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EXECUTIVE SUMMARY 
 
 
Plume rise from point source stacks depends upon the configuration of the stack, physical 
properties of the exiting gases, and the state of the ambient atmosphere.  Air quality models 
adopt different approaches to calculate plume rise.  The objectives of this project were to 
compare and evaluate plume rise algorithms in several models (CAMx, SMOKE/CMAQ, 
CALPUFF, AERMOD), and then to update CAMx with an improved point source plume rise 
algorithm.  Our model review led us to recommend the SMOKE/CMAQ approach for 
consideration as an alternative option in CAMx.  However, comparison of the CAMx and 
SMOKE/CMAQ plume rise calculations in a series of idealized tests revealed some undesirable 
features in the SMOKE/CMAQ plume rise calculations that led to counter-intuitive behavior 
across different wind speed and stability regimes.  As a result, it was dropped from further 
consideration; the remainder of the project focused on improving the current CAMx plume rise 
algorithm and evaluating it via idealized tests and existing modeling applications.  The idealized 
tests revealed that in most cases the original and updated plume rise estimates were identical, but 
results were improved for capping stable layer cases.  In particular, the new capability to 
distribute plume mass vertically through several layers led to penetration into the capping 
inversion. 
 
CAMx was run using the 2006 TCEQ Houston modeling database so that the plume rise impacts 
could be assessed over as many meteorological and geographical conditions as possible.  
Overall, surface NOx differences tended to be small and negative, with peak differences 
remaining well within ±10 ppb.  The propensity toward NOx decreases was mostly a result of 
spreading emissions over multiple layers, but occasionally higher plume estimates pushed more 
mass to higher layers above the mixing depth.  In general, the plume rise update resulted in 
mostly NOx reductions during daytime hours, while NOx increases generally occurred during 
evening through early morning hours, periods of maximum stability.  Plume spread and higher 
daytime rise modulated the amount of NOx in the boundary layer, and this further impacted 
ozone profiles by altering the location and depth where ozone titration by fresh NOx occurred.  
While our analyses show that formulation differences among plume rise algorithms do not lead 
to significant impacts for modeling secondary pollutants such as ozone and PM, the same may 
not be true for applications that focus on concentrations of primary emissions near sources (e.g., 
toxics) and associated human exposure. 
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1.  INTRODUCTION 
 
 
1.1 BACKGROUND 
 
Plume rise from point source stacks depends upon the configuration of the stack, physical 
properties of the exiting gases, and the state of the ambient atmosphere.  Air quality models 
adopt different approaches to calculate plume rise.  For example, the Comprehensive Air quality 
Model with extensions (CAMx) calculates plume rise internally and determines a single layer in 
which to inject point source emissions.  On the other hand, the Community Multi-scale Air 
Quality (CMAQ) model usually relies upon an external plume rise calculation performed by the 
Sparse Matrix Operator Kernel Emissions (SMOKE) processor, which distributes emissions 
vertically to multiple layers.1 
 
The objectives of this project were to compare and evaluate several approaches to calculate 
plume rise, and then to update CAMx with an improved point source plume rise algorithm.  
ENVIRON reviewed and compared the plume rise algorithms currently employed within the 
following widely-used air quality modeling systems: 
 

• CAMx (ENVIRON, 2010); 
• SMOKE/CMAQ (UNC, 2009; Byun and Schere, 2006);  
• California Puff (CALPUFF) model (Scire et al., 2000); 
• AERMOD Gaussian plume model (EPA, 2004). 

 
We also investigated the plume rise calculation used within the Second-order Closure Integrated 
Puff (SCIPUFF) model and found that it reportedly uses the same plume rise algorithm as 
SMOKE/CMAQ (EPRI, 2000).  We attempted to review the approach used in the new coupled 
meteorology-chemistry model, WRF-Chem (Peckham et al., 2009) but learned that the model 
relies on three-dimensional emission inputs, similar to older versions of CMAQ, for which the 
plume rise is determined externally.  While the WRF-Chem user’s guide states that it is expected 
that emission inputs are to be developed independently on a case-by-case basis, WRF-Chem is 
distributed with an example pre-processor (emiss_v03.F) that is hard-wired to generate emission 
inputs from the 2005 U.S. National Emission Inventory.  According to the WRF-Chem user’s 
guide: 
 

“Currently no plume rise calculations directly couple WRF dynamics to anthropogenic 
point emissions.  The emiss_v03.F routine includes some plume rise from the Brigg’s 
formulation due to momentum lift from direct injection, and a specified horizontal wind 
climatology.” 

 
Given that the WRF-Chem emissions pre-processor appears to be a temporary place-holder that 
contains a simple plume rise calculation, this algorithm was not considered further. 
 
 

                                                 
1  Beginning with version 4.6, CMAQ includes the same SMOKE plume rise algorithm as an internal option. 
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Organization of this Report  
 
Section 2 of this report summarizes and compares/contrasts the plume rise algorithms used in 
each of the models listed above.  The summary of the individual approaches is qualitative with 
the focus on characterizing their similarities and differences with as little complication as 
possible.  From this comparison, ENVIRON recommended more detailed investigation of the 
SMOKE/CMAQ plume rise algorithm as a potential alternative option in CAMx. 
 
Section 3 documents a comparison of the CAMx and SMOKE/CMAQ plume rise calculations in 
a series of idealized tests covering a range of stack parameters and environmental conditions (the 
test bed).  The comparisons revealed that in most conditions tested, the CAMx and 
SMOKE/CMAQ plume rise estimates were very similar.  However, some undesirable features 
were apparent in the SMOKE/CMAQ plume rise calculations that led to counter-intuitive 
behavior across different wind speed and stability regimes. 
 
Results of these tests were discussed with TCEQ and the SMOKE/CMAQ plume rise algorithm 
was dropped from consideration as an alternative to the CAMx plume rise algorithm.  Instead, 
the remainder of the project focused on improving weaknesses of the current CAMx plume rise 
algorithm that were identified in Section 3.  Section 4 describes the CAMx plume rise 
improvements, test bed comparisons of the updated CAMx algorithm, and CAMx modeling 
results using both the original and updated plume rise algorithms. 
 
 
1.2 OVERVIEW OF PLUME RISE CALCULATIONS 
 
In general, the plume rise algorithms used in modern grid (Eulerian) and plume-oriented 
(Lagrangian) air quality models are rooted in parameterized equations that were developed 
decades ago.  These empirical relationships were constructed from experimental data for a 
variety of release and atmospheric conditions.  The most commonly applied plume rise equations 
were first developed by Briggs (1969, 1971, 1972), and over the next decade or so various 
enhancements to these relationships were made to consider such effects as plume penetration 
into capping stable layers, downwash from stack tips and nearby structures, and multi-layer 
stabilty (e.g., Briggs, 1975, 1984; Turner, 1985; Turner et al., 1986; Weil, 1988, 1997). 
 
Plume rise algorithms typically include equations that characterize the effluent’s buoyancy and 
momentum as it exits the stack.  From this, plumes can be characterized in three ways (Seinfeld 
and Pandis, 1998): 
 
  Buoyant plume: Initial buoyancy >> Initial momentum 
  Forced  plume: Initial buoyancy ~ Initial momentum 
  Jet:   Initial buoyancy << Initial momentum 
 
Separate buoyancy and momentum equations are employed for neutral, unstable and stable 
atmospheric conditions.  Often plume rise is calculated from either buoyant flux or momentum 
flux with the choice of which to use based on which equation yields greater rise above the stack.  
Some models combine buoyant and momentum effects into single equations.  In either case, the 
final rise is added to the stack height to determine the final total plume centerline height above 
the ground (referred to as “effective stack height”). 
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2.  SUMMARY OF PLUME RISE ALGORITHMS 
 
 
This section summarizes and compares/contrasts the plume rise algorithms currently employed 
within the following widely-used air quality modeling systems: 
 

• CAMx; 
• SMOKE/CMAQ;  
• CALPUFF; 
• AERMOD. 

 
The summary of the individual approaches is qualitative with the focus on characterizing their 
similarities and differences with as little complication as possible.  Following this comparison, 
we recommended more detailed investigation of the SMOKE/CMAQ plume rise algorithm as a 
potential alternative option in CAMx.   
 
Table 2-1 summarizes some of the key features of the plume rise algorithms used in each of the 
air quality models reviewed in this work.  Details of each treatment are described below. 
 
 

Table 2-1.  Comparison of important plume rise features for several models. 
 CAMx SMOKE/ 

CMAQ 
CALPUFF AERMOD 

Multi-layer rise X X   
Multi-layer injection  X n/a n/a 
Considers capping stable layer X X X X 
Partial penetration into capping stable layer  X X X 
Vertical wind shear effects   X  
Stack tip downwash X  X X 
Combines buoyant and momentum fluxes   X X 

 
 
2.1 CAMx 
 
The CAMx plume rise algorithm is based on the multi-layer stability-dependent approach of 
Turner et al. (1986), which in turn has its roots in the original Briggs equations.  The atmospheric 
stability in the model layer containing the stack top is first calculated to determine whether stable 
or neutral/unstable conditions exist at the point of release.  Then momentum and buoyant fluxes 
are calculated from stack parameters using equations specific to the atmospheric stability.  The 
larger of momentum or buoyancy rise is selected, and the other is disregarded. 
 
If momentum rise is chosen, it is set as the final plume rise; thus in this case plume rise is 
entirely based on momentum exiting the stack and stability of the layer containing the stack; no 
further consideration is given to atmospheric conditions in layers above the stack.  However, if 
buoyant rise is dominant then residual buoyancy flux is determined for each model layer above 
the stack until buoyant energy is dissipated.  Residual buoyancy accounts for mixing with air as 
it traverses a given layer, and specific equations are used according to stability of the current 
layer.  Therefore, buoyant rise considers the changing stability and wind conditions in each layer 
and thus will be impeded by a capping stable layer.  The buoyant rise into the final layer 
containing zero residual buoyancy is taken as the final plume rise. 
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After final plume rise is determined, CAMx applies a stack tip downwash factor according to the 
Froude number (a relationship between wind speed and exit velocity).  If the exit velocity is 50% 
larger than wind speed, no adjustment is made.  If the exit velocity is smaller than the wind 
speed, downwash is overwhelming and there is no plume rise.  In between these two extremes, a 
factor between 0 and 1 is linearly applied to the plume rise.  All emissions are injected into the 
single grid cell in the column containing the stack, within the layer containing the final plume 
rise.  Emissions are not distributed through multiple layers. 
 
 
2.2 SMOKE/CMAQ 
 
SMOKE has historically calculated time-dependent effective plume heights for point sources as 
part of its process of generating three-dimensional gridded emission inputs for the CMAQ 
photochemical model.  Since the release of CMAQ v4.6, the photochemical model includes the 
option to calculate plume rise internally, in which case the SMOKE plume rise calculation is 
bypassed and SMOKE instead supplies pertinent stack information for each point source to 
CMAQ.  The plume rise algorithms in SMOKE and CMAQ are identical. 
 
As described by Houyoux (1998), SMOKE employs a multi-layer stability-dependent plume rise 
algorithm similar to CAMx.  The approach in SMOKE is based on the algorithm first employed 
in the Regional Acid Deposition Model (RADM; Byun and Binkowski, 1991; Turner, 1985) with 
some important improvements.  SMOKE distinguishes between three stability regimes (stable, 
neutral, and unstable) as opposed to the two regimes considered in CAMx (stable and 
neutral/unstable). 
 
In general, the SMOKE plume rise algorithm operates very similarly to CAMx.  Atmospheric 
stability at stack top is first determined, and then momentum and buoyant fluxes are calculated 
from stack parameters using equations specific to the three atmospheric stability regimes.  If 
momentum rise dominates, then it is chosen and buoyant rise through layers above is 
disregarded.  If buoyant rise dominates, then residual buoyancy flux is re-calculated using 
stability-dependent equations for each successive layer until zero residual is reached.  SMOKE 
adds considerable complexity to this approach by explicitly considering mixing height in its 
stability classification, and this is used to determine partial plume penetration into the capping 
stable layer.  Six different cases are possible, which consider the stack top height, stack top 
stability, and the mixing height.  SMOKE does not include any stack tip downwash adjustments 
to final rise. 
 
Unlike CAMx, SMOKE distributes plume emissions through potentially several layers, 
depending on plume rise and the six stack/mixing height cases described above.  Once plume rise 
is determined, the top and bottom of the plume is set to 50% of the plume rise above and below 
the final plume rise, respectively (i.e., the depth of the plume equals the plume rise).  Emissions 
are distributed to each layer within this depth according to the pressure in each layer (i.e., the 
distribution is weighted by atmospheric mass in each layer). 
 
 
2.3 CALPUFF 
 
The CALPUFF model determines plume rise from several types of sources, including point, 
buoyant line, and buoyant area.  The basic point source plume rise equations are based on those 
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of Briggs (1975).  Like CAMx, CALPUFF considers two stability regimes determined by 
surface-based meteorological conditions at the stack: stable and neutral/unstable.  Although 
CALPUFF reads vertically resolved meteorological input data, the plume rise algorithm does not 
consider rise through multiple layers.   
 
CALPUFF first calculates plume rise using formulas that combine momentum and buoyancy 
fluxes together; different equations are used for stable and neutral/unstable conditions.  The rise 
equations include downwind horizontal distance traversed during the rise, a feature referred to as 
“transitional” plume rise.  This is important for near-source plume models that are designed to 
explicitly treat plume dynamics at very short length scales.  A minimum wind speed of 1 m/s is 
imposed during calm or low wind speed conditions.  As in CAMx, CALPUFF treats the stack-tip 
downwash.  The Froude number criteria and adjustment equations are very similar, except 
CALPUFF adjusts the stack height downward instead of adjusting the final plume rise value, 
which reduces the overall effective stack height.   
 
During neutral/unstable conditions, plume rise can also penetrate into the capping stable layer 
above the mixing height if the initial plume rise calculation exceeds the mixing height.  
CALPUFF first calculates a penetration parameter and the fraction of the plume remaining in the 
mixed layer.  Based on these variables, two different plume rises are determined (above the 
mixing height and below); the penetrating rise is then used to sequester puff mass in the capping 
stable layer from mixing downward to the ground.  It is not clear from the documentation if the 
penetrating mass fraction is split into a different puff, or if a single puff is simulated but only a 
fraction of mass is available for mixing. 
 
The plume rise by buoyant flux can also be reduced when there is a vertical wind shear above the 
stack top.  Scire et al. (2000) state that for most medium to tall stacks well above the surface 
shear layer (~50 m) these effects are unimportant.  However this effect cannot be ignored for 
shorter stacks.  CALPUFF includes stable and neutral/unstable buoyant rise equations for short 
stacks that include a power law relationship of wind with respect to the height.  For these stacks, 
the minimum among shear-based rise, downwash-adjusted rise, and the initial non-shear rise is 
taken for the final plume rise. 
 
 
2.4 AERMOD 
 
The plume rise algorithm within the AERMOD model has several common features with 
CALPUFF.  It is based on historical schemes (e.g., Briggs, 1975, 1984; Weil, 1988) but includes 
numerous updates to account for such phenomena as downwash, transitional rise, and plume 
penetration above the mixing height (e.g., Weil et al., 1997).  While meteorological data at 
multiple vertical levels are available to AERMOD, its plume rise algorithm is not a multi-layer 
scheme.  Local stability at stack top is used to decide which plume rise equation is used.   
 
The model uses input vertical profiles of meteorological data to extract wind speed and 
temperature gradient at the stack top for the momentum and buoyant flux calculations.  Within 
the convective boundary layer (equivalent to the neutral/unstable cases in other models), the 
plume rise equation is a combination of momentum and buoyant fluxes as in CALPUFF (Briggs, 
1984).  In the stable boundary layer (equivalent to the stable case), the plume rise equation is 
also a combination of momentum and buoyant fluxes according to the equations of Weil (1988).  
Both rise equations include downwind horizontal transport for transitional plume rise.  
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Adjustments are made in the case of near-neutral stability and near-calm conditions (which can 
both lead to unrealistically large plume rise according to the authors).  
 
AERMOD also uses mixing height information similarly to CALPUFF; if stacks are located 
above the mixing height, it uses equations corresponding to stable conditions, even if the surface 
is unstable.  AERMOD also considers the possibility that plumes penetrate into the capping 
stable layer above the mixing height, and corrects plume rise in such cases.  The mass that has 
penetrated into the capping layer is assigned to a virtual source and treated separately.  Also, 
AERMOD employs the same stack-tip downwash adjustment as CALPUFF.  However, 
AERMOD does not include any wind shear effects. 
 
 
2.5 ORIGINAL RECOMMENDATION FOR CAMx 
 
The purpose of this review was to compare/contrast the features of each of the plume rise 
algorithms employed within today’s most widely used modeling systems.  From this review, we 
developed a recommendation for which approach would best serve as an alternative option in 
CAMx. 
 
Given the vastly different spatial frames between the Eulerian grid and Lagrangian plume forms, 
and their intended purpose, certain capabilities or advantages offered in the Lagrangian model 
plume rise algorithms may not be important for the Eulerian models, or even appropriate or 
applicable (e.g., the concept of “transitional” rise is useless in grid models in which emissions 
are instantly emitted/diluted into grid cell volumes).  One feature that CALPUFF possesses over 
all other algorithms is that it accounts for the effects of wind shear near the ground (a separate 
effect from stack-tip downwash, which is caused by the physical wake effect of the stack on 
plume dynamics).  However, we are not convinced that this would provide a substantial 
advantage for Eulerian models with discrete, fairly thick layers.  The most important advantage 
offered by the CAMx and SMOKE/CMAQ algorithms is the use of multi-layer meteorological 
conditions that independently control buoyant plume rise according to the local stability profile.  
However, both grid model approaches use older rise equations that separately choose between 
momentum and buoyancy flux, while the Lagrangian models combine these fluxes into a single 
rise equation.  
  
In the Eulerian models, the residual buoyancy flux into each successive layer was formulated for 
the specific buoyancy equations employed.  If one of the Lagrangian algorithms were to be 
adapted to a multi-layer technique in CAMx, it would be necessary to derive or approximate the 
residual flux, and this would require specialized knowledge of decades-old derivation and 
empirical techniques used for the original Briggs (1975) equations.  This was clearly not within 
the intended scope of this project. 
 
Therefore, our recommendation focused on the SMOKE/CMAQ approach.  This algorithm does 
offer two advantages (for a single reason) over the current CAMx scheme: (1) distribution of 
emissions mass through multiple layers; and (2) as a result, possible partial plume penetration 
into capping stable layers above the mixing height according to six cases related stack height and 
mixing height.  However, we were concerned about the assumptions that plume depth equals 
plume rise, and that emissions are distributed uniformly through this depth (albeit weighted by 
pressure, which would not be significant in most cases).  There is no clear reference given in the 
SMOKE documentation to support these otherwise arbitrary assumptions, although we later 
learned that this is a common “rule-of-thumb” that has historically been applied for plume 
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models (Turner and Schulze, 2007).  Especially under stable conditions, this approach could bias 
the model toward over-dilution of the emissions (beyond the inherent horizontal dilution from 
injecting emissions into grid volumes).  Conversely, we also recognize that it is not always valid 
to assume that emissions are injected into the single layer containing final plume rise (the CAMx 
approach). 
 
The project scope called for adapting the alternative plume rise option for both grid injection and 
PiG injection.  The PiG model contains an equation from SCIPUFF (EPRI, 2000) that explicitly 
accounts for plume spread as it rises due to entraining ambient air, and thus use of the 
SMOKE/CMAQ vertical emissions distribution would not be appropriate for PiG.  Instead, we 
decided to use the PiG plume spread equation to ultimately replace the vertical distribution 
assumption in the SMOKE/CMAQ algorithm. 
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3.  COMPARISON OF CAMx AND SMOKE/CMAQ ALGORITHMS 
 
 
This section presents a comparison of CAMx and SMOKE/CMAQ plume rise calculations from 
a series of idealized tests covering a range of stack parameters and environmental conditions.  
These tests were conducted using a stand-alone “test bed” external to CAMx that defines each 
test scenario and runs each of the algorithms.  This approach enabled quantitative comparisons of 
the CAMx and SMOKE/CMAQ algorithms and also resulted in a CAMx-ready version of the 
SMOKE/CMAQ algorithm that could be implemented directly into CAMx. 
 
 
3.1 SETUP AND INPUT CONDITIONS 
 
A stand-alone test bed was developed to compare CAMx and SMOKE/CMAQ plume rise 
algorithms for a set of idealized conditions.  Various meteorological conditions and stack 
configurations were considered.  The test bed was set up to define vertical profiles of 
meteorological variables through a single column of 40 vertical layers, each 50 m deep (2000 m 
total depth).  Surface temperature and pressure were set to 298 K (25 °C) and 1013.25 mb (1 
atm), respectively.  Four stability classes were considered: stable, neutral, unstable, and unstable 
with a stable capping layer at 500 m (Table 3-1).  For each stability case, three wind speeds were 
considered: 1, 5, and 10 m/s.  The pressure profile was determined from the hydrostatic equation 
according to the temperature profile.   
 
 

Table 3-1.  Meteorological conditions for the plume rise test bed. 
Surface temperature 298 K 

Surface pressure 1013.25 mb 
Surface roughness 1 m 

Constant wind profile 1, 5, 10 m/s 
Stability 
Class 

Temperature 
lapse rate (K/km) 

Potential Temp. 
lapse rate (K/km) 

mixing 
height (m) 

stable -5 5 25 
neutral -10 0 2000 

unstable -12 -2 2000 
capping -12 / -5 -2 / 5 500 

 
 
An explicit mixing height is needed for the SMOKE/CMAQ algorithm, which may be difficult to 
specify in situations where the atmosphere has complex vertical structure, e.g., coastal 
environments, but was easily specified for the simple scenarios evaluated here.  For the stable 
case, 25 m was used; for the neutral and unstable cases, 2000 m was used; for the capping case, 
500 m was used to coincide with the changing temperature gradient at that altitude.  The 
SMOKE/CMAQ algorithm also needs a surface friction velocity, which is a micro-
meteorological parameter that characterizes the amount of turbulent momentum flux within the 
surface layer (i.e., lowest ~50 m of the atmosphere).  Friction velocity was calculated within the 
test bed using a CAMx routine that employs the stability-dependent parameterization of Louis 
(1979).  An urban surface roughness of 1 m was assumed. 
 
Eight different stack configurations were considered that varied stack height/diameter, effluent 
temperature, and exit velocity (Table 3-2).  Tall stacks were 100 m high and 5 m wide, while 



June 2010 
 
 
 

T:\TCEQ_2010\WO-FY10-20_plume_rise\Final Report\3.CAMx_SMOKE_Compare.doc 3-2 

short stacks were 10 m tall and 1 m wide.  Hot stacks were 450 K (177 °C), while cool stacks 
were 320 K (47 °C).  Fast stacks were 20 m/s, while slow stacks were 1 m/s.  A total of 96 cases 
were run to compare the CAMx and SMOKE/CMAQ plume rise algorithms: 4 stabilities × 3 
winds × 8 stacks. 
 
 

Table 3-2.  Stack parameters for the plume rise test bed. 
Stack # Height, Diameter 

(m) 
Temperature 

(K) 
Velocity 

(m/s) 
1 100, 5 450 20 
2 100, 5 450 1 
3 100, 5 320 20 
4 100, 5 320 1 
5 10, 1 450 20 
6 10, 1 450 1 
7 10, 1 320 20 
8 10, 1 320 1 

 
 
3.2 RESULTS AND SUMMARY 
 
Figures 3-1 through 3-4 present bar charts comparing CAMx and SMOKE/CMAQ total effective 
stack height (i.e., stack height + plume rise) for all eight stack cases.  Figure 3-1 shows results 
for the tall/hot stacks, Figure 3-2 shows results for the tall/cool stacks, Figure 3-3 shows results 
for the short/hot stacks, and Figure 3-4 shows results for the short/cool stacks.  In each individual 
plot, three wind speed cases are shown side-by-side.  Columns of plots vary exit velocity (fast on 
the left, slow on the right).  Rows of plots are arranged by atmospheric stability.  To evaluate 
differences in emission injection, the plume rise bars are annotated to show the layer ranges, or 
vertical depths, that receive the emissions (vertical black lines). 
 
 
Analysis of Plume Rise 
 
The following observations were made from these comparisons. 
 
In most cases, CAMx and SMOKE/CMAQ plume rise estimates are very similar. 
 
With a few exceptions as discussed below, most combinations of meteorology and stack 
configuration result in very similar effective stack height.  These small differences in plume rise 
will tend to result in the CAMx and SMOKE/CMAQ plume centers being placed in the same 
layers (note that we will later discuss the ramifications of vertically distributing the emission 
injection). 
 
Plume rise is mostly insensitive to neutral vs. unstable cases. 
 
For a given stack configuration, CAMx results for neutral and unstable cases are identical 
because only a single set of equations are used for neutral/unstable conditions.  Furthermore, 
CAMx results are usually the same for unstable and capping cases except for fast stacks at slow 
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Figure 3-1.  CAMx (blue bars) and SMOKE/CMAQ (yellow bars) plume rise for two tall/hot stack 
configurations (columns) and four stability regimes (rows).  Each bar also shows the range of 
layers receiving emissions (black lines).  Each individual plot shows results for three ambient 
wind speeds. 
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Figure 3-2.  CAMx (blue bars) and SMOKE/CMAQ (yellow bars) plume rise for two tall/cool 
stack configurations (columns) and four stability regimes (rows).  Each bar also shows the range 
of layers receiving emissions (black lines).  Each individual plot shows results for three ambient 
wind speeds. 
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Figure 3-3.  CAMx (blue bars) and SMOKE/CMAQ (yellow bars) plume rise for two short/hot 
stack configurations (columns) and four stability regimes (rows).  Each bar also shows the range 
of layers receiving emissions (black lines).  Each individual plot shows results for three ambient 
wind speeds. 
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Figure 3-4.  CAMx (blue bars) and SMOKE/CMAQ (yellow bars) plume rise for two short/cool 
stack configurations (columns) and four stability regimes (rows).  Each bar also shows the range 
of layers receiving emissions (black lines).  Each individual plot shows results for three ambient 
wind speeds. 
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wind speeds.  This is because in most cases with winds greater than 1 m/s, plume rise stops well 
short of 500 m.  SMOKE/CMAQ results are also similar between neutral and unstable conditions 
for winds speeds of 5 and 10 m/s, but can be much different for light winds (1 m/s). 
 
Interestingly, we find that in the unstable low-wind (1 m/s) case, SMOKE/CMAQ with the 
tall/cool/fast stack (stack #3) generates a much higher plume rise (475 m vs. 250 m) than the 
tall/hot/fast stack (stack #1).  This result is counter-intuitive, but review of the code reveals why 
this occurs.  The SMOKE/CMAQ algorithm considers both neutral and unstable buoyant plume 
rise under unstable conditions, chooses the smaller of the two, and resets the stability according 
to that selection.  This overriding approach affects the calculation of residual buoyancy flux: the 
cool stack resulted in higher residual flux than the hot stack, resulting in higher plume rise for the 
cool stack. 
 
CAMx plume rise can be much higher than SMOKE/CMAQ for neutral/unstable light wind 
conditions. 
 
The only major difference between the CAMx and SMOKE/CMAQ plume rises (in terms of 
centerline plume height) occurs under light wind neutral/unstable conditions, with CAMx 
resulting in much higher plume rise (~1200 m) than SMOKE/CMAQ (~250 m) for hot/fast 
stacks.  In fact, the neutral/unstable SMOKE/CMAQ rise is lower than its stable rise for the same 
stack and wind conditions.  The reason why SMOKE/CMAQ squelches plume rise under these 
conditions is described in the paragraph above.  Again, these particular conditions should 
maximize plume rise according to our conceptual perceptions. 
 
CAMx plume rise is always much lower than the capping stable layer at 500 m. 
 
When a capping stable layer is introduced, we expected the very high plume rise for the hot/fast 
stack under unstable conditions (~1200 m) to be reduced to about 500 m.  But CAMx plume rise 
never exceeds ~400 m in the capping condition.  We traced this effect to the fact that CAMx 
calculates plume centerline rise in neutral/unstable conditions, but calculates plume top rise for 
any stable layers aloft; thus in the stable capping layer, the plume centerline is taken as 2/3 the 
rise of the top, resulting in an additional plume rise reduction. 
 
SMOKE/CMAQ algorithm is insensitive to stack or meteorological conditions for short stacks. 
 
For the short stacks in Figures 3 and 4, SMOKE/CMAQ sets most plume rise to 60 m.  This is 
because SMOKE/CMAQ does not allow point source plume centerlines to exist in the first layer. 
In most cases, the short stacks do not rise above the top of the first layer (50 m), and so 
SMOKE/CMAQ sets plume rise to two-thirds of the middle of the second layer and adds the 
stack height (60 m).  This appears to result in a consistent upward bias for short stacks. 
 
 
Analysis of Emissions Injection 
 
The plume rise calculation is only part of the differences between the CAMx and 
SMOKE/CMAQ algorithms.  While CAMx injects all emissions into the layer containing the 
plume centerline, SMOKE/CMAQ injects emissions into all layers containing the bottom 
through top of the plume.  This can be a more significant difference between the two models than 
plume rise alone.  A widely applied “rule-of-thumb” (Turner and Schulze, 2007) is adopted 
within SMOKE/CMAQ to determine the plume bottom and top.  The bottom and top of the 
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plume are assumed to exist at 50% of the plume rise below and above the centerline, 
respectively.  If this depth spans only one layer, that layer receives all emission mass.  If this 
depth spans several layers, then fractions of the emissions are injected into these layers according 
to the fraction of plume depth extending into those layers.  The distribution of emissions over 
layers is also weighted by pressure so that the emissions injection tends to result in a constant 
perturbation in mixing ratio rather than concentration. 
 
The effect of the “rule-of-thumb” plume injection algorithm employed by SMOKE/CMAQ is to 
increase the vertical range of emission injection in direct proportion to the plume rise.  
Therefore, only single injection layers occur for the smallest plume rises, and CAMx and 
SMOKE/CMAQ algorithms agree most closely for the stack/meteorology configurations that 
result in minimal plume rise.  Note that in stable cases where SMOKE/CMAQ has appreciable 
rise (e.g., stack #1, stable case in the upper left corner of Figure 1), the algorithm spread 
emissions through layers spanning 250-650 m, while CAMx placed emission in the single layer 
spanning 300-350 m.  For short stacks (Figures 3 and 4), SMOKE/CMAQ consistently spread 
emissions through 0-100 m regardless of the stack/meteorological configuration, while CAMx 
placed emission either into the surface layer (0-50 m) or the second layer (50-100 m) depending 
on stack/meteorological conditions. 
 
 
3.3 ISSUES IDENTIFIED WITH SMOKE/CMAQ ALGORITHM 
 
The test bed comparisons revealed that in most conditions tested, the CAMx and 
SMOKE/CMAQ plume rise estimates were very similar.  However, some undesirable features 
were identified in the SMOKE/CMAQ plume rise calculations that led to counter-intuitive 
behavior across different wind speed and stability regimes.  These issues are summarized below: 
 

• The algorithm considers six different regimes (defined by stability, winds, and the 
relation among stack height and mixing height) through a complex logical branching 
structure when choosing a plume rise equation to apply.  This leads to very discontinuous 
and often unexpected behavior as meteorological conditions cross internally defined 
thresholds.  In one extreme example, a hot/fast stack resulted in lower plume rise than a 
cool/fast stack under neutral stability, low wind conditions. 

• Related to the above, the algorithm results in lower plume rise under unstable/neutral 
conditions than stable conditions.  All other things being equal, plume rise should be 
higher under unstable than stable conditions (or at least the same). 

• The algorithm is insensitive to stack or meteorological conditions for short stacks because 
it does not allow point source plume centerlines to exist in the first layer.  If plume rise 
does not exceed the depth of the first layer, it sets plume rise to two-thirds of the middle 
of the second layer, which can result in a consistent upward bias for short stacks. 

• The algorithm adopts a widely applied “rule-of-thumb” (Turner and Schulze, 2007) that 
plume depth equals plume rise when distributing mass to multiple model layers.  It is 
difficult to believe that this rule of thumb applies uniformly in all conditions. 

• An explicit mixing height is needed for the SMOKE/CMAQ algorithm, which may be 
difficult to specify in situations where the atmosphere has complex vertical structure, e.g., 
coastal environments. 
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Results of these tests were discussed with TCEQ and the SMOKE/CMAQ plume rise algorithm 
was dropped from consideration as an alternative to the CAMx plume rise algorithm.  Instead, 
the remainder of the project focused on improving weaknesses of the current CAMx plume rise 
algorithm that were identified in these test-bed experiments.  Results are presented in the next 
section. 
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4.  TESTING CAMx PLUME RISE UPDATES 
 
 
In this Section, we describe improvements to the CAMx plume rise algorithm and present 
comparisons between the original and updated routines.  Comparisons were performed using the 
test bed described in Section 3 and CAMx modeling databases for the eastern U.S. developed by 
the TCEQ for the Houston-Galveston-Brazoria (HGB) State Implementation Plan (SIP). 
 
Based on the results presented in Section 3, we implemented three specific modifications to the 
current CAMx plume rise algorithm: 
 

1. Apply a lower limit to ambient wind speed (1 m/s minimum) to eliminate unrealistically 
large momentum and buoyancy rise under neutral/unstable light wind conditions; 

2. Improve the layer-to-layer transition between neutral/unstable centerline rise to stable 
plume top rise that was leading to an artificial reduction in plume rise (particularly 
important for capping inversion cases); 

3. Incorporate an algorithm to determine plume depth at final rise to allow for multi-layer 
plume injection, using diffusion equations from the PiG sub-model (i.e., not the “rule-of-
thumb” approach of SMOKE/CMAQ). 

 
Modifications (2) and (3) lead to improved plume emissions injection into the vertical layer 
structure plus partial plume penetration into a capping inversion. 
 
The following equations were used to define the plume depth after reaching final rise (update 
#3).  These are based on the approach used in the SCIPUFF model (EPRI, 2000) and were 
developed for use in the CAMx plume-in-grid (PiG) submodel.  The plume depth Dp at final rise 
is given by 
 

( ) 2/12 223 tKDD sp +=  
 
where Ds is stack diameter, K is plume diffusivity during rise, and t is the time of rise.  The time 
of rise is determined by dividing final plume rise by the mean plume rise speed Vp, which is set 
to half the stack exit velocity.  A lower limit of 1 m/s is applied to the exit velocity, so the 
minimum value of Vp is 0.5 m/s.  The plume diffusivity is determined by the initial plume width 
(according to stack diameter) and the turbulent flux moment qp

2: 
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The turbulent flux moment is a function of the mean plume rise speed Vp, the ambient wind 
speed v taken at the level of final rise, and a plume entrainment coefficient fp:  
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where g is the gravitational constant (9.8 m2/s), T is ambient temperature at the level of final rise, 
and Tp is the mean plume temperature, taken as the mean of the stack exit temperature and the 
ambient temperature at final rise. 
 
 
4.1 TEST BED SETUP AND RESULTS 
 
The stand-alone test bed that we developed to compare CAMx and SMOKE/CMAQ plume rise 
calculations was used to compare the original and updated CAMx plume rise algorithms for the 
same set of idealized conditions.  The test bed was set up identically as described in Section 3 
with a few exceptions.  Only three stability classes were considered: stable, neutral/unstable1, 
and neutral/unstable with a stable capping layer at 500 m (Table 4-1).  The CAMx algorithm 
does not explicitly require a “mixing height” parameter, as it diagnoses changes in stability from 
the layer-to-layer change in the temperature profile; nor does it require surface roughness.   
 
 

Table 4-1.  Meteorological conditions for the plume rise test bed. 
Surface temperature 298 K 

Surface pressure 1013.25 mb 
Surface roughness N/A 

Constant wind profile 1, 5, 10 m/s 
Stability 

class 
Temperature 

lapse rate (K/km) 
Potential Temp. 

lapse rate (K/km) 
Mixing 

height (m) 
Stable -5 5 N/A 

Neutral/unstable -12 -2 N/A 
Capping -12 / -5 -2 / 5 N/A 

 
 
Eight different stack configurations were considered that varied stack height/diameter, effluent 
temperature, and exit velocity (see Table 3-2).  A total of 72 cases were run to compare the 
original and updated CAMx plume rise algorithms: 3 stabilities × 3 winds × 8 stacks. 
 
Figures 4-1 through 4-4 present bar charts comparing original and updated CAMx total effective 
stack height (i.e., stack height + plume rise) for all eight stack cases.  Figure 4-1 shows results 
for the tall/hot stacks, Figure 4-2 shows results for the tall/cool stacks, Figure 4-3 shows results 
for the short/hot stacks, and Figure 4-4 shows results for the short/cool stacks.  In each individual 
plot, three wind speed cases are shown side-by-side.  Columns of plots vary exit velocity (fast on 
the left, slow on the right).  Rows of plots are arranged by atmospheric stability.  To evaluate 
differences in emission injection, the plume rise bars are annotated to show the layer ranges, or 
vertical depths, that receive the emissions (vertical black lines). 
 

                                                 
1 Recall that the CAMx algorithm employs the same equations for neutral and unstable conditions. 
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Figure 4-1.  CAMx original (blue bars) and updated (yellow bars) plume rise for two tall/hot 
stack configurations (columns) and three stability regimes (rows).  Each bar also shows the 
range of layers receiving emissions (black lines).  Each individual plot shows results for three 
ambient wind speeds. 
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Figure 4-2.  CAMx original (blue bars) and updated (yellow bars) plume rise for two tall/cool 
stack configurations (columns) and three stability regimes (rows).  Each bar also shows the 
range of layers receiving emissions (black lines).  Each individual plot shows results for three 
ambient wind speeds. 
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Figure 4-3.  CAMx original (blue bars) and updated (yellow bars) plume rise for two short/hot 
stack configurations (columns) and three stability regimes (rows).  Each bar also shows the 
range of layers receiving emissions (black lines).  Each individual plot shows results for three 
ambient wind speeds. 
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Figure 4-4.  CAMx original (blue bars) and updated (yellow bars) plume rise for two short/cool 
stack configurations (columns) and three stability regimes (rows).  Each bar also shows the 
range of layers receiving emissions (black lines).  Each individual plot shows results for three 
ambient wind speeds. 
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The following observations were made from these comparisons. 
 
In most cases, the original and updated plume rise estimates are identical. 
 
As expected, and with a few exceptions as discussed below, most combinations of meteorology 
and stack configuration result in very similar effective stack height.  This behavior will tend to 
result in the plume centers being placed in the same layers (note that we will later discuss the 
ramifications of vertically distributing the emission injection). 
 
The updated plume rise is improved with a capping stable layer at 500 m. 
 
When a capping stable layer is introduced, the plume rise for the hot/fast stack under neutral/ 
unstable conditions (~1200 m) decreases substantially.  The original algorithm reduces plume 
rise to 400 m.  The improvements made to the code to better handle the transition from neutral/ 
unstable to stable layers result a more expected outcome: the updated plume rise is reduced to 
just above 500 m.  Improved results for the capping case are seen for all stack and wind 
conditions in which un-capped neutral/unstable rise is above 500 m. 
 
The updated plume rise results in deeper mass injection. 
 
The original CAMx algorithm injects all emissions into the layer containing the plume 
centerline, while the updated version injects emissions into all layers containing the bottom 
through top of the plume.  With the introduction of the SCIPUFF plume spread equations from 
the PiG routine, plume depth is now determined as a function of stack diameter, plume 
temperature, plume velocity, time of plume rise, and ambient wind and temperature conditions.  
A uniform mass distribution through plume depth is assumed.  If this depth is contained within a 
single layer, that layer receives all emission mass.  If this depth spans several layers, then 
fractions of the emissions are injected into these layers according to the fraction of plume depth 
spanning those layers.  We apply the “rule-of-thumb” that plume depth equals plume rise as a 
maximum limit. 
 
In many cases, the emissions injection depth is similar to the original algorithm, especially for 
the short stacks that have smaller plume rise.  The plume depths tend to be much deeper (up to 5 
layers, or 250 m in this test bed) for stacks with slow exit velocities since plumes take longer to 
reach final rise than emissions from the fast stacks.  Note that in some capping cases the plumes 
will extend or “penetrate” into the capping inversion.  
 
 
4.2 TESTING PLUME RISE ALGORITHMS IN CAMx 
 
The updated plume rise algorithm was incorporated into CAMx version 5.20.  ENVIRON 
obtained the TCEQ 2006 Houston modeling datasets for the May 31 – June 15 and August 13 – 
October 11 simulation periods.  These Houston modeling datasets employ a system of nested 
grids ranging from 4-km grid spacing in the Houston area, to 12-km spacing over the south-
central U.S., to 36-km spacing over the entire eastern U.S.  CAMx v5.20 was run for both 
periods over the full eastern U.S. domain using the original and updated plume rise routines so 
that the impacts could be assessed over as many meteorological and geographical conditions as 
possible.  Since point source effects on grid concentrations are resolution-dependent, we ran 
these plume rise tests using the single 36-km eastern U.S. grid so that concentration differences 
could be assessed and compared on a consistent basis throughout the modeling domain. 
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Resulting CAMx surface concentration difference fields (new vs. original plume rise) for NOx 
were screened over the entire modeling period, and specific grid columns were identified that 
contained the largest surface concentration impacts.   Vertical NOx and ozone concentration 
profiles for the selected grid columns were then compared for the standard and updated plume 
rise cases to evaluate changes in plume rise and depth.  Several examples are described below. 
 
Figure 4-5 shows the hourly domain-wide peak surface NOx concentration differences during the 
June and August-October 2006 modeling periods.  Overall, peak NOx differences tend to be 
small and negative (around -1 to -2 ppb), with some peaks extending from less than -8 ppb to 
over +3 ppb.  The largest differences are associated with some of the largest NOx point sources.  
The fact that these peak differences are weighted toward lower NOx surface concentrations 
suggests that the plume rise update tends to lead toward either higher rise or more dilution by 
spreading emissions over multiple layers.  Generally, peak differences during June 2006 are 
roughly half the peak differences during August-October 2006.  This may be due to the more 
quiescent and stable conditions that are more common during autumn months. 
 
Hourly surface NOx and ozone concentration difference fields on the 36-km grid were animated 
over the entirety of each episode to identify patterns and trends.  Figures 4-6 through 4-9 show 
examples of NOx and ozone from this animation at specific hours when the largest NOx 
differences occurred in the time series of Figure 4-5 (noted by the red circles).  In general, the 
plume rise update results in mostly NOx reductions during daytime hours; again this agrees with 
our conceptual model that the updates result in higher plume rise and more NOx dispersion from 
multi-layer injection.  NOx increases generally occurred during evening through early morning 
hours, periods of maximum stability.  This is also caused by the multi-layer injection, which 
places more NOx into lower layers (including the surface) and concentrations tend to build up as 
the lower atmosphere stabilizes and stratifies.  Note that the largest differences tend to occur 
through the Ohio Valley and upper Midwest where the largest NOx point sources exist.  Other 
impacted areas include Tampa, Florida, the Gulf Coast, and central Texas. 
 
Vertical NOx concentration profiles are displayed in Figure 4-10 for the same hours as shown in 
Figures 4-6 and 4-8.  The columns chosen for the NOx profiles coincide with the surface grid 
cells containing the minimum and maximum NOx differences.  Concentration profiles for both 
the original and updated plume rise algorithm are compared.  Figure 4-11 presents corresponding 
ozone profiles at the same hours and for the same grid columns.  It is important to note that the 
concentration profiles are a result of potentially many different point sources injecting into these 
grid columns. 
 
The largest positive surface NOx difference during the June episode occurred on June 10, at 6 
AM CST in a grid cell near Tampa, Florida.  The surface concentration difference was less than 
2 ppb, and this small variation extended upward through about 200m, where the peak 
concentration occurred.  Above that level the updated plume rise resulted in a larger vertical 
gradient in NOx up to about 400 m.  This grid cell contained 68 individual point sources, with 
plume heights ranging from 45 to 300+ m.  None of these plume heights were impacted by the 
updated plume rise algorithm.  Instead, the updated plume rise resulted in a slightly larger 
quantity of NOx in the shallow boundary layer, and lower NOx in the capping stable layer, due 
to larger vertical spread of emission injection. 
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Figure 4-5.  Hourly domain-wide peak NOx differences between two CAMx simulations of the 
TCEQ 2006 Houston modeling periods using the updated and original CAMx plume rise 
algorithm.  Red circles highlight the hours shown in Figures 4-6 through 4-9. 
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Figure 4-6.  Domain-wide NOx differences during the hour of peak positive difference (top) and 
peak negative difference (bottom) during the June 2006 CAMx simulation using the updated and 
original CAMx plume rise algorithm. 
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Figure 4-7.  Domain-wide ozone differences for the same hours shown in Figure 4-6 during the 
June 2006 CAMx simulation using the updated and original CAMx plume rise algorithm. 
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Figure 4-8.  Domain-wide NOx differences during the hour of peak positive difference (top) and 
peak negative difference (bottom) during the August-October 2006 CAMx simulation using the 
updated and original CAMx plume rise algorithm. 



June 2010 
 
 
 

T:\TCEQ_2010\WO-FY10-20_plume_rise\Final Report\4.CAMx_Updates.doc 4-13 

 

 

 
 
Figure 4-9.  Domain-wide ozone differences for the same hours shown in Figure 4-8 during the 
August-October 2006 CAMx simulation using the updated and original CAMx plume rise 
algorithm. 
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On June 13 at 3 PM CST, the largest negative surface NOx difference reached nearly -5 ppb in a 
grid cell near Detroit, Michigan.  The well-mixed boundary layer is evident, as both NOx 
profiles were nearly constant in height up to 800 m.  The original plume rise algorithm resulted 
in a peak NOx concentration of 10 ppb at about 860 m, while the updated plume rise algorithm 
put the peak NOx at 1200 m.  In this case, it is fairly obvious that the updated plume rise was 
much higher, and that portions of the NOx plume were placed in upper stable layers.  This 
reduced the total column NOx put within the well mixed boundary layer.  This grid cell 
contained 19 individual point sources, with plume heights ranging from 40 m to 1300+ m in the 
updated case.  Plume rise for only two of the highest reaching point sources were impacted by 
the updated algorithm, resulting in an additional 370 m rise (about 40%).  Plume depths for these 
two sources ranged from 200 to 600 m. 
 
The largest positive surface NOx difference in the August-October episode occurred on 
September 9 at 9 AM CST in a grid cell near Cincinnati, Ohio.  The surface NOx difference was 
3.5 ppb, and expanded with height to a maximum of about 8 ppb, where an elevated NOx layer 
occurred at about 700 m in the updated plume rise case.  The original plume rise algorithm 
placed a NOx layer much higher, peaking around 1200 m.  This grid cell contained 13 individual 
point sources, with plume heights ranging from 90 m to 620 m in the updated case.  Two sources 
experienced plume height increases of +70 to +80 m, while the four highest sources had plume 
height decreases of -50 to -70 m and spread their plumes through 200 m of depth.  The only 
modification that would lead to reduced plume rise is the application of minimum 1 m/s wind 
speed to control unrealistically high rise during quiescent conditions.  However, these relatively 
small changes in plume heights do not explain how a peak NOx concentration existed at 1200 m 
in the original case.  We can only assume that it was derived from point source emissions in 
upstream cells that were significantly impacted by the updated plume rise algorithm.  Given the 
time of day, the original NOx peak at 1200 m seems too high, while the updated NOx peak at 
700 m appears more reasonable.  Since the updated plume rise placed more mass through a lower 
and deeper set of layers, more NOx was mixed into the growing boundary layer. 
 
The largest negative surface NOx difference occurred on October 10 at 3 PM CST in a grid cell 
on the Ohio/West Virginia border.  The difference of -8 to -9 ppb was consistent through the 
entire boundary layer up to about 550 m.  Similarly to the June 13 plot, the updated plume rise 
algorithm led to more mass injection into the capping stable layer, and less into the boundary 
layer.  This grid cell contained 9 individual point sources, with plume heights ranging from 550 
m to 840 m in the updated case.  All but one source experienced higher plume rise of 160 m to 
200 m (roughly 30%).  Plume depths ranged from 100 to over 500 m. 
 



June 2010 
 
 
 

T:\TCEQ_2010\WO-FY10-20_plume_rise\Final Report\4.CAMx_Updates.doc 4-15 

 

 

 
 
Figure 4-10.  NOx concentration profiles at selected hours during the June 2006 (top) and 
August-October 2006 (bottom) CAMx simulations.  Results are shown using the original plume 
rise algorithm (blue) and updated algorithm (red).  Morning profiles on the left show episode-
peak positive surface NOx concentrations.  Afternoon profiles on the right show episode-peak 
negative surface NOx concentrations. 
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Figure 4-11.  Ozone concentration profiles at selected hours during the June 2006 (top) and 
August-October 2006 (bottom) CAMx simulations.  Results are shown using the original plume 
rise algorithm (blue) and updated algorithm (red).  Dates and times are identical as Figure 4-10. 
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5.  CONCLUSION 
 
 
ENVIRON reviewed current plume rise algorithms used in several models (CAMx, 
SMOKE/CMAQ, CALPUFF, AERMOD) and initially recommended the SMOKE/CMAQ 
approach for consideration as an alternative option in CAMx.  Comparing the CAMx and 
SMOKE/CMAQ plume rise calculations in a series of idealized tests revealed that, in most 
conditions tested, the CAMx and SMOKE/CMAQ plume rise estimates were very similar.  
However, some undesirable features were identified in the SMOKE/CMAQ plume rise 
calculations that led to counter-intuitive behavior across different wind speed and stability 
regimes, which included: 
 

• The algorithm’s complex logical branching structure leads to very discontinuous and 
often unexpected behavior as meteorological conditions cross internally defined 
thresholds; 

• Related to the above, the algorithm results in lower plume rise under unstable/neutral 
conditions than stable conditions -- all other things being equal, plume rise should be 
higher under unstable than stable conditions (or at least the same); 

• The algorithm is insensitive to stack or meteorological conditions for short stacks because 
it does not allow point source plume centerlines to exist in the first layer.  This can result 
in a consistent upward bias for short stacks. 

• The algorithm distributes mass to multiple model layers using a widely applied “rule-of-
thumb” (Turner and Schulze, 2007) that assumes plume depth equals plume rise above 
the stack. 

• An explicit mixing height is needed for the SMOKE/CMAQ algorithm, which may be 
difficult to specify in situations where the atmosphere has complex vertical structure, e.g., 
coastal environments. 

 
Results of these tests were discussed with TCEQ and the SMOKE/CMAQ plume rise algorithm 
was dropped from consideration as an alternative to the CAMx plume rise algorithm.  Instead, 
the remainder of the project focused on improving the current CAMx plume rise algorithm. 
 
Based on the results presented in Section 3, we identified three specific modifications to the 
current CAMx plume rise algorithm: 
 

1. Apply a lower limit to ambient wind speed (1 m/s minimum) to eliminate unrealistically 
large momentum and buoyancy rise under neutral/unstable light wind conditions; 

2. Improve the layer-to-layer transition between neutral/unstable centerline rise to stable 
plume top rise that was leading to an artificial reduction in plume rise (particularly 
important for capping inversion cases); 

3. Incorporate an algorithm to determine plume depth at final rise to allow for multi-layer 
plume injection, using diffusion equations developed for the plume-in-grid (PiG) sub-
model rather than the “rule-of-thumb” approach of SMOKE/CMAQ. 

 
Modifications (2) and (3) lead to improved plume emissions injection into the vertical layer 
structure plus partial plume penetration into a capping inversion. 
 
The same idealized tests were run to evaluate the updated CAMx plume rise algorithm.  In most 
cases, the original and updated plume rise estimates were identical.  However, the updated plume rise 
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was improved for capping stable layer cases, and it resulted in deeper mass injection for stacks with 
slow exit velocities from which plumes take longer to reach final rise than plumes from fast stacks.  
In some capping inversions cases the plumes extended or “penetrated” into the capping inversion. 
 
The updated plume rise algorithm was incorporated into CAMx version 5.20, and the model was 
run for two 2006 TCEQ Houston modeling periods over a single 36-km eastern U.S. domain.   
CAMx was run using the original and updated plume rise routines so that the impacts could be 
assessed over as many meteorological and geographical conditions as possible.  Resulting CAMx 
surface concentration difference fields (new vs. original plume rise) for NOx were screened over 
the entire modeling period, and specific grid columns were identified that contained the largest 
surface concentration impacts.  Vertical NOx and ozone concentration profiles for the selected 
grid columns were then compared for the standard and updated plume rise cases to evaluate 
changes in plume rise and depth. 
 
Overall, surface NOx differences tended to be small and negative, with peak differences 
remaining well within ±10 ppb.  Peak differences were weighted toward NOx decreases, 
indicating that the plume rise update tends to lead toward either higher rise or more dilution by 
spreading emissions over multiple layers.  In general, the plume rise update resulted in mostly 
NOx reductions during daytime hours, while NOx increases generally occurred during evening 
through early morning hours, periods of maximum stability.  The largest impacts tended to occur 
through the Ohio Valley and upper Midwest in the autumn months. 
 
Analysis of NOx concentration profiles in the grid columns with the largest peak positive and 
negative surface NOx concentration differences showed that the biggest impact of the plume rise 
updates were associated with injecting emissions over several layers.  However, several cases of 
increased and reduced plume rise were noted.  The multi-layer injection, coupled to occasional 
variations in plume rise (usually upwards), modulated the amount of NOx in the boundary layer.  
This also impacted profiles of boundary layer ozone by altering the location and depth where 
ozone titration by fresh NOx occurred. 
 
This study has summarized the similarities and differences among the plume rise algorithms 
employed in the most widely used air quality models in the U.S.  While our analyses show that 
these differences do not lead to significant impacts for modeling secondary pollutants such as 
ozone and PM, the same may not be true for applications that focus on concentrations of primary 
emissions near sources (e.g., toxics) and associated human exposure. 
 
 
RECOMMENDATIONS 
 
Based on the review and modeling analyses conducted in this study, we provide the following 
recommendations: 
 

• The updated CAMx plume rise algorithm is an improvement and should be formally 
implemented as a replacement (not an option) for the current algorithm. 

 
• The TCEQ should conduct additional tests comparing the original and updated plume rise 

schemes on their existing CAMx modeling datasets, 
 

• An improved CMAQ plume rise algorithm should be developed and tested according to 
the updates incorporated in this study for CAMx. 
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