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CHAPTER 1: SUMMARY

This Technical Description (TD) presents procedures the Texas Commission on
Environmental Quality (TCEQ) has used to develop a 2012 platform for modeling
ozone formation in eastern Texas and also describes work that is underway or planned
to improve, expand, and utilize this modeling platform. It is envisioned that this
platform will be used in several applications including attainment demonstrations for
current and future ozone National Ambient Air Quality Standard (NAAQS), exceptional
event demonstrations, and to provide an alternative to the 2011 modeling platform
recently developed by the United States Environmental Protection Agency (EPA).
Modeling is being conducted primarily with the Comprehensive Air Quality Model with
Extensions (CAMx), which is an acceptable photochemical model (U. S. EPA, 2014),
although some modeling using EPA’s preferred Community Model for Air Quality
(CMAQ) is also being conducted. Initially, the TCEQ is modeling the five-month period
associated with highest ozone concentrations across Texas, May through September,
and is considering modeling March and April 2012 as well. Plans also include modeling
September 2013, when the National Aeronautics and Space Administration (NASA)
conducted an extensive field study in the Houston area. Future case anthropogenic
emission inventories will be developed as needed for planning based on the
meteorological and biogenic emission inputs for 2012 and optionally 2013.

This document is modeled largely on past modeling protocols and contains the major
features of such documents. Because much of the development of the 2012 platform
has been completed, the TCEQ is referring to this document by the more descriptive
term Technical Description. Subsequent protocols may be based on this document for
specific modeling applications such as ozone attainment demonstrations.

Like a modeling protocol, this TD should be considered to be a living document since it
represents the state of the 2012 platform at only one point in time and may be revised
as the platform continues to evolve to incorporate advances in science, improvements
in modeling tools, and new or enhanced inputs.

CHAPTER 2: MODELING/ANALYSIS STUDY DESIGN

This Technical Description (TD) describes the procedures that were used in the
development of a modeling platform based on 2012 emissions and meteorology. These
procedures generally conform to the recommendations set forth in the United States
Environmental Protection Agency’s (EPA) Guidance on the Use of Models and Other
Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and
Regional Haze (EPA, 2007), but also reflect the new draft guidance issued in December
2014: Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for
Ozone, PM,; and Regional Haze (EPA,2014). As per the 2007 EPA guidance for modeling
protocols, this TD includes the following sections:

e background for the study;

e schedule and organizational structure for the study;
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e rationale for model selection and description of models to be used;
e methods for developing input data;

e methods for evaluating and interpreting model results; and

e documentation to be submitted to the regional EPA office for review.

2.1 BACKGROUND

Texas currently has two areas that are classified nonattainment of the 2008 eight-hour
ozone standard of 75 parts per billion (ppb), specifically the ten county Dallas-Fort
Worth (DFW) moderate ozone nonattainment area consisting of Collin, Dallas, Denton,
Ellis, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise counties with a required
attainment date of July 20, 2018' and the eight-county Houston-Galveston-Brazoria
(HGB) marginal ozone nonattainment area consisting of Brazoria, Chambers, Fort Bend,
Galveston, Harris, Liberty, Montgomery, and Waller counties with a required attainment
date of July 20, 2015. Other areas in Texas occasionally experience ozone
concentrations exceeding or approaching the 2008 NAAQS including the San Antonio,
Northeast Texas, and Beaumont/Port Arthur areas, while many areas may not be able
to attain the recently-announced 2015 ozone National Ambient Air Quality Standard
(NAAQS) of 70 ppb. Figure 1: Texas Ozone Nonattainment Areas and (1998 Ozone
Standard) Air Quality Planning Areas depicts the two nonattainment areas along with
air quality planning areas elsewhere in Texas.

! Although the attainment date is July 20, 2018, the attainment year is 2017, which is the last full ozone
season prior to the attainment date.
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Figure 1: Texas Ozone Nonattainment Areas and (1998 Ozone Standard) Air Quality
Planning Areas

Previous modeling for the DFW and HGB areas for the 1997 eight-hour ozone standard
(84 ppb) and for DFW under the 2008 standard was based on the 2005-2006 modeling
platform which coincided with the Second Texas Air Quality Study (TexAQS II). While
the study provided an extremely rich observational data base for model development
and evaluation, both emissions and ozone concentrations have dropped significantly
across most of Texas since 2006 and a newer basis for future modeling activities is
necessary. The EPA recently developed a 2011 modeling platform that it used for its
“Good Neighbor” modeling designed to assist states in complying with the ozone
transport requirements of the Clean Air Act for the 2008 ozone NAAQS. While this
platform is available to states, the TCEQ has not adopted this for Texas because 2011
was the single-worst drought year recorded in Texas since 1895. Figure 2: May through
October Average Temperature and Precipitation Ranks, 1895-2011, copied from the
EPA’s modeling Technical Support Document (U.S. EPA, 2015) illustrates graphically
that Texas (along with Oklahoma, New Mexico, and Louisiana) suffered the hottest
summer in the 117-year span 1895 through 2011, while the entire Southeast, southern
portions of the Midwest, and Arizona were exceptionally hot. While any single year will
show local meteorological anomalies, for Texas 2011 is unacceptable for use in



regulatory applications since any conclusions resulting from modeling this extremely
atypical year would not likely apply for more normal years.

May-October 2011 Statewide Ranks May-October 2011 Statewide Ranks
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Figure 2: May through October Average Temperature and Precipitation Ranks, 1895-
2011 (http://www.ncdc.noaa.gov/temp-and-precip/us-maps)

2.2 MANAGEMENT STRUCTURE

The Air Modeling and Data Analysis (AMDA) section has the responsibility for planning
and conducting the ozone State Implementation Plan (SIP) modeling. AMDA is part of
the Air Quality Division of the TCEQ Office of Air. The Office of Air organization chart
is shown in Figure 3: TCEQ Management Organization Chart.
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Figure 3: TCEQ Management Organization Chart

2.3 TECHNICAL AND POLICY ORGANIZATIONS

Because the modeling described in this TD is being developed to serve as a platform
for all of eastern Texas, many areas that have air quality concerns may be affected by
the outcome of the modeling. The TCEQ plans to share modeling data and results with
any organization that requests such, and will keep local intergovernmental bodies
apprised of developments as the modeling develops. The Southeast Texas
Photochemical Modeling Technical Committee based in Houston is currently the only
organization in the state that functions primarily as a technical committee for SIP-
related activities. The Houston area also is represented by the Houston Area Council of
Governments’ Regional Air Quality Planning Advisory Committee, which is focused on
the policy aspects of the SIP process.

Several organizations in the eastern half of Texas have committees and/or hold
meetings that combine technical and policy-related functions. These include the North
Central Texas Council of Governments (DFW area) and South East Texas Regional
Planning Commission (Beaumont-Port Arthur area), as well as several near-
nonattainment (Rider 7) areas: East Texas Council of Governments (Tyler-Longview-
Marshall area), Alamo Area Council of Governments (San Antonio area), Capitol Area
Council of Governments (Austin Area), Golden Crescent Regional Planning Commission
(Victoria area), Central Texas Council of Governments (Killeen-Temple area), Heart of



Texas Council of Governments (Waco area), and the Coastal Bend Council of
Governments (Corpus-Christi area).

2.4 SCHEDULE OF MODELING ACTIVITIES

The schedule of activities for developing the 2012 modeling platform is shown below
in Error! Reference source not found.. The dates shown are the best current estimates
and are likely to change based on problems encountered, emerging research findings,
and other requirements. Detailed discussions of most of these activities can be found
later in this document.

Table 1: Schedule of Modeling Activities

Modeling Activity Time Frame

Conduct base case modeling April 2014 -

Spring, 2016

e Complete development of conceptual model for eastern
Texas

e Develop base case emissions

¢ Conduct meteorological modeling

¢ Conduct emissions modeling and processing

e Conduct model performance evaluations

Conduct future base modeling with current controls and Spring 2016 -
project future design values

e Develop future base emissions with applicable growth
and current controls

e Project future design values at all regulatory monitors in
eastern Texas

CHAPTER 3: CONCEPTUAL MODEL OF OZONE FORMATION
Under development.
CHAPTER 4: EPISODE SELECTION

4.1 GUIDANCE

The 2007 modeling guidance (EPA, 2007) was developed for the 2008 ozone standard
and its guidance on episode selection is rather dated. Because of this, we are choosing
to use the 2014 Draft Guidance (EPA, 2014) to support selection of dates included in
the 2012 modeling platform. The Draft Guidance recommends using a recent base year
and notes that:
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Ozone based research has shown that model performance evaluations and the
response to emissions controls need to consider modeling results from relatively long
time periods, in particular, full synoptic cycles or even full ozone seasons (Hogrefe et
al., 2000; Vizuete et al., 2011). In order to examine the response to ozone control
strategies, it may not be necessary to model a full ozone season (or seasons), but, at a
minimum, modeling “longer” episodes that encompass full synoptic cycles is
advisable. Time periods which include a ramp-up to a high ozone period and a
ramp-down to cleaner conditions allow for a more complete evaluation of model
performance under a variety of meteorological conditions.

The modeling period for the 2012 platform (May through September) adheres to these
recommendations, and also with the following as is discussed below:

Primary ozone (8-Hour Ozone) - Choose time periods which reflect a variety of
meteorological conditions that frequently correspond with observed 8-hour daily
maxima concentrations greater than the level of the NAAQS at monitoring sites
in the nonattainment area.

4.2 BACKGROUND

As discussed in Section2.1 2011 is not an acceptable year for Texas because of the
extreme drought, extraordinarily high temperatures, and significant wildfires. 2012
was chosen because it is close to the EPA’s 2011 modeling platform chronologically
and much of the EPA’s base inventory could be easily projected one year into the
future.

Figure 4: 75 ppb Eight-Hour Ozone Exceedances by Half-Month for Texas Areas from
1990 through 2014 shows how ozone exceedance days of the 75 parts per billion (ppb)
standard have historically peaked in June and then from August through early
September. All areas shown, except El Paso, exhibit distinctly bimodal patterns with
most exceedance days occurring in the May through June and August through
September periods. July typically brings strong onshore flow from the Gulf of Mexico,
and the result of this pattern is a pronounced dip in the number of exceedance days
across eastern Texas. The period of May through September captures a large majority
of the high ozone days across eastern Texas. Notably, the Houston-Galveston-Brazoria
(HGB) area has historically seen high ozone days as early as March and as late as
November.
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Figure 4: 75 ppb Eight-Hour Ozone Exceedances by Half-Month for Texas Areas
from 1990 through 2014

Figure 5: 75 ppb Eight-Hour Ozone Exceedances by Half-Month for Texas Areas in
2012shows the same information as the previous figure except for 2012 only. The
distinctive “dip” in ozone exceedances in July is evident, with Dallas-Fort Worth (DFW)
peaking somewhat earlier than HGB in both graphs. One unusual characteristic of 2012
is the relatively high percentage of exceedances in March and early April, but otherwise
the seasonal ozone patterns are well-aligned with those observed between 1990 and
2014. As time permits, the TCEQ will consider expanding the modeling period to
include March and April, as well as October, which observed one exceedance day in

HGB and in Beaumont-Port Arthur (BPA).
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Figure 5: 75 ppb Eight-Hour Ozone Exceedances by Half-Month for Texas Areas in
2012 Areas depicted are the same as in the previous figure except areas with no
exceedance days are not shown. BPA refers to the Beaumont-Port Arthur area, SAT to
San Antonio, ARR to Austin-Round Rock, CC to Corpus Christi, NET to Northeast
Texas, and ELP to El Paso.

Figure 6: 75 ppb Eight-Hour Ozone Exceedance Days by Year for Texas Areas from 1990
through 2014 shows the number of exceedance days for 25 years ending in 2014.
Especially notable is the decline in exceedance days from 2005 to 2008. Exceedance
days remained low until the exceptional drought year of 2011, which brought an
increase statewide, but since that time exceedances per year have decreased. 2012 is
seen to be quite representative of the period since 2008, excepting 2011, with
relatively high numbers of exceedance days seen in both DFW and HGB.
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Figure 6: 75 ppb Eight-Hour Ozone Exceedance Days by Year for Texas Areas from
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NET

4.3 EPISODIC EVALUATION OF 2012 OZONE

Figure 7: Highest MDAS8 Ozone Concentration by Area in 2012 shows time series of
area-wide highest maximum daily 8-hour (MDAS8) ozone concentrations2 by day for
several areas of eastern Texas (excluding far south Texas). Regions are designated as
before except that CC and VIC are combined into one (CCV), Hood and Navarro
counties are included in DFW along with the 10 counties in the DFW nonattainment
area, and the Killeen-Temple-Fort Hood area is combined with the Waco area into a
single Heart of Texas (HOT) region. The graph shows several ozone exceedances of the
75 ppb National Ambient Air Quality Standard (NAAQS) between late March and the
end of June, and during this period area maximum ozone concentrations in the
different areas show a strong correlation, peaking on nearly the same day everywhere.
Beginning in July, however, the regional correlation appears weaker.

? The MDAS value for a monitor is the maximum average value recorded for any eight-hour period on a
given day. For example, the peak eight-hour period often occurs during the period of hours 10 through 17,
but can occur during any eight consecutive hours during a 24-hour day. The “highest MDAS8” ozone
concentration for an area is the highest value at any monitor in that area.
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Figure 7: Highest MDAS8 Ozone Concentration by Area in 2012

To more closely examine the periods of high ozone, the next four figures display the
months March through October in two-month segments. Figure 8: Highest MDA8 Ozone
Concentration by Area in March and April 2012 shows a period of high ozone in late
March that contained exceedances for HGB (3 days, maximum 113 ppb on March 24),
BPA (4 days, maximum 93 ppb on March 24), and DFW (2 days, maximum 84 ppb on
March 24). The HGB area also had ozone concentrations greater than 75 ppb on April
6, 7, and 10.

Figure 9: Highest MDAS8 Ozone Concentration by Area in May and June 2012 shows that
between May 14 and 22, several areas exceeded 75 ppb: ARR (May 17, 78 ppb), BPA
(May 22, 76 ppb), DFW (May 16, 17, 21, and 22, maximum 92 ppb on May 16), HGB (May
14, 15 through 18, 21 and 22, maximum 90 ppb on May 21) and SAT (76 ppb on May
17). In June, both HGB (104 ppb) and DFW (76 ppb) exceeded 75 ppb on June 1. There
were also minor exceedances in DFW on June 5 and 8 and in HGB on June 7 and 9.

The major ozone event of 2012, which occurred between June 24 and 28, was preceded
by an MDAS8 concentration of 83 recorded in DFW on June 22. DEW then exceeded 75
ppb for six straight days with a peak of 110 ppb on June 26, a day on which every area
depicted in Figure 9 broke the 75 ppb mark. CCV recorded 84 ppb that day, BPA hit
112 ppb, HGB had 136 ppb (the highest reading of the year anywhere in Texas), ARR
reached 87 ppb, HOT saw 78 ppb, NET had 84 ppb, and SAT recorded 89 ppb. June 27
also saw exceedances in every area except CCV.

Both Figure 8 and Figure 9 highlight the high degree of correlation among the different
areas’ ozone peaks, indicating that ozone during this four-month period was
dominated by synoptic-scale meteorological effects that brought ozone-conducive
conditions across eastern Texas.
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Figure 9: Highest MDAS8 Ozone Concentration by Area in May and June 2012

BPA

Figure 10: Highest MDAS8 Ozone Concentration by Area in July and August 2012 shows
that July was fairly quiet except for some relatively minor exceedances in DFW on July
9,10, 13, 21 (86 ppb), and 30. Throughout the month of July there appears to be a
lower degree of spatial correlation among the areas, with CCV remaining almost flat
with values near 20 ppb. In August DFW exceeded 75 ppb on eight of nine days
between August 6 and 14, peaking at 109 ppb on August 9. Along with DFW, the
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northern portion of eastern Texas experienced high ozone with NET exceeding August
9 through 11 and 14 (maximum 83 ppb on August 11, and HOT seeing exceedances on
August 10 and 11 (86 ppb on the latter). The ARR area saw its high MDAS8
concentration of the year (94 ppb) on August 11, but SAT did not exceed 75 ppb. The
coastal areas of CCV, BPA, and HGB were also largely spared during this period, with
only two minor exceedances recorded in HGB on August 6 and 7.

High ozone returned after a short hiatus for a three-day period between August 20 and
22, with two exceedances in DFW (maximum 80 ppb on August 20), two in HGB
(maximum 89 ppb), and one in HOT (76 ppb on August 20). SAT exceeded 75 ppb on
all three days with a peak concentration of 87 ppb on August 21. Finally, DFW capped
the month of August with a reading of 81 ppb on the last day of the month.

Figure 11: Highest MDAS8 Ozone Concentration by Area in September and October 2012
shows relatively fewer and milder ozone exceedances, and shows closer spatial
correlation than was evident during the previous two-month period. DFW began the
month of September with an 89 ppb one-day episode on September 5, then on
September 10 DFW, HGB and SAT exceeded, the latter tying its 2012 peak
concentration at 90 ppb. SAT recorded its last exceedance of 2012 (81 ppb) on
September 19, then on the following day DFW and HGB began, respectively, three- and
five-day periods of relatively mild exceedances (peak for HGB was 87 ppb on
September 20). The year’s last ozone exceedances occurred on October 3 with BPA
recording 78 ppb and HGB seeing 85 ppb.
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Figure 10: Highest MDAS8 Ozone Concentration by Area in July and August 2012
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Figure 11: Highest MDAS8 Ozone Concentration by Area in September and October
2012

4.4 SUMMARY OF THE 2012 OZONE SEASON FOR EASTERN TEXAS

The 2012 ozone season started off strong in late March with HGB, DFW and BPA all
seeing ozone over the 2008 NAAQS of 75 ppb and HGB seeing its second-highest
reading of the year of 113 ppb. The HGB area saw some more minor exceedances in
April. Mid-May brought a series of exceedances across most of eastern Texas but none
higher than 92 ppb recorded in DFW. After a few days of moderate-to-high ozone in
DFW and HGB during the first third of June, the major episode of 2012 arrived a
couple of weeks later, culminating in every area shown exceeding on June 26, with the
year’s highest MDAS8 concentration of 136 ppb at the Manvel-Croix Park monitor in
HGB. July was very quiet, with only five exceedances, all in DFW.

August 6 through 14 saw widespread ozone over the northern half of eastern Texas,
followed by a three day episode beginning on August 20 which affected DFW, HGB, and
SAT. The first half of September saw some minor exceedances in DFW and HGB, with
SAT tying its annual peak of 90 ppb on September 10. September 19 through 24
brought relatively minor ozone exceedances to first SAT then DFW and HGB, and the
2012 ozone ended on October 3 with minor exceedances in HGB and in BPA.

4.5 CONCLUSION

The 2012 ozone season is representative of recent years in eastern Texas with the
possible exception of a rather extreme episode in late March in HGB, DFW and BPA.
Since high ozone concentrations were observed in three distant locations,
meteorological conditions not usually seen that early in the year were most likely the
cause. Because this event is not typical of late winter or early spring, the 2012
modeling platform will not initially include this time period and will begin with May
when ozone events typically begin to increase in both frequency and intensity. Both
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May through June and August through September include many episodic events typical
of their respective time frames. July offers an opportunity to evaluate the model under
a different meteorological regime than that characteristic of either May through June
or August through September. Because October saw only one day which had mild
exceedances in two areas, the modeling platform will not include that month.

In all, the five months May through September 2012 includes 41 days on which an
ozone exceedance was recorded in eastern Texas. DFW saw a total of 34 exceedance
days with 23 in HGB. SAT saw 8, NET 6, HOT 5, ARR 4, BPA 3, and CCV 1. High ozone
in every area was represented to some extent, and well represented in the two current
nonattainment areas of DFW and HGB. This period is likely to provide a number of
days in most areas of the state with modeled ozone near or over 75 ppb that can be
used to calculate relative response factors as per the 2007 and 2014 draft modeling
guidance.

CHAPTER 5: MODEL SELECTION

The modeling system is composed of a gridded photochemical air quality model, a
meteorological model, and an emissions processing model. Both the meteorological
and emissions models provide input to the air quality model. Therefore, the air quality,
meteorological, and emission models selected need to interface effectively.

5.1 SELECTION OF AIR QUALITY MODEL

To ensure that a modeling study can be successfully used as technical support for an
attainment demonstration State Implementation Plan revision, the air quality model
must be scientifically sound and appropriate for the intended application, and be
freely accessible to all stakeholders. In a regulatory environment, it is crucial that
oversight groups (e.g., EPA), the regulated community, and the interested public have
access to and also can be convinced of the suitability of the model. The following three
prerequisites were identified for selecting the air quality model to be used in a recent
Dallas-Fort Worth attainment demonstration SIP revision:

¢ must have a reasonably current, peer-reviewed, and scientific formulation;
e 1must be available at no or low cost to stakeholders; and

e must be consistent with air quality models being used for other Texas
nonattainment or near-nonattainment areas.

The only model to meet all three of these criteria is the Comprehensive Air Model with
Extensions (CAMx). The model is based on well-established treatments of advection,
diffusion, deposition, and chemistry. Another important feature is that nitrogen oxides
(NOy) emissions from large point sources can be treated with the plume-in-grid (PiG)
sub-model, which helps avoid the artificial diffusion that occurs when point source
emissions are introduced into a grid volume. The model software and the CAMx user's
guide are publicly available (http://www.camx.com). In addition, the TCEQ has many
years of experience with CAMx. CAMx was used for the recent DFW attainment
demonstration SIP revisions, for the Houston-Galveston-Brazoria and Beaumont-Port
Arthur areas, as well as for modeling being conducted in other areas of Texas
including Austin, San Antonio, and Tyler-Longview-Marshall.
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At this time, the TCEQ is using CAMx 6.20, the most recent version available. If
subsequent versions are released during development of the 2012 modeling platform,
the TCEQ will review each version for potential improvement to the modeling platform.
Updated versions of CAMx will likely be used if they offer such improvements and no
operational bugs are identified. Compared to version 6.0, CAMx 6.20 includes the
following updates:

e optional top boundary conditions input file;

e supports Carbon Bond 6 CB6) release 2 (CB6r2) and CB6r2 with halogen chemistry
(CB6r2h);

e extension of the direct decoupled method (DDM) to particulates;
e new surface chemistry and re-emission model; and

e update to the PiG sub-model, which improves speed and total oxidized nitrogen
compounds (NOy) mass budget accuracy.

Of particular note is the addition of the CB6r2 and CB6r2h chemistry options. Early
work with the June 2012 episode has indicated a strong tendency to over-predict both
hourly and Maximum Daily 8-hour Average (MDAS8) ozone concentrations, particularly
along the upper Texas coast. The CB6r2 chemistry moderates the over-prediction seen
with CB6 (release 1) somewhat by partitioning organic nitrates (ON) between gas-phase
ON and those ON that can partition into organic aerosols, which then are processed to
nitric acid. This in turn increases nitric acid but lessens ozone concentrations. The
CB6r2h version adds optional chemistry through which bromine and iodine (halogens)
react with ozone over ocean water, further lowering overall ozone concentrations.
More information on these updates can be found in Chapter 1 of the CAMx user’s
guide (Environ, 2015). Henceforth in this document, references to CB6 apply to CB6,
CB6r2, and CB6r2h unless otherwise noted.

Significant work has been conducted modeling the June 2012 period prior to modeling
the full 5-month period. As will be discussed later in Section Chapter 9: Model
Performance Evaluation, use of CB6r2h together with selecting appropriate
meteorological parameterizations has reduced model over-prediction across eastern
Texas and performance is now reasonably good for June, especially in DFW. However,
because of over-prediction issues still present in southeast Texas, the TCEQ is testing
the Community Model for Air Quality (CMAQ) in an effort to identify and explain the
reason for the over-prediction.

The TCEQ plans to use some of the probing tools supported by CAMx 6.20 for
sensitivity analyses, including:

Process Analysis (PA) - PA adds algorithms to the CAMx model that store the
integrated rates of species changes due to individual chemical reactions and other sink
and source processes. By integrating these rates over time and outputting them at
hourly intervals, PA provides diagnostic outputs that can be used to explain model
simulation in terms of chemical budgets, conversions of chemical species, and effects
of transport and other sink and source terms. PA can also improve model validation
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and ultimately can assist in the selection of precursor reduction strategies (Tonnesen,
2001).

Ozone Source Apportionment Technology (OSAT) - OSAT provides a method for
estimating the contributions of multiple source areas, categories, and pollutant types
to ozone formation in a single model run. OSAT also includes a methodology for
diagnosing the temporal relationships between ozone and emissions from groups of
sources.

Anthropogenic Precursor Culpability Assessment (APCA) - APCA differs from OSAT
in recognizing that certain emission groups are not controllable (e.g., biogenic
emissions) and that apportioning ozone production to these groups does not provide
information that is beneficial to identification of potential control strategies. Where
OSAT would attribute ozone production to biogenic emissions, APCA reallocates that
ozone production to the controllable portion of precursors that participated in ozone
formation with the non-controllable precursor. APCA only attributes ozone production
to biogenic emissions when ozone formation is due to the interaction of biogenic
volatile organic compounds (VOC) with biogenic NOy. When ozone formation is
attributable to biogenic VOC and anthropogenic NOy under VOC-limited conditions,
OSAT would attribute ozone production to biogenic VOC while APCA would redirect
that attribution to the anthropogenic NOy precursors present.

Direct Decoupled Method (DDM) and Higher-Order Direct Decoupled Method
(HDDM) - DDM and HDDM provide an efficient and accurate methodology for
calculating first-order (via DDM) and second-order (via HDDM) sensitivities between
output concentrations and model input parameters.

5.2 SELECTION OF METEOROLOGICAL MODEL

The Weather Research and Forecasting Model (WRF) has gained near-universal
acceptance for use in air quality modeling applications. The TCEQ has used WRF
version 3.6.1 to develop meteorological inputs for June 2012 and is using 3.7.1 to
revise these inputs at this writing. As time and resources allow, newer versions of WRF
may be used as they become available to revise these inputs. Updated files with new
versions of WRF will first receive a quality assurance review to see if meteorological
performance is improved. WRF is supported by a broad user community including the
EPA, the Air Force Weather Agency, the National Centers for Environmental Prediction
(NCEP), national laboratories and academia, and is currently being used extensively to
develop the meteorological inputs for regulatory air quality modeling analyses
throughout the United States.

5.3 SELECTION OF EMISSIONS MODELING SYSTEM

Typically, raw emissions inventory databases provide on-road, off-road, non-road, area,
biogenic, oil-gas, and point source emission estimates of criteria pollutants, including
NOy and VOC, on an annual, seasonal, daily, and/or hourly basis. The processing of raw
emissions data sets into air quality model inputs is accomplished through the use of
emission processor tools. These emission processors temporally distribute, spatially
allocate, and chemically speciate the emissions to the resolution and chemical
mechanism used by the air quality model. When necessary, emission processors are
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also used to apply adjustment factors to specific combinations of county and source
types for simulation of control strategy scenarios.

The most common emissions modeling system used to process anthropogenic
emissions into the gridded, hourly-resolved, and chemically-speciated inputs needed
for an air quality model is Sparse Matrix Operator Kernel Emissions (SMOKE). However,
over the last two decades the TCEQ has developed an intricate set of procedures and
supporting software that is integrated with the Emissions Processing System, version 3
(EPS3). EPS3 has been used for many air quality modeling projects within Texas, is
easily modified to accommodate the complexity of emissions sources and the highly
detailed emissions information required, and the TCEQ has years of experience in
using EPS3. For on-road emissions inventory development, SMOKE lacks the capability
of fully capturing the variable hourly speed associated with vehicle miles traveled
(VMT) estimates for each roadway segment from local travel demand models (TDMs).
Since vehicle emission rates vary as a function of speed, this is important for obtaining
the best possible spatial and temporal resolution of gridded on-road emissions in
metropolitan areas.

The biogenic model currently being used is version 2.1 of the Model of Emissions of
Gases and Aerosols from Nature (MEGAN). Compared with the Global Biosphere
Emissions and Interactions System (GloBEIS) used in previous modeling platforms,
MEGAN has shown better isoprene performance in Texas using aircraft measurements
and may have emissions estimation advantages for the varying solar radiation and
average temperatures that occur at different times of the year. The TCEQ has also
conducted modeling using EPA’s Biogenic Emission Inventory System (BEIS) and is
evaluating its possible use instead of or along with MEGAN.

CHAPTER 6: MODELING DOMAINS

6.1 CAMX MODELING DOMAINS

Figure 12: CAMx Modeling Domains depicts the modeling domains currently being used
by the TCEQ in CAMx. The horizontal configuration of the CAMx modeling domains is:

¢ National Regional Planning Organizations (RPO) Domain (outlined in black; also
known as the Continental United States or CONUS domain) consists of 36
kilometer (km) x 36 km grid cells covering all of the continental U.S., along with
southern Canada, northern Mexico, and portions of the Gulf of Mexico, Atlantic
Ocean, and Pacific Ocean,;

e Texas 12 km Domain (outlined in blue), consists of 12 km x 12 km grid cells
covering all of Texas, Arkansas, Louisiana, Oklahoma, along with portions of
Alabama, Colorado, Kansas, Kentucky, Mississippi, Missouri, New Mexico, and
Tennessee; and

¢ Texas 4 km Domain (outlined in green), consists of 4 km x 4 km grid cells covering
most of eastern Texas and small portions of southwestern Arkansas, western
Louisiana, southern Oklahoma, and northeastern Mexico.

The Texas 4 km domain is nested within the Texas 12 km domain, which in turn is
nested within the National RPO 36 km domain. The National RPO domain is the same
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outer domain used in EPA’s 2011 modeling platform, which greatly facilitates the
sharing of model data among states, RPOs, the EPA, and research organizations that

use this modeling domain.
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Figure 12: CAMx Modeling Domains

All grids are projected in a Lambert Conformal conic Projection (LCP) with the

following parameters:

¢ Origin:

e First True Latitude (o):

e Second True Latitude (B):
e C(Central Longitude (y):

e Spheroid:

97° West, 40° North

33° North

45° North

97° West

Perfect Sphere, Radius = 6730 km

The grid dimensions for the CAMx domains are listed in Table 2: CAMx Modeling
Domain Parameters The locations for the upper right-hand and lower left-hand
represent distances (west and south are negative, east and north positive) from the
origin, which is by definition location (0, 0) within the LCP projection.
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Table 2: CAMx Modeling Domain Parameters

Dimension Upper
Grid Cell s (grid Lower left- right-hand

Grid Name Size cells) hand corner corner
National RPO 36 x 36 148 x 112 (-2736, - (2592,1944)
Texas 12 km 12 x 12 149 x 110  (-984,-1632) (804,-312)

Texas 4 km Domain 4 x4 km 191 x 218 (-328,-1516) (436,-644)

The vertical configuration of the CAMx modeling domains consists of a varying 28-
layer structure as shown in Table 3: CAMx Vertical Layer Structure.
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Table 3: CAMx Vertical Layer Structure
CAMx Laver WRF Laver Top: (m AGL) Center® (m AGL) Thickness3 (m)

28 38 15,179.1 13,637.9 3,082.5
27 36 12,096.6 10,631.6 2,930.0
26 32 9,166.6 8,063.8 2,205.7
25 29 6,960.9 6,398.4 1,125.0
24 27 5,835.9 5,367.0 937.9
23 25 4,898.0 4,502.2 791.6
22 23 4,106.4 3,739.9 733.0
21 21 3,373.5 3,199.9 347.2
20 20 3,026.3 2,858.3 335.9
19 19 2,690.4 2,528.3 324.3
18 18 2,366.1 2,234.7 262.8
17 17 2,103.3 1,975.2 256.2
16 16 1,847.2 1,722.2 249.9
15 15 1,597.3 1,475.3 243.9
14 14 1,353.4 1,281.6 143.6
13 13 1,209.8 1,139.0 141.6
12 12 1,068.2 998.3 139.7
11 11 928.5 859.5 137.8
10 10 790.6 745.2 90.9
9 9 699.7 654.7 90.1
8 8 609.7 565.0 89.3
7 7 520.3 476.1 88.5
6 6 431.8 387.9 87.8
5 5 344.0 300.5 87.1
4 4 256.9 213.8 86.3
3 3 170.6 127.8 85.6
2 2 85.0 59.4 51.0
1 1 33.9 17.0 33.9

WRF = Weather Research and Forecasting Model; m = meters; AGL = above ground level

The layer thicknesses are approximate and vary slightly over space and time as a
function of local atmospheric pressure and terrain elevation.

6.2 CMAQ MODELING DOMAINS

Preliminary Community Model for Air Quality (CMAQ) modeling is being conducted
using the same horizontal grid as CAMx and the same number of vertical layers, but in
the case of CAMx the top layer (layer 28) extends from approximately 12967 meters
(m) above ground level (AGL) to approximately 15179 m AGL. The top CMAQ layer
starts at the same altitude as the top CAMx layer but extends to the top of the WRF
domain at approximately 20807 m AGL. This configuration is necessary in order to use
converted CAMx boundary condition files in CMAQ, although these may be modified in
the future.

* Layer top, center, and thickness are approximate, based on average over the 4 km domain.
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6.3 WRF MODELING DOMAINS

WRF and CAMx share the same LCP grid projection described in above sections, which
greatly reduces horizontal interpolation errors. Like the CAMx grids, there are three
nested WRF domains composed of 36x36, 12x12, and 4x4 km grid cells, respectively.
Each domain overlays the corresponding CAMx domain with between five and ten grid
cells appended to the sides of the CAMx domains forming a buffer between each WRF
domain and its enclosed CAMx domain. Figure 13: WRF Modeling Domains shows:

e North American Domain (outlined in red) consists of 36 km x 36 km grid cells and
contains wholly the CAMx National RPO Domain, with at least five buffer cells on
each side;

e South U.S. Domain (outlined in dark blue) consists of 12 km x 12 km grid cells and
contains wholly the CAMx Texas 12 km Domain with a minimum of eight buffer
cells on each side; and

e Texas Domain (outlined in green) consists of 4 km x 4 km grid cells and contains
wholly the CAMx Texas 4 km Domain with a minimum of 17 buffer cells on each
side.
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Figure 13: WRF Modeling Domains
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Table 4: WRF Modeling Domain Parameters lists the horizontal grid configurations for
the WRF modeling domains. Grid corners are in km (easting, northing) relative to the
grid origin at 97 degrees West and 40 degrees North. Respective CAMx grids are nested
within each WRF grid. Therefore the 36 km CAMx grid is a smaller portion of the 36
km WREF grid, and the 12 km and 4 km CAMx grids are offset within the respective
WREF grids. In this manner WRF meteorological data can be provided to the CAMx
boundary grid cells.

Table 4: WRF Modeling Domain Parameters

Dimension Upper
Grid Cell s (grid Lower left- right-hand

Grid Name Size points) hand corner corner
North American 36 x 36 163 x 129 (-2916, - (2916,2304)

Texas 12 km Domain 12 x 12 175x 139 (-1188,-1800) (900,-144)
Texas 4 km Domain 4 X 4 km 217 x 289 (-396,-1620) (468,-468)

As shown in Table 5: WRF Vertical Layer Structure, the vertical configuration of the
WRF modeling domains consists of a varying 43-layer structure used with all the
horizontal domains. The first 21 vertical layers are identical to the same layers used
with CAMx, while CAMx layers 22-28 each comprise multiple WRF layers.

Table 5: WRF Vertical Layer Structure
Layer Sigma Top‘(m AGL) Center? (m AGL) Thickness* (m)

43 0.000 20,806.8 20,362.1 889.6
42 0.010 19,917.3 19,341.4 1,151.7
41 0.025 18,765.6 18,117.9 1,295.3
40 0.045 17,470.3 16,918.8 1,103.1
39 0.065 16,367.2 15,773.2 1,188.1
38 0.090 15,179.1 14,662.7 1,032.8
37 0.115 14,146.3 13,602.4 1,087.8
36 0.145 13,058.5 12,577.6 961.9
35 0.175 12,096.6 11,596.6 1,000.0
34 0.210 11,096.7 10,587.9 1,017.5
33 0.250 10,079.1 9,622.9 912.6
32 0.290 9,166.6 8,752.3 828.6
31 0.330 8,338.0 7,958.1 759.8
30 0.370 7,578.2 7,269.5 617.3
29 0.405 6,960.9 6,671.3 579.2
28 0.440 6,381.7 6,108.8 545.8
27 0.475 5,835.9 5,577.7 516.3
26 0.510 5,319.5 5,108.7 421.6
25 0.540 4,898.0 4,695.9 404.0
24 0.570 4,493.9 4,299.9 388.0
23 0.600 4,105.9 3,919.3 373.3
22 0.630 3,732.7 3,552.8 359.7
21 0.660 3,373.0 3,199.5 347.1

‘Layer top, center, and thickness are approximate, based on average over the 4 km domain. In WRF, the
actual layers correspond to sigma levels bases on atmospheric pressure.
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Layer Sigma Top‘(m AGL) Center* (m AGL) Thickness* (m)

20 0.690 3,025.9 2,858.2 335.5
19 0.720 2,690.4 2,528.1 324.6
18 0.750 2,365.8 2,234.4 262.8
17 0.775 2,103.0 1,974.9 256.1
16 0.800 1,846.9 1,721.9 249.8
15 0.825 1,597.0 1,475.1 243.9
14 0.850 1,353.2 1,281.4 143.6
13 0.865 1,209.6 1,138.8 141.6
12 0.880 1,068.0 998.1 139.7
11 0.895 928.3 859.4 137.8
10 0.910 790.5 745.0 90.9
9 0.920 699.6 654.6 90.1
8 0.930 609.5 564.9 89.3
7 0.940 520.2 476.0 88.5
6 0.950 431.7 387.8 87.8
5 0.960 343.9 300.4 87.0
4 0.970 256.9 213.7 86.3
3 0.980 170.5 127.7 85.6
2 0.990 84.9 59.4 51.0
1 0.996 BEES 16.9 33.8
0 1.000 0.0 0.0 0.0

Figure 14: WRF and CAMx Vertical Layer Configuration compares the WRF and CAMx
vertical layer structure. As shown in the right-hand column, the lowest 21 layers are
identical. The left-hand column shows all 28 CAMx layers and the middle column the
43 WREF layers. The horizontal lines between the two leftmost columns indicate which
WREF layers are collapsed into CAMx layers beginning with layer 22.
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Figure 14: WRF and CAMx Vertical Layer Configuration

The recently released CAMx 6.20 allows for time- and space-varying top boundary
conditions, and this version is currently being used. Preliminary testing with 38 CAMx
layers for June 2012 showed a slight performance improvement but with significantly
increased requirements for storage and run time, so there are no plans at this time to
conduct routine model runs using the full 38 layers. However, we are currently testing
an alternate configuration with 29 vertical CAMx layers with the extra top layer
stretching to the top of WRF layer 41, which keeps the top of the CAMx domain above
the tropopause - the 28-layer configuration top was low enough to sometimes allow
the top of the CAMx domain to be below the tropopause, in which case using
stratospheric top boundary conditions from the Goddard Earth Observing Systems
Chemistry Model (GEOS-Chem) would be inappropriate.

CHAPTER 7: MODELING INPUT AND OUTPUT

Since the outputs from the WRF model and the emissions modeling system are inputs
to the CAMx model, the modeling inputs and outputs for the WRF model and the
emissions modeling system are presented before the inputs and outputs for the CAMx
model.
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7.1 METEOROLOGICAL MODEL INPUT AND OUTPUT
7.1.1 WRF Model Configuration

The TCEQ has tested many physical parameterizations with the WRF modeling
platform. The configuration options presented in Error! Reference source not found.
is currently being used for the June 2012 period with WRF version 3.6.1. As additional
months are modeled, the WRF parameters may evolve further, and may even differ
from one month to the next. For example, meteorology in July is dominated by
southerly breeze from the Gulf and may be better represented by a WRF
parametrization different from that which best represents meteorology in June or
August.

Table 6: 2012 Base Case WRF Setup

Cumulu Radiatio Land- Micro-
Grid Nudging Type PBL S n Surface physics
36, 12 ) . Kain- RRTM / Pleim-
km D) Al s Fritsch Dudhia Xiu WIS
3-D Analysis
Surface Analysis RRTM / Pleim-
4 km Observational YSU | None Dudhia Xiu WSMé
radar profiler

km = kilometer; PBL = Planetary Boundary Layer; YSU = Yonsei University; RRTM = Rapid Radiative
Transfer Model;
WSMx = WRF Single-Moment x-Class Microphysics Scheme

As development of the 2012 modeling platform progresses, the TCEQ plans to test
additional features and inputs including:

e updated land-use/land-cover (LULC) data;
e updated soil parameters and data sets;
e alternative radiation and microphysics parameterizations; and

¢ use of Geostationary Operational Environmental Satellite (GOES) data for cloud
assimilation.

7.1.2 Meteorological Model Input

The National Centers for Environmental Prediction North American Model (NCEP NAM,
2009) gridded analysis fields will be used for initial, boundary, and analysis nudging
conditions based upon previous experience evaluating model performance in Texas
and the southern United States. If archived NAM data sets are incomplete, the North
American Regional Reanalysis will be substituted instead. Customized observational
radar profiler nudging files will be built from archived data from the Cooperative
Agency Profiler network that are available from the Meteorological Assimilations Data
Ingest System (MADIS).

7.1.3 Meteorological Model Output

The meteorological model outputs a variety of data fields required by the
photochemical model including temperatures, wind components, cloud cover,
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humidity, and vertical mixing parameters. The meteorological model output is post-
processed using the program WRFCAMx to convert the meteorological fields to the
CAMx grid and input format (Environ, 2013). The WRFCAMx post-processor is run
using six different options for calculating vertical mixing (upward/downward transport
of pollutants through the model’s vertical grid structure). Each of these schemes has
been evaluated CAMx using WRF2CAMx output, and so far the best performance for
June 2012 has been observed using the Community Model for Air Quality (CMAQ)
option (the default scheme in CMAQ), although other options may be used in future
work. We are also applying a K, “patch,” which applies a minimum value to the vertical
mixing coefficients (K,) that control how fast air moves vertically within the first 100
meters (m) above ground level (AGL).

Where possible, the output meteorological fields from the WRF model and the post-
processed CAMx input are compared to monitored data to evaluate the model’s
performance. The TCEQ uses a performance evaluation package designed to interface
with WRF that evaluates the four model parameters of wind speed, wind direction,
temperature, and humidity. This statistical package generates standardized tables and
graphics for each of the four meteorological parameters. Other performance evaluation
tools are used to evaluate the meteorological model’s ability to represent episode
conditions including cloud-fraction plots and trajectory tools. Attachment 1: Sample
WRFCAMX Performance Analysis Graphics for Selected Sites in Eastern Texas, June 2012
provides a sample of graphics showing performance of WRFCAMx post-processed WRF
output at selected sites for June 2012. The overall meteorological model performance
is quite good except for a few instances where modeled winds are skewed by
convective activity misplaced by the model, and in the Houston-Galveston-Brazoria
region the specific humidity may exhibit a small positive bias.

7.2 EMISSIONS PROCESSING SYSTEM INPUT AND OUTPUT

For stationary sources (i.e., point and area sources), TCEQ annual emission inventories
constitute the major inputs to the emissions modeling system. For on-road mobile,
non-road mobile and biogenic sources, estimates are derived from specific emission
models. For example, link-based, on-road mobile source emissions are derived from
vehicle miles traveled (VMT) estimates coupled with emission rates from the EPA’s
Motor Vehicle Emission Simulator (MOVES) model. Non-road mobile source emission
estimates are estimated with both the Texas NONROAD (TexN) model and the EPA’s
National Mobile Inventory Model (NMIM). Models such as Biogenic Emission Inventory
System (BEIS) and Model of Emissions of Gases and Aerosols from Nature (MEGAN) are
used to estimate biogenic emissions.

With the exception of biogenic emission models that directly output as CAMx model-
ready emissions, the emissions for the other source categories are processed using the
Emissions Processing System, version 3 (EPS3) to generate CAMx model-ready
emissions that are day-specific, gridded, chemically speciated, and temporally
allocated by hour.

In past modeling for attainment demonstration purposes a separate baseline inventory
was created, which replaced some base case emission variability, most notably daily-
varying Electric Generating Utility (EGU) emissions and wildfires, with average
emissions since these conditions are unlikely to recur in the future. However, the latest
draft guidance (EPA, 2014) no longer recommends this approach, although it does
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indicate that some accommodation for extreme events such as large wildfires may be
needed when predicting future design values. Accordingly, this Technical Description
(TD) does not consider development of a separate baseline inventory.

7.2.1 Point Source Emissions

Point source emissions are from stationary sources with emissions large enough to be
reported individually, ranging from dry cleaning facilities to power plants and
refineries. Point source modeling emission inventories are based on a number of
regional data sets available: the EPA’s Air Markets Program Database (AMPD), the
Bureau of Ocean Energy Management’s (BOEM) Gulf-Wide Emissions Inventory (GWEI),
the EPA’s National Emissions Inventory (NEI), the Mexico NEI, and the Canada NEI,
along with state-level data sets such as the State of Texas Air Reporting System
(STARS) and local sources.

For the 2012 base case, point source emission estimates for U.S. regions outside of
Texas are derived from the 2011 NEI data sets adjusted as appropriate to 2012 with
substituted hourly AMPD emissions. Non-U.S. point source emission estimates come
from sources including the 2011 GWEI, the 2008 Mexico NEI, and the 2006 Canada NEI
(soon to be replaced with a 2010 version). Emissions from these sources are projected
to 2012 if projection data are available. Within Texas, the TCEQ 2012 STARS data is
used for most sources except AMPD units, which are assigned hourly emissions from
the AMPD. The TCEQ will incorporate updates to these data sets as they become
available.

Relevant fields are extracted from each of these data sets to develop Aerometric
Information Retrieval System (AIRS) Facility Subsystem (AFS) files, which are point
source inputs to the EPS3 PREPNT module. For each point source, these AFS files
include all of the appropriate source identifiers; source type and classifications;
spatial, temporal, and chemical information; and stack parameters used by the model.
To reduce the number of points to be modeled explicitly, sources with a nominal
plume rise of 30 m or less are consigned to the lowest model layer and combined with
the other low-level sources into grid-cell total emissions. Some sources are always
treated as elevated regardless of plume rise, including all AMPD sources, ships, and
fires. The plume-in-grid (PiG) feature of CAMx is used for large point sources, based on
a threshold nitrogen oxides (NO,, emission value; sources in Texas that emit at least 5
tons per day (tpd) of NOy are flagged as PiGs, increasing to 25 tpd for the farthest
regional states, Mexico, and Canada. The PiG feature provides for more realistic
treatment of chemistry occurring within concentrated plumes that are small relative to
the grid cell containing the plume. As the plume disperses over time its contents are
released incrementally into the grid until the plume contents are finally dumped into
the grid. Sources located near one another may be combined to reduce the number of
PiG sources that the model must track.

For future year point source emissions outside of Texas, the TCEQ plans to use data
from the EPA’s most recent modeling platform. Emissions from the platform’s future
year, closest to the TCEQ’s future case year, will be used. For EGUs, Cross-State Air
Pollution Rule (CSAPR) allowances will be used in conjunction with the latest available
(currently 2014) AMPD data. If a substitute program is proposed to replace CSAPR, it
will be incorporated as time allows. Other EGU tools, such as Eastern Regional
Technical Advisory Committee’s (ERTAC) EGU projection tool, may also be given
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consideration as an alternative to CSAPR allocations. The TCEQ plans to use the EPA’s
modeling platform data for future case Mexico and Canada point source emissions,
unless superior information becomes available. Offshore (Gulf of Mexico) emissions
will be from the most recent available GWEI from BOEM.

Within Texas, the TCEQ plans to use the most currently available STARS data, with
Eastern Research Group (ERG) composite growth factors applied for projecting non-
EGU point source emissions to the future year. To project EGUs within Texas, the TCEQ
plans to start with the latest AMPD units, then incorporate the latest information for
new EGUs and retirement status for existing EGUs obtained from the TCEQ permit
database, Public Utilities Commissions, Energy Information Administration, and the
Electric Reliability Council of Texas. Emissions for newly permitted EGUs that are
planned to be operational prior to or during the future year will be used, and units
retiring prior to the future year will have their emissions removed. Emissions for both
new and existing EGUs will be constrained to the CSAPR statewide allowance. Where
necessary, other on-the-books controls, rules, programs and consent decrees
applicable to the future year will supersede and limit projected emissions for EGUs
and non-EGUs.

Although the current plan is to use the aforementioned techniques for projecting
EGUs, these plans might vary. Consideration may be given to other projection methods
such as the ERTAC EGU projection tool and the Integrated Planning Model (IPM).

Figure 15: Tile Plots of Elevated and Low-Level Point Source NOX Emissions for June 6,
2012 displays two tile plots pf point source NOy, emissions for June 6, 2012 on the
Texas 4 kilometer (km) domain. The left-hand plot shows elevated anthropogenic point
source emissions while the right-hand plot shows emissions from point sources
assigned to the first model layer. Additional plots along with a more detailed
description of the plots themselves may be viewed in Attachment 2: Quality
Assurance/Quality Control (QA/QC) Plan for the TCEQ 2012 modeling platform. These
plots include emissions from ships with stacks high enough to be treated as elevated
points (see Section 7.2.3 below).
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Figure 15: Tile Plots of Elevated and Low-Level Point Source NOy Emissions for June
6, 2012

7.2.2 Area Source Emissions

Area sources are stationary sources too small or numerous to be inventoried
individually, including home heating and cooking, gas stations, road paving, painting,
etc. Since the exact locations of these sources are not usually known, area sources
usually are allocated to grid cells using spatial surrogates such as population, urban
area, etc. Area source emissions for Texas use 2011 data from the Texas Air Emissions
Repository (TexAER) database (TCEQ, 2010b) projected to 2012 using ERG composite
growth factors (also housed in TexAER). Emissions data from these inventories are
processed with EPS3 to generate CAMx model-ready emissions that are day-specific,
gridded, speciated and temporally allocated by hour. Surrogates for basic area sources
are based on EPA data. Future years will be projected from the same sources using the
most current data available.

An ERG-developed calculator (ERG, 2011) is updated annually using detailed county-
based Railroad Commission of Texas (RRC) production and drilling data. Oil and gas
emissions are calculated for over 20 categories including many compressor types,
flares, completions, and numerous fugitive source types. The 2012 oil and gas
emissions inventory (EI) is based on actual 2012 annual data for production, drilling
and spatial data. Future year emissions will be based on 2015 or the most current RRC
data projected by shale play (Barnett, Eagle Ford, and Haynesville) using ERG shale
play-based projection data (ERG study, 2012) also housed in TexAER. Future year
drilling rig emissions will be developed by applying projected drilling rig emission
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rates to the 2015 or most current EI. Surrogates derived from RRC spatial data are
unique for oil production, gas production (well-head density by type), flare location
and drilling (new well-head density) by respective year.

For regions outside of Texas, the TCEQ is using area source emissions data from the
EPA’s 2011 NEIL The NEI data sets are projected to 2012 using ERG and available EPA
factors as appropriate. Future year emissions for these regions will be projected from
the 2014 version of the NEI when it becomes available (or the 2011 NEI if necessary).
Additional non-Texas area source inventory data sets currently used include the 2008
Mexico NEI, 2011 GWEI, and the 2006 Canadian NEI, but these will be updated if newer
data become available. Since no projections for these emissions are available at this

time the TCEQ will use them as is in future case modeling unless projections become
available.

Figure 16: Tile Plots of Area Source VOC Emissions for a June, 2012 Weekday; (L) All
Sources Except Oil and Gas Production, and (R) Oil and Gas Production Only displays
two tile plots of area source volatile organic compounds (VOC) emissions for a June
2012 weekday; on the left is shown area source emissions excluding oil and gas

production, while the right-hand plot shows only oil and gas production for the 4 km
Texas domain.
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Figure 16: Tile Plots of Area Source VOC Emissions for a June, 2012 Weekday; (L)
All Sources Except Oil and Gas Production, and (R) Oil and Gas Production Only

10 15
Hour (CST)

7.2.3 Non-Road and Off-Road Source Emissions

Non-road emissions are associated with non-stationary sources such as boats,
construction equipment, lawn mowers, and drilling rigs, and like area sources are
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typically allocated to the modeling grid using spatial surrogates. Both 2012 base and
future case non-road source emission estimates within Texas are developed with the
TexN model, which runs the EPA’s NONROAD model “under the hood” for 25 distinct
equipment sub-categories within each county. TexN 1.7.1 is the most current version
that is available. Updated versions of TexN will be used to develop revised estimates
for 2012 and future years if they become available. 2012 base and future case non-
road source emission estimates outside of Texas are developed with the EPA’s NMIM
model, which provides output for each U.S. county. For the non-U.S. portions of the
modeling domain, the 2008 Mexico NEI and 2006 Canada NEI data sets are being used,
and will be updated if newer information becomes available.

Non-road emission files are processed with EPS3 to generate CAMx model-ready
emissions that are day-specific, gridded, speciated, and temporally allocated by hour.
Since the NONROAD model cannot account for the effects of variable temperature and
humidity on NOy emissions from diesel engines, the EPS3 CNTLEM module is used to
apply these adjustments by hour for Texas counties.

Figure 17: Tile Plots of Non-Road NOX Emissions for a June 2012 Weekday; (L) All
Sources except Drilling Rigs, and (R) Drilling Rigs Only shows non-road NOy emissions
from non-road sources for a June 2012 weekday; the left panel shows all non-road
emissions except drilling rigs while the right shows drilling rigs only.
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Figure 17: Tile Plots of Non-Road NO, Emissions for a June 2012 Weekday; (L) All
Sources except Drilling Rigs, and (R) Drilling Rigs Only

Off-road emissions are a subset of the larger non-road category that are treated
separately and consist of emissions from aircraft, airport equipment, locomotive, and
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http://www.epa.gov/otaq/nmim.htm

commercial marine sources. While these emissions may be allocated spatially using
surrogates, at least some emissions can be modeled using bottom-up location data
such as specific airport landings and take-offs during the base period. The Federal
Aviation Administration (FAA) Emissions Dispersion and Modeling System (EDMS) is
used for estimating emissions from the aircraft and airport equipment source
categories within Texas. EDMS reports emissions separately for aircraft, ground
support equipment, and auxiliary power units. 2012 base case emissions are based on
historical landing/take-off (LTO) activity, while future case LTO activity will be based
on Terminal Area Forecast projections done by the FAA. Some of this work has already
been developed under an ERG study entitled Aircraft Emissions Inventory for Texas
Statewide 2014 AERR Inventory and 2008 to 2040 Trend Analysis Years, July 2015. The
2012 locomotive emission inventories within Texas are based on an ERG study entitled
2014 Texas Statewide Locomotive Emissions Inventory and 2008 through 2040 Trend
Inventories, August 2015. These studies will be used to develop future emissions
unless more up-to-date data become available. CAMx model-ready emissions that are
day-specific, speciated, and temporally allocated by hour are prepared using EPS3.
Since aircraft and associated inventories are developed for each Texas airport rather
than at the county-level, the emissions are allocated to the grid cell(s) where each
airport is located. Locomotive emission inventories are spatially allocated to
appropriate switcher yards and railway lines.

Commercial marine emissions for HGB, Beaumont-Port Arthur (BPA), the Gulf of
Mexico (GOM) and oceans are modeled as elevated points, or "elevated links" mapped
to points by EPS3, since many of these vessels have stacks tall enough to exceed the 30
m cut-off threshold. The emissions are essentially based on annualized trips and
reflect actual traffic patterns for large vessels from sea buoys to ports for HGB and
BPA (as displayed in Figure 15). The GOM emissions in the Texas 4 km domain
incorporate the results of a contract project that based emissions on the onboard
location transponders installed on most modern ships by tracking speed and course
based on minute to minute location data (report pending). In addition to being more
current than those shown in Figure 15: Tile Plots of Elevated and Low-Level Point
Source NOX Emissions for June 6, 2012, the revised emissions are more highly resolved
spatially as shown in Figure 18: Revised 2014 Elevated Marine Emissions in Texas 4 km
Grid (L) Ships at Anchor, (R) Ships Underway. These emissions were back-cast to 2012
and will be forecast to future years as appropriate.
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Figure 18: Revised 2014 Elevated Marine Emissions in Texas 4 km Grid (L) Ships at
Anchor, (R) Ships Underway

For non-Texas off-road emissions, the 2012 aircraft, airport equipment, locomotive,
and commercial marine, inventories are based on the 2011 NEI data sets from EPA;
future years will be based on the 2014 (or latest available) NEI data. As described
above, the 2005 GWEI non-road and off-road emissions are included in the area source
category. Figure 19: Tile Plots of (L) Non-Road and (R) On-Road NOX Emissions for a
June 2012 Weekday shows June 2012 weekday non-road NOy emissions (ship emissions
outside U.S. territorial waters are not shown) and also on-road emissions (discussed in
the next section).
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Figure 19: Tile Plots of (L) Non-Road and (R) On-Road NO Emissions for a June 2012
Weekday
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7.2.4 On-Road Mobile Source Emissions

On-road mobile source emission estimates for the DFW area, HGB area, the remaining
portions of Texas, and all non-Texas U.S. counties are based on the latest version of
the EPA’s MOVES model, which is currently MOVES2014a. All of the on-road emission
inventories developed include the benefits of current on-the-books rules such as new
vehicle emission standards, reformulated gasoline, low Reid Vapor Pressure gasoline,
Texas Low Emissions Diesel (TXLED), and vehicle inspection/maintenance (I/M).

The TCEQ contracted with the Texas Transportation Institute (TTI) to develop non-link
on-road emission inventories with the MOVES2014 version of the model using Highway
Performance Monitoring System (HPMS) data as the basis for VMT estimates for 19
different roadway categories. These MOVES on-road emission inventory data sets
include the day types of Monday through Thursday average weekday, Friday, Saturday,
and Sunday for both school and summer (i.e., non-school) seasons. The result is eight
different combinations of season and day type for all 254 Texas counties based on
automatic traffic recorder (ATR) data regularly collected by the Texas Department of
Transportation (TxDOT). The summer season inventories are used for the June, July,
and August months, while the school season inventories are used for the May and
September months. These MOVES on-road inventories are available on the TCEQ on-
road emissions FTP site.

The TCEQ is using a 2012 link-based on-road emission inventory developed by TTI
using the MOVES2014 model. A 2012 link-based inventory is also being developed for
the ten-county DFW area by the North Central Texas Council of Governments
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(NCTCOG). Future year link-based on-road emission inventories will be developed using
the latest version of the MOVES model available.

The TCEQ has already run MOVES2014 in default mode for all non-Texas U.S. counties
for a July average weekday in both 2012 and a future year (in this case, 2017). The
Texas-based on-road emission inventories are aggregated by year, season, day type,
and hour to develop pollutant-specific temporal emission factor ratios that are applied
to the MOVES2014 default July average weekday emissions using the EPS3 TMPRL
module. The net result is non-Texas on-road CAMx inputs that vary by season, day
type, and hour in the same manner as the Texas inventories developed with high
resolution by TTI. If a future year other than 2017 is needed, similar procedures will
be followed.

The 2006 Canadian NEI includes annual on-road emission estimates that are divided by
365 days to develop average weekday totals. In order to obtain 2012 and future year
Canadian on-road inputs, MOBILE6-Canada’ is run to obtain emission rate adjustment
factor ratios that vary by pollutant and vehicle type between 2006 and 2012, and 2006
and 2017. Until superior information is made available, the TCEQ will assume an
average annual VMT growth rate of 2% between 2006 and future years. The
combination of emission rate ratios and activity growth is applied to the 2006
Canadian on-road inventory to obtain both 2012 and future year estimated emissions.
The Texas pollutant-specific temporal factors are applied to the Canadian on-road
inventories to obtain all the necessary combinations of season and day type.

A similar approach is being taken with the 1999 on-road emission inventories available
from the Mexico NEI. MOBILE6°-Mexico is run to develop 2012/1999 and future
year/1999 emission rate adjustment factor ratios that vary by pollutant and vehicle
type. Similar to Canada, an average annual VMT growth rate of 2% is assumed from
1999 to 2012 and 1999 to a future year until superior information becomes available.
Also, the Texas pollutant-specific temporal factors are applied to the Mexican on-road
inventories to obtain all the necessary combinations of season and day type.

The on-road emissions from each of the different regions is processed with EPS3 to
generate season and day-type specific CAMx model ready emissions that are gridded,
temporally allocated by hour, and speciated for the CB6 mechanism using profiles
available from the EPA’s SPECIATE database. Since the Texas on-road emissions
received from TTI are already provided by hour, EPS3 processing preserves the hourly
distribution of the emissions. Within Texas, the on-road emissions processing is
generally divided into processing streams for each area: roadway link-based when such
inventories are available; roadway HPMS-based when link-based inventories are not
available; off-network estimates for start emissions and evaporative VOC from parked
vehicles; and extended idling emission estimates for combination long-haul diesel
trucks. Allocation of emissions for link-based inventories is applied to specific
roadway segments. For non-link on-road emission inventories, spatial allocation is
done with spatial surrogates for interstates, state highways, arterials, population, etc.

> MOBILE6G was the predecessor to MOVES. MOBILE6-Canada and MOBILEG-Mexico are versions on MOBILEG
customized for use in the two countries, respectively.
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A more complete description of how this is done is contained within a ReadMe file
available on the TCEQ on-road mobile FTP site.

Table 7: Development Summary of On-Road Mobile Source Emissions summarizes
pertinent features of the planned development of on-road mobile emissions in the
different regions of the modeling domain as described above.

Table 7: Development Summary of On-Road Mobile Source Emissions

On-Road
Inventory Texas
Development Metropolitan Texas Non-Texas
Parameter Areas Rural Areas U.S. Counties
VMT Source Travel Demand HPMS MOVES
Models (TDMs) Data Sets Default
. Roadway Links 19 Roadway MOVES
VMT Resolution From TDM Categories Road Types
el ae School and School and
Season Types Summer
Summer Summer

Day Types

Hourly
VMT
VMT Mix Variation
By Day/Time Period

Roadway Speed
Distribution

Spatial
Resolution
Temporal
Resolution

MOVES

Source Use Types

MOVES

Fuel Types

(i.e., non-School)
Weekday, Friday,
Saturday, and
Sunday

Yes
Yes

Varies by
Hour and Link

Excellent
Excellent

13

Gasoline
and Diesel

7.2.5 Biogenic Emissions

The TCEQ is using MEGAN v. 2.1 to estimate emissions from biogenic emission
sources, although overall CAMx modeling with MEGAN tends to over-predict isoprene
concentrations at most sites by up to two times the observation. The TCEQ has also
used EPA’s BEIS, but BEIS under-predicts isoprene by about 50% in most cases. The
TCEQ is currently investigating these discrepancies and how they may be mitigated.

Weekday, Friday,
Saturday, and
Sunday

Yes

Yes

Varies by Hour
and Roadway

Type
Very Good

Very Good

13

Gasoline
and Diesel

The MEGAN model requires inputs by model grid cell area of:

Weekday, Friday,
Saturday, and
Sunday

No
No

MOVES
Default

Good
Good

13

Gasoline
and Diesel

e Emission factors for nineteen chemical compounds or compound groups;
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e Plant Functional Types (PFTs);
e Fractional Vegetated Leaf Area Index (LAIv); and

e Meteorological information including air and soil temperatures, photosynthetically
active solar radiation (PAR), barometric pressure, wind speed, water vapor mixing
ratio and accumulated precipitation.

7.2.5.1 Emission Factor and PFT Inputs

The TCEQ is using the default emission factors and PFTs that are provided with the
model for the entire globe in Network Common Data Form (netCDF) format. To process
the emission factors and PFTs to the TCEQ air modeling domain structures, raster
layers of each emission factor file were created in ArcMap version 9.3 using the Make
NetCDF Raster Layer tool. The Zonal Statistics as Table tool was then used to tabulate
averages per grid cell for each compound class and CAMx domain.

7.2.5.2 Fractional Vegetated Leaf Area Index Input

Leaf Area Index (LAI) is the one-sided leaf coverage over the same area of land.
Fractional vegetated Leaf Area Index (LAIv) is LAI divided by the fraction of land
defined as vegetated, and files for every eight-day period of 2008 are provided on the
MEGAN website. The TCEQ created 2012-specific LAIv data using the level-4 Moderate-
Resolution Imaging Spectroradiometer (MODIS) global LAI MCD15A2 product. For each
eight-day period, the satellite tiles covering North America in a sinusoidal grid were
mosaicked together using the MODIS Reprojection Tool. Urban LAI cells, which MODIS
excludes, were filled according to a function that follows the North American average
for four urban land cover types. An urban LAI maximum was chosen based on
Loughner et al. (2012). MODIS’ quality control flags were applied to use only the high
quality data from the main retrieval algorithm. The resultant LAI was divided by the
percentage of vegetated PFT per grid cell to yield the final LAIv.

7.2.5.3 Meteorological Input

The Weather Research and Forecasting (WRF) meteorological model is currently being
used to provide the meteorological data needed for MEGAN input, including PAR. The
WRF output was processed through the Meteorology-Chemistry Interface Processor
(MCIP). Some PAR data derived from GOES observations is available and may be used in
the future, possibly augmented with WRF predictions. Figure 20: Tile Plots of Biogenic
Isoprene (L) and NOX (R) Emissions, June 22, 2012 shows biogenic emissions for a day
in June 2012.
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Figure 20: Tile Plots of Biogenic Isoprene (L) and NOy (R) Emissions, June 22, 2012

7.2.6 Wildfires

Wildfire emissions were estimated from the daily Fire Inventory from National Center
for Atmospheric Research (NCAR) (FINN) version 1.5 product for 2012 (Wiedinmyer,
2011). The FINN fire estimates were projected to the model’s Lambert Conformal conic
Projection modeling projection and grouped if fires were within 5 km. Each fire was
treated as a point source and processed using the EPS3 PREFIR, CHMSPL, TMPRL, and
PSTFIR modules following the methodology of Ramboll Environ (2008). The fire
emissions were temporally allocated according to the temperate North American
diurnal cycle of fires from Mu et al. (2011). Figure 21: Tile Plots of Elevated Wildfire
NOX Emissions on the 4 km Grid (L) and VOC Emissions on the 36 km Grid (R), June 22,
2012 shows wildfire emissions for June 22, 2012, an active wildfire day in Oklahoma,
Kansas, and Louisiana.
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Figure 21: Tile Plots of Elevated Wildfire NO, Emissions on the 4 km Grid (L) and
VOC Emissions on the 36 km Grid (R), June 22, 2012
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7.3 CAMxX MODEL INPUT AND OUTPUT
7.3.1 Model Input

The outputs from EPS3/MEGAN and WRF serve as the CAMx inputs for emission rates
and meteorological parameters, respectively. Additional CAMx inputs include initial
and boundary conditions, spatially resolved surface characteristic parameters, spatially
resolved opacity, and photolysis rates.

7.3.1.1 Initial and Boundary Conditions

The TCEQ is using initial and boundary conditions for CAMx developed with the
Goddard Earth Observing System model with Chemistry (GEOS-Chem). Boundary
conditions were developed with GEOS-Chem for each grid cell along all four edges of
the 36 km domain (i.e. the four “walls” of the outer domain) and each vertical layer for
each episode hour. CAMx 6.2 also allows boundary conditions on the top of the
domain (the “ceiling”) to be used, although this is not required. The TCEQ is currently
evaluating using the top boundary conditions with CAMx 6.2 for the 2012 ozone
season and will obtain revised boundary/initial conditions generated using a newer
version of GEOS-Chem that includes halogen chemistry. These updates should help
alleviate persistent model over-prediction of ozone in air brought onshore from the
Gulf and other salt water bodies.
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Figure 22: GEOS-Chem Derived Ozone Boundary Conditions for June 12, 2012, 09:00-
12:00 CST shows an example of boundary conditions for the four “walls” of the 36 km
modeling domain. These values are updated every three hours throughout the
simulation. Most CB6 species are provided, but because the GEOS-Chem chemistry
differs from CB6 some species are are set to constant values.

O3 Concentration of Lateral Boundary Conditions
Envrion's GEOS-CHEM (a0) for rpo_36km domain (base 2012)

ppb

West 06/12/2012 09:00-12:00 Max 618.257 Ppb 105 000

Min 20.877 ppb

90,000

Layer
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South 06/12/2012 09:00-12:00 Max 174.162 ppb

0 20 40 60 B0 100 120 140 50,000
Min 24.476 ppb East 06/12/2012 09:00-12:00 Max 398.274 ppb

0 20 40 60 80 100
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Figure 22: GEOS-Chem Derived Ozone Boundary Conditions for June 12, 2012,
09:00-12:00 CST
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7.3.1.2 Land-Use and Surface Characteristics

Surface characteristic parameters, including roughness, vegetative distribution, and
water/land boundaries, are input to CAMx via a land-use file. The land-use file
provides the fractional contribution (0 to 1) of 26 land-use categories (see Zhang et al,
2003). Land-use data from National Land Cover Dataset (NLCD) and Biogenic Emissions
Landuse Database, version 3 (BELD3) are used for areas outside Texas; the updated
land-use data (Popescu et al., 2008), which were derived from more highly resolved
LULC data collected by the Texas Forest Service and the University of Texas Center for
Space Research, are used for Texas. The land-use categories of source data are cross-
referenced to Zhang’s 26 land-use categories.

7.3.1.3 Ozone Column and Photolysis Rates

Spatially-resolved total atmospheric ozone column data and photolysis rates are input
to CAMx via ozone column and photolysis files. Episode-specific satellite data from the
Ozone Monitoring Instrument (OMI) are used to prepare the ozone column data files.
The photolysis rates are also specific to the chemistry parameters of the CB6
mechanism.

7.3.2 Model Output

CAMx outputs CB6 species in molar concentration units of parts per million by
volume. Some of the CB6 species are actual chemical species and include ozone, nitric
oxide, nitrogen dioxide, isoprene, carbon monoxide, ethane, ethene, formaldehyde and
acetaldehyde, while others represent molecular bonds which do not map directly to
actual chemicals. Typically, CAMx is executed to output hourly average concentrations,
which are comparable to hourly monitored aerometric parameters. CAMx also outputs
limited diagnostic files, including instantaneous concentration files for the last two
simulation hours (typically used for restarts), PiG output files (typically used for
restarts, but can be used for diagnostic analyses), and a deposition file (typically used
for diagnostic analyses).

CAMx can also be executed to output process analysis (PA) and source apportionment
results. PA, including chemical PA and integrated process rate analysis, provides in-
depth details of ozone formation showing the various physical and chemical processes
that determine the modeled ozone concentrations at specified locations and times. PA
modeling output is typically used as a part of the performance evaluation. Source
apportionment, using tools such as Ozone Source Apportionment Technology (OSAT)
and Anthropogenic Precursor Culpability Assessment (APCA), estimates the culpability
of sources from various regions contributing to local ozone concentrations. Source
apportionment modeling output can also be used as a part of the performance
evaluation, but more typically, it is used with the future year modeling to quantify the
region/source type contributions to the projected future design values.

CAMx can also output analysis results of first and higher order sensitivities of
modeled concentrations to model input parameters via the Direct-Decoupled Method
(DDM) and Higher-Order Direct Decoupled Method (HDDM) tools. DDM and HDDM
calculate CAMX’s sensitivity to changes in inputs directly as the model is executed, and
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can be used to evaluate base case performance as well as to assist in control strategy
evaluation for future year modeling.

CHAPTER 8: QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PLAN

The TCEQ’s QA/QC plan focuses primarily on the data input to the models and
procedures, and post-processing of the output data used for decision making. The
TCEQ conducts extensive QA/QC activities when developing modeling inputs, running
the models, and analyzing and interpreting the output. The TCEQ has developed a
number of innovative and highly effective QA/QC tools that are employed at key steps
of the modeling process. The QA/QC plan is consistent with EPA guidance to ensure
the scientific soundness and defensibility of the modeling.

CHAPTER 9: MODEL PERFORMANCE EVALUATION

The performance evaluation of the base case modeling measures the adequacy of the
model to correctly replicate the relationship between levels of ozone and the emissions
of ozone precursors such as nitrogen oxides (NOy, and volatile organic compounds
(VOC). The model’s ability to correctly replicate this relationship is necessary to give
confidence in the model’s prediction of the response of ozone to various emission
changes.

The TCEQ conducts two types of performance evaluations, operational (e.g., statistical
and graphical evaluations) and diagnostic (e.g., sensitivity evaluations). As
recommended by the EPA (EPA, 2007 and 2014), these evaluations are considered as a
whole in a weight-of-evidence approach, rather than individually, to gauge the
adequacy of the model.

The TCEQ has incorporated the recommended eight-hour performance measures into
its routine evaluation procedures, but continues to focus primarily on one-hour
performance analyses. The high-resolution meteorological and emissions features
characteristic of areas in eastern Texas, both urban and rural, require model
evaluations be performed at the highest resolution possible to determine whether or
not the model is getting the right answer for the right reasons. On the other hand, the
volume of model output for a regional-seasonal application like the 2012 platform
requires significant numerical and graphical summarization to make the model results
comprehensible to humans. These summarizations provide an overall evaluation of
model performance, and at the same time help identify areas that need to be analyzed
in detail.

9.1 OPERATIONAL EVALUATIONS
9.1.1 Statistical Measures

Statistical measures provide a quantitative evaluation of model performance, and by
definition summarize information into more easily understood numerical values. Data
in photochemical grid modeling applications are typically aggregated by day across
defined sub-areas of the modeling domain, such as individual non-attainment areas or
contiguous groups of urban counties which are in danger of becoming non-attainment.
The TCEQ routinely calculates summary statistics for Dallas-Fort Worth, Houston-
Galveston-Brazoria, Beaumont-Port Arthur, San Antonio, Austin-Round Rock, and
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Northeast Texas by day. We plan to further summarize some model performance
statistics by month.

The following statistics are recommended in the draft guidance (EPA, 2014) for
evaluating performance of the base case modeling and the following descriptions are
copied verbatim from the draft guidance, except for correcting the description of root
mean-square error (RMSE). Formulae for calculating these metrics are not shown here
but can be found in the draft guidance.

Mean Bias (MB): This performance statistic averages the model/observation residual
paired in time and space. A value of zero would indicate that the model over-
predictions and model under predictions exactly cancel each other out. An advantage
of this metric is the bias is reported in the unit of measure (ppb or ng/m?) making
interpretation simpler.

Mean (Gross) Error (ME/MGE): This performance statistic averages the absolute value
of the model/observation residual paired in time and space. A value of zero would
indicate that the model exactly matches the observed values at all points in
space/time. An advantage of this metric is the bias is reported in the unit of measure
(ppb or png/m?® making interpretation simpler.

Root Mean Square error (RMSE): This performance statistic (ppb or pg/m?) is a
measure of the average distance between predicted and observed values. It is
calculated by squaring the difference between each model-observation pair, averaging
the squared differences, then taking the square root of the result, which yields a
measure in the same units as the original data (ppb or ng/m?). RMSE is similar to MGE,
except that squaring the differences puts more weight on the pairs with the largest
errors.

Normalized Mean Bias (NMB): This statistic (given in units of percent) normalized MB
to the average observed value. NMB values range from -100% to +infinity.
Consequently, negative and positive bias values using this metric are not symmetrical
around 0. NMB is a useful model performance indicator because it avoids over inflating
the observed range of values.

Normalized Mean Error (NME): This performance statistic (given in units of percent) is
used to normalize the mean error relative to the average observation. This statistic
averages the absolute value of the difference (model - observed) over the sum of
observed values. NME values range from O to +infinity. NME is a useful model
performance indicator because it avoids over inflating the observed range of values.

(Mean) Fractional Bias (MFB/FB): Fractional bias is determined by normalizing the MB
by the average of observed and modeled concentrations. Since normalized bias can
become very large when a minimum threshold is not used, fractional bias may be used
as a substitute. The range of FB is -200% to +200%. The fractional bias for cases with
factors of 2 under- and over- prediction are -67 and + 67 percent, respectively (as
opposed to -50 and +100 percent, when using normalized bias). Fractional bias is a
useful indicator because it has the advantage of equally weighting positive and
negative bias estimates (underestimates and overestimates are symmetrical around 0).
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The single largest disadvantage is that the predicted concentration is found in both the
numerator and denominator.

(Mean) Fractional Error (MFE/FE): Fractional error is determined by normalizing the
ME by the average of observed and modeled concentrations. Since normalized error
can become very large when a minimum threshold is not used, fractional error may be
used as a substitute. The range of values for FE is 0 to 200%. It is similar to the
fractional bias except the absolute value of the difference is used so that the error is
always positive.

Correlation Coefficient (R?): This performance statistic measures the degree to which
two variables are linearly related. A correlation coefficient of 1 indicates a perfect
linear relationship; whereas a correlation coefficient of 0 means that there is no linear
relationship between the variables.

The TCEQ currently calculates all of the above statistics for every base case model run
except RMSE and R?, and plans to add RMSE to its suite of performance measures soon.
The TCEQ does not plan to add R? however, since it measures only correlation, not
predictive skill. For example, a model that predicted exactly twice the observed values
would score an R? of 1.0, but would probably be a poor predictor of the future value.
All statistics are calculated for both hourly averaged and Maximum Daily 8-hour
Average (MDAS) ozone concentrations.

These statistical measures are used primarily for ozone concentrations, although they
may be applied to some of the ozone precursors. In addition, the TCEQ may use
statistical measures other than those listed above as deemed necessary in the
performance evaluation. Neither the 2007 nor 2014 draft guidance specify acceptable
ranges for statistics, but the latter refers to a paper by Simon, et al (2012) which
summarized photochemical model performance for applications published in the peer-
reviewed literature between 2006 and 2012. This reference will be used as a guideline
but the TCEQ may also apply traditional performance criteria that have been used in
previous Texas modeling applications.

9.1.2 Graphical Measures

Graphical measures provide a qualitative evaluation of model performance. The TCEQ
post-processing routines develop the following graphical representations for each base
case model run, including most of those listed above.

Time Series Plots - For each monitor, the monitored and bi-linearly interpolated
modeled concentrations can be compared visually for each hour in an episode. This
comparison assesses how well the model predicts diurnal and/or daily variation in the
ozone concentrations at specific monitor locations as well as how well the model
predicts the magnitude of the observed concentrations.

For every base case model run the TCEQ develops hourly time series plots for ozone
(03) and most CB6 species including nitric oxide (NO), nitrogen dioxide (NO2), isoprene
(ISOP), olefins (OLE), formaldehyde (FORM), etc. and where available plots hourly
observations together with the modeled concentrations. Comparing the modeled
versus monitored concentrations of precursors, intermediate products, and reaction
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products can indicate whether the model is correctly replicating the physicochemical
processes by which ozone was actually generated.

The display routines allow two model runs to be compared, or if a single run is
evaluated, the plot shows the minimum and maximum values in the 3x3 array of grid
cells containing each monitor. Figure 23: Time-Series Hourly Ozone (O3) Plot for Denton,
June 2012 shows an example of this type of plot produced by the TCEQ post-
processing routines.
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Figure 23: Time-Series Hourly Ozone (O3) Plot for Denton, June 2012
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Site Daily Maximum Plots: Site daily maximum plots compare peak modeled and
observed ozone concentrations at a site, either one-hour or MDAS, and are useful
tools to identify over-prediction bias of peak concentrations at specific locations.
The “error bars” shown for the modeled values indicate the 3x3 grid cell minimum-
maximum. Figure 24: Example MDAS8 Ozone Plot for Denton, June 2012 shows an
example of this type of plot produced by the TCEQ post-processing routines.
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Figure 24: Example MDAS8 Ozone Plot for Denton, June 2012
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Scatter Plots - Scatter plots of hourly monitored and bi-linearly interpolated modeled
ozone and precursor concentrations show the same data displayed on corresponding
time-series plots, except modeled concentrations are plotted against observed
concentrations for the same hour. These plots are useful in analyzing model bias and
how it varies as a function of observed concentration. Quantile/Quantile (Q/Q) plots
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indicating the rank distribution of the monitored versus modeled ozone
concentrations are optionally displayed. Figure 25: Example Scatter Plot with Q-Q Plot
Showing Observed and Modeled Isoprene Concentrations at the Hinton Street Monitor in
June 2012 is an example of these plots produced by the TCEQ post-processing
routines.

Hourly Concentration: ISOP
DHIC, 481130069, C401, Dallas Hinton 5t. CA01/C60/AH161, 1415 Hinton Street, Dallas, Dallas Co., TX
- -

Modeled Concentration

® camx610p1_cbbr2.tx.bcl2_12jun.reg3 2012_wrf361_p2a_i2_kvCMAQ.tx_dkm( 0-Q )

Figure 25: Example Scatter Plot with Q-Q Plot Showing Observed and Modeled
Isoprene Concentrations at the Hinton Street Monitor in June 2012

Vertical Profile Plots - Though infrequently available, vertical profile plots of ozone
concentrations are invaluable for assessing how well the model replicates the vertical
distribution of ozone concentrations through the troposphere. These plots are located
at the sites of ozone sonde launches conducted as part of the Tropospheric Ozone
Pollution Project (TOPP), a multi-year effort to characterize tropospheric ozone in the
United States. Figure 26: Example Vertical Profile Plot Showing Observed and Modeled
Ozone Concentrations for a Sonde Launch in June 2012 shows an example produced by
the TCEQ post-processing routines.
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Figure 26: Example Vertical Profile Plot Showing Observed and Modeled Ozone
Concentrations for a Sonde Launch in June 2012

Peak Ozone Spatial Plots - Peak ozone spatial plots show maximum daily hourly or
MDAS ozone concentrations across a selected area using custom software developed at
the TCEQ that overlays modeled concentrations over a Google Maps display. Observed
concentrations are also displayed to provide a visual comparison to the model results.
The display can be zoomed in to any area to the limits of the underlying map and
several display options are available. This software replaces the static tile plots used
previously. The concentration data are smoothed automatically and grid cell
boundaries are no longer evident. The program allows the difference between two
model runs to be displayed allowing the results of changing model inputs or
parameterizations to be quantified and located spatially within the model grid. Figure
27: Example MDAS8 Ozone Spatial Plot for Eastern Texas, June 26, 2012 shows an
example of the plots that can be quickly produced using the TCEQ post-processing
software.
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Figure 27: Example MDAS8 Ozone Spatial Plot for Eastern Texas, June 26, 2012

Hourly Concentration Plots and Animations - Hourly concentration plots of ozone
and several precursors can be produced through software analogous to that described
above, except that instead of displaying only the peak value for a day this type of plot
displays concentration data simulated for every hour. The display program allows the
hourly images to be automatically run sequentially to provide an animated display of
the concentration data. This feature is very useful to track the development, transport,
and destruction of ozone and ozone precursors. Besides displaying pollutant
concentrations, the hourly mapping program includes several optional displays
including radar (from the National Weather Service, NWS) and satellite overlays, back
trajectories, and wind observations. Figure 28: Example Hourly Ozone Concentration
Spatial Plot for Eastern Texas, 15:00, June 26, 2012, with NWS Radar Overlay shows an
example of this type of plot produced with the TCEQ’s post-processing software called
Geo-Referenced Interactive Model Results Evaluation and Analysis Program
(GRIMREAPY).
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Figure 28: Example Hourly Ozone Concenti‘ation Spatial Plot for Eastern Texas,
15:00, June 26, 2012, with NWS Radar Overlay

9.2 DIAGNOSTIC EVALUATIONS
9.2.1 Sensitivity Analyses

Sensitivity analyses are designed to check the response of the modeled ozone to
changes in model inputs including meteorological parameters and precursor
emissions. The results of these analyses indicate the sensitivity of the model to various
inputs and can identify which inputs must be scrutinized most closely. In addition,
sensitivity analyses can also indicate which modeling inputs may be hindering the
performance of the model.

The TCEQ has tested different model inputs, configurations, and parameterizations to
try to obtain the best model performance possible for June 2012, consistent with
current science. These tests include running CAMx with:

e (Chemical mechanisms CB6, CB6r2, and CB6r2h, as well as with the older CBO5;

e CAMx versions 6.00, 6.10, and 6.20;

e 85% and 40% reductions to isoprene emissions;

e WRF 3.5 and WRF 3.61;

e Vertical mixing (Kv) with O’Brien and cloud adjustment, YSU, and CMAQ schemes;

e With and without sub-grid cloud parameterization;
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e With hourly and 15 minute WRF input;
e Southeast ocean boundary condition ozone reduced by 10 ppb, reduced by 50%;
e With and without asymmetric vertical mixing v. 2 (ACM2) diffusion in CAMXx;

e With and without Goddard Earth Observing Systems Chemistry Model (GEOS-
Chem)-derived top boundary conditions (CAMx 6.2); and

e Alternative vertical layer structures (WRF and CAMx, and CAMx alone).

As additional months are modeled, additional sensitivity tests will likely be needed to
optimize overall model performance. These tests may include very-high-resolution
modeling (1 km or 1.33 km) for selected areas, alternative boundary conditions, new
biogenic emission estimates, and alternative meteorological characterizations among
others.

9.2.2 Diagnostic Analyses

Diagnostic analyses tend to focus more directly on the model’s change in predicted
ozone to changes in the ozone precursor emissions. At a minimum, the TCEQ plans to
conduct the following diagnostic analyses:

Observational Methods - These methods compare changes in modeled ozone
associated with changes in emissions input to the model to changes in monitored
ozone associated with changes in actual emissions. The primary analysis of this type
that the TCEQ plans to conduct is a modeling scenario to compare the weekday versus
weekend differences in ozone and emissions to the monitored weekday versus
weekend differences for the area. Another analysis of this type that the TCEQ may
conduct involves comparing the changes in the modeled versus monitored NO,-
limitation or VOC-limitation both geographically and temporally over eastern Texas.

Probing Tools - Probing tools are embedded procedures in the CAMx model used to
discern the contribution to ozone formation from the various inputs. The primary
probing tool the TCEQ plans to use is process analysis (PA). The TCEQ plans to
conduct source apportionment analyses (e.g., Anthropogenic Precursor Culpability
Assessment (APCA), Ozone Source Apportionment Technology (OSAT)) on the base and
future case modeling to understand the contribution from source categories in various
source regions to the predicted ozone concentrations.

Retrospective Analyses - A retrospective analysis is intended to examine the ability of
the model to respond to emission changes by comparing a recent trend or change in
observed ozone concentrations to the model-predicted ozone concentration trend or
change over the same period. The TCEQ plans to use the model and the attainment test
procedure to project year 2006 ozone design values (i.e., back-cast from the 2012 base
case to year 2006), using previously-developed 2006 emissions data. The model-
projected year 2006 ozone design values will be compared to the actual design values
calculated from the ambient measurements.
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These diagnostic analyses should establish the reliability of the model to adequately
predict the response of ozone to changes in the emissions, which is paramount in
testing possible control measures.

CHAPTER 10: ATTAINMENT YEAR MODELING

This Technical Description is intended to apply generically to the development of the
2012 modeling platform and not to any specific attainment demonstration. A 2017
statewide modeling inventory was prepared for the Dallas-Fort Worth attainment
demonstration submitted to EPA in June 2016, and will be the basis for any additional
2017 modeling. The TCEQ will update the 2017 inventory and develop additional
future years as necessary.

As per EPA guidance, the TCEQ will first calculate each nonattainment regulatory
monitor’s 2012 baseline design value (DV;). The 2012 baseline for a monitor is the
average of three design values from 2012, 2013, and 2014, each of which is itself a
three-year average of fourth-high maximum daily 8-hour average (MDAS8) ozone
concentrations at that monitor. Each of these three design values includes the 2012
fourth-high in its three-year average. The 2012 baseline DV, can thus be thought of as
a five-year weighted average of fourth-high MDAS8 ozone concentrations with weighting
factors of 1, 2, 3, 2, and 1 applied to the fourth high values for 2010, 2011, 2012, 2013,
and 2014, respectively; 2012 is given the most weight, followed by 2011 and 2013,
with 2010 and 2014 receiving the least weight. The future design value (DV;) is found
by multiplying the DV, by a modeled relative response factor (RRF) calculated as
described below.

Each monitor’s RRF will be calculated in accordance with the 2014 EPA draft modeling
guidance. For a given monitor, the process is as follows: for each day modeled, locate
the highest modeled MDAS8 concentration “near” the monitor, specifically within a 3 x
3 grid cell array containing the monitor in the central cell. Next identify the ten (if
available) days with the highest concentrations “near” the monitor, provided those
concentrations are > 60 parts per billion (ppb) (if fewer than five days have nearby
MDAS ozone concentrations > 60 ppb, then no RRF will be calculated for that monitor).
For the selected days, average the modeled baseline MDAS8 concentrations and
separately average the future modeled concentrations (using the modeled future case
concentration from the grid cell having the maximum baseline concentration “near”
the monitor). The monitor’s RRF is then the ratio of the average future case MDAS
concentration to the average base case concentration.

The TCEQ will evaluate performance on each day selected for RRF calculations, and
may in some cases replace days with poor performance at a monitor with days
showing better model performance, as suggested in EPA’s 2014 Draft Modeling
Guidance.

Prior to release of the EPA’s Modeled Attainment Test Software (MATS), the TCEQ
developed its own procedure for calculating RRFs and DV; values called the TCEQ
Attainment Test for Unmonitored areas (TATU). Like MATS, TATU performs a spatial
interpolation, so it can also be used to analyze unmonitored areas (i.e., an out-of-
network test). While conceptually similar to MATS, TATU was designed specifically to
be integrated into the TCEQ’s CAMx modeling process, runs on Linux, and does not
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require geographic coordinates be converted into Latitude/Longitude. This integration
facilitates the calculation of RRFs, DV, projections, and spatial interpolation. TATU
originally was based on the familiar kriging process for spatial interpolation, but
recently has been adapted to use the Voronoi Neighbor Averaging (VNA) technique
employed in MATS. While kriging works very well in urban-scale applications it is
difficult to apply in regional applications where data points tend to be relatively tightly
clustered in widely-separated urban areas, so we anticipate using the VNA approach
for modeling using the 2012 modeling platform but may also apply kriging in some
circumstances.

CHAPTER 11: MODELING DOCUMENTATION AND ARCHIVE

11.1 DOCUMENTATION

The following supporting documentation will be developed to support the 2012
modeling platform:

Modeling Technical Description (this document) - Establishes the scope of the
analysis and encourages stakeholder participation in both the study development and
the study itself.

Modeling Reports - For specific applications of the 2012 modeling platform, reports
describing in depth the development of emissions and meteorological inputs for base
and future years, model application, model results, and conclusions will be developed
as required.

11.2 MODELING ARCHIVE

The TCEQ plans to archive all documentation and modeling input/output files
generated as part of the 2012 modeling platform. Interested parties can contact the
TCEQ for information regarding data access or project documentation.
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ATTACHMENT 1: SAMPLE WRFCAMX PERFORMANCE
ANALYSIS GRAPHICS FOR SELECTED SITES IN EASTERN
TEXAS, JUNE 2012

This attachment compares Weather Research and Forecasting Model (WRF) output
temperature, wind speed and direction, and humidity with observations at selected sites
in eastern Texas for June 2012. All sites with available humidity data are included, as
well as sites selected to provide a broad geographic representation.
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DENTON (DFW)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

DENT at (-18.0,-753.8) km (481210034, C56, Denton Airport South C56/A163/X157, Denton Municipal Airport, Denton, Denton Co., TX)
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GRAPEVINE (DFW)

Temperature (°C) at Layer 1 (20120801-20120630)
WRFGANX 201206_wi361_i2.b_dkm.v42

GRAP at (-5.9,-777.0) km (484393009, C70, Grapevine Fairway G70/A301/X182. 4100 Fairway Dr., Grapevine, Tarrant Co., TX)
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ALDINE (HGB)

Temperature (°C) at Layer 1 (20120801-20120630)
WRFGANX 201206_wi361_i2.b_dkm.v42

HALG at (162.4.-1119.4) km (482010024, C8, Houston Aldine C8/AF108/X150, 4510 1/2 Aldine Mail Rd, Houston, Harris Go., TX)
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CLINTON DRIVE (HGB)

Horizontal Wind (m/s) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

(169.4,-1138.0) km (482011035, C403, Clinton C403/C304/AH113, 8525 1/2 Clinton Drive, Houston, Harris Co., TX)
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PARK PLACE (HGB)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

PRKP at (185.9,-1143.3) km (482010418, C416, Park Place C416, 7421 Park Place Blvd., Houston, Harris Cao., TX)
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MANVEL CROIX PARK (HGB)

Temperature (°C) at Layer 1 (20120801-20120630)
WRFGANX 201206_wi361_i2.b_dkm.v42

MACP at (156.7,-1162.1) km (480391004, C84, Manvel Croix Park C84. 4503 Croix Parkway, Manvel, Brazoria Co., TX)
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Horizontal Wind (m/s) at Layer 1 (20120601-20120630)
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MACP at (156.7,-1162.1) km (480391004, C84, Manvel Croix Park C84, 4503 Croix Parkway, Manvel, Brazoria Co., TX)
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DEER PARK (HGB)

Temperature at 2m AGL (°C) (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

at (182.2,-1144.9) km (482011039, C35, Houston Deer Park 2 C35/1001/AFH139F239, 4514 1/2 Durant St., Deer Park, Harris Co., TX)
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Horizontal Wind (m/s) at Layer 1 (20120601-20120630)
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Specific Humidity (g/kg) at Layer 1 (20120601-20120630)
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CMAQ Vertical Diffusivity Kv (m%/s) (20120601-20120630)
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MAURICEVILLE (BPA)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

5425 at (302.3,-1084.4) km (483611100, C842, SETRPC Mauriceville 42 C642/C311/C665, Mauriceville, Port Arthur, Orange Co., TX)
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SABINE PASS (BPA)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCAMX 201206_wrf361_i2.4x_4km.v42

5405 at (301.8,-1138.2) km (482450101, C840, SETRPC 40 Sabine Pass C840/C854, 6019 Mechanic, Sabine Pass, Jefferson Co., TX)
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Horizontal Wind (m/s) at Layer 1 (20120601-20120630)
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54085 at (301.8,-1138.2) km (482450101, C840, SETRPC 40 Sabine Pass C840/C654, 6019 Mechanic, Sabine Pass, Jefferson Co., TX)
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Specific Hugidity (g/kg) at Layer 1 (20120601-20120630)
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CMAQ Vertical Diffusivity Kv (m®/s) (20120601-20120630)
WRFCAMX 201208_wrf361_i2.tx_dkm.va42 (kv100)
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LONGVIEW (NET)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

LGVW at (215.1,-841.6) km (481830001, C19, Longview C19/CB844/A127, Gregg County Airport, Longview, Gregg Co., TX)
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Horizontal Wind (m/s) at Layer 1 (20120601-20120630)
WRFCAMX 201206_wrf361_i2.1x_4km.v42
LGVW at (215.1.-841.8) km (481830001, C19, Longview C19/CB644/A127, Gregg County Airport, Longview, Gregg Co., TX)
T T T T T T T T T T T T T T T T T T North

10l ] I ] 1 1 1 L ] ] |

1 1 I ] ] I

1 1 ]

1
0

1
0

South
a 4] a 0 ] 0 a a 0 Q o 0 0 a 0 ] o 0 0 a a 0 Q o 0 a a 24 -
20120601 20120803 20120605 20120807 20120609 20120611 20120613 20120615 20120617 20120619 20120621 20120623 20120625 20120627 20120629
—— 201206_wrf381_i2.tx_akm
—— Observed
Specific Humidity (g/kg) at Layer 1 (20120601-20120630)
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CMAQ Vertical Diffusivity Kv (m®/s) (20120601-20120630)
WRFCAMX 201208_wrf361_i2.tx_dkm.va42 (kv100)
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CAMP BULLIS (SAT)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

BOER at (-152.4,-1140.7) km (480290052, C58, Camp Bullis C58, Near Wilderness Rd, San Antonio, Bexar Co., TX)
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++++ Observed

Horizontal Wind (m/s) at Layer 1 (20120601-20120630)
WRFCANX 201206 w361 i2.1x_dkm.v42

BOER at (-152.4,-1149.7) km (480290052, C58, Camp Bullis C58, Near Wilderness Rd, San Antonio, Bexar Co., TX)
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Specific Humidity (g/kg) at Layer 1 (20120601-20120630)
WRFCAMX 201206 wri361_i24x_4km.v42

BOER at (-152.4,-1149.7) km (480290052, C58, Camp Bullis C58, Near Wilderness Rd, San Antonio, Bexar Co., TX)
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CMAQ Vertical Diffusivity Kv (m®/s) (20120601-20120630)
WRFCAMX 201208_wrf361_i2.tx_dkm.va42 (kv100)
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AUDOBON (ARR)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

AUDU at (-84.0,-1055.4) km (484530020, C38, Audubon C38, 12200 Lime Creek Rd, Austin, Travis Co., TX)
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Horizontal Wind (m/s) at Layer 1 (20120601-20120630)
WRFCANX 201206 w361 i2.1x_dkm.v42

AUDU at (-84.0,-1055.4) km (484530020, C38, Audubon C38, 12200 Lime Cresk Rd, Austin, Travis Co., TX)
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AUDU at (-84.0,-1055.4) km (484530020, C38, Audubon C38, 12200 Lime Creek Rd, Austin, Travis Co., TX)
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CMAQ Vertical Diffusivity Kv (m®/s) (20120601-20120630)
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ARANSAS PASS (CCV)

Temperature (°C) at Layer 1 (20120601-20120630)
WRFCANX 201206_wi361_i2.1x_dkm.v42

ARPS at (-14.8,-1347.0) km (484090659, C659, Aransas Pass CB59, 527 Ransom Road, Aransas Pass, San Patricio Co., TX)
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ATTACHMENT 2: QUALITY ASSURANCE/QUALITY
CONTROL (QA/QC) PLAN FOR THE TCEQ 2012
MODELING PLATFORM

In order to ensure that its photochemical modeling is conducted to the highest
possible standards, the Texas Commission on Environmental Quality (TCEQ) performs
a series of QA procedures on the input files to the various modeling components. All
data, whether produced internally or externally by contractors, are examined. This
document specifically addresses five aspects of the photochemical modeling process:
emissions inputs, meteorological data inputs, photochemical model inputs, model
execution, and output interpretation.

CHAPTER 1: EMISSIONS INPUTS QA/QC

Emissions inputs to the photochemical model are aggregated from a large number of
sources and undergo many steps on the way to developing the spatially gridded,
chemically speciated, hourly emissions arrays in FORTRAN binary file format that are
read by the Comprehensive Air Quality Model with Extensions (CAMx) used by the
TCEQ for regulatory modeling applications. Effectively managing the process by which
these input files are created requires a great deal of scrutiny at each step; fortunately,
the Emissions Processing Software, v.3 (EPS3) used for processing all anthropogenic
emissions data has excellent reporting capabilities that facilitate performing thorough
QA/QC on the data. In addition, most EPS3 modules create an ASCII output file
containing records that were not processed because of missing or bad data called the
Emissions Model ASCII Records (EMAR) file. Biogenic emissions are processed
separately into model-ready format using the Model of Emissions of Gas and Aerosols
from Nature (MEGAN).

Much QA/QC is based on examining plots that show emissions as they are allocated to
the grid using visualizations tools developed at the TCEQ and elsewhere. Figure 29:
Tile Plot definition panel for QA/QC of CAMx-ready emission files below shows the
panel used to select the options for creating tile plots of emissions in CAMx input
format. Plots can be created for selected episode, episode day, emission version, CAMx
domain, emission category, and chemical species. The tile plot shown is for the 4 km
Texas domain for Friday June 1, 2012 and shows on-road emissions of NO. Along with
showing the spatial distribution of emissions in the 4 km domain (Mexican emissions
are not shown), the plot also displays the temporal distribution of emissions and
provides totals for nonattainment areas and other areas that have ozone
concentrations approaching the NAAQS.
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Figure 29: Tile Plot definition panel for QA/QC of CAMx-ready emission files

1.1 ELEVATED SOURCE EMISSIONS

Unlike other emission sources that are allocated to specific grid cells in the first model
layer, point sources are identified by their geographic location and emissions are
allocated to horizontal and vertical grids by CAMx during processing. Horizontal grid
allocation is determined simply by which grid cell (in each nested grid) the point lies
in, but vertical cell positioning is performed dynamically for each hour of the
simulation based on wind speed and vertical mixing coefficient.

1.1.1 Elevated Point Sources

The largest component of the elevated source input is point sources. Point source
emissions come from several sources, including the State of Texas Air Reporting
System (STARS), the Air Markets Program Data (AMPD), the EPA’s 2011 modeling
platform, and the Bureau of Ocean Energy Management’s 2011 Gulf-Wide Emissions
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Inventory (GWEI). The AMPD emissions are provided on an hourly basis, while other
sources are supplied as either ozone season or yearly averaged daily emissions.

The STARS inventory contains emissions data for Texas major stationary sources
including location, stack parameters, annual emissions rate, and in some cases typical
hourly and daily operations. The TCEQ Emissions Assessment Section manages the
STARS inventory, quality checks the results and maintains a database of the results.
For any given year, modeling staff take several downloads (extracts) of the STARS
database, and each download is compared to others from the same year to confirm
that the download is complete. The number of point sources and emission totals for
each pollutant is compared for the three most recent years. The number of points
reporting emissions to the STARS database should not vary much from year to year,
and any changes in the emission totals must be reasonable and assignable. To
investigate the latter, the TCEQ compares the large NO, VOC, and SO, point sources
over the last three years to identify sources that may require additional scrutiny. It is
not unusual to have changes as point sources shut down, start up, or have upsets.
Location and stack parameters are also screened for accuracy. Unreasonable stack
dimensions and/or operating conditions are given default values. If a point is located
more than three miles from the median of other points at the same site, then the point
is relocated at the median.

Point source emissions from outside of Texas are acquired from EPA’s 2011 Modeling
Platform, which has been thoroughly peer-reviewed by Texas and other states affected
by EPA’s rules on interstate pollution transport. For all sources that report to the
AMPD, the TCEQ uses reported hourly NOx and SO2 emissions data from the AMPD to
provide hourly emissions to the photochemical model. Procedurally, the hourly
emission records replace their daily emission counterpart in the STARS sourced
emission records. To assure that all of the AMPD data are successfully converted,
annual pollutant emission totals are compared by site, hour, and day. The site
comparison is the annual total for the year, the hour comparison is the hourly average
over the entire year, and the day comparison is for each day of the year. In addition,
the hourly emissions for a single (arbitrary) day are compared for each point source
reporting emissions for that day. To keep from double counting emissions, the TCEQ
maintains a cross reference file that links AMPD boiler identifiers (ORISPL and BLRID)
to STARS point source identifiers (FIPS, plant, stack, point). The cross reference is
updated each time there is a new year of AMPD data to account for new sources. After
QA of the above data is complete, the next step for all point source data is to read the
raw data and write it out in the Aerometric Information Retrieval System (AIRS) Facility
Subsystem (AFS) format. The TCEQ has written code in SAS and other computer
languages to extract data from the various data sources and convert it to AFS format.
Data quality checks performed to assure fidelity of the conversion process include
comparing output emissions totals with input totals and with emissions totals from
previous years.

Once the point source data have been successfully converted to AFS format, data are
processed through the TCEQ’s customized version of EPS3. The AFS records are input
to the EPS3 entry module PREPNT, where the emissions are first screened to determine

¢ ORISPL refers to the Office of Regulatory Information Systems Plant Location identifier; BLRID refers to
Boiler identification code.
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which sources will be treated as low-level and later dumped into the first-level grid
using a conservative estimate of plume rise for the point. Currently a 30 meter (m)
plume rise cutoff is used, which is slightly lower than the top of the first model layer
(~34 m). Low-level points are not tracked individually and are treated like other low-
level sources by EPS3. AMPD sources are always treated as elevated sources for EPS3
processing’.

PREPNT produces message files warning of processing errors or data issues, and
produces a stack report; these reports are scanned for problems along with checking
the EMAR files. Next, the emissions are chemically speciated (i.e., VOC is disaggregated
into Carbon Bond species) using the SPCEMS module. While some sources use default
speciation profiles from EPA’s Speciate database, most major Texas point sources
(excluding electric generation units (EGUs), which emit only small amounts of VOC)
report reasonably complete speciation of emissions by process. Custom speciation
profiles are generated for these sources, translating the original hydrocarbon
components into Carbon Bond species. After SPCEMS completes, input and output
totals by category are checked for consistency and all discrepancies are investigated.
SPCEMS also performs simple speciation for direct emissions of fine particulate matter
(PM, ;).

The next step is allocation of emissions temporally using the TMPRL module. AMPD
sources are already reported as hourly totals, hence are not temporally allocated
further. For the remaining sources any information available through STARS, such as
operating hours per day or days per week are used to make reasonable guesses as to
actual operating hours. The vast majority of non-EGU point sources are treated as
operating 24/7. Again at this step input and output emission totals are checked for
consistency. At this point the TMPRL output contains both low-level and elevated
points. Processing of the low-level points will be discussed later.

After temporal and spatial allocation and chemical speciation are completed, the
emissions are next read by the point source post-processing program PSTPNT, which
drops sources identified by PREPNT as low-level, performs some additional error
checks, and creates input files for the last step of processing for elevated points called
PIGEMS. PIGEMS is run initially to create a master stack list, which is necessary for
Plume-in-Grid (PiG) processing. This is because not all point sources may have
emissions on every day modeled, so every single-day point source emissions file must
be read into PIGEMS to create a complete master stack list. PIGEMS is then executed

" Note that elevated sources may still be assigned to the lowest model layer in CAMx, and it would be
theoretically possible to treat all sources as elevated and let the model make the vertical layer assignment
for each. The reason for maintaining low-level sources is that all low-level emissions in a grid cell are
combined before input to CAMx, greatly reducing the number of individual sources that the model must
account for.

® The EMAR file is checked for erroneous records for all subsequent modules so will not be discussed
henceforth.

° Particulate matter chemistry is optional in CAMx and the TCEQ does not routinely run with it to save
computational resources, but is required by the Community Model for Air Quality (CMAQ) which the TCEQ
also runs to help inform the modeling process.

1 CAMx tracks individual plumes across days, and the master stack list allows plumes emitted on one day
to be tracked even if the source had no emissions the following day.
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again to provide day-specific emission files in CAMx-ready format. PIGEMS reports
input and output emissions totals, which are checked for consistency.

1.1.2 Ship and Fire Emissions

Ships are modeled as elevated sources because their emissions may rise above the first
model layer. Most emissions data for ships in and near Texas were developed under
contract with the TCEQ, while emissions for more distant ocean waters are derived
from the Ship Traffic, Energy and Environmental Model (STEEM). Emissions from
larger vessels are spatially located along shipping lanes or in ports, while smaller
vessels may be more spread out. The PRESHP preprocessor assigns the emissions to
the center points of model grid cells. All offshore ship emissions are treated as
elevated sources, but at this time emissions from ships on inland waterways such as
the Mississippi River and Intracoastal Canal are assigned to the first model layer (these
are included in the low-level off-road source emissions data, discussed below). The
emissions are then processed through the SPECEMS and TMPRL processors for
speciation and temporal allocation. The offshore shipping emissions are then finally
post-processed into a CAMx-ready input file using the PSTSHP processor, which also
distributes ship plumes vertically within the first two model layers based on ship
classification.

Day-specific fire emissions are derived from the Fire Inventory from the National
Center for Atmospheric Research (FINN). These emissions are entered into EPS3 via
the PREFIR preprocessor as point sources. PREFIR assigns a time varying plume height
to each fire and a recent update now allows fire plumes to be distributed among
several vertical layers according to the size and intensity of the fire. The fire
emissions are then processed through CHMSPL and TMPRL for speciation and temporal
allocation, and then are written out in CAMx-ready format by the PSTFIR processor.
Each of these modules used to process ship and fire emissions produces message files
and reports which are scanned for potential problems.

1.1.3 Merged Elevated Emissions

All elevated emissions files are merged together for each modeled day using the
PTSMRG processor. The output of this program is scanned for errors.

One of the biggest QA challenges is accounting for the large number of emissions files
that must be assembled for each day modeled. Because elevated emissions derive
from a myriad of sources, and because several of these are day-specific (e.g. AMPD
emissions), the TCEQ creates summary lists of the files and tracks emissions of several
pollutants as the files are merged into CAMx-ready inputs. These reports are
assembled automatically by scanning the voluminous output from PIGEMS and
consolidating the key information. Figure 30: Sample Summary Report from Merging
Elevated Emissions for June 8, 2012 shows a single-day excerpt from a report from one
recent merge.

After ensuring that all elevated source emissions have been processed with no errors
and emission totals have remained consistent throughout the several steps of
processing, the model-ready elevated point-source emission files are plotted into a
series of day-specific tile plots showing both the spatial and temporal distribution of
emissions on each grid for each CB6 species. These plots are spot-checked to ensure
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the spatial and temporal allocations are reasonable and no anomalies are seen. Figure
31: Elevated Source Emissions of NOX and VOC for June 14, 2012 in the CONUS (RPO)
36 km Domain, Figure 32: Elevated Source NO Emissions for June 14 and 25, 2012 in
the Texas 12 km Domain, and Figure 33: Elevated Emissions of the CB6 Species PAR and
ETH for June 25, 2012 in the Texas 4 km Domain illustrate these plots for different
days, domains, and precursors. Ship emissions are shown as linear features evident
over ocean waters (shipping lanes). Fires are notable by their often intense but short-
lived emissions; such a feature is noted by red circles in Figure 32 indicating the
presence on June 14, 2012 and subsequent disappearance of a large fire in south-
central New Mexico.

Component Files NOx voc ETHA co
/ei/point/rpo_eps3/pstpnt/tx_ard/pstpnt.out.cbép.120607.conus_36km.tx_ard bcl2e june hgb Bco.15Jun08 24.6017 1.5718 1.0308 25.6809
/ei/point/rpo_eps3/pstpnt/tx_ard/pstpnt.out.cbép.120607.conus_36km.tx_ard bcl2e june dfw_10co.15Jun08 4.5435 1.0908 1.2472 8.8347
/ei/point/rpo_eps3/pstpnt/tx_ard/pstpnt.out.cbép.120607.conus_36km.tx ard bcl2e june no h_d 18co.15Jun08 309.8680 5.5221 2.4487 454.7621
/ei/point/rpo_eps3/pstpnt/tx_osd/pstpnt.out.cbép.120606.conus_36km.tx_osd bcll2d.mamp_hgb_8co.14Jun25 58.1498 11.1701 3.1019 34.4806
/ei/point/rpo_eps3/pstpnt/tx_osd/pstpnt.out.cbép.120606.conus_36km.tx_osd bcll2d.mamp_dfw_10co.14Jun25 26.7942 5.8918 7.2488 32.0098
/ei/point/rpo_eps3/pstpnt/tx_osd/pstpnt.out.cbép.120606.conus_36kn.tx_osd bcll2d.mamp no h_d 18co.14Jun25 309.1141 56.4467 35.1259  216.1837
/ei/point/rpo_eps3/pstpnt/tx_osd/pstpnt.out.cbép.120606.conus_36km.tx osd bcll2d.mamp £l hgb Bco.14Jun25 5.1255 22.4413 2.9434 22.7514
/ei/point/rpo_eps3/pstpnt/tx_osd/pstpnt.out.cbép.120606.conus_36km.tx_osd bcll2d.mamp £l dfw 10co.14Jun25 0.2108 0.2691 0.0432 0.9112
/ei/point/rpo_eps3/pstpnt/tx_osd/pstpnt.out.cbép.120606.conus_36km.tx osd bcll2d.mamp £l no h_d 18co.14Jun25 7.1811 26.2483 3.7166 32.9265
/ei/point/rpo_eps3/pstpnt/reg_ard/pstpnt.out.chbép.120607.conus_36km.reg_ard bel2d june.153un08 4317.9755 72.1078 10.6490  1262.1636
/ei/point/rpo_eps3/pstpnt/reg_osd/pstpnt.out.cbép.120608.conus_36km.ar osd b2011b.14ApriS 76.7227 20.6965 2.2664 86.6949
/ei/point/rpo_eps3/pstpnt/reg_osd/pstpnt.out.cbép.120608.conus_36km.la_osd b2011b.142ApriS 299.8634 40.7922 8.9238 199.7803
/ei/point/rpo_eps3/pstpnt/reg_osd/pstpnt.out.cbép.120608.conus_36km.ok osd b2011b.14ApriS 171.4066 36.6386 1.3349 117.8905
/ei/point/rpo_eps3/pstpnt/reg_osd/pstpnt.out.cbép.120608.conus_36km.no_westarlaoktx osd b2011b.14AprlS 2487.0868 414.5691 46.4788  3888.5008
/ei/point/rpo_eps3/pstpnt/reg_osd/pstpnt.out.cbép.120608.conus_36km.west_azcaorwa_osd b2011b.14Apris 147.6332 17.2521 1.95%6  260.0315
/ei/point/rpo_eps3/pstpnt/os/pstpnt.out.cbép.110601.conus_36km.gwei201la.15Feb1a 200.1846 43.7987 4.6465 156.2801
/ei/point/rpo_eps3/pstpnt/mex/pstpnt.out.cbép.120612.conus_36km.mex_fy2012b MexID.15Junl8 978.4474  289.7415 7.6725 §72.3840
/ei/point/rpo_eps3/pstpnt/reg_ont/pstpnt.out.cb05.060606.conus_36km.canada 2006.110ct12 1300.0675  2465.9203 1.5784  2527.1473
/ei/offroad/pstshp/el pstshp.out.cbép.hg lkm.HEB_2007.fy2012b.15Aug03 23.9396 1.0781 0.0376 3.6296
/ei/offroad/pstshp/el pstshp.out.cbép.tx_dkm.HEB_2007.fy2012b.15Jul3l 3.8021 0.1635 0.0057 0.5778
/ei/offroad/pstshp/el pstshp.out.cbép.tx_dkm.BEA_2011.by2012a.15Aug03 12.0702 0.5840 0.0204 2.5053
/ei/offroad/pstshp/el pstshp.out.cbép.tx_dkm.epa nearport TX_CRUSM.fy2012a.152ug05 16.4965 0.5348 0.0187 1.3426
/ei/offroad/pstshp/el pstshp.out.cbép.tx_12km.epa nearport TX CRUSM.fy2012a.15Bug0s 0.2385 0.0077 0.0003 0.0185
/ei/offroad/pstshp/el pstshp.out.cbép.tx_dkm.epa nearport noTX.fy2012a.152ug0s 2.9040 0.1192 0.0042 0.8679
/ei/offroad/pstshp/el pstshp.out.cbép.tx_12kn.epa nearport noTX.fy2012a.15Bugls 52.0404 1.6536 0.0577 4.3721
/ei/offroad/pstshp/el pstshp.out.cbép.us_36kn.epa nearport noTX.fy2012a.152ugls 1683.2944 6.0337 0.2105 16.3988
/ei/offroad/pstshp/el pstshp.out.cbép.rpo_36km.epa nearport noTX.fy2012a.15ug05 125.0437 4.3505 0.1518 11.5909
/ei/offroad/pstshp/el pstshp.out.cbép.tx_dkm.STEEMships.fy2012a.158ug05 95.2627 3.2174 0.1122 8.1469
/ei/offroad/pstshp/el pstshp.out.cbép.tx_12kn.STEEMships.fy2012a.158ug05 L6428 5.3366 0.1862 13.5133
/ei/offroad/pstshp/el pstshp.out.cbép.us_36kn.STEEMships.fy2012a.158ug05 L0064 36.7554 1.2822 93.0743
/ei/offroad/pstshp/el pstshp.out.cbép.rpo_36km.STEEMships.fy2012a.15Aug05 L6310 41.3771 1.4434 104.7775
./ptsrc.finn fires.RandTMPRL PlumeDist2.20120607.tx.bc12 12all.rpo_36km.cbé 1862  2616.8043 61.7841 19100.0000

Totals (tons/day) 14800.0000  6258.1851  207.7311 29300.0000

USERIN file {TMP.userin.cb6.20120608. rpo_36km.17un2015. camx
Input master stack list file :master stk.pigems.cbép.rpo 36km.bcl2.r3d2.15Nov20

Figure 30: Sample Summary Report from Merging Elevated Emissions for June 8,
2012
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Texas Elevated Point El, be12_12jun.reg2i, 20120625: PAR Texas Elevated Point El, be12_12jun.reg2i, 20120625: OLE
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Figure 33: Elevated Emissions of the CB6 Species PAR and ETH for June 25, 2012 in
the Texas 4 km Domain

1.2 LOW-LEVEL EMISSIONS

Low-level emissions consist of low-level points, area sources, non-road mobile sources,
and on-road sources. Biogenic emissions are also low-level but are discussed
separately. On-road emissions are divided into link-based and non-link-based
emissions. Area, non-road, and non-link-based emissions are reported at the county or
equivalent level and must be spatially allocated to grid cells using surrogates, while
link-based emissions are assigned to grid cells based on the geographic coordinates of
the roadway links. Low-level point source emissions are allocated based on their
reported locations by PREPNT, as discussed above.

1.2.1 On-road Mobile Sources

For most cities, on-road mobile sources are the most important low-level emission
source for air quality applications on an urban scale. The TCEQ devotes considerable
resources to developing processing and quality-assuring this critically important input
to the CAMx model.

1.2.1.1 Link-based on-road mobile source emissions

For the two largest urban areas in Texas, Houston-Galveston-Brazoria (HGB) and Dallas-
Fort Worth (DFW), emissions are based on the travel-demand models used for a variety
of urban planning purposes. Travel-demand models provide traffic volume by
roadway segment (or “link”) by time period, such as morning rush-hour. The traffic
volume is the basis for calculating average speed by link, using factors such as
roadway type and capacity, which in turn is fed into the MOVES model to provide
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emissions by link by period or hour. An important factor is vehicle mix, particularly
fraction of heavy-duty diesel vehicles, which varies by time period. Emissions are
developed separately for school year/non-school year and for specific days (Friday,
Saturday, Sunday, and Weekday (Monday through Thursday)), and are provided for
each hour of the day. The 2012 link-based emissions for DFW were developed by the
North Central Texas Council of Governments (NCTCOG), and those for HGB by the
Texas Transportation Institute (TTI), but under contract with and supervision of the
TCEQ. Both organizations follow strict QA/QC protocols for developing these
estimates.

The link-based emission files are first input to the LBASE module of EPS3, which
allocates emissions to the modeling grid cells. The files are then speciated into CB6
species by SPCEMS profiles from EPA’s SPECIATE database for on-road gasoline and
diesel vehicles. The EPS3 message files and reports are scanned for errors, warnings,
and inconsistencies.

1.2.1.2 Non-link-based on-road mobile source emissions

Link-based emissions are not developed for neighborhood streets by NCTCOG or TTL
Rather, neighborhood-level emissions are provided as county totals which must be
spatially allocated using a spatial surrogate (population by census block) by the
GRDEM module of EPS3. In the DFW and HGB areas, these are later added to the
gridded link-based emissions using the MRGUAM module of EPS3. For all Texas
counties outside the DFW and HGB areas, county-level emissions are provided by TTI
for three day-types (Saturday, Sunday, Weekday) for school and non-school days for
different roadway classifications, such as interstate highways, other freeways, and
major highways. Emissions for major roads are spatially allocated according to
roadway type while the remaining emissions are allocated to population. The
emissions are allocated temporally using TMPRL and chemically speciated using the
SPCEMS module. Message files and reports are scanned at each processing step for
errors, warnings, and inconsistencies. For non-Texas on-road mobile emissions, the
MOVES model is run in default mode for all U.S. counties to develop modeling
inventories.

The final step in processing on-road mobile source emissions is to merge the link-
based and non-link based emissions using MRGUAM". The merged emissions are
plotted in the same fashion as elevated points and the plots are checked visually for
consistency and to identify any possible anomalies. Figure 34: Summer Weekday On-
Road NOX (L) and VOC (R) Emissions for CONUS 36 km Domain (U.S. sources only),
Figure 35: Summer Weekday (L) and Sunday (R) On-Road Emissions of NO on the Texas
12 km Domain (U.S. sources only), and Figure 36: Summer Sunday On-Road Emissions
of PAR (L) and ETH (R) on the Texas 4 km Domain (U.S. sources only) illustrate these
emission plots for different days, grids, and ozone precursors. A notable feature in
Figure 34 is the seeming lack of a bimodal distribution for NOy emissions for the
CONUS domain, although the VOC temporal profile does show a morning peak
associated with the morning rush hour. This seeming anomaly is the result of two

"' Link-based and non-link-based on-road emissions are merged for the purpose of generating graphics
and emissions tables used for illustration and QA/QC, but these merged files are not themselves used in
making the final CAMx input files. Instead, all anthropogenic components are merged in a single
MRGUAM run for each model day as described in Section 1.2.5
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factors: first, the NOy profile for the 12 km domain (Figure 35) shows a modest
morning peak, while VOC emissions on the smaller grid (not shown) have a more
pronounced peak. Second, the CONUS 36 km domain encompasses all four U.S. time
zones, which smooths out the rush hour peaks when emissions for a single modeled
hour are aggregated. Because the VOC peak is more pronounced, this smoothing effect
does not completely erase its signature. This example illustrates the value of the
emission tile plots as a QA tool in emissions modeling.

Onrroad Mobile EI, MOVES, bl12.14Dec17, Weekday, summer: NO, On-road Mobile EI, MOVES, bl12.14Dec17, Weekday, summer: VOC
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Figure 34: Summer Weekday On-Road NOy (L) and VOC (R) Emissions for CONUS 36
km Domain (U.S. sources only)
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Figure 35: Summer Weekday (L) and Sunday (R) On-Road Emissions of NO on the

Texas 12 km Domain (U.S. sources only)
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Figure 36: Summer Sunday On-Road Emissions of PAR (L) and ETH (R) on the Texas
4 km Domain (U.S. sources only)
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1.2.2 Other low-level anthropogenic emissions

The remaining low-level emissions (excluding biogenic) fall into four broad categories:
1) Low level points consist of stationary sources that are emitted near ground-level and
remain in the first vertical model layer. These include industrial plant fugitive
emissions, small stationary engines, emergency generators, etc. Point source
emissions are written to an EPS3 file by PREPNT, which identifies points to be treated
as low-level. Most Texas low-level points from industrial facilities have source-specific
VOC emission profiles from STARS. 2) Non-road mobile sources include boats, farm
equipment, construction equipment, lawn and garden equipment, etc. Emissions for
these sources are produced by the Texas Non-road (TexN) model for Texas sources and
from the National Mobile Inventory Model ( NMIM)* elsewhere except for two specific
types of sources, locomotives and aircraft landing and takeoffs (often called,
collectively with ships, off-road mobile sources). The former is produced by the Texas
Railroad Emission Model, and the latter by TCEQ contractors and local planning
organizations. Emissions for Texas airports are airport-specific, and are provided by
county for the rest of the country. 3) Area sources include a variety of sources
(primarily VOC) including paints and solvents, service stations, and household natural
gas usage, etc., and are retrieved from the Texas Air Emissions Repository (TexAER). 4)
Oil and gas sources are treated separately because the emissions and spatial allocation
are derived directly from data from the Texas Railroad Commission.

EPS3 again allocates emissions temporally with TMPRL and speciates them with
SPCEMS. The final step in making CAMx-ready low-level files is GRDEM. It properly
allocates emissions spatially to the model grids for run-streams that start as points,
links or commonly, county totals. For example, GRDEM reads the point source
emissions flagged by PREPNT as low-level and places emissions from sources identified
as low-level points into the grid cells containing the respective point locations.
Emissions starting with county totals, like most non-road and area sources, are
assigned to grid cells by GRDEM using surrogate files. As an example, a surrogate like
navigable water within a county is used for distributing boating emissions
proportionally to only grid cells within a county containing lakes and rivers. Message
files and reports are scanned at each processing step for errors, warnings, and
inconsistencies. Prior to being merged into the CAMx-ready low emissions input files,
several sub-categories are pre-merged and examined visually using emission tile plots
similar to those shown earlier. Example plots of several categories are shown in Figure
37: U.S. Oil and Gas Production VOC Emissions on the CONUS 36 km Domain (L) and
Texas Drilling NOX Emissions on the 12 km Domain (R), Figure 38: U.S. Non-Road Mobile
Source NOX Emissions (Excluding Oil and Gas Drilling) on the Texas 12 km Domain (L)
and Airport CO Emissions on the Texas 4 km Domain (R)., and Figure 39: U.S. Off-Road
Mobile Source NOX Emissions (Railroads and Airports) on the Texas 12 km Domain (L)
and Area Source Propane Emissions on the Texas 12 km Domain (R)below.

2 NMIM was used to produce the non-Texas emissions currently in the 2012 platform, but future work will
utilize the newly-available capabilities now available in the MOVES model.
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Figure 37: U.S. Oil and Gas Production VOC Emissions on the CONUS 36 km
Domain (L) and Texas Drilling NOx Emissions on the 12 km Domain (R)
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Figure 38: U.S. Non-Road Mobile Source NOy Emissions (Excluding Oil and Gas
Drilling) on the Texas 12 km Domain (L) and Airport CO Emissions on the Texas 4
km Domain (R).
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Figure 39: U.S. Off-Road Mobile Source NOy Emissions (Railroads and Airports) on
the Texas 12 km Domain (L) and Area Source Propane Emissions on the Texas 12
km Domain (R)

1.2.3 Biogenic Emissions

Biogenic emissions are developed using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) emissions model. The TCEQ selected the MEGAN model because
it is actively used and updated by a broad community and unlike the previously-used
Global Biogenic Emissions Inventory System (GloBEIS), MEGAN runs on Linux. We have
also run EPA’s Biogenic Emissions Inventory System (BEIS) model and have compared
emissions between the two systems. In general, MEGAN tends to over-predict isoprene
emissions while BEIS under-predicts isoprene.

Inputs used include the default plant functional type (PFT) data and emission factors
supplied with the model, leaf area index (LAI) values derived from the Moderate-
Resolution Imaging Spectroradiometer (MODIS) global LAl MCD15A2 product, and
photosynthetically-active radiation (PAR) extracted from the WRF runs. All output and
message files and reports are scanned at each processing step for errors, warnings,
and inconsistencies.

Tile plots are generated for each day, domain, and constituent of the emissions, and
these are examined visually to check for inconsistencies, obvious errors or omissions,
and other visible anomalies in the modeling. Figure 40: Tile Plots of Biogenic Isoprene
Emissions for June 1, 2012: (L) CB6 Emissions Generated Using MEGAN, (R) CB0O5
Emissions Generated Using BEIS; Note different scales on diurnal profile plots
compares emissions of isoprene generated by MEGAN with those generated by BEIS.
While BEIS only outputs CBO5 emissions, isoprene is treated identically by the two
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mechanisms, so the spatial densities are comparable (note that the diurnal profile
plots have different scales, however). The map totals show that for this day MEGAN
generates nearly twice the emissions of isoprene as BEIS, and there are subtle
differences in the shapes of the temporal profiles with BEIS emissions compressed
slightly compared with MEGAN.
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Figure 40: Tile Plots of Biogenic Isoprene Emissions for June 1, 2012: (L)
CB6 Emissions Generated Using MEGAN, (R) CBO5 Emissions Generated
Using BEIS; Note different scales on diurnal profile plots.

1.2.4 Emissions of Halogen Compounds

Halogen chemistry was added to the CB6 chemical mechanism by Ramboll Environ
under contract to the TCEQ in 2014 to address model over-prediction of ozone
advected onshore from the Gulf of Mexico. The CB6 chemical mechanism that includes
this option is named CB6h. Emissions of the various halogen compounds used by this
mechanism are generated by running the SEASALT preprocessor, which takes land use
and WRF-generated meteorology as inputs. Tile plots are generated for each day,
domain, and halogen compound modeled, and these are examined visually to check for
inconsistencies, obvious errors or omissions, and other visible anomalies in the
modeling. Figure 41: August 5, 2012 Emissions of (L) Iodomethane (CH3I) on the 4 km
Domain; and (R) Sea Salt Chloride (SSCL) on the 36 km Domain shows example tile
plots of two halogen species used by the CB6h mechanism displayed on different
domains.

If the halogen chemistry option is used, a second merge combining the halogen

compounds with the merged low-level emissions file described above is generated for
input to CAMx.
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Figure 41: August 5, 2012 Emissions of (L) lodomethane (CH3I) on the 4 km Domain;
and (R) Sea Salt Chloride (SSCL) on the 36 km Domain

1.2.5 Merged Low-Level Emissions

Prior to input to CAMx, low-level emissions are merged into a single CAMx-ready input
file using the MRGUAM processor of EPS3. Like PIGEMS, MRGUAM produces
voluminous reports detailing the merging operation. The TCEQ runs scripts to extract
summaries of the merge that ensure all files are accounted for and merged
successfully. Figure 42: Summary of Merge of Low-Level Emissions files for June 8,
2012 on the 12 km Domain shows a merge of low-level anthropogenic emissions for a
summer (i.e. non-school) Friday for the 12 km domain. To expedite processing,
biogenic emissions, which change daily, are not included in this merge but are added
to the low-level file in a separate, final merge to create day-specific CAMx-ready low-
level emission files. Figure 43: Summary of Merge of Anthropogenic and Biogenic
Emissions for Four Days in May, 2012 shows a sample of the final merge for four days
(Friday through Sunday) in May 2012 when school was in session.
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Figure 42: Summary of Merge of Low-Level Emissions files for June 8, 2012 on the

12 km Domain
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Component Files VOC_in
/ei/final/anthro/tx_12km/lo_ei.anthro.cbép.wkd.tx_12km.b112.r3f_school 0.101E+05
/ei/bio/MEGANV2.10/0utput/2012_wrf361_p2.2012_qgcl08_urbfunc/MEGANV2.10.2012_wrf361_p2.2012_gcl08_urbfunc.2012all.tx_12km.CB6.20120524.camx 0.816E+05

VOC Total (tons/day) 0.917E+05

USERIN file :TMP.userin.cbép.20120525.tx_12km.17jun2015. camx
Output UAM file :/input/tx/ei/bl12/r3f/camx_cbép_ei_ 10.20120525.tx.bl12.r3f.tx 12km

Component Files voc_in
/ei/final/anthro/tx_12km/lo_ei.anthro.cbép.fri.tx_12km.bl12.r3f school 0.102E+05
/ei/bio/MEGANV2.10/0Output/2012 wrf361l_p2.2012 gcl08_urbfunc/MEGANvV2.10.2012 wrf36l p2.2012_gel08_urbfunc.2012all.tx 12km.CB6.20120525.camx 0.825E+05

vVOoT Total (tons/day) 0.926E+05

USERIN file :TMP.userin.cbép.20120526.tx_12km.17jun2015. camx
Output UAM file :/input/tx/ei/bl12/r3f/camx_cbép_ei_lo.20120526.tx.b112.r3f.tx_12km

Component Files VOC_in
/ei/final/anthro/tx_12km/lo_ei.anthro.cbép.sat.tx_12km.bl12.r3f school 9914.8955
/ei/bio/MEGANV2.10/0utput/2012_wrf361_p2.2012_qcl08_urbfunc/MEGANV2.10.2012 wrf361_p2.2012_gcl08_urbfunc.2012all.tx 12km.CB6.20120526.camx 0.841E+05

vVOoC Total (tons/day) 0.940E+05

USERIN file :TMP.userin.cb6p.20120527.tx_12km.17jun2015.camx
Output UAM file :/input/tx/ei/bl12/r3f/camz_cbép_ei_10.20120527.tx.bl12.r3f.tx_12km

Component Files VOoC_in
/ei/final/anthro/tx_12km/lo_ei.anthro.cbép.sun.tx_12km.b112.r3f_ school 9202.6973
/ei/bio/MEGANV2.10/0utput/2012_wrf361_p2.2012_qgcl08_urbfunc/MEGANV2.10.2012_wrf361_p2.2012_gcl08_urbfunc.2012all.tx_12km.CB6.20120527.camx 0.872E+05

VOC Total (tons/day) 0.964E+05

Figure 43: Summary of Merge of Anthropogenic and Biogenic Emissions for Four
Days in May, 2012

CHAPTER 2: METEOROLOGICAL MODELING QA/QC

The WRF modeling system comprises several modules, including the WRF
Preprocessing System (WPS), Real (vertical balancing of variables from pressure to
sigma levels), ndown (nestdown), and various other modules that create inputs for the
WRF model. WRF is executed in a two-way nested configuration commensurate with
the WRF modeling domains.

Application of the WRF modeling system for a given episode requires specification of
initial and boundary conditions, as well as model parameterizations as inputs to the
various modules. Some of the inputs to the modules require pre-processing of raw
meteorologically related data. The initial and boundary conditions are derived from
global scale modeling performed by the National Centers for Environmental Prediction
(NCEP). The NCEP conducts rigorous QA/QC of the global analysis fields before they
are publicly released. The specifications for WRF include the surface parameters such
as soil moisture, a planetary boundary layer (PBL) scheme, and cumulus
parameterizations. Updates and quality assurance of new land use/land cover data and
vegetative parameters have been incorporated with the assistance of National Oceanic
and Atmospheric Administration interactive data language (IDL) scripting.

In addition, the TCEQ is using the four dimensional data assimilation capabilities of
the WRF modeling system to conduct both analysis and observational nudging. The
analysis data are also derived from pre-processing routines. The analysis nudging uses
the NCEP Eta Data Assimilation System (EDAS) reanalysis wind fields on the 108, 36
and 12 km domains. The NCEP also conducts rigorous QA/QC on the EDAS reanalysis
wind fields prior to public release. The TCEQ has built the observational nudging files
from radar profiler wind data on the 4 km domain using a combination of SAS
programs and Perl scripts. The output from the radar profiler pre-processing routine is
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graphically inspected to ensure the wind data are reasonable. Desirable features
include:

e Realistic vertical profiles of wind speed and wind direction; and
e Realistic diurnal pattern in the change of wind speed and wind direction.

Running the WRF modeling system requires verification through the namelist.input file
that switches and options have been correctly selected. In addition, the surface
characteristic parameters, e.g., soil moisture, are graphically inspected after running
WPS, Real, and ndown to ensure they continue to be reasonable. To document quality
assurance activities, a log file is created for the processing sequence of each of the pre-
processors and WRF modeling system modules. This log file contains the name and
location of the input and output files, the date the files were processed, and a brief
description of the processing results. A sample of the log file for a WRF run is shown
in Figure 44: Sample Log File for a TCEQ WRF Run for June 2012.

Meteorological Modeling Log Viewer

Updated on November 24, 2015
Select another log record

Run Name: 201206.wrf361.i2.87.28lyr
Log Entry and Quality Control (Log ID: 416)
Run Staff Khalid Al-Wali Run Date May 30, 2015
QA Staff Khalid Al-Wali QA Date June 2, 2015
Run Information
Project Name HGBEMCR Episode June 1 - 30, 2012
Model WRF 3.6.1 Domains 4km
Description and Note
Compilation File configure.wrf [ view ]
Model Setup File C:hfakepathinamelist.input.RPO.2012-season.ndown-3.pxa. VSU.WSM6. 3dsfcC.cyclone.gq_sfc_0.2012.05.31.0 [ view ]

This scenario includes 87 vertical levels in WRF instead of the standard 44 levels,
Meteorological data used - NCEP NAM 40KM (grid 212)

No cumulus convective scheme

Madis Obs Nudging profiler data

o 3D analysis nudging and hrly surface analysis nudging
er
YSU scheme PBL (boundary-layer)

Monin-Obukhov scheme (surface-layer)

Pleim-Xiu Land Surface Model - soil moisture initialized from Analysis (land-surface)

sf_urban_physics set to 1 (which does not impact model output if tuned on or off). Ideally used with Noah LSM.
WRF with 87 levels CAMx with default 28

Select another log record

Figure 44: Sample Log File for a TCEQ WRF Run for June 2012

The raw WRF output is used to generate a set of time series and scatter plots that are
primarily used to assess the model’s performance, but examination of these plots can
also reveal potential errors or inconsistencies in the model formulation. Figure 45:
Time-Series Plots of Wind Speed and Direction, Temperature, and Absolute Humidity
Averaged across All Sites in the DFW Nonattainment Area for June 2012; Each panel
shows (top) observed and modeled values, (center) model bias, and (bottom) absolute
error shows June 2012 hourly meteorological predictions, observations, and deviations
averaged across the DFW area for a WRF run, and Figure 46: Scatter Plots of Modeled vs.
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Observed (upper left) Wind Speed; (upper right) Wind Direction; (lower left)
Temperature; and (lower right) Absolute Humidity; Day (red) and night (blue) values
are color-coded, and error rates for specified thresholds are provided for each plot
Figure 46: Scatter Plots of Modeled vs. Observed (upper left) Wind Speed; (upper right)
Wind Direction; (lower left) Temperature; and (lower right) Absolute Humidity; Day
(red) and night (blue) values are color-coded, and error rates for specified thresholds
are provided for each plotshows a set of scatter plots comparing modeled and
observed values of the same parameters, this time showing every hour in June 2012
for a single site, Houston Aldine (CAMS 8).
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Figure 45: Time-Series Plots of Wind Speed and Direction, Temperature, and
Absolute Humidity Averaged across All Sites in the DFW Nonattainment Area for
June 2012; Each panel shows (top) observed and modeled values, (center) model bias,
and (bottom) absolute error
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Figure 46: Scatter Plots of Modeled vs. Observed (upper left) Wind Speed; (upper
right) Wind Direction; (lower left) Temperature; and (lower right) Absolute Humidity;
Day (red) and night (blue) values are color-coded, and error rates for specified
thresholds are provided for each plot
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After the WRF modeling has been completed, the output must be converted to a format
that can be read by CAMx. This is accomplished by applying the WRFCAMx
preprocessor to the raw WRF output. A large number of graphics displaying the
WRFCAMx output is produced for each run, and these are used to both ensure
successful completion of the process and to evaluate performance of the processed
meteorological data to be input to CAMx. Three of the available time series are shown
in Figure 47: Selected Time Series for WRFCAMXx Output at the Hinton Street Monitor:
(top) Observed and Modeled 10 m Wind Vectors; (middle) Observed and Modeled 2 m
Temperature; and (bottom) Modeled Vertical Diffusivity (KV) and Planetary Boundary
Layer (PBL) Depth (no observed PBL depth is available for this site) for the Hinton
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Street site; in addition to 10 m wind vectors, 2 m temperatures, and vertical diffusivity
(K,) with planetary boundary layer (PBL) depth (shown), time series plots are also
created automatically for 17 m winds and temperatures (center of first model layer),
skin temperature, and layer 1 absolute humidity. Hourly wind maps are produced (see
example plot in Figure 48: Sample Wind Vector Plot for 4 km Domain, 03:00 CST, June
2, 2012), providing a visual representation of layer 1 modeled wind fields overlaid with
observations.
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Figure 47: Selected Time Series for WRFCAMx Output at the Hinton Street Monitor:
(top) Observed and Modeled 10 m Wind Vectors; (middle) Observed and Modeled 2
m Temperature; and (bottom) Modeled Vertical Diffusivity (K,) and Planetary
Boundary Layer (PBL) Depth (no observed PBL depth is available for this site)
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Layer 1 Horizontal Wind
WRFCANX 2012_wrf361_i3d.tx_4km.v42
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igure 48: Sample Wind Vector Plot for 4 km Domain, 03:00 CST, June 2, 2012
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CHAPTER 3: INITIAL AND BOUNDARY CONDITIONS

Initial conditions (concentration data at the beginning of the simulation) and boundary
conditions (time-varying concentrations alongside the outermost grid cells of the 36
km domain and (optionally) the top of the modeling domain) are generated by global
models developed by contractors and provided to the TCEQ. The TCEQ receives global
model output from the Goddard Earth Observing System model with Chemistry (GEOS-
Chem) from the contractor, and the initial and boundary conditions are extracted using
software supplied by the contractor. This process involves mapping the chemical
species from the global model to CB6 and mapping the large global model grid cells
onto the CAMx 36 km domain. The extraction runs are monitored to ensure successful
completion and to check for any errors or warnings, and graphical displays are
produced to allow visible inspection of the CAMx inputs as described below.

Initial conditions are extracted for the first hour of the CAMx simulation only. Figure
49: Initial Concentrations of Ozone (L) and Olefins (R) at 0:00 on May 16, 2012 shows
initial concentrations of ozone and the CB6 OLE (olefins) extracted for CAMx runs
starting at 0:00 on May 16, 2012. The coarse grid cells of the global model are easily
seen in the picture. Figure 50: CAMx Lateral Boundary Conditions for June 23, 2013,
0:00 to 3:00 shows an example plot of lateral boundary conditions for 0:00 to 3:00 on
June 23, 2012. Concentrations are represented by “curtain” plots showing the values
for each vertical layer along the domain wall for the three-hour period (GEOS-Chem
output was provided in three-hour intervals).
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Figure 49: Initial Concentrations of Ozone (L) and Olefins (R) at 0:00 on May 16,
2012
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Figure 50: CAMx Lateral Boundary Conditions for June 23, 2013, 0:00 to 3:00
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CHAPTER 4: OTHER CAMXx INPUT FILES

Besides emissions and meteorological inputs, CAMx requires the following inputs:

Chemistry Parameters - The chemistry parameter files are supplied with CAMx
and are specific to the chemical mechanism used; the appropriate file for the
mechanism used (CB6) is specified in the run script. It is not edited and no QA
is required (CAMx will terminate if this file is not specified).

Ozone Column - An ozone column file must be created for each day modeled,
but this file can be built once and then used for subsequent runs unless the grid
definition (including vertical layer structure) is modified. This file is created
from archived satellite 0zone measurements using a utility supplied with CAMx
called O3MAP. Because this process is essentially automatic except for
supplying the grid definition, QA of these files is accomplished simply by
verifying successful completion of O3MAP and subsequent processing with
CAMx.

Photolysis Rates - Like the Ozone column file, the photolysis rate files are
generated by a program (TUV) developed and supplied by the National Center
for Atmospheric Research (NCAR) and requires only minimal user input,
specifically the output from the O3MAP program. As is the case with O3MAP,
QA of these files is accomplished simply by verifying successful completion of
O3MAP and subsequent processing with CAMX.

Landuse File - The Landuse file contains information on land surface
characteristics that are important to atmospheric physicochemical processes
such as surface reflectance (albedo) and deposition of atmospheric constituents
like ozone. Land cover data are assigned to one of 26 classes used by the Zhang
dry deposition scheme, although not all classes are used in the current
application. In addition to the Zhang parameters, the landuse file contains the
Leaf Area Index, a satellite product related to the density of foliage that is
important in estimating dry deposition to foliage, and also an optional elevation
file.

As these data are assembled into a single file, QA is accomplished through
checking each process for errors. After the landuse file has been successfully
assembled, additional QA is accomplished by examining graphical displays of
the various components on each domain, as illustrated in Figure 51: Three
Components of the CAMx Landuse File: (Top) Zhang Landuse Category 7,
Deciduous Broadleaf Trees on the 4 km Domain; (Center) July 2012 Leaf Area
Index on the 12 km Domain, and (Bottom) Surface Elevation on the 36 km
Domain.
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Land Cover Category:
a 01 - Water
Land Cover Fraction 02-Ice
03 - Inland Lake
07 Deciduous Broadleaf Trees 04 - Evergreen Needleleaf Trees
tceq2zhang26a 05 - Evergreen Broadleaf Trees
100 218 06 - Deciduous Needleleaf Trees
4 07 - Deciduous Broadleaf Trees
0.90 - 08 - Tropical Broadleaf Trees
® 09 - Drought Deciduous Trees
0.80 : 2 10 - Evergreen Broadleaf Shrubs
< 11 - Deciduous Shrubs
0.70 R 12 - Thom Shrubs
fifa=e 13 - Short Grass and Forbs
0.60 o 14 - Long Grass
-y 15 - Crops
930 . 16 - Rice
0.90 e D 17 - Sugar ¥

0.30 3 = CAMx Domain:
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0.10 Sl 1po_36km
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0.00 3 4 txdkm (S02)
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Min=0.00 at (1,1), Max=0.98 at (11,10) TCEQ-TAMU/NLCD/BELD3

v

Monthly Average LAI:
2006 June (0. 1degree TIFF)
Leaf Area Index (2012 July) 2006 July (0. 1degree TIFF)
2006 August (0. 1degree TIFF)

cell mean values 2006 September (0. 1degree TIFF)

tx_12km domain 2006 October (0. 1degree TIFF)
- 2006 April (1km qc 108 func-urban)
2006 May (1km gc 108 func-urban)
2006 June (1km qe 108 func-urban)
2006 July (1km q¢ 108 func-urban)
2006 August (1km qc 108 func-urban)
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CAMx Domain:

tx_dkm
December 31,1999 0:00:00 tx_12km
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CAMx Domain:
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Topographic Elevation b 12km
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Min= 0 at(1,1), Max= 3516 at (51,53)

Figure 51: Three Components of the CAMx Landuse File: (Top) Zhang Landuse
Category 7, Deciduous Broadleaf Trees on the 4 km Domain; (Center) July 2012 Leaf
Area Index on the 12 km Domain, and (Bottom) Surface Elevation on the 36 km
Domain

CHAPTER 5: CAMx EXECUTION

The TCEQ performs many simulations to test model performance, include revised
inputs, and evaluate alternative model configurations. Each run is cataloged and a
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detailed log entry describing the inputs and options chosen for that run is created.
Figure 52: Sample CAMx Run Log shows a log entry from a recent CAMx run. At the
bottom of the log entry is an option to view the job control file which defines the input
files and specifies execution options. Job control files are kept in order to verify
exactly what inputs and parameters went into the run.

Each run is checked for successful completion. Occasionally a run will halt due to
network problems, power failures, or for reasons that are not entirely clear. CAMx
maintains a restart file, which can be used to initialize the model at the end of the last
successfully completed day. This feature is especially valuable for model runs of
several episode weeks or longer.

As each day completes a number of output files are generated. When the entire run
completes, these output files are read into a series of graphical and statistical analysis
routines which are used to assess model performance and compare one run with
another. Each run is analyzed, and any anomalies are noted. This serves as the final
QA/QC step for each model run.

AT2-27



Air Quality Modeling Log Viewer

Updated on 2016-01-21

Select another log record

Run Staff
QC Staff

Project/Episode
AQ Model
Run Name

Elevated EI
Low-level EI

Meteorology

Biogenic EI

Log Entry and Quality Control (Log ID: 1760)

Jim MacKay Date MNovember 20, 2015
Weining Zhao Date MNovember 22, 2015

Run Information
TH: June 1 - 30, 2012
CAMx 6.25 CB&rZh
bcl12_1Zjun.rid_ss.2012_wrfi61_pla_iZ_d
bc12.r3d2
bl12.r3d_ss32
Model Performance Evaluation (MPE) Check List

Description and MNote

WRF v3.6.1 - 2012_wrf361_p2 (pxa.YSU.KF.WSM5) for us_36km and tx_12km domains:
pxa = Pleim-Xiu Land Surface Model (soil moisture initalized from analysis)

¥SU = YSU PBL scheme

KF = Kain-Fritsch cumulus

WSM5 = WSM5 microphysics

3D-analysis nudging

WRF v3.6.1 - 20020_wrf361_i2 (pxa.YSU. W5Mé6.3dsfcTh.fdda.egsfcl) for tx_dkm domain
pxa = Pleim-Xiu Land Surface Model (soil moisture initalized from analysis)

¥SU = ¥SU PBL scheme

WSME = WS5M6 microphysics

3dsfclh = hourly 3D and surface analysis nudging

fdda = profiler data FDDA

sf_urban_physicas set to 1

WRF2CAMx vd.2

CMAQ Kv and 100m Kv Patch (kv100) for all domains (_b)

29 vertical layers with one extra top layer (WRF sigma level 41) added to the current standard layers (_d)
subgrid cloud diagnostic option with stratiform option for rpo_36km and tx_12km domains (p2a)

MEGAM 2012_wirf361_p2.2012_qc108_urbfunc (Bwifl):

- MEGAN ~2.10

- land cover: Guenther 2008 30 second data

- temperature: WRF output from 2012_wirf361_p2 (12/36km) and 20012_wirf361_i2 (dkm)

- PAR: WRF output through MCIP with 0.45 adjustment factor

- LAl: B-day MODIS 2006 LAl data with urban cells filled according to five TCEQ urban land cover classes using a weighted
function. Max LAl values during the year (~week 17) for Developed Open Areas=3.3, Developed Low Intensity=2.3, Developed

Medium ntensity=1.3, Developed High Intensity=0.3; Other vegetated=3.3;

Figure 24: Sample CAMx Run Log (continued on next page)
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reglg AFS listing:
be12jun.reg2eg Point Source Emissions in tons/day

regZh AFS listing:
bc12jun.regZh Point Source Emissions in tons/day
- elevated fires from FINN

regli AFS listing:
bc12jun.regi Point Source Emissions in tons/day

regd: More EGU ramp-up days added fro 15-28May2012.
bc12junregd Point Source Emissions in tons/day

regda: minor update of Gulf sources (June 2011); PM emissions

; be12jun.reglda Point Source Emissions in tons/day
Paint

Source El 3. _ Mexico 2012 based on EPA 2011 Platform v2; Idaho EGUs FIPS fixed

bc12.r3c Point Source Emissions in tons/day

- Texas and US hourly AMPD (EGU) emissions for 2012; Idaho FIPS fixed.

- Texas Ozone Season Day (05D) from STARS 2012_wdb.

- U5 05D (except TX) from 2011 NEI/EPA Modeling Platform annual emissions.

- Offshare platforms monthly emissions from June 2011 GWEL

- Mexico 2012 interpolation from EPA 2011 Platform w2 with 2008 EI.

- Canada 2006 annual Mational Pollutant Release Inventory (MPRI) and Upsteam Qil and Gas {UDG) inventories

from Emvironment Canada.

r3d - fire and ship elevated El using new EPS3 with plume rise distribution override; PiG selection based on 2012 June to

Sept (vs just June)

r3d2 - PiGEMS fixes: collocated PiG exit velocity and flow rate bugs

regZi:

Area/Non-Road fires - elevated wild and agriculture fires

Mobile El

regd: PM emissions
ric:
r3d: updated Mexico El
regd: MOVES2014
On-Road PM emissions
Mobile EI ric:
r3d: updated Mexico El

CAMx 6.25 (6.20 speedup), CB6 rZh {(halogen chemistry)
CBé BC/IC for rpo_36km from Environ's GEOS-CHEM (geos2camx v2.2), no TC
LAl: monthly average of 8-day 1km resclution MODIS LAl data

ACMZ vertical diffusion = false (use K-theory)
Others \
55 = sea salt emissions (seasalt v3.2)

ramp-up days: 20120516-20120530 (rpo_3&km only), 20060531 (all three domains)
3D outputs for tx_4km domain
MP1/OPM configuration: 7 MPI nodes and 8 OMP threads per node

Job Control File [ view ]
Select another log record

Figure 52: Sample CAMx Run Log

CHAPTER 6: GEO-REFERENCED INTERACTIVE MODEL RESULTS EVALUATION AND
ANALYSIS PROGRAM (GRIMREAPR)

The GRIMREAPTr is a set of analysis tools developed by TCEQ staff to evaluate model
results and assess model performance in a geographical frame of reference. In
addition to the standard time-series, scatter plots, model performance statistics, etc.
that are produced for each model run, the GRIMREAPr provides an interactive
visualization environment which allows modelers to view static or animated
concentration data for every CB6 species. The view can be zoomed in or out using the
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cursor controls and can display differences between model runs and bias at
monitoring sites, and displays time series of observed and modeled concentrations on
command. GRIMREAPr also provides the capability to overlay the model run with
satellite cloud imagery, radar imagery, and HySPLIT back or forward trajectories at
user-selected sites. GRIMREAPr is a very powerful tool for analyzing model output and
identifying possible errors or deficiencies in the model formulation. A more detailed
description of GRIMREAPr with examples is available here.
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