TCEQ Interoffice Memorandum

То:	John Sadlier, Deputy Director Office of Compliance and Enforcement
Thru:	Michael Honeycutt, Ph.D., Director MH Toxicology Division, Chief Engineer's Office
From:	Shannon Ethridge, M.S. S.E. Toxicology Division, Chief Engineer's Office
Date:	February 24, 2011
Subject:	Health Effects Evaluation of Region 4 Carbonyl Monitoring Project, November $6 - 10$, 2010, Sampling for Carbonyl Compounds in Dish and Fort Worth, Texas

Conclusions

• All reported target carbonyl concentrations were either non-detect or below their respective short-term air monitoring comparison values (AMCVs) and are not of any short-term health or welfare concern.

Background

The Texas Commission on Environmental Quality (TCEQ) Mobile Response Team (MRT) conducted an ambient air monitoring project in the TCEQ Dallas/Fort Worth Region from November 6 - 10, 2010. Monitoring and site assessment was conducted downwind of possible combustion processes at natural gas-related production facilities in the Barnett Shale Formation area including compressor stations in Dish and the Lake Arlington Compressor Station. In addition to sampling specific sources, airshed samples were collected to assess general area concentrations of formaldehyde. Two sampling vans equipped with automated carbonyl analyzers were used to collect 31 one-hour Sep-Pak Dinitrophenylhydrazine (DNPH) Coated Silica Cartridge samples. Samples were analyzed for 18 target carbonyls (methyl ethyl ketone and methacrolein co-elute) using a reverse phase C-18 column and an Ultraviolet/Visible (UV/VIS) photo diode array (PDA) detector in the TCEQ Air and Emissions Laboratory in Austin, Texas. More details on the project including sampling results and maps of sampling locations can be obtained from the report entitled *Region 4 Carbonyl Monitoring Project, November 6 – 10, 2010, Sampling for Carbonyl Compounds in Dish and Fort Worth, Texas.*

Results

Reported carbonyl concentrations in 31 one-hour samples were compared to TCEQ's short-term health- and odor-based AMCVs. Short-term AMCVs are used to evaluate ambient concentrations of chemicals in air to determine whether the monitored concentrations have the potential to cause adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are well below levels at which adverse health effects are reported to occur in the scientific literature. If a chemical concentration in ambient air is less than its AMCV, no adverse health effects are expected to occur. If a chemical concentration exceeds its AMCV it does not necessarily mean that adverse effects will occur, but rather that

John Sadlier, et al. February 24, 2011 Page 2 of 5

further evaluation is warranted. Table 1 provides a list of target compounds and their associated odor and short-term health AMCVs. Table 2 provides a list of target compounds and their associated long-term AMCVs for informational purposes only.

Evaluation

Isovaleraldehyde was not detected in any sample but the limit of detection was above the shortterm odor AMCV, and below the short-term health AMCV. It is possible that isovaleraldehyde was present at concentrations above the odor AMCV although investigators did not report experiencing the apple-like odor associated with isovaleradehyde (HSDB 2010). Detection limits were adequate to evaluate all other target analytes. All other reported concentrations of target carbonyls were either non-detect or below their respective short-term AMCVs and are not of any short-term health or welfare concern. Formaldehyde, the primary target compound for this project, ranged from 1.0 parts per billion by volume (ppb_v) to 5.4 ppb_v. The one-hour formaldehyde concentrations measured in this investigation are lower than the 2005 – 2008 statewide one-hour average formaldehyde concentration of 6 ppb_v measured at seven stationary monitors in Texas. The investigators experienced intermittent exhaust odors downwind of the Chesapeake Energy Ponder facility during sampling. It is likely that the chemical(s) causing the odors experienced by the investigators were not target analyte(s) for this project.

If you have any questions regarding the contents of this review, please do not hesitate to contact me at (512) 239-1822 or via email at <u>shannon.ethridge@tceq.texas.gov</u>.

John Sadlier, et al. February 24, 2011 Page 3 of 5

Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)
formaldehyde	500	41
acetaldehyde	50	250
acetone	3600	2500
acrolein	3.6	4.8
propionaldehyde	5	21
crotonaldehyde	23	3
methyl ethyl ketone/methacrolein	8.5	19
butyraldehyde	5	2700
benzaldehyde	5	21
isovaleraldehyde	0.1	500
valeraldehyde	30	500
o-tolualdehyde	Not Available	21
m-tolualdehyde	Not Available	21
p-tolualdehyde	Not Available	21
hexaldehyde	20	2000
2,5-dimethyl-benzaldehyde	Not Available	21
heptaldehyde	50	2000

Table 1. Target Carbonyls and Associated Odor and Short-Term Health AMCVs

ppb_v - parts per billion by volume

Table 2. Target Carbonyls and Associated Long-Term AMCVs

<u>Please Note: The long-term AMCVs are provided for informational purposes only because it is</u> <u>scientifically inappropriate to compare short-term monitored values to the long-term AMCV.</u>

Compound	Long-term Health AMCV (ppb _v)
formaldehyde	8.9
acetaldehyde	25
acetone	250
acrolein	0.22
propionaldehyde	20
crotonaldehyde	0.3
methyl ethyl ketone/methacrolein	0.43
butyraldehyde	270
benzaldehyde	2.1
isovaleraldehyde	50
valeraldehyde	50
o-tolualdehyde	2.1
m-tolualdehyde	2.1
p-tolualdehyde	2.1
hexaldehyde	200
2,5-dimethyl-benzaldehyde	2.1
heptaldehyde	200

ppb_v - parts per billion by volume

John Sadlier, et al. February 24, 2011 Page 5 of 5

References

Hazardous Substances Data Bank (HSDB). 2010. <u>http://toxnet.nlm.nih.gov/</u>. Last accessed on December 7, 2010.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY REGION 4 CARBONYL MONITORING PROJECT NOVEMBER 6 - 10, 2010

CONDUCTED BY MOBILE RESPONSE TEAM FIELD OPERATIONS SUPPORT DIVISION Document Number R4C1011-FR

	6		
Project Manager:	Tomhandolph	Date:	12-30-10
Quality Control Officer:	Sina Huen for sally	Date:	12-30-10
Technical Director:	Juna Milon	Date:	12/30/10
Team Leader:		Date:	12-30-10
Section Manager:	Patti De La Cruz	Date:	12-30-10
Assistant Director:	Malk	Date:	Isla

Executive Summary Barnett Shale Formation Region 4 Carbonyl Monitoring Project November 6 - 10, 2010

Background

In response to observations and findings during a Mobile Response Team (MRT) monitoring trip to the Dish, Texas area from June 15 - 18, 2010, and a City of Fort Worth independent study on formaldehyde concentrations associated with natural gas production and processing in the Barnett Shale Formation area in northeast Texas, further monitoring for 17 carbonyl compounds, including formaldehyde, was performed at new and previously monitored sites in Dish, Texas and the Lake Arlington area of Fort Worth in November 2010.

General Monitoring Information

Monitoring staff collected samples downwind of natural gas production or processing equipment where formaldehyde might be present as a bi-product of combustion. In addition to sampling specific sources, airshed samples were collected to assess general concentrations of formaldehyde. Monitoring sites were designated based on a specific address or geographic location.

Monitoring and field assessments during this project were conducted at multiple natural gas emission source types involved in the production and processing of products, including but not limited to condensate and product storage tank batteries and compressor stations. Samples downwind of these source types and general airshed samples were collected in Dish, Texas and the Lake Arlington area of Fort Worth, Texas. In addition, simultaneous upwind and downwind samples were collected at compressor stations in Dish, Texas. A GasFindIR (infrared) camera was used to survey emissions and to determine where quantitative downwind carbonyl samples might be collected. One-hour carbonyl samples were collected downwind of the identified sources, and the samples were subsequently analyzed in the TCEQ Air and Emissions Laboratory in Austin, Texas, using a reverse phase C-18 column and an Ultraviolet/Visible (UV/VIS) photo diode array (PDA) detector.

Observations and Findings

Monitoring staff surveyed a total of 18 locations during the project (see Attachment 1), and collected 31 carbonyl samples downwind of various sources (see Maps 1 and 2). Meteorological data including wind speed, wind direction, and ambient temperature was also collected (see Attachments 3 and 4). Twenty one samples were collected downwind of a variety of facilities, including Chesapeake Energy Ponder Compressor Station (Sites 3 and 5), Atmos Energy Corporation Ponder and Energy Transfer Hog Branch Compressor Stations (Sites 2, 3, and 5), Enbridge Gathering North Texas LP Justin East Compressor Station (Sites 2 and 3), Devon Energy Company (Co.) LP DCCO 3, S.H. Griffin Estate 3, 17H and 18H (Site 13), Devon Energy Co. LP DCCO 3, Mae C Naler, 21H, 22H, and 23H (Site 10) Devon Energy Co. LP DCCO 3, S.H. Griffin Estate, 11, 26H, and 27H (Site 11), Devon Energy Co. LP DCCO 3, S.H. Griffin Estate, 20H, 21H, and 23H (Site 18), Atmos Energy Metering Station (Site 14), Quicksilver Resources Lake Arlington Compressor Station (Site 7), and Quicksilver Resources Exelon North Wellheads 1H, 2H, 3H, 4H, 13H, 15H, 17H, 19H, and 21H (Site 16 and 17). Four upwind samples (Site 12) and seven general airshed samples (Sites 1, 4, 6, 8, 9, and 15) were also collected.

Though formaldehyde was the main compound of interest, samples were analyzed for a variety of other target analytes including: acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, methyl ethyl ketone/methacrolein, butyraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, hexaldehyde, 2,5-dimethyl-benzaldehyde, and heptaldehyde. For the project, the maximum one-hour concentration of 5.4 parts per billion by volume (ppbv) of formaldehyde was detected in Sample **R4C1011C5-19** on November 10, 2010, from 11:20 - 12:20 in a residential area just north of the Quicksilver Resources Lake Arlington Compressor Station. The maximum formaldehyde concentration in the Dish, Texas area was 3.7 ppbv measured in Sample **R4C1011C5-03** on November 7, 2010, from 17:15 - 18:15.

TCEQ Interoffice Memorandum

- To: Michael Honeycutt, Ph.D., Director, Toxicology Division, Chief Engineer's Office (MC 168)
- Thru: Matthew R. Baker, P.E., Assistant Director, Field Operations Support Division (MC 165)

Patricia De La Cruz, Acting Section Manager, Mobile Monitoring & Deployment Section, Field Operations Support Division (MC 165)

Tim Doty, Team Leader, Mobile Response Team, Mobile Monitoring & Deployment Section, Field Operations Support Division (MC 165)

- **From:** Tom Randolph, Mobile Monitoring & Deployment Section, Field Operations Support Division (MC 165)
- Date: December 21, 2010

Subject: Region 4 Carbonyl Monitoring Project, November 6 – 10, 2010, Sampling for Carbonyl Compounds in Dish and Fort Worth, Texas

Project Summary

The Texas Commission on Environmental Quality (TCEQ) Mobile Response Team (MRT) conducted an ambient air monitoring project in the TCEQ Dallas/Fort Worth Region from November 6 - 10, 2010. Monitoring and site assessment was conducted downwind of possible combustion processes at natural gas-related production facilities in the Barnett Shale Formation area. The primary target compound for this study was formaldehyde, target compounds included acetaldehyde, while secondary acetone. acrolein. propionaldehyde, crotonaldehyde, methyl ethyl ketone/methacrolein, butyraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-tolualdehyde, m-tolualdehyde, ptolualdehyde, hexaldehyde, 2,5-dimethyl-benzaldehyde, and heptaldehyde. Technical information including sample locations (Attachment 1), maps, carbonyl results (Attachment 2), and meteorological data (Attachments 3 and 4) is intended to be used as supplemental information when reviewing this monitoring report. Key findings and observations from the November 2010, air monitoring event include the following:

- A maximum Dish, Texas formaldehyde concentration of 3.7 parts per billion by volume (ppbv) was measured in airshed Sample R4C1011C5-03 on November 7, 2010, from 17:15 18:15.
- A maximum one-hour formaldehyde concentration of 5.4 ppbv was detected in Sample **R4C1011C5-19** on November 10, 2010, from 11:20 12:20, while located in a residential area just north of the Quicksilver Resources Lake Arlington Compressor Station.

Background

Monitoring staff collected samples downwind of natural gas production or processing equipment where formaldehyde might be present as a bi-product of combustion. In addition to sampling specific sources, airshed samples were collected to assess general area concentrations of formaldehyde. Monitoring sites were designated based on a specific address or geographic location.

Monitoring and field assessments during this project were conducted at multiple natural gas emission source types involved in the production and processing of products, including but not limited to condensate and product storage tank batteries and compressor stations. Samples downwind of these source types and general airshed samples were collected in Dish, Texas and the Lake Arlington area of Fort Worth, Texas. In addition, simultaneous upwind and downwind samples were collected at compressor stations in Dish, Texas.

Sampling and Analysis

Two sampling vans equipped with ATEC Model 4004 carbonyl analyzers were used to collect samples. A GasFindIR Camera was utilized to provide real-time monitoring information about emission sources. Each van was equipped with AIO Meteorological equipment to collect real-time weather data including wind direction, wind speed, and temperature. The sample collection locations were documented using global positioning system (GPS) data. A more thorough description of the equipment used to collect data is included in each data table.

The survey instruments, staff observations, and meteorological data were used to determine movement and location of the emission plume in relation to sampling locations downwind of specific sources. This technical information was used in assessing monitoring results from this project.

Upon completion of the monitoring, samples were analyzed in the TCEQ Air and Emissions Laboratory in Austin, Texas, using a reverse phase C-18 column and an Ultraviolet/Visible (UV/VIS) photo diode array (PDA) detector.

Quality Control (QC) Summary

QC samples were analyzed along with the field samples to assess data quality and data limitations for this monitoring project. QC data results were reviewed to assess method precision and accuracy and to estimate the possible effects on the field measurement data when the QC data did not meet specifications outlined in the method- or project-specific Standard Operating Procedures.

Data completeness was measured as a percentage of valid primary target compound data that met the established accuracy and precision acceptance criteria in relation to the total amount of primary target compound data collected. Invalidated samples were included in the data completeness calculation. However, data qualifiers for concentrations below the limit of detection (LOD) (J qualifier), concentrations greater than or equal to the LOD but less than the lowest calibration standard (L qualifier), and concentrations that exceeded the upper limit of instrument calibration (E qualifier) were not included.

TCEQ Interoffice Memorandum

Primary Target	Total Collected Data Points	Valid Data Points ^a	Data Meeting DQOs	Meets The Data Completeness Objective Of At Least 75%
Formaldehyde by Automated Cartridge Sampler	31	31	100%	Yes

Table 1: Project Data Completeness

^aDid not require any qualification. DQO = Data Quality Objective

% = percent

More detailed QC information is available in Attachment 5.

Observations

Dish, Texas Area

Eleven carbonyl samples were collected downwind of the Atmos Energy Corporation Ponder, Energy Transfer Hog Branch, Chesapeake Energy Ponder, and Enbridge Gathering Justin East Compressor Stations in Dish, Texas including Samples R4C1011C1-01, R4C1011C1-02, R4C1011C1-03, R4C1011C1-04, R4C1011C1-05, R4C1011C1-06, R4C1011C1-07, R4C1011C1-08, R4C1011C5-04, R4C1011C5-05, and R4C1011C5-06. Four of these downwind compressor samples had associated upwind samples, including R4C1011C5-09, R4C1011C5-10, R4C1011C5-11, and R4C1011C5-14, collected simultaneously. Slight exhaust odors were noted intermittently downwind of the compressor stations, as well as light and intermittent natural gas odors downwind of the Chesapeake Energy Ponder facility during sampling. The maximum formaldehyde concentration measured downwind of these emission sources was 3.4 ppbv.

Four airshed samples were collected around Dish, Texas during the project. Samples **R4C1011C5-01**, **R4C1011C5-02**, and **R4C1011C5-08** were collected on the north side of Dish with south to south/southeast winds, while Sample **R4C1011C5-03** was collected in the middle of the Dish geographic area with south/southeast to southeast winds. The maximum formaldehyde concentration measured in these samples was 3.7 ppbv.

Four additional samples, including **R4C1011C5-07**, **R4C1011C5-12**, **R4C1011C5-15**, and **R4C1011C5-16** were collected downwind of tank battery gathering facilities within the Dish, Texas area, while a final carbonyl sample, **R4C1011C5-13**, was collected downwind of the Atmos Gas Metering Station. A maximum formaldehyde concentration of 2.9 ppbv was reported in these samples.

Lake Arlington Compressor Station

The Lake Arlington Compressor Station was surveyed during the late afternoon and early evening of November 9, 2010. In using thermal capabilities of the GasFindIR Camera, one of five compressors appeared to be operational. Downwind monitoring van parking access for southerly wind conditions was limited by a narrow shoulder and a steep ditch, as well as an appropriate 30-foot high sound barrier wall. There appeared to be no other storage tank batteries in the area, though there were a number of scrubber vents nearby. The adjacent Lake Arlington power plant appeared to be completely shut down, as information indicates that it mostly operates during peak energy usage from May through September.

TCEQ Interoffice Memorandum

Efforts were made to sample downwind of the scrubber vents, as well as the one operational compressor. Due to logistical issues, samples were collected from a distance downwind of the compressor and vehicular traffic along East Rosedale Street and East Lancaster Avenue. In addition, monitoring staff also collected carbonyl samples at the edge of residential areas both to the north of the compressor station and to the south of the power plant. This was done in an effort to characterize formaldehyde concentrations near receptor areas.

Three carbonyl samples were collected downwind of the Quicksilver Resources Compressor Station including **R4C1011C1-11**, **R4C1011C1-12**, and **R4C1011C5-19**, while two carbonyl samples were collected downwind of the Quicksilver Exelon North Unit wellheads and scrubber vents (**R4C1011C1-09** and **R4C1011C1-10**). Two airshed samples, including **R4C1011C5-17** and **R4C1011C5-18**, were also collected in residential areas south of the power plant. The maximum formaldehyde concentration measured in these samples was 5.4 ppbv.

If you have questions, please contact Tom Randolph at (512) 239-1218 or trandolp@tceq.state.tx.us or Tim Doty at (512) 239-1685 or tdoty@tceq.state.tx.us.

List of Attachments & Maps Region 4 Carbonyl Monitoring Project November 6 - 10, 2010

Attachment 1: Sample Locations

Map 1: Dish, Texas

Map 2: Lake Arlington

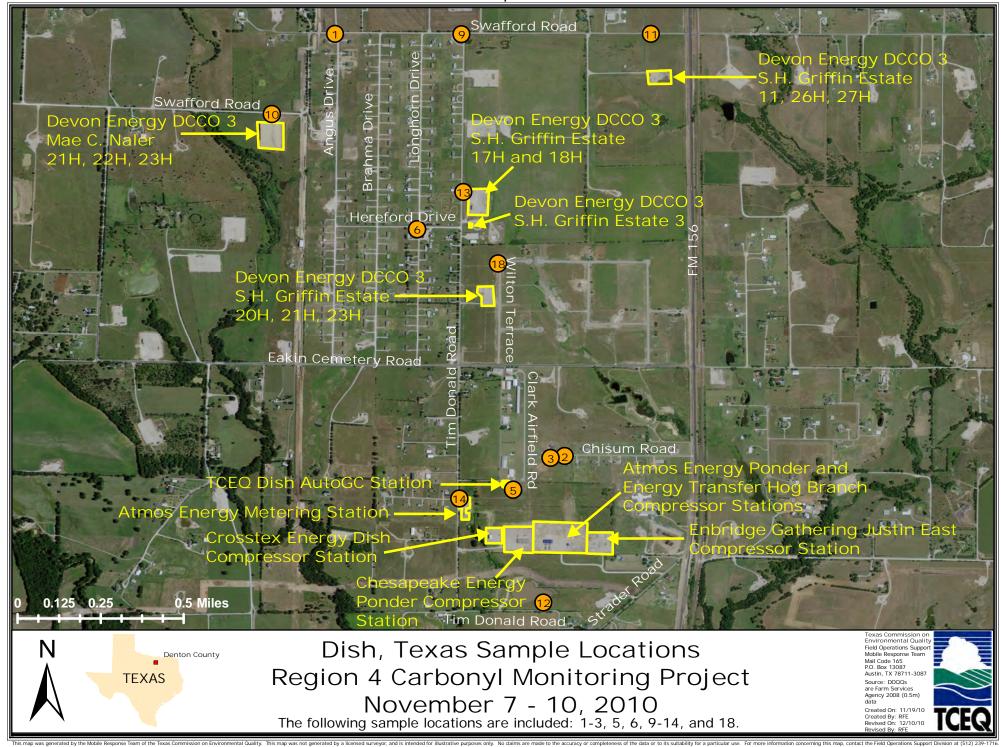
Attachment 2: Carbonyl Data

Attachment 3: Meteorological Data - Van 151

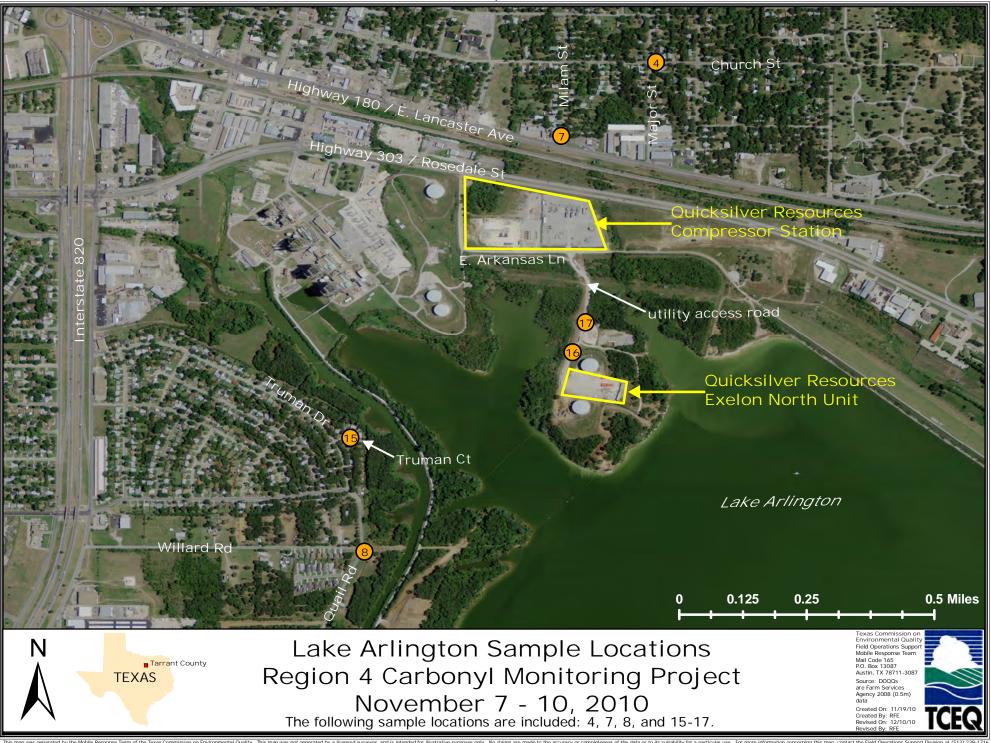
Attachment 4: Meteorological Data – Van 555

Attachment 5: Quality Control Report

Attachment 1


Sample Locations Region 4 Carbonyl Monitoring Project November 6 - 10, 2010

This data was collected using a Starlink Invicta 210 GPS receiver and antenna used with a TDS Recon hand-held GPS unit and SoloField CE software to collect Differential GPS (DGPS) coordinates.


		GPS Coo	ordinates
Number	Description	North Latitude	West Longitude
1	At the intersection of Angus Drive and Swafford Road	33.1505694	-97.3052452
2	On Chisum Road, approximately 0.3 mile west of Farm-to-Market (FM) 156	33.1321936	-97.2953720
3	On Chisum Road, approximately 0.35 mile west of FM 156	33.1321246	-97.2957604
4	At the intersection of Church Street and Major Street	32.7332523	-97.2087357
5	On Clark Airfield Road, approximately 0.35 mile south of Eakin Cemetery Road	33.1307756	-97.2975966
6	At the intersection of Hereford Drive and Longhorn Drive	33.1420719	-97.3016841
7	At the intersection of Milam Street and E Lancaster Avenue	32.7311583	-97.2114192
8	At the intersection of Quail Road and Willard Road	32.7193755	-97.2169952
9	At the intersection of Swafford Road and Tim Donald Road	33.1505572	-97.2997521
10	On Swafford Road, approximately 0.3 mile west of Angus Drive	33.1470944	-97.3080006
11	On Swafford Road, approximately 0.05 mile west of FM 156	33.1505649	-97.2915023
12	On Tim Donald Road, approximately 0.2 mile north of Strader Road	33.1258228	-97.2961771
13	On Tim Donald Road, approximately 0.4 mile south of Swafford Road	33.1436883	-97.2996614
14	On Tim Donald Road, approximately 0.4 mile south of Eakin Cemetery Road	33.1303525	-97.2998501
15	On Truman Court, approximately 40 yards east of Truman Drive	32.7226075	-97.2173920
16	On a utility access road, approximately 0.2 mile south of East Arkansas Lane	32.7250278	-97.2110984
17	On a utility access road, approximately 0.15 mile south of East Arkansas Lane	32.7258767	-97.2107244
18	On Wilton Terrace, approximately 0.3 mile north of Eakin Cemetery Road	33.1405771	-97.2981573

GPS = Global Positioning System.

Map 1

Attachment 2

Carbonyl Data Region 4 Carbonyl Monitoring Project November 6 - 10, 2010

These samples were collected on Waters Sep-Pak7 dinitrophenylhydrazine (DNPH)-Silica cartridges using an Atmospheric Technology (ATEC) Model 4004 Automated Cartridge Sampler.

Laboratory ID		101127	-0009		101127	-0010		101127	-0011		
Field ID		R4C1011	C1-01		R4C1011	C1-02		R4C101	1C1-03		
Sample Date		11/8,			11/8,			11/8			
Sample Time		14:15 -	15:15		15:50 -	16:50		17:00 -	17:00 - 18:00		
Sample Period		2			2			2			
Sample Location ^a		2			5			5			
Predominantly Downwind Of		Atmos Energy Corp Transfer Hog Brand Gathering Justin E Statio	Inbridge	Transfer Hog Chesapeake Er	Atmos Energy Corp. Ponder, Energy Transfer Hog Branch, and Chesapeake Energy Ponder Compressor Stations			Atmos Energy Corp. Ponder, Energy Transfer Hog Branch, and Chesapeake Energy Ponder Compressor Stations			
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	
formaldehyde	2.0	1.8	2.0	J	3.4	2.0	L	2.1	2.0	L	
acetaldehyde	2.0	0.66	2.0	J	0.70	2.0	J	0.72	2.0	J	
acetone	3.4	0.84	3.4	A1,F,J	0.82	3.4	A1,F,J	0.97	3.4	A1,F,J	
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31		
propionaldehyde	0.51	ND	0.51		0.10	0.51	J	0.09	0.51	J	
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23		
methyl ethyl											
ketone/methacrolein	0.75	0.11	0.75	J	0.12	0.75	J	0.14	0.75	J	
butyraldehyde	0.22	ND	0.22		0.12	0.22	J	ND	0.22		
benzaldehyde	0.15	0.08	0.15	J	ND	0.15		ND	0.15		
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.18		
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20		
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
p-tolualdehyde	0.26	ND	0.26		ND	0.26		ND	0.26		
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
2,5-dimethyl-benzaldehyde	0.22	0.06	0.22	J	0.06	0.22	J	0.06	0.22	J	
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P	

Laboratory ID		101127	-0012		101127	-0013		101127	-0014		
Field ID		R4C1011	C1-04		R4C1011	C1-05		R4C1011C1-06			
Sample Date		11/9,	/10		11/9/	/10	11/9/10				
Sample Time	ample Time 06:55 - 0				- 00:00 -	09:00		09:05 -	09:05 - 10:05		
Sample Period		3			3			3			
Sample Location	9	5			5			5			
Predominantly Downw	ind Of	Atmos Energy Corp. Ponder, Energy Transfer Hog Branch, and Chesapeake Energy Ponder Compressor Stations			Atmos Energy Corp Transfer Hog Chesapeake Er Compressor	Branch, a nergy Poi	and nder	Chesapeake Energy Ponder Compressor Stations			
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	
formaldehyde	2.0	1.6	2.0	J	1.2	2.0	J	1.5	2.1	J	
acetaldehyde	2.0	0.56	2.0	J	0.57	2.0	J	0.61	2.0	J	
acetone	3.4	0.71	3.4	A1,F,J	0.64	3.4	A1,F,J	0.92	3.4	A1,F,J	
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31		
propionaldehyde	0.51	0.10	0.51	J	ND	0.51		0.15	0.51	J	
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23		
methyl ethyl											
ketone/methacrolein	0.75	ND	0.75		0.10	0.75	J	0.10	0.75	J	
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22		
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15		
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.19		
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.21		
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
p-tolualdehyde	0.26	ND	0.26		ND	0.26		ND	0.27		
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
2,5-dimethyl-											
benzaldehyde	0.22	0.07	0.22	J	0.07	0.22	J	0.07	0.22	J	
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P	

Laboratory ID		101127	-0015		101127	-0016		101127	-0017	
Field ID		R4C1011	IC1-07		R4C1011	C1-08		R4C101	1C1-09	
Sample Date		11/9,	/10		11/9/10		11/10/10			
Sample Time		10:10 -	11:10		11:20 -	12:20		07:00 -	08:00	
Sample Period		3			3			4		
Sample Location	а	5			2			16	D	
Predominantly Downw	vind Of	Chesapeake Er Compressoi			•	eake Energy Ponder Quicksilver Resources Exelo npressor Stations Unit				
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag
formaldehyde	2.0	1.1	2.0	J	2.3	2.0	L	1.2	2.0	J
acetaldehyde	2.0	0.58	2.0	J	0.62	2.0	J	0.54	2.0	J
acetone	3.4	0.83	3.4	A1,F,J	0.91	3.4	A1,F,J	0.66	3.4	A1,F,J
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31	
propionaldehyde	0.51	0.12	0.51	J	0.13	0.51	J	0.11	0.51	J
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23	
methyl ethyl										
ketone/methacrolein	0.75	0.10	0.75	J	0.11	0.75	J	ND	0.75	
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22	
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15	
isovaleraldehyde	0.19	ND	0.18		ND	0.19		ND	0.19	
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20	
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34	
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34	
p-tolualdehyde	0.26	ND	0.26		ND	0.26		ND	0.27	
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34	
2,5-dimethyl-										
benzaldehyde	0.22	0.07	0.22	J	0.08	0.22	J	0.08	0.22	J
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P

Laboratory ID		101127	-0018		101127	-0019		101127	-0020		
Field ID		R4C1011	C1-10		R4C1011	IC1-11		R4C101	IC1-12		
Sample Date		11/10)/10		11/10)/10		11/10/10			
Sample Time		08:30 -	09:30		10:25 -	11:25		11:25 -	11:25 - 12:25		
Sample Period		4			4			4			
Sample Location	а	17	,		7			7			
Predominantly Downwind Of		Quicksilver Resour Uni	on North	Quicksilver Resources Compressor Station			Quicksilver Resources Compressor Station				
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	
formaldehyde	2.0	1.0	2.0	J	2.8	2.0	L	2.5	2.0	L	
acetaldehyde	2.0	0.56	2.0	J	0.77	2.0	J	0.71	2.0	J	
acetone	3.4	0.42	3.4	A1,F,J	0.67	3.4	A1,F,J	0.67	3.4	A1,F,J	
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31	ľ	
propionaldehyde	0.51	0.11	0.51	J	0.16	0.51	J	0.12	0.51	J	
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23		
methyl ethyl											
ketone/methacrolein	0.75	ND	0.75		ND	0.75		ND	0.75	l l	
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22		
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15		
isovaleraldehyde	0.18	ND	0.19		ND	0.18		ND	0.18	ľ	
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20		
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
p-tolualdehyde	0.26	ND	0.26		ND	0.26		ND	0.26		
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
2,5-dimethyl-											
benzaldehyde	0.22	ND	0.22		0.09	0.22	J	0.08	0.22	J	
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P	

Attachment 2 (continued)

Laboratory ID		101127	-0023		101127	-0024		101127-0025			
Field ID		R4C1011	C5-01		R4C1011	C5-02		R4C101	1C5-03		
Sample Date		11/7,	/10		11/7/	/10		11/7/10			
Sample Time		14:45 -	15:45		16:00 -	17:00		17:15 -	17:15 - 18:15		
Sample Period		1			1			1			
Sample Location	а	9			9			6			
Predominantly Downw	ind Of	Airsh	Airshed Airshed		Airst	Airshed					
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	
formaldehyde	2.0	2.6	2.0	L	2.9	2.0	L	3.7	2.0	L	
acetaldehyde	2.0	0.97	2.0	J	1.0	2.0	J	1.0	2.0	J	
acetone	3.4	1.2	3.4	A1,F,J	1.2	3.4	A1,F,J	1.6	3.4	A1,F,J	
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31		
propionaldehyde	0.51	0.13	0.51	J	0.09	0.51	J	0.10	0.51	J	
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23		
methyl ethyl											
ketone/methacrolein	0.75	0.15	0.75	J	0.15	0.75	J	0.18	0.75	J	
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22		
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15		
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.19		
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20		
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
p-tolualdehyde	0.26	ND	0.27		ND	0.26		ND	0.26		
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
2,5-dimethyl-											
benzaldehyde	0.22	0.08	0.22	J	0.08	0.22	J	0.08	0.22	J	
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P	

Laboratory ID		101127	-0026		101127	-0027		101127	-0028		
Field ID		R4C1011	C5-04		R4C1011	C5-05		R4C101	1C5-06		
Sample Date		11/7,	/10		11/8/	/10		11/8	/10		
Sample Time		18:30 -	19:30		08:25 -	09:25		09:25 -	09:25 - 10:25		
Sample Period		1			2			2			
Sample Location	а	3			3			3			
Predominantly Downwind Of		Enbridge Gatheri Compresso	•		Atmos Energy Corp. Ponder, Energy Transfer Hog Branch, and Enbridge Gathering Justin East Compressor Stations			Atmos Energy Corp. Ponder, Energy Transfer Hog Branch, and Chesapeake Energy Ponder Compressor Stations			
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	
formaldehyde	2.0	3.1	2.0	L	1.8	2.0	J	1.6	2.0	J	
acetaldehyde	2.0	1.3	2.0	J	0.97	2.0	J	0.71	2.0	J	
acetone	3.4	1.9	3.4	A1,F,J	0.86	3.4	A1,F,J	0.75	3.4	A1,F,J	
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31		
propionaldehyde	0.51	0.11	0.51	J	0.17	0.51	J	0.10	0.51	J	
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23		
methyl ethyl											
ketone/methacrolein	0.75	0.18	0.75	J	0.10	0.75	J	0.10	0.75	J	
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22		
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15		
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.19		
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20		
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
p-tolualdehyde	0.26	ND	0.26		ND	0.26		ND	0.26		
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34		
2,5-dimethyl-											
benzaldehyde	0.22	0.08	0.22	J	0.09	0.22	J	0.08	0.22	J	
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P	

Laboratory ID		101127	-0029		101127	-0030		101127	-0031				
Field ID		R4C1011	C5-07		R4C1011	C5-08		R4C101	1C5-09				
Sample Date		11/8,	/10		11/8,	/10		11/8	/10				
Sample Time		10:55 -	11:55		12:25 -	13:25		14:15 - 15:15					
Sample Period		2			2			2					
Sample Location	9	18	}		1			12	2				
Predominantly Downw	ind Of	Devon Energy Co. LP DCCO 3, S.H. Griffin Estate 20H, 21H, and 23H			Airshed			Airshed			Upwind		
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag			
formaldehyde	2.0	2.0	2.0	L	2.7	2.0	L	2.2	2.0	L			
acetaldehyde	2.0	0.78	2.0	J	0.82	2.0	J	0.90	2.0	J			
acetone	3.4	0.99	3.4	A1,F,J	1.3	3.4	A1,F,J	1.4	3.4	A1,F,J			
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31				
propionaldehyde	0.51	0.10	0.51	J	0.09	0.51	J	0.11	0.51	J			
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23				
methyl ethyl													
ketone/methacrolein	0.75	0.12	0.75	J	0.17	0.75	J	0.18	0.75	J			
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22				
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15				
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.19				
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20				
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34				
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34				
p-tolualdehyde	0.26	ND	0.26		ND	0.27		ND	0.26				
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34				
2,5-dimethyl-													
benzaldehyde	0.22	0.08	0.22	J	0.10	0.22	J	0.09	0.22	J			
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P			

Laboratory ID		101127	-0032		101127	-0033		101127	-0034			
Field ID		R4C1011	IC5-10		R4C1011	C5-11		R4C101	1C5-12			
Sample Date		11/8,	/10		11/8/	/10		11/8	/10			
Sample Time		15:50 -	16:50		17:00 -	18:00		20:00 -	21:00			
Sample Period		2			2			2				
Sample Location	n ^a	12)		12			13	3			
Predominantly Downv	vind Of	Upwind			Upwind			Upwind		Devon Energy Company (Co.) DCCO 3, S.H. Griffin Estate 17F 18H and DCCO 3, S.H. Griffin E 3		17H and
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag		
formaldehyde	2.0	2.2	2.0	L	2.2	2.0	L	2.6	2.0	L		
acetaldehyde	2.0	0.93	2.0	J	0.86	2.0	J	1.5	2.0	J		
acetone	3.4	1.2	3.4	A1,F,J	1.3	3.4	A1,F,J	1.5	3.4	A1,F,J		
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31			
propionaldehyde	0.51	0.10	0.51	J	0.10	0.51	J	0.38	0.51	J		
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23			
methyl ethyl												
ketone/methacrolein	0.75	0.15	0.75	J	0.15	0.75	J	0.15	0.75	J		
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22			
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15			
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.18			
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20			
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34			
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34			
p-tolualdehyde	0.26	ND	0.27		ND	0.26		ND	0.26			
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34			
2,5-dimethyl-												
benzaldehyde	0.22	0.12	0.22	J	0.11	0.22	J	0.12	0.22	J		
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P		

Laboratory ID		101127	-0035		101127	-0036		101127	-0037	
Field ID		R4C1011	C5-13		R4C1011	IC5-14		R4C101	1C5-15	
Sample Date		11/8/	/10		11/9	/10		11/9	/10	
Sample Time		21:25 -	22:25		11:20 -	12:20		12:55 - 13:55		
Sample Period		2			3			3		
Sample Location	a	14			12	2		10)	
Predominantly Downw	ind Of	Atmos Energy Metering Station Upwind						Devon Energy Company (C DCCO 3, Mae C. Naler 21H, 2 23H		
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag
formaldehyde	2.0	2.9	2.0	L	2.3	2.0	L	2.2	2.0	L
acetaldehyde	2.0	0.95	2.0	J	0.73	2.0	J	0.74	2.0	J
acetone	3.4	1.2	3.4	A1,F,J	0.89	3.4	A1,F,J	0.96	3.4	A1,F,J
acrolein	0.31	ND	0.31		ND	0.31		ND	0.31	
propionaldehyde	0.51	0.13	0.51	J	0.11	0.51	J	0.09	0.51	J
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23	
methyl ethyl ketone/methacrolein	0.75	0.16	0.75	J	0.10	0.75	J	0.11	0.75	J
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22	
benzaldehyde	0.15	ND	0.15		ND	0.15		ND	0.15	
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.19	
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20	
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34	
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34	
p-tolualdehyde	0.26	ND	0.26		ND	0.26		ND	0.26	
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34	
2,5-dimethyl-	0.00	0.11	0.00		0.14	0.00		0.12	0.00	
benzaldehyde	0.22	0.11	0.22	J	0.14	0.22	J	0.13	0.22	J
heptaldehyde	0.27	ND	0.27	A2,P	ND	0.27	A2,P	ND	0.27	A2,P

Laboratory ID)	101127	-0038		101127	-0039		101127-0040			101127	-0041				
Field ID		R4C101	1C5-16		R4C101	1C5-17		R4C1011C5-18			R4C101	1C5-19				
Sample Date		11/9	/10		11/10	0/10		11/10/10			11/10/10					
Sample Time		14:25 -	15:25		08:30 -	09:30		09:45 - 10:45			11:20 - 12:20					
Sample Period		3			4			4			4					
Sample Location		11			15	5		8			4					
Predominantly Down		Devon Energy Co DCCO 3, S.H. Griff and 2	in Estate	-			rshed Airshed Quicksilver					Airshed		Quicksilver Resou Stat		ipressor
Compound	LOD	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag	Concentration	SDL	Flag			
formaldehyde	2.0	2.1	2.0	L	4.7	2.0	¥	2.4	2.0	L	5.4	2.0				
acetaldehyde	2.0	0.65	2.0	J	0.94	2.0	J	0.76	2.0	J	1.1	2.0	J			
acetone	3.4	0.87	3.4	A1,F,J	0.87	3.4	A1,F,J	0.93	3.4	A1,F,J	0.84	3.4	A1,F,J			
acrolein	0.31	ND	0.31		0.08	0.31	J	ND	0.31		0.10	0.31	J			
propionaldehyde	0.51	ND	0.51		0.15	0.51	J	0.13	0.51	J	0.19	0.51	J			
crotonaldehyde	0.23	ND	0.23		ND	0.23		ND	0.23		ND	0.23				
methyl ethyl ketone/methacrolein	0.75	0.09	0.75	J	0.09	0.75	J	ND	0.75		0.10	0.75	J			
butyraldehyde	0.22	ND	0.22		ND	0.22		ND	0.22		ND	0.22				
benzaldehyde	0.15	ND	0.15		0.07	0.15	J	ND	0.15		ND	0.15				
isovaleraldehyde	0.18	ND	0.19		ND	0.19		ND	0.19		ND	0.19				
valeraldehyde	0.20	ND	0.20		ND	0.20		ND	0.20		ND	0.20	1			
o-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		ND	0.34				
m-tolualdehyde	0.34	ND	0.34		ND	0.34		ND	0.34		ND	0.34				
p-tolualdehyde	0.26	ND	0.26		ND	0.26		ND	0.26		ND	0.27				
hexaldehyde	0.34	ND	0.34		ND	0.34		ND	0.34		ND	0.34				
2,5-dimethyl-	0.22	0.12	0.22		0.12	0.22		0.12	0.22		0.13	0.22				
benzaldehyde	0.22	0.12 ND	0.22	J A2,P	0.13 ND	0.22	J A2,P	0.13 ND	0.22	J A2,P	0.13 ND	0.22	A2,P			
heptaldehyde			0.27	AZ,P	ND	0.27	AZ,P	ND	0.27	AZ,P	ND	0.27	AZ,P			

^aSee Table 1 and Map for sample location information.

All concentrations are reported in parts per billion by volume (ppbv).

F = Established acceptance criteria were not met due to factors outside the laboratory's control.

J = Reported concentration is below the SDL.

L = Reported concentration is greater than or equal to the SDL but less than the Sample Quantitation Limit.

LOD = Limit of Detection based on a 60 Liter sample volume.

ND = not detected.

SDL = Sample Detection Limit (LOD adjusted for sample volume).

A1 = not all associated QC data met the accuracy specification. Data may be an average of 50 percent (%) low with a range of -58% to -41%.

A2 = not all associated QC data met the accuracy specification. Data may be an average of 18% high with a range of 0% to 70%.

P = not all associated QC data met the precision specification. On average, data may vary by 25% with a range of 0.6% to 49%.

Attachment 3

Meteorological Data Region 4 Carbonyl Monitoring Project November 6 - 10, 2010 Van 151*

This data was collected using a Climatronics All-In-One Compact Weather Station with a folded-path, low power sonic anemometer, internal flux-gate compass, triple-element thermistor, and capacitive relative humidity sensor.

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
			R4C1011C ²	1-01		
11/8/10	14:20	2	12	170		73
11/8/10	14:25	2	11	173		73
11/8/10	14:30	2	9	175		73
11/8/10	14:35	2	10	170		72
11/8/10	14:40	2	12	172		73
11/8/10	14:45	2	10	167		73
11/8/10	14:50	2	11	167		73
11/8/10	14:55	2	12	168		73
11/8/10	15:00	2	11	169		73
11/8/10	15:05	2	11	175		73
11/8/10	15:10	2	10	172		73
11/8/10	15:15	2	10	168		74
			R4C1011C	1-02		
11/8/10	15:55	5	12	163		74
11/8/10	16:00	5	10	169		74
11/8/10	16:05	5	12	166		74
11/8/10	16:10	5	12	165		74
11/8/10	16:15	5	10	175		74
11/8/10	16:20	5	10	180		74
11/8/10	16:25	5	9	170		74
11/8/10	16:30	5	11	175		74
11/8/10	16:35	5	8	166		73
11/8/10	16:40	5	9	160		73
11/8/10	16:45	5	9	162		73
11/8/10	16:50	5	10	163		73

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
			R4C1011C ²	1-03		
11/8/10	17:05	5	10	163		72
11/8/10	17:10	5	10	164		72
11/8/10	17:15	5	9	165		72
11/8/10	17:20	5	8	165		71
11/8/10	17:25	5	8	165		71
11/8/10	17:30	5	7	165		70
11/8/10	17:35	5	7	161		70
11/8/10	17:40	5	7	158		70
11/8/10	17:45	5	7	158		70
11/8/10	17:50	5	7	151		69
11/8/10	17:55	5	7	150		69
11/8/10	18:00	5	8	152		69
11/9/10	07:00	5	R4C1011C ⁻ 7	1-04 161	1	56
11/9/10	07:00	5	6	162		56
11/9/10	07:05	5	6	164		56
11/9/10	07:10	5	7	159		56
11/9/10	07:20	5	7	159		56
11/9/10	07:20	5	7	158		56
11/9/10	07:25	5	7	158		56
11/9/10	07:30	5	8	160		57
11/9/10	07:35	5	8	161		57
11/9/10	07:40	5	9	160		57
11/9/10	07:50	5	10	159		58
11/9/10	07:55	5	9	161		58
1177/10	07.00		R4C1011C	•	II	56
11/9/10	08:05	5	9	161		58
11/9/10	08:10	5	8	166		58
11/9/10	08:15	5	9	167		59
11/9/10	08:20	5	9	165		59
11/9/10	08:25	5	9	165		59
11/9/10	08:30	5	10	176		60

Attachment 3 (continued)

11/9/10

11/9/10

11/9/10

11/9/10

11/9/10

11/9/10

08:35

08:40

08:45

08:50

08:55

09:00

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
------	------	---------------------------------	-----------------------------	---	-----------	---------------------------------------

Attachment 3 (continued)

R4C1011C1-06

11/9/10	09:10	5	10	176	62
11/9/10	09:15	5	10	171	63
11/9/10	09:20	5	13	167	63
11/9/10	09:25	5	11	175	63
11/9/10	09:30	5	11	177	63
11/9/10	09:35	5	10	170	64
11/9/10	09:40	5	12	169	64
11/9/10	09:45	5	12	174	64
11/9/10	09:50	5	11	181	64
11/9/10	09:55	5	9	179	64
11/9/10	10:00	5	10	175	65
11/9/10	10:05	5	10	172	64

R4C1011C1-07

11/9/10	10:15	5	12	166	65
11/9/10	10:20	5	11	172	65
11/9/10	10:25	5	10	169	66
11/9/10	10:30	5	11	169	67
11/9/10	10:35	5	11	175	67
11/9/10	10:40	5	12	181	67
11/9/10	10:45	5	10	180	68
11/9/10	10:50	5	11	171	69
11/9/10	10:55	5	13	174	69
11/9/10	11:00	5	12	179	69
11/9/10	11:05	5	12	185	70
11/9/10	11:10	5	11	191	70

R4C1011C1-08

11/9/10	11:25	2	15	170	А	70
11/9/10	11:30	2	13	173	А	69
11/9/10	11:35	2	11	180	А	70
11/9/10	11:40	2	14	181	А	70
11/9/10	11:45	2	11	187	А	71
11/9/10	11:50	2	11	173	А	72
11/9/10	11:55	2	14	175	А	71
11/9/10	12:00	2	13	170	А	71
11/9/10	12:05	2	13	164	А	71
11/9/10	12:10	2	14	166	А	71
11/9/10	12:15	2	15	166	А	71
11/9/10	12:20	2	16	171	А	71

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
			R4C1011C	1-09		
11/10/10	07:05	16	4	150		59
11/10/10	07:10	16	4	160		59
11/10/10	07:15	16	5	165		59
11/10/10	07:20	16	5	163		59
11/10/10	07:25	16	5	171		59
11/10/10	07:30	16	5	173		59
11/10/10	07:35	16	4	170		59
11/10/10	07:40	16	6	172		59
11/10/10	07:45	16	4	168		59
11/10/10	07:50	16	5	163		60
11/10/10	07:55	16	4	166		60
11/10/10	08:00	16	5	179		60

Attachment 3 (continued)

R4C1011C1-10

11/10/10	08:35	17	4	180	62
11/10/10	08:40	17	4	182	62
11/10/10	08:45	17	5	172	62
11/10/10	08:50	17	4	172	62
11/10/10	08:55	17	3	177	63
11/10/10	09:00	17	4	173	63
11/10/10	09:05	17	4	166	63
11/10/10	09:10	17	4	163	64
11/10/10	09:15	17	4	160	64
11/10/10	09:20	17	5	169	65
11/10/10	09:25	17	5	167	65
11/10/10	09:30	17	4	167	65

R4C1011C1-11

11/10/10	10:30	7	6	203	71
11/10/10	10:35	7	8	203	71
11/10/10	10:40	7	8	207	71
11/10/10	10:45	7	6	203	72
11/10/10	10:50	7	7	205	72
11/10/10	10:55	7	7	216	72
11/10/10	11:00	7	6	219	73
11/10/10	11:05	7	8	206	72
11/10/10	11:10	7	8	207	72
11/10/10	11:15	7	7	208	73
11/10/10	11:20	7	8	210	73
11/10/10	11:25	7	6	213	73

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
------	------	---------------------------------	-----------------------------	---	-----------	---------------------------------------

Attachment 3 (continued)

R4C1011C1-12

11/10/10	11:30	7	8	214	73
11/10/10	11:35	7	6	195	74
11/10/10	11:40	7	6	192	74
11/10/10	11:45	7	7	164	74
11/10/10	11:50	7	8	199	74
11/10/10	11:55	7	7	182	74
11/10/10	12:00	7	7	194	74
11/10/10	12:05	7	10	209	74
11/10/10	12:10	7	9	212	74
11/10/10	12:15	7	8	166	75
11/10/10	12:20	7	8	201	75
11/10/10	12:25	7	7	188	75

* Meteorological data collection not continuous; data collected only during the distinct time periods noted.

^aSee Attachment 1 and Map for site location information.

^bAll wind direction data based on magnetic north.

A = the vertical angle of the mast was not recorded after the vehicle was moved. Data may vary by ± 15 degrees.

Attachment 4

Meteorological Data Region 4 Carbonyl Monitoring Project November 6 - 10, 2010 Van 555*

This data was collected using a Climatronics All-In-One Compact Weather Station with a folded-path, low power sonic anemometer, internal flux-gate compass, triple-element thermistor, and capacitive relative humidity sensor.

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
			R4C1011C5	5-01		
11/7/10	14:50	9	9	157		70
11/7/10	14:55	9	11	162		70
11/7/10	15:00	9	10	161		70
11/7/10	15:05	9	11	170		70
11/7/10	15:10	9	10	163		69
11/7/10	15:15	9	8	148		69
11/7/10	15:20	9	9	146		69
11/7/10	15:25	9	8	144		69
11/7/10	15:30	9	9	154		70
11/7/10	15:35	9	9	165		70
11/7/10	15:40	9	9	150		69
11/7/10	15:45	9	9	153		69
			R4C1011C5	5-02		
11/7/10	16:05	9	9	150		69
11/7/10	16:10	9	9	149		69
11/7/10	16:15	9	8	148		69
11/7/10	16:20	9	8	155		69
11/7/10	16:25	9	9	153		68
11/7/10	16:30	9	8	147		68
11/7/10	16:35	9	8	151		68
11/7/10	16:40	9	8	154		68
11/7/10	16:45	9	8	155		68
11/7/10	16:50	9	9	148		67
11/7/10	16:55	9	8	147		67
11/7/10	17:00	9	7	149		67

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
			R4C1011C5	5-03		
11/7/10	17:20	6	7	161		66
11/7/10	17:25	6	7	162		65
11/7/10	17:30	6	6	158		65
11/7/10	17:35	6	7	161		65
11/7/10	17:40	6	6	161		64
11/7/10	17:45	6	5	155		64
11/7/10	17:50	6	5	157		64
11/7/10	17:55	6	5	156		63
11/7/10	18:00	6	5	156		63
11/7/10	18:05	6	4	153		62
11/7/10	18:10	6	4	147		62
11/7/10	18:15	6	5	140		61
		Γ	R4C1011C5			
11/7/10	18:35	3	5	115		60
11/7/10	18:40	3	6	116		60
11/7/10	18:45	3	5	114		60
11/7/10	18:50	3	5	114		60
11/7/10	18:55	3	5	118		59
11/7/10	19:00	3	6	117		59
11/7/10	19:05	3	6	122		59
11/7/10	19:10	3	5	126		59
11/7/10	19:15	3	5	127		59
11/7/10	19:20	3	5	129		59
11/7/10	19:25	3	4	130		59
11/7/10	19:30	3	3	137		58
			R4C1011C5	5-05		
11/8/10	08:30	3	5	156		55
11/8/10	08:35	3	5	161		55

Attachment 4 (continued)

11/8/10	08:30	3	5	156	55
11/8/10	08:35	3	5	161	55
11/8/10	08:40	3	5	166	56
11/8/10	08:45	3	6	167	56
11/8/10	08:50	3	5	164	56
11/8/10	08:55	3	6	166	57
11/8/10	09:00	3	7	171	58
11/8/10	09:05	3	7	171	59
11/8/10	09:10	3	7	169	60
11/8/10	09:15	3	9	187	61
11/8/10	09:20	3	12	179	61
11/8/10	09:25	3	11	187	62

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
------	------	---------------------------------	-----------------------------	---	-----------	---------------------------------------

Attachment 4 (continued)

R4C1011C5-06

11/8/10	09:30	3	13	178	62
11/8/10	09:35	3	12	183	63
11/8/10	09:40	3	12	177	63
11/8/10	09:45	3	11	179	64
11/8/10	09:50	3	12	182	64
11/8/10	09:55	3	14	184	64
11/8/10	10:00	3	13	185	64
11/8/10	10:05	3	17	188	64
11/8/10	10:10	3	15	186	64
11/8/10	10:15	3	13	187	65
11/8/10	10:20	3	15	181	65
11/8/10	10:25	3	13	183	65

R4C1011C5-07

11/8/10	11:00	18	11	186	67
11/8/10	11:05	18	15	178	67
11/8/10	11:10	18	14	179	67
11/8/10	11:15	18	14	184	67
11/8/10	11:20	18	15	177	67
11/8/10	11:25	18	16	180	67
11/8/10	11:30	18	16	176	68
11/8/10	11:35	18	15	181	68
11/8/10	11:40	18	14	184	68
11/8/10	11:45	18	16	180	68
11/8/10	11:50	18	15	178	68
11/8/10	11:55	18	15	178	69

P					
11/8/10	12:30	1	14	178	70
11/8/10	12:35	1	13	182	70
11/8/10	12:40	1	14	180	70
11/8/10	12:45	1	11	190	70
11/8/10	12:50	1	14	180	71
11/8/10	12:55	1	12	191	71
11/8/10	13:00	1	9	184	71
11/8/10	13:05	1	13	180	71
11/8/10	13:10	1	15	169	71
11/8/10	13:15	1	13	182	71
11/8/10	13:20	1	14	174	71
11/8/10	13:25	1	13	164	71

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
			R4C1011C5	5-09		
11/8/10	14:20	12	12	166		73
11/8/10	14:25	12	13	166		73
11/8/10	14:30	12	11	161		73
11/8/10	14:35	12	9	166		73
11/8/10	14:40	12	11	159		73
11/8/10	14:45	12	9	157		73
11/8/10	14:50	12	11	170		73
11/8/10	14:55	12	10	158		74
11/8/10	15:00	12	10	166		73
11/8/10	15:05	12	9	166		74
11/8/10	15:10	12	11	166		73
11/8/10	15:15	12	10	165		74

Attachment 4 (continued)

R4C1011C5-10

11/8/10	15:55	12	11	162	74
11/8/10	16:00	12	11	160	74
11/8/10	16:05	12	9	158	74
11/8/10	16:10	12	11	158	74
11/8/10	16:15	12	10	168	74
11/8/10	16:20	12	8	164	74
11/8/10	16:25	12	9	162	74
11/8/10	16:30	12	9	169	73
11/8/10	16:35	12	7	156	73
11/8/10	16:40	12	7	157	73
11/8/10	16:45	12	7	154	73
11/8/10	16:50	12	7	158	73

11/8/10	17:05	12	8	152	72
11/8/10	17:10	12	7	156	72
11/8/10	17:15	12	8	154	72
11/8/10	17:20	12	7	154	71
11/8/10	17:25	12	6	153	70
11/8/10	17:30	12	4	145	70
11/8/10	17:35	12	4	150	69
11/8/10	17:40	12	5	153	69
11/8/10	17:45	12	4	154	69
11/8/10	17:50	12	4	153	69
11/8/10	17:55	12	5	154	69
11/8/10	18:00	12	5	151	68

Date Time Sample Average Wind Location ^a Speed (mph)	Average Wind Direction Data Flag (degrees) ^b	Average Temperature (degrees F)
---	---	---------------------------------------

Attachment 4 (continued)

R4C1011C5-12

11/8/10	20:05	13	4	124	62
11/8/10	20:10	13	4	124	61
11/8/10	20:15	13	3	129	61
11/8/10	20:20	13	3	127	61
11/8/10	20:25	13	3	127	61
11/8/10	20:30	13	4	126	61
11/8/10	20:35	13	3	133	60
11/8/10	20:40	13	4	141	61
11/8/10	20:45	13	5	144	61
11/8/10	20:50	13	5	144	62
11/8/10	20:55	13	7	147	62
11/8/10	21:00	13	8	148	63

R4C1011C5-13

11/8/10	21:30	14	2	124	63
11/8/10	21:35	14	3	123	63
11/8/10	21:40	14	3	127	62
11/8/10	21:45	14	2	130	62
11/8/10	21:50	14	2	133	62
11/8/10	21:55	14	3	142	62
11/8/10	22:00	14	3	141	62
11/8/10	22:05	14	3	144	62
11/8/10	22:10	14	3	144	62
11/8/10	22:15	14	3	145	62
11/8/10	22:20	14	4	146	62
11/8/10	22:25	14	4	148	63

11/9/10	11:25	12	15	169	70
11/9/10	11:30	12	13	176	70
11/9/10	11:35	12	11	176	70
11/9/10	11:40	12	10	180	71
11/9/10	11:45	12	8	178	71
11/9/10	11:50	12	14	170	71
11/9/10	11:55	12	16	172	71
11/9/10	12:00	12	12	166	71
11/9/10	12:05	12	14	165	72
11/9/10	12:10	12	12	161	72
11/9/10	12:15	12	15	165	72

Attachment 4 (continued)

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)
------	------	---------------------------------	-----------------------------	---	-----------	---------------------------------------

R4C1011C5-15

11/9/10	13:00	10	14	181	73
11/9/10	13:05	10	15	184	73
11/9/10	13:10	10	16	180	73
11/9/10	13:15	10	16	185	73
11/9/10	13:20	10	14	182	73
11/9/10	13:25	10	15	176	73
11/9/10	13:30	10	17	176	73
11/9/10	13:35	10	17	179	73
11/9/10	13:40	10	16	174	73
11/9/10	13:45	10	17	165	73
11/9/10	13:50	10	19	167	73
11/9/10	13:55	10	17	165	73

R4C1011C5-16

11/9/10	14:30	11	14	155	А	75
11/9/10	14:35	11	16	153	А	74
11/9/10	14:40	11	15	152	А	74
11/9/10	14:45	11	15	149	А	75
11/9/10	14:50	11	14	158	А	75
11/9/10	14:55	11	16	167	А	75
11/9/10	15:00	11	14	156	А	75
11/9/10	15:05	11	17	158	А	75
11/9/10	15:10	11	17	148	А	75
11/9/10	15:15	11	17	158	А	75
11/9/10	15:20	11	17	164	А	75
11/9/10	15:25	11	16	171	А	75

11/10/10	08:35	15	Calm	Calm	67
11/10/10	08:40	15	Calm	Calm	65
11/10/10	08:45	15	Calm	Calm	65
11/10/10	08:50	15	Calm	Calm	64
11/10/10	08:55	15	Calm	Calm	64
11/10/10	09:00	15	Calm	Calm	64
11/10/10	09:05	15	Calm	Calm	64
11/10/10	09:10	15	Calm	Calm	64
11/10/10	09:15	15	Calm	Calm	64
11/10/10	09:20	15	Calm	Calm	65

11/10/10	09:25	15	Calm	Calm	65
11/10/10	09:30	15	Calm	Calm	65

Date	Time	Sample Location ^a	Average Wind Speed (mph)	Average Wind Direction (degrees) ^b	Data Flag	Average Temperature (degrees F)		

Attachment 4 (continued)

R4C1011C5-18						
11/10/10	09:50	8	6	174	68	
11/10/10	09:55	8	6	182	68	
11/10/10	10:00	8	6	182	69	
11/10/10	10:05	8	8	187	69	
11/10/10	10:10	8	6	193	70	
11/10/10	10:15	8	6	182	71	
11/10/10	10:20	8	7	188	71	
11/10/10	10:25	8	6	188	71	
11/10/10	10:30	8	7	192	71	
11/10/10	10:35	8	7	193	71	
11/10/10	10:40	8	7	183	72	
11/10/10	10:45	8	5	188	72	

R4C1011C5-19

11/10/10	11:25	4	2	231	76
11/10/10	11:30	4	2	204	75
11/10/10	11:35	4	2	209	75
11/10/10	11:40	4	2	212	76
11/10/10	11:45	4	2	202	76
11/10/10	11:50	4	2	185	76
11/10/10	11:55	4	2	192	76
11/10/10	12:00	4	2	211	76
11/10/10	12:05	4	2	219	76
11/10/10	12:10	4	2	196	77
11/10/10	12:15	4	2	185	76
11/10/10	12:20	4	2	223	77

* Meteorological data collection not continuous; data collected only during the distinct time periods noted.

^aSee Attachment 1 and Map for site location information.

^bAll wind direction data based on magnetic north.

A = the vertical angle of the mast was not recorded after the vehicle was moved. Data may vary by ± 15 degrees.

Attachment 5

Quality Control (QC) Report Region 4 Carbonyl Monitoring Project November 6 – 10, 2010

The Mobile Response Team (MRT) conducted follow-up sampling in Dish, Texas and the Lake Arlington area of Fort Worth after a monitoring trip to the Dish, Texas area from June 15 - 18, 2010, and a City of Fort Worth independent study on formaldehyde concentrations associated with natural gas production and processing in the Barnett Shale Formation area in northeast Texas. Dinitrophenylhydrazine (DNPH)-Silica cartridges were used to collect carbonyl samples on an automated cartridge sampler. The cartridges were analyzed by the Air and Emissions Laboratory (AEL) in Austin, Texas. Meteorological data using All-In-One (AIO) weather heads and global positioning system (GPS) sample collection location data were also collected.

The project primary target compound was formaldehyde.

Carbonyl sample collection was conducted in accordance with MRT Standard Operating Procedures (SOP) SAMP-014, revision 4. Carbonyl analyses were conducted in accordance with AEL SOP AMOR-002, revision 14. Meteorological data was collected in accordance with MRT SOP SAMP-006, revision 6. GPS data was collected in accordance with MRT SOP SAMP-006, revision 6. GPS

The QC effort was designed and implemented to ensure that all data were of known quality. The frequency requirements and acceptance criteria from the SOPs were used to determine any sample data limitations. These limitations are listed in each SOP and are available on request.

DATA COMPLETENESS

Data completeness (Table 1) was measured as a percentage of valid primary target compound data that met the established accuracy, precision, and bias acceptance criteria in relation to the total amount of primary target compound data collected. Invalidated samples were included in the data completeness calculation. However, data qualifiers for concentrations below the limit of detection (LOD) (J qualifier), concentrations greater than or equal to the LOD but less than the lowest calibration standard (L qualifier), and concentrations that exceeded the upper limit of instrument calibration (E qualifier) were not included.

Primary Target	Total Collected Data Points	Valid Data Points ^a	Data Meeting DQOs	Meets The Data Completeness Objective Of At Least 75%
Formaldehyde by Automated Cartridge Sampler	31	31	100%	Yes

Table 1:	Project	Data	Completeness
----------	---------	------	--------------

^aDid not require any qualification.

DQO = Data Quality Objective

% = percent

DATA ASSESSMENT

Carbonyl Data

Five-minute temperature averages for each van's cold storage system did not meet the acceptance criterion of remaining at or below 6°C during sample storage on three occasions. On November 7, 2010,

the five-minute average for the cold storage system in Van 555 was 1130° C from 14:25 - 14:30 and 6.7° C from 17:20 to 17:25. On November 11, 2010, the five-minute average for the cold storage system in Van 151 was 7.6 °C from 17:35 - 17:40. The 1130° C from 14:25 - 14:30 on November 7, 2010, was caused by a loose connection between the thermister and the measuring unit. The 6.7° C average from 17:20 to 17:25 on November 7, and the 7.6 °C average from 17:35 - 17:40 on November 11, are unknown, but may have been caused by keeping the cooler lid open too long. All samples collected for the project were affected. Samples with the nomenclature R4C1011C1-## were in Van 151's cold storage system and samples marked R4C1011C5-## were in Van 555's cold storage system. Additionally, the matrix spike (MS)/matrix spike duplicate (MSD) precision for acetone did not meet the established acceptance criterion possibly due to the temperature increases or an unidentified matrix effect. As a result acetone data was qualified for accuracy in the data table. These non-conformances were documented in Exception Report (ER) 1582.

Incorrect data summary labels were attached to three Field Data Sheets; R4C1011C-06 on November 9, 2010, and R4C1011C5-06 and R4C1011C5-08 on November 8, 2010, due to analyst oversight. The correct sample summary data was documented on the *Field Data Sheets* from the instrument logged data for each of the samples. As a result, there was no impact on the data. This non-conformance was documented in ER 1583.

Meteorological Data

Mast angle measurements were not recorded after the sampling vehicles were moved due to analyst oversight. All wind direction data collected from November 9, 2010, at 11:18 through November 9, 2010, at 12:27 in Van 151, and from November 9, 2010, at 14:19 through November 9, 2010, at 15:28 in Van 555 may be biased ±15 degrees. As a result, the data for these time periods was qualified with an accuracy qualifier A in the data table. This non-conformance was documented in ER 1581.

<u>GPS Data</u>

All GPS data met the established acceptance criteria.