

Area Designations for the 2012 Annual Fine Particulate Matter (PM_{2.5}) Standard

Texas Commission on Environmental Quality Office of Air

Houston Area Public Information Meeting July 22, 2013

- Revised PM_{2.5} National Ambient Air Quality Standard (NAAQS)
- 2010 through 2012 PM_{2.5} Design Values
- Exceptional Events
- Local PM Reduction Efforts
- Designations Process and Timeline
- TCEQ Commissioners' Agenda

- Final rule promulgated on December 14, 2012
- Previous NAAQS
 - Primary and Secondary Annual: 15.0 micrograms per cubic meter (µg/m³)
 - Primary and Secondary 24-Hour: 35 $\mu g/m^3$
- Revised NAAQS
 - Primary Annual: 12.0 µg/m³
 - Secondary Annual: 15.0 µg/m³ (retain previous NAAQS)
 - Primary and Secondary 24-Hour: 35 µg/m³ (retain previous NAAQS)

- Design values are calculated for each monitor in an area.
- The monitor with the highest design value will set the area design value.
- Annual PM_{2.5} NAAQS Design Value Calculation:
 - 1. Average the 24-hour $PM_{2.5}$ values from each quarter within a year.
 - 2. Average the quarterly averages to obtain a yearly average.
 - 3. Average the yearly average from three consecutive years to obtain the design value.

- 24-Hour PM_{2.5} NAAQS Design Value Calculation:
 - 1. Find the 98th percentile of 24-hour $PM_{2.5}$ values from each year.
 - 2. Average the 98th percentile values from three consecutive years to obtain the design value.
- Data must meet the EPA's data completeness and certification requirements to represent a design value that is comparable to the NAAQS. <u>http://www.gpo.gov/fdsys/pkg/FR-2013-01-</u> <u>15/pdf/2012-30946.pdf</u>

Calculating Annual PM_{2.5} Design Values: An Example

- All numbers in $\mu g/m^3$:
 - A monitor has 30, 24-hour average, PM_{2.5} samples for each quarter of 2012, the average of quarter one would be:

$$\frac{(30+24+10+15+12+14+21+\cdots)}{30} = 12.96$$

Take the average from each quarter and average those together to get the 2012 average:

$$\frac{(12.96 + 11.08 + 12.07 + 10.96)}{4} = 11.7675$$

 Take the yearly average from 2012, 2011, and 2010 to get the 2012 design value:

$$\frac{(12.0496 + 10.8945 + 11.7675)}{3} = 11.5706$$

Round to one decimal place (0.05 rounds up and 0.049 rounds down)

2012 Annual $PM_{2.5}$ Design Value = 11.6

Calculating 24-Hour PM_{2.5} Design Values: An Example

- All numbers in $\mu g/m^3$:
 - Rank all 24-hour PM_{2.5} averages for each year from highest to lowest:

2010 (100 Values)	2010 Rank	2011 (110 Values)	2011 Rank	2012 (104 Values)	2012 Rank
24	1	10	1	15	1
28	2	20	2	18	2
:	:	:	÷	:	÷
44	98	35	108	26	102
48	99	38	109	28	103
50	100	40	110	30	104

 Find the 98th percentile by multiplying the number of values from each year by 0.98 and adding 1 to the integer of the result.

For 2012: $104 \times 0.98 = 101.92$ 101 + 1 = 102

Calculating 24-Hour PM_{2.5} Design Values: An Example

Find the value from each year that corresponds to each rank:

2010 Rank 99 = 48 2011 Rank 108 = 35

2012 Rank 102 = 26

- Average the three years together to get the design value:

$$\frac{(48+35+26)}{3} = 36.333$$

Round to the nearest 1 (0.5 rounds up and 0.49 rounds down)

2012 24-Hour $PM_{2.5}$ Design Value = 36

2012 PM_{2.5} Design Values (DV)

CBSA	County	Number of 2012 FRM* Monitors	Annual Design Value µg/m ³ (Standard: 12.0 µg/m ³)	24-Hour Design Value µg/m ³ (Standard: 35 µg/m ³)	Monitors with Annual Design Value Above 12.0 µg/m ³
Austin-Round Rock	Travis	2	10.2	21	0
Corpus Christi	Nueces	2	10.4	30	0
Dallas-Fort Worth-Arlington	Dallas	2	10.8	21	0
Dallas-Fort Worth-Arlington	Ellis	1	10.0	21	0
Dallas-Fort Worth-Arlington	Tarrant	2	10.7	22	0
El Paso	El Paso	2	10.8	30	0
Houston-The Woodlands- Sugar Land	Harris	3	12.1**	24	1**
McAllen-Edinburg-Mission	Hidalgo	1	10.3	23	0
San Antonio-New Braunfels	Bexar	2	9.0	23	0
Texarkana	Bowie	1	11.1	21	0
Marshall	Harrison	1	10.9	22	0

* FRM: Federal Reference Method

** Includes exceptional events such as Saharan dust events and smoke from Central American agricultural burning

Annual PM_{2.5} Design Values in the HGB Area Including Exceptional Events

Annual PM_{2.5} Design Values in the HGB Area Excluding Exceptional Events

Annual Average PM_{2.5} in the HGB Area Including Exceptional Events

Annual Average PM_{2.5} in the HGB Area Excluding Exceptional Events

Preliminary 2013 Annual PM_{2.5} Averages at Clinton Including Exceptional Events

	2010	2011	2012	2013*
Quarter 1 Average (µg/m ³)	11.9	12.1	10.7	10.1
Quarter 2 Average (µg/m ³)	12.5	13.8	12.7	
Quarter 3 Average (µg/m ³)	13.3	12.7	12.9	
Quarter 4 Average (µg/m ³)	11.4	10.2	11.0	
Annual Average (µg/m ³)	12.3	12.2	11.8	10.97

*2013 data is not validated and is subject to change.

- Allows for data to be flagged and excluded from calculations in determining whether or not an area has attained the standard
- 40 Code of Federal Regulations §50.14 defines an Exceptional Event as an event that:
 - affects air quality
 - is not reasonably controllable or preventable
 - is caused by human activity that is unlikely to recur at a particular location or by a natural event
 - results in an exceedance of the standard that would not have otherwise occurred
- Requires concurrence from the United States Environmental Protection Agency (EPA)

	PN Avera	2012 Annual		
	2010	2011	2012	ΡΜ _{2.5} DV (μg/m³)
FRM Data	12.3	12.2	11.8	12.1
FRM Data with Exceptional Events Removed	12.2	12.2	11.7	12.0

- Any of the following five combinations of exceptional event days demonstrate that the Clinton Drive data attains the NAAQS:
 - all 7 days accepted;
 - at least the 4 days from 2010 through 2011 accepted;
 - at least the 4 days from 2011 through 2012 accepted;
 - 4 highest days accepted; or
 - all 6 African dust events (from 2010 and 2012) accepted.

Example of an Exceptional Event Day at Clinton Drive

- A large African dust cloud moved through the Houston area with the highest PM_{2.5} concentrations on June 9 and 10, 2010.
- Impact of the African dust cloud primarily seen in greatly increased soil component of the speciated monitor data.
- Presence of strong markers for African dust including silicon, aluminum, and iron (SAF).

Houston and Clinton PM_{2.5} with Soil SAF for June 3 through June 13, 2010

Dust Cloud Moving Over the Atlantic Ocean, June 2010

Click here to view animation:

http://www.tceq.texas.gov/assets/public/implementation/air/sip/pm25/2012naaqs/ee-goes-june.wmv

Average PM_{2.5} by Site: Exceptional Event Day of June 9, 2010

Local Actions to Reduce PM

• City of Houston

- Installed and maintains barriers to keep trucks from driving onto the unpaved shoulders of Clinton Drive
- Installed a traffic light at Clinton Drive and the Industrial Park East gate to control traffic at the intersection
- Installed a landscaping project along Clinton Drive
- Repaved Clinton Drive from two-lane street with shoulders to a four-lane street

Port of Houston Authority

- Reduced port related diesel emissions using funding received through an EPA National Clean Diesel Campaign (along with eight other industries in the Houston Ship Channel)
- Enhanced dust suppression requirements for all its tenants including the use of emulsified asphalt on unpaved work areas
- Eliminated soils that contain gypsum (CaSO₄) from the Port's work yards

Calcium (Ca) Impact Reduction Following the Port of Houston's Elimination of Soils Containing Gypsum (CaSO₄) from the Port's Work Yards

Local Actions Taken to Reduce PM

- Port Transit Rail Authority
 - Stopped steel loading on dirt areas near the Clinton Drive monitor
 - Operating newly refurbished switcher engines
- Other industries
 - Implemented dust control best management practices at bulk materials unloading and storage facilities
- TCEQ
 - Implemented a supplemental environmental project to pave the parking lot directly adjacent to the Clinton Drive monitor
 - Replacing older diesel engines with newer ones that have lower PM_{2.5} emissions through the Texas Emissions Reduction Plan Program

- Federal Motor Vehicle Control Program (FMVCP)
- Implementation of refinery consent decrees continuing to reduce sulfur dioxide (SO₂) emissions from refineries and sulfuric acid plant
- Federal and international actions leading to reductions in marine vessel emissions of SO₂ and PM_{2.5}

Harris County Point Source Emissions Totals (Tons/Year)

Year of Emissions Inventory	SO ₂	PM _{2.5}	PM ₁₀
2005	25,500	5,500	8,900
2011	12,100	4,900	6,500
Change	- 53%	- 11%	- 27%

*Emissions are rounded to the nearest hundred and reported in tons/year

- Federal Clean Air Act requires state designation recommendations to the EPA within one year of NAAQS promulgation.
- States recommend designations of attainment, nonattainment, or unclassifiable based on ambient air quality monitoring data.
- State recommendations are expected to be primarily based on 2010 through 2012 monitored data.
- State recommendations may be updated when 2013 data is certified.

- The EPA will consider state recommendations in making final area designations.
- 120-Day Letter
 - The EPA will notify states concerning intended modifications to their recommendation.
 - States will have 60 days to respond and provide additional information.
- The EPA will consider all available data and is expected to make final designations based on 2011 through 2013 monitored data.

- **December 13, 2013**: State designation recommendations are due.
- August 14, 2014: EPA sends 120-day letters.
- August 29, 2014: EPA publishes public notice of state recommendations for 30day comment period.
- October 29, 2014: States respond to 120-day letters.
- **December 12, 2014**: EPA promulgates final area designations.

- October 23, 2013
- Commissioners will consider designation recommendation for submittal to the governor.
- Documents available on the Commissioners' Agenda Web page and the SIP Hot Topics Web page October 4, 2013.

Kristin Jacobsen

State Implementation Plan (SIP)

Kristin.jacobsen@tceq.texas.gov

(512) 239-4907

Kasey Savanich

Air Modeling and Data Analysis

Kasey.savanich@tceq.texas.gov

(512) 239-1145

Contact the SIP Team or join our e-mail list

http://www.tceq.texas.gov/airquality/sip/sipcontact.html

Questions?

David Brymer Air Quality Division (512) 239-1725 David.brymer@tceq.texas.gov