Observational Evaluation of Mobile Source Emissions

Greg Frost, Stuart McKeen, Michael Trainer, Ken Aikin, Jeff Peischl, Tom Ryerson, John Holloway
NOAA ESRL CSD, Boulder, CO
Gabrielle Pétron, Pieter Tans
NOAA ESRL GMD, Boulder, CO
Robert Harley
University of California, Berkeley, CA

Goals of This Study
Use aircraft and tunnel observations from TexAQS 2000 and 2006 to:
1. examine urban mobile source emission trends
2. evaluate emission inventory

Talk Overview
• Extract mobile emission ratios from NOAA P-3 aircraft observations
• Observed emission ratios in Houston tunnel
• Development of multi-pollutant mobile source emission inventory
• Comparisons of observed and inventory emission ratios

I-45 in Houston (photo from http://www.texasfreeway.com)
Aircraft Observations of Mobile Source Emissions

NOAA P-3 Observations in Houston
Tuesday, 26 September 2006, 1258-1318 CDT
400-500 m altitude

Wind Direction

Mobile Source NOx Emissions (tons/day)
Aircraft Observations of Mobile Source Emissions

NOAA P-3 Observations in Houston
Tuesday, 26 September 2006, 1258-1318 CDT
400-500 m altitude
Aircraft Observations of Mobile Source Emissions

NOAA P-3 Observations in Houston
Tuesday, 26 September 2006, 1258-1318 CDT
400-500 m altitude
Aircraft Observations of Mobile Source Emissions

NOAA P-3 Observations in Houston
Tuesday, 26 September 2006, 1258-1318 CDT
400-500 m altitude
Aircraft Observations of Mobile Source Emissions

NOAA P-3 Observations in Houston
Tuesday, 26 Sept 2006
1258-1318 CDT
400-500 m altitude

Slopes of Linear Fits
Units = mole/mole
(r = correlation coefficient)
CO/CO$_2$ = 0.0121 (r = 0.96)
NO$_y$/CO$_2$ = 0.00215 (r = 0.96)
CO/NO$_y$ = 5.32 (r = 0.95)

La Porte Freeway (Texas 225) with Shell Deer Park Refinery in background
(photo from http://www.texasfreeway.com)
Tunnel Observations of Mobile Source Emissions

McGaughey et al. (2006) Atmos. Environ., 38, 3363-3372

Washburn Tunnel, Houston
TexAQS 2000
29 August (Tuesday) - 1 September (Friday)

CO, NO$_x$, & CO$_2$ emission ratios measured for 2-hour sampling periods
• 1200-1400 CDT: higher fraction of heavy-duty diesel vehicles
• 1600-1800 CDT: afternoon rush hour, higher fraction of gasoline vehicles
US On-road Mobile Source Emission Inventory for CO₂ and Criteria Pollutants

• Combine existing data to produce CO₂ and criteria pollutant inventory for fossil fuel combustion
• Structure and grid from EPA 1999 National Emission Inventory (NEI99)
 ➢ NOₓ, SO₂, CO, VOCs, NH₃, PM₂.₅, PM₁₀
 ➢ horizontal resolution: 4x4 km²
 ➢ hourly emissions
 ➢ summer ozone season day
• Benefits:
 • Multi-pollutant fossil fuel emission inventory
 • High spatial and temporal resolution
 • Useful for both air quality and climate studies

1999 Fossil Fuel CO₂ Emissions (percent by mass)

Dallas-Ft Worth metroplex at night from International Space Station (photo from http://www.texasfreeway.com)
Multi-pollutant Inventory Development: National Statistics

Step 1. 1999 On-road Fuel Use by State:
Federal Highway Administration

1999 US On-road Fuel Use = \(1.607 \times 10^{11}\) gal/yr

Step 2. 1999 On-road \(\text{CO}_2\) Emissions by State:
Multiply Step 1 by EIA \(E(\text{CO}_2)/\text{fuel volume factors}\)

1999 US On-road \(\text{CO}_2\) Emissions = \(4.55 \times 10^6\) ton/dy

Step 3. 1999 On-road \(\text{NO}_x\) Emissions by State:
EPA 1999 National Emission Inventory (NEI99)

1999 US On-road \(\text{NO}_x\) Emissions = \(2.34 \times 10^4\) ton/dy

Step 4. 1999 \(\text{CO}_2/\text{NO}_x\) Emission Ratios by State:
Divide Step 2 by Step 3

- Gasoline: \(292\)
- Diesel: \(89\)
- Ethanol: \(195\)

US averages
On-road Mobile CO₂ Emissions on 4-km Grid

Step 5. CO₂ emissions on 4x4 km² grid:
Apply state-level CO₂/NOₓ emission ratios to NEI99 4x4 km² NOₓ emissions
On-road Mobile CO$_2$ Emissions: Regional Detail

Total E(CO$_2$) for On-road Sources in Texas & Louisiana
4x4 km2 Grid, 1999 Summer Daily Average

- Texas
- Louisiana
- Dallas/Ft Worth
- Austin
- Houston
- San Antonio

On-road E(CO$_2$), tons/day

Color scale from 0 to 200 tons/day.
Mobile Emission Estimates from P-3 Observations

Average Molar Emission Ratios
Weekdays Only

![Graph showing CO/CO₂ emission ratios over time for different locations and years.](image-url)
Mobile Emission Estimates from P-3 and Tunnel Observations

Average Molar Emission Ratios

Weekdays Only

Bars = 2 standard deviations in tunnel ratios
Mobile Emission Estimates from Observations and Inventory

Average Molar Emission Ratios

Weekdays Only

Bars = 2 standard deviations in tunnel ratios
Mobile Emission Estimates from P-3 Observations

Average Molar Emission Ratios
Weekdays Only

![Graph showing NOy/CO2 ratios for different locations and years.](image)
Mobile Emission Estimates from P-3 and Tunnel Observations

Average Molar Emission Ratios

Weekdays Only

Bars = 2 standard deviations in tunnel ratios
Mobile Emission Estimates from Observations and Inventory

Average Molar Emission Ratios
Weekdays Only

Bars = 2 standard deviations in tunnel ratios
Mobile Emission Estimates from P-3 Observations

Average Molar Emission Ratios
Weekdays Only

CO/NO_y

Time (CDT)
Mobile Emission Estimates from P-3 and Tunnel Observations

Average Molar Emission Ratios
Weekdays Only

Bars = 2 standard deviations in tunnel ratios
Mobile Emission Estimates from Observations and Inventory

Average Molar Emission Ratios
Weekdays Only

Bars = 2 standard deviations in tunnel ratios
Preliminary Conclusions

• Extract mobile source emission ratios in Houston and Dallas from P-3 observations in 2000 and 2006
 • Small weekday variations between midday and late afternoon
 ➢ Increase in CO due to higher proportion of gasoline vehicles during rush hour
 • No large changes seen between 2000 and 2006
• Compare 2000 Washburn Tunnel data to P-3 observations
 • Ratios with CO₂ somewhat higher in tunnel than in P-3 data
 • More variation between midday and late afternoon than in P-3 data
 ➢ Rush hour increase in CO and decrease in NOₓ
• Compare observations with 1999 emission inventory
 • Inventory CO higher than observations by factor of 2-4
 • Inventory NOₓ higher than observations by up to a factor of 2
 • No hourly variation in inventory
• More analysis needed of TexAQS 2006 P-3 data
• Careful interpretation of P-3 data is crucial