Question D: What distribution of anthropogenic and biogenic emissions of ozone and aerosol precursors can be inferred from observations?

Mobile emission CO/NO\textsubscript{x} ratio evolution in Texas and implications for emission inventories

This Presentation:

• Investigate CO/NO\textsubscript{x} ratio in routine monitoring data: Texas vs. other U.S. locations

• Compare to emission inventories

• Suggest needed improvements to inventories
Temporal trends in CO to NO\textsubscript{x} ratios in U.S. urban areas

CO/NO\textsubscript{x} emission ratio in on-road mobile emissions have decreased dramatically.

<table>
<thead>
<tr>
<th>Location</th>
<th>Trend</th>
<th>Ratio in 2000</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles</td>
<td>-5.5 ± 0.4</td>
<td>9.4 ± 0.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Boulder</td>
<td>-6.7 ± 0.5</td>
<td>9.0 ± 1.2</td>
<td>0.94</td>
</tr>
<tr>
<td>Nashville</td>
<td>-8.8 ± 1.0</td>
<td>5.7 ± 0.4</td>
<td>0.96</td>
</tr>
<tr>
<td>Atlanta</td>
<td>----</td>
<td>6.5 ± 0.4</td>
<td>----</td>
</tr>
<tr>
<td>AIRS</td>
<td>-6.6 ± 0.3</td>
<td>7.9 ± 0.1</td>
<td>0.97</td>
</tr>
</tbody>
</table>

VOC/NO\textsubscript{x} emission ratio has decreased similarly

CO/NO\textsubscript{x} emission ratio in on-road mobile emissions have decreased dramatically.

VOC/NO\textsubscript{x} emission ratio has decreased similarly

MOBILE6 CO/NO\textsubscript{x} emission ratios have not decreased fast enough and are too high now.

<table>
<thead>
<tr>
<th>Location</th>
<th>Trend %/yr</th>
<th>Ratio in 2000</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles</td>
<td>-5.5 ± 0.4</td>
<td>9.4 ± 0.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Boulder</td>
<td>-6.7 ± 0.5</td>
<td>9.0 ± 1.2</td>
<td>0.94</td>
</tr>
<tr>
<td>Nashville</td>
<td>-8.8 ± 1.0</td>
<td>5.7 ± 0.4</td>
<td>0.96</td>
</tr>
<tr>
<td>Atlanta</td>
<td>----</td>
<td>6.5 ± 0.4</td>
<td>----</td>
</tr>
<tr>
<td>AIRS</td>
<td>-6.6 ± 0.3</td>
<td>7.9 ± 0.1</td>
<td>0.97</td>
</tr>
</tbody>
</table>

What about Texas?

CO to NO_x Molar Ratio

Morning rush hour data
Urban sites

NEI 1999

Expanded axes, AIRS data as reference
What about Texas?

CO/NO$_x$ emission ratio in on-road mobile emissions have decreased dramatically.

<table>
<thead>
<tr>
<th>Location</th>
<th>Trend %/yr</th>
<th>Ratio in 2000</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Paso</td>
<td>-6.9 ± 1.7</td>
<td>12.4 ± 0.7</td>
<td>0.94</td>
</tr>
<tr>
<td>San Antonio</td>
<td>-5.8 ± 1.5</td>
<td>9.1 ± 0.5</td>
<td>0.94</td>
</tr>
<tr>
<td>Houston</td>
<td>-4.9 ± 2.5</td>
<td>7.8 ± 0.7</td>
<td>0.76</td>
</tr>
<tr>
<td>Dallas</td>
<td>-5.8 ± 2.2</td>
<td>7.3 ± 0.6</td>
<td>0.86</td>
</tr>
<tr>
<td>AIRS</td>
<td>-6.6 ± 0.3</td>
<td>7.9 ± 0.1</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Morning rush hour data
Urban sites

Expanded axes, AIRS data as reference
CO/NO\textsubscript{x} emission ratio in on-road mobile emissions have decreased dramatically.

<table>
<thead>
<tr>
<th>Location</th>
<th>Trend %/yr</th>
<th>Ratio in 2000</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Paso</td>
<td>-6.9 ± 1.7</td>
<td>12.4 ± 0.7</td>
<td>0.94</td>
</tr>
<tr>
<td>San Antonio</td>
<td>-5.8 ± 1.5</td>
<td>9.1 ± 0.5</td>
<td>0.94</td>
</tr>
<tr>
<td>Houston</td>
<td>-4.9 ± 2.5</td>
<td>7.8 ± 0.7</td>
<td>0.76</td>
</tr>
<tr>
<td>Dallas</td>
<td>-5.8 ± 2.2</td>
<td>7.3 ± 0.6</td>
<td>0.86</td>
</tr>
<tr>
<td>AIRS</td>
<td>-6.6 ± 0.3</td>
<td>7.9 ± 0.1</td>
<td>0.97</td>
</tr>
</tbody>
</table>

NEI 1999 emission ratios estimates are too high and are worse now than in 2000

VOC/NO\textsubscript{x} emission ratio has decreased similarly - likely not reflected in inventories

What about Texas?

Morning rush hour data
Urban sites
What drives the CO/NOx decrease?

Ambient urban CO levels have decreased: 4.6%/yr, but less rapidly than CO/NO\textsubscript{x} emission ratio: 6.6%/yr

NO\textsubscript{x} emissions must have increased!

What drives the CO/NOx decrease?

Ambient urban CO levels have decreased: 4.6%/yr, but less rapidly than CO/NO\textsubscript{x} emission ratio: 6.6%/yr

NOx emissions must have increased! Not captured by MOBILE6

MOBILE6 CO emissions about factor of 2 high, although rate of decrease well fit.

MOBILE6 VOC emissions have rate of decrease similar to CO, and are much more accurate

SIP Relevant Findings

Question D: What distribution of anthropogenic and biogenic emissions of ozone and aerosol precursors can be inferred from observations?

On-road Vehicle Emissions: Temporal trends from ambient measurements.

MOBILE6 has significant shortcomings as well as strengths:

- 1994 VOC emissions were accurate while CO emissions were overestimated by about a factor of two.
- Temporal trends of CO and VOC emissions are similar and accurate.
- NO$_x$ emissions increased, not decreased, through the 1990’s. For 2006, NO$_x$ emissions may be significantly underestimated.

Mobile emissions dominate ozone precursors in many urban areas. The VOC/NO$_x$ emission ratio varies significantly over years, and may be significantly overestimated by MOBILE6 in recent years.
Low ratio likely reflects large contribution from diesel engines in Barbour’s Cut area
Low ratio likely reflects large contribution from diesel engines in Barbour’s Cut area.
What about Texas?

CO/NO$_x$ emission ratio in on-road mobile emissions have decreased dramatically.

<table>
<thead>
<tr>
<th>Location</th>
<th>Trend</th>
<th>Ratio in 2000</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Paso</td>
<td>-6.9 ± 1.7</td>
<td>12.4 ± 0.7</td>
<td>0.94</td>
</tr>
<tr>
<td>San Antonio</td>
<td>-5.8 ± 1.5</td>
<td>9.1 ± 0.5</td>
<td>0.94</td>
</tr>
<tr>
<td>Houston</td>
<td>-4.9 ± 2.5</td>
<td>7.8 ± 0.7</td>
<td>0.76</td>
</tr>
<tr>
<td>Dallas</td>
<td>-5.8 ± 2.2</td>
<td>7.3 ± 0.6</td>
<td>0.86</td>
</tr>
<tr>
<td>AIRS</td>
<td>-6.6 ± 0.3</td>
<td>7.9 ± 0.1</td>
<td>0.97</td>
</tr>
</tbody>
</table>

NEI 1999 emission ratios estimates are too high and are worse now than in 2000.
What about Texas?

CO/NO\textsubscript{x} emission ratio in on-road mobile emissions have decreased dramatically.

<table>
<thead>
<tr>
<th>Location</th>
<th>Trend %/yr</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Paso</td>
<td>-7.0 ± 0.9</td>
<td>0.98</td>
</tr>
<tr>
<td>San Antonio</td>
<td>-5.8 ± 1.5</td>
<td>0.94</td>
</tr>
<tr>
<td>Houston</td>
<td>-8.7 ± 2.5</td>
<td>0.89</td>
</tr>
<tr>
<td>AIRS</td>
<td>-6.6 ± 0.3</td>
<td>0.97</td>
</tr>
</tbody>
</table>

NEI 1999 emission ratios estimates are too high and are worse now than in 2000.

Expanded axes, AIRS data as reference
Compare with Fuel-based Inventory

Fuel-based emissions agree with ambient CO/NO$_x$

MOBILE 5B emissions vs. Fuel-based in 1995:
- VOC agree well.
- NO$_x$ agree well, but not partitioning
- CO \approx 40% high

MOBILE 6 emissions would degrade CO comparison

(Harley et al., *J. Geophys. Res.*, 106, 3559-3567, 2001)