Company Name: Johnson Gas Company
Site Name: Creek Compressor Station
TCEQ Air Account Number: HG6789X
RN: RN123456789

ABATEMENT DEVICE INFORMATION

<table>
<thead>
<tr>
<th>CIN:</th>
<th>FLARE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Device Name:</td>
<td>S-Series Flare</td>
</tr>
<tr>
<td>CIN Effective Date:</td>
<td>1/1/05</td>
</tr>
</tbody>
</table>

Primary Abatement Device: Yes

Abatement Code: 511

Number of Units: 1

Annual Operation: 8760 hours

Percent Time Offline: 31%

Inspection and Maintenance Schedule (Select one)

- Annually
- Biannually
- Continuously
- Daily
- Hourly
- Monthly
- Quarterly
- Weekly
- Other
- None

CONTROL EFFICIENCY

- Volatile Organic Compounds: 98%
- Nitrogen Oxides: ___%
- Carbon Monoxide: ___%
- Sulfur Dioxide: ___%
- Inorganic Compounds: ___%
- Particulate Matter (PM): ___%
- PM10: ___%
- C1-C3 compounds: 99%
- C4+ Compounds: 98%
- Hydrogen Sulfide (H2S): 97%
- Ammonia (NH3): ___%

PATH(S) ABATED BY THIS DEVICE

<table>
<thead>
<tr>
<th>FIN</th>
<th>EPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANK1</td>
<td>FLARE1</td>
</tr>
<tr>
<td>TANK2</td>
<td>FLARE1</td>
</tr>
<tr>
<td>TANK3</td>
<td>FLARE1</td>
</tr>
<tr>
<td>AMINE</td>
<td>FLARE1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTRUCTIONS: Abatement Device Information Form

Complete the Abatement Device Information form to add a control device to the emissions inventory. The form requests information necessary for quality assurance purposes.

1. **Company Name:** The official name of the company responsible for submitting the emissions inventory.

2. **Site Name:** The name of the regulated entity.

3. **TCEQ Air Account Number:** The account number as assigned by the TCEQ. If an account number has not been previously assigned, the EAS will assign an air account number based on the location of the regulated entity.

4. **Regulated Entity Reference Number (RN):** The number that Central Registry assigns to a location where a TCEQ-regulated activity occurs. If an RN has not already been assigned, complete a Core Data Form and submit it to Central Registry. Submit a copy of the form with the inventory.

5. **Control Identification Number (CIN):** A unique label that identifies the abatement device. The CIN is limited to 10 alphanumeric characters. **Example:** FLARE1

6. **Control Device Name:** Label the CIN with a plain text name. The control device name is limited to 40 alphanumeric characters. **Example:** S-SERIES FLARE

7. **CIN Effective Date:** Indicate the date that the abatement device became operational.

8. **Primary Abatement Device:** For paths with multiple abatement devices, designate whether the device is the primary abatement device. **Primary abatement device** is defined as the first control device (in sequence) for a specific source. Mark only one box.

9. **Abatement Code:** Choose the numeric code that identifies specific abatement devices. A list of abatement codes can be found in a zipped file under the “Electronic Emissions Inventory File Specifications Reference Tables (zip)” link, located at the EAS Web page, <www.tceq.texas.gov/goto/ieas>.

10. **Number of Units:** Specify the number of individual devices grouped together under this CIN. **Example:** If a series of five filters is represented by CIN: FILTER, enter “5.”

11. **Annual Operation:** The device’s total annual operating hours. Use a whole number from 0 to 8,760.

12. **Percent Time Offline (PTO):** Calculate the ratio of the device’s downtime to the annual operating time. Use a maximum of two decimal places.

\[
PTO = \frac{\text{Hours Offline}}{\text{Annual Operating Hours}} \times 100
\]
Example: FLARE1 operated on an emergency basis for a total of 1200 hours during the year. The flare was offline for 288 hours and malfunctioned for an additional 83 hours. The PTO for FLARE1 is:

\[
PTO = \frac{288 + 83}{1200} \times 100 = 30.92
\]

13. Inspection and Maintenance Schedule: Pick the device’s inspection schedule. Mark only one box.

14. Control Efficiency: List the contaminants that are abated by the control device. Mark all that apply. Indicate the control efficiency claimed for each contaminant. Use a maximum of two decimal places.

Example: Per its permit, a flare reduces C1–C3 compounds by 99 percent, and all compounds containing four or more carbons by 98 percent. Its overall destruction efficiency for VOC compounds is 98 percent. It also converts 97 percent of hydrogen sulfide to sulfur dioxide. This example is illustrated on the sample form as CIN: FLARE1.

15. Path(s) Abated by This Device: Indicate each FIN/EPN path that is controlled by this device. At least one path should be shown.