
773 San Marin Drive, Suite 2115, Novato, CA 94998 415.899.0700

 ENVIRON International Corporation

Final Report

Speed Improvements for EPS3

Prepared for
Jim MacKay

TCEQ
12100 Park 35 Circle

Austin, TX 78753

Prepared by
Gary Wilson

Jeremiah Johnson
ENVIRON International Corporation

773 San Marin Drive
Suite 2115

Novato, CA 94998

July 2010

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc i

TABLE OF CONTENTS

1.0 INTRODUCTION... 1

2.0 METHODS .. 2

2.1 Enhancements to PIGEMS Module .. 2

2.2 Profiling the Code Using PGPROF ... 3

2.3 Evaluation of Parallel Processing Strategies .. 4

2.4 Improvements to the MRGUAM Module .. 5

2.5 Incorporating Hash Tables .. 6

3.0 RESULTS .. 8

TABLES

Table 2-1. Timing of the PIGEMS module. ... 2

Table 2-2. Timing of the MRGUAM module. .. 6

Table 2-3. Timing of the CNTLEM Module. ... 7

Table 2-4. Timing of the GRDEM Module. ... 7

Table 3-1. Timing for complete inventory processing. ... 8

FIGURES

Figure 2-1. Example of PGPROF analysis of entire module. ... 3

Figure 2-2. Example of PGPROF analysis of single subroutine. ... 4

APPENDIX

Appendix A: PIGEMS Section from EPS3 User’s Guide (changes are highlighted)

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 1

1.0 INTRODUCTION

EPS3 is the foundation of emissions modeling for the TCEQ. Every part of the emissions
inventory, including point, mobile, non-road, area, and biogenic sources, is processed through at
least part of the EPS3 system. The large meteorological and photochemical models used by the
TCEQ have required the purchase of many multi-core servers. These servers also process the
emissions inputs. Computers with multi-core central processing units can process data in parallel
rather than sequentially. EPS3 lacks this capability. The purpose of this work order was to
evaluate and implement parallel data processing algorithms into EPS3 where appropriate. In
addition, other methodologies for improving the performance of the EPS3 modules were
evaluated and incorporated into the system.

Although parallel processing methods proved not to be effective, other methods were utilized
and ENVIRON has accomplished the goal of significantly improving the performance of the
EPS3 system. The speedup in the EPS3 emissions processing will provide benefits of rapid
control strategy evaluation and quicker turnaround when inventories are being developed and
quality assured. Faster processing will be especially beneficial for the extremely large data sets
encompassing tens of thousands of Texas point sources and thousands of roadway links in urban
emissions modeling required by State Implementation Plan (SIP) modeling.

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 2

2.0 METHODS

2.1 Enhancements to PIGEMS Module

The PIGEMS module, which selects sources for treatment using Plume-in-Grid (PiG), can be a
time-consuming step in processing point source emissions through EPS3. PIGEMS also
prepares the CAMx-ready format point source emissions file. There are two reasons why this
module is time-consuming. First it must process a tremendous amount of data, effectively the
entire point source inventory. Secondly, because the point source inventory may contain day-
specific emissions estimates, the PIGEMS module must be exercised for each day of the
modeling episode. There is no way of getting around day-specific application of PIGEMS,
however the amount of data to be processed uniquely for each day could be greatly reduced.

Currently, the input files read by PIGEMS must contain the full complement of point sources
each time it is run. This is because PIGEMS must write all point sources to the final CAMx-
ready point source emissions file. Consequently, PIGEMS is reading and processing many
sources that do not change from one day to another or from one scenario to another, which is
inefficient. A more efficient approach would be to modify PIGEMS to allow groups of sources to
be processed incrementally.

The modified version of PIGEMS optionally reads a CAMx-ready point source emissions file
that may or may not include sources selected for PiG. This point source file should include all
sources that do not change from day-to-day (the static sources). PIGEMS then reads emissions
for additional time varying point sources and performs calculations to select sources for PiG
treatment. Finally, PIGEMS merges both sets of sources into a single CAMx-ready point source
emissions file, creating a complete inventory file.

Point source emissions processing using the modified PIGEMS must be performed in stages.
First, all sources that are unchanged in future scenarios are processed normally by PIGEMS. In
most cases this will be the bulk of the point source inventory. By excluding sources with day-
specific data from this first set, the processing can be done for a “representative day” further
reducing the amount of processing needed. The first output file produced by PIGEMS would
then be used as a “static” file in further processing. In the second stage, the user must supply to
PIGEMS the static file plus additional emission files containing the sources that were excluded
from the static file.

Because the bulk of the sources in the test bed provided by the TCEQ staff were processed by the
static sources step, this method proved to be highly effective when processing the test bed. As
shown in Table 2-1 the processing time of PIGEMS on the testbed dataset was reduced by a
factor of 4. It was verified that the modified version produces an output file that is identical to
the original version.

Table 2-1. Timing of the PIGEMS module.

Testbed dataset (16 simulation days)
Version Total time (min) Min/day
Original 25 1.6
Modified 6 0.4

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 3

2.2 Profiling the Code Using PGPROF

PGPROF (Portland Group PROFiler) is a graphical performance profiler that calculates and displays
runtime performance statistics. The program can profile parallelized MPI programs and multi-
threaded OpenMP programs. PGPROF is included in all of the various PGI Fortran compiler
packages available for Linux. Once the Fortran program has been compiled with the appropriate
profile flags, it can be run normally on any application. At completion a text file with performance
statistics is generated. The PGPROF interface then uses this text file to display the statistics data.

PGPROF was used to analyze individual sections of the source code for the various EPS3
components to determine where the majority of time was being spent. Figure 2-1 shows a typical
display when the program is fed a PGPROF statistics file. The top table lists execution time in
seconds (column labeled “Time”), and the number of times each routine is called (column labeled
“Count”). From this table, we can determine that 99% of the execution time is spent in two routines,
prclbs and totlbs. The bottom table gives the execution time and number of times called for the
selected function, for each parallel thread that was utilized during the execution of the program.

Once an individual function is selected, PGPROF will display the execution time and number of
iterations for each source code line in the selected routine. An example of this display is shown in
Figure 2-2. This kind of analysis is particularly useful in determining sections of the code that can be
effectively parallelized.

Figure 2-1. Example of PGPROF analysis of entire module.

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 4

Figure 2-2. Example of PGPROF analysis of single subroutine.

2.3 Evaluation of Parallel Processing Strategies

Based on the PGPROF analysis, two parallelization strategies were investigated. Unfortunately,
neither strategy proved effective in reducing the runtime for the targeted module. In fact, in some
cases the runtimes actually increased when running with multiple processors.

The first method attempted is the classic approach of using OMP directives to parallelize a loop.
Using the PGPROF output, it was possible to identify the loops that required the most time in
each of the EPS3 modules GRDEM and LBASE. These modules were targeted by TCEQ staff as
two of the most time-consuming programs. The code was modified by adding OMP directives to
parallelize these loops and the modules were run using the testbed dataset provided by TCEQ
staff. Although a number of configurations of multiple processor applications were tried (ranging
from 2 processors to 8 processors), in no case did the parallelized version perform better than the
single processor version. In some cases, it actually performed worse. Although this seems
counter-intuitive, a quick review of the code provides a possible explanation. In each case the
targeted loop contained a large multi-dimensional data structure. Although we were not able to
confirm this, we suspect that parallelization requires the program to cache memory more often,
leading to latency in memory access. Attempts were made to restructure the data structures

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 5

involved (including using dynamically allocated arrays), with the hope that memory access and
runtime performance would improve. These attempts did not prove to be fruitful. Because the
targeted loops were by far the most time-consuming parts of the code and they could not be
effectively parallelized, this approach was not further investigated.

The second approach attempted was not a standard OMP approach. This involved reading large
amounts of data and then parallelizing the processing of this data. Most of the EPS3 modules
process one record of the input file at a time. A record is read and processed. The results are
either written to the output file or stored until the end of the processing. ENVIRON proposed
that the time required to process the entire file could be improved by reading a block of data at a
time and then parallelizing the entire processing step. It was determined that the LBASE module
is the best candidate for this approach because LBASE input files are typically the largest of any
of the EPS3 entry level modules. The LBASE module was modified to read a number of records
at a time and the data stored in arrays instead of scalars. An additional loop was added to the
processing routine (prclbs.f) and this loop was parallelized using OMP directives. Although there
was some improvement in the runtime with this modified version, it was not significant and did
not scale well to larger number of processors. Tests were performed which adjusted the number
of records read at a time. No significant improvement was reached. Because this approach was
not effective at improving the LBASE module, and this was clearly the best candidate for this
method, this approach was not further investigated.

2.4 Improvements to the MRGUAM Module

The EPS3 module MRGUAM is used to merge together several emission files that are in gridded
UAM format. The MRGUAM program can become a significant bottleneck in the generation of
a complete modeling inventory if many component files must be merged together. Intuitively, it
would seem that this is not because MRGUAM is computationally intensive. Rather it is because
it must be utilized multiple times, once for each modeling episode day, resulting in a significant
amount of I/O. MRGUAM is a simple program; it reads a series of files, adds the numbers
together and writes out a single file. After analysis using PGPROF, it was discovered that the
MRGUAM module was not using the majority of its time during the I/O step. Instead, a
significant amount of time was taken in tracking the processed emissions for purposes of
producing output tables. An analysis of the pertinent source code showed that this data tracking
was being performed in a very inefficient way. The code was originally written to utilize existing
EPS3 data structures and library subroutines. This was done for convenience and ease of
programming. The code was restructured by moving the lines that accumulate the emissions into
the routine that performs the I/O, and customizing the data structures to better match the
MRGUAM processing. This lead to a considerable improvement in the processing time. Table 2-
2 shows an example of runtimes for the two versions of MRGUAM. Because the modifications
affected only the emissions tables, the output files produced by the new version are identical. It
was also verified using several applications that the numbers in the output tables produced by the
two versions are identical.

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 6

Table 2-2. Timing of the MRGUAM module.

Domain size: 92 x 113
Number of species: 36

Number of files merged Original (secs) Modified (secs)
5 14 4
10 28 7
20 54 14
30 81 22

Average time/file merged 2.7 0.7

2.5 Incorporating Hash Tables

After further investigation applying PGPROF to the EPS3 modules a discovery was made that
lead to a speedup approach that would prove to be applicable not only to the modules involved,
but to the system in general. Looking at the testbed dataset provided by the TCEQ staff for use
with the CNTLEM module, the PGPROF output showed that most of the runtime was spent in
routines that search for a match in a lookup table. The lookup table involved is particularly large.
Also, the lookup tables in EPS3 are primarily of character data types and although Fortran is the
language of choice for floating point calculations, it is notoriously slow when dealing with
character strings. It seemed obvious that performance benefits could be gained by creating more
efficient searching routines. The first attempt at this was to put a hash table into the routines that
search the control factors file in CNTLEM. A hash table consists of 2 data structures: an initial
pointer array and a mapping array; as well as a numeric function called a hash function. When
the input data is read and stored normally, the hash table is populated in the following way:

1. Apply a hash function to the input data. (for example, sum the ASCII codes of the

characters in the source category code)
2. Use the hash function value as a location in the initial pointer array and determine if this

pointer has been set.
3. If it has not been set, then initialize it to be the location of this data item in the data array.
4. If it has been set, then look for a match in the data array at the location indicated by the

initial pointer value.
5. If no match is found, then look in the mapping array for the location of the next data item

that hashed to this same hash value.
6. Continue looking in this manner until either a match is found or the mapping array points

to an empty location in the data array.
7. In the case of an empty location, update this location so that it points to the current data

item.

The lookup for data is performed using a similar process, with the difference being the action
taken if no match is found in the existing hash table. The efficiency of a lookup using a hash
table depends on the hash function applied. An ideal hash function will produce a different hash
value for each possible data item. The most wasteful hash function will produce the same hash
value for each data item. Most applications are somewhere in between, balancing the higher
memory requirements required by a hash table that needs a great deal of array space (an ideal
hash function) with the inefficiency introduced by having to perform multiple lookups (the most

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 7

wasteful hash function). The goal is to find a hash function with a reasonable number of possible
values that evenly distributes the number times each distinct value will be generated.

After some experimentation, a reasonably well-distributed hash function was created for the
CNTLEM module. This was a function of the FIPS code/source category code pair that is the
driver for the lookup of the control factors file. The performance improvement gained using this
implementation on the CNTLEM testbed was startling. Part of the reason for this performance is
because the CNTLEM module performs a lookup of the control factors data structure at two
times during its execution. In addition to searching the lookup table when trying to find a match
of the current data record for purposes of applying controls, it also must make a series of lookups
when reading the control factors file itself. This is done to identify when the control factors file
contains duplicate identification information and inform the user accordingly. Table 2-3 shows
the speedup gained in CNTLEM using the testbed dataset.

Table 2-3. Timing of the CNTLEM Module.

Version Time
Original 2 hours, 5mins
Modified 24 secs

After the success of the hash table approach, hash tables were implemented at various places
within the EPS3 system, with varying success. Some were unique to a given module, such as the
hash table added to the “emissions by surrogate” lookup table in the GRDEM module. Others
were system wide, such as the lookup table for storing totals by source category code. The
greatest success was with the GRDEM module, when it is run with the option to generate the
surrogate report. Table 2-4 shows this performance increase.

Table 2-4. Timing of the GRDEM Module.

Area Sources
Generating A Surrogate Report
Version Time
Original 4 hours 20 min
Modified 10 min

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 8

3.0 RESULTS

Although the parallelization of the EPS3 system was not successful, significant improvements
were made to the system, greatly reducing the time needed to produce model-ready emissions
files. This is especially true for longer simulations such as an annual PM simulation. Timing
numbers have already been presented here, but these were for individual modules using testbed
datasets. A more realistic timing comparison can be performed by looking at a production dataset
and measuring the performance improvements from the beginning of the application to the
completion of the entire set of inventory files. After receiving the modified source code, the
TCEQ staff did some of these comparisons and provided the results for use in this report. Table
3-1 shows some of the timing comparisons performed by the staff at TCEQ.

Table 3-1. Timing for complete inventory processing.

Domain / Run ID Original (mins) Modified (mins)
4km / b11a_9co.diesel_NOxCor 28 1

4km / b11a_no9co.diesel_NOxCor 40 1
12km / b11a.diesel_NOxCor 135 3
36km / b11a.diesel_NOxCor 90 2

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 9

Appendix A
PIGEMS Section from EPS3 User’s Guide

3.13 PIGEMS

The PIGEMS (Plume-In-Grid EMissionS) module serves two functions. First, it serves as the
exit stage for the EPS3 system, producing an elevated emissions file for the CAMx
photochemical model. Second, it provides a sophisticated methodology for flagging sources for
the Plume in Grid (PiG) treatment within CAMx. Ultimately, the decision to simulate a point
source plume with PiG is based on the emission rate of the source. Any source that emits at a
rate greater than a user-specified threshold value will be flagged for the PiG treatment. The
complexity of the PIGEMS module stems from two design elements:

1) flexibility in how threshold values can be assigned, and

2) ability to combine similar co-located sources into a single plume

Flexible Emissions Threshold

It is often advantageous to apply a different threshold value for PiG sources based on criteria
such as geographical location. For example, the sources contained in a small region of interest
within the modeling domain could be selected for PiG using a lower threshold, producing a finer
network of PiG sources in that area, without unnecessarily generating a multitude of PiG sources
in the surrounding region. The PIGEMS module supports variable threshold values by allowing
users to assign a threshold code. Associated with each threshold code is a pollutant name and an
emissions value. Any source that emits the specified pollutant above the threshold rate will be
flagged as a PiG source. Threshold codes are defined in the /THRESHOLD VALUE/ packet of
the USERIN file found under the discussion of the PIGEMS inputs. Each source in the
emissions inventory is then assigned to a threshold code. This assignment can be done in two
ways, by county or by grid cell. The assignment of sources by grid cell is done via a “mask” file.

Combining Sources Using Co-location

The simplest methodology by which to identify a source for the PiG treatment is to compare the
emission rate of the source to the threshold value. However, this methodology would exclude
clusters of similar, closely located sources from which individual plumes would merge to form a

 Special Note
Although the execution of PIGEMS can be complicated, it can also be
easily run to format elevated point source stack lists and emission files
prepared by PSTPNT for input into the CAMx model. In this form, the
PIGEMS module serves as tool for merging elevated point source files and
reformatting for use with CAMx. See the “Running the PIGEMS Module”
later in this section.

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 10

single plume such that the combined emission rate exceeds the threshold. For example, a facility
could contain two stacks, standing tens of meters apart, each emitting at a rate that is two-thirds
of the threshold value. Treated individually, neither of these stacks would be flagged for PiG.
But combined as a single source, the pair easily exceeds the threshold. The process of
combining multiple sources that are in close proximity to each other is defined as “co-location.”
The PIGEMS module determines co-located sources using the following steps:

1. Determine if the source is “significant” (defined as one-fourth of the threshold value).
Sources that emit below this level are not considered.

2. Find all sources that are within a user-specified co-location distance. These are

considered close enough to merge into a single common plume immediately after release.
In order to avoid including a large number of small sources in a single cluster, sources
that are deemed to be “insignificant” (less than 2.5% of the threshold) are ignored.

3. Compare the aggregate emission rate for sources in this cluster against the threshold

value.

4. If the aggregate emission rate for the cluster exceeds the threshold value, a new source is
created with the combined emission rate of the cluster, and this source is flagged for PiG
treatment. The stack parameters of the new source will be an “average” of the stack
parameters of all of the sources in the cluster. See the description of the stack parameter
averaging presented later in this section.

5. Eliminate the sources in the cluster from consideration for co-location of other sources.

This prevents a source from being included in multiple clusters, and thus potentially
multi-counting that source’s emissions.

The co-location of sources cannot be performed for multiple pollutants. Although it is possible
to flag individual sources for PiG treatment according to either a NOx threshold value or a
different VOC threshold value, the PIGEMS module can only co-locate multiple sources for PiG
based on one pollutant. The name of the pollutant that is to be used as the co-location pollutant,
as well as the co-location distance, is supplied in the /THRESHOLD VALUE/ packet of the
USERIN file.

Combining a User-Defined Array of Sources

Co-locating sources is performed automatically and is determined strictly by proximity.
However, there may be instances where it would be necessary to combine sources that would not
be clustered using the co-location algorithm. For example, it may make sense to cluster a large
array of small sources, such as in an oil or chemical processing facility, that are spread out over a
fairly large area but act photochemically as a single plume from the facility. For this reason, the
PIGEMS module allows for user-specified clusters. The user must provide newly created stack
identification information (county code, facility ID and stack ID) for the new source, as well as
the existing stack identification information for all of the sources that are to be combined to
create this new source. Any existing stacks can be combined into a new source, although this
only makes sense from a photochemical modeling standpoint for a few specific cases. Note that
this feature should be used only after careful consideration of the possible impacts.

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 11

There is an option to specifically supply stack parameters and location coordinates of the newly
created source, or have the PIGEMS module automatically average the values from the
combined sources to create the stack parameters of the newly created source. To have the stack
parameters and location coordinates automatically calculated, simply enter a missing value (-9)
in the field for that parameter in the /COMBINE STACKS/ packet of the USERIN file. The
/COMBINE STACKS/ packet is described in detail later in this section.

The Master Stack List

In many instances, point sources are processed using day-specific emissions in which some
sources operate on a regular schedule (e.g., weekday/weekend), and others are used only
occasionally (e.g., peaking units, etc.). If separate inventory processing streams are used for
each day of a simulation period, this can lead to different point source lists day-to-day as various
point sources shut down and others start up. In order to ensure that all point sources that will
emit above the user-defined thresholds at some period in the simulation will receive the PiG
treatment, it is necessary to have a single cohesive list of stacks for the inventory. This list,
called the master stack list, must include any stack that emits at any time during the modeling
period. For example, an auxiliary unit that emits at a rate that exceeds the threshold (and so
should be flagged for PiG) may be active only during a weekend period. If PiG selection is
applied only to the weekday emissions inventory files, this source would be skipped. The simple
solution is to run PiGEMS for each day in the episode. However, this could lead to a series of
independent PiG point source emissions files, each having a different list and order of stacks.
While CAMx can accept such inconsistent PiG inputs (even if OSAT is invoked), these
inconsistencies can lead to difficulties with database management.

The PIGEMS module handles this complication by first creating and then utilizing a master stack
list. The first application of the PIGEMS module to an inventory should be performed to create a
master stack list over all simulation days. When creating the master stack list, the PIGEMS
module will also identify all of the sources that should be flagged for PiG treatment and put
those sources at the top of the list. It will also identify any clusters via co-location, or user-
defined stack combination, and create records in the master stack list for the newly created
stacks. The master stack list is an ASCII file and can be edited to override the automatic
assumptions made by the PIGEMS module. Once the master stack list is created, the PIGEMS
module can be run again to create an emissions inventory file for each specified day of the
inventory. The emissions inventory file will contain the entire complement of sources in the
master stack list, including sources that do not emit on the given day.

The Static Sources File

Typically, the PIGEMS module must process a tremendous amount of data, effectively the entire
point source inventory. Also, because the point source inventory may contain day-specific
emissions estimates, the PIGEMS module must be exercised for each day of the modeling
episode. This can lead to a time-consuming procedure and in some instances a good deal of this
processing can be avoided. The sources that do not vary by day, which are refererred to as “static
sources”, need only be processed once for the entire modeling episode. PIGEMS supports this
through a mechanism called the “static sources file”. PIGEMS optionally reads a CAMx-ready
point source emissions file that may or may not include sources selected for PiG. This point

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 12

source file should include all sources that do not change from day-to-day (the static sources).
PIGEMS then reads emissions for additional time varying point sources and performs
calculations to select sources for PiG treatment. Finally, PIGEMS merges both sets of sources
into a single CAMx-ready point source emissions file, creating a complete inventory file.

To utilize the static sources file, the PIGEMS module must be run in stages. First, all sources that
are unchanged in future scenarios are processed normally by PIGEMS. In most cases this will be
the bulk of the point source inventory. The first stage can also be used to process point sources
that have a “representative day”, for example a Weekday/Weekend. In this case, PIGEMS should
be run two separate times, generating a static sources file for each representative day. The output
file produced in this first stage would then be used as a “static” file in further processing. In the
second stage, the user must supply to PIGEMS the static sources file plus additional emission
files containing the sources that were excluded from the static file processing (the day-specific
sources).

RUNNING THE PIGEMS MODULE

Because of its flexibility and dual purpose nature − creating a master stack list or creating a
model ready emissions file − the PIGEMS module job stream can be a bit daunting to configure.
Some files are always needed; others should only be supplied under certain conditions. What
follows are a few examples of PIGEMS run scripts, demonstrating how the module should be
configured for a few of the typical scenarios.

Running PIGEMS When No PiG Treatment Is Needed

When no PiG is being performed by the photochemical model, the PIGEMS module acts as a
simple reformatting program, with the added ability to merge files generated by separate EPS3
streams. Because of their consistent format, a stack definition file output by PSTPNT can be
used as a master stack list input to the PIGEMS module. To ensure that all stacks are included in
the inventory it is necessary to concatenate each of the stack definition files into a single stack
definition file.

Exhibit 3-53 shows a sample job script for running the PIGEMS module when no PiG treatment
is needed. In this case, it is not necessary to include any of the PIGEMS specific packets of the
USERIN file. If these packets are included, they will be ignored. The output from this run of the
PIGEMS module is a model-ready emissions file that contains all of the sources but represents
one day of the episode.

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 13

Exhibit 3-53. Example of a PIGEMS job script, when no PiG treatment is needed.

Running PIGEMS to Create the Master Stack List

To create the master stack list, both the full complement of stack definition files and the full
complement of stack emissions files must be supplied to the PIGEMS module. All of the stack
definition files, including all days, must be supplied so that the master stack list includes each
stack that emits at any time during the modeling episode. The PIGEMS module ignores repeated
instances of stacks, creating a stack list that contains a single entry for each stack. All of the
stack emissions files, including all days, must be supplied so that the PIGEMS module can
determine if any stack emits at a rate that exceeds the threshold at any time during the modeling
episode. Obviously, a valid filename must be supplied for the output master stack list, but it is
important that the filename for the input master stack list is left blank. Exhibit 3-54 shows an
example of a job script configured for the PIGEMS module to create a master stack list.

#!/bin/csh

--- Sample job script for running the
EPS3 module PIGEMS

set EXEC = /models/eps3/src

set SCENARIO = test_problem

foreach DAY (wkd sat sun)

rm -f ../msg/msg.pigems.$SCENARIO.$DAY
rm -f ../emiss/ptsrce.$SCENARIO.$DAY.bin

echo "---"
echo " Running PIGEMS for $SCENARIO - point sources"
echo " Day - $DAY"
echo "---"

$EXEC/pigems/pigems << IEOF
USERIN file :../inputs/userin.$SCENARIO.$DAY
Master Stack List : ../emiss/stkhdr.pts.$SCENARIO.$DAY
No Stack def. file :/END/
Stack emiss files : ../emiss/elvems.pts.$SCENARIO.$DAY
 /END/
Threshold Mask file:
Static sources file:
Message file :../msg/msg.pigems.$SCENARIO.$DAY
Output Master Stack:
Output Emissions :../emiss/ptsrce.$SCENARIO.$DAY.bin
IEOF
end

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 14

 Exhibit 3-54. Example of a PIGEMS job script. This is used to create a master stack list.

#!/bin/csh

Script to run PIGEMS to create master stack list

#==
Run PIGEMS to Create the Master Stack List
#==

rm -f ../msg/msg.pigems.ext_reg.nei99v3.master_stacklist
rm -f ../emiss/master.stacklist.ext_reg_nei99v3

../../src/pigems/pigems.pts << ieof
USERIN file :../inputs/userin.ext_reg.990813
Master Stack List :
No Stack def. files:../emiss/stkdef.pt.TX.egu_99po.990813
 :../emiss/stkdef.pt.TX.egu_99po.990814
 :../emiss/stkdef.pt.TX.egu_99po.990815
 :../emiss/stkdef.pt.TX.egu_99po.990816
 :../emiss/stkdef.pt.TX.egu_99po.990817
 :../emiss/stkdef.pt.TX.egu_99po.990818
 :../emiss/stkdef.pt.TX.egu_99po.990819
 :../emiss/stkdef.pt.TX.negu_99po.sat
 :../emiss/stkdef.pt.TX.negu_99po.sun
 :../emiss/stkdef.pt.TX.negu_99po.wkd
 :../emiss/stkdef.ext_reg.others_nei99v3.sat
 :../emiss/stkdef.ext_reg.others_nei99v3.sun
 :../emiss/stkdef.ext_reg.others_nei99v3.wkd
/END/
Stack emiss files :../emiss/stkemis.pt.TX.egu_99po.990813
 :../emiss/stkemis.pt.TX.egu_99po.990814
 :../emiss/stkemis.pt.TX.egu_99po.990815
 :../emiss/stkemis.pt.TX.egu_99po.990816
 :../emiss/stkemis.pt.TX.egu_99po.990817
 :../emiss/stkemis.pt.TX.egu_99po.990818
 :../emiss/stkemis.pt.TX.egu_99po.990819
 :../emiss/stkemis.pt.TX.negu_99po.sat
 :../emiss/stkemis.pt.TX.negu_99po.sun
 :../emiss/stkemis.pt.TX.negu_99po.wkd
 :../emiss/stkemis.ext_reg.others_nei99v3.sat
 :../emiss/stkemis.ext_reg.others_nei99v3.sun
 :../emiss/stkemis.ext_reg.others_nei99v3.wkd
 /END/
Threshold Mask file:../inputs/pigems.maskfile.4km
Static sources file:
Message file :../msg/msg.pigems.ext_reg.nei99v3.master_stacklist
Output Master Stack:../emiss/master.stacklist.ext_reg_nei99v3
Output Emissions :
ieof

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 15

Running PIGEMS to Create a Model Ready Emissions File

Once the master stack list is created, the PIGEMS module can be run to create model-ready
emissions files. A PIGEMS run must be made for each day of the modeling episode. In this
configuration, the master stack list created in the previous run is used as the input stack list and
only the stack emissions files for the day of interest are included. The lines containing the output
master stack list and the threshold map file are ignored, as are the PIGEMS specific packets of
the USERIN file. Exhibit 3-55 shows a job script for creating model-ready emissions files using
the PIGEMS module. Notice that this script has a loop that walks through each day of the
inventory.

Exhibit 3-55. Example of a PIGEMS job script, to create the PiGged model ready files for each
day in the inventory.

#!/bin/csh

Script to run PIGEMS to create model-ready files

--- loop over all days in the episode ---

foreach f (13.wkd 14.sat 15.sun 16.wkd 17.wkd 18.wkd)

#==
Run PIGEMS to Create Model-Ready File
#===

set cal = $f:r
set rep = $f:e

rm -f ../msg/msg.pigems.PiG.ext_reg.nei99v3.9908$cal
rm -f ../emiss/ptsrce.PiG.ext_reg_nei99v3.9908$cal.bin

echo '----------------------------------'
echo " Doing Aug $cal"
echo '----------------------------------'

../../src/pigems/pigems.pts << ieof
USERIN file :../inputs/userin.ext_reg.9908$cal
Master Stack List :../emiss/master.stacklist.ext_reg_nei99v3
No Stack def. files:/END/
Stack emiss files :../emiss/stkemis.pt.TX.egu_99po.9908$cal
 :../emiss/stkemis.pt.TX.negu_99po.$rep
 :../emiss/stkemis.ext_reg.others_nei99v3.$rep
 /END/
Threshold Mask file:
Static sources file:
Message file :../msg/msg.pigems.PiG.ext_reg.nei99v3.9908$cal
Output Master Stack:
Output Emissions :../emiss/ptsrce.PiG.ext_reg_nei99v3.9908$cal.bin
ieof
end

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 16

Running PIGEMS to Insert Additional Sources

Sometimes it is necessary to insert new sources into an inventory after all of the main processing
has been completed. For example, on certain days of the episode in which a considerable
number of wildfires added to the air quality problem, it may be necessary to insert the wildfire
emissions, which have been processed as point sources. Or perhaps a future year control strategy
calls for a new unit, which was not included in the standard processing, to be included in the
inventory. The PIGEMS module allows for additional sources to be inserted when creating a
model-ready emissions file. The new sources will be added to the list of sources and included in
the inventory, but will not be considered for PiG treatment. The sources can be flagged for PiG
treatment by manually changing the stack diameter field on the stack definition record to a
negative value. To insert additional sources in the inventory, merely supply the PIGEMS
module with an input master stack list and any number of stack definition files. Of course, the
stack emissions files for the additional sources must also be supplied. Exhibit 3-56 shows an
example of how to configure the PIGEMS module to insert additional sources for one day of the
episode. In this example, a file containing wildfire emissions modeled as point sources is
inserted.

Exhibit 3-56. Example of a PIGEMS job script, to add additional sources to the inventory.

#!/bin/csh

Script to run PIGEMS to create model-ready file
On this day there were wild-fires (which should
not be PiGged)

#==
Run PIGEMS to Create PiGged PTSRCE file for Aug 15 (Sunday)
#==

rm -f ../msg/msg.pigems.PiG.ext_reg.nei99v3.990815
rm -f ../emiss/ptsrce.PiG.ext_reg_nei99v3.990815.bin

../../src/pigems/pigems.pts << ieof
USERIN file :../inputs/userin.ext_reg.990815
Master Stack List :../emiss/master.stacklist.ext_reg_nei99v3
Additonal Stack def:../emiss/stkdef.fires.990815
 /END/
Stack emiss files :../emiss/stkemis.pt.TX.egu_99po.990815
 :../emiss/stkemis.pt.TX.negu_99po.sun
 :../emiss/stkemis.ext_reg.others_nei99v3.sun
 :../emiss/stkemis.fires.990815
 /END/
Threshold Mask file:
Static sources file:
Message file :../msg/msg.pigems.PiG.ext_reg.nei99v3.990815
Output Master Stack:
Output Emissions :../emiss/ptsrce.PiG.ext_reg_nei99v3.990815.bin
ieof

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 17

Input Files

The PIGEMS program anticipates five input files: the USERIN file, the master stack list, stack
definition files, stack emissions files, and an optimal threshold mask file. The input master stack
list is blank if the PIGEMS run is to create the list. The stack definition files are optional if an
input master stack list is provided.

USERIN File

The PIGEMS module reads four of the standard USERIN packets and an additional three packets
specific to PIGEMS.

/DATE/ This packet (Table 2-6) provides the modeling episode information.

/REGION/ This packet (Table 2-7) provides the region definition and is used to convert source

locations to grid cell.

/CRITERIA POLLUTANT/ PIGEMS reads this packet (Table 2-9) to determine which of the

input pollutants to include in the modeling inventory. .

/SPECIES LIST/ This packet (Table 2-11) provides the air quality model species list.

All of the PIGEMS-specific packets are optional, although failing to supply either the
/THRESHOLD VALUE/ or the /THRESHOLD MAP/ packets will result in the inability of the
PIGEMS module to flag any sources for PiG treatment. Therefore, when processing an
inventory for a photochemical modeling application in which the Plume-in-Grid sub-model will
not be used, the THRESHOLD packets are not required.

/THRESHOLD VALUE/ This packet contains the threshold values that will be used to

determine if a source is to be flagged for PiG. The first record of this packet
contains the co-location information: specifically, the co-location distance and the
co-location pollutant (Table 3-34). The co-location distance is the distance (in
meters) that the PIGEMS module will use to determine if a group of stacks forms a
cluster. The emissions from stacks that are within this distance of one another will
be aggregated to determine if the combination exceeds the threshold. Because a
different threshold value can be supplied for each pollutant, the PIGEMS module
also needs to be provided the name of the pollutant that is to be used for purposes of
co-location. This is referred to as the co-location pollutant. Only threshold values
associated with this pollutant will be used when determining the co-located sources.

 The remaining records of the /THRESHOLD VALUE/ packet contain the threshold

codes and the associated threshold value (in tons per day), as well as the name of the
pollutant to which the threshold applies. The threshold code must be an integer
between 1 and 99. The same threshold code could be used for multiple pollutants.
If a source is mapped to this threshold code then it will be flagged for PiG treatment
if either of the threshold values is exceeded. For example, suppose there is a record
with a threshold code of 1 that has a NOx threshold of 50 tons per day. Also
suppose there is a record with threshold code 1 but with a VOC threshold of 10 tons

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 18

per day. If a source (or a cluster of sources) emits over 50 tons per day of NOx or
10 tons per day of VOC it will be flagged for PiG. Table 3-34 shows the format of
the /THRESHOLD VALUE/ packet. Exhibit 3-57 shows a sample /THRESHOLD
VALUE/ packet.

Table 3-34. The /THRESHOLD VALUE/ packet.

Variable Columns Description
 1 – 20 Ignored, used for notational purposes.
Colodist 21 – 30 Co-location distance (m)
Colocpol 31 – 40 Pollutant for which co-location is based.
 ithrshcd() 21 – 30 Numeric code for threshold (1-99)
 Thrshspc() 31 – 40 Criteria pollutant code for which the threshold applies.
 thrshval() 41 – 50 Threshold value for corresponding code and pollutant.

/THRESHOLD VALUE/
coloc dist, poll : 250. NOX
id, specie, val : 1 NOX 20.
id, specie, val : 2 NOX 50.
/END/

Exhibit 3-57. Sample /THRESHOLD VALUE/ packet. This packet could be used to apply a
more stringent threshold to an area of interest.

/THRESHOLD MAP/ This packet is used to assign a threshold code to sources based on the

county in which they are contained. Each record defines one mapping, by defining
a state/county FIPS code and the threshold code to which that county is to be
assigned. The threshold code must be listed in the /THRESHOLD VALUE/ packet
where the actual threshold value will be defined. The regular EPS3 best-match
criteria will be applied to the FIPS codes for purposes of matching sources. For
example, a code of 06067 will be a better match than a code of 06000. Because all
sources should have some threshold code mapping, it is important to have a record
in this packet with the “catch-all” FIPS code of 00000. If this is not included some
sources may not have a threshold code mapping and will not be considered for PiG
treatment. Table 3-35 shows the format of the /THRESHOLD MAP/ packet, while
Exhibit 3-58 shows an example.

Table 3-35. The /THRESHOLD MAP/ packet.

Variable Columns Description
 1 – 20 Ignored, used for notational purposes.
thrshcty() 21 – 30 County code for which threshold applies.

ithrshmap() 31 – 40
Numeric code for threshold value (corresponds to code specified in
/THRESHOLD VALUE/ packet).

Exhibit 3-58. Sample /THRESHOLD MAP/ packet. This packet could be used to apply a
more stringent threshold to an area of interest.

/THRESHOLD MAP/
All counties : 00000 2
Texas counties : 48000 1
/END/

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 19

/COMBINE STACKS/ This packet allows any user-defined set of stacks to be combined into a

single stack. This facilitates the clustering of sources that would not normally be
combined using the automated co-location algorithm. This packet is comprised of a
set of records, each set defining the new stack’s characteristics as well as identifying
the existing stacks that will be combined. The format of the packet records (Table
3-36) is the same as the records in the stacks definition file produced by the
PSTPNT module and the master stack list processed by the PIGEMS module. This
means populating a /COMBINE STACKS/ record can be done by extracting the
records of the stacks to be combined from the existing stack definition file and then
creating a new stack definition record for the newly created source. Note that the
new stack definition record is similar to the existing stack definition records but has
an additional field for determining if the newly created stack should be considered
for PiG treatment. It may be useful to combine stacks without applying the PiG
treatment and the /COMBINE STACKS/ allows for this.

 Because the record identifying the new source must have unique stack identification

information, it is important to come up with a coding scheme that will yield a
unique stack ID. For example, the string NEWSTK0001 could be used for the new
stacks, incrementing the numeric portion for each new stack. The county code and
facility identification codes should be taken from the sources being combined. The
keyword at the beginning of the record should be the word “NEW” for the new
stack definition record, and a blank string for those records listing the sources to be
combined. When combining stacks defined in the /COMBINE STACKS/ packet,
the PIGEMS module will either use the stack parameters listed on the new stack
record or, alternatively, “average” the stack parameters of the stacks to be
combined. To force the use of the averaging scheme the stack parameters on the
new stack record should be set to missing value (-9.0). When “averaging” stack
parameters of combined stacks, the PIGEMS module will follow this algorithm:

1. Average the coordinates,
2. Average the volumetric flow rates,
3. Calculate the square root of the sum of the squares of the diameter,
4. Calculate the maximum stack height,
5. Calculate the average of the exit temperatures weighted by the volumetric flow

rate,
6. Calculate the gas exit velocity from the newly calculated volumetric flow rate

and diameter.

 This is also the averaging scheme that is used when combining sources that are

automatically co-located. Exhibit 3-59 provides an example of the /COMBINE
STACKS/ packet.

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 20

Table 3-36. The /COMBINE STACKS/ packet.
Variable Columns Description

The following refers to the new stack record. This record is followed by a series of existing stack
records, one for each existing stack to combine.

keyin 1 – 10
Keyword 'NEW' for new stack definition followed by keyword 'PIG' or
'NOPIG' indicator.

ctynew() 12 – 21 County code for the new stack.
facnew() 23 – 32 Facility ID for new stack
stidnew() 34 – 43 Stack ID for new stack

hgtnew() 45 – 54
Stack height for new stack (negative value indicates to calculate
from combined stacks) (m)

dianew() 56 – 65 Stack diameter for new stack (m)
tptnew() 67 – 76 Stack gas exit temperature for new stack (K)
velnew() 78 – 87 Stack gas exit velocity for new stack (m/s)
xlocnew() 89 – 98 X-coordinate for new stack
ylocnew() 100 - 109 Y-coordinate for new stack
The following refers to the existing stack record. These records are the same format as the stack
definition file(output of PSTPNT) and the master stack list. There will typically be multiple
instances of this record for each new stack record.
 1 – 10 Blank indicates stack to be combined
ctycomb() 12 – 21 County code for stack to combine to create new stack
faccomb() 23 – 32 Facility ID for stack to combine to create new stack
stidcomb() 34 – 43 Stack ID for stack to combine to create new stack

Exhibit 3-59 Sample /COMBINE STACKS/ packet. (Notice that since only the first 3 fields
of the records containing the stacks to combine are read, the later fields can be included,
but they will be ignored.)

The Input Master Stack List

This file contains the list of all sources that will emit at any time during the episode period. The
PiG sources will appear at the top of the file. The format of the master stack list is identical to
the format of the stacks definition file (Table 3-37) produced by the PSTPNT module.
Therefore, for an application in which the PiG treatment is not needed it is possible to supply the
PSTPNT-produced stack definition file to the PIGEMS module as the master stack list. The
result will be a model ready emissions file with no sources flagged for PiG. In the likely event
that the EPS3 processing produced multiple PSTPNT stack definition files (by source category,
for example) it is necessary to concatenate the stack definition files from the separate EPS3
streams. Since the PSTPNT stack definition file is an ASCII file with one record for each stack,
this can be done using the Unix “cat” command, followed by the “sort –u” command to generate
a unique list of stacks.

/COMBINE STACKS/
NEW PIG 01001 1 NEWSTK0001 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0
 01001 1 001
 01001 1 002
 01001 1 003
NEW NOPIG 01073 7 NEW0000002 215.5 7.620 433. 90720. 1176037. -596587.
 01073 7 001 213.4 7.620 433. 90720. 1176037. -596587.
 01073 7 002 213.4 7.620 409. 73800. 1176037. -596587.
 01073 7 004 213.4 7.620 411. 81360. 1176037. -596587.
 01073 7 005 215.5 7.620 409. 80280. 1176053. -596685.
 01073 7 005
/END/

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 21

The PIGEMS module will typically be executed several times. The first run, which is
significantly different from the standpoint of input file requirements than succeeding runs, is
performed to create the master stack list. In this instance, the input master stack list filename
should be left blank. This tells the PIGEMS module that a master stack list should be created, in
which case an output master stack list should be supplied. If both an input master stack list file
and an output master stack list file are supplied it is assumed that the input master stack list is
valid and the PIGEMS module will ignore the line containing the name of the output master
stack list. Subsequent runs of the PIGEMS module produce model-ready inventory files for each
of the days of the modeling episode. In this instance, the master stack list file produced during
the first execution of the PIGEMS module should be supplied as the input master stack list.

Table 3-37. Stack definition file format.

Variable Columns Description
Keywrd 1 – 10 Keyword; ORIGINAL
Ctytmp 12 – 21 County FIPS code
Factmp 23 – 32 Facility identifier
Stktmp 34 – 43 Stack identifier
Hgttmp 45 – 54 Stack height (m)
Diatmp 56 – 65 Stack diameter (m)
Tpttmp 67 – 76 Stack exit gas temperature (K)
Veltmp 78 – 87 Stack exit gas velocity (m/s)
Xloctmp 89 – 98 Stack X location
Yloctmp 100 – 109 Stack Y location

The Input Stack Definition Files

The PIGEMS module accepts an indeterminate number of PSTPNT-produced stack definition
files. These must be supplied when creating a master stack list, but also can be used to add
additional sources to an inventory. For example, a user may want to add a list of permitted, but
not yet constructed sources, as a sensitivity run. When supplied both an input master stack list
and additional input stack definition files, the PIGEMS module will simply add the sources
contained in the stack definition files to the list of sources from the master stack list to include
them in the inventory. Be aware that when adding sources to an inventory in this way, the
additional sources will not be flagged for PiG treatment. When creating a master stack list, all of
the stack definition files from the separate PSTPNT runs must be supplied, including the stack
definition files for the different episode days and from different source category streams. The
PIGEMS module will ignore the duplicates and create a stack list that contains all of the sources,
apply the various criteria for application of PiG treatment, and write out a comprehensive master
stack list. To supply multiple input stack definition filenames, simply list each file on a separate
line and terminate the list with the keyword /END/ in place of a filename (Exhibit 3-54).

The Input Stack Emissions Files

Like the stack definition files, the stack emissions files (Table 3-38) are produced by the
PSTPNT module. One stack emissions file will be produced for each EPS3 stream. Unlike the
stack definition files, a set of stack emissions files must be supplied each time the PIGEMS
module is utilized. When creating a master stack list, the PIGEMS module needs access to the
entire complement of stack emissions files, including all days in the episode. This is necessary

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 22

for the PIGEMS module to determine if a source (or source cluster) exceeds the threshold on any
day during the entire episode. The PIGEMS module merely calculates the maximum daily
emissions for each source and uses this value to compare against the threshold value for purposes
of flagging sources for PiG treatment. When running the PIGEMS module to produce a model-
ready emissions file for point sources it is only necessary to supply the emissions files for that
day of the episode.

Table 3-38. PSTPNT emissions output file format.

Variable Columns Description
ctytmp 1 – 10 County FIPS code
factmp 12 – 21 Facility identifier
stidmp 23 – 32 Stack identifier
hgttmp 34 – 43 Stack height (m)
diatmp 45 – 54 Stack diameter (m)
tpttmp 56 – 65 Stack exit gas temperature (K)
veltmp 67 – 76 Stack exit gas velocity (m/s)
xloctmp 78 – 87 Stack X location of (x,y) convention
yloctmp 89 – 98 Stack Y location of (x,y) convention
 100 – 105 Inventory date
 107 – 116 Criteria pollutant code
 118 – 127 Daily emissions estimates for criteria pollutant (tons/day)
spctmp 129 – 138 Speciated pollutant code
emsval() 140 – 149 Emission estimates for speciated pollutant for hours 1 through 24
 151 – 160 (moles/hour)

During EPS3 processing it is often the case that a representative day inventory file is generated,
rather than a specific-day inventory file. For example, it is typical to produce just a single file
representing all weekdays in the summer season, rather than the dozens of files that would
account for weekdays during this period. For this reason, the PIGEMS module does not perform
any date matches when processing the emissions files. Therefore, it is critical to ensure that the
list of stack emissions files supplied to the PIGEMS module represents a single day inventory
that is complete. All of the emission records for a given stack will be added to the total
emissions for the stack. To terminate the list of emissions files in the job script of the PIGEMS
module, include the /END/ keyword in place of a filename.

The Threshold Mask File

The optional threshold mask file is used to define the threshold value for sources based on the
grid cell in which the source is located. The mask file is essentially a map of the modeling
domain in which each modeling grid cell is assigned a number, called the threshold code,
representing the threshold value to be applied to that cell. The origin of the modeling domain,
defined in the /REGION/ packet of the USERIN file, appears as the lower left-hand corner of the
mask file, so that when viewing the file in an editor it looks like the modeling domain, easting
moving from left to right and northing moving from bottom to top. The threshold code, which is
an integer, appears in a field of 3-characters.

Because political boundaries are more precise in identifying sources than modeling grid cells, any
assignment in the /THRESHOLD MAP/ packet that is not the global county code (00000) will
override the assignment in the mask file. For example, suppose a source in Sonoma County, CA is

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 23

assigned a threshold code of 1 using the threshold mask file. If the only match for Sonoma County in
the /THRESHOLD MAP/ packet is the global county code 00000, the mask file will take priority.
However, if the /THRESHOLD MAP/ packet contains a state FIPS code for California (06000) or
the specific Sonoma County FIPS code (06097), the assignment from the /THRESHOLD MAP/
packet will be used. Exhibit 3-60 shows an example of the threshold mask file.

Exhibit 3-60. Sample Threshold Mask File.

The Static Sources File

As discussed above, this is an optional file designed to accelerate the procesing of large multi-
day inventories that contain sources that have day-specific emission rates. This file is a CAMx-
ready point source emissions file and in most cases will be generated by a previous run of the
PIGEMS module. This file is designed to contain the sources in the inventory that do not vary by
day. It is used as an initial file, to which additional sources will be appended.

Output Files

PIGEMS Message File

The PIGEMS module generates a standard EPS3 message file. This file contains a history of the
run, including the date and time of the execution, a list of input and output files used and the user
parameters specified in the USERIN file. The message file also contains one of two tables for
QA purposes. The first table contains a count of the stacks in each input stack definition file and
the second table contains the emissions totals for the stacks processed, also separated by input
file. In each case, the information is reported by the following categories:

1. Total number of stacks.
2. Number of stacks that were flagged for PiG treatment.
3. Number of stacks identified for co-location.
4. Number of stacks combined using user definition.
5. Number of stacks in which the mask file determined the threshold code.

 1
 1
 1
 1
 1
 .
 .
 .
 1
 1
 1
 1
 1
 1 1 1 1 1 1 2 2 2 1
 1 1 1 1 1 1 2 2 2 1
 1 1 1 1 1 2 2 2 2 1
 1 1 1 1 1 2 2 2 2 1
 1 1 1 1 1 2 2 2 2 2 1
 1 1 1 1 1 2 2 2 2 2 1
 1 1 1 1 1 2 2 2 2 2 1
 1 1 1 1 1 1 2 2 2 2 2 1
 1 1 1 1 1 1 2 2 2 2 2 1
 1 1 1 1 1 1 2 2 2 2 2 1
 1 1 1 1 1 1 2 2 2 2 2 1
 1 1 1 1 1 1 1 2 2 1
 1 1 1 1 1 1 1 2 2 1

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 24

When running the PIGEMS module to produce a master stack list, only the table of stack counts
will be produced. Alternatively, only the table of emissions totals will be produced when
running the PIGEMS module to produce a model-ready emissions file. Exhibit 3-61 shows a
PIGEMS message file.

Exhibit 3-61. Example of a PIGEMS message file.

 EPS3 PIGEMS module v. 1.2 Aug 2005 07/25/07 18:43:38

 Input Files
 USERIN file :../inputs/userin.test_problem.wkd
 Input master stack list file :../emiss/stkhdr.pts.test_problem.wkd
 Input stack emissions files
 Emiss file 001 :../emiss/elvems.pts.test_problem.wkd
 Threshold mask file : Not provided.

 Output Files
 Using Input Master stack list : No output master stack list will be
created.
 Emissions file :../emiss/ptsrce.test_problem.wkd.bin

 EPS3 PIGEMS module v. 1.2 Aug 2005 07/25/07 18:43:38

 File note :CAMx Modeling of Tx regional, 9/13/99
 Episode date (Calander) :990913
 Episode date (Julian) :99256
 Beginning hour : 0
 Ending hour : 24
 Grid origin (km) : (-108.000, -1584.000)
 UTM zone : 0
 Grid cell width (km) : (12.000, 12.000)
 Number of cells : (135, 138)

 Colocation dist (m) : 0.00000

 Threshold Code Values read from USERIN file.
 Code Species Level (tons/day)

 Threshold Code Mappings read from USERIN file.
 FIPS Code Threshold Code

 Table of Emissions Processed

 Input File NOX CO VOC

 Emiss file 001 2084.4503 852.5801 154.3051

 Total 2084.4502 852.5801 154.3051

July 2010

T:\TCEQ_2010\WO-FY10-19_EPS3_speedup\report\final_report_84005-FY10-19_15jul10.doc 25

Output Master Stack List File

This filename must be supplied when running the PIGEMS module to produce a master stack
list. The PIGEMS module decides whether it should create a master stack list by looking at the
filename for the input master stack list. If this filename is a blank string it is assumed that a
master stack list is to be produced, in which case the line in the job script containing the output
master stack list must contain a valid filename. However, if a valid filename is supplied for the
input master stack list, it is assumed that a model-ready emissions file is to be produced and the
line containing the output master stack list filename is ignored. The format of the output master
stack list is the same as the stack definition files produced by the PSTPNT module.

Output Emissions File

This file is a binary model-ready point source emissions file containing a single day of hourly
emissions for each of the stacks in the inventory. It is produced when running the PIGEMS
module where an input master stack list is provided. When running the PIGEMS module to
produce a master stack list, .i.e. the input master stack list file is blank and the output master
stack list file is valid, this file is ignored.

