• The intensive studies: chemical data from aircraft cases of intra- and interstate export of pollution from:
 - Houston - Galveston (HGA)
 - Beaumont- Port Arthur (BPA)
 - Dallas - Fort Worth (DFW)

• A more continuous record: chemical data from the 500-meter-high KWKT television tower, Moody, TX
 - DFW plume example, September 2006

• A more general approach (?): evaluating models using chemical observations
 - comparison with Flexpart and profiler trajectories

A goal - a combination of thoroughly evaluated products that offers an accurate picture of transport in Texas
Intensive studies: Three transport examples from TexAQS 2000

#1: Sept. 1 - Houston plume transported east

GOES visible 4:45 PM CST
Intensive studies: Three transport examples from TexAQS 2000

#1: Sept. 1 - Houston plume transported east

- Plume \(O_3\) mixing ratios of 160 ppbv, or enhancements of 90 ppbv, were still encountered upwind of and above BPA

- Enhancements of longer-lived compounds and aerosol particles also observed in BPA
Intensive studies: Three transport examples from TexAQS 2000

#1: Sept. 1 - Houston plume transported east

- Plume O$_3$ mixing ratios of 160 ppbv, or enhancements of 90 ppbv, were still encountered upwind of and above BPA
- Enhancements of longer-lived compounds and aerosol particles also observed in BPA

#2: Sept. 6 - Houston plume transported southwest

P-3 in situ

DC-3 lidar
Intensive studies: Three transport examples from TexAQS 2000

#1: Sept. 1 - Houston plume transported east

- Plume O_3 mixing ratios of 160 ppbv, or enhancements of 90 ppbv, were still encountered upwind of and above BPA
- Enhancements of longer-lived compounds and aerosol particles also observed in BPA

#2: Sept. 6 - Houston plume transported southwest

- Plume O_3 mixing ratios of 140 ppbv, or enhancements of 60 ppbv, observed downwind nearly to Victoria, TX
- Enhancements of longer-lived compounds and aerosol particles also observed
Intensive studies: Three transport examples from TexAQS 2000

#3: Aug. 22-23 - Coastal plumes transported north

- Hysplit trajectories suggest general transport from SE Texas
Intensive studies: Three transport examples from TexAQS 2000

#3: Aug. 22-23 - Coastal plumes transported north

- Hysplit trajectories suggest general transport from SE Texas
- Chemical signatures from transect upwind of Dallas point to aged Houston plume - enhanced O₃, SO₂, CO, ethyne, benzene
Intensive studies: transport example from TexAQS 2006

2006: coastal plumes transported north

NOAA WP-3D track
09/16/2006
Intensive studies: transport example from TexAQS 2006

2006: coastal plumes transported north
Intensive studies: TexAQS 2006

NOAA WP-3D track
09/16/2006

Upwind

Downwind #1
Downwind #2
Downwind #3

SO2, ppbv

Longitude

Latitude

Monticello
Welsh
Martin Lake

AR
LA

Sulfate, ug/m³

Benzene, pptv

SO2, benzene, sulfate

WP-3D track
SO2 plumes
Intensive studies: TexAQS 2006

Noaa WP-3D track
09/16/2006

- chemical data illustrate transport of separate sulfate and benzene plumes
• chemical data illustrate transport of separate sulfate and benzene plumes
Intensive studies: TexAQS 2006

- chemical data illustrate transport of separate sulfate and benzene plumes
- examine back-trajectories and retroplumes
Intensive studies: TexAQS 2006
Intensive studies: TexAQS 2006

NOAA WP-3D track
09/16/2006

24-hr back trajectories from point A on P-3 track

Trajectory data courtesy of NOAA ESRL PSD - C. Senff and A. White
Intensive studies: TexAQS 2006

NOAA WP-3D track
09/16/2006

24-hr back trajectories from point B on P-3 track

SO2 emissions, 10^{25} molec/sec

500-600m, 600-700m, 700-800m, 800-900m

Trajectory data courtesy of NOAA ESRL PSD - C. Senff and A. White
Intensive studies: TexAQS 2006

NOAA WP-3D track
09/16/2006

24-hr **back** trajectories from pts. A & B on P-3 track

24-hr **forward** trajectories from Beaumont-Port Arthur area

SO2 emissions, 10^{25} molec/sec

Trajectory data courtesy of NOAA ESRL PSD - C. Senff and A. White
Intensive studies: TexAQS 2006

Clear example of coastal plumes affecting northeast TX, LA, AR, OK
Transport signatures in a more continuous record:

The instrumented KWKT television tower, Moody, TX
\(\text{CO}_2, \text{CO}, \text{O}_3\), and met. at 30m, 122m, and 457m above ground level
Transport signatures in a more continuous record:

The instrumented KWKT television tower, Moody, TX
CO\textsubscript{2}, CO, O\textsubscript{3}, and met. at 30m, 122m, and 457m above ground level

KWKT example:
6 weeks in summer 2006
(data from 457m)

CO\textsubscript{2}
2001 to present

CO and O\textsubscript{3}
2003 to present

Instrumented by
NOAA ESRL GMD
Carbon Cycle Group
Transport signatures in a more continuous record:

The instrumented KWKT television tower, Moody, TX

CO$_2$, CO, O$_3$, and met. at 30m, 122m, and 457m above ground level

KWKT example:
6 weeks in summer 2006
(data from 457m)

<table>
<thead>
<tr>
<th>CO$_2$ ppmv</th>
<th>8/21/06</th>
<th>8/31/06</th>
<th>9/10/06</th>
<th>9/20/06</th>
<th>9/30/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO ppbv</th>
<th>8/21/06</th>
<th>8/31/06</th>
<th>9/10/06</th>
<th>9/20/06</th>
<th>9/30/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ozone ppbv</th>
<th>8/21/06</th>
<th>8/31/06</th>
<th>9/10/06</th>
<th>9/20/06</th>
<th>9/30/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CO$_2$
2001 to present

CO and O$_3$
2003 to present

Instrumented by
NOAA ESRL GMD
Carbon Cycle Group
Transport signatures in a more continuous record:

The instrumented KWKT television tower, Moody, TX

\(\text{CO}_2, \text{CO}, \text{O}_3 \), and met. at 30m, 122m, and 457m above ground level

- Aircraft data confirm Dallas plume transported to KWKT on Sept. 13, 2006
- 2006 overflights tie continuous KWKT record to the TexAQS intensives
Transport signatures in a more continuous record:

The instrumented KWKT television tower, Moody, TX

CO₂, CO, O₃, and met. at 30m, 122m, and 457m above ground level

- Examine transport to KWKT tower for a 4-day period centered on 1st aircraft overflight using Flexpart (Andreas Stohl, NILU)

- Very similar conclusions from Flexpart and profiler trajectories for these particular transport cases
Intrastate transport on Sept. 12 - 16, 2006: 4 days of KWKT data from 457m AGL
Intrastate transport on Sept. 12 - 16, 2006: 4 days of KWKT data from 457m AGL

Flexpart footprint emission sensitivity
(retroplume time spent in lowest 100m)
Intrastate transport on Sept. 12 - 16, 2006: 4 days of KWKT data from 457m AGL

Flexpart footprint emission sensitivity (retroplume time spent in lowest 100m)
Intrastate transport on Sept. 12 - 16, 2006: 4 days of KWKT data from 457m AGL

Flexpart footprint emission sensitivity (retroplume time spent in lowest 100m)
Intrastate transport on Sept. 12 - 16, 2006: 4 days of KWKT data from 457m AGL

Flexpart footprint emission sensitivity (retroplume time spent in lowest 100m)
Summary

• Airborne data sets from 2000 and 2006 intensives contain many examples of intra- and interstate transport.

• Many more transport examples in the continuous chemical data record at 3 different heights at the KWKT tower.

• Pros and cons of transport simulations (*profiler-driven trajectories*, *Flexpart*, *other transport models*) can be better understood by comparison to the available chemical data.
Summary

• Airborne data sets from 2000 and 2006 intensives contain many examples of intra- and interstate transport.

• Many more transport examples in the continuous chemical data record at 3 different heights at the KWKT tower.

• Pros and cons of transport simulations (*profiler-driven trajectories*, *Flexpart*, *other transport models*) can be better understood by comparison to the available chemical data.

A goal - a combination of thoroughly evaluated products that offers an accurate picture of transport in Texas.

Identify source regions?
Quantify mixing ratios?
Summary

• Airborne data sets from 2000 and 2006 intensives contain many examples of intra- and interstate transport.

• Many more transport examples in the continuous chemical data record at 3 different heights at the KWKT tower.

• Pros and cons of transport simulations (profiler-driven trajectories, Flexpart, other transport models) can be better understood by comparison to the available chemical data.

A goal - a combination of thoroughly evaluated products that offers an accurate picture of transport in Texas.

Identify source regions? possibly - needs work
Quantify mixing ratios? not there yet
Acknowledgments

J. Peischl
J. Holloway
M. Trainer
A. Middlebrook
R. Bahreini
J. Jimenez
C. Brock
D. Parrish
J. de Gouw
C. Warneke
K. Aikin
A. Andrews
J. Kofler
J. Williams
A. Stohl
A. White
C. Senff
R. Alvarez III
Intensive studies: TexAQS 2006

NOAA WP-3D track
09/16/2006

Flexpart footprint emission sensitivities
(retroplume time spent in lowest 100 m)

Flexpart model suggests Beaumont-Port Arthur for elevated benzene

Flexpart model suggests Houston-Galveston for elevated sulfate

• source regions identified using profiler-driven trajectories appear to be more consistent with WP-3D chemical data in this particular case

Flexpart model and output courtesy of Andreas Stohl, NILU