INTEROFFICE MEMORANDUM

То:	John Sadlier, Deputy Director Office of Compliance and Enforcement	Date:	December 13, 2010
Thru:	Michael Honeycutt, Ph.D., Director MH Toxicology Division, Chief Engineer's Office		
From:	Shannon Ethridge, M.S. S.E. Toxicology Division, Chief Engineer's Office		
Subject:	Health Effects Evaluation of Carbonyl Survey Pr Texas, Area June 16 - 18, 2010 (ACL 100648, L 100648-0020)	roject, Di ab Samp	sh, Denton County, les 100648-0003 to

Key Findings

- All reported target carbonyl concentrations were either non-detect or below their respective short-term air monitoring comparison values (AMCVs) and are not of any short-term health or welfare concern.
- During the sampling period, carbonyls were detected in a relatively consistent pattern independent of sampling location in relation to possible oil and gas-related sources, time of day, and wind direction. In contrast, the majority of volatile organic compounds (VOCs) detected at the Dish Airfield Automated Gas Chromatograph (AutoGC) during the same time period trended upward/downward in concentration depending on wind direction. This may indicate VOC concentrations measured at the AutoGC were dependent on the location of oil and gas-related sources in relation to the AutoGC.
- The Dish one-hour average formaldehyde concentration of 3.6 ppb_v (3.22 3.98 ppb_v) is lower than the Dallas/Fort Worth area June one-hour average formaldehyde concentration of 6.35 ppb_v (5.77 6.93 ppb_v). Data are reported as the mean and 95% Confidence Interval (CI).

Background

In response to concerns about carbonyl emissions from natural gas compressor stations, personnel from the Texas Commission on Environmental Quality (TCEQ) Mobile Monitoring Team conducted an ambient air monitoring survey project in the Justin/Dish, Texas, area from June 16 - 18, 2010. Staff collected 23 one-hour Sep-Pak Dinitrophenylhydrazine (DNPH) Coated Silica Cartridge samples (see Figure 1 for sampling locations). Of the 23 samples, five were quality control/quality assurance samples. Cartridge samples were analyzed for 18 target

John Sadlier Page 2 of 28 December 13, 2010

carbonyls (methyl ethyl ketone and methacrolein co-elute) by High Performance Liquid Chromatography (HPLC) using modified EPA Method TO-11 at the TCEQ laboratory in Austin, TX.

Results

Reported carbonyl concentrations in 18 samples were compared to TCEQ's short-term healthand odor-based AMCVs (Table 1). Short-term AMCVs are used to evaluate ambient concentrations of chemicals in air to determine whether the monitored concentrations have the potential to cause adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are well below levels at which adverse health effects are reported to occur in the scientific literature. If a chemical concentration in ambient air is less than its AMCV, no adverse health effects are expected to occur. If a chemical concentration exceeds its AMCV it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted. Table 2 provides a list of target compounds and their associated long-term AMCVs for informational purposes only.

Evaluation

Isovaleraldehyde was not detected in any sample but the limit of detection was above the shortterm odor AMCV, and below the short-term health AMCV. It is possible that isovaleraldehyde was present at concentrations above the odor AMCV although investigators did not experience the apple-like odor associated with isovaleradehyde (HSDB 2010). The investigators noted exhaust and natural gas odors during the investigation. Detection limits were adequate to evaluate all other target analytes. All other reported concentrations of target carbonyls were either non-detect or below their respective short-term AMCVs and are not of any short-term health or welfare concern.

In response to concerns expressed by Mayor Tillman of Dish, the TD conducted additional analyses of formaldehyde concentrations measured in Dish in comparison to area and statewide concentrations as well as a trend analysis of VOC concentrations measured at the Dish Airfield AutoGC in relation to carbonyl concentrations measured during the TCEQ mobile monitoring event. Additional analyses begin on Page 10.

John Sadlier Page 3 of 28 December 13, 2010

Figure 1. Map of Sample Locations for the Dish, TX, Carbonyl Monitoring Project on June 15 - 18, 2010.

John Sadlier Page 4 of 28 December 13, 2010

		Laborator	y ID	1	00648-000)3	1	00648-000	4	10	00648-000	5	100648-0006		
		Sampling	Site		А			А			В			С	
		Sample I	Date		6/16/2010			6/16/2010			6/16/2010			6/16/2010	
		Sample 7	Time		9:20			10:50			12:25			13:50	
		Short-term													
		Health													
Compound	Odor AMCV	AMCV	LOD	ppbv	SDL	Flag	ppbv	SDL	Flag	ppbv	SDL	Flag	ppbv	SDL	Flag
formaldehyde	500	41	2.04	2.80	1.70	L	4.50	1.70		4.30	1.80		4.20	1.80	
acetaldehyde	50	250	1.95	0.69	1.60	J	0.78	1.60	J	1.20	1.70	J	1.10	1.80	J
acetone	3600	2500	3.37	1.20	2.80	J	0.97	2.70	J	1.50	3.00	J	1.30	3.00	J
acrolein	3.6	1	0.31	ND	0.25		ND	0.25		ND	0.27		ND	0.27	
propionaldehyde	5	21	21 0.51 0.1		0.42	J	0.17	0.41	J	0.24	0.45	J	0.21	0.45	J
crotonaldehyde	23	3	3 0.23 N		0.19		ND	0.19		ND	0.21		ND	0.21	
methyl ethyl ketone/methacrolein	8.5	19	0.75	0.19	0.62	J	0.12	0.61	J	0.14	0.66	J	0.11	0.67	J
butyralde hyde	5	2700	0.22	0.10	0.18	J	0.22	0.18	L	0.17	0.20	J	0.18	0.20	J
be nzalde hyde	5	21	0.15	ND	0.13		ND	0.12		ND	0.14		ND	0.14	
isovaleraldehyde	0.1	500	0.18	ND	0.15		ND	0.15		ND	0.16		ND	0.17	
valeraldehyde	30	500	0.20	ND	0.17		ND	0.17		ND	0.18		ND	0.18	
o-tolualdehyde	-	21	0.34	ND	0.28		ND	0.28		ND	0.30		ND	0.30	
m-tolualde hyde	-	21	0.34	ND	0.28		ND	0.28		ND	0.30		ND	0.30	
p-tolualdehyde	-	21	0.26	ND	0.22		ND	0.21		ND	0.23		ND	0.24	
hexaldehyde	20	2000	0.34	ND	0.28		ND	0.27		0.08	0.30	J	0.08	0.30	J
2,5-dimethyl-benzaldehyde	-	21	0.22	0.07	0.18	J	0.06	0.18	J	0.07	0.19	J	0.07	0.19	J
heptaldehyde	50	2000	0.27	ND	0.22		ND	0.22		ND	0.24		ND	0.24	

Table 1. Carbonyl samples collected in Dish, TX, on June 16 and 17, 2010, in comparison to TCEQ short-term AMCVs.

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

John Sadlier Page 5 of 28 December 13, 2010

ANC VS.															
		Laborator	y ID	1	00648-000)7	1	00648-000)8	1	00648-000	9	1	00648-001	.0
		Sampling	Site		С			D			Е			F	
		Sample I	Date		6/16/2010			6/16/2010			6/16/2010			6/16/2010	
		Sample 7	l'ime		15:05			16:30			17:50			19:10	
		Short-term													
		Health													
Compound	Odor AMCV	AMCV	LOD	ppbv	SDL	Flag									
formaldehyde	500	41	2.04	4.80	1.60		4.80	2.10		4.10	1.80		3.60	1.60	
acetaldehyde	50	250	1.95	1.10	1.50	J	1.00	2.10	J	0.90	1.70	J	0.75	1.50	J
acetone	3600	2500	3.37	1.20	2.70	J	1.50	3.50	J	1.10	3.00	J	0.99	2.70	J
acrolein	3.6	1	1 0.31 N		0.24		ND	0.32		ND	0.27		0.09	0.24	J
propionaldehyde	5	21	0.51	0.21	0.40	J	0.26	0.53	J	0.20	0.45	J	0.18	0.40	J
crotonaldehyde	23	3	0.23	ND	0.18		ND	0.24		ND	0.21		ND	0.18	
methyl ethyl ketone/methacrolein	8.5	19	0.75	0.12	0.59	J	0.18	0.78	J	0.16	0.66	J	0.19	0.59	J
butyraldehyde	5	2700	0.22	0.15	0.17	J	0.17	0.23	J	0.14	0.19	J	0.12	0.17	J
be nzalde hyde	5	21	0.15	ND	0.12		ND	0.16		ND	0.14		ND	0.12	
isovaleraldehyde	0.1	500	0.18	ND	0.15		ND	0.19		ND	0.16		ND	0.15	
valeraldehyde	30	500	0.20	ND	0.16		ND	0.21		ND	0.18		ND	0.16	
o-tolualdehyde	-	21	0.34	ND	0.27		ND	0.36		ND	0.30		ND	0.27	
m-tolualde hyde	-	21	0.34	ND	0.27		ND	0.36		ND	0.30		ND	0.27	
p-tolualdehyde	-	21	0.26	ND	0.21		ND	0.28		ND	0.23		ND	0.21	
hexalde hyde	20	2000	0.34	0.07	0.27	J	0.08	0.35	J	0.07	0.30	J	ND	0.27	
2,5-dimethyl-benzaldehyde	-	21	0.22	0.06	0.17	J	0.09	0.23	J	0.07	0.19	J	0.06	0.17	J
heptaldehyde	50	2000	0.27	ND	0.22		ND	0.28		ND	0.24		ND	0.21	

Table 1 (continued). Carbonyl samples collected in Dish, TX, on June 16 and 17, 2010, in comparison to TCEQ short-term AMCVs.

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample

Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

John Sadlier Page 6 of 28 December 13, 2010

			Laboratory ID												
		Laborator	ry ID	1	00648-001	1	1	00648-001	2	1	00648-001	3	1	00648-001	4
		Sampling	Site		G			Н			Н			Ι	
		Sample I	Date		6/17/2010			6/17/2010			6/17/2010			6/17/2010	
		Sample 7	Fime		4:55			6:05			7:15			8:45	
		Short-term													
		Health													
Compound	Odor AMCV	AMCV	LOD	ppbv	SDL	Flag									
formaldehyde	500	41	2.04	3.30	1.60	L	2.70	1.80	L	3.20	1.60	L	2.50	1.70	L
acetaldehyde	50	250	1.95	0.73	1.50	J	0.64	1.70	J	0.63	1.50	J	0.68	1.60	J
acetone	3600	2500	3.37	0.87	2.70	J	0.79	2.90	J	0.74	2.70	J	0.98	2.80	J
acrolein	3.6	1	0.31	0.11	0.24	J	0.10	0.26	J	ND	0.24		0.06	0.25	J
propionaldehyde	5	21	0.51	0.15	0.40	J	0.14	0.43	J	0.15	0.40	J	0.25	0.41	J
crotonaldehyde	23	3	0.23	ND	0.18		ND	0.20		ND	0.18		ND	0.19	
methyl ethyl ketone/methacrolein	8.5	19	0.75	0.33	0.59	J	0.27	0.64	J	0.24	0.59	J	0.26	0.61	J
butyraldehyde	5	2700	0.22	0.11	0.17	J	ND	0.19		0.10	0.17	J	0.17	0.18	J
be nzalde hyde	5	21	0.15	0.06	0.12	J	ND	0.13		ND	0.12		ND	0.13	
isovaleraldehyde	0.1	500	0.18	ND	0.15		ND	0.16		ND	0.15		ND	0.15	
valeraldehyde	30	500	0.20	ND	0.16		ND	0.18		ND	0.16		ND	0.17	
o-tolualdehyde	-	21	0.34	ND	0.27		ND	0.29		ND	0.27		ND	0.28	
m-tolualde hyde	-	21	0.34	ND	0.27		ND	0.29		ND	0.27		ND	0.28	
p-tolualdehyde	-	21	0.26	ND	0.21		ND	0.23		ND	0.21		ND	0.22	
hexaldehyde	20	2000	0.34	0.08	0.27	J	0.07	0.29	J	0.07	0.27	J	0.10	0.28	J
2,5-dimethyl-benzaldehyde	-	21	0.22	0.06	0.17	J	0.07	0.19	J	0.07	0.17	J	0.11	0.18	J
heptaldehyde	50	2000	0.27	ND	0.21		ND	0.23		ND	0.21		ND	0.22	

Table 1 (continued). Carbonyl samples collected in Dish, TX, on June 16 and 17, 2010, in comparison to TCEQ short-term AMCVs.

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

John Sadlier Page 7 of 28 December 13, 2010

			Laboratory ID												
		Laborator	ry ID	1	00648-001	.5	1	00648-001	6	1	00648-001	7	1	00648-001	8
		Sampling	Site		А			J			K			L	
		Sample I	Date		6/17/2010			6/17/2010			6/17/2010			6/17/2010	
		Sample	Fime		10:15			11:55			13:25			21:00	
		Short-term													
		Health													
Compound	Odor AMCV	AMCV	LOD	ppbv	SDL	Flag									
formaldehyde	500	41	2.04	3.20	1.80	L	3.30	1.50	L	3.20	1.60	L	3.40	1.70	L
acetaldehyde	50	250	1.95	0.82	1.70	J	0.81	1.50	J	0.73	1.50	J	0.83	1.60	J
acetone	3600	2500	3.37	0.90	3.00	J	0.65	2.50	J	0.86	2.60	J	0.88	2.80	J
acrolein	3.6	1	0.31	ND	0.27		ND	0.23		ND	0.24		ND	0.25	
propionaldehyde	5	21	0.51	0.17	0.44	J	0.12	0.38	J	0.16	0.40	J	0.21	0.41	J
crotonaldehyde	23	3	3 0.23 N		0.20		ND	0.18		ND	0.18		ND	0.19	
methyl ethyl ketone/methacrolein	8.5	19	0.75	ND	0.65		0.11	0.56	J	0.09	0.59	J	0.15	0.61	J
butyralde hyde	5	2700	0.22	ND	0.19		ND	0.17		0.10	0.17	J	0.11	0.18	J
be nzalde hyde	5	21	0.15	ND	0.13		ND	0.12		ND	0.12		ND	0.13	
isovaleraldehyde	0.1	500	0.18	ND	0.16		ND	0.14		ND	0.15		ND	0.15	
valeraldehyde	30	500	0.20	ND	0.18		ND	0.15		ND	0.16		ND	0.17	
o-tolualdehyde	-	21	0.34	ND	0.30		ND	0.26		ND	0.27		ND	0.28	
m-tolualde hyde	-	21	0.34	ND	0.30		ND	0.26		ND	0.27		ND	0.28	
p-tolualdehyde	-	21	0.26	ND	0.23		ND	0.20		ND	0.21		ND	0.22	
hexaldehyde	20	2000	0.34	ND	0.30		ND	0.26		ND	0.27		0.08	0.28	J
2,5-dimethyl-benzaldehyde	-	21	0.22	0.12	0.19	J	0.06	0.16	J	0.07	0.17	J	ND	0.18	
heptaldehyde	50	2000	0.27	ND	0.24		ND	0.20		ND	0.21		ND	0.22	

Table 1 (continued). Carbonyl samples collected in Dish, TX, on June 16 and 17, 2010, in comparison to TCEQ short-term AMCVs.

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

John Sadlier Page 8 of 28 December 13, 2010

		Laborator	ry ID	1	00648-001	9	1	00648-002	20
		Sampling	Site		С			А	
		Sample I	Date		6/17/2010			6/17/2010	
		Sample 7	Гime		22:20			23:40	
		Short-term							
		Health							
Compound	Odor AMCV	AMCV	LOD	ppbv	SDL	Flag	ppbv	SDL	Flag
formaldehyde	500	41	2.04	4.20	2.00		3.90	1.60	
acetaldehyde	50	250	1.95	1.00	1.90	J	0.79	1.50	J
acetone	3600	2500	3.37	1.20	3.40	J	0.98	2.60	J
acrolein	3.6	1	0.31	0.15	0.30	J	0.12	0.24	J
propionaldehyde	5	21	0.51	0.22	0.50	J	0.19	0.40	J
crotonaldehyde	23	3	0.23	ND	0.23		ND	0.18	
methyl ethyl ketone/methacrolein	8.5	19	0.75	0.31	0.74	J	0.30	0.59	J
butyraldehyde	5	2700	0.22	0.25	0.22	L	ND	0.17	
be nzalde hyde	5	21	0.15	ND	0.15		ND	0.12	
isovaleraldehyde	0.1	500	0.18	ND	0.18		ND	0.15	
valeraldehyde	30	500	0.20	ND	0.20		ND	0.16	
o-tolualdehyde	-	21	0.34	ND	0.34		ND	0.27	
m-tolualde hyde	-	21	0.34	ND	0.34		ND	0.27	
p-tolualdehyde	_	21	0.26	ND	0.26		ND	0.21	
hexaldehyde	20	2000	0.34	0.09	0.34	J	0.08	0.27	J
2,5-dimethyl-benzaldehyde	-	21	0.22	0.09	0.21	J	0.07	0.17	J
heptaldehyde	50	2000	0.27	ND	0.27		ND	0.21	

Table 1 (continued). Carbonyl samples collected in Dish, TX, on June 16 and 17, 2010, in comparison to TCEQ short-term AMCVs.

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

John Sadlier Page 9 of 28 December 13, 2010

Table 2. Long-term I	Health AMCVs*
Compound	Long-term Health AMCV (ppb _v)
formaldehyde	8.9
acetaldehyde	25
acetone	250
acrolein	0.1
propionaldehyde	20
crotonaldehyde	0.3
methyl ethyl ketone/methacrolein	0.43
butyraldehyde	270
benzaldehyde	2.1
isovaleraldehyde	50
valeraldehyde	50
o-tolualdehyde	2.1
m-tolualdehyde	2.1
p-tolualdehyde	2.1
hexaldehyde	200
2,5-dimethyl-benzaldehyde	2.1
heptaldehyde	200

*Long-term AMCVs are provided for informational purposes only. It is not appropriate to compare a short-term concentration to a long-term AMCV.

John Sadlier Page 10 of 28 December 13, 2010

Formaldehyde Concentrations in Dish

Dish one-hour formaldehyde concentrations ranged from 2.5 to 4.8 ppb_v, with an average concentration of 3.6 ppb_v (3.22 - 3.98 ppb_v). In addition, the Dish one-hour average formaldehyde concentration of 3.6 ppb_v (3.22 - 3.98 ppb_v) is lower than the Dallas/Fort Worth area June one-hour average formaldehyde concentration of 6.35 ppb_v (5.77 - 6.93 ppb_v). Data are reported as the mean and 95% CI. The Dish one-hour average formaldehyde concentration is also lower than the average 2005 – 2008 statewide one-hour average concentration of 6 ppb_v. Carbonyl data is collected at seven stationary monitors in Texas (Table 3).

Tabl	e 3. Carbonyl monitoring site	es in Texas
City	Site Name	EPA ID
Houston	Channelview	<u>48-201-0026</u>
Houston	Houston Deer Park #2	48-201-1039
Houston	Clinton	48-201-1035
Dallas	Dallas Hinton	<u>48-113-0069</u>
Fort Worth	Forth Worth Northwest	<u>48-439-1002</u>
El Paso	El Paso Chamizal	48-141-0044
Not in a city	Karnack	48-203-0002

Formaldehyde Concentrations in General

The majority of formaldehyde entering the environment comes from combustion processes. Combustion sources that produce formaldehyde include diesel and gasoline-powered engines/automobiles, power plants, incinerators, refineries, and cigarettes (TCEQ 2008, ATSDR 1999). Formaldehyde can also be produced indirectly by the photochemical oxidation of formaldehyde precursors released from combustion processes (TCEQ 2008, ATSDR 1999).

Anthropogenic sources usually contribute most to formaldehyde concentrations in populated areas. Typical ambient concentrations of formaldehyde in populated areas can vary depending on local conditions and usually range from 0.8 – 16 ppb (ATSDR 1999). Concentrations can be higher in heavy traffic (up to 81 ppb) (ATSDR 1999). Formaldehyde concentrations in remote areas like the unpopulated Eniwetok Atoll in the Pacific Ocean are generally less than 0.8 ppb (ATSDR 1999).

As discussed in TCEQ (2008), the levels of formaldehyde in indoor air are often an order of magnitude higher (or more) than levels outdoors, depending on many factors (e.g., ventilation, indoor sources such as pressed wood products, carpets, paints, cooking) (IARC 2006). In US residential indoor air, including manufactured homes, reported mean levels range from approximately 10-374 ppb, with the majority of reported means falling below 40 ppb (IARC 2006). In US office building indoor air, the range of geometric mean concentrations reported for one study (Reynolds et al. 2001, as cited in IARC 2006) was approximately 1.4-10.8 ppb, and the median in another study (Shah and Singh 1988, as cited in IARC 2006) was reported to be 65 ppb.

Formaldehyde is also produced endogenously by the human body. Moser et al. (2005) reported a median concentration in human breath of 4.3 ppb with a maximum concentration of 73 ppb.

John Sadlier Page 11 of 28 December 13, 2010

Similarly, Kushch et al. (2008) reported the median formaldehyde concentration in human breath to be 4.9 ppb.

Based on the review of available literature, formaldehyde concentrations measured in Dish are within the range of concentrations typically measured in a populated area (ATSDR 1999) and are similar to concentrations measured in human breath (Moser et al. 2005, and Kushch et al. 2008).

Trend Analysis of VOCs Detected by Dish Airfield AutoGC and Carbonyls Detected in Dish

The TD conducted an analysis of VOC data collected on June 16 and 17, 2010, at the Dish Airfield AutoGC stationary air monitor in relation to carbonyl data collected on June 16 and 17, 2010, at various locations in Dish. This analysis was conducted to determine if there was a correlation between VOC and carbonyl concentrations. Wind rose graphics were developed using meteorological data from the Dish Airfield AutoGC for June 16 and 17, 2010 (Figures 2 and 3).

Carbonyls were detected in a relatively consistent pattern independent of sampling location in relation of location of potential oil and gas-related sources, time of day, and wind direction with formaldehyde, acetaldehyde, and acetone being the most abundant carbonyls detected. Figures 4 - 9 are bar graphs of carbonyl data collected at each mobile monitoring site.

Our analysis of VOC data indicated that the majority of detected VOCs trended upward/downward dependent on wind direction. Figures 11 - 16 are line graphs of VOC data in relation to wind direction (in degrees) collected at the Dish Airfield AutoGC monitor on June 16 and 17, 2010. Figure 10 shows how wind direction in degrees relates to cardinal direction. Blank and calibration runs occurred at 6:00 and 7:00 am, respectively, on June 16 and 8:00 and 9:00 am, respectively, on June 17, so no VOC data were collected during these time periods. Figure 11 illustrates an increase in concentrations of benzene and toluene that begins at approximately 1:00 am when wind direction changed slightly to originate from the south, southeast. Similar concentrations of benzene and toluene were detected at 10:00 am when winds originated from the south, southwest. Benzene and toluene concentrations decreased after 10:00 am as wind direction changed to originate from the south, southeast. Figures 12, 13, and 14 illustrate a similar pattern for some VOCs (e.g., m & p xylene, 1,2,3-trimethylbenzene, pentane, and isopentane) on June 16, 2010. On June 17, 2010, some VOCs (acetylene, propylene, ethylene, and propane) increased in concentration when wind direction shifted from the south, southwest to originate from the south, southeast at approximately 3:00 pm (Figures 15 and 16). Some VOCs (e.g., ethane, propane, butane, and isobutane) increased in concentration at 7:00 pm although wind direction remained out of the southeast (Figure 16).

Conclusions

- All reported target carbonyl concentrations were either non-detect or below their respective short-term AMCVs and are not of any short-term health or welfare concern.
- During the sampling period, carbonyls were detected in a relatively consistent pattern independent of sampling location in relation to possible oil and gas-related sources, time of day, and wind direction. In contrast, the majority of VOCs detected at the Dish

John Sadlier Page 12 of 28 December 13, 2010

Airfield AutoGC during the same time period trended upward/downward in concentration depending on wind direction. This may indicate VOC concentrations measured at the AutoGC were dependent on the location of oil and gas-related sources in relation to the AutoGC.

Formaldehyde concentrations measured in Dish are within the range of concentrations typically measured in a populated area (ATSDR 1999). The Dish one-hour average formaldehyde concentration of 3.6 ppb_v (3.22 – 3.98 ppb_v) is lower than the Dallas/Fort Worth area June one-hour average formaldehyde concentration of 6.35 ppb_v (5.77 – 6.93 ppb_v). Data are reported as the mean and 95% CI.

If you have any questions regarding the contents of this review, please do not hesitate to contact me at (512) 239-1822. If you have questions about the air monitoring project, please contact Tom Randolph at (512) 239-1218.

John Sadlier Page 13 of 28 December 13, 2010

Figure 2. Wind Rose Graphic Developed from Dish Airfield AutoGC Meteorological Data: June 16, 2010.

John Sadlier Page 14 of 28 December 13, 2010

Figure 3. Wind Rose Graphic Developed from Dish Airfield AutoGC Meteoroligical Data: June 17, 2010.

John Sadlier Page 15 of 28 December 13, 2010

Figure 4. Carbonyl Data from Monitoring Sites A and C.

John Sadlier Page 16 of 28 December 13, 2010

Figure 5. Carbonyl Data from Monitoring Sites H and B.

John Sadlier Page 17 of 28 December 13, 2010

John Sadlier Page 18 of 28 December 13, 2010

John Sadlier Page 19 of 28 December 13, 2010

Figure 8. Carbonyl Data from Monitoring Sites K and I.

John Sadlier Page 20 of 28 December 13, 2010

Figure 9. Carbonyl Data from Monitoring Sites J and L.

John Sadlier Page 21 of 28 December 13, 2010

Figure 10. Wind Direction in Degrees in Relation to Cardinal Direction.

NNE

NE

ŚΕ

ŚSE

ENE

Е

ESE

John Sadlier Page 22 of 28 December 13, 2010

*Concentration scale varies from figure to figure

Figure 11. VOC Concentrations and Wind Direction Monitored by Dish Airfield AutoGC on 6/16/2010.

John Sadlier Page 23 of 28 December 13, 2010

*Concentration scale varies from figure to figure

Figure 12. VOC Concentrations and Wind Direction Monitored by Dish Airfield AutoGC on 6/16/2010.

John Sadlier Page 24 of 28 December 13, 2010

*Concentration scale varies from figure to figure

Figure 13. VOC Concentrations and Wind Direction Monitored by Dish Airfield AutoGC on 6/16/2010.

John Sadlier Page 25 of 28 December 13, 2010

*Concentration scale varies from figure to figure

John Sadlier Page 26 of 28 December 13, 2010

*Concentration scale varies from figure to figure

Figure 15. VOC Concentrations and Wind Direction Monitored by Dish Airfield AutoGC on 6/17/2010.

John Sadlier Page 27 of 28 December 13, 2010

*Concentration scale varies from figure to figure

Figure 16. VOC Concentrations and Wind Direction Monitored by Dish Airfield AutoGC on 6/17/2010.

John Sadlier Page 28 of 28 December 13, 2010

References

- Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological Profile for Formaldehyde.
- Hazardous Substances Data Bank (HSDB). 2010. <u>http://toxnet.nlm.nih.gov/</u>. Last accessed on December 7, 2010.
- Health Canada. 2001. Canadian Environmental Protection Act. Priority Substances List assessment report - Formaldehyde. Ottawa, Ontario, Minister of Public Works and Government Services.
- International Agency for Research on Cancer (IARC). 2006b. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Vol. 88: Formaldehyde, 2-butoxyethanol, and 1-tert-butoxypropan-2-ol. World Health Organization, Lyon, France.
- Kushch, I; Schwarz, K; Schwentner, L; et al. (2008) Compounds enhanced in a mass spectrometric profile of smokers' exhaled breath versus non-smokers as determined in a pilot study using PTR-MS. J Breath Res 2:1-26.
- Moser B, Bodrogi F, Eibl G, et al. 2005. Mass spectrometric profile of exhaled breath-field study by PTR-MS. Respir Physiol Neurobiol 145:295-300.
- Texas Commission on Environmental Quality (TCEQ). 2008. Development Support Document for Formaldehyde.

Background

In response to observations and findings associated with oil and natural gas production and processing in the Barnett Shale Formation area in August, October, November, and December 2009, and March and April 2010, the Texas Commission on Environmental Quality made it a priority to conduct monitoring for 17 carbonyl compounds from June 15 - 18, 2010, at new and previously monitored sites in the Dish, Texas, Denton County area.

General Monitoring Information

Monitoring staff collected samples downwind of natural gas production or processing equipment where formaldehyde might be present as a by-product of combustion. Monitoring sites were designated based on individual physical locations distinguished by a specific address or geographic location.

Monitoring and field assessments during this project were conducted at multiple natural gas emission source types involved in the production and processing of products, including but not limited to condensate and product storage tank batteries and compressor stations. Samples were collected downwind of these source types, and general airshed samples were also collected in the Dish, Texas area. A GasFindIR (infrared) camera was used to document emissions and to determine where quantitative downwind carbonyl samples should be collected. One-hour carbonyl samples were collected downwind of the identified sources, and the samples were subsequently analyzed in the TCEQ Organic Analysis Laboratory in Austin, Texas, using a reverse phase C-18 column and either an Ultraviolet/Visible (UV/VIS) photo diode array (PDA) detector or a diode array detector (DAD).

Dish, Texas Area Observations and Findings

Monitoring staff surveyed a total of 12 locations in and around Dish, Texas (see Attachment 1), and collected 18 carbonyl samples downwind of various sources (see Attachment 2). Meteorological data including wind speed, wind direction, and ambient temperature was also collected (see Attachment 3). Twelve samples were collected downwind of a variety of facilities, including Crosstex Energy Services Dish Compressor Station (Site 1), Chesapeake Energy Ponder Compressor Station (Site 1), Atmos Energy Corporation Ponder and Energy Transfer Hog Branch Compressor Stations (Site 1, 3, 8, and 9), Enbridge Gathering North Texas LP Justin East Compressor Station (Sites 3, 8, and 9), Devon Energy Company (Co.) LP DCCO 3, S.H. Griffin Estate 3, 17H and 18H (Site 4), and Devon Energy Co. LP DCCO 3, S.H. Griffin Estate, 20H, 21H, and 23H (Site 11). Six general airshed samples were also collected (Sites 2, 5, 6, 7, 10, and 12).

Though formaldehyde was the main compound of interest, samples were analyzed for a variety of other target analytes including: acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, methyl ethyl ketone/methacrolein, butyraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, hexaldehyde, 2,5-dimethyl-benzaldehyde, and heptaldehyde. Of these samples, collected during both daytime and nighttime hours, the maximum one-hour concentration of 4.8 parts per billion by volume (ppbv) of formaldehyde was detected in Samples DT1006C-05 and DT1006C-06 on June 16, 2010, from 15:05 - 16:05 and 16:30 - 17:30, respectively. In addition, the maximum one-hour acrolein concentration of 0.15 ppbv was measured in Sample DT1006C-17 on June 17, 2010, from 22:20 - 23:20.

ATTACHMENT 1 SAMPLE LOCATIONS/MAP

Attachment 1

Sample Locations Dish, Texas Monitoring Project June 15 - 18, 2010

		GPS Coo	rdinates
Number	Description	North	West
		Latitude	Longitude
1	At the Dish AutoGC Station, approximately 0.1 mile east of Tim Donald Road	33.1308977	-97.2975374
2	On Chisum Road, approximately 0.1 mile west of Farm-to-Market (FM) 156	33.1321898	-97.2916086
3	On Chisum Road, approximately 0.35 mile west of FM 156	33.1321889	-97.2957230
4	On Tim Donald Road, approximately 0.1 mile north of Herford Drive	33.1435288	-97.2997292
5	At the intersection of Angus Drive and Swafford Road	33.1505903	-97.3048761
6	At the intersection of Angus Drive and Eakin Cemetary Road	33.1362930	-97.3051421
7	At the intersection of Angus Drive and Herford Drive	33.1423290	-97.3052054
8	On Chisum Road, approximately 0.25 mile west of FM 156	33.1321681	-97.2942210
9	On Chisum Road, approximately 0.3 mile west of FM 156	33.1322145	-97.2948836
10	On Swafford Road, approximately 0.05 mile west of FM 156	33.1506203	-97.2908124
11	On Wilton Terrace, approximately 0.3 mile north of Eakin Cemetary Road	33.1406919	-97.2982075
12	At the intersection of Littlefield Drive and Virginia Drive	33.1380147	-97.2917352

GPS = Global Positioning System.

Map 1

ATTACHMENT 2 CARBONYL SAMPLE RESULTS

Attachment 2

Carbonyl Data Dish, Texas Monitoring Project June 15 - 18, 2010 Van 555

Laboratory ID		100648	8-0003		100648		100648	8-0005		100648-0006			
Field ID		DT100	6C-01		DT100	6C-02		DT100	6C-03		DT100	6C-04	
Sample Date		6/16	6/10		6/16	6/10		6/16	6/10		6/16	6/10	
Sample Time		09:20	- 10:20		10:50	- 11:50		12:25 -	13:25		13:50 -	- 14:50	
Sample Period		1	l		1	l		1	-		1	l	
Sample Location ^a		1	l		1	l		2	2		3	3	
Potential Sources		Crosstex Energ Compressor Stat Energy Ponder Co	y Services ion, Ches ompresso	s Dish apeake r Station	Crosstex Energ Compressor Stat Energy Ponder Co	y Service ion, Ches ompresso	s Dish apeake r Station	Airshed	Sample		Atmos Energy Co Ponder, Energ Branch, and Ent North Texas I	rporatior y Transfe oridge Ga _P Justin	n (Corp.) r Hog thering East
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag
formaldehyde	2.0	2.8	1.7	L	4.5	1.7		4.3	1.8		4.2	1.8	
acetaldehyde	2.0	0.69 1.6 J 1.2 2.8 J			0.78	1.6	J	1.2	1.7	J	1.1	1.8	J
acetone	3.4	1.2	1.2 2.8 J ND 0.25			2.7	J	1.5	3.0	J	1.3	3.0	J
acrolein	0.31	ND	1.2 2.8 J ND 0.25		ND	0.25		ND	0.27		ND	0.27	
propionaldehyde	0.51	0.15	ND 0.25 0.15 0.42 J		0.17	0.41	J	0.24	0.45	J	0.21	0.45	J
crotonaldehyde	0.23	ND	0.19		ND	0.19		ND	0.21		ND	0.21	
methyl ethyl													
ketone/methacrolein	0.75	0.19	0.62	J	0.12	0.61	J	0.14	0.66	J	0.11	0.67	J
butyraldehyde	0.22	0.10	0.18	J	0.22	0.18	L	0.17	0.20	J	0.18	0.20	J
benzaldehyde	0.15	ND	0.13		ND	0.12		ND	0.14		ND	0.14	
isovaleraldehyde	0.18	ND	0.15		ND	0.15		ND	0.16		ND	0.17	
valeraldehyde	0.20	ND	0.17		ND	0.17		ND	0.18		ND	0.18	
o-tolualdehyde	0.34	ND	0.28		ND	0.28		ND	0.30		ND	0.30	
m-tolualdehyde	0.34	ND	0.28		ND	0.28		ND	0.30		ND	0.30	
p-tolualdehyde	0.26	ND	0.22		ND	0.21		ND	0.23		ND	0.24	
hexaldehyde	0.34	ND	0.28		ND	0.27		0.08	0.30	J	0.08	0.30	J
2,5-dimethyl-benzaldehyde	0.22	0.07	0.18	J	0.06	0.18	J	0.07	0.19	J	0.07	0.19	J
heptaldehyde	0.27	ND	0.07 0.18 J ND 0.22			0.22		ND	0.24		ND	0.24	

Laboratory ID		100648-0	007		100648-0		100648-0	100648-0010 DT1006C-08				100648-0011 DT1000C 00				
Field ID		DT1006C	-05		DT1006C	2-06		DT1006C	-07		DT1006C	-08		DT1006C	-09	
Sample Date		6/16/1)		6/16/1	0		6/16/1	0		6/16/1	0		6/17/1	0	
Sample Time		15:05 - 16	:05		16:30 - 17	/:30		17:50 - 18	:50		19:10 - 20):10		04:55 - 05	5:55	
Sample Period		1			1			1			1			2		
Sample Location ^a		3			4			5			7			8		
Potential Sources		Atmos Energy Co Energy Transfer H and Enbridge C North Texas LP J Compressor S	Atmos Energy Corp. Ponder, Energy Transfer Hog Branch and Enbridge Gathering North Texas LP Justin East Compressor Stations Concentration 4.8			r, h, Devon Energy Company (Co.) LP DCCO 3, S.H. Griffin Estate 17H and 18H and DCCO 3, S.H. Griffin Estate 3					Airshed Sa	mple		Atmos Energy Co Energy Transfer F and Enbridge C North Texas LP C Compressor S	rp. Po Hog Br Gather Justin Statior	nder, 'anch, ing East 15
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag
formaldehyde	2.0	4.8	1.6		4.8	2.1		4.1	1.8		3.6	1.6		3.3	1.6	L
acetaldehyde	2.0	1.1	1.5	J	1.0	2.1	J	0.90	1.7	J	0.75	1.5	J	0.73	1.5	J
acetone	3.4	1.2	2.7	J	1.5	3.5	J	1.1	3.0	J	1.0	2.7	J	0.87	2.7	J
acrolein	0.31	ND	0.24		ND	0.32		ND	0.27		0.09	0.24	J	0.11	0.24	J
propionaldehyde	0.51	0.21	0.40	J	0.26	0.53	J	0.20	0.45	J	0.18	0.40	J	0.15	0.40	J
crotonaldehyde	0.23	ND	0.18		ND	0.24		ND	0.21		ND	0.18		ND	0.18	
methyl ethyl ketone/methacrolein	0.75	0.12	0.59	J	0.18	0.78	J	0.16	0.66	J	0.19	0.59	J	0.33	0.59	J
butyraldehyde	0.22	0.15	0.17	J	0.17	0.23	J	0.14	0.19	J	0.12	0.17	J	0.11	0.17	J
benzaldehyde	0.15	ND	0.12		ND	0.16		ND	0.14		ND	0.12		0.06	0.12	J
isovaleraldehyde	0.18	ND	0.15		ND	0.19		ND	0.16		ND	0.15		ND	0.15	
valeraldehyde	0.20	ND	0.16		ND	0.21		ND	0.18		ND	0.16		ND	0.16	
o-tolualdehyde	0.34	ND	0.27		ND	0.36		ND	0.30		ND	0.27		ND	0.27	
m-tolualdehyde	0.34	ND	0.27		ND	0.36		ND	0.30		ND	0.27		ND	0.27	
p-tolualdehyde	0.26	ND	0.21		ND	0.28		ND	0.23		ND	0.21		ND	0.21	
hexaldehyde	0.34	0.07	0.27	J	0.08	0.35	J	0.07	0.30	J	ND	0.27		0.08	0.27	J
2,5-dimethyl-benzaldehyde	0.22	0.06	0.17	J	0.09	0.23	J	0.07	0.19	J	0.06	0.17	J	0.06	0.17	J
heptaldehyde	0.27	ND	0.22		ND	0.28		ND	0.24		ND	0.21		ND	0.21	

Laboratory ID		100648-0	012		100648-0	013	100648-0014 DT1006C-12				100648-0	015		100648-0016		
Field ID		DT1006C	-10		DT10060	C-11		DT1006C	-12		DT10060	2-13		DT1006C	,-14	
Sample Date		6/17/1)		6/17/1	0		6/17/1)		6/17/1	0		6/17/10)	
Sample Time		06:05 - 07	7:05		07:15 - 08	3:15		08:45 - 09	9:45		10:15 - 11	:15		11:55 - 12	:55	
Sample Period		2			2			2			2			2		
Sample Location ^a		9			9			6			1			10		
Potential Sources		Atmos Energy Co Energy Transfer H and Enbridge C North Texas LP Compressor S	rp. Po Hog Br Gatheri Justin Station	nder, anch, ing East s	Atmos Energy Co Energy Transfer F and Enbridge C North Texas LP Compressor S	rp. Po Hog Bi Gather Justin Statior	nder, canch, ing East 15	Airshed Sa	mple		Crosstex Energ Dish Compressor Chesapeake Ener Compressor	y Servi Statio rgy Po Statio	ices n and nder n	Airshed Sample		
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag
formaldehyde	2.0	2.7	1.8	L	3.2	1.6	L	2.5	1.7	L	3.2	1.8	L	3.3	1.5	L
acetaldehyde	2.0	0.64	1.7	J	0.63	1.5	J	0.68	1.6	J	0.82	1.7	J	0.81	1.5	J
acetone	3.4	0.79	2.9	J	0.74	2.7	J	0.98	2.8	J	0.90	3.0	J	0.65	2.5	J
acrolein	0.31	0.10	0.26	J	ND	0.24		0.06	0.25	J	ND	0.27		ND	0.23	
propionaldehyde	0.51	0.14	0.43	J	0.15	0.40	J	0.25	0.41	J	0.17	0.44	J	0.12	0.38	J
crotonaldehyde	0.23	ND	0.20		ND	0.18		ND	0.19		ND	0.20		ND	0.18	
methyl ethyl																
ketone/methacrolein	0.75	0.27	0.64	J	0.24	0.59	J	0.26	0.61	J	ND	0.65		0.11	0.56	J
butyraldehyde	0.22	ND	0.19		0.10	0.17	J	0.17	0.18	J	ND	0.19		ND	0.17	
benzaldehyde	0.15	ND	0.13		ND	0.12		ND	0.13		ND	0.13		ND	0.12	
isovaleraldehyde	0.18	ND	0.16		ND	0.15		ND	0.15		ND	0.16		ND	0.14	
valeraldehyde	0.20	ND	0.18		ND	0.16		ND	0.17		ND	0.18		ND	0.15	
o-tolualdehyde	0.34	ND	0.29		ND	0.27		ND	0.28		ND	0.30		ND	0.26	
m-tolualdehyde	0.34	ND	0.29		ND	0.27		ND	0.28		ND	0.30		ND	0.26	
p-tolualdehyde	0.26	ND	0.23		ND	0.21		ND	0.22		ND	0.23		ND	0.20	
hexaldehyde	0.34	0.07	0.29	J	0.07	0.27	J	0.10	0.28	J	ND	0.30		ND	0.26	
2,5-dimethyl-benzaldehyde	0.22	0.07	0.19	J	0.07	0.17	J	0.11	0.18	J	0.12	0.19	J	0.06	0.16	J
heptaldehyde	0.27	ND	0.23		ND	0.21		ND	0.22		ND	0.24		ND	0.20	

Laboratory ID		100648	00648-0017 100648-0018 100648-		00648-0019		100648-0020						
Field ID		DT100	6C-15		DT100	06C-16		DT1006	C-17		DT10060	2-18	
Sample Date		6/17	/10		6/1	7/10		6/17/1	10	6/17 - 6/18/10			
Sample Time		13:25 -	14:25		21:00	- 22:00		22:20 - 2	3:20		23:40 - 00	0:40	
Sample Period		2				3		3 3					
Sample Location ^a		11	l		1	2		3 1					
Potential Sources		Devon Energy Co. LP DCCO 3, S.H. Griffin Estate 20H, 21H, and 23H		Airshed Sample		Atmos Energy Corp. Ponder, Energy Transfer Hog Branch, and Enbridge Gathering North Texas LP Justin East Compressor Stations		Atmos Energy Co Energy Transfer I and Chesapeal Ponder Compress	orp. Pon Hog Bra ke Ener sor Stat	ıder, ınch, gy tions			
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag
formaldehyde	2.0	3.2	1.6	L	3.4	1.7	L	4.2	2.0		3.9	1.6	
acetaldehyde	2.0	0.73	1.5	J	0.83	1.6	J	1.0	1.9	J	0.79	1.5	J
acetone	3.4	0.86	2.6	J	0.88	2.8	J	1.2	3.4	J	0.98	2.6	J
acrolein	0.31	ND	0.24		ND	0.25		0.15	0.30	J	0.12	0.24	J
propionaldehyde	0.51	0.16	0.40	J	0.21	0.41	J	0.22	0.50	J	0.19	0.40	J
crotonaldehyde	0.23	ND	0.18		ND	0.19		ND	0.23		ND	0.18	
methyl ethyl													
ketone/methacrolein	0.75	0.09	0.59	J	0.15	0.61	J	0.31	0.74	J	0.30	0.59	J
butyraldehyde	0.22	0.10	0.17	J	0.11	0.18	J	0.25	0.22	L	ND	0.17	
benzaldehyde	0.15	ND	0.12		ND	0.13		ND	0.15		ND	0.12	
isovaleraldehyde	0.18	ND	0.15		ND	0.15		ND	0.18		ND	0.15	
valeraldehyde	0.20	ND	0.16		ND	0.17		ND	0.20		ND	0.16	
o-tolualdehyde	0.34	ND	0.27		ND	0.28		ND	0.34		ND	0.27	
m-tolualdehyde	0.34	ND	0.27		ND	0.28		ND	0.34		ND	0.27	
p-tolualdehyde	0.26	ND	0.21		ND	0.22		ND	0.26		ND	0.21	
hexaldehyde	0.34	ND	0.27		0.08	0.28	J	0.09	0.34	J	0.08	0.27	J
2,5-dimethyl-benzaldehyde	0.22	0.07	0.17	J	ND	0.18		0.09	0.21	J	0.07	0.17	J
heptaldehyde	0.27	ND	0.21		ND	0.22		ND	0.27		ND	0.21	

^aSee Table 1 and Map for sample location information.

All concentrations are reported in parts per billion by volume (ppbv).

J = reported concentration is below the Sample Detection Limit (SDL).

L = reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit.

LOD = Limit of Detection, based on a 60-liter sample volume.

ND = not detected.

ATTACHMENT 3 METEOROLOGICAL DATA

Attachment 3

Carbonyl Meteorological Data Dish, Texas Monitoring Project June 15 - 18, 2010 Van 555

Date Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
-----------	---------------------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-01

6/16/10	09:25	1	11	203	85
6/16/10	09:30	1	11	203	85
6/16/10	09:35	1	10	191	85
6/16/10	09:40	1	9	184	86
6/16/10	09:45	1	8	198	86
6/16/10	09:50	1	8	204	87
6/16/10	09:55	1	8	195	87
6/16/10	10:00	1	9	187	86
6/16/10	10:05	1	9	197	87
6/16/10	10:10	1	10	196	87
6/16/10	10:15	1	10	203	87
6/16/10	10:20	1	10	193	87

6/16/10	10:55	1	9	206	88
6/16/10	11:00	1	8	212	88
6/16/10	11:05	1	8	214	89
6/16/10	11:10	1	9	199	89
6/16/10	11:15	1	8	207	89
6/16/10	11:20	1	7	207	90
6/16/10	11:25	1	7	212	89
6/16/10	11:30	1	9	216	90
6/16/10	11:35	1	8	196	90
6/16/10	11:40	1	11	189	90
6/16/10	11:45	1	9	184	90
6/16/10	11:50	1	8	183	90

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-03

6/16/10	12:30	2	8	176	92
6/16/10	12:35	2	8	161	93
6/16/10	12:40	2	6	183	93
6/16/10	12:45	2	8	153	93
6/16/10	12:50	2	9	150	93
6/16/10	12:55	2	8	149	93
6/16/10	13:00	2	8	154	94
6/16/10	13:05	2	9	154	93
6/16/10	13:10	2	7	177	94
6/16/10	13:15	2	9	147	94
6/16/10	13:20	2	9	153	94
6/16/10	13:25	2	9	167	94

6/16/10	13:55	3	9	179	94
6/16/10	14:00	3	10	174	94
6/16/10	14:05	3	9	176	94
6/16/10	14:10	3	7	166	94
6/16/10	14:15	3	6	154	94
6/16/10	14:20	3	6	154	95
6/16/10	14:25	3	8	172	95
6/16/10	14:30	3	6	155	95
6/16/10	14:35	3	5	144	95
6/16/10	14:40	3	7	158	95
6/16/10	14:45	3	6	142	95
6/16/10	14:50	3	5	127	94

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-05 6/16/10 15:10 6/16/10 15:15 6/16/10 15:20 6/16/10 15:25 6/16/10 15:30 6/16/10 15:35 6/16/10 15:40 6/16/10 15:45 6/16/10 15:50 6/16/10 15:55 6/16/10 16:00 6/16/10 16:05

6/16/10	16:35	4	9	152	96
6/16/10	16:40	4	9	155	95
6/16/10	16:45	4	9	148	94
6/16/10	16:50	4	9	152	95
6/16/10	16:55	4	10	150	96
6/16/10	17:00	4	9	140	96
6/16/10	17:05	4	10	154	96
6/16/10	17:10	4	9	154	96
6/16/10	17:15	4	13	156	95
6/16/10	17:20	4	9	144	95
6/16/10	17:25	4	9	139	96
6/16/10	17:30	4	10	149	96

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-07 6/16/10 17:55 6/16/10 18:00 6/16/10 18:05 6/16/10 18:10 6/16/10 18:15 6/16/10 18:20 6/16/10 18:25 6/16/10 18:30 6/16/10 18:35 6/16/10 18:40 6/16/10 18:45 6/16/10 18:50

6/16/10	19:15	7	9	147	93
6/16/10	19:20	7	9	157	93
6/16/10	19:25	7	9	160	93
6/16/10	19:30	7	9	150	93
6/16/10	19:35	7	8	151	93
6/16/10	19:40	7	8	149	92
6/16/10	19:45	7	8	148	92
6/16/10	19:50	7	9	147	92
6/16/10	19:55	7	10	143	92
6/16/10	20:00	7	9	145	92
6/16/10	20:05	7	8	145	91
6/16/10	20:10	7	8	150	91

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-09

6/17/10	05:00	8	4	160	80
6/17/10	05:05	8	4	162	79
6/17/10	05:10	8	4	166	79
6/17/10	05:15	8	4	171	79
6/17/10	05:20	8	3	172	79
6/17/10	05:25	8	3	169	79
6/17/10	05:30	8	4	169	79
6/17/10	05:35	8	5	167	79
6/17/10	05:40	8	4	165	78
6/17/10	05:45	8	5	172	78
6/17/10	05:50	8	5	171	78
6/17/10	05:55	8	5	176	78

6/17/10	06:10	9	6	178	78
6/17/10	06:15	9	5	168	78
6/17/10	06:20	9	6	168	78
6/17/10	06:25	9	5	168	78
6/17/10	06:30	9	6	168	78
6/17/10	06:35	9	7	165	78
6/17/10	06:40	9	6	166	78
6/17/10	06:45	9	5	170	78
6/17/10	06:50	9	6	173	78
6/17/10	06:55	9	7	171	78
6/17/10	07:00	9	7	174	78
6/17/10	07:05	9	7	174	79

Attachment 3	3 ((continued)
--------------	-----	-------------

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-11 6/17/10 07:20 6/17/10 07:25 6/17/10 07:30 6/17/10 07:35 6/17/10 07:40 6/17/10 07:45 6/17/10 07:50 6/17/10 07:55 6/17/10 08:00 6/17/10 08:05 6/17/10 08:10 6/17/10 08:15

		_			
6/17/10	08:50	6	9	191	83
6/17/10	08:55	6	9	189	83
6/17/10	09:00	6	12	196	83
6/17/10	09:05	6	10	196	84
6/17/10	09:10	6	9	190	84
6/17/10	09:15	6	12	191	84
6/17/10	09:20	6	11	200	84
6/17/10	09:25	6	10	192	85
6/17/10	09:30	6	10	185	85
6/17/10	09:35	6	8	190	86
6/17/10	09:40	6	12	182	85
6/17/10	09:45	6	11	181	85

Attachment 3	3 ((continued)
--------------	-----	-------------

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-13 6/17/10 10:20 6/17/10 10:25 6/17/10 10:30 6/17/10 10:35 6/17/10 10:40 6/17/10 10:45 6/17/10 10:50 6/17/10 10:55 6/17/10 11:00 6/17/10 11:05 6/17/10 11:10 6/17/10 11:15

6/17/10	12:00	10	16	188	91
6/17/10	12:05	10	15	181	92
6/17/10	12:10	10	14	191	91
6/17/10	12:15	10	16	196	91
6/17/10	12:20	10	16	187	92
6/17/10	12:25	10	14	196	92
6/17/10	12:30	10	18	182	92
6/17/10	12:35	10	17	194	93
6/17/10	12:40	10	15	184	93
6/17/10	12:45	10	13	192	93
6/17/10	12:50	10	13	188	93
6/17/10	12:55	10	14	196	93

Attachment	3	(continued)
------------	---	-------------

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

Sample DT1006C-15 6/17/10 13:30 6/17/10 13:35 6/17/10 13:40 6/17/10 13:45 6/17/10 13:50 6/17/10 13:55 6/17/10 14:00 6/17/10 14:05 6/17/10 14:10 6/17/10 14:15 6/17/10 14:20 6/17/10 14:25

6/17/10	21:05	12	6	156	89
6/17/10	21:10	12	7	158	89
6/17/10	21:15	12	7	159	89
6/17/10	21:20	12	7	156	89
6/17/10	21:25	12	7	155	88
6/17/10	21:30	12	6	155	88
6/17/10	21:35	12	6	156	88
6/17/10	21:40	12	8	159	88
6/17/10	21:45	12	8	156	88
6/17/10	21:50	12	7	156	87
6/17/10	21:55	12	7	159	87
6/17/10	22:00	12	6	153	87

Attachment 3	(continued)
--------------	-------------

Date	Time	Site ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Average Temperature (degrees F)
------	------	-------------------	-----------------------------------	--	---------------------------------------

6/17/10 22:25 6/17/10 22:30 6/17/10 22:35 6/17/10 22:40 6/17/10 22:45 6/17/10 22:50 6/17/10 22:55 6/17/10 23:00 6/17/10 23:05 6/17/10 23:10 6/17/10 23:15 6/17/10 23:20

Sample DT1006C-17

Sample DT1006C-18

6/17/10	99.45	1	ß	161	96
6/1//10	23:43	1	0	101	80
6/17/10	23:50	1	7	154	85
6/17/10	23:55	1	8	160	86
6/18/10	00:00	1	8	154	86
6/18/10	00:05	1	8	155	85
6/18/10	00:10	1	8	162	86
6/18/10	00:15	1	8	166	85
6/18/10	00:20	1	6	168	85
6/18/10	00:25	1	5	164	85
6/18/10	00:30	1	6	152	84
6/18/10	00:35	1	5	154	84
6/18/10	00:40	1	6	158	84

^aSee Table 1 and Map for site location information.

^bAll wind direction data based on magnetic north.

Laboratory and Quality Assurance Section P.O. Box 13087 Austin, Texas 78711 (512) 239-1716

Laboratory Analysis Results ACL Number: 100648

ACL Lead: Karen Bachtel

Region: T04

Date Received: 6/18/2010

Project(s): Dish Texas Monitoring Project

Facility(ies) Sampled	City	County	Facility Type
Dish Area Comp. Sta. & Nat. Gas Gatherin	Dish	Denton	Oil and Gas Extraction

Laboratory Procedure(s) Performed:

Analysis: AMOR002

Determination of Aldehydes and Ketones in Ambient Air Samples Collected on Sep-Pak Dinitrophenylhydrazine (DNPH) Coated Silica Cartridges by High Performance Liquid Chromatography (HPLC) Using Modified Method TO-11

Procedure:

Ambient air samples are collected using DNPH-coated cartridges. Samples are extracted using acetonitrile and water and brought to a final volume of 5.0 ml. Extracts are analyzed using an HPLC with a Waters Symmetry C18 column to achieve separation and a Ultra Violet/Visible (UV/VIS) detector. Analytes are quantitated using external standards and the average blank values are subtracted from the measured values to correct for positive bias inherent to the sampling technique. This method is based on the specific reaction of organic aldehyde and ketone compounds with DNPH-coated cartridges in the presence of an acid to form stable derivatives.

Sample(s) Received

Field ID Number: DT1006C-FB Sampling Site: A Comments:	Laboratory Sample Number: 100648-0001FB Sampled by: Tom Randolph / Rober Date & Time Sampled: 06/16/10 09:20:00 Valid Sample: Yes
At the Dish, TX Auto GC Site ~	- 0.1 mile E from Tim Donald Rd
Field ID Number: DT1006C-TB Sampling Site: N/A Comments: TCEQ Bldg B Room 143	Laboratory Sample Number: 100648-0002TB Sampled by: Tom Randolph Date & Time Sampled: 06/18/10 14:30:00 Valid Sample: Yes
Field ID Number: DT1006C-01 Sampling Site: A Comments:	Laboratory Sample Number: 100648-0003 Sampled by: Tom Randolph / Rober Date & Time Sampled: 06/16/10 09:20:00 Valid Sample: Yes
At the Dish, TX Auto GC Site ~	V.1 mile E from 1 im Donald Rd
Field ID Number: DT1006C-01D Sampling Site: A Comments:	Laboratory Sample Number: 100648-0003FD Sampled by: Tom Randolph / Rober Date & Time Sampled: 06/16/10 09:20:00 Valid Sample: Yes
At the Dish, TX Auto GC Site ~	0.1 mile E from Tim Donald Rd
Field ID Number: DT1006C-02 Sampling Site: A Comments:	Laboratory Sample Number: 100648-0004 Sampled by: Tom Randolph / Rober Date & Time Sampled: 06/16/10 10:50:00 Valid Sample: Yes
At the Dish TX Auto GC Site ~	0.1 mile E from Tim Donald Rd

Laboratory and Quality Assurance Section P.O. Box 13087 Austin, Texas 78711 (512) 239-1716

Laboratory Analysis Results ACL Number: 100648

Sample(s) Received

Field ID Number: DT1006C-02MS Sampling Site: A Comments:	Laboratory Sample Number: 100648-0004MS Sampled by: Tom Randolph / Rober Date & Time Sampled: 06/16/10 10:50:00 Valid Sample: Yes
At the Dish, TX Auto GC Site ~	- 0.1 mile E from Tim Donald Rd
Field ID Number: DT1006C-02MSD Sampling Site: A Comments:	Laboratory Sample Number: 100648-0004MSD Sampled by: Tom Randolph / Rober Date & Time Sampled: 06/16/10 10:50:00 Valid Sample: Yes
At the Dish, TX Auto GC Site ~	0.1 mile E from Tim Donald Rd
Field ID Number: DT1006C-03 Sampling Site: B Comments:	Laboratory Sample Number: 100648-0005Sampled by: Robert EbyDate & Time Sampled: 06/16/1012:25:00Valid Sample: Yes
On Chisum Rd ~ 0.1 mile West	from FM 156
Field ID Number: DT1006C-04 Sampling Site: C	Laboratory Sample Number: 100648-0006Sampled by: Tom Randolph / RoberDate & Time Sampled: 06/16/1013:50:00Valid Sample: Yes
On Chisum Rd ~ 0.35 mile Wes	t from FM 156
Field ID Number: DT1006C-05 Sampling Site: C Comments:	Laboratory Sample Number: 100648-0007Sampled by: Tom RandolphDate & Time Sampled: 06/16/1015:05:00Valid Sample: Yes
On Chisum Rd ~ 0.35 mile Wes	t from FM 156
Field ID Number: DT1006C-06 Sampling Site: D Comments:	Laboratory Sample Number: 100648-0008Sampled by: Tom Randolph / RoberDate & Time Sampled: 06/16/1016:30:00Valid Sample: Yes
On Tim Donald Rd ~ 0.1 mile N	lorth of Hereford Dr
Field ID Number: DT1006C-07 Sampling Site: E	Laboratory Sample Number: 100648-0009Sampled by: Robert EbyDate & Time Sampled: 06/16/1017:50:00Valid Sample: Yes
Intersection of Angus Dr and Sw	vafford Rd
Field ID Number: DT1006C-08 Sampling Site: F Comments:	Laboratory Sample Number: 100648-0010 Sampled by: Robert Eby Date & Time Sampled: 06/16/10 19:10:00 Valid Sample: Yes
Intersection of Angus and Heref	ord
Field ID Number: DT1006C-09 Sampling Site: G Comments: Chisum Rd ~ 0.25 mile West of	Laboratory Sample Number: 100648-0011 Sampled by: Tom Randolph Date & Time Sampled: 06/17/10 04:55:00 Valid Sample: Yes FM 156

Laboratory and Quality Assurance Section P.O. Box 13087 Austin, Texas 78711 (512) 239-1716

Laboratory Analysis Results ACL Number: 100648

Sample(s) Received

Field ID Number: DT1006C-10 Sampling Site: H Comments:	Laboratory Sample Number: 100648-0012 Date & Time Sampled	Sampled by: Tom Randolph 06/17/10 06:05:00 Valid Sample: Yes
Chisum Rd ~ 0.3 mile West of	FM 156 .	
Field ID Number: DT1006C-11 Sampling Site: H Comments:	Laboratory Sample Number: 100648-0013 Date & Time Sampled	Sampled by: Tom Randolph 06/17/10 07:15:00 Valid Sample: Yes
Chisum Rd ~ 0.3 mile West of	FM 156	
Field ID Number: DT1006C-12 Sampling Site: I	Laboratory Sample Number: 100648-0014 Date & Time Sampled:	Sampled by: Robert Eby 06/17/10 08:45:00 Valid Sample: Yes
Intersection of Angus Dr and E	Cakin Cemetery Rd	
Field ID Number: DT1006C-13 Sampling Site: A Comments: Dish TX Auto GC	Laboratory Sample Number: 100648-0015 Date & Time Sampled:	Sampled by: Robert Eby 06/17/10 10:15:00 Valid Sample: Yes
Field ID Number: DT1006C-14 Sampling Site: J Comments:	Laboratory Sample Number: 100648-0016 Date & Time Sampled:	Sampled by: Robert Eby 06/17/10 11:55:00 Valid Sample: Yes
On Swafford Rd ~ 0.05 mile W	est of FM 156	
Field ID Number: DT1006C-15 Sampling Site: K Comments:	Laboratory Sample Number: 100648-0017 Date & Time Sampled:	Sampled by: Robert Eby 06/17/10 13:25:00 Valid Sample: Yes
On Wilton Terrace ~ 0.3 mile N	lorth of Eakin Cemetery Rd	· · · ·
Field ID Number: DT1006C-16 Sampling Site: L	Laboratory Sample Number: 100648-0018 Date & Time Sampled:	Sampled by: Robert Eby 06/17/10 21:00:00 Valid Sample: Yes
At intersection of Virginia Dr a	nd Littlefield Dr	
Field ID Number: DT1006C-17 Sampling Site: C Comments:	Laboratory Sample Number: 100648-0019 Date & Time Sampled:	Sampled by: Robert Eby 06/17/10 22:20:00 Valid Sample: Yes
On Chisum Rd ~ 0.35 mile Wes	t from FM 156	
Field ID Number: DT1006C-18 Sampling Site: A Comments:	Laboratory Sample Number: 100648-0020 Date & Time Sampled:	Sampled by: Robert Eby 06/17/10 23:40:00 Valid Sample: Yes
DISTITA AUTO GU SILE ~ 0.1 III		

Laboratory and Quality Assurance Section P.O. Box 13087 Austin, Texas 78711 (512) 239-1716

Laboratory Analysis Results ACL Number: 100648

Analyst: Mathew Anita Reviewed By: Karen Bachtel Technical Specialist: David Manis

Date: 6/3 0/0Date: 6/30/0Date: 4/30/0

ACL # 100648

Laboratory ID. Field ID		100648- DT100	0001FH 6C-FB		100648 DT100	-0002TB)6C-TB		100648 DT100	6C-01		100648 DT100)6C-01D		100641 DT100	6C-02	
Analysis Date		6/21/:	2010		6/21.	/2010		6/21/:	2010		6/2]	/2010		6/21/	ιĽ	010
	3	Concentration	SDI	Floo	Concentration			Concentrotion	SUL		Concentration	SUL	1	for the second s	<u>`</u>	ח
ormaldehyde	2.0	0.20	1.7	-	0.07	1.7	-	2.8	1.7	Г	2.5	1.6	Р	4.5	1	1.7
cetaldehyde	2.0	0.12	1.7	ſ	DN	1.7		0.69	1.6	ſ	0.73	1.6	J	0.78		1.6
cetone	3.4	0.09	2.9	ſ	0.05	2.9	ч	1.2	2.8	ſ	1.1	2.7	J	0.97		2.7
crolein	0.31	DN	0.26		DN	0.26		DN	0.25		DN	0.25		DND).25
ropionaldehyde	0.51	ND	0.43		ND	0.43		0.15	0.42	ſ	0.26	0.41	I	0.17	0	.41
rotonaldehyde	0.23	ND	0.20		ND	0.20		ND	0.19		D	0.19		ND	0	.19
nethyl ethyl ketone/methacrolein	0.75	ND	0.64		ND	0.64		0.19	0.62	J	0.22	0.60	ŗ	0.12	0	.61
utyraldehyde	0.22	ND	0.19		ND	0.19		0.10	0.18	ſ	0.11	0.18	J	0.22	0	.18
enzaldehyde	0.15	ND	0.13		DND	0.13		ND	0.13		an	0.12		ND	0	.12
ovaleraldehyde	0.18	ND	0.16		DN	0.16		DN	0.15		DN	0.15		ND	0	.15
aleraldehyde	0.20	ND	0.17		DN	0.17		DN	0.17		DN	0.16		DN	0	.17
-tolualdehyde	0.34	ND	0.29		DN	0.29		DN	0.28		DN	0.27		ND	0	.28
n-tolualdehyde	0.34	ND	0.29		ND	0.29		ND	0.28		DN	0.27		ND	0	.28
-tolualdehyde	0.26	ND	0.23		UN	0.23		ND	0.22		ND	0.21		ND	0	.21
exaldehyde	0.34	ND	0.29		ND	0.29		ND	0.28		D	0.27		ND	0	27
,5-dimethyl-benzaldehyde	0.22	ND	0.19		ND	0.19		0.07	0.18	J	0.06	0.17	Ľ	0.06	0	<u>)</u>
entaldehvde	7 C U		EC U			500		UN	cc 0			0 22		ZJ	0,2	5

SDL - Sample Detection Limit (LOD adjusted for sample volume)

ND - not detected

J=Reported concentration is below the SDL L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit LOD - Limit of Detection based on a 60 Liter sample volume

I=Reported concentration is below the CDI	Note: Results are reported in units of parts per billion by volume (ppbv)	

wathered AM 6/30/10

butyraldehyde benzaldehyde isovaleraldehyde valeraldehyde propionaldehyde crotonaldehyde o-tolualdehyde m-tolualdehyde heptaldehyde formaldehyde nexaldehyde 2,5-dimethyl-benzaldehyde o-tolualdehyde Icrolein cetaldehyde nethyl ethyl ketone/methacrolein etone Compound Analysis Date _aboratory ID Field ID 0.75 0.31 0.22 0.23 0.22 0.34 0.18 0.34 0.34 0.20 2.0 LOD Concentration 3.4 <u>4.0</u> 2.3 $\frac{2.5}{2.5}$ ω. 0 4.0 3.0 4.6 100648-0004MS DT1006C-02MS 2.4 3.2 ε 7.2 6/21/2010 SDL 0.22 0.35 0.35 0.19 0.77 0.23 0.16 0.52 0.32 0.35 0.21 0.24 ω S <u>2.1</u> 2.0 Flag Concentration 2.4 2.8 4.5 $\frac{2.5}{2.5}$ <u>2.4</u> 3.1 $\frac{3.3}{2.9}$.3 .4 3 6.9 3.9 100648-0004MSD DT1006C-02MSD 4 6/21/2010 SDL 0.23 0.35 0.28 0.35 0.35 0.21 0.19 0.16 0.23 0.78 0.240.53 0.32 ω is 2.0 2 Flag Concentration ND 0.24 ND 03 1.5 1.2 100648-0005 DT1006C-03 6/21/2010 SDL 0.45 0.19 0.30 0.18 0.16 0.66 0.14 0.210.27 3.0 1.7 1.8 Flag Concentration 0.07 ND 121 0.11 4.2 1.3 DT1006C-04 100648-0006 6/21/2010 SDL 0.67 0.14 0.17 0.45 0.30 0.24 0.30 0.18 0.27 0.19 3.0 1.8 1.8 Flag Concentration ¥1.0 SAAAAAAA ND 121 0.12 1.1 DT1006C-05 00648-0007 6/22/2010 0.59 0.17 0.12 0.24 SDL 0.27 0.16 0.15 0.22 0.27 0.21 0.17 2.71.5 1.6 Flag

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

SDL - Sample Detection Limit (LOD adjusted for sample volume)

UNALFIOS JUN 6/30/10

ACL # 100648

- Laboratory ID		100648-	8000		10064	5000-8		100648	3-0010		100648	-0011		100648	-0012		-
Field ID		DT1006	C-06		DT10	00-07		DT100	60-08		DT100	6C-09		DT100	6C-10		
Analysis Date		6/22/2	010		6/22.	2010		6/22/	2010		6/22/2	2010		6/22/2	2010		
Compound	001	Concentration	SDL	<u>o</u> el <u>i</u>	Concentration	IdS	Figure	Concentration	SDI	eel <u>y</u>	Concentration	SDL	E ao	Concentration	SDL	Flag	
formaldehyde	2.0	4.8	2.1		4.1	1.8		3.6	1.6		3.3	1.6	Ľ	2.7	1.8	ŗ	
acetaldehyde	2.0	1.0	2.1	ſ	0.90	1.7	- -	0.75	1.5	J	0.73	1.5	J	0.64	1.7	J	
acetone	3.4	1.5	3.5	ſ	1.1	3.0	ſ	1.0	2.7	ſ	0.87	2.7	ſ	0.79	2.9	J	
acrolein	0.31	UD	0.32		ND	0.27		0.09	0.24	J	0.11	0.24	J	0.10	0.26	J	
propionaldehyde	0.51	0.26	0.53	ſ	0.20	0.45	J	0.18	0.40	IJ	0.15	0.40	ſ	0.14	0.43	<u>ч</u>	
crotonaldehyde	0.23	ND	0.24		ND	0.21		ND	0.18		ND	0.18		UD	0.20		
methyl ethyl ketone/methacrolein	0.75	0.18	0.78	J	0.16	0.66	J	0.19	0.59	J	0.33	0:59	J	0.27	0.64	J	
butyraldehyde	0.22	0.17	0.23	J	0.14	0.19	J	0.12	0.17	J	0.11	0.17	ſ	D	0.19		
benzaldehyde	0.15	D	0.16		ND	0.14		DN	0.12		0.06	0.12	ſ	ND	0.13		
isovaleraldehyde	0.18	ND .	0.19		ND	0.16		ND	0.15		ND .	0.15		ND	0.16		
valeraldehyde	0.20	ND	0.21		D	0.18		ND	0.16		ND	0.16		D	0.18		_
o-tolualdehyde	0.34	DND	0.36		UN	0.30		DN	0.27		ND	0.27		D	0.29		
m-tolualdehyde	0.34	ND	0.36		DN	0.30		ND	0.27		ND	0.27		DND	0.29		_
p-tolualdehyde	0.26	ND	0.28		ND	0.23		ND	0.21		ND	0.21		ND	0.23		
hexaldehyde	0.34	0.08	0.35	J	0.07	0.30	ſ	· ND	0.27		0.08	0.27	J	0.07	0.29	J	
2,5-dimethyl-benzaldehyde	0.22	0.09	0.23	ſ	0.07	0.19	J	0.06	0.17	I	0.06	0.17	J	0.07	0.19	J	
heptaldehyde	0.27	g	0.28		ND	0.24		ND	0.21		IJ	0.21		IJ	0.23		

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected SDL - Sample Detection Limit (LOD adjusted for sample volume)

1 or 1/30/ 00 1/30/10

ACL # 100648

o-tolualdehyde m-tolualdehyde p-tolualdehyde isovaleraldehyde valeraldehyde crotonaldehyde heptaldehyde hexaldehyde 2,5-dimethyl-benzaldehyde benzaldehyde acrolein acetaldehyde formaldehyde propionaldehyde icetone nethyl ethyl ketone/methacrolein ıtyraldehyde Compound Laboratory ID Field ID Analysis Date 0.22 0.34 0.75 0.23 0.34 0.34 0.20 0.18 0.15 0.22 0.260.51 0.3] ω. 4 2.02.0 LOD Concentration ND 0.12 0.74 0.03 NJ AAAAS 0.63 ND 0.07 0.24 3 2 DT1006C-11 100648-0013 6/22/2010 SDL 0.18 0.40 0.21 0.27 0.27 0.27 0.16 0.15 0.12 0.17 0.59 0.24 0.17 0.21 27 1.6 1.5 Flag Concentration SDL ND 0.25 N 19 0.98 0.68 ND 0.11 0.10 0.26a a A A 2.5 100648-0014 DT1006C-12 6/23/2010 0.41 0.28 0.18 0.25 0.22 0.18 0.28 0.28 0.17 0.15 0.13 0.61 0.19 2.2 8 1.7 1.6 Flag Concentration SDL 0.17 ND 0.82 0.12 A A A 333333 Ŋ 32 100648-0015 DT1006C-13 6/23/2010 0.24 0.19 0.30 0.30 0.30 0.16 0.13 0.65 0.44 0.20 0.18 0.27 ... 0 1.7 1.8 Flag Concentration 0.11ND 0.12 0.81 a a a a a Ŋ All 0 a a a ω ω 100648-0016 DT1006C-14 6/23/2010 SDL 0.20 0.38 0.16 0.26 0.26 0.260.15 0.140.17 0.56 0.18 0.2325 1.S 1.5 Flag Concentration ND 16 ND 0.86 AA 5 0.73 ND 0.07 0.09 a a a a a 3.2 100648-0017 DT1006C-15 6/23/2010 SDL 0.17 0.27 0.21 0.27 0.16 0.27 0.12 0.18 0.40 0.24 0.15 0.17 0.59 2.6 1.6 1.5 Flag

Note: Results are reported in units of parts per billion by volume (ppbv)

J=Reported concentration is below the SDL

L=Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

URIFID Jul 6/30/00

benzaldehyde isovaleraldehyde o-tolualdehyde <u>m-tolualdehyde</u> p-tolualdehyde hexaldehyde 2,5-dimethyl-benzaldehyde heptaldehyde propionaldehyde crotonaldehyde acetaldehyde acrolein icetone ormaldehyde <u>nethyl ethyl ketone/methacrolein</u> utyraldehyde Compound Laboratory ID Field ID Analysis Date 0.22 0.18 0.15 0.34 0.34 0.34 0.75 0.23 LOD Concentration SDL 0.22 0.510.310.26 <u>2.0</u> ω. 4 ND 12 10 88 3.4 0.83 0.15 8<u>9</u> DT1006C-16 100648-0018 6/23/2010 0.18 0.15 0.13 0.41 0.28 0.28 0.18 0.19 0.25 0.28 0.61 2.8 1.6 1.7 Flag Concentration SDL Flag Sarara ND 0.09 0.15 ND ND 0.31 1.2 1.0 4.2 DT1006C-17 100648-0019 6/23/2010 0.34 0.21 0.34 0.34 0.20 0.18 0.220.74 0.23 0.50 0.30 0.15 2.0 1.9 Concentration SDL 0.12 ND 0.980.08 ND a a 33333 0.30 <u>3.9</u> 0.79 DT1006C-18 100648-0020 6/23/2010 0.24 0.27 0.17 0.12 0.18 0.40 0.21 0.17 0.27 0.27 0.15 0.59 0.16 2.6 1.5 6 Flag

Sample Quantitation Limit

LOD - Limit of Detection based on a 60 Liter sample volume

ND - not detected

SDL - Sample Detection Limit (LOD adjusted for sample volume)

USRIF, 50 Jul 6/30/10

L=Reported concentration is greater than or equal to the SDL but less than the

J=Reported concentration is below the SDL

Note: Results are reported in units of parts per billion by volume (ppbv)

ACL # 100648