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Humans affect clouds and hydrological cycle?

Yes! By changing the concentration of Cloud Condensation
Nuclei (CCN) in the atmosphere. This phenomenon is known as
the "indirect climatic effect of aerosols".
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Increasing particles tends to cool climate (potentially alot).

Climate models are the only tools for assessing the
anthropogenic indirect effect, but this is very challenging.



CCN: The aerosol-cloud link

Each particle needs a certain level of water vapor concentration
to grow to cloud droplet size (~10 ym).
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The aerosol Is an evolving complex
“soup” that’s very hard to simulate

Primary emissions

i automobiles, industry, domestic, vegetation,
| forest fires..

Secondary compounds

From oxidation of precursors (by O,, H,O,,
OH, NO,, etc.)

Reaction of volatile bases (NH;) with acids
to form NH,NO,, (NH,),SO,, etc...




Problems with GCM assessments of
aerosol indirect effect

Cloud formation happens at smaller spatial scales
than global climate models can resolve, and must be
parameterized.

Aerosol-cloud interactions are complex; many
processes are poorly represented, constrained
and/or understood.

Describing cloud formation explicitly in global models
is VERY expensive. These calculations need to be
simplified ("parameterized”).

Climate models provide limited information about
clouds and aerosols.



Describing Aerosol/Cloud Processes
on a Global Scale

How to simulate a process that we know/understand?
s Often extremely expensive to do it properly

= Development of a simplified description by fitting the
results of a benchmark model.

How do we simulate what we do not know?
= "The miracle of modeling”

= Semi-empirical fits (e.qg., cloud droplet concentration versus
sulfate mass).

When is a model “"good enough”?
= Model resolution (in space, in aerosol size, etc.)
m Sub-grid processes, Numerical issues

SIMPLFYING COMPLEXITY arises again and again....



Measuring CCN: a key source of data

Goal: Generate supersaturation, expose CCN to it and count

how many droplets form.
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Our Method: Take a metallic
cylinder, wet its walls. Cool one
end, heat the other, and flow air
through it.

» Wall saturated with H,O. Linear
temperature gradient.

* H,O mass diffuses more quickly
than heat and arrives at centerline
first.

* The flow is supersaturated with
water vapor at the centerline.

» Flowing aerosol would activate
some into droplets.



Streamwise Thermal Gradient Chamber

A Roberts and Nenes, AS&T (2005); Lance et al., AS&T (2006)
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CCN MEASUREMENTS CCN PREDICTIONS

CCN Closure Study tests our theoretical understanding
of CCN activation (droplet formation). Determine the
“right” simplifying assumptions

Quantifying CCN prediction error for ambient aerosol
allows a quantitative assessment of indirect forcing
uncertainty.



CCN closure: how is it done?

*Measure aerosol size & composition (PILS, AMS) .

-"Plug” into Kohler theory and predict CCN concentrations.
Compare with measured CCN (0.1-0.3% supersaturation)
and assess closure.
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September 20: Beaumont Port Arthur, Houston
Urban, Parish PP, Isolated refineries...

Total Aerosol Concentration
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CCN instrument is operated at ~ constant supersaturation



September 20 Flight
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September 20 Flight
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CCN Closure “scatterplot”
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Average error: ~25%
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September 20 Flight Very high CCN concentrations




September 25: Dallas, Houston Urban
Parish PP, Big Brown and Limestone PPs




September 25: Dallas, Houston Urban Parish PP,
Big Brown and Limestone PPs

‘ )P )] ‘
33
ﬁ\b’—u‘gl < 5
)
a

3
— >

c
e
—
@©
S
4+
c
O]
&)
c
]
)
o
%2}
o
S
Q
<
]
+—
o
<

CCN instrument is operated at ~ 3 supersaturations



September 25 Flight
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CCN Closure “scatterplot”
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September 25 Flight similar to Houston urban plume




September 21: Texas City, Houston Urban Plume
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September 21: Texas City, Houston Urban Plume
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September 21 Flight
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September 21 Flight
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September 21 Flight  _ 100 km
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CCN Closure “scatterplot”
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Some “take home” points

Aerosol variability does not necessarily translate to CCN
variability, especially close to source regions, where
impacts are in small particles which do not act as CCN.

This suggests that CCN levels may be controlled by
"background” (or "aged”) levels more than expected.

As plumes age, CCN increase and covary with total CN.
Ageing seen for the scale of a typical GCM grid cell.

Assuming a uniform mixture of sulfate + insoluble

captures most of the CCN variability (on average, to
within 20-25%).

This suggests that predicting CCN concentrations at low
supersaturations typical of stratus/stratocumulus clouds
(which includes the effect of aging) is not “hopeless”.
Good news for indirect effect modeling.



THANK YOU!



Earth’s Albedo: controlling factor of “global dimming”

Clouds play a major role in determining albedo.

Reflected Solar Incoming
107\ Radiation 342 Solar
Radiation_
342 Wm™
________ [}

Reflected by Clouds,
Aerosol and
tmosphere

I

!

-\

I Absarbed by
!

67 Atmosphere

“Absorbed by Surface

J.T. Houghton: “The science of climate change™

Facts:

» Clouds account for 50% of
planetary reflectivity.

» Small changes in clouds
yield large changes in global
energy balance.

* Clouds are VERY dynamic

1% increase in global cloud
cover can counteract warming.

Consequence:

Understanding cloud
formation is necessary for
reliable climate change
predictions.



How do clouds form?

Clouds form in regions of the atmosphere where there is too much water vapor
(it Is “supersaturated”).

This happens when air is cooled (primarily through expansion in updraft
regions and radiative cooling).

Cloud droplets form on pre-existing particles found in the atmosphere
(aerosols). This process is known as activation.

Aerosols that can become droplets are called cloud condensation nuclei (CCN).

Cloud

Aerosol particle 1 .~ CCN that activates

that does not activate " ®.® into a cloud drop
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