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• 50 - 90% of NOx
converted to NO3 + N2O5
overnight

• Large fraction of O3 if
emitted NOx to O3 high

• NO3 strong oxidant for 
reactive VOC (e.g. alkenes)



NO3 and N2O5 Instrument
“ARNOLD” = Airborne Ringdown Nitrogen Oxide Laser Detector

Bill Dubé

532 nm

662 nm

NO3

NO2

NO3 + N2O5

Laser Detector
Optical Cavity

Pulsed Cavity Ring-down Spectroscopy NO2: 532-nm optical extinction
L.O.D. = 0.1 ppbv @ 1 Hz
Accuracy = 5%

NO3: 662 nm optical extinction
L.O.D = 0.2 - 2 pptv @ 1 Hz
Accuracy = 20%

N2O5: Thermal conversion + 662 nm 
optical extinction
L.O.D. = 0.5 - 2 pptv @ 1 Hz
Accuracy = 20%

Measure first-order decay 
rate coefficient of light 

intensity from an optical 
cavityτ0 = 307 µs

Leff = 92 km



1. Nocturnal NOx Loss vs. Transport
Key = Stability / Reactivity of N2O5

2. O3 Loss and transport
Key = Nocturnal Odd Oxygen (Ox)

3. Nocturnal VOC Oxidation
Key = Availability of NO3 & Highly Reactive VOC

4. Vertical Stratification
Difference between surface and aloft

Outline



Night Flights during TexAQS 2006

September 29

October 8

October 10

October 12

• Limited set of nighttime data

• Draw the most general 
conclusions possible



Data Analysis I - Steady State Lifetimes
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• System must reach steady state • No covariance between kNO3, kN2O5 & NO2Caveats:



Example 1: North Texas

NO3 N2O5 NO3+N2O5

kNO3
-1 = 19 ± 1 min

kN2O5
-1 > 10 hours

N2O5 Hydrolysis very slow

kN 2O5
≈ 1

4
× c ×γ(N2O5 )× SAerosol γ < 10-3

• Neutral (NH4)2SO4 aerosol
NH4

+/SO4
2- > 2

• Measurable aerosol NO3
-

• Large Organic / Sulfate Ratio

• γ(N2O5) similar to that seen on 
this aerosol type in previous 
campaigns (e.g. New England)

Aerosol:

N2O5 HNO3

H2O (aq)



Data Analysis II - Nocturnal Odd Oxygen (Ox)

NO + O3 → NO2 + O2 NO2 = 1 Ox

Daytime: Ox ≡ O3 + NO2

NO + O3 → NO2 + O2 NO2 = 1 Ox
NO2 + O3 → NO3 + O2 NO3 = 2 Ox
NO3 + NO2 → N2O5 N2O5 = 3 Ox

Nighttime: Ox ≡ O3 + NO2 + 2NO3 + 3N2O5

N2O5 + H2O → 2HNO3 HNO3 = loss of 1.5 Ox

NO3 + VOC reactions Variable, loss of 1-2 Ox

Nocturnal Losses for Ox



Ox Budget - Oklaunion Power 
Plant Plume (North Texas)

• NO3 and N2O5 account for most of lost Ox in plumes
• Little to no enhancement of HNO3
• Corroborates lifetime analysis - slow N2O5 hydrolysis

Slope = -1 for 
closed Ox budget



Example 2: Parish Power Plant 
Intercept - October 12

kNO3
-1 > 40 ± 1 min

kN2O5
-1 > 6 hours

NO3 N2O5 NO3+N2O5 N2O5 hydrolysis slow
γ < 5x10-3

• NO3 and N2O5 (more than) 
account for lost Ox

• Little to no enhancement in 
HNO3

• Transport of NOx and Ox  

Odd-Oxygen Analysis

Steady State Analysis



NOx Transport - Parish Plume F(NOx ) = NO3 + 2N2O5

NO2 + NO3 + 2N2O5

NOx conserved within this 
plume

note: Low VOC case



Where Does It Go ?
N2O5 NO3 NOx

• Overnight transport to region with higher biogenic emissions

• O3 formation potential in rural regions, well removed from urban sources

Isoprene Emission Map

mol km2 hr-1



Nocturnal Ox Partitioning F(Ox ) = 2NO3 + 3N2O5

O3 + NO2 + 2NO3 + 3N2O5

October 12 Flight

• F(Ox) depends on ratio of emitted NOx to O3 and the stability of N2O5

• 5 - 20% (2 - 11 ppbv) Ox stored as N2O5 within plumes October 12



Nocturnal VOC Oxidation
• Stability of N2O5 regulates availability of NO3

• NO3 on October 12 reached 350 pptv

• Potentially very strong oxidant - depends on VOC mixture
Alkenes (but ethylene very slow)
Aldehydes (but formaldehyde very slow)
Some aromatics

NO3 averaged to 
whole air sampler 
(WAS) time base for
October 12 flight



NO3 - VOC Loss Rates & Sink Partitioning
kLoss(NO3) = k(NO3 +VOCi )×[VOC]i

i
∑

RVOC = k(NO3 +VOCi )×[NO3]×VOCi
i
∑

Houston Ship 
Channel Emissions

VOC Loss Rates of 0.5 - 4 
ppbv hr-1 within plumes 
emitted from industrial 
sources 



Emission of very highly 
reactive VOC ?

(e.g., butadienes, 
styrene, phenols)

Evidence for oxidation of highly reactive VOC
P(NO3) = kNO2 +O3

[O3 ][NO2 ]

τ (NO3)−1 = P(NO3) /[NO3 ]



Oxidation of highly reactive VOC - Second Chance

• Measured VOC not responsible 
for increase in NO3 loss rate

• But likely correlated with 
emission of more reactive VOC



Vertical Stratification of Nighttime Chemistry

Nocturnal Boundary
Layer (NBL)

Intermediate
Layer

Residual
Daytime

Boundary
Layer

Missed approach to Bush
International Airport

• NOx & VOC plumes occur in discrete layers at night
• Can be more concentrated, and difficult to find !
• Chemistry in Nocturnal Boundary Layer differs significantly

(see Hans Osthoff, Roberto Sommariva Posters for details)



Conclusions
• N2O5 hydrolysis generally inefficient during TexAQS

Consistency between lifetime and Ox analysis
Aerosol = Neutral (NH4)2SO4 + Organics

• Overnight transport of NOx and Ox in the form of N2O5
Most obvious in power plant plumes (low VOC)

• NO3 available as an oxidant in industrial emissions
VOC loss rates 0.5 - 4 ppbv hr-1 in ship channel plumes
Evidence for oxidation of extremely reactive VOC

• Vertical Stratification
Shallow, concentrated NOx plumes
Large difference between surface and aloft

P-3 vs. Ron Brown


