.5.1 Land-Surface Flux Comparison

There ae two primary controls on differences between coupled and uncoupled land
surface fluxes. The first control is the ingestion of SRB solar insolation products, as
described in Section 2. This yields differences in available energy for partitioning into
sensible, latent, and ground heat fluxes. The second control is due to inherent differences
in the TOPLATS model versus MM5's SLAB model, particularly with regard to land
cover, soils, and topographic data and the time-varying moisture content in TOPLATS.
These controls yield substantial differencesin the diurnal cycle of sensible and latent heat
fluxes predicted by the two modeling systems. In particular, the most important flux
differences influencing the coupled model dynamics appear to fall into the following
three general areas. (1) Houston heat island representation; (2) nocturnal dew formation;
and (3) flux spatial variability due to land cover, soil, topographic, and moisture
variation.

6.5.1.1 Heat-Island Representation

One of the mgjor features observed in the coupled runs but not in the uncoupled runsis
the Houston “heat island”, which is reflected as a positive HFX value that persists into
the evening, and therefore modifies the boundary layer in the coupled runs, as illustrated
in Figure 6.5.1. This effect is hypothesized to be a function of the higher heat capacity for
urban areasin TOPLATS. The most significant impact of a persistent positive HFX value
into the evening would likely be a delay in the collapse of the boundary layer, which in
turn could have implications for circulations and transport in the vicinity of Houston. The
impact of HFX differences for August 29 (shown in Figure 6.5.1) on predicted boundary
layer heights in the coupled model is shown in Figure 6.8.45, with differences ranging
from 500-1000 m.

6.5.1.2 Dew Formation

A second major feature observed in the coupled runs but not in the uncoupled runsis
the formation of dew at night, which is reflected as negative latent heat flux (QFX)
values, illustrated in Figure 6.5.2 for August 26 at 0900 UTC. The sign of the latent heat
flux in TOPLATS is determined entirely by the specific humidity gradient (Peters-Lidard,
2001e), whereas in the SLAB model, negative gradients are effectively prohibited.
Differences in this gradient result from at least two factors: (1) differences in surface or
“skin” specific humidity (calculated in both models using the saturation vapor pressure at
the skin temperature); and (2) differences in surface-layer (observation height or MM5
lowest-model-layer) specific humidity between interna MM5 calculations and the
surface-station observations used to drive TOPLATS.
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Later in the episode, it appears that TOPLATS dew formation is decreased, but still
present, in most of the domain, as shown in Figure 6.5.3 for August 30, 1998. In the
uncoupled MM5, the positive latent heat fluxes increase (nocturnal evaporation). In
general, both effects could occur in the models due to drying of the overlying air (see
Figure 3.5) between August 26 and early morning on August 30. But the lack of dynamic
soil moisture in SLAB prohibits the interaction of dew with the earth’s surface, and thus
the latent flux is entirely controlled by the lowest-model-layer specific humidity and the
moisture “availability” parameter. Clearly, strong nocturnal evaporation over land is
unrealistic. However, the statistics show that the impact of TOPLATS dew formation
may have been to extract too much moisture from the atmosphere at night, leading to the
large nocturnal dry biases. Implementation of scaling considerations in a more complex
coupling scheme might be needed to both preserve TOPLATS' dew formation capability
and restrict itsimpact on the overlying modeled air at the 4-km scale.

In thislight and with reference to the discussions under Sections 6.2.5, 6.3.3, and 6.3.4
above, it appears that the standard MM5 has a significant surface thermodynamic
(temperature and moisture) process-representation problem It is both too warm and too
dry at night, and too cool and too dry during the daytime. Improving the moisture
representation would further degrade the temperature performance, by further restricting
the aready poor diurnal temperature cycle. Since photochemistry is sensitive to
temperature (and somewhat less so to moisture), the coupled model’s ability to correct
this fundamental problem is an important result.

6.5.1.3 Flux Spatial Variability

The third important difference between the uncoupled and TOPLATS-coupled runsis
indicated by differences in flux spatial patterns. These differences reflect a combination
of differences in available energy due to the SRB data, and the detailed (90-m)
representation of land cover, soil, topographic, and moisture variations by TOPLATS as
described in Peters-Lidard (2001a). The results shown below reflect the 4-km grid-
average fluxes derived from the 90-m fluxes predicted by TOPLATS, so that they can be
compared directly with the 4-km fluxes predicted by the uncoupled model. The expected
impacts of differences in spatial flux patterns would be differences in near-surface
temperature, humidity, and local circulations, in addition to differences in PBL depth.
Specific examples of these differences are discussed in the following paragraphs.

The episode began following a relatively wet period, and, therefore, one would expect
that more available energy would initially partition into latent heat as compared to
sensible heat. As shown in the Figure 6.5.4, the sensible heat fluxes for the uncoupled run
are considerably higher than those for the TOPLATS-coupled run, even in the morning at
1500 UTC on August 25. (Note that the heat-flux heterogeneity present in the coupled
model run—right hand panel of Figure 6.5.4—is not well-represented in the figure due to
the range of scale necessary for comparison with the uncoupled model.) Given
approximately equal solar insolation (not shown), the differences are likely due to a
combination of soil moisture and land-cover effects. Later in the day (at 1900 UTC,
approximately solar noon), the flux differences are greater in magnitude (Figure 6.5.5),
due largely to differences in solar insolation driven by spurious clouds in the uncoupled
model, shown in Figure 6.7.1.
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The response of the PBL depth to the flux pattern differences on August 25 at
1500 UTC isillustrated in Figure 6.8.6. As the figure shows, the uncoupled model reveas
a collapsed boundary layer over Lake Livingston in the north central part of the domain,
and a growing boundary layer over the city of Houston. The coupled model modifies this
typical MM5 behavior, revealing more uniformty over the Lake and a more depressed
morning urban boundary layer. This is a result of correcting the too-cold water in Lake
Livingston and correcting the urban heat-capacity formulation. Further, spatial structure
in the PBL, particularly in the eastern half of the domain over land, appears to be more
heterogeneous in the coupled model, even though the plot-scale in Figure 6.5.4 is too
coarse to reveal the corresponding HFEX heterogeneity.

A second illustration is shown in Figure 6.5.6, at about 1900 UTC on August 27.
Especialy in the southwest part of the domain, where solar insolation was reasonably
equivalent, differences in land-surface characteristics probably play arole. The effect is
shown in Figure 6.7.9, where these differences lead to much greater thermal
heterogeneity in the 2-m coupled model temperature at 2000 UTC.

On August 30, the heat flux differences between the two models are quite small
(Figure 6.5.7). However, more significant differences are seen in the latent heat flux
(Figure 6.5.8), particularly for the lakes in the north-central portion of the domain, and in
the northeastern part of the domain.

6.5.2 Sea-Surface Flux Comparison

Figure 6.5.9 shows the climatological SSTs in the vicinity of Galveston Bay as used
by the uncoupled MMS5. These data are derived from either the GDAS or EDAS
initialization discussed above. They are time-independent, and for near-shore areas, may
be subject to interpolation biases inherent in MM5’'s pre-processing. In contrast, the
SSATS model used observed Physical Oceanographic Real-Time System (PORTS) SST
data for both the Bay and near-shore Gulf (Peters-Lidard, 2001b).

Figure 6.5.10 shows gridded SSTs on the 4km MM5 grid for August 29, 1998, at
2300 UTC. A comparison of this figure with Figure 6.5.9 shows that there are significant
differences between these temperatures and the climatological values derived from the
EDAS. Based on theory, these differences will lead to large differences in sensible and
latent heat fluxes in the vicinity of Galveston Bay.

Figure 6.5.11 illustrates the differences in sensible heat flux arising from the SST
differences discussed. The sensible heat flux resulting from the climatological SSTs is
quite small (approximately 0-10 Wm?). That predicted by SSATS is larger, ranging,
from about 542 Wmi? with a significant spatial gradient corresponding exactly to the
SST field. These differences in sensible heat flux over the Bay can lead to substantial
differences in PBL heights and near-surface winds, as discussed in Section 6.8. For
example, the modeled boundary layer heights and surface winds in the vicinity of the Bay
shown in Figure 6.8.53 (August 29, 2100 UTC) and Figure 6.8.55 (August 30,
0000 UTC), illustrate how the PBL predicted by the uncoupled model using
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climatological SST’ s collapses earlier and hes significantly different wind-flows than the
coupled model.

This illustrates the importance of obtaining accurate spatial SST information capable
of resolving the spatial pattern within the Bay. It is anticipated that more recent remotely-
sensed data (such as those collected during TXAQS2000) would be even better suited for
application in this context. This would represent a significant advance over the
climatological values currently available for use in simulating episodes of interest using
the standard MM5.
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6.5.3 Figuresfor Section 6.5
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MICHE Min=-59.574 at (17.48), Max= 29.640 at (5,66) MICHE Min=-25.142 at (54,50), Max=218.021 at (20,35)

Figure6.5.1. Sensible heat flux at 0200 UTC on August 29, 1998, illustrating the representation of the
Houston heat idand in the TOPLATS-coupled run and not in the uncoupled run, both for case “van.”
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Figure 6.5.2. Latent heat flux at 0900 UTC on August 26, 1998, illustrating the formation of dew in the
TOPLATS-coupled run and not in the uncoupled run, for case “van.”
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Figure 6.5.3. Latent heat flux at 0900 UTC on August 30, 1998. Dew formation in the TOPLATS coupled
simulation (right) appears to decrease during the episode, presumably due to drying of the overlying air.
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Figure 6.5.4. Sensible heat flux at 1500 UTC on August 25, 1998, illustrating differencesin spatial patterrs
between the TOPLATS-coupled run and the uncoupled run, both for case “van.”
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Figure6.5.5. Sensible heat flux at 1900 UTC on August 25, 1998, illustrating differencesin spatial patterns
between the TOPLATS-coupled run (right) and the uncoupled run (left), for case “van.”
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Figure6.5.6. Sensible heat flux at 1900 UTC on August 27, 1998, illustrating differencesin spatial patterns
between the TOPLATS-coupled run and the uncoupled run for case “van.”
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Figure 6.5.7. Sensible heat flux at 1500 UTC on August 30, 1998, illustrating only minor differencesin
spatial patterns between the TOPLATS-coupled run (right, blk.van.c2) and the uncoupled run (left,
blk.van.van).
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Figure 6.5.8. Latent heat flux at 1500 UTC on August 30, 1998, illustrating only minor differencesin
spatia patterns between the TOPLATS-coupled run (right, blk.van.c2) and the uncoupled run (left,
blk.van.van). Thisindicates that differencesin latent heat flux are due to land surface representation.
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Figure 6.5.9. Climatological skin and Sea Surface Temperatures (SST) in the vicinity of Galveston Bay for

August 29, 2300 UTC.
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Figure 6.5.10. Gridded sea-surface temperatures on the4-km MM5 gridfor August 29, 1998,

at 2300 UTC.
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Figure 6.5.11. Surface sensible heat flux (HFX) predicted by MM5 using its climatological SST data

from the EDAS (left) and predicted by SSATS using SST gridded data (right). Note the strong
correspondence between the SST and HFX using SSATS.

120




6.6 Surface Sea-breeze Intrusion Analysis

6.6.1 Discussion

Figures 6.6.1 through 6.6.10 present an anaysis of the daytime seabreeze
representation in the models, starting with August 25, using both satellite imagery and
surface observed winds. Cases “van” and “kf5.2w” are used to compare coupled versus
uncoupled models.

The sea breeze was well established on August 25, as shown in Figures 6.6.1 and
6.6.2. Observed surface vectors are plotted in blue on the model vector plots. At
1800 UTC, the sea breeze was light but beginning to advance. Both nodels were biased
counterclockwise at this time, with the coupled model dightly more biased, consistent
with the discussions in Sections 6.3 and 6.4. By 2100 UTC, both coupled and uncoupled
model outputs were are similar, with mean wind vectors in reasonable agreement with the
observations. The coupled model appears to represent the wind vector at BPA slightly
better.

Figures 6.6.3 and 6.6.4 portray August 26, when the retrograding eastern High
produced a mean northeast flow. At 1500 UTC, a sea breeze began to form near Corpus
Christi, well southwest of the HGA. By 2000 UTC, the sea breeze expanded up the coast,
and the uncoupled model featured a dightly more shore-perpendicular component, in
better accordance with the observations.

August 27 was arelatively calm day as the High expanded and settled over Houston.
Winds dowly “reset” from the south late in the day (Figures 6.6.5 and 6.6.6). At
2100 UTC, the sea breeze was weak to non-existent, except immediately along the coast.
By 2300 UTC, a modest sea breeze approached metropolitan Houston, and the uncoupled
model did better with this feature, the exception being the vector at Brazoria (lower left
panel, Figure 6.6.6).

On August 28, the approach of aweak trough from the west allowed development of a
more organized sea breeze along the Gulf coast. At 2000 UTC (Figure 6.6.7), the sea
breeze had not yet reached Houston, and model winds were generally light and variable.
The uncoupled model induced more sea-breeze forcing than was observed at Brazoria at
the time. By 2200 UTC, the wind (Figure 6.6.8) had switched directions at Brazoria but
there was not a domainwide sea breeze. Weak onshore flow was reported, however, at
GLS. Both models were similar at thistime.

On August 29 at 2100 UTC (Figure 6.6.9), observed wind vectors indicated that a sea
breeze had formed, moving inland at least as far as the city of Houston. The models do
not replicate this very well. In the top panels, wind vectors aong the northern boundary
reveal the KF-caused boundary condition problem.

On August 30, convective sub-tropical moisture approached from the southwest and
the observed mean winds shifted nearly 180 degrees from northeast to southwest during
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the day. Model winds remained generally easterly. Additional convective outflow
approached the HGA from the north, a result of the proximity of the east-west axis
airmass boundary to the north. Central Gulf of Mexico low pressure contributed to
observed offshore east-to-northeast winds throughout the day. This complexity
apparently led to the poor wind performance on that day by both uncoupled and coupled
models.

Figures 6.6.10a through 6.6.10e depict the evolution of the observed winds and visible
cloud patterns compared to modeled winds on August 30. Through about 1400 UTC
(Figure 6.6.10a) , both modeled and observed winds were in general agreement (out of
the northeast), consistent with the synoptic forcing between the central Gulf-of-Mexico
low pressure and the weak high pressure over east-central Texas. By about 1600 UTC
(Figure 6.6.10b), observed surface winds veered into the southeast. This is not consistent
with the timing of the sea breeze on other days, and in addition, there is no evidence of a
sea breeze on the cloud imagery. The models do not reflect this change in observed wind,
maintaining their east-northeasterly direction.

By 2000 UTC (Figure 6.6.10c), the mean observed winds have veered further to the
southwest, whereas the models continue to maintain the east-northeast flow consistent
with the synoptic pressure gradient. The counter-gradient observed flow may be
explained by the proximity of the convective complex to the southwest, which may have
provided low-level outflow propagating toward the northeast. Alternatively, the
proximity of the complex to the southwest could have resulted in enough subsidence aloft
to generate a weak, unanalyzed meso-high sandwiched between the synoptic low in the
central Gulf and the convective axis to the north of the HGA. High quality four-
dimensional meso-analyses might be necessary to fully determine the cause(s) of the
observed wind behavior; since it is rather complex.

At 2200 UTC (Figure 6.6.10d), radar imagery indicates the presence of convection to
the north and to the south, with a small shower over Galveston Bay. The diower may
have erupted from surface convergence caused by the proximity of the convective
complex to the southwest and the developing line to the north. By 2300 UTC
(Figure 6.6.10e), the observed wind vectors indicate convergence near central Houston.
At this time the difference in boundary conditions appears to make the most differencein
model results, with the “van” runs revealing KF-generated outflow propagating inward
from the north and west, a feature not found in the “kf5.2w” runs. However, the outflow
propagation effect is too strong in the “van” runs. Overall, Figures 6.6.10a through
6.6.10e reved that neither the coupled nor the uncoupled model captures the counter-
synoptic-gradient flow reversal that occurred during the day on August 30.

In general, the analysis suggests that the uncoupled model smulations handle a
relatively weak sea breeze dightly better than the coupled model simulations. On
August 25, the coupled model’s sea breeze began about an hour later than the uncoupled
model’s (dlightly slow). Again on August 26, the coupled model was biased a little
farther left (counterclockwise) than the uncoupled model. On August 27, both models
replicated the light winds but the uncoupled model appears to better represent the sea
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breeze at 2300 UTC. On August 28, the uncoupled model seems to induce a weak sea
breeze too early. On August 29, the models are similar. Finally, on August 30, both
coupled and uncoupled models maintain an east-northeast wind direction consistent with
the larger-scale low-level synoptic forcing, failing to capture the surface flow reversal
that accompanied a convective complex moving northeastward under weak southwesterly
500-mb flow. There is no evidence of atrue sea breeze on August 30.

A seemingly simple phenomeron such as the sea breeze is actually the result of
several superimposed processes. Therefore, analyzing why a model has difficulty
representing the sea breeze is more difficult than might be expected. There are at least
two interrelated mechanisms, described above in relationship to inertial oscillations and
low-level jets, that also contribute to the overall model winds and representation of the
sea breeze. These include (1) diurnal surface-frictional de- and re-coupling (night/day)
and (2) uneven (land-sed) heating effects. The uncoupled model does a poorer job
representing the second of these two processes, evidenced by too-cold near-shore water
(Figures 6.5.9, 6.5.10, and 6.8.9) and unredlistically uniform nocturna land-sea skin
temperatures (Figure 6.8.26). This latter effect is related to a fundamental surface
thermodynamic problem in the uncoupled model, where the near-surface atmosphere has
a weak diurnal temperature cycle while also being too dry. This would be expected to
induce stronger-than-realistic daytime sea-breeze forcing and weaker-thanrealistic
nighttime land-breeze forcing, suggesting that the uncoupled model should exhibit an
overly strong daytime sea breeze and an overly weak nighttime land breeze. Why then,
does the uncoupled model perform dightly better, overall, with the sea breeze?

It is hypothesized that the uncoupled land-sea thermal forcing error compensates for a
larger-scale misrepresentation of coast-normal frictional differences (combining both
land-sea and day-night surface stress representation), which act in an abnormal out-of-
phase manner, with the overly-forced land-sea heating effects. This larger-scale forcing
error would manifest itself particularly in the boundary conditions produced by the outer-
domain model, used by the 4-km model. The hypothesized frictional (surface-stress)
deficiency produces the fundamental mean counterclockwise directiona bias
(Figure 6.4.6) described above. Upon improving the scalar flux representation in the
coupled model, which weakens (as compared to the standard uncoupled model) the
daytime sea-breeze forcing and strengthens (as compared to the standard uncoupled
model) the nocturnal land-breeze forcing, the actual coupled model wind-directional
results become somewhat more biased in the counterclockwise direction, because a
compensating error has been eliminated.

There is some evidence in the literature for an inappropriate surface stress formulation

over water in the default MM5. Pagowski and Moore (1998) note that the so-called
Charnock formula, given by

z,=au?/g+10E- 4;

where z, is roughness length over water, g is the gravitationa acceleration, and acis the
Charnock constant equal to 0.032, may overestimate the over-water roughness length.
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Thisis because observations suggest over-water values for ac between one-half and one-
third that amount (Smith, 1988; Garratt, 1992). Overestimating the over-water roughness

length would effectively overestimate the surface stress (given by t =ru? ) and thus the
frictional force depicted in Figure 4.8. The effect would be to inordinately increase the
ageostrophic wind vector shown in panel “b” of that figure, resulting in a
counterclockwise wind direction bias, consistent with what the model simulations
produced. Sensitivity studies with the surface stress formulation, in particular the
Charnock constant over water, would be needed to firmly confirm this hypothesis.

One other possibility, discussed in the caption describing Figure 6.8.9, is that the 4-km
scale simply does not respond correctly to the proper thermal forcing, requiring too-large
thermal forcing to produce an adequate sea breeze. This could occur if the energetics of
the sea breeze are at significantly sub-4-km spatial scales. Although idealized sea-breeze
simulations would be needed to rule this out, thisis aless-likely explanation, since coast-
normal land-sea contrasts extend for tens of kilometers both directions during the daytime
heating period.
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6.6.2 Figuresfor Section 6.6
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Figure6.6.1. The seabreeze as observed from GOES satellite at 1800 UTC on August 25, 1998, compared
to model simulations. Two coupled model casesare shown on the | eft; equivalent uncoupled model cases
are shown on the right. Observed surface wind vectors are plotted in blue. Note that the uncoupled model

supports a dlightly more shore-perpendicular wind component.
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Figure 6.6.2. The seabreeze as observed from GOES satellite at 2100 UTC on August 25, 1998, compared
to model simulations. Two coupled model casesare shown on the | eft; equivalent uncoupled model cases
are shown on the right. Observed surface wind vectors are plotted in blue. Both coupled and uncoupled
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Figure 6.6.3. The seabreeze as observed from GOES satellite at 1500 UTC on August 26, 1998, compared
to model simulations. Two coupled model casesare shown on the |eft; equivalent uncoupled model cases
are shown on the right. Both models capture the northeasterly surface flow due to the retrograding Eastern

High. At the time, a sea breeze was beginning to form near Corpus Christi.
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10-Meter Wind Vector Plot
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Figure 6.6.4. The seabreeze as observed from GOES satellite at 2000 UTC on August 26, 1998, compared
to model simulations. Two coupled model casesare shown on the |eft; equivalent uncoupled model cases
are shown onthe right. Asindicated in blue on the satellite image, the sea breeze has expanded up the coast
toward Houston, validated by the plotted observed vectors. The uncoupled model features a slightly more

shore-perpendicular component, in better accordance with the observations.
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10-Meter Wind Vector Plot
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Figure 6.6.5. The seabreeze as observed from GOES satellite at 2100 UTC on August 27, 1998, compared
to model simulations. Two coupled model casesare shown on the |eft; equivalent uncoupled model cases
are shown on the right. The seabreeze was weak to non-existent at thistime, with the immediate coast
being the exception. Differencesin the position of the High centered near Houston between the “van” runs
and the “kf5.2w” runs explain the differencesin the position of the surface anticyclonic flow centers
between the top and bottom sets of panels.
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Figure 6.6.6. The seabreeze as observed from GOES satellite at 2300 UTC on August 27, 1998, compared
to model simulations. Two coupled model casesare shown on the left; equivalent uncoupled model cases
are shown on the right. By thistime, amodest seabreeze was approaching metropolitan Houston. The
uncoupled models are dightly better depicting this feature.
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Figure6.6.7. The sea breeze as observed from GOES satellite at 2000 UTC on August 28, 1998, compared
to model simulations. Two coupled model casesare shown on the |eft; equivalent uncoupled model cases
are shown on the right. Approach of aweak trough allowed development of a more organized sea breeze

south along the coast at thistime.
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Figure 6.6.8. The seabreeze as observed from GOES satdlite at 2200 UTC on August 28, 1998, compared
to model simulations. Two coupled model casesare shown on the | eft; equival ent uncoupled model cases
are shown on the right. Though there is no widely organized sea breeze within the domain, Galveston and

several other stationsindicated weak onshore (toward the coast) flow.

132



PalE
by
HCNC

10-Meter Wind Vector Plot

Coupled Case: Yan.c2

67

A T

a2 J
z

v e
<7 e

— Pl = e w
ey S N
“ TSNS
TS ST

| ruve
o
] e

PAVE
MENC

August 28,1998 21:00:00

10— Meter Wind Vector Plot

Yanilla Case: Yan

67

YT 24 Ty
e ¢
'
Py -
e
e s R S,
P T v
e/‘:/ T ey
7"</ A S A A AN v
S S

67
—

August 29,1998 21:00:00 50

10— Meter Wind Vector Plot
Coupled Case: kf5.2w.c2

Nl 7 PRV Py
/ < P s
P S P

= aars
v LT
g /- =
e & HH
P St
f A
" e

! 67 |
August 29,1998 21:00:00 50 | PalE

F y
4 mehc

10-Meter Wind Vector Plot

Yanilla Case: ki5.2w

7 v [ e

Py

e Pa

-
"

N

Pl v

= rd
Ll
e
s
“ T
' ey T e
P
LSS
67

r'd

-
—
— e —

v

1

—_—

August 28,1998 21:00:00 50

Figure 6.6.9. The sea breeze as observed from GOES satellite at 2100 UTC on August 29, 1998,
compared to model simulations. Two coupled model cases are shown onthe left; equivalent uncoupled
model cases are shown on the right. At thistime, observed vectorsindicate that a seabreeze formed,
moving inland at least asfar asthe city of Houston. The models do not replicate thisvery well. In the
top pandls, the wind vectors aong the northern boundary reveal the KF-caused boundary condition
problem, discussed in the text as the reason for adding cases “kf5.2w” and “kf5.2w.c2.” Figure 4.3

shows the KF-outflow winds dominating the domain by 2300 UTC for the “van” runs.
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Figure 6.6.10a. Observed GOES visible satellite imagery at 1400 UTC on August 30, 1998, compared
to model simulations. Two coupled model cases are shown on the left; equivalent uncoupled model
cases are shown on theright. No seabreeze is evident at thistime. Both modeled and observed winds

are consistent directionally.
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Figure 6.6.10b. Observed GOES visible satellite imagery at 1600 UTC on August 30, 1998, compared
to model simulations. Two coupled model cases are shown on the | eft; equivalent uncoupled model
cases are shown on theright. Thoughitisonly 11 am. loca time, observed windsin the western half of
the domain are now southeasterly; however, no sea-breezeis evident on theimagery. Model winds
remain northeasterly. Outflow from the large convective complex to the southwest may have helped
turn the winds.
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Figure 6.6.10c. Observed GOES visible satellite imagery at 2000 UTC on August 30, 1998, compared
to model simulations. Two coupled model cases are shown on the left; equivalent uncoupled model
cases are shown on the right. Observed winds are now mostly southwesterly; no sea-breeze is evident
on theimagery. Model winds remain northeasterly. Outflow from the large convective complex to the
southwest may have helped turn the winds.
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Figure 6.6.10d. NEXRAD radar imagery (courtesy of WS Corporation) at 2200 UTC on August 30,
1998, compared to model simulations. Two coupled model cases are shown on the left; equivalent
uncoupled model cases are shown on the right. Observed winds are southwesterly. Model winds remain
generally out of the northeast. The imagery shows the proximity of the convective complex to the SW
and the convection breaking out to the NE.
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Figure 6.6.10e. Observed GOES visible satellite imagery at 2300 UTC on August 30, 1998, compared to model
simulations. Two coupled model cases are shown on the left; equivalent uncoupled model cases are shown on the
right. Observed winds are now a mixed bag with apparent outflow now coming from both the northwest and the
southwest. Although overdone, the top two “van” runsreveal KF-generated outflow advecting inward from the
northern and western boundaries. The “kf5.2w” runs do not have this outflow.
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6.7 Accuracy of Cloud Representation

6.7.1 Discussion

Clouds play a major role in the evolution of weather and air quality. Most ozone
exceedance episodes are relatively cloud free. However, clouds in proximity can create
environments conducive-to or destructive-of incipient events. Along with the models
known difficulties in handling clouds, these characteristics make the importance of cloud
processes critical in 0zone-producing environments.

Figures 6.7.1 through 6.7.21 describe and compare uncoupled versus coupled model
performance for case “van” during the day when photochemistry is active. At 1800 UTC
on August 25, satellite imagery shows mostly shallow cumulus along the coast and inland
from a weak sea breeze. The uncoupled run has produced extensive spurious grid-scale
clouds, as shown by the (green) reduction in solar insolation (RSD) in the top-left panel
of Figures 6.7.1 through 6.7.21. Surface solar insolation patterns are the best surface
surrogates for grid-scale clouds. The coupled MM5 calculates this variable internally but
does not use it in the surface energy balance, thus, it can be used to indicate the presence
of clouds, but shouldn’'t be confused with the driving RSD derived from the SRB data,
which may be very different fromthe RSD output from MM5.

The coupled model, by contrast, is far better at depicting both the coverage and
location of the clouds. The evolution of these cloud fields and their associated below-
cloud temperature (which may be reduced by cool downdrafts or changes in surface
fluxes) are shown in Figures 6.7.2 and 6.7.3. At 2000 UTC, the convective cells (shown
in the satellite images) over Galveston Bay and to the south are well represented in the
coupled run, whereas the cloud pattern in the uncoupled run (too much coverage, not
organized) does not resemble the imagery. By 2200 UTC, the models have not moved the
clouds inland as much as the sea breeze has actually carried them; nonetheless, cloud
amount is still overestimated in the uncoupled run. Areas of associated surface
temperature reduction are well-correl ated.

August 26 was essentially a clear day. At 1500 UTC (Figure 6.7.4), athin area of
small shallow cumulus can be seen on the GOES image appearing like a milky sheath
over much of the modeling domain. Lake Conroe and other inland bodies of water are
void of these clouds. Additional thin clouds are present over the near-shore Gulf. Both
models pick up on the Gulf cloudiness, but overestimate it. More surface temperature
detail is evident in the coupled model than in the uncoupled model. By 2000 UTC
(Figure 6.7.5), both models are similar in the relatively small coverage amounts, though it
is spurious. By 2200 UTC (Figure 6.7.6), a large spurious cloud has formed in the
northeast quadrant of the uncoupled model. Of note is the classic sea-breeze “cooling
pattern,” not associated with the aforementioned cloud, in the uncoupled run. Data from
GLS confirm that this was erroneous: the uncoupled model air temperature was nearly
6°F too cold. This likely results from overly cold near-shore SSTs in the uncoupled
model—a problem corrected in the coupled model.
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On August 27 (Figures 6.7.8 through 6.7.10), the uncoupled model produced a large
spurious cloud by 2000 UTC, causing widespread temperature reductions. By 2200 UTC,
this cloud expanded further. The widely scattered clouds in the coupled model are
consistent with satellite imagery. By 2200 UTC on August 28, a large spurious cloud has
again formed in the uncoupled model (Figure 6.7.12), reducing surface temperatures
northwest of Galveston Bay.

Spurious clouds, depending on their thickness and extent, will likely affect PBL
structure by reducing sensible heat fluxes below the cloud. Thisis shown in Section 8
(Figure 6.8.34), where spurious clouds may suddenly reduce PBL height. Since clouds
are grid-scale in the 4-km simulations, this can leave a cloud suddenly “trapped” above
the top of the PBL, with no access to the vertical mixing that induces evaporative
turnover in natural fair weather clouds. Thus, these spurious clouds may just “sit there”
and grow in the model. Since the coupled model’s surface fluxes are not influenced by
model cloud formation of any type, natural evaporative turnover at the top of the PBL is
much more likely to suppress spurious cloud growth and keep the PBL elevated as it
should be on fair weather cloudy days.

August 29 (Figures 6.7.13 through 6.7.17) begins clear in models and observations. By
2000 UTC, a thick convective cell has formed in the uncoupled model, too close to
Houston, and by 2200 UTC, it has expanded southwestward, in disagreement with
satellite imagery. Note that the figures presented depict case “van,” which was negatively
affected by the KF-boundary problem about this time. Despite this, the cloud pattern in
the coupled model is far better throughout August 29, which featured the highest hourly
0zone concentration of the episode.

On August 30 (Figures 6.7.18 through 6.7.21) by 2000 UTC, both coupled and
uncoupled models RSD patterns were similar: the interior greens in the figures suggest
approach of the subtropical moisture from the southwest and the patchy light blues
indicate convective formation in good agreement with satellite imagery. At 2300 UTC, as
the subtropical moisture arrived from the south, convection flanked the northern Houston
suburbs. For case “van’, this convection is better represented in the uncoupled model. By
contrast, the coupled model produced too little of the northern flanking convective cloud.
Compared with case “kf5.2w.c2” in Figure 6.7.21, the coupled model produced some, but
not a lot, more convective cloud than in case “van.” Interestingly, the accompanying
temperature plots reveal a second possible boundary condition problem, not before
noticed, with the “van” case that is not seen in case “kf5.2w.c2.”

In summary, comparison of cloud development and evolution suggests that, with the
exception of August 30, the coupled model is superior in its ability to develop and
properly locate grid-scale clouds for this exceedance episode than the uncoupled model.
This is likely a result of superior solar and precipitation inputs in the coupled model,
resulting in superior flux outputs. Since the cloud-flux feedback is turned off in the
coupled model, it appears to be much more difficult to form and maintain spurious clouds
than in the uncoupled model. This could have a significant impact on the model’s
potential for improving photochemical simulations.
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6.7.2 Figuresfor Section 6.7
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Figure6.7.1. GOES satellite image (I ft) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 1800 UTC on August 25. Case “van” is shown as representative of all three
sensitivity runs, with the uncoupled run on the left and the coupled run on the right. Areas of reductionin RSD (top, green)

represent the position of MM5 grid-scale clouds. These areas are often correlated with reductions in modeled surface
temperature, clearly seen in green (western sections of uncoupled run) and in light blue (coupled run). Note that the coupled
run depicts both the amount and location of clouds better than the uncoupled run. Note the absence of a daytime Houston heat
island in the coupled run.
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Figure 6.7.2. GOES satellite image (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 2000 UTC on August 25. Case “van” is shown as representative of all three
sensitivity runs, with the uncoupled run on the left and the coupled run on the right. The convective cells over Galveston Bay
and to the south are well represented in the coupled run, whereas the cloud patterns in the uncoupled run do not resemble the

satellite imagery.
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Figure 6.7.3. GOES satellite image (left) contrasted with MM5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 2200 UTC on August 25. Case “van” is shown as representative of all three
sengitivity runs, with the uncoupled run on the left and the coupled run on the right. The convective cells have moved inland

on the leading edge of thesea breeze. By contrast, the clouds in the models have not moved much, in agreement with the left-
biased mean vectors noted in Figure 6.6.2. Cloud amount is still overestimated in the uncoupled run (left), well-correlated
with its areas of temperature reduction.
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Figure 6.7.4. GOES satellite image (left) contrasted with MM5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 1500 UTC on August 26. Case “van” is shown as representative of all three
sensitivity runs, with the uncoupled run on the left and the coupled run on the right. A thin area of small shallow cumulus can
be seen on the GOES image appearing like amilky sheath over much of the modeling domain. Lake Conroe and other inland
bodies of water are void of these clouds. Additional thin cloud is present over the near-shore Gulf. Both models pick up on
the Gulf cloudiness, but overdo it. More surface temperature detail is evident in the coupled model than in the uncoupled
model.
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Figure 6.7.5. GOES satellite image (left) contrasted with MM5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 2000 UTC on August 26. Case “van” is shown as representative of all three
senditivity runs, with the uncoupled run on the left and the coupled run on the right. The northern extent of thesea breeze
depicted in Figure 6.6.4 has swept through Houston, bringing clear skies. Both models are similar in their cloud coverage
amounts, which are essentialy all spurious.
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Figure 6.7.6. GOES satellite image (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 2200 UTC on August 26. Case “van” is shown as representative of all three
sengitivity runs, with the uncoupled run on the left and the coupled run on the right. By thistime, alarge spurious cloud has

formed in the northeastern quadrant in the uncoupled model. The effects of the sea-breeze front on near-shore 2-m
temperatures are clear in both models, with amore uniform, classic pattern showing up in the uncoupled model. Not enough
data were available to validate these patterns.
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Figure 6.7.7. GOES satellite image (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 1500 UTC on August 27. Case “van” is shown as representative of all three
sensitivity runs, with the uncoupled run on the left and the coupled run on the right. The remnant cloud over Houston is
circulating anticyclonically under the influence of ameso-High. Cloud patternsin both models suggest displacement of the
High too far southeast at 1500 UTC.
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Figure 6.7.8. GOES satellite image (left) contrasted with MM5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 1800 UTC on August 27. Case “van” is shown as representative of all three
sengitivity runs, with the uncoupled run on the left and the coupled run on the right. Anti-cyclonic flow is still evident over
Houston. Cloud patterns are consistent with observationsin both models.
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Figure 6.7.10. GOES satelliteimage (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
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sengitivity runs, with the uncoupled run on the left and the coupled run on the right. The spurious cloud in the uncoupled
model has expanded further. The widely scattered cloudsin the coupled model are consistent with satellite imagery.
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Figure6.7.11. GOES satellite image (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 1900 UTC on August 28. Case “van” is shown as representative of all three
sensitivity runs, with the uncoupled run on the left and the coupled run on the right. Neither model predicts the shallow cloud
fields with cyclonic curvature ahead of the weak trough.
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Figure 6.7.13. GOES satellite image (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 1500 UTC on August 29. Case “van” is shown as representative of all three
sengitivity runs, with the uncoupled run on the left and the coupled run on the right. Neither model reveals any clouds of
significance, in accordance with the GOES imagery. The convergence zone that will produce significant convection lies
about 120 km north of Houston, extending southwest-northeast.

147



900.000
800.000
700.000
600.000
500.000
400.000
300.000
200.000
100.000
0.000
WM 2
PAVE
by
MCHC

Layer 1 RSDa

a=MET_CRO_2D_G4.atagmzh.hrly.hlk van.van
67

1
1 &7
August 20,1998 18:00:00
Min= 635,525 at (44,40), Max= 983.393 at (83.22)

Layer 1 RS5Db

b=MET_CRO_2D_G4.atagm2h.hrly.blk.van.c2
900.000 67
800.000
700.000
600.000
500.000
400.000
300.000
200.000
100.000
0000 4
wim2 1 67

Pl August 29,1938 18:00:00
Min= 668.055 at (43,41), Max= 963 630 at (62,23)

by
MCHC

312.000

309.000

306.000

303.000

300.000

FAVE
3 by
4 HCNC

Layer 1 TA2a

a=MET_CRO_2D_Gd.atagm2h.hrly.blk.van.van

67 l . |
sk

1 67

August 29,1998 18:00:00
Min=301.885 at (66.27). Max= 310.261 at (19.35)

1

Layer 1 TA2b

h=MET_CRO_2D_Gd4.atagm2zh.hrly.hlk van.c2
312.000 67 &

309.000

306.000

300000 |
Ik

| PavE

August 29,1998 18:00:00

{ wilc  Min= 301523 at (53.27), Max=316.934 at (10,57)
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Figure 6.7.16. GOES satellite image (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
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Figure6.7.17. GOES satellite image (left) contrasted with MM 5-cal culated downward shortwave solar radiation (RSD, top
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of subtropical moisture from thesouthwest. The models' RSD patterns are similar.
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Figure 6.7.19. GOES satellite image (left) contrasted with MM5-cal culated downward shortwave solar radiation (RSD, top
panels) and 2-m temperature (bottom panels) at 2000 UTC on August 30. Case “van” is shown as representative of all three
sensitivity runs, with the uncoupled run on the left and the coupled run on the right. The GOES imagery reveals the approach
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Figure 6.7.21. GOES satelliteimage (left) contrasted with MM5-cal culated downward shortwave solar radiation (RSD, top
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6.8 Boundary-L ayer Depth and Evolution Comparison

6.8.1 Discussion

Because the evolution of the PBL plays such an important role in photochemical
modeling, Figures 6.8.1 through 6.8.65 are provided as an “evolutionary record” of the
uncoupled and coupled model runs PBL performance. The figures are in 3-hourly or
6-hourly sequence, and include three-panel comparisons of PBL heights, comparisons of
skin-temperature—a critical driving parameter related to PBL heights—and close-up
panels comparing PBL heights and winds overlaid in the vicinity of Galveston Bay.

The available Radar Wind Profiler (RWP) data did not contain enough information to
determine PBL depth. Therefore, no comparison of RWP wind and modeled PBL heights
were made. Further, 00z and 12z standard upper-air observations (RAOBS) are generaly
not useful because the observation times occur during morning and evening transition.
Hence, this section addresses specific qualitative model features that are pertinent to
photochemical modeling. This section focuses specifically on (1) land-sea PBL contrasts,
(2) the Houston heat-island effect, (3) episodic (day-to-day) PBL differences, (4) intra-
day PBL differences, (5) nocturnal surface inversions, and (6) Bay-scale wind effects
related to PBL evolution.

1. Land-Sea Contrasts

Figures 6.8.3, 6.8.5, 6.8.12, 6.8.19, 6.8.23, and others document model differencesin
land-sea contrasts. Of particular note are two factors. (1) The uncoupled model contains a
strangely homogeneous skin temperature across the land-Gulf boundary at night. A good
example is shown in Figure 6.8.26. Because of the documented warm bias at night in the
uncoupled mode it seems unlikely that this process is accurately represented in the
uncoupled model. More feasible is the coupled model’ s behavior, shown in Figure 6.8.26,
where the land temperature has cooled and the winds have a more offshore component
over land. (2) The uncoupled model contains a dice of “cold” Gulf water along-shore
(Figure 6.8.23). Both of these effects (lack of land-breeze forcing at night; stronger
forcing during the day) contribute to the “better actual” sea-breeze performance in the
uncoupled model. This suggests that the uncoupled model outperforms the coupled model
through a confluence of two errors rather than better surface physics.

2. Houston Heat-1dand Effects

Figures 6.8.3, 6.8.13, 6.8.25, 6.8.40, and others document diurnally-out-of-phase heat
island effects between the coupled and uncoupled models. As noted in Section 6.5, the
high heat capacity for urban areas is generally what drives urban heat islands—urban
areas cool more slowly in the evening and warm more slowly in the morning. Because
they absorb and store heat, they can become hotter than surrounding environs by mid-
afternoon, and fail to cool off much at night. In the uncoupled model, the heat island
produces a PBL “bubble’ fairly early in the morning, certainly by 1500 UTC on
August 28. (In Figure 6.8.40, the PBL is greater than 1700 mwith the uncoupled model
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and less than half that with the coupled model.) In the coupled model, the effect is slower
to develop, and thus can be seen in the early evening, when the PBL remains elevated due
to the lingering heat-source below. This may result in profound local modeled wind
differencesin and proximate to Houston.

3. Episodic (day-to-day) PBL Differences

Figures 6.8.10, 6.8.20, 6.8.33, 6.8.42, 6.8.52, and 6.8.64 show a daily progression in
modeled PBL heights throughout the episode, at 2100 UTC each day. The mean PBL
height over land appears to rise in the coupled model from about 1250 m on August 25 to
over 2200 m on August 29. This trend is closely correlated with TOPLATS' increasing
HFX, as shown in Figure 3.4. By contrast, the mean PBL height is much more constant in
the uncoupled model, increasing only dlightly day-to-day, averaging between 1900 and
2300 m through the episode. The dynamic range in the coupled model is largely
explained by its capturing of the soil dry-down and repartitioning of the sensible and
latent heat budgets as the episode progresses.

Day-to-day differences in synoptic-scae subsidence, which helps to entrain free
tropospheric air into the top of the growing daytime PBL, may have aso played arole in
the modeled differences. Given strengthening high pressure essentially through
August 29, episodically strengthening subsidence would also be expected. This would
lead to a concomitant rise in PBL heights over the course of the episode, and could help
explain the uncoupled model’s results, especialy in light of its static land-surface soil
moisture. Hence, the range in day-to-day PBL heights in the coupled model likely occurs
because of a combination of its dynamic soil moisture and increasing subsidence effects,
with the dynamic soil moisture being the larger of the two forcings.

4. Intra-day PBL Differences

Figure 6.8.42 provides a good example of the spatial variability in PBL heights on a
clear (model) afternoon at 2100 UTC. Mean land-based heights well exceed 2000 m in
the uncoupled model, but remain somewhat lower over forested areas northwest of
Houston in the coupled model. This is consistent with the coupled model’s ability to
handle differences in evapo-transpiration, and thus flux partitioning, between different
land-use types in the domain. Unfortunately, the available RWP data did not contain
enough information to diagnose PBL heights, and so could not be used to augment the
intra-day PBL difference analysis.

5. Nocturnal Surface Inversions

Figure 6.8.14 shows modeled PBL heights at 0900 UTC on August 26. The cooler
land-surface leads to a truer surface inversion than is observed in the uncoupled model.
Such a surface inverson would support a stronger low-level jet, hypothesized by
Neilson-Gammon, 2001b, to be an important mechanism for lateral nocturna
redistribution of elevated ozone. The surface inversion differences are also shown for
0300 UTC on August 29 in Figure 6.8.45. In the coupled model, the PBL is elevated over
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the Bay, and metropolitan Houston, due to the relative Bay warmth and lingering heat
island. This leads to a much more complex flow regime in the coupled model.

6. Bay-scale Wind Effects

The combination of spatial differences in urban, rural, Bay, and near-shore Gulf
nocturnal cooling leads to much greater flow variability at night in the coupled model.
During the day, these spatial differences may also create flow differences between the
two models at the Bay scale. To isolate this, consider Figure 6.6.2, which shows that at
2100 UTC on August 25, the coupled and uncoupled models wind patterns were similar
and in reasonabl e agreement with the observations. Figure 6.8.11 shows that despite good
regional agreement, the flow patterns through the Bay can be quite different. With fixed-
in-time “cold” Bay water, a very depressed, if not collapsed, PBL has formed over the
Bay in the coupled model. This results in a wind channeling effect, whereby mass flows
asif through a squeezed pipe as it enters the Bay. Winds accelerate and curve through the
Bay before exiting. Figures 6.8.21, 6.8.24 (a very good example), 6.8.35, 6.8.44 (large
scale view), 6.8.51, 6.8.53, 6.8.55, and 6.8.62 show various effects on the winds caused
by a heat-of-the-afternoon collapse of the PBL in the uncoupled model. In the coupled
model, the PBL does not collapse during the day, and winds follow a more straight-line
pattern consistent with the regional-scale wind.

Because SSATS uses time-varying, observed (warmer) Bay temperatures, it does not
induce MM5 to collapse the PBL during the daytime over the Bay. Further, the spatial
variability in heat fluxes in the Bay area induces more complex nocturna flows when
different proximate land-use types interact with the Bay. These features of the coupled
model system are believed to be more redlistic, but high resolution data are needed in
order to validate this.

Unfortunately, no three- or four-dimensional Bay-scale wind measurement data were
available for this project. The only surface sites were Ellington Field and Galveston and
the only profiler site was Ellington Field. Assuming that the hypothesis about the
counterclockwise wind bias, discussed in Section 6.1.1, is correct, actual improvement of
modeled flows will depend on elimination of biases and physical deficiencies at the
synoptic scale. Since Bay-scale flows can be considered non-linear modifications to the
more general forcing that creates the land-sea breeze, improvements in Bay-scale fluxes
could actually degrade the overall statistical wind performance. Thus, it is essential that
follow-on projects conduct the surface-stress sensitivity studies suggested in order to
isolate and correct possible large-scale deficiencies. This would allow a more complete
understanding of the complex interrelationships that occur at multiple scales. Application
to a case in which high resolution four-dimensional wind data are available would result
in the capacity for more quantitative conclusions as well.
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6.8.2 Figuresfor Section 6.8
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Figure 6.8.1. Modeled boundary layer heightsat 0300 UTC on August 25. The uncoupled model ison the
left and the coupled model isontheright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. A nocturnal Houston hegt-island effect isevident in
the coupled model runs, with nocturnal PBL instability trailing in plume-like fashion to the southeast (dl
right-hand panels).
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Figure 6.8.2. Modeled boundary layer heightsat 0900 UTC on August 25. The uncoupled model ison the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Again, the nocturnal Houston heat-island effect is
seen in the coupled models. Some sort of PBL instability is present in the uncoupled runs (left), probably
due to an abrupt changein SSTs.
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Figure 6.8.3. Modeled skin temperature at 0900 UTC on August 25 for case “kf5.2w.” The uncoupled
model ison theleft. Note the broadly uniform nocturnal skin temperature between land and sea. More
realistic isthe cooler land/warmer water scenario portrayed by the coupled model (right). Under a strong
inversion, winds have died over land at night in the coupled model, but continue to blow in the uncoupled
model. The warmth of the city of Houston is clearly seen in the coupled model.
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Figure 6.8.4. Modeled boundary layer heights at 0900 UTC on August 25. The uncoupled model is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. Note that
there are nocturnal differencesin PBL heights between the two models. Uncoupled model heights are lower
over the Bay and higher over land. Coupled model heights are the opposite.
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Figure 6.8.5. Modeled skin temperature at 1200 UTC on August 25 for case “kf5.2w.” The uncoupled

model ison theleft. The expected land breeze isbetter defined in the coupled model, particularly from

Brazoria County southwestward. Lack of a contrast between land-surface and water temperaturesin the
uncoupled model does not provide adequate forcing for the land breeze in this case (1&ft).
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Figure 6.8.6. Modeled boundary layer heightsat 1500 UTC on August 25. The uncoupled model ison the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Note the phase lag in PBL development between the
two models over Houston: urban land-use types in the uncoupled MM5 heat quickly, whereas the
surrounding land heats more quickly when driven by TOPLATS (right). Further, the PBL in the uncoupled
model isgenerally deeper, suggesting a quicker sensible heat flux response following sunrise (l€ft).
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Figure 6.8.7. Modeled boundary layer heightsat 1800 UTC on August 25. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. On August 25, the PBL was notably shallower in the
coupled model. In contrast, the PBL over Galveston Bay is not as depressed in the coupled model (see
Figure 6.8.8).
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Figure 6.8.8. Modeled boundary layer heightsat 1800 UTC on August 25. The uncoupled model is on the
left and the coupled model is on the right. Case “kf5.2w” is shown, with wind vectorsoverlaid. The very
depressed PBL in the uncoupled model —characteristic of many standard MM5 simulations conducted over
Galveston Bay—leadsto “ channeling” of the wind asit gets ducted under a nocturnal -like cap. Modeled—
and perhaps unrealistic—negative heat fluxes over the Bay cause the Blackadar scheme to respond this
way. In the coupled model, the underlying SSATS produces positive fluxes and only modest depression,
but not collapse, of the PBL. Thus, no channeling flow is seen.
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Figure 6.8.9. Modeled skin temperature at 1800 UTC on August 25 for case “kf5.2w.” The uncoupled
model ison theleft. Key to thisfigure isthe colder near-shore SSTsin the uncoupled model. The authors
hypothesize that this leads to a somewhat stronger shore-perpendicular sea-breeze component during the
afternoons. Because the coupled model used observed SSTs, it is not certain whether the “ sea-breeze
improvement” seen in the uncoupled model occursfor theright physical reasons. It is plausible that the
4-km scale doesn't respond to more modest land-seathermal contraststhat, in nature, are sufficient to force
the sea breeze.
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Figure 6.8.10. Modeled boundary layer heightsat 2100 UTC on August 25. The uncoupled model is on the
|eft and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2". PBL heights are on the order of 500 m higher in the
uncoupled case. In the coupled case, soil was moister at the episode beginning, leading to lower sensible
fluxes and lower PBL heights. No dynamic soil moisture is possible in the uncoupled model.
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Figure 6.8.11. Modeled boundary layer heightsat 2100 UTC on August 25. The uncoupled model is on the
|eft and the coupled model is on theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. The very
depressed PBL continues in the uncoupled model, asin Figure 6.8.8. The sea breeze has established itself

in the coupled model, but the channeling effect is not present (right).
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Figure 6.8.12. Modeled skin temperature at 0200 UTC on August 26 for case “kf5.2w.” The uncoupled
model ison theleft. The land-surfaceis already cooling in the coupled model, with winds accelerating into
and out of the Houston heat-island as the nocturnal inversion setsin. This effect is absent in the uncoupled

model.
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Figure 6.8.13. Modeled boundary layer heightsat 0300 UTC on August 26. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. The heat island is again seen in the coupled runs.
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Figure 6.8.14. Modeled boundary layer heightsat 0900 UTC on August 26. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, themiddle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. The cooler land-surface leads to a true surface
inversion in much of the coupled model domain. Thisis not seen in the uncoupled run. Surface inversions
play alarge rolein the dynamics of the low-level jet.
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Figure 6.8.15. Modeled skin temperature at 1000 UTC on August 26 for case “kf5.2w.” The uncoupled
model ison theleft. Again, the uncoupled model skin temperatures are homogeneous across the land-Gulf
interface, whereas the much more realistic contrast allows an offshore breeze to develop in the coupled
model.
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Figure 6.8.16. Modeled boundary layer heightsat 1500 UTC on August 26. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2". For thisday, PBL heights grow much morerapidly
in the uncoupled model than in the coupled model.
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Figure 6.8.17. Modeled boundary layer heightsat 1800 UTC on August 26. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case

“kf5.2w”, and the bottom panels are case “kf5.2w.c2".

Mean depths are near 1000 m (~3000 ft) in the

coupled model and above 1500 m (~4500 ft) in the uncoupled model by noon LST. Note the complete
collapse of the PBL over Galveston Bay in the uncoupled model (see Figure 6.8.18).
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Figure 6.8.18. Modeled boundary layer heightsat 1800 UTC on August 26. The uncoupled model is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. The PBL
has collapsed in the uncoupled model, with winds becoming calm at the surface but apparently blowing
over the top of the cold dome hugging Galveston Bay. In the coupled model, the winds penetrate the Bay at
the surface, continuing out of the northwest.
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Figure 6.8.19. Modeled skin temperature at 1900 UTC on August 26 for case “kf5.2w.” The uncoupled
model is on theleft. The dlice of near-shore cold Gulf water temperaturesis again seen in the uncoupled
model. Replacement with SSATS in the coupled model corrects this problem.
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Figure 6.8.20. Modeled boundary layer heightsat 2100 UTC on August 26. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. PBL heights have collapsed over the two lakes
northwest of Houstonwhich is often a problem for air quality models. Better treatment of lake temperatures
and fluxesin TOPLATS avoids this problem in the coupled mode.
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Figure 6.8.21. Modeled boundary layer heightsat 2200 UTC on August 26. The uncoupled model is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. With onset
of the sea breeze, the channeling effect sets-in in the uncoupled model. In the coupled model, a hint of
channeling is also present.
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Figure 6.8.22. Modeled boundary layer heightsat 2300 UTC on August 26. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2". Here, the influence of spurious cloudsin the
uncoupled model (left) isevident (see Figure 6.7.6). No clouds were observed in nature.
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Figure 6.8.23. Modeled skin temperature at 2300 UTC on August 26 for case “kf5.2w.” The uncoupled
model i son theleft. The stronger sea-breeze effect is noted in the uncoupled model. This may be dueto a
combination of model effects: the earlier development of the PBL together with the (anomalously) cold
near-shore SSTs. The noted surface temperature phase lead in the uncoupled model, however, suggests that
the PBL may be growing a bit too early. Thus, though the uncoupled model seemsto capture the sea-breeze
effect better than the coupled model, it may be “ getting the right answer for the wrong reasons.”
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Figure 6.8.24. Modeled boundary layer heightsat 2300 UTC on August 26. The uncoupled model is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. At this
time, the channeling effect reaches its peak wi th winds blowing strongly out of the duct near the northeast
corner of the Bay, after taking a sharp right turn (left, uncoupled mode!).
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Figure 6.8.25. Modeled boundary layer heightsat 0300 UTC on August 27. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. The nocturnal heat island is visible in the coupled
model.
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Figure 6.8.26. Modeled skin temperature at 0600 UTC on August 27 for case “kf5.2w.” The uncoupled
model ison theleft, the coupled moddl ison theright.
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Figure 6.8.27. Modeled boundary layer heightsat 0900 UTC on August 27. The uncoupled model is on the
|eft and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2". As above, atrue land-surface inversionis
entrenched in the coupled model over the entire domain. By contrast, about half of the land surface reveals
asurfaceinversion in the two “kf5.2w” runsfor the uncoupled model.
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Figure 6.8.28. Modeled boundary layer heightsat 1500 UTC on August 27. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. The PBL has grown somewhat more rapidly in the
uncoupled model than in the coupled model.
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Figure 6.8.29. Modeled boundary layer heightsat 1800 UTC on August 27. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Mean PBL heights are around 1400 min the
coupled model and near 2000 m in the uncoupled model. This difference could result in much lower ozone
levelsin an air quality model driven by the uncoupled model, due to the deeper mixed layer. Thiswasthe
first of the two highest 0zone days of the episode.
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Figure 6.8.30. Modeled boundary layer heightsat 1600 UTC on August 27. The uncoupled mode is on the
left and the coupled model ison the right. Case “kf5.2w” is shown, with wind vectorsoverlaid.
Characteristic offshore flow has a channeling effect in the uncoupled model, as air mass flows out through
the Bay inlet, forced through a shallow duct. The Bay PBL is deep enough in the coupled model to avoid
this effect.
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Figure 6.8.31. Modeled boundary layer heightsat 2000 UTC on August 27. The uncoupled modédl is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. By 2000
UTC, air issinking rapidly near the western shore of the Bay in the coupled model and spreading out like a
fan. In the uncoupled model, the PBL has become depressed but has not collapsed, and some outward
channeling flow has set in.
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Figure 6.8.32. Modeled skin temperature at 2100 UTC on August 27 for case “kf5.2w.” The uncoupled
model ison theleft. Under light winds, the land surface heats rapidly in the coupled model, with a
maximum of 50°C. The uncoupled skin surface maximum is 12°C cooler than that for the coupled model .
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Figure 6.8.33. Modeled boundary layer heightsat 2100 UTC on August 27. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w"”, and the bottom panels are case “kf5.2w.c2”. Mean PBL heights are fairly comparable by this

time. The underlying SSATS prevents the PBL from collapsing over either the Bay or near-shore Gulf in
the coupled model.
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Figure 6.8.34. Modeled boundary layer heightsat 2300 UTC on August 27. The uncoupled model is on the
left and the coupled model is on theright. Thetop two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Spurious clouds have again formed in the uncoupled
model, reducing PBL heightsin a patchwork fashion.
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Figure 6.8.35. Modeled boundary layer heights at 0000 UTC on August 28. The uncoupled model is on the

|eft and the coupled model is on theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. A strongly

divergent surface wind out of the Bay is driving strong Bay breezes in the uncoupled model. Onshore Bay
flows do exist in the coupled model, but they are weaker.
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Figure 6.8.36. Modeled boundary layer heightsat 0300 UTC on August 28. The uncoupled model is on the
left and the coupled model is on the right. Case “kf5.2w” is shown, with wind vectorsoverlaid. With the
collapse of the daytime PBL in the uncoupled model (l€ft), the flow has become rather uniform and
onshore. The relative warmth of the Bay has induced a nocturnal PBL in the coupled model, which together
with the nocturnal Houston heat-idand effect, lead to amuch more complex flow regime (right).
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Figure 6.8.37. Modeled boundary layer heightsat 0300 UTC on August 28. The uncoupled mode is on the
|eft and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2".
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Figure 6.8.38. Modeled skin temperature at 0700 UTC on August 28 for case “kf5.2w.” The uncoupled
model isontheleft. Thisfigureissimilar to Figures 6.8.26 and 6.8.15.
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Figure 6.8.39. Modeled boundary layer heightsat 0900 UTC on August 28. The uncoupled mode is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. The modeled character of the nocturnal PBL closely
resemblesthe previousfour nights for both the coupled and uncoupled models.
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Figure 6.8.40. Modeled boundary layer heightsat 1500 UTC on August 28. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Compared with the morning of August 27
(Figure 6.8.28), the coupled model PBL is somewhat closer in depth to that of the uncoupled model.
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Figure 6.8.41. Modeled boundary layer heightsat 1800 UTC on August 28. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w", and the bottom panels are case “kf5.2w.c2”. In the coupled model, the highest PBL heights are
restricted to the western half of the domain, in stark contrast to the uncoupled model. In addition, the
uncoupled model reveals a*“daytime” Houston heat-island whose plume appears to be advecting weskly
southwestward.
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Figure 6.8.42. Modeled boundary layer heightsat 2100 UTC on August 28. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Mean heightswell exceed 2000 m in the uncoupled
model (left), but remain somewhat lower over the forested areas northwest of Houston in the coupled
model.
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Figure 6.8.43. Modeled skin temperature at 2100 UTC on August 28 for case “kf5.2w.” The uncoupled
model ison theleft. The coupled model skin temperature correlateswell in space withits PBL heights
(right panels, thisfigure and Figure 6.8.42).
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Figure 6.8.44. Modeled boundary layer heightsat 2300 UTC on August 28. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Spurious clouds are again present in al of the
uncoupled runs and in the “kf5.2w.c2” coupled run.
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Figure 6.8.45. Modeled boundary layer heightsat 0300 UTC on August 29. The uncoupled model is on the
left and the coupled model ison the right. Case “kf5.2w” is shown, with wind vectorsoverlaid. Similar to
thistime on August 28 (Figure 6.8.36), the relative warmth of the Bay has induced anocturnal PBL in the

coupled model, which together with the nocturnal Houston heat-idland effect |ead to a much more complex

flow regime (right).
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Figure 6.8.46. Modeled boundary layer heightsat 0300 UTC on August 29. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2".
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Figure 6.8.47. Modeled boundary layer heightsat 0900 UTC on August 29. The uncoupled model is on the
|eft and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2".
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Figure 6.8.48. Modeled skin temperature at 0900 UTC on August 29 for case “kf5.2w.” The uncoupled
model ison the left.
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Figure 6.8.49. Modeled boundary layer heightsat 1500 UTC on August 29. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2".
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Figure 6.8.50. Modeled boundary layer heightsat 1800 UTC on August 29. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Similar to previous days, the coupled model PBL

heights are somewhat lower over the forested areas to the northwest of Houston.
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Figure 6.8.51. Modeled boundary layer heightsat 1800 UTC on August 29. The uncoupled model is on the
left and the coupled model is on theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. Channeling
outflow from the Bay is again evident in the uncoupled model, whereas the flow is moreuniformin the
coupled model.
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Figure 6.8.52. Modeled boundary layer heightsat 2100 UTC on August 29. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2” . The effects of the36 km-12 km spurious KF-cloud
boundary condition problem can be seen in the top panels, as air rapidly advances southwestward. (This
was not observed in nature).
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Figure 6.8.53. Modeled boundary layer heightsat 2100 UTC on August 29. The uncoupled model is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. The PBL
has again collapsed under the influence of negative sensible heat fluxesin the uncoupled model.
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Figure 6.8.54. Modeled skin temperature at 2100 UTC on August 29 for case “kf5.2w.” The uncoupled
model ison theleft. Thiswas the highest ozone day of the episode.
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Figure 6.8.55. Modeled boundary layer heightsat 0000 UTC on August 30. The uncoupled model is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. The sea
breeze front has progressed farther inland in the uncoupled model (see Figure 6.6.9).
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Figure 6.8.56. Modeled boundary layer heightsat 0300 UTC on August 30. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w", and the bottom panels are case “kf5.2w.c2". In case “van” , the convergence of the spurious KF-
generated boundary conditionsis evident in both models. The nocturnal heat island stands out in the bottom
two panelsfor the coupled model (right).
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Figure 6.8.57. Modeled skin temperature at 0600 UTC on August 30 for case “kf5.2w.” The uncoupled
model ison the left.
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Figure 6.8.58. Modeled boundary layer heightsat 0700 UTC on August 30. The uncoupled model is on the
left and the coupled model ison the right. Case “kf5.2w” is shown, with wind vectorsoverlaid. Variability
in Bay and sea-surface temperatures in the coupled model play arole inthe nocturnal PBL and low-level
flow structure asshown in the right panel.
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Figure 6.8.59. Modeled boundary layer heightsat 0900 UTC on August 30. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2".
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Figure 6.8.60. Modeled boundary layer heightsat 1500 UTC on August 30. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2".
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Figure 6.8.61. Modeled boundary layer heightsat 1800 UTC on August 30. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2". In the left-hand panels, the differencesin boundary
conditions between the “van” case and the “kf5.2w” caseresult in differencesin PBL heights. In theright-
hand panels, the same boundary conditions appear to advect lower (top pandl)/higher (bottom panel) PBL
air into the domain.
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Figure 6.8.62. Modeled boundary layer heightsat 1900 UTC on August 30. The uncoupled model is on the
left and the coupled model ison theright. Case “kf5.2w” is shown, with wind vectorsoverlaid. The flow is
again stagnant under anearly collapsed PBL in the uncoupled model.
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Figure 6.8.63. Modeled skin temperature at 2100 UTC on August 30 for case “kf5.2w.” The uncoupled
model ison the left. The skin temperature is not nearly aswarm in the coupled model asin the uncoupled
model on this day. Observed ozone levels were also significantly lower.
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Figure 6.8.64. Modeled boundary layer heightsat 2100 UTC on August 30. The uncoupled model is on the
left and the coupled model is on the right. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2".
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Figure 6.8.65. Modeled boundary layer heightsat 2300 UTC on August 30. The uncoupled model is on the
left and the coupled model is on theright. The top two panels are case “van”, the middle panels are case
“kf5.2w”, and the bottom panels are case “kf5.2w.c2”. Again, differences between the “van” runsand the
“kf5.2w” runs reveal surprising boundary effects. In the top panels, more stable air appears to be advecting
in from the north, whereas in the other two runs, it does not. Darker blue areas in the northern part of the
domain inthe“kf5.2w” runs, for the coupled model (right) are due to clouds. Clouds have also cut away
the previously high PBL heightsin the uncoupled model.
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6.9 Radar Wind Profile Analysis

Radar Wind Profiler (RWP) data at Ellington Field (EFD) were obtained from TNRCC
(Lambeth, 2002) for the August 25-30, 1998, period. Only one hour of data was available
on August 30, 1998, so no analysis for that day was performed. These data provide half-
hourly wind speed and direction profiles to support anaysis of the time-height
performance of the coupled and uncoupled models. The RWP data necessary to analyze
PBL heights were not available. Therefore, no comparisons between RWP and modeled
PBL heights were made.

This section focuses on comparisons between the vertical wind structure observed at
the EFD RWP and that predicted by the coupled and uncoupled model runs, as described
in Section 6.1. In the subsections below, the RWP data and model output are organized
by the day of the episode, and are presented in Central Standard Time (CST) to match the
time convention of the provided RWP data. Only two days of the episode (August 27 and
29) have complete RWP coverage, although discussion is included for the August 25-29
period.

All RWP plots have been prepared with a half-hourly time step (17 and 47 minutes past
each hour) and a 192-m vertical spacing up to a maximum altitude of 2828 m MSL.
Winds from the 4-km MM5 simulations were extracted from the model output, rotated to
real earth coordinates, and estimated at EFD using bilinear interpolation from the four
nearest grid cells. The plots for the MM5 winds were also prepared with half-hourly time
steps (on the hour and 30 minutes past the hour). The plotted MM5 winds extend to
2997 m MSL with the vertical spacing varying with height. The spacing between the
lowest two model layers is approximately 44 m and increases to 210 m for the highest
two layers on the plots.

Although the RWP data have undergone automated QA (Lambeth, 2002), they are
subject to sporadic contamination that may not be removed by the automated QA process,
possibly including, for example, the effects of birds, aircraft, or poor signal strength.
Therefore, point-by-point comparisons are not provided, and instead the discussion
focuses on general circulation features, including flow transitions/separations and the
timing of onshore and offshore flows.

Figures 6.9.1 through 6.9.5 provide day-by-day comparison of the RWP data with the
model predictions. These figures are organized with the observed RWP wind plots
displayed at the top of the figure. Below the observed winds are six plots showing the
modeled winds. The modeled winds plotted on the left side of the figure are for the
uncoupled model cases and those on the right side of the figure are for the coupled cases.
The three rows of modeled winds represent the three different 36-km 12-km MM5 cases
used to establish the lateral boundary conditions for the 4-km simulations. The upper row
of wind plots is for the default lateral boundary condition case, “van”, which used one-
way nesting between the 36-km and 12-km domains. The middle row is for the two-way
nesting simulations with the modified KF downdraft formulation, “kf5.2w”. The lower
row is for case “kf5.2w.c2” where TOPLATS/SSATS was coupled with the 12-km
domain of the “kf.52w”. The plots shown in Figures 6.9.1 through 6.9.5 are provided in
Appendix D as enlargements for added clarity.
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6.9.1 August 25

August 25 featured a synoptic-scale flow from the south-southeast, followed by the
development of deep convective cells and clusters in the afternoon. As shown in
Figure 6.9.1, south-southeasterly flow is observed at EFD between 0000 and 0600 CST,
followed by atransition to a weaker easterly flow until the data end at 0900 CST.

The results indicate that between 0000 and 0400 CST, both coupled and uncoupled
models are generally in good agreement with the RWP data from 192 m MSL to about
1500 m MSL. Above 1500 mMSL, both models indicate a more easterly flow, in
contrast to the south-southeasterly flow indicated by the RWP.

After 0400 CST, all nodel results indicate a flow transition beginning at the surface
and rising over the course of the daytime heating. For the upper model plots (the default
boundary conditions; i.e. case “van”), this transition is clearly more distinct and occurs at
about the right time (near 0600 CST) in the coupled model (upper right of the six plotsin
Figure 6.9.1). For the twoway coupled runs, the transition initiates earlier
(near 0400 CST) and contains a sharper surface-based wind shift in the coupled runs
(lower two right hand plots).

The largest model-to-model differences on this day appear to result from the laterd
boundary conditions. The default boundary conditions shown in the upper model plots of
Figure 6.9.1 indicate that the area of flow separation is confi ned to the first 1000 m MSL,
with what appears to be a somewhat faster decay in the uncoupled model versus the
coupled model. All results using the two-way nested lateral boundary conditions indicate
not only an earlier development of this flow separation, but also a much greater depth—
approximately 2000 m MSL. The differences between the coupled and uncoupled model
for the two-way nested cases do not appear to be significant.

6.9.2 August 26

On August 26, the flow was generally weaker and less southerly than on August 25.
This resulted from changes in the synoptic flow pattern discussed previously. As shown
in Figure 6.9.2, the EFD RWP indicates a generally southeasterly flow below
1000 mMSL from 0000 CST until about 0600 CST, at which time the flow becomes
weaker and more easterly, until the data end at 1100 CST. Above 1000 m MSL, the flow
is much stronger and from the east-northeast until about 0300 CST, at which time it
becomes southeasterly until 1100 CST.

As with Figure 6.9.1, the upper model plots of Figure 6.9.2 indicate the default lateral
boundary conditions for the uncoupled (left) and coupled (right) cases. At the surface, the
uncoupled run retains an onshore wind component through about 0400 CST, where the
coupled run, is offshore (a land-breeze) for the 12-hour overnight period. The RWP data
do not appear to contain surface vectors, so this difference cannot be analyzed. Above
1000 m MSL, neither result reflects the flow from the east-northeast (observed until
about 0300 CST), although after 0300 CST, the modeled winds above 1000 m MSL are
consistent with the observations.

The middle and lower model plots in Figure 6.9.2 illustrate results of the two-way
nested lateral boundary condition tests. These results indicate that the smulated flow
below 1000 mMSL is generally too strong and more easterly than that observed at the
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EFD RWP. This in turn, seems to result in a shallower area of flow separation from
0300 CST until about 1100 CST, at which time the area of flow separation appears to
reach the 1000 mMSL level in all two-way nested simulations.

6.9.3 August 27

August 27 is one of the two dates for which a complete day of RWP datais available.
August 27 featured anticyclonic circulation and weak daytime flow in the boundary layer,
which contributed to a maximum 1-hour ozone concentration of 203 ppb (at CAMS 35),
with four monitors exceeding 124 ppb (CAMS 10, 34, 35, and 53). As shown in
Figure 6.9.3, the flow indicated by the EFD RWP below 1000 m MSL is generally south
to southwesterly between 0000 and 0600 CST, and becomes weaker and indicates a
rotation from westerly to northerly to easterly to southerly between 0600 and 2100 CST.
By 2300 CST, the flow is again south to southwesterly and somewhat stronger than
during the daytime. Above 1000 m MSL, the flow is generally northeasterly to easterly,
with the exception of flow from the southeast between 0000 and 1300 CST above
2000 mMSL. The flow is lighter and more northerly between 1300 and 1800 CST from
1000 mMSL to 2200 m MSL. These direction changes and associated areas of flow
separation reflect the growth of the atmospheric boundary layer and its interaction with
the sea-land breeze.

As with the previous results, Figure 6.9.3 indicates the results for case “van” in the
upper model plots, followed by the two-way nested boundary condition results without
and with TOPLATS coupling on the 12-km grid in the middle and bottom model plots.
The default lateral boundary condition results in Figure 6.9.3 indicate that neither model
is reflective of the RWP observed southwesterly flow below 1000 m MSL between
0000 and 0600 CST, athough the magnitudes are consistent. Both default boundary
condition model results above 2000 m MSL are consistent with the EFD RWP
observations. The most striking improvements due to the coupled model shown by these
results are (1) the representation of the northerly flow from 1000 to 2000 m MSL
between 1400 and 1800 CST and (2) the representation of the southerly flow from
100 to 800 m MSL between 1700 to 2000 CST.

6.9.4 August 28

On August 28, a very weak, dry, surface trough approached from the northwest,
although the flow above 1000 m MSL continued to be fairly strong (10 to 15 m/s) from
the northeast, asindicated by the EFD RWP datain Figure 6.9.4.

As shown in Figure 6.9.4, the model results for all configurations are very similar on
this day, particularly during daytime hours. The largest differences are seen between the
uncoupled (left) and coupled (right) model results in terms of the height of the flow
separation area (i.e., the boundary layer height), which is about 200 m higher and more
temporally persistent in the coupled model than in the uncoupled model. The other
significant difference is the models' behavior between 0000 and 0600 CST. For example,
the EFD RWP indicates southwesterly to westerly flow below 1000 m MSL between
these hours, which is well-represented in the default lateral boundary condition runs
(upper model plots), while the two-way runs reflect either northeasterly or southeasterly
flows that are aso too wesk.
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6.9.5 August 29

The highest ozone values of the episode developed on August 29, which featured weak
surface flow and a diurnal flow pattern similar to that on August 27, the other high ozone
day. As shown in Figure 6.9.5, the EFD RWP winds below 1000 m MSL are generally
light and somewhat variable, and seem to organize along the same rotating westerly to
northerly to easterly to southerly pattern observed on August 27 during the daytime.

Overall, the model results shown in Figure 6.9.5 reasonably capture the rotating flow
observed in the RWP data; however, it appears that only the models with the two-way
nested lateral boundary conditions are able to capture the southerly flow observed after
1900 CST, and even so are generally late in capturing this feature. In addition, no model
runs reflect the higher wind speeds observed in the early morning and late evening hours
between 1800 and 2600 m MSL.

Comparisons between the coupled and uncoupled model results in Figure 6.9.5 reveal
that the coupled model seems to capture the observed flow separation area from
0000 to 0600 CST better than the uncoupled model; otherwise, the results are generally
similar for this day.
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6.9.6 Figuresfor Section 6.9 (also see Appendix D)

Ellington Field Profiler
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