§334.41. Applicability.

(a) Except as provided under subsection (b) of this section, an underground storage tank (UST) shall be subject to all provisions of this subchapter if such tank meets the general applicability requirements of §334.1(b) of this title (relating to Purpose and Applicability).

(b) The provisions of this subchapter shall not apply to any of the following types of UST systems:

 (1) In-ground hydraulic lifts which use a compressed air/hydraulic fluid system (regardless of size); and

 (2) Any UST system which is covered under the partial exclusion provisions of §334.4(b) of this title (relating to Exclusions for Underground Storage Tanks (USTs) and UST Systems).

(c) Any UST which is specifically excluded or exempted from the provisions of this subchapter under §334.41(b) of this title (relating to Applicability), but which is otherwise subject to any of the remaining provisions of this chapter, shall conform with the minimum design and operation requirements of §334.5(a) of this title (relating to General Prohibitions for Underground Storage Tanks (USTs) and UST systems).

(d) For the purposes of this subchapter only, a new UST system (or new UST system) shall refer to any system for which installation has commenced on or after September 29, 1989.

Adopted November 1, 2000

Effective November 23, 2000

§334.42. General Standards.

(a) All components of any new or existing underground storage tank (UST) system subject to the provisions of this subchapter shall be designed, installed, maintained, and operated in a manner that will prevent releases of regulated substances due to structural failure or corrosion.

(b) Compatibility.
(1) Owners and operators must use a UST system made of or lined with materials that are compatible with the substance stored in the UST system.

(2) Biofuels.

(A) Owners and operators must notify the executive director at least 30 days prior to switching to a regulated substance containing greater than 10% ethanol or greater than 20% biodiesel in accordance with §334.6(b)(1) of this title (relating to Construction Notification for Underground Storage Tanks (USTs) and UST Systems). In addition, owners and operators with UST systems storing these regulated substances must meet one of the following:

(i) demonstrate compatibility of the UST system (including the tank, piping, containment sumps, pumping equipment, release detection equipment, spill equipment, and overfill equipment). Owners and operators may demonstrate compatibility of the UST system by using one of the following options:

(I) certification or listing of UST system equipment or components by a nationally recognized, independent testing laboratory for use with the regulated substance stored (such as American Petroleum Institute Recommended Practice 1626, "Storing and Handling Ethanol and Gasoline-Ethanol Blends at Distribution Terminals and Filling Stations."); or

(II) for equipment or component manufacturer approval, the manufacturer's approval must be in writing, indicate an affirmative statement of compatibility, specify the range of biofuel blends the equipment or component is compatible with, and be from the equipment or component manufacturer; or

(ii) use another option determined by the executive director to be no less protective of human health and the environment than the options listed in this subsection.

(B) Owners and operators must maintain records in accordance with §334.10(b) of this title (relating to Reporting and Recordkeeping) documenting compliance with subparagraph (A)(i) of this paragraph for as long as the UST system is used to store the regulated substance.

(c) The owners and operators of UST systems subject to the provisions of this subchapter and those persons and/or business entities who engage in, perform, or supervise the installation, repair, or removal of UST systems shall be responsible for ensuring that those UST systems are designed, installed, repaired, removed, and operated in accordance with the provisions of this subchapter, as provided under §334.12(b) of this title (relating to Other General Provisions) and under the provisions of Chapter 70 of this title (relating to Enforcement).
(d) When provisions of this subchapter require compliance with a specific code or standard of practice developed by a nationally recognized association or independent testing laboratory, the most recent version of the referenced code in effect at the time of the regulated UST activity shall be applicable.

(e) Compliance with the provisions of this subchapter shall not relieve an owner or operator of a UST system from compliance with other applicable regulations legally developed by other governmental entities. This requirement is more fully discussed in §334.12(a) of this title.

(f) Unless otherwise stated in a variance approved by the agency in accordance with §334.43 of this title (relating to Variances and Alternative Procedures), the requirements of this subchapter shall take precedence if and when such requirements are determined to be in conflict with any provisions contained in the following:

(1) any code or standard of practice developed by a nationally recognized association or independent testing laboratory; and

(2) the manufacturer's specifications and instructions for installation and operation of UST equipment.

(g) Any underground component of a UST system installed on or after September 29, 1989, shall be properly protected from corrosion by one or more of the allowable methods in §334.49(b) of this title (relating to Corrosion Protection).

(h) Any new tank or piping or dispenser installed as part of a UST system on or after January 1, 2009, shall incorporate secondary containment meeting the applicable requirements of §334.45(d) of this title (relating to Technical Standards for New Underground Storage Tank Systems).

(i) Any sumps (including dispenser sumps) or manways installed prior to January 1, 2009, which are utilized as an integral part of a UST release detection system to monitor the interstitial space of a secondarily contained piping system, and any spill containment equipment installed at any time, which are associated with a UST system must be inspected at least once every 60 days to assure that their sides, bottoms, and any penetration points are maintained liquid tight. Any liquid or debris found in them during that inspection or an agency or agency-authorized inspection must be removed within 96 hours of discovery and properly disposed. This requirement applies through December 31, 2020, after which the requirements in §334.48(h) of this title (relating to General Operating and Management Requirements), shall apply.

Adopted May 9, 2018

Effective May 31, 2018
§334.43. Variances and Alternative Procedures.

(a) Prior to proceeding in any manner that differs from the requirements of this subchapter, the owner or operator of an underground storage tank (UST) system shall secure written agency approval in the form of a variance in accordance with this section.

(b) The agency shall have authority to review and approve requests for variances from the requirements in this subchapter. The agency will approve such requests only if the owner or operator can demonstrate to appropriate agency staff that the proposed alternative procedure and/or equipment will result in an UST system that is no less protective of human health and safety and the environment than the requirement(s) for which the variance is sought.

(c) An owner or operator may submit a request for a variance when one or more of the following situations is applicable:

1. when conformance with a requirement in this subchapter is considered not practicable due to the type, design, capacity, material stored, or use of the UST system; or

2. when new or alternative products, equipment, methods, and/or procedures appropriate for use with UST systems are not specifically authorized by the provisions of this subchapter.

(d) Any request to the agency for approval of a variance shall be made in writing, shall be signed and dated by the owner or operator, and shall be accompanied by the following additional documentation:

1. written concurrence by the site or facility owner, if different from the tank owner;

2. complete project identification, including:

 (A) facility name, location, and UST facility identification number (if known);

 (B) owner's name, address, and telephone number;

 (C) name, address, and telephone number of owner's/operator's authorized representative; and

 (D) proposed date for implementation of the alternative procedure and/or equipment;
(3) sufficient documentation to describe or illustrate the alternative procedure and/or equipment, such as:

(A) plans, drawings, and detail sheets (drawn to scale);

(B) design and construction specifications; and

(C) equipment manufacturers' specifications, operating instructions, and warranty information;

(4) documentation and supporting data which demonstrates, to the satisfaction of agency staff, the reliability and appropriateness of the proposed procedure and/or equipment, such as:

(A) results of tests or studies conducted by an equipment manufacturer, independent consultant, or nationally recognized association or independent testing laboratory; and

(B) results of previous experience involving use of the alternative procedure and/or equipment;

(5) complete explanation of the reasons why the requested proposed procedure and/or equipment are considered preferable to the requirement for which the variance is sought, or why that requirement is considered impracticable; and

(6) documentation that demonstrates, to the satisfaction of agency staff, that use of the proposed alternative procedure and/or equipment will be no less protective of human health and safety and the environment than adhering to the requirement(s) for which the variance is sought.

(e) If a variance is granted by the agency, the owner or operator shall maintain complete copies of the variance and supporting documentation (including the request for approval), in accordance with §334.10(b) of this title (relating to Reporting and Recordkeeping).

(f) When a variance is sought, the owner and operator must adhere to the requirement in question until such time as the owner or operator receives a written variance which allows an alternative procedure and/or equipment for that requirement.

(g) Once a person has received a written variance from the agency under this section, that person must adhere to the terms of that variance as written, or to the terms of the requirement for which the variance was sought.

Adopted November 1, 2000

Effective November 23, 2000
§334.44. Implementation Schedules.

(a) New underground storage tank (UST) systems.

(1) Requirements for all new UST systems. All new UST systems installed on or after the effective date of this subchapter, which contain, have contained, or will contain any regulated substances shall be in compliance with the following requirements from the time of installation through the operational life of the system.

(A) Such systems shall be designed, constructed, and installed in accordance with the provisions of §334.45 of this title (relating to Technical Standards for New UST Systems) and §334.46 of this title (relating to Installation Standards for New UST Systems).

(B) Such systems shall be properly protected from corrosion or equipped with appropriate corrosion protection equipment, as provided in §334.49 of this title (relating to Corrosion Protection).

(C) Such systems shall be monitored for releases as provided in §334.50 of this title (relating to Release Detection).

(D) The tanks in such systems shall be protected from spills and overfills, as provided in §334.51 of this title (relating to Spill and Overfill Prevention and Control).

(2) Additional requirements for new hazardous substance UST systems. In addition to the requirements applicable to all new UST systems in paragraph (1) of this subsection, all new hazardous substance UST systems installed on or after the effective date of this subchapter shall also be in compliance with the following requirements from the time of installation through the entire operational life of the system.

(A) Such systems shall be properly constructed or equipped with a secondary containment system which shall be designed, constructed, and installed in accordance with the provisions of §334.45(d) of this title and §334.46(f) of this title.

(B) Such systems shall be properly constructed or equipped with a release detection system capable of monitoring either the interstitial spaces between the primary and secondary walls of any double-wall UST components, or the spaces between the primary UST component walls and all secondary containment barriers, as applicable, in accordance with the provisions in §334.50(c) of this title.

(b) Existing UST systems.
Chapter 334 - Underground and Aboveground Storage Tanks

(1) Requirements for all existing UST systems. All existing UST systems (i.e., UST systems for which installation has commenced or has been completed on or prior to December 22, 1988) which contain or have contained any regulated substances shall meet the applicable requirements of §334.47 of this title (relating to Technical Standards for Existing UST Systems) in accordance with the following schedule.

(A) Tank integrity assessment and cathodic protection. No later than December 22, 1998, all existing UST systems shall be brought into compliance with the applicable tank integrity assessment and cathodic protection requirements of §334.47(b)(1) of this title.

(B) Spill and overfill prevention. No later than December 22, 1994, all tanks in an existing UST system shall be brought into compliance with the applicable spill and overfill prevention equipment requirements of §334.51(b) of this title.

(C) Release detection for existing UST system piping.

 (i) Release detection for pressurized piping. No later than December 22, 1990, all piping in an existing UST system that routinely conveys regulated substances under pressure (i.e., which operates at greater than atmospheric pressure) shall be brought into compliance with the pressurized piping release detection requirements in §334.50(b)(2)(A) of this title.

 (ii) Release detection for suction piping and gravity-flow piping. All piping in an existing UST system that routinely conveys regulated substances either by gravity flow or under suction (i.e., which operates at less than atmospheric pressure) shall be brought into compliance with the suction and gravity-flow piping release detection requirements in §334.50(b)(2)(B) of this title no later than the date on which release detection is required for the tank to which such piping is connected, as prescribed in subparagraph (D) of this paragraph.

(D) Release detection for existing tanks.

 (i) Except as provided in clause (ii) of this subparagraph, all tanks in an existing UST system shall be brought into compliance with the tank release detection requirements in §334.50(b)(1) of this title no later than the date specified in the following subclauses for the time of installation applicable to such tanks:

 (I) December 22, 1989, for tanks where the installation dates are undetermined or unknown;

 (II) December 22, 1989, for tanks installed during 1964 or prior years;
(III) December 22, 1990, for tanks installed during the years 1965-1969, inclusive;

(IV) December 22, 1991, for tanks installed during the years 1970-1974, inclusive;

(V) December 22, 1992, for tanks installed during the years 1975-1979, inclusive;

(VI) December 22, 1993, for tanks installed during the years 1980-1987, inclusive; and

(ii) For emergency generator tanks only, the compliance dates prescribed in clause (i)(I) - (V) of this subparagraph shall be extended by one year; however, no compliance date shall be extended later than December 22, 1993.

(2) Additional requirements for existing hazardous substance UST systems.
In addition to the requirements applicable to all existing UST systems in paragraph (1) of this subsection, all existing hazardous substance UST systems shall also be brought into compliance with additional secondary containment and release detection standards in accordance with the following schedule.

(A) No later than December 22, 1998, all existing hazardous substance UST systems shall be equipped with a secondary containment system meeting the design, construction, and installation requirements in §334.45(d) of this title and of §334.46(f) of this title.

(B) No later than December 22, 1998, all existing hazardous substance UST systems shall be equipped with a release detection system capable of monitoring either the interstitial spaces between the primary and secondary walls of any double-walled UST components, or the spaces between the primary UST component walls and any secondary containment barriers, as applicable, in accordance with the provisions in §334.50(c) of this title.

Adopted November 1, 2000 Effective November 23, 2000

(a) General requirements.
(1) Any new underground storage tank (UST) system installed on or after September 29, 1989, shall be in compliance with the provisions of this section during the entire operational life of the UST system.

(2) Any new UST system shall be designed, installed, and operated in a manner that will prevent releases due to structural failure or corrosion for the operational life of the UST system.

(3) The surfaces of all components of the new UST system which are in direct contact with a regulated substance shall be constructed of or lined with materials that are compatible with such regulated substances.

(4) All components of the new UST system which convey, contain, or store regulated substances shall be properly protected from corrosion in accordance with the applicable provisions in §334.49 of this title (relating to Corrosion Protection).

(5) All tanks, piping, and other ancillary equipment in a new UST system shall be installed in accordance with the requirements of §334.46 of this title (relating to Installation Standards for New Underground Storage Tank Systems).

(b) Technical standards for new tanks.

(1) Tank design and construction. Each new tank shall be properly designed, constructed, and protected from corrosion in accordance with one or more of the methods listed in subparagraphs (A) - (G) of this paragraph, and in accordance with specific codes and standards of practice developed by nationally recognized associations and independent testing laboratories, as referenced in the following subparagraphs:

(A) The tank may be constructed of fiberglass-reinforced plastic. Tanks constructed under this method shall meet an industry code of practice such as:

(i) Underwriters Laboratories, Inc. (UL) Standard 1316, "Glass-Fiber-Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures;" or

(B) The tank may be constructed of coated steel and equipped with a factory-installed cathodic corrosion protection system. Any tank constructed under this method shall be thoroughly coated with a suitable dielectric material, shall be equipped with a factory-installed cathodic corrosion protection system meeting the appropriate
design and operational requirements in §334.49(c)(1) of this title, and shall meet an industry code of practice such as:

(i) UL Standard 58, "Standard for Steel Underground Tanks for Flammable and Combustible Liquids;"

(ii) Part I of UL Standard 1746, "Standard for External Corrosion Protection Systems For Steel Underground Storage Tanks;" or

(C) The tank may be constructed of coated steel and equipped with a field-installed cathodic corrosion protection system. Any tank constructed under this method shall be thoroughly coated with a suitable dielectric material, shall be equipped with a field-installed cathodic protection system meeting the appropriate design and operational requirements in §334.49(c)(2) of this title, and shall meet the following standards:

(i) UL Standard 58, "Standard for Steel Underground Tanks for Flammable and Combustible Liquids;" and

(ii) NACE International Standard SP0285, "External Corrosion Control of Underground Storage Tank Systems by Cathodic Protection."

(D) The tank may be factory-constructed either as a steel/fiberglass-reinforced plastic composite tank, or as a steel tank with a bonded fiberglass-reinforced plastic external cladding or as a steel tank with a bonded fiberglass reinforced polyurethane coating. Any tank constructed under this method is not required to be equipped with a cathodic protection system, provided that the tank meets the following requirements:

(i) The tank shall be equipped with a factory-applied external fiberglass-reinforced plastic or fiberglass reinforced polyurethane cladding or laminate which has a total dry film thickness of 100 mils minimum and 125 mils nominal;

(ii) The tank shall be operated and maintained in accordance with the requirements of §334.49 of this title;

(iii) The tank shall be electrically isolated from all other metallic structures by use of dielectric bushings or other appropriate methods utilized in accordance with applicable industry standards; and
(iv) The tank shall be designed and fabricated in accordance with one or more of the following standards:

 (I) Part II of UL Standard 1746, "Standard for External Corrosion Protection Systems For Steel Underground Storage Tanks;"

 (II) STI ACT-100, "Specification for External Corrosion Protection of FRP Composite Steel Underground Storage Tanks;" or

 (III) any other UL, STI, or ULC standard which incorporates the requirements contained in the standards listed in either subclause (I) or (II) of this clause.

(E) The tank may be factory-constructed as a steel tank with a bonded polyurethane external coating. Any tank constructed under this method is not required to be equipped with a cathodic protection system, provided that the tank meets the following requirements:

 (i) The tank shall be equipped with a factory-applied external polyurethane coating which has a minimum dry film thickness of 70 mils;

 (ii) The tank shall be operated and maintained in accordance with the applicable requirements of §334.49 of this title;

 (iii) The tank shall be electrically isolated from all other metallic structures by use of dielectric bushings or other appropriate methods utilized in accordance with applicable industry standards; and

 (iv) The tank shall be designed and fabricated in accordance with one or more of the following standards:

 (I) Part IV of UL Standard 1746, "Standard for External Corrosion Protection Systems For Steel Underground Storage Tanks;"

 (II) STI ACT-100-U, "Specification for External Corrosion Protection of Composite Steel Underground Storage Tanks;" or

 (III) any other UL, STI, or ULC standard which incorporates the requirements contained in the standards listed in either subclause (I) or (II) of this clause.

(F) The tank may be factory-constructed as a steel tank completely contained within a nonmetallic external tank jacket. Any tank constructed under this
method is not required to be equipped with a cathodic protection system, provided that
the tank meets the following requirements:

(i) The tank shall be equipped with a factory-constructed
nonmetallic external jacket which provides both secondary containment and corrosion
protection;

(ii) The tank shall be operated and maintained in accordance
with the applicable requirements of §334.49 of this title;

(iii) The tank shall be electrically isolated from all other
metallic structures by use of dielectric bushings or other appropriate methods utilized in
accordance with applicable industry standards; and

(iv) The tank shall be designed and fabricated in accordance
with the following:

(I) Part III of UL Standard 1746, "Standard for External
Corrosion Protection Systems For Steel Underground Storage Tanks;" or

(II) STI Specification F922, "Steel Tank Institute
Specification for Permatank;" or

(III) any other UL, STI, or ULC standard which
incorporates the requirements contained in the standard listed in subclause (I) or (II) of
this clause.

(G) The tank may be designed, constructed, and protected from
corrosion by an alternate method which has been reviewed and determined by the
agency to control corrosion and prevent the release or threatened release of any stored
regulated substance in a manner that is no less protective of human health and safety
and the environment than the methods described in subparagraphs (A) - (F) of this
paragraph, in accordance with the procedures in §334.43 of this title (relating to
Variances and Alternative Procedures).

(2) Spill and overfill prevention equipment. All new tanks shall be equipped
with spill and overfill prevention equipment, in accordance with §334.51(b) of this title
(relating to Spill and Overfill Prevention and Control).

(3) Release detection for new tanks. All new tanks shall be monitored for
releases of regulated substances in accordance with §334.50 of this title (relating to
Release Detection).

(4) Other new tank components.
(A) Fittings. All metallic tank fittings (e.g., bung hole plugs) shall be protected from corrosion and shall be either:

(i) isolated from the backfill material and groundwater or any other water;

(ii) thoroughly coated with a suitable dielectric material, in accordance with the tank manufacturer’s specifications; or

(iii) cathodically protected in accordance with the applicable provisions in §334.49(c) of this title.

(B) Striker plates. Factory-installed striker plates shall be located on the interior bottom surface of each tank under all fill and gauge openings.

(C) Dielectric bushings or fittings. In order to provide electrical isolation of the tank from other connected metal components, all coated steel tanks equipped with either a factory-installed cathodic protection system or a factory-applied fiberglass-reinforced plastic laminate or cladding shall also be fitted with dielectric bushings or fittings at each tank opening where other metal UST system components are connected, except for unused openings closed with metal plugs and for openings where the connected component is non-metallic.

(c) Technical standards for new piping.

(1) Piping design and construction. All new underground piping (including associated valves, fittings, and connectors) in a UST system shall be properly designed, constructed, and protected from corrosion in accordance with one of the methods listed in subparagraphs (A) - (D) of this paragraph and in accordance with specific codes and standards of practice developed by nationally recognized associations and independent testing laboratories, as referenced in the following subparagraphs.

(A) The piping may be constructed of fiberglass-reinforced plastic. Piping constructed under this method shall meet the following standards:

(i) UL Standard 971, "Standard for Nonmetallic Underground Piping For Flammable Liquids;" and

(B) The piping may be constructed of coated steel. Piping constructed under this method shall be thoroughly coated with a suitable dielectric material, shall be
cathodically protected with a field-installed cathodic protection system meeting the appropriate design and operational requirements in §334.49(c) of this title, and shall meet the applicable provisions of the following standards.

(i) UL Standard 971A, "Outline of Investigation for Metallic Underground Fuel Pipe;"

(ii) STI Recommended Practice R892, "Recommended Practice for Corrosion Protection of Underground Piping Networks Associated with Liquid Storage and Dispensing Systems;"

(iii) American Petroleum Institute Publication 1632, "Cathodic Protection of Underground Storage Tanks and Piping Systems;"

(iv) NACE International Standard Practice SP0169, "Control of External Corrosion on Underground or Submerged Metallic Piping Systems; and"

(v) NACE International Standard Practice SP0285, "External Corrosion Control of Underground Storage Tank Systems by Cathodic Protection."

(C) The piping may be constructed of flexible nonmetallic material. Piping constructed under this method shall meet the following standards:

(i) UL Standard 971, "Standard for Nonmetallic Underground Piping For Flammable Liquids;" and

(D) The piping may be designed, constructed, and protected from corrosion by an alternate method which has been reviewed and determined by the agency to prevent the release of any stored regulated substance in a manner that is no less protective of human health and the environment than the methods described in subparagraphs (A) and (B) of this paragraph. Any alternative methods must be submitted and approved in accordance with the procedures in §334.43 of this title.

(2) Release detection for new piping. All new piping shall be monitored for releases of regulated substances in accordance with §334.50(b)(2) of this title.

(3) Other new piping components.

(A) For piping systems in which regulated substances are conveyed under pressure to an aboveground dispensing unit, a UL-listed (or agency accepted equivalent listing by ULC) emergency shut-off valve (also called a shear or impact valve)
shall be installed in each pressurized delivery or product line and shall be securely anchored at the base of the dispenser. This shut-off valve shall include a fusible link, and shall be designed to provide a positive shut-off of product flow in the event that a fire, collision, or other emergency occurs at the dispenser end of the pressurized line.

(B) UL-listed (or agency accepted equivalent listing by ULC, or Factory Mutual Research Corporation (FMRC)) flexible connectors shall be installed at both ends of each pressurized product or delivery line to provide flexibility and to allow for vertical and horizontal movement in the piping, unless inherently flexible piping is installed in accordance with manufacturer's requirements and in accordance with an applicable code or standard of practice developed by a nationally recognized association or independent testing laboratory. The use of metal swing joints in a pressurized UST piping system is specifically prohibited.

(C) If buried and in contact with soil or backfill materials, all metallic pipe, valves, and fittings (including flexible connectors) shall be equipped with corrosion protection meeting the applicable requirements in §334.49 of this title.

(D) Only UL-listed (or agency accepted equivalent listing by ULC, or FMRC) flexible connectors or nonmetallic piping listed for aboveground use or listed for use in sumps can be used without backfill cover in sumps, manways, or dispenser pans.

(d) Secondary containment for UST systems.

(1) Applicability.

(A) A secondary containment system meeting the requirements of this subsection shall be installed as part of any hazardous substance UST system.

(B) A double-wall tank and piping system (or approved alternative) meeting the applicable requirements of this subchapter shall be installed for any UST system situated on the Edwards Aquifer recharge or transition zones or contributing zone within the transition zone, in accordance with Chapter 213 of this title (relating to Edwards Aquifer).

(C) A UST system, at a minimum, shall incorporate secondary containment as specified in Texas Water Code, §26.3476, if the UST system is located in an area described in that provision.

(D) The agency may specifically require the installation of a secondary containment system meeting the requirements of this subsection at other times when necessary for the protection of human health or safety or the environment.
(E) Requirements applicable to new tanks, piping and/or dispensers (including related sumps or manways) installed on or after January 1, 2009:

(i) Any new tank or piping installed as part of a UST system must incorporate secondary containment in accordance with the applicable requirements of this subchapter, except that external liners will not be allowed as a secondary containment method.

(ii) Up to 35% of the total original length of an existing single-wall piping can be replaced with new single-wall piping in accordance with the applicable requirements of this subchapter without triggering the secondary containment requirement for that piping, unless the new piping segment connects the existing piping to a new dispenser. If more than 35% of the total original length of an existing single-wall piping is to be replaced, or the new piping segment connects the existing piping to a new dispenser, that piping segment must be replaced with a piping which incorporates secondary containment.

(iii) The interstice of the secondarily contained tank and/or piping must be monitored in accordance with the requirements of §334.50(d)(7) of this title.

(iv) Any sumps (including dispenser sumps) or manways which are used for interstitial monitoring of piping must be compatible with the stored substance(s), must be installed and maintained in a manner that assures that their sides, bottoms, and any penetration points are liquid tight, and must be inspected in accordance with the requirements in §334.42 and §334.48 of this title (relating to General Standards; and General Operating and Management Requirements).

(v) Under-dispenser containment in the form of a dispenser sump is required for any new dispenser. A new dispenser is defined in §334.2 of this title (relating to Definitions). New dispensers must employ a dispenser sump which is compatible with the stored substance; is installed and maintained in a manner that assures that its sides, bottoms, and any penetration points are liquid tight; and must be inspected for tightness annually and tested for tightness, immediately after installation and at least once every three years thereafter.

(vi) Any sumps (including dispenser sumps) or manways which are used for interstitial monitoring of piping must be equipped with a liquid sensing probe(s) which will alert the UST system owner or operator if more than two inches of liquid collects in any sump or manway.

(vii) Liquids and/or debris found in any sumps (including dispenser sumps) or manways which are used for interstitial monitoring of piping must be removed within 96 hours of alert or discovery and properly disposed.
(viii) Inspections and testing.

(I) Inspections must be performed by a qualified person who is competent to conduct the inspection in accordance with recognized industry practices and in accordance with industry standards, if applicable.

(II) Testing of tanks and/or piping shall be performed in accordance with the applicable requirements of this chapter. Testing of sumps (including dispenser sumps) or manways must be performed by a qualified person who is competent to conduct the inspection in accordance with recognized industry practices and in accordance with industry standards, if applicable.

(2) General performance standards. All secondary containment systems installed as part of a UST system shall be:

(A) designed, installed, and operated in a manner that will prevent the release of regulated substances from such secondary containment system into the surrounding soil, backfill, groundwater, or surface water during the operational life of the UST system;

(B) capable of collecting and containing releases of regulated substances from any portion of the primary containment vessels (e.g., tanks and piping) until such released substances are removed;

(C) constructed of or lined with materials which are compatible with the stored regulated substance;

(D) constructed of materials having sufficient strength and thickness to prevent failure due to pressure gradients (including static head and external hydrological forces), physical contact with the stored regulated substance (and any other substance to which they may normally be exposed), climatic conditions, the stresses of installation, and the stresses of daily operation (including stresses from nearby vehicular traffic); and

(E) installed on a properly designed and properly placed bedding or backfill material which is capable of providing adequate support for the secondary containment system, capable of providing adequate resistance to any pressure gradients above and below the system, and capable of preventing failure due to settlement, compression, or uplift.

(3) Secondary containment for tanks. One or more of the following methods may be used to provide secondary containment for tanks.
(A) Double-wall tanks. Double-wall tanks may be used to comply with the secondary containment requirements of this subchapter, provided that such tanks shall meet the following additional provisions.

(i) The secondary wall of such double-wall tanks shall be structurally designed to contain and support the full-load capacity of the primary tank without failure.

(ii) The double-wall tank (including both the primary and secondary tank walls) shall be protected from corrosion in accordance with one or more of the allowable methods included in §334.49 of this title.

(iii) The double-wall tank shall be designed, installed, operated, and maintained in accordance with one of the applicable codes or standards of practice listed as follows:

(I) for fiberglass-reinforced plastic tanks: UL Standard 1316, "Glass-Fiber-Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures;"

(II) for steel tanks: STI Standard F841, "Standard for Dual Wall Underground Steel Storage Tanks;" UL Standard 58, "Standard for Steel Underground Tanks for Flammable and Combustible Liquids;" and other applicable UL standards for double-wall steel tanks; and

(III) any other code or standard of practice developed by a nationally recognized association or independent testing laboratory that has been reviewed and determined by the agency to be no less protective of human health and safety and the environment than the standards described in subclauses (I) and (II) of this clause, in accordance with procedures in §334.43 of this title.

(iv) The double-wall tank system shall be installed in accordance with the requirements in §334.46(f)(2) of this title.

(B) External liners. Tank excavation liners may be used to comply with the secondary containment requirements of this paragraph, provided that such liners shall meet the following additional provisions.

(i) The tank excavation liner shall consist of an artificially constructed material that is of sufficient strength, thickness, puncture-resistance, and impermeability (i.e., allow permeation at a rate of no more than 0.25 ounces per square foot per 24 hours for the stored regulated substance) in order to permit the collection and containment of any releases from the UST system. The criteria for evaluation of the liner for compliance with this clause shall be in accordance with accepted industry
practices for materials testing. Types of liners which may be used include certain reinforced and unreinforced flexible-membrane liners, rigid fiberglass-reinforced plastic liners, and reinforced concrete vaults.

(ii) The liner shall be protected from corrosion in accordance with one or more of the allowable methods included in §334.49 of this title.

(iii) The liner shall be sufficiently compatible with the stored regulated substance, so that any regulated substance collected in the liner system shall not cause any substantial deterioration of the liner that would allow the regulated substances to be released into the environment.

(iv) The liner shall be designed to provide a containment volume of no less than 100% of the full capacity of the largest tank within its containment area.

(v) The liner shall be installed in accordance with the requirements in §334.46(f)(4) of this title.

(4) Secondary containment for piping. One or more of the following methods shall be used to provide secondary containment for piping.

(A) Double-wall piping. Double-wall piping systems may be used to comply with the secondary containment requirements of this subchapter, provided that such piping systems meet the following additional provisions.

(i) The double-wall piping system shall be designed to contain a release from any portion of the primary piping within the secondary piping walls.

(ii) The double-wall piping system (including both the primary and secondary piping) shall be protected from corrosion in accordance with one or more of the allowable methods included in §334.49 of this title.

(iii) The double-wall piping system shall be designed, installed, and operated in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory.

(iv) The double-wall piping system shall be installed in accordance with the requirements in §334.46(f)(3) of this title.

(B) External liners. External piping trench liners may be used to comply with the secondary containment requirements of this paragraph, provided that such liners meet the additional provisions in paragraph (3)(B) of this subsection.
(e) Technical standards for other new UST system equipment.

(1) Vent lines. All underground portions of the vent lines (including all associated underground valves, fittings, and connectors) shall be designed and constructed in accordance with the piping requirements in subsection (c)(1) of this section, shall be properly protected from corrosion in accordance with one of the allowable methods in §334.49 of this title, and shall be installed in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory.

(2) Fill pipes. All fill pipes (including any connected fittings) shall be:

 (A) designed and constructed in accordance with the piping requirements in subsection (c)(1) of this section;

 (B) properly protected from corrosion in accordance with one of the allowable methods in §334.49 of this title;

 (C) properly enclosed in or equipped with spill and overfill prevention equipment as required in §334.51(b) of this title; and

 (D) equipped with a removable or permanent factory-constructed drop tube which shall extend to within 12 inches of the tank bottom.

(3) Release detection equipment. All release detection equipment shall be designed and constructed in accordance with the requirements for the particular type of equipment, as described in the applicable provisions in §334.50 of this title.

(4) Monitoring wells and observation wells.

 (A) All monitoring wells and observation wells installed on or after September 29, 1989, shall be designed, constructed, and installed in accordance with the requirements in §334.46(g) of this title.

 (B) Each separate tank hole in a new UST system installed on or after September 29, 1989, shall include a minimum number of four-inch diameter (nominal) observation wells, as specified in the following clauses:

 (i) for a tank hole containing only one tank, a minimum of one observation well shall be required; and

 (ii) for a tank hole containing two or more tanks, a minimum of two observation wells shall be required.
(f) Records for technical standards for new UST systems. Owners and operators of new UST systems shall maintain adequate records to demonstrate compliance with the applicable provisions in this section, which at a minimum, shall include all records required in §334.46(i) of this title. All records shall be maintained in accordance with §334.10(b) of this title (relating to Reporting and Recordkeeping).

Adopted May 9, 2018 Effective May 31, 2018

(a) General installation procedures. Any new underground storage tank (UST) system installed on or after September 29, 1989, shall be installed in compliance with the provisions of this section.

(1) Standards. All tanks, piping, and associated equipment shall be installed in accordance with at least one of the following standards, as applicable:

 (A) Petroleum Equipment Institute Publication RP-100, "Recommended Practices for Installation of Underground Liquid Storage Systems;"

 (B) American Petroleum Institute Publication 1615, "Installation of Underground Petroleum Storage Systems;"

 (D) any other code or standard of practice developed by a nationally recognized association or independent testing laboratory that has been reviewed and determined by the agency to be no less protective of human health and safety and the environment than the standards described in subparagraphs (A) - (C) of this paragraph, in accordance with the procedures in §334.43 of this title (relating to Variances and Alternative Procedures).

(2) Installation personnel. All tanks, piping, and associated equipment shall be installed by personnel possessing the appropriate skills, experience, competence, and, if applicable, any required certification or license to complete the installation in accordance with recognized industry practices and this chapter, and in a manner designed to minimize the possibility of UST system failures and the releases of regulated substances.

(3) Damages.
(A) All reasonable precautions shall be taken to prevent improper handling and damaging of the tanks and piping during the unloading and installation processes.

(B) Tanks and piping shall be physically inspected by the installer prior to installation.

(C) Any damage shall be repaired in accordance with the manufacturer's specifications; otherwise, damaged tanks and/or piping shall be replaced.

(4) Excavation.

(A) The tank excavation zone and piping trenches shall provide adequate vertical and horizontal space for the tanks, piping, and associated equipment, for the proper placement and compaction of bedding and backfill materials (particularly under the lower quadrant of the tank's circumference), and for adequate cover and paving to accommodate anticipated traffic loads.

(B) Tank excavation shall be performed in a manner that will avoid the undermining of foundations and other existing structures, and shall be constructed not less than three feet from the base of adjacent structures (unless specifically approved by a licensed professional engineer) and not less than three feet from any underground utility easements and property lines.

(5) Bedding and backfill.

(A) The bedding and backfill shall consist of clean, washed, suitably graded, and noncorrosive sand, crushed rock, or pea gravel.

(B) The bedding and backfill material shall be selected and placed in accordance with the tank and piping manufacturer's specifications, and shall be placed and compacted in uniform lifts, as appropriate, to assure proper support and protection of the tank and piping after installation.

(C) Minimum bedding and backfill requirements shall be in accordance with the applicable industry standard for the construction, as prescribed in this subsection.

(D) The placement of tanks or piping directly on native soils, concrete pads or saddles, or any other underlayment except the bedding materials listed in this paragraph is specifically prohibited.

(b) Anchoring systems. Unless otherwise approved by the agency in accordance with §334.43 of this title, all USTs located in areas subject to high water tables or
flooding shall be protected from any flotation or movement which could jeopardize the integrity of the UST system.

(1) Methods to prevent tank flotation shall be in accordance with the tank manufacturer’s specifications and shall be one (or a combination) of the following methods:

(A) the provision of ample backfill and/or paving on top of the tank to offset the buoyancy forces;

(B) the installation of a properly designed deadman anchoring system, where the concrete beams shall be placed outside the vertical extension of the tank diameter and where the length of the beams shall extend at least one foot beyond the ends of the tank; or

(C) the installation of a properly designed concrete hold-down pad anchoring system beneath the tank, where the pad’s width and length shall extend at least one foot beyond the tank sides and ends in all directions.

(2) The installation of anchoring straps or cables shall be in accordance with the tank manufacturer’s specifications. All parts of the straps, cables, and hardware shall be of corrosion-resistant material or, if metallic, shall be thoroughly coated or wrapped with a suitable dielectric material.

(c) Piping system installation.

(1) The piping layout shall be designed in a manner that will minimize the crossing of other lines and conduits, and the crossing of tanks and other UST system components. Where such crossing is unavoidable, adequate clearance shall be provided to prevent contact.

(2) Traps, sumps, or sags in the piping shall be avoided, and all piping shall slope at least 1/8 inch per foot in the direction of the tank.

(3) All piping joints shall be accurately cut, deburred, cleaned, and sealed with appropriate piping sealant, bonding agent, or adhesive in accordance with the piping manufacturer’s specifications so as to provide liquid-tight connections.

(d) Installation testing for new tanks and piping.

(1) Air testing of new tanks shall be conducted in accordance with the tank manufacturer’s specifications.
(A) Air testing for single-wall tanks shall include the soaping of all surfaces, seams, and fittings, pressurizing and gauging with three to five pounds per square inch gauge (psig) air pressure for at least one hour, monitoring the gauge for pressure drops, and inspecting for bubbles.

(B) Air testing for double-wall tanks shall be in accordance with subsection (f)(2)(B) of this section.

(C) Gauges used in air testing procedures shall have a maximum range not exceeding 15 psig. All tanks undergoing air pressure testing shall be equipped with a pressure relief device capable of relieving the total output of the compressed air source at a pressure of not more than six psig.

(2) Air testing of new piping, fittings, and valves shall be conducted in accordance with the manufacturer's specifications. New piping shall be tested before being covered and placed into use. Air testing of piping shall include the soaping of all joints, pressurizing with compressed air to 150% of the maximum piping operating pressure, or a minimum of 50 psig, for at least one hour, and inspecting for bubbles. Air testing for secondary containment piping shall be in accordance with subsection (f)(3)(B) of this section.

(3) In addition to the air tests, a tank tightness test and a piping tightness test meeting the requirements of §334.50(b)(2)(A)(ii)(I) and (d)(1)(A) of this title (relating to Release Detection) shall be performed after the backfill has been placed but prior to bringing the new UST system into operation.

(4) Additional tests required. In addition to the air tests and tightness tests required in this subsection, the following additional installation tests shall be required, as applicable.

(A) For fiberglass-reinforced plastic tanks, the tank diameter shall be accurately measured prior to and after installation to ascertain the amount of vertical deflection, as specified in the tank manufacturer's installation procedures. Except when specifically authorized in writing by an authorized representative of the tank manufacturer, tanks shall not be placed into operation if the measured vertical deflection exceeds the manufacturer's maximum allowable deflection ratings.

(B) For steel tanks and other underground UST system components which are equipped with factory-installed or field-installed cathodic corrosion protection systems, the cathodic protection systems shall be tested for operability and adequacy of protection by a qualified corrosion technician or qualified corrosion specialist after the UST system installation is completed but prior to placing the system into operation.
(i) If the test indicates that the cathodic protection system is inoperable or inadequate, a qualified corrosion specialist shall review the test results and thoroughly inspect the UST system to ascertain the extent of corrosion protection.

(ii) If the qualified corrosion specialist determines that the UST system component is no longer adequately protected from corrosion, then the owner or operator shall assure that one or more of the following procedures are completed before the UST system is placed into operation.

(I) Appropriate repairs or modifications shall be made to restore the cathodic corrosion protection to the applicable UST system components.

(II) The cathodic protection system shall be replaced with another operable cathodic protection system which will provide adequate corrosion protection to the applicable UST system components, in accordance with the requirements in §334.49(c)(2) of this title (relating to Corrosion Protection).

(e) Installation of cathodic protection systems. The installation of any field-installed cathodic protection system in a new or existing UST system shall be in accordance with the applicable requirements of §334.49(c)(2) of this title.

(f) Installation of secondary containment systems.

(1) Secondary containment. Any secondary containment system shall meet the technical standards of §334.45(d) of this title (relating to Technical Standards for New Underground Storage Tank Systems).

(2) Installation of double-wall tanks.

(A) The installation of double-wall tanks shall be in compliance with the manufacturer's specifications and the applicable tank installation procedures in this section.

(B) Air testing for double-wall tanks shall be in accordance with the manufacturer's specifications or the following procedures.

(i) The primary tank shall be pressurized and gauged with three to five psig of air pressure. The primary tank shall be pressurized for at least one hour, and the gauge pressure shall be periodically monitored for any pressure drops.

(ii) After disconnecting the outside air pressure source, the interstitial area between the tank walls shall be pressurized with air pressure from the primary tank. A second gauge shall be used to measure the pressure in the interstitial space.
(iii) The exterior of the tank shall be soaped, and the integrity of the system shall be inspected by monitoring the gauges and inspecting for air bubbles for at least one hour prior to releasing the pressure.

(iv) Gauges used in air testing procedures shall have a maximum range not exceeding 15 psig. All tanks undergoing air testing shall be equipped with a pressure relief device capable of relieving the total output of the compressed air source at a pressure of not more than six psig.

(3) Installation of double-wall piping.

(A) The installation of double-wall piping shall be in compliance with the manufacturer's specifications and the applicable piping installation procedures in this section.

(B) After successful air testing of the completed primary piping system (in accordance with subsection (d)(2) of this section), the secondary containment piping shall be air tested in accordance with the manufacturer's specifications and the following procedures.

(i) The secondary containment piping shall be pressurized and gauged with three to five psig of air pressure.

(ii) The exterior of the secondary containment piping shall be soaped and the integrity of the system shall be inspected by monitoring for air bubbles for at least one hour.

(iii) The secondary containment piping system shall remain pressurized, and the gauges shall be periodically monitored for pressure losses, until the entire UST system installation is complete in order to monitor for damages during the remaining construction activities.

(4) Installation of external liners.

(A) External liners shall be installed in accordance with the manufacturer's specifications, and in accordance with the requirements in this paragraph.

(B) The installation, field-seaming, and field-repair of any liners shall be performed only by qualified personnel who have been properly trained and certified by the liner manufacturer.
(C) The liner shall be protected from puncture, abrasion, or any other damage during placement and during installation of other UST system components. A protective layer of puncture-resistant filter fabric shall be required when the liner is placed in an excavation area where the presence of sharp paving, rocks, or other debris presents a threat to the liner integrity.

(D) The liner shall be installed in a manner that will allow sufficient enclosure of the secondarily protected component to prevent lateral and vertical migration of any collected regulated substances.

(E) For UST systems which are equipped with cathodic protection equipment, the liner shall be installed so as not to jeopardize or inhibit the proper operation of such cathodic protection equipment.

(F) The liner installation shall include the provision of an appropriate number of recessed collection/detection points, and all portions of the liner shall be sloped toward such points to permit the detection of any releases from the primary storage component.

(G) The installation of the liner shall be performed in a manner that will ensure that groundwater, soil moisture, and stormwater runoff will not adversely affect the liner's ability to collect and contain regulated substances or the ability of the selected release detection methods to operate effectively.

(H) The liner shall be designed and installed to ensure that it will always be situated above the highest groundwater level and outside the 25-year floodplain, unless the liner and the release detection system are properly designed for use under such conditions. The owner or operator may be required to provide documentation of the methods used to determine groundwater and floodplain information.

(I) After completion of the liner installation, but prior to placing the UST system into service, the liner shall be properly tested in accordance with the manufacturer's specifications.

(g) Installation of monitoring wells and observation wells. All monitoring wells and observation wells installed in conjunction with a UST system on or after September 29, 1989, shall be constructed and installed in accordance with the requirements of this subsection.

(1) General requirements for both monitoring wells and observation wells.

(A) All monitoring wells and observation wells shall be constructed or installed by personnel possessing the appropriate skills, experience, competence, and, if
applicable, any required license or certification to complete the construction or installation in accordance with recognized industry standards and the requirements of this subsection.

(B) Except for observation wells installed under §334.45(e)(4)(B) of this title, the determination of the appropriate number and the appropriate diameters of monitoring wells or observation wells shall be based on the planned purpose of such well and on the specific procedures, methods, and equipment to be utilized in achieving such purpose.

(C) The slotted or screened portion of the monitoring well or observation well casing shall be designed and sized so as to prevent the migration of natural soils, backfill material, or filter pack material into the well, and to allow the unrestricted entry of any released regulated substances (liquid-phase or vapor-phase, as applicable) into the well at all times, regardless of the groundwater levels.

(D) The well casing material shall be sufficiently compatible with the stored regulated substance such that prolonged exposure to such substances will not cause failure or excessive deterioration of the casing.

(E) When installed or constructed for the purposes of compliance with one or more of the release detection methods in §334.50(d) of this title, the specific number and positioning of the monitoring wells and/or observation wells shall be based on the results of an assessment of the underground areas within and immediately surrounding the UST system excavation zone to assure compliance with the specific criteria and requirements for the applicable release detection method. Such assessment shall be performed by qualified personnel who are familiar with the characteristics of the stored regulated substance and the groundwater, soil, and geologic conditions at the site.

(F) All monitoring wells and observation wells shall be equipped with a properly designed and properly installed bottom cap.

(G) All monitoring well and observation well installations shall include an appropriate access vault or manhole, which shall be equipped with a liquid-tight cover and be designed to divert surface runoff away from the well.

(H) All monitoring wells and observation wells shall be properly capped, labeled, and secured (or locked) to prevent unauthorized access, tampering, and any deliberate or accidental depositing of unauthorized substances.

(2) Additional requirements for monitoring wells. In addition to the general requirements of paragraph (1) of this subsection, all monitoring wells installed in conjunction with a UST system shall be constructed or installed in accordance with the
applicable requirements of 16 TAC Chapter 76 (relating to Water Well Drillers and Water Well Pump Installers), and Texas Occupations Code, Chapter 1901 (relating to Water Well Drillers). Any person constructing or installing a monitoring well shall be appropriately licensed as required therein.

(3) Additional requirements for observation wells. In addition to the general requirements of paragraph (1) of this subsection, the following requirements shall be applicable to all observation wells installed in conjunction with a UST system.

(A) All observation wells that are regulated as monitoring wells by the Texas Department of Licensing and Regulation (TDLR) shall be constructed or installed in accordance with the applicable requirements in 16 TAC Chapter 76, and Texas Occupations Code, Chapter 1901. Any person constructing or installing such well shall be appropriately licensed as required therein.

(B) All observation wells that are not regulated as monitoring wells by the TDLR shall be constructed or installed in accordance with the following minimum requirements.

(i) All observation wells shall be designed and installed in general accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory.

(ii) All observation wells shall be constructed or installed within the UST system excavation zone, and shall be completed to a depth of at least two feet below the lowest part of any monitored tank, or at least one foot below the lowest part of a monitored piping, as applicable.

(iii) For observation wells installed or constructed on or after September 29, 1989, in a new or existing UST system where the backfill consists of specialized or select materials (i.e., sand, pea gravel, or crushed rock), the following minimum requirements shall be applicable.

(I) The access vault or manhole shall be properly installed in a concrete encasement which shall extend from the top of the vault to at least one foot below the base of the vault to provide adequate structural support and to prevent surface runoff and pollutants from entering the well.

(II) Beginning at the bottom of the concrete encasement beneath the access vault, the well casing shall be properly sealed with impervious bentonite or a similar impervious material for a minimum distance of either one foot below the bottom of the concrete encasement or to the top of the specialized or select backfill material, whichever is the greater depth.
(iv) For observation wells installed or constructed on or after September 29, 1989, in an existing UST system where the backfill consists of materials other than specialized or select materials (e.g., native soils), the well shall be constructed or installed in accordance with the applicable standards in 16 TAC Chapter 76. If the observation well is not regulated as a monitoring well by the TDLR, the licensing requirements for persons constructing or installing such well shall not be applicable.

(h) Certification of installation.

(1) All owners and operators of new UST systems installed on or after September 29, 1989, shall ensure that the installation was completed in accordance with the provisions of this section, and that the UST system installation is conducted by an installer licensed by the agency.

(2) The installer of the UST system shall complete the installation certification section of the agency's authorized form, and shall certify by signature that the installation methods are in compliance with the provisions of this section, as required by §334.8(a) of this title (relating to Certification for Underground Storage Tanks (USTs) and UST Systems).

(i) Installation records.

(1) Owners and operators shall maintain all installation records required in accordance with the requirements in §334.10(b) of this title (relating to Reporting and Recordkeeping).

(2) Owners and operators shall maintain the following records for the operational life of the UST system:

(A) general information relating to the installation activity, including:

(i) date of installation activity;

(ii) names, addresses, and telephone numbers of the persons conducting the installation and performing any associated inspections or testing; and

(iii) copies of all related notifications or reports filed with the agency or others, including:

(I) registration information, as required by §334.7 of this title (relating to Registration for Underground Storage Tanks (USTs) and UST Systems); and
(II) installation certification information, as required by §334.8(a) of this title;

(B) as-built drawings (or plans), which have been drawn to scale and in sufficient detail to accurately depict and describe the sizes, dimensions, and locations of the following:

(i) all pertinent site features, including property boundaries, street and road rights-of-way, easements, utility lines, buildings and other structures, driveways, slabs, and any natural features;

(ii) all pertinent UST system components, including tanks, piping, vent piping, pumps, dispensers, excavation zone (including tank hole and piping trench), monitoring wells, spill and overfill prevention equipment, release detection system components (including monitoring and testing locations), cathodic protection system components (including test stations), secondary containment systems, anchoring systems, and any other pertinent UST system components; and

(iii) any site features or UST system components which have been added, revised, changed, modified, or removed subsequent to the preparation of the original drawings or plans; and

(C) equipment information for all UST system components including:

(i) manufacturer's specifications, installation instructions, operating instruction, warranty information, recommended test procedures, and inspection and maintenance schedules; and

(ii) names, addresses, and telephone numbers of the manufacturer's representatives and local authorized service technicians.

(3) Owners and operators shall maintain the results of all equipment tests, including the air tests and the tightness tests conducted on the tanks and piping at the time of installation, for at least five years after the date of installation.

Adopted May 9, 2018 Effective May 31, 2018

(a) General requirements.

(1) Alternatives for existing underground storage tank (UST) systems. No later than the implementation dates specified in §334.44(b) of this title (relating to Implementation Schedules), all applicable components of any existing UST system (i.e.,
UST system for which installation has commenced or has been completed on or prior to December 22, 1988) shall be either installed, upgraded, improved, or replaced with equipment or components which meet or exceed either of the following requirements:

(A) the requirements for technical standards and installation of new UST systems in §334.45 of this title (relating to Technical Standards for New Underground Storage Tank Systems) and in §334.46 of this title (relating to Installation Standards for New Underground Storage Tank Systems);

(B) the minimum upgrading requirements for existing UST systems in subsection (b) of this section; or

(2) If any applicable component of an existing UST system is not brought into timely compliance with the requirements of paragraph (1) of this subsection, the UST system shall be permanently removed from service no later than 60 days after the prescribed implementation date. The permanent removal from service shall be conducted in accordance with the applicable provisions of §334.55 of this title (relating to Permanent Removal from Service).

(b) Minimum upgrading requirements for all existing UST systems.

(1) Tank integrity assessment and UST system cathodic protection. No later than December 22, 1998, all tanks in an existing UST system shall be assessed for structural integrity, and all underground metallic components of an existing UST system shall be equipped with a cathodic protection system, as provided in the following subparagraphs.

(A) Tank integrity assessment. The tank shall be assessed for structural integrity and for the presence of corrosion holes by one or more of the following methods.

(i) The tank may be equipped with one or more of the release detection systems meeting the applicable requirements of §334.50(d)(4) - (10) of this title (relating to Release Detection). Such release detection system(s) shall have been in operation for at least 60 days prior to the date of the cathodic protection system installation, and at least one of the systems shall remain in operation for the remaining operational life of the tank.

(ii) The tank may be tested by conducting at least two tank tightness tests meeting the requirements of §334.50(d)(1)(A) of this title. The first
tighness test shall be conducted prior to installing the cathodic protection system, and
the second test shall be conducted between three and six months after the cathodic
protection system is placed into operation. For tanks constructed of non-corrodible
material, or metal tanks clad or jacketed with non-corrodible material which are
electrically isolated from surrounding soil, backfill or groundwater or any other water, the
tank may be tested by conducting at least one tightness test meeting the requirements
of §334.50(d)(1)(A) of this title, within the 12-month period prior to December 22,
1998.

(iii) When the tank upgrading is to include the installation of an
interior lining meeting the applicable provisions in §334.52(b) of this title (relating to
Underground Storage Tank System Repairs and Relining), a site assessment or release
determination may be conducted prior to the installation of the interior lining and the
cathodic protection system. Such site assessment or release determination shall be
conducted in accordance with the provisions of §334.55(e) of this title.

(iv) Prior to the installation of the cathodic protection system,
the tank may be internally inspected and assessed to assure that the tank is structurally
sound and free of corrosion holes, provided that such internal inspection shall be:

(I) conducted in accordance with a code or standard of
practice developed by a nationally recognized association or independent testing
laboratory; and

(II) performed by qualified personnel possessing the
requisite training, experience, and competence to assure that any corrosion holes or
structurally unsound areas are located.

(v) Prior to the installation of the cathodic protection system,
the tank may be assessed for structural integrity and the presence of corrosion holes by
an alternate method which has been reviewed and determined by the agency to prevent
releases in a manner that is no less protective of human health and the environment
than the methods described in clauses (i) - (iv) of this subparagraph, in accordance with
the provisions of §334.43 of this title (relating to Variances and Alternative Procedures).

(B) Repairs or corrective action. If the results of the tank integrity
assessment (required by subparagraph (A) of this paragraph) indicate that the existing
tank is not structurally sound and/or that a release of regulated substances has
occurred, then the owner and operator shall:

(i) comply with the applicable release reporting, investigation,
and corrective action requirements of Subchapter D of this chapter (relating to Release
Reporting and Corrective Action); and
(ii) conduct one of the following activities, as applicable:

(I) perform appropriate repairs or relining of the tank, in accordance with the applicable requirements of §334.52 of this title, as necessary to restore the structural integrity of the tank; or

(II) permanently remove the tank from service in accordance with the applicable provisions in §334.55 of this title.

(C) Field-installed cathodic protection system. After confirmation or restoration of the structural integrity of the tank, all underground metal components of the UST system, which are not isolated from the surrounding soil, backfill, and groundwater or any other water, and which either do or could convey, contain, or store regulated substances, shall be equipped with a field-installed cathodic protection system meeting the requirements of §334.49(c)(2) of this title (relating to Corrosion Protection).

(2) Adding spill and overfill prevention equipment. All existing USTs shall be equipped with appropriate spill and overfill prevention equipment, in accordance with the provisions in §334.51(b) of this title (relating to Spill and Overfill Prevention and Control).

(3) Adding release detection for UST system piping.

(A) Release detection for pressurized piping. No later than December 22, 1990, all piping in an existing UST system that routinely conveys regulated substances under pressure (i.e., which operates at greater than atmospheric pressure) shall be brought into compliance with the pressurized piping release detection requirements in §334.50(b)(2)(A) of this title.

(B) Release detection for suction piping and gravity-flow piping. All piping in an existing UST system that routinely conveys regulated substances either under suction (i.e., which operates at less than atmospheric pressure) or by gravity-flow shall be brought into compliance with the applicable release detection requirements in §334.50(b)(2)(B) of this title no later than the date on which release detection is required for the tank to which such piping is connected, as prescribed in paragraph (4) of this subsection.

(4) Adding release detection for tanks.

(A) Except as provided in subparagraph (B) of this paragraph, all tanks at an existing UST system shall be brought into compliance with the tank release detection requirements in §334.50(b)(1) of this title no later than the date specified in the following clauses for the time of installation applicable to such tanks:
(i) December 22, 1989, for tanks where the installation dates are undetermined or unknown;

(ii) December 22, 1989, for tanks installed during 1964 or prior years;

(iii) December 22, 1990, for tanks installed during the years 1965 - 1969, inclusive;

(iv) December 22, 1991, for tanks installed during the years 1970 - 1974, inclusive;

(v) December 22, 1992, for tanks installed during the years 1975 - 1979, inclusive;

(vi) December 22, 1993, for tanks installed during the years 1980 - 1987, inclusive; and

(B) For emergency generator tanks only, the compliance dates prescribed in subparagraph (A)(i) - (v) of this paragraph shall be extended by one year; however, no compliance date shall be extended past December 22, 1993.

(C) When two or more existing tanks are located in a common tank hole, and when the selected method of release detection is either vapor monitoring or groundwater monitoring in accordance with §334.50(d)(5) and (6) of this title, then all such tanks shall be brought into compliance with the applicable release detection requirements of this paragraph no later than the date specified for the oldest tank in such common tank hole.

(c) Additional upgrading requirements for existing hazardous substance UST systems. In addition to the upgrading requirements applicable to all existing UST systems in subsections (a) and (b) of this section, all existing hazardous substance UST systems (e.g., UST system for which installation has commenced or has been completed on or prior to December 22, 1988) shall be equipped or retrofitted with a secondary containment system and an associated release detection system in accordance with the following provisions.

(1) No later than December 22, 1998, all existing hazardous substance UST systems shall be equipped with a secondary containment system meeting the design, construction, and installation requirements in §334.45(d) of this title and §334.46(f) of this title.
(2) No later than December 22, 1998, all existing hazardous substance UST systems shall be equipped with a release detection system capable of monitoring either the interstitial spaces between the primary and secondary walls of any double-walled UST component, or the spaces between the primary UST component walls and any external liners, as applicable, in accordance with the provisions in §334.50(c) of this title.

(d) A UST system, at a minimum, shall incorporate secondary containment as specified in Texas Water Code, §26.3476, if the UST system is located in an area described in that provision.

(e) Records for upgrading of existing UST systems.

(1) Owners and operators shall maintain all records related to the upgrading of existing UST systems required in this subsection in accordance with the requirements in §334.10(b) of this title (relating to Reporting and Recordkeeping).

(2) Owners and operators shall maintain the following records for the operational life of the UST system:

(A) general information related to the tank integrity assessment and cathodic protection requirements in subsection (b) of this section, including:

(i) dates of the tank integrity assessment and cathodic protection installation activities;

(ii) names, addresses, and telephone numbers of the persons conducting the tank integrity assessment and cathodic protection installation activities; and

(iii) copies of all related notifications or reports filed with the agency or others, including:

(I) registration information, as required by §334.7 of this title (relating to Registration for Underground Storage Tanks (USTs) and UST Systems); and

(II) installation certification information, as required by §334.8(a) of this title (relating to Certification for Underground Storage Tanks (USTs) and UST Systems);

(B) as-built drawings (or plans), which have been drawn to scale and in sufficient detail so as to accurately depict and describe the sizes, dimensions, and
locations of any UST system components or equipment added or installed on or after September 29, 1989, which are installed pursuant to one of the construction activities included in §334.6(b)(1)(A) of this title (relating to Construction Notification for Underground Storage Tanks (USTs) and UST Systems); and

(C) equipment information for any UST system components or equipment added or installed on or after September 29, 1989, for the purpose of compliance with the upgrading requirements of this section, including manufacturer's specifications, installation instructions, operating instructions, warranty information, recommended test procedures, and inspection and maintenance schedules.

(3) Owners and operators shall maintain the results of all equipment tests and tank integrity tests required in this section including internal inspections, tank and piping tightness tests, and site assessments, for at least five years after the dates such tests are conducted.

Adopted May 9, 2018 Effective May 31, 2018

§334.48. General Operating and Management Requirements.

(a) Prevention of releases. All owners and operators of underground storage tank (UST) systems shall ensure that the systems are operated, maintained, and managed in a manner that will prevent releases of regulated substances from such systems.

(b) UST system management. UST systems shall be operated, maintained, and managed in accordance with accepted industry practices.

(c) Inventory control. On or after September 29, 1989, regardless of which method of release detection is used for compliance with §334.50 of this title (relating to Release Detection), effective manual or automatic inventory control procedures shall be conducted for all UST systems at retail service stations as defined in §334.2 of this title (relating to Definitions). Such inventory control procedures shall be in accordance with §334.50(d)(1)(B) of this title. Complete and accurate inventory records shall be maintained in accordance with §334.10 of this title (relating to Reporting and Recordkeeping).

(d) Spill and overfill control. All owners and operators shall ensure that spills and overfills of regulated substances do not occur and that all spill and overfill prevention equipment is properly operated and maintained in accordance with §334.51 of this title (relating to Spill and Overfill Prevention and Control).

(e) Operational requirements for release detection equipment. Owners and operators of all new and existing UST systems shall ensure that all release detection equipment installed as part of a UST system pursuant to §334.50 of this title is
maintained in good operating condition and electronic and mechanical components are
tested for proper operation in accordance with one of the following: manufacturer's
instructions, a code of practice developed by a nationally recognized association or
independent testing laboratory, or requirements determined by the executive director to
be no less protective of human health and the environment than listed in this subsection.

(1) Beginning on January 1, 2021, a test of the proper operation of release
detection equipment must be performed at least annually and, at a minimum, as
applicable to the facility, cover the following components and criteria:

(A) automatic tank gauge and other controllers: test alarm, verify
system configuration, and test battery backup;

(B) probes and sensors: inspect for residual buildup, ensure floats
move freely, ensure shaft is not damaged; ensure cables are free of kinks and breaks,
and test alarm operability and communication with controller;

(C) automatic line leak detector: test operation to meet criteria in
§334.50(b)(2)(A)(i) of this title by simulating a leak;

(D) vacuum pumps and pressure gauges: ensure proper
communication with sensors and controller; and

(E) hand-held electronic sampling equipment associated with
groundwater and vapor monitoring: ensure proper operation.

(2) The code of practice that may be used to comply with paragraph (1) of
this subsection is: Petroleum Equipment Institute (PEI) Publication RP1200,
"Recommended Practices for the Testing and Verification of Spill, Overfill, Leak Detection
and Secondary Containment Equipment at UST Facilities."

(f) Operation requirements for corrosion protection systems. All owners and
operators of UST systems shall ensure that all required UST system components are
continuously protected from corrosion, and that all corrosion protection systems are
inspected and tested, in accordance with the applicable provisions of §334.49 of this title
(relating to Corrosion Protection).

(g) Periodic testing of spill prevention equipment and containment sumps used for
interstitial monitoring of piping and periodic inspection of overfill prevention equipment.

(1) Owners and operators of UST systems with spill and overfill prevention
equipment and containment sumps used for interstitial monitoring of piping must meet
these requirements to ensure the equipment is operating properly and will prevent
releases to the environment:
(A) Spill prevention equipment (such as a catchment basin, spill bucket, or other spill containment device) and containment sumps used for interstitial monitoring of piping must prevent releases to the environment by meeting one of the following:

(i) The equipment is double-walled and the integrity of both walls is periodically monitored at a frequency not less than the frequency of the walkthrough inspections described in subsection (h) of this section. Owners and operators must begin meeting the requirements in clause (ii) of this subparagraph and conduct a test within 30 days of discontinuing periodic monitoring of this equipment; or

(ii) The spill prevention equipment and containment sumps used for interstitial monitoring of piping (when interstitial monitoring is the primary release detection method) are tested at least once every three years to ensure the equipment is liquid tight by using vacuum, pressure, or liquid testing in accordance with one of the following criteria:

(I) requirements developed by the manufacturer;

(II) code of practice developed by a nationally recognized association or independent testing laboratory; or

(III) low liquid level test method - the sump may be tested by filling the sump with liquid to a level that is three inches higher than the activation point of the sensor provided the following conditions are met:

(-a-) the sensor is mounted and maintained at the lowest point of the sump in accordance with the requirements in §334.45(d)(1)(E)(vi) of this title (relating to Technical Standards for New Underground Storage Tank Systems);

(-b-) the sensor is annually tested for functionality in accordance with the requirements in subsection (e)(1)(B) of this section;

(-c-) the sensor will trigger a positive shutdown of:

(-1-) the individual dispenser associated with that sump; or

(-2-) submersible turbine pump associated with that sump; and
(-d-) all on-site operators are trained to immediately notify the appropriate A or B level operator of the shutdown; or

(IV) requirements determined by the executive director to be no less protective of human health and the environment than the requirements listed in subclauses (I) - (III) of this clause.

(iii) Liquids that are used for testing as described in clause (ii) of this subparagraph may be reused for further liquid testing in other sumps, either at the same facility or at other facilities. The discharge must be made in compliance with the applicable wastewater discharge requirements or be disposed of in accordance with Chapters 330 or 335 of this title (relating to Municipal Solid Waste and Industrial Solid Waste and Municipal Hazardous Waste).

(B) Overfill prevention equipment must be inspected at least once every three years. At a minimum, the inspection must ensure that overfill prevention equipment is set to activate at the correct level specified in §334.51(b) (2)(C) of this title and will activate when a regulated substance reaches that level.

(C) Codes of practice. The following code of practice may be used to comply with subparagraphs (A)(ii)(II) and (B) of this paragraph: PEI Publication RP1200, "Recommended Practices for the Testing and Verification of Spill, Overfill, Leak Detection and Secondary Containment Equipment at UST Facilities."

(2) Implementation dates. Owners and operators shall meet these requirements:

(A) UST systems in use before September 1, 2018:

(i) The requirements listed in paragraph (1) of this subsection shall apply on January 1, 2021.

(ii) Initial spill prevention equipment and containment sump testing, and overfill prevention inspections (relating to the requirements in paragraph (1) of this subsection) shall be conducted by January 1, 2021.

(B) UST systems brought into use on or after September 1, 2018.

(i) The requirements listed in paragraph (1) of this subsection shall apply on the date the UST system was brought into use.

(ii) Initial spill prevention equipment and containment sump testing, and overfill prevention inspections shall be conducted by the date the UST system was brought into use.
(3) Owners and operators shall maintain records as follows (in accordance with §334.10(b)(2)(B) of this title) for spill prevention equipment, containment sumps used for interstitial monitoring of piping, and overfill prevention equipment.

(A) All records of testing and inspection must be maintained for five years.

(B) For spill prevention equipment and containment sumps used for interstitial monitoring of piping not tested every three years, documentation showing that the prevention equipment is double-walled and the integrity of both walls is periodically monitored must be maintained for as long as the equipment is periodically monitored.

(h) Periodic operation and maintenance walkthrough inspections. To properly operate and maintain UST systems, not later than January 1, 2021, owners and operators must meet one of the following.

(1) Conduct a walkthrough inspection that, at a minimum, checks the following equipment as specified in the following subparagraphs.

(A) Every 30 days.

(i) Spill prevention equipment. Visually check for damage; remove any liquid or debris found within 96 hours and properly dispose of the liquid or debris; check for and remove obstructions in the fill pipe; check the fill cap to make sure it is securely on the fill pipe; and, for double-walled spill prevention equipment with interstitial monitoring, check for leaks in the interstitial area. For purposes of this requirement, UST systems receiving deliveries at intervals greater than every 30 days may check spill prevention equipment prior to each delivery.

(ii) Release detection equipment. Check to make sure the release detection equipment is operating with no release detection alarms or other unusual operating conditions (such as the erratic behavior of product dispensing equipment, the sudden loss of product from the UST system, or the unexplained presence of water in the tank) and ensure records of release detection testing are reviewed and current.

(B) Annually.

(i) Any containment sump installed on or after January 1, 2009, and any containment sump used for interstitial monitoring. Visually check for damage, leaks to the containment area, or releases to the environment; remove liquid or debris found in the containment sump within 96 hours of discovery and properly dispose
of the liquid or debris; and, for double walled sumps with interstitial monitoring, check for a leak in the interstitial area.

(ii) Containment sumps installed before January 1, 2009, and are not used for interstitial monitoring of piping. Visually check for damage to equipment within the sump, visually check for regulated substance releases in the containment sump and to the environment, visually check for the presence of cathodic protection if the sump contains water that is in contact with metal components that routinely contain product, and remove any debris.

(iii) Submersible turbine pump and under dispenser areas that do not have containment sumps. Visually check for damage to the equipment within the area, visually check for regulated substance releases to the environment, visually check for the presence of cathodic protection if any metal components that routinely contain product are in contact with soil or water, and remove any debris.

(iv) Hand held release detection equipment. Check devices, such as tank gauge sticks or groundwater bailers, for operability and serviceability.

(2) Conduct operation and maintenance walkthrough inspections according to a standard code of practice developed by a nationally recognized association or independent testing laboratory that checks equipment in the same manner and frequency as requirements in paragraph (1) of this subsection. The following code of practice may be used to comply with this subsection: PEI Recommended Practice RP 900, "Recommended Practices for the Inspection and Maintenance of UST Systems."

(i) Airport hydrant systems. In addition to the periodic walkthrough inspection requirements in subsection (h) of this section, owners and operators must inspect the following areas at least once every 30 days if confined space entry according to the Occupational Safety and Health Administration (see 29 Code of Federal Regulations §1910) is not required or at least annually if confined space entry is required and keep documentation of the inspection in accordance with §334.10(b) of this title.

(1) Hydrant pits. Visually check for any damage, remove any liquid or debris, and check for any leaks; and

(2) Hydrant piping vaults. Check for any hydrant piping leaks.

(3) Implementation dates. Owners and operators shall meet these requirements:

(A) Airport hydrant systems in use before September 1, 2018. The requirements listed in paragraphs (1) and (2) of this subsection shall apply on January 1, 2021.
(B) Airport hydrant systems brought into use on or after September 1, 2018. The requirements listed in paragraph (1) of this subsection shall apply on the date the airport hydrant system was brought into use.

(j) Operation and maintenance records. Owners and operators shall maintain records relating to the operation and maintenance of a UST system (including records related to inspection, servicing, testing, and inventory control) as prescribed in this section for at least five years, and such records shall be maintained in accordance with §334.10(b) of this title. Inspection records must include a list of each area checked, whether each area checked was acceptable or needed action taken, a description of actions taken to correct an issue, and delivery records if spill prevention equipment is checked less frequently than every 30 days due to infrequent deliveries.

Adopted May 9, 2018 Effective May 31, 2018

§334.49. Corrosion Protection.

(a) General requirements.

(1) Owners and operators of underground storage tank (UST) systems (or underground metal UST system components) which are required to be protected from corrosion shall comply with the requirements in this section to ensure that releases due to corrosion are prevented.

(2) All corrosion protection systems shall be designed, installed, operated, and maintained in a manner that will ensure that corrosion protection will be continuously provided to all underground metal components of the UST system.

(3) Any alternative methods for corrosion protection or variances from the requirements of this section are prohibited, except when reviewed and approved by the agency pursuant to procedures for variances found in §334.43 of this title (relating to Variances and Alternative Procedures).

(4) Corrosion protection in accordance with the provisions of this section shall be provided to all underground and/or totally or partially submerged metal components of any existing or new UST system which are designed or used to convey, contain, or store regulated substances, including, but not limited to, the tanks, piping (including valves, fittings, flexible connectors, swing joints, and impact/shear valves), and also to other underground metal components associated with a UST system, including but not limited to, secondary containment devices, manways, manholes, fill pipes, vent lines, submersible pump housings, spill containers, and riser pipes.
(5) For internal corrosion protection, the interior bottom surface of new metal tanks installed on or after September 29, 1989, shall be fitted with a striker plate under all fill, gauge, and monitoring openings.

(6) When provisions of this subsection require compliance with a specific code or standard of practice developed by a nationally recognized association or independent testing laboratory, the most recent version of the referenced code in effect at the time of the regulated UST activity shall be applicable.

(7) For a UST system to be placed temporarily out of service, the owner or operator must comply with the requirements of §334.54(c) of this title (relating to Temporary Removal from Service).

(b) Allowable corrosion protection methods. All components of a UST system which are designed to convey, contain, or store regulated substances shall be protected from corrosion by one or more of the following methods.

(1) The component may be constructed of a noncorrodible material which is compatible with the stored regulated substance(s).

(2) The component may be electrically isolated from the corrosive elements of the surrounding soil, backfill, groundwater or any other water, and from other metallic components by installing the component in an open area (e.g., manway, sump, vault, pit, etc.) where periodic visual inspection of all parts of the component for the presence of corrosion or released substances is practicable.

(3) The component may be electrically isolated from the corrosive elements of the surrounding soil, backfill, groundwater or any other water, and from other metallic components by completely enclosing the component in a secondary containment device (e.g., wall, jacket, or liner), provided that:

(A) the secondary containment device is designed and installed in accordance with the applicable technical and installation standards in §334.45(d) of this title (relating to Technical Standards for New Underground Storage Tank Systems) and §334.46(f) of this title (relating to Installation Standards for New Underground Storage Tank Systems), and in accordance with an applicable code or standard of practice developed by a nationally recognized association or independent testing laboratory, and is either:

(i) constructed of a noncorrodible material which is compatible with the stored regulated substance;

(ii) electrically isolated from the protected component and other metallic components; or
(iii) cathodically protected by either a factory-installed or field-installed cathodic protection system meeting the applicable requirements of subsection (c) of this section; and

(B) the interstitial space between the protected component and the secondary containment device shall be free of any soil, backfill material, groundwater or any other water, or other substances, and the protected component shall be regularly inspected and tested for electrical isolation in accordance with the provisions in subsection (d)(1) of this section.

(4) Tanks (only) may be factory-constructed either as a steel/fiberglass-reinforced plastic composite tank, or as a steel tank with a bonded fiberglass-reinforced plastic external cladding or laminate, or as a steel tank with a bonded fiberglass reinforced polyurethane coating, as a steel tank with a bonded polyurethane external coating, or as a steel tank completely contained within a nonmetallic external tank jacket in accordance with the requirements in §334.45(b)(1)(D), (E), or (F) of this title, as applicable.

(5) The component may be coated with a suitable dielectric material, equipped with appropriate dielectric fittings for electrical isolation, and equipped with either:

(A) a factory-installed cathodic protection system meeting the requirements of subsection (c)(1) of this section; or

(B) a field-installed cathodic protection system meeting the requirements of subsection (c)(2) of this section.

(6) Except for the tanks and the piping system components, other underground components of a UST system (including vent lines, fill risers, spill containment vessels, and tank fittings (e.g., bunghole plugs)) which do not routinely contain regulated substances may be protected from corrosion by thorough coating or wrapping with a suitable dielectric material which is compatible with the stored regulated substance without the need for the use of other corrosion protection methods.

(7) Corrosion protection in accordance with the requirements of this subchapter is not required if it is determined by a corrosion specialist that corrosion protection of an underground metal UST system or UST system component is unnecessary because the site is not corrosive enough to cause a release due to corrosion for the operational life of the UST system. The upgrade or repair of an existing corrosion protection system for an underground metal UST system or UST system component is not required if it is determined by a corrosion specialist that said upgrading or repair is unnecessary and that the protection provided by the existing corrosion protection system
is sufficient to prevent a release due to corrosion for the operational life of the UST system. In either case, the determination of the corrosion specialist must be made in writing, must be signed by the corrosion specialist (corrosion specialist must also seal the written determination if he or she is a qualified duly licensed professional engineer in Texas), and must be maintained by the owner and operator as part of the records for the facility in keeping with the requirements of subsection (e) of this section and §334.10(b) of this title (relating to Reporting and Recordkeeping).

(c) Cathodic protection systems.

(1) Factory-installed cathodic protection systems.

(A) A factory-installed cathodic protection system on any UST component shall be designed, fabricated, installed, operated, and maintained in accordance with applicable codes or standards of practice developed for such cathodic protection method by a nationally recognized association or independent testing laboratory.

(B) At a minimum, the factory-installed cathodic protection system shall include the following components:

(i) a suitable dielectric external coating or laminate, which shall thoroughly cover all exterior surfaces exposed to the soil, backfill, or groundwater or any other water, and which shall consist of materials which are compatible with the stored regulated substances;

(ii) dielectric isolation bushings, connections, or fittings, which shall be installed at all locations where the protected component connects to other metallic system components, and which shall be constructed of materials which are compatible with the stored regulated substances; and

(iii) sacrificial anodes which are firmly attached and electrically connected to the protected components and which are positioned and sized to provide complete cathodic protection for all parts of the protected component.

(2) Field-installed cathodic protection systems.

(A) A field-installed cathodic protection system on any UST system component shall be designed by a qualified corrosion specialist, and shall be designed, installed, operated, and maintained in accordance with applicable codes or standards of practice developed for such cathodic protection systems by a nationally recognized association or independent testing laboratory.
(B) Impressed current cathodic protection systems shall be designed and equipped with appropriate equipment or devices capable of indicating the operational status of the system at all times.

(C) In addition to the standard inspection and testing requirements for all cathodic protection systems required in paragraph (4) of this subsection, all impressed current cathodic protection systems shall be regularly inspected by the owner or operator (or the owner's designated representative) to ensure that the rectifier and other system components are operating properly. Such inspections shall be performed at least once every 60 days.

(3) Test stations and connections. To allow for the periodic testing required in paragraph (4) of this subsection, any factory-installed or field-installed cathodic protection system shall include appropriate connections, insulated lead wires, and accessible test stations. All lead wires connected to the tanks, anodes, reference electrodes, and other components associated with the cathodic protection system shall terminate at one or more test stations. The termination of each lead wire at a test station shall be clearly labeled or coded to properly identify the specific component to which it is connected.

(4) Inspection and testing requirements for all cathodic protection systems.

(A) Except as provided in subsection (d)(2) of this section, all cathodic protection systems which are used to provide corrosion protection for any component of a UST system shall be inspected and tested to determine the adequacy of the cathodic protection by a qualified corrosion specialist or corrosion technician in accordance with the requirements in this paragraph.

(B) The inspection and testing criteria used to determine the adequacy of the cathodic protection shall be in accordance with a code or standard of practice developed by a nationally recognized corrosion association or independent testing laboratory, such as:

 (ii) NACE International Test Method TM0497, "Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems;"

 (iii) Steel Tank Institute Recommended Practice R051, "Cathodic Protection Testing Procedures for sti-P3 USTs;"
(iv) NACE International Standard Practice SP0285, "Corrosion Control of Underground Storage Tank Systems by Cathodic Protection;" or

(v) NACE International Standard Practice SP0169, "Control of External Corrosion on Underground or Submerged Metallic Piping Systems."

(C) All cathodic protection systems shall be inspected and tested for operability and adequacy of protection within three to six months after installation and at a subsequent frequency of at least once every three years.

(d) Requirements for other corrosion protection methods.

(1) Electrically isolated components.

(A) Except for jacketed tanks meeting the requirements of §334.45(b)(1)(F) of this title, any metal component of a UST system which is protected from corrosion by one of the electrical isolation methods described in subsection (b)(2) and (3) of this section, and which is not equipped with a cathodic protection system, shall be periodically inspected and tested to ensure that the metal component remains electrically isolated from the surrounding soil, backfill, groundwater or any other water, and from other metal components in accordance with one or more of the following procedures.

(i) When visual inspection is possible, the entire exterior surface of such component may be thoroughly inspected visually by qualified personnel for the presence of corrosion or released regulated substances.

(ii) If visual inspection is not possible, the component may be inspected and tested by a qualified corrosion technician or by a qualified corrosion specialist by taking structure to soil voltage readings in accordance with procedures established by a code or standard of practice developed by a nationally recognized association or independent testing laboratory.

(iii) The component may be inspected and/or tested by an alternative method which has been reviewed and determined by the agency to ascertain electrical isolation and to prevent the release or threatened release of any stored regulated substance in a manner that is no less protective of human health and safety and the environment than the methods described in clauses (i) and (ii) of this subparagraph, in accordance with the procedures in §334.43 of this title.

(B) The inspections and tests required in subparagraph (A) of this paragraph shall be conducted within three to six months after installation of the metal component, and then once every three years thereafter for the remaining operational life of the UST system.
(C) If the tests required in subparagraph (A) of this paragraph indicate that the metal component is no longer electrically isolated from the surrounding soil, backfill, groundwater or any other water, or from other metal components, a qualified corrosion specialist shall review the test results and thoroughly inspect the area of the metal component to ascertain the extent of electrical isolation and corrosion protection for the component.

(D) If the qualified corrosion specialist determines that the metal component is no longer adequately protected from corrosion, the owner or operator shall assure that one or more of the following procedures are completed within 60 days of the date of such determination:

(i) appropriate repairs or modifications shall be made to restore the electrical isolation of the protected component; or

(ii) a field-installed cathodic protection system meeting the requirements of subsection (c)(2) of this section shall be installed.

(2) Dual-protected tanks. If a steel/fiberglass-reinforced plastic composite tank, a steel tank with a bonded fiberglass-reinforced plastic external cladding or laminate, a steel tank with a bonded fiberglass reinforced polyurethane coating, or a steel tank with a bonded polyurethane coating is also equipped with a factory-installed cathodic protection system, then the normal inspection and testing requirements for cathodic protection systems in subsection (c)(4) of this section may be waived. This paragraph shall be applicable only to tanks meeting the design and construction requirements in §334.45(b)(1)(D) or (E) of this title, as applicable, and when such tanks are fitted with factory-installed cathodic protection systems meeting the requirements of subsection (c)(1) of this section.

(e) Corrosion protection records.

(1) Owners and operators shall maintain all corrosion protection records required in this subsection in accordance with the requirements in §334.10(b) of this title.

(2) Owners and operators shall maintain records adequate to demonstrate compliance with the corrosion protection requirements in this section, and in accordance with the following minimum requirements.

(A) All appropriate installation records related to the corrosion protection system, as listed in §334.46(i) of this title, shall be maintained for as long as the corrosion protection system is used, including:
(i) the name, address, telephone number, and corrosion protection credentials of either the company which designed the factory-installed cathodic protection system or the corrosion specialist who designed the field-installed cathodic protection system, as applicable;

(ii) drawings or plans depicting the locations of all cathodic protection system components, including the locations of all test stations; and

(iii) operating instructions and warranty information, maintenance schedules, and testing procedures for all operational components of the cathodic protection systems.

(B) The following corrosion protection records shall be maintained for at least five years after the applicable test or inspection is conducted:

(i) results of all tests and inspections of any impressed current cathodic protection system conducted in accordance with subsection (c)(2)(C) of this section; and

(ii) results of all tests and inspections of the adequacy of any cathodic protection system conducted in accordance with subsection (c)(4) of this section; and

(iii) results of all tests and inspections to assure corrosion protection for electrically isolated components in accordance with subsection (d)(1) of this section.

Adopted May 9, 2018 Effective May 31, 2018

§334.50. Release Detection.

(a) General requirements.

(1) Owners and operators of new and existing underground storage tank (UST) systems shall provide a method, or combination of methods, of release detection which shall be:

(A) capable of detecting a release from any portion of the UST system which contains regulated substances including the tanks, piping, and other underground ancillary equipment;

(B) installed, calibrated, operated, maintained, utilized, and interpreted (as applicable) in accordance with the manufacturer's and/or methodology provider's specifications and instructions consistent with the other requirements of this
section, and by personnel possessing the necessary experience, training, and competence to accomplish such requirements; and

(C) capable of meeting the particular performance requirements of such method (or methods) as specifically prescribed in this section, based on the performance claims by the equipment manufacturer or methodology provider/vendor, as verified by third-party evaluation conducted by a qualified independent testing organization, using applicable United States Environmental Protection Agency protocol, provided that the following additional requirements shall also be met.

(i) Any performance claims, together with their bases or methods of determination including the summary portion of the independent third-party evaluation, shall be obtained by the owner and/or operator from the equipment manufacturer, methodology provider, or installer and shall be in writing.

(ii) When any of the following release detection methods are used on or after December 22, 1990 (except for methods permanently installed and in operation prior to that date), such method shall be capable of detecting the particular release rate or quantity specified for that method such that the probability of detection shall be at least 95% and the probability of false alarm shall be no greater than 5.0%:

(I) tank tightness testing, as prescribed in subsection (d)(1)(A) of this section;

(II) automatic tank gauging, as prescribed in subsection (d)(4) of this section;

(III) automatic line leak detectors for piping, as prescribed in subsection (b)(2)(A)(i) of this section;

(IV) piping tightness testing, as prescribed in subsection (b)(2)(A)(ii)(I) of this section;

(V) electronic leak monitoring systems for piping, as prescribed in subsection (b)(2)(A)(ii)(III) of this section; and

(VI) statistical inventory reconciliation (SIR), as prescribed in subsection (d)(9) of this section.

(2) When a release detection method operated in accordance with the particular performance standards for that method indicates that a release either has or may have occurred, the owners and operators shall comply with the applicable release reporting, investigation, and corrective action requirements in Subchapter D of this chapter (relating to Release Reporting and Corrective Action).
(3) Owners and operators of all UST systems shall comply with the release detection requirements of this section in accordance with the applicable schedules in §334.44 of this title (relating to Implementation Schedules).

(4) As prescribed in §334.47(a)(2) of this title (relating to Technical Standards for Existing Underground Storage Tank Systems), any existing UST system that cannot be equipped or monitored with a method of release detection that meets the requirements of this section shall be permanently removed from service in accordance with the applicable procedures in §334.55 of this title (relating to Permanent Removal from Service) no later than 60 days after the implementation date for release detection as prescribed by the applicable schedules in §334.44 of this title.

(5) Any owner or operator who plans to install a release detection method for a UST system shall comply with the applicable construction notification requirements in §334.6 of this title (relating to Construction Notification for Underground Storage Tanks (USTs) and UST Systems), and upon completion of the installation of such method shall also comply with the applicable registration and certification requirements of §334.7 of this title (relating to Registration for Underground Storage Tanks (USTs) and UST Systems) and §334.8 of this title (relating to Certification for Underground Storage Tanks (USTs) and UST Systems).

(6) Any equipment installed or used for conducting release detection for a UST system shall be listed, approved, designed, and operated in accordance with standards developed by a nationally recognized association or independent testing laboratory (e.g., Underwriters Laboratories, Inc.) for such installation or use, as specified in §334.42(d) of this title (relating to General Standards).

(7) For a UST system to be placed temporarily out-of-service, the owner or operator must comply with the requirements of §334.54(c) of this title (relating to Temporary Removal from Service).

(b) Release detection requirements for all UST systems. Owners and operators of all UST systems shall ensure that release detection equipment or procedures are provided in accordance with the following requirements.

(1) Release detection requirements for tanks.

(A) Tanks installed prior to January 1, 2009. Except as provided in subparagraph (C) of this paragraph and in subsection (d)(9) of this section, all such tanks shall be monitored in a manner which will detect a release at a frequency of at least once every 30 days by using one or more of the release detection methods described in subsection (d)(4) - (10) of this section.
(B) Tanks installed on or after January 1, 2009. All such tanks shall be monitored in a manner which will detect a release at a frequency of at least once every 30 days by using interstitial monitoring as prescribed in subsection (d)(7) of this section as the primary release detection method no later than September 1, 2018.

(C) The manual tank gauging method of release detection, as described in subsection (d)(2) of this section, may be used as the sole release detection system for tanks with a nominal capacity of 1,000 gallons or fewer only.

(D) 30-day monthly tank gauging method of release detection, as described in subsection (d)(3) of this section, may be used as the sole release detection method for emergency generator tanks only.

(2) Release detection for piping. Piping in a UST system shall be monitored in a manner which will detect a release from any portion of the piping system, in accordance with the following requirements.

(A) Requirements for pressurized piping. UST system piping that conveys regulated substances under pressure shall be in compliance with the following requirements.

(i) Each separate pressurized pipe (except for piping utilized in airport hydrant systems) shall be equipped with an automatic line leak detector meeting the following requirements.

(I) The line leak detector shall be capable of detecting any release from the piping system of three gallons per hour when the piping pressure is at ten pounds per square inch.

(II) The line leak detector shall be capable of alerting the UST system operator of any release within one hour of occurrence either by shutting off the flow of regulated substances, or by substantially restricting the flow of regulated substances.

(III) The line leak detector shall be tested at least once per year for performance and operational reliability and shall be properly calibrated and maintained, in accordance with the manufacturer’s specifications and recommended procedures.

(ii) Piping installed prior to January 1, 2009. In addition to the required line leak detector prescribed in clause (i) of this subparagraph, each pressurized pipe shall also be tested or monitored for releases in accordance with at least one of the following methods.
(I) The piping may be tested at least once per year by means of a piping tightness test conducted in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory. Any such piping tightness test shall be capable of detecting any release from the piping system of 0.1 gallons per hour when the piping pressure is at 150% of normal operating pressure.

(II) Except as provided in subsection (d)(9) of this section, the piping may be monitored for releases at least once every 30 days by using one or more of the release detection methods prescribed in subsection (d)(5) - (10) of this section.

(III) The piping may be monitored for releases at least once every 30 days by means of an electronic leak monitoring system capable of detecting any release from the piping system of 0.2 gallons per hour at normal operating pressure.

(iii) Piping installed or replaced on or after January 1, 2009. In addition to the required line leak detector prescribed in clause (i) of this subparagraph, each pressurized pipe shall also be tested or monitored for releases at least once every 30 days by using interstitial monitoring as prescribed in subsection (d)(7) of this section as the primary release detection method no later than September 1, 2018.

(B) Requirements for suction piping and gravity flow piping.

(i) Piping installed prior to January 1, 2009. Except as provided in clause (iii) of this subparagraph, each separate pipe in a UST piping system that conveys regulated substances either under suction or by gravity flow shall meet at least one of the following requirements.

(I) Each separate pipe may be tested at least once every three years by means of a positive or negative pressure tightness test applicable to underground product piping and conducted in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory. Any such piping test shall be capable of detecting any release from the piping system of 0.1 gallons per hour.

(II) Each pipe may be monitored for releases at least once every 30 days by using one or more of the release detection methods prescribed in subsection (d)(5) - (10) of this section.

(ii) Piping installed or replaced on or after January 1, 2009. Except as provided in clause (iii) of this subparagraph, each suction line shall be tested or monitored for releases at least once every 30 days by using interstitial monitoring as
prescribed in subsection (d)(7) of this section as the primary release detection method no later than September 1, 2018.

(iii) No release detection methods are required to be installed or applied for any piping system that conveys regulated substances under suction when such suction piping system is designed and constructed in accordance with the following standards:

(I) the below-grade piping operates at less than atmospheric pressure;

(II) the below-grade piping is sloped so that all the contents of the pipe will drain back into the storage tank if the suction is released;

(III) no more than one check valve is included in each suction line;

(IV) the check valve is located aboveground, directly below and as close as practical to the suction pump; and

(V) verification that the requirements under subclauses (I) - (IV) of this clause have been met can be provided in the form of:

(-a-) signed as-built drawings or plans provided by the installer or by a professional engineer who is duly licensed to practice in Texas; or

(-b-) signed written documentation provided by a UST contractor who is properly registered with the agency, by a UST installer who is properly licensed with the agency, or by a professional engineer who is duly licensed to practice in Texas.

(C) Monitoring secondary containment. In addition to the requirements in subparagraphs (A) and (B) of this paragraph, all piping in a hazardous substance UST system shall also be equipped with a secondary containment system and related release detection equipment, as prescribed in subsection (c) of this section.

(c) Additional release detection requirements for hazardous substance UST systems. In addition to the release detection requirements for all UST systems prescribed in subsections (a) and (b) of this section, owners and operators of all hazardous substance UST systems shall also assure compliance with the following additional requirements.
(1) All new hazardous substance UST systems shall be in compliance with the requirements of paragraph (3) of this subsection for the entire operational life of the system.

(2) All existing hazardous substance UST systems shall be brought into compliance with the requirements of paragraph (3) of this subsection no later than December 22, 1998.

(3) Secondary containment. All hazardous substance UST systems (including tanks and piping) shall be equipped with a secondary containment system which shall be designed, constructed, installed, and maintained in accordance with §334.45(d) and §334.46(f) of this title (relating to Technical Standards for New Underground Storage Tank Systems; and Installation Standards for New Underground Storage Tank Systems).

(4) Release detection.

 (A) All hazardous substance UST systems (including tanks and piping) installed prior to January 1, 2009, shall include one or more of the release detection methods or equipment prescribed in subsection (d)(7) - (10) of this section, which shall be capable of monitoring the space between the primary tank and piping walls and the secondary containment wall or barrier.

 (B) All hazardous substance UST systems (including tanks and piping) installed on or after January 1, 2009, shall be monitored by using interstitial monitoring as prescribed in subsection (d)(7) of this section as the primary release detection method no later than September 1, 2018.

(d) Allowable methods of release detection. Tanks in a UST system may be monitored for releases using one or more of the methods included in paragraphs (2) - (10) of this subsection. Piping in a UST system may be monitored for releases using one or more of the methods included in paragraphs (5) - (10) of this subsection. Any method of release detection for tanks and/or piping in this section shall be allowable only when installed (or applied), operated, calibrated, and maintained in accordance with the particular requirements specified for such method in this subsection.

(1) Tank tightness and inventory control requirements. A combination of tank tightness testing and inventory control may be used as a tank release detection method only until December 22, 1998, subject to the following conditions and requirements.

 (A) Tank tightness test. Any tank tightness test shall be conducted in conformance with the following standards.
(i) The tank tightness test shall be conducted in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory.

(ii) The tank tightness test shall be performed by qualified personnel who possess the requisite experience, training, and competence to conduct the test properly, who are present at the facility and who maintain responsible oversight throughout the entire testing procedure, and who have been certified by the manufacturer or developer of the testing equipment as being qualified to perform the test. The tank tightness test shall be conducted in strict accordance with the testing procedures developed by the system manufacturer or developer.

(iii) The tank tightness test shall be capable of detecting a release of 0.1 gallons per hour from any portion of the tank which contains regulated substances.

(iv) The tank tightness test shall be performed in a manner that will account for the effects of vapor pockets, thermal expansion or contraction of the stored substance, temperature of the stored substance, temperature stratification, evaporation or condensation, groundwater elevation, pressure variations within the system, tank end deflection, tank deformation, and any other factors that could affect the accuracy of the test procedures.

(B) Inventory control. All inventory control procedures shall be in conformance with the following requirements.

(i) All inventory control procedures shall be in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory, such as American Petroleum Institute Publication 1621, "Bulk Liquid Stock Control at Retail Outlets;" and

(ii) Reconciliation of detailed inventory control records shall be conducted at least once every 30 days, and shall be sufficiently accurate to detect a release as small as the sum of 1.0% of the total substance flow-through for the 30-day period plus 130 gallons.

(iii) The operator shall assure that the following additional procedures and requirements are followed.

(I) Inventory volume measurement for regulated substance inputs, withdrawals, and the amount still remaining in the tank shall be recorded each operating day.
(II) The equipment used shall be capable of measuring the level of stored substance over the full range of the tank's height to the nearest 1/8 inch.

(III) Substance dispensing shall be metered and recorded within an accuracy of six or less cubic inches for every five gallons of product withdrawn.

(IV) The measurement of any water level in the bottom of the tank shall be made to the nearest 1/8 inch at least once every 30 days, and appropriate adjustments to the inventory records shall be made.

(2) Manual tank gauging. Manual tank gauging may be used as a tank release detection method, subject to the following limitations and requirements.

(A) Manual tank gauging in accordance with this subparagraph may be used as the sole method of tank release detection only for petroleum substance tanks having a nominal capacity of 1,000 gallons or less.

(B) The use of manual tank gauging shall not be considered an acceptable method for meeting the release detection requirements of this section for any tanks with a nominal capacity greater than 1,000 gallons.

(C) When used for compliance with the release detection requirements of this section, the procedures and requirements in the following clauses shall be applicable.

(i) For purposes of this subparagraph only, the following definitions are applicable.

(I) Level measurement--The average of two consecutive liquid level readings from a tank gauge, measuring stick, or other measuring equipment.

(II) Gauging period--A weekly period during which no substance is added to or removed from the tank. The duration of the gauging period is dependent upon tank volume and diameter, as specified in clause (v) of this subparagraph.

(III) Weekly deviation--The variation between the level measurements taken at the beginning and the end of one gauging period, converted to and expressed as gallons.

(IV) Monthly deviation--The arithmetic average of four consecutive weekly deviations, expressed as gallons.
(ii) Any measuring equipment shall be capable of measuring the level of stored substance over the full range of the tank's height to the nearest 1/8 inch.

(iii) Separate liquid level measurements in the tank shall be taken weekly at the beginning and the ending of the gauging period, and the weekly deviation shall be determined from such level measurements.

(iv) Once each month, after four consecutive weekly deviations are determined, a monthly deviation shall be calculated.

(v) For the purposes of the manual tank gauging method of release detection, a release shall be indicated when either the weekly deviation or the monthly deviation exceeds the maximum allowable standards indicated in the following subclauses:

(I) for a tank with a capacity of 550 gallons or less (any tank diameter): minimum duration of gauging period = 36 hours; weekly standard = ten gallons; monthly standard = five gallons;

(II) for a tank with a capacity of 551 gallons to 1,000 gallons (when tank diameter is 64 inches): minimum duration of gauging period = 44 hours; weekly standard = nine gallons; monthly standard = four gallons; and

(III) for a tank with a capacity of 551 gallons to 1,000 gallons (when tank diameter is 48 inches): minimum duration of gauging period = 58 hours; weekly standard = 12 gallons; monthly standard = six gallons.

(vi) When either the weekly standard or the monthly standard is exceeded and a suspected release is thereby indicated, the owner or operator shall comply with the applicable release reporting, investigation, and corrective action requirements of Subchapter D of this chapter.

(3) Monthly (every 30 days) tank gauging. Monthly tank gauging may be used as a tank release detection method, subject to the following limitations and requirements.

(A) Monthly tank gauging in accordance with this paragraph may be used as the sole method of tank release detection only for emergency generator tanks.

(B) The use of monthly tank gauging shall not be considered an acceptable method for meeting the release detection requirements of this section for any tanks other than emergency generator tanks.
(C) When used for compliance with the release detection requirements of this section, the procedures and requirements in the following clauses shall be applicable.

(i) For purposes of this subparagraph only, the following definitions are applicable.

(1) Level measurement--The average of two consecutive liquid level readings from a tank gauge, measuring stick, or other manual or automatic measuring equipment.

(II) Gauging period--A period of at least 36 hours during which no substance is added to or removed from the tank.

(III) Monthly deviation--The variation between the level measurements taken at the beginning and the end of one gauging 30-day period, converted to and expressed as gallons.

(ii) Any measuring equipment (whether operated manually or automatically) shall be capable of measuring the level of a stored substance over the full range of the tank's height to the nearest 1/8 inch.

(iii) Separate liquid level measurements in the tank shall be taken at least once every 30 days at the beginning and the ending of the gauging period, and the monthly deviation shall be determined from such level measurements.

(iv) For the purposes of the 30-day tank gauging method of release detection, a release shall be indicated when the monthly deviation exceeds the maximum allowable standards indicated in the following subclauses:

(I) for a tank with a capacity of 550 gallons or less: monthly standard = five gallons;

(II) for a tank with a capacity of 551 gallons to 1,000 gallons: monthly standard = seven gallons;

(III) for a tank with a capacity of 1,001 gallons to 2,000 gallons: monthly standard = 13 gallons; and

(IV) for a tank with a capacity greater than 2,000 gallons: monthly standard = 1.0% of the total tank capacity.
(v) When the monthly standard is exceeded and a suspected release is thereby indicated, the owner or operator shall comply with the applicable release reporting, investigation, and corrective action requirements of Subchapter D of this chapter.

(4) Automatic tank gauging in combination with inventory control.

(A) A combination of automatic tank gauging and inventory control may be used as a tank release detection method, subject to the following requirements.

(i) Inventory control procedures shall be in compliance with paragraph (1)(B) of this subsection.

(ii) The automatic tank gauging equipment shall be capable of:

(I) automatically monitoring the in-tank liquid levels, conducting automatic tests for substance loss, and collecting data for inventory control purposes; and

(II) performing an automatic test for substance loss that can detect a release of 0.2 gallon per hour from any portion of the tank which contains regulated substances.

(iii) The automatic tank gauge testing must be performed with the system operating in one of the following modes:

(I) in-tank static testing conducted at least once every 30 days; or

(II) continuous in-tank leak detection operating on an uninterrupted basis or operating within a process that allows the system to gather incremental measurements to determine the leak status of the tank at least once every 30 days.

(B) For emergency generator tanks and used oil tanks only, automatic tank gauging may be used as a tank release detection method without inventory control, provided that the automatic tank gauging equipment shall be capable of:

(i) automatically monitoring the in-tank liquid levels;

(ii) conducting continuous automatic tests for substance loss during the periods when the emergency generator engine is not in operation;
(iii) performing an automatic test for substance loss that can detect a release of 0.2 gallon per hour from any portion of the tank which contains regulated substances; and

(iv) measuring the water level at the bottom of the tank to the nearest 1/8 of an inch at least once every 30 days.

(5) Vapor monitoring. Equipment and procedures designed to test or monitor for the presence of vapors from the regulated substance (or from a related tracer substance) in the soil gas of the backfilled excavation zone may be used, subject to the following limitations and requirements.

(A) The bedding and backfill materials in the excavation zone shall be sufficiently porous to allow vapors from any released regulated substance (or related tracer substance) to rapidly diffuse through the excavation zone (e.g., gravel, sand, crushed rock).

(B) The stored regulated substance, or any tracer substance placed in the tank system, shall be sufficiently volatile so that, in the event of a substance release from the UST system, vapors will develop to a level that can be readily detected by the monitoring devices located in the excavation zone.

(C) The capability of the monitoring device to detect vapors from the stored regulated substance shall not be adversely affected by the presence of any groundwater, rainfall, and/or soil moisture in a manner that would allow a release to remain undetected for more than 30 days.

(D) Any preexisting background contamination in the excavation zone shall not interfere with the capability of the vapor monitoring equipment to detect releases from the UST system.

(E) The vapor monitoring equipment shall be designed to detect vapors from either the stored regulated substance, a component or components of the stored substance, or a tracer substance placed in the UST system, and shall be capable of detecting any significant increase in vapor concentration above preexisting background levels.

(F) Prior to installation of any vapor monitoring equipment, the site of the UST system (within the excavation zone) shall be assessed by qualified personnel to:

(i) ensure that the requirements in subparagraphs (A) - (D) of this paragraph have been met; and
(ii) determine the appropriate number and positioning of any monitoring wells and/or observation wells, so that releases into the excavation zone from any part of the UST system can be detected within 30 days.

(G) All monitoring wells and observation wells shall be designed and installed in accordance with the requirements of §334.46(g) of this title.

(6) Groundwater monitoring. Equipment or procedures designed to test or monitor for the presence of regulated substances floating on, or dissolved in, the groundwater in the excavation zone may be used, subject to the following limitations and requirements.

(A) The stored regulated substance shall be immiscible in water and shall have a specific gravity of less than one.

(B) The natural groundwater level shall never be more than 20 feet (vertically) from the ground surface, and the hydraulic conductivity of the soils or backfill between all parts of the UST system and the monitoring points shall not be less than 0.01 centimeters per second (i.e., the soils or backfill shall consist of gravels, coarse to medium sands, or other similarly permeable material).

(C) Any automatic monitoring devices that are employed shall be capable of detecting the presence of at least 1/8 inch of free product on top of the groundwater in the monitoring well or observation well. Any manual monitoring method shall be capable of detecting a visible sheen or other accumulation of regulated substances in, or on, the groundwater in the monitoring well or observation well.

(D) Any preexisting background contamination in the monitored zone shall not interfere with the capability of the groundwater monitoring equipment or methodology to detect releases from the UST system, and the groundwater monitoring equipment or methodology shall be capable of detecting any significant increase above preexisting background levels in the amount of regulated substance floating on, or dissolved in, the groundwater.

(E) Prior to installation of any groundwater monitoring equipment, the site of the UST system (within and immediately below the excavation zone) shall be assessed by qualified personnel to:

(i) ensure compliance with the requirements of subparagraphs (A) and (B) of this paragraph; and

(ii) determine the appropriate number and positioning of any monitoring wells and/or observation wells, so that releases from any part of the UST system can be detected within 30 days.
(F) All monitoring wells and observation wells shall be designed, installed, and maintained in accordance with the requirements in §334.46(g) of this title.

(7) Interstitial monitoring for double-wall or jacketed UST systems. Equipment designed to test or monitor for the presence of regulated substance vapors or liquids in the interstitial space between the inner (primary) and outer (secondary) walls of a double-wall or jacketed UST system may be used, subject to the following conditions and requirements.

(A) Any double-wall UST system using this method of release detection shall be designed, constructed, and installed in accordance with the applicable technical and installation requirements in §334.45(d) and §334.46(f) of this title.

(B) The sampling, testing, or monitoring method shall be capable of detecting any release of stored regulated substances from any portion of the primary tank or piping within 30 days of the release.

(C) The sampling, testing, or monitoring method shall be capable of detecting a breach or failure in the primary wall and the entrance of groundwater or any other water into the interstitial space due to a breach in the secondary wall of the double-wall or jacketed tank or piping system within 30 days of such breach or failure (whether or not a stored regulated substance has been released into the environment).

(8) Monitoring of UST systems with secondary containment barriers. Equipment designed to test or monitor for the presence of regulated substances (liquids or vapors) in the excavation zone between the UST system and an impermeable secondary containment barrier immediately around the UST system may be used, subject to the following conditions and requirements.

(A) Any secondary containment barrier or liner system at a UST system using this method of release detection shall be designed, constructed, and installed in accordance with the applicable technical and installation requirements in §334.45(d) and §334.46(f) of this title.

(B) The sampling, testing, or monitoring method shall be capable of detecting any release of stored regulated substance from any portion of the UST system into the excavation zone between the UST system and the secondary containment barrier within 30 days of the release.

(C) The sampling, testing, or monitoring method shall be designed and installed in a manner that will ensure that groundwater, soil moisture, and rainfall will not render the method inoperative where a release could remain undetected for more than 30 days.
(D) Prior to installation of any secondary containment release monitoring equipment, the site of the UST system shall be assessed by qualified personnel to:

 (i) ensure that the secondary containment barrier will be positioned above the groundwater level and outside the designated 25-year floodplain, unless the barrier and the monitoring equipment are designed for use under such conditions; and

 (ii) determine the appropriate number and positioning of any observation wells.

(E) All observation wells shall be designed and installed in accordance with the requirements in §334.46(g) of this title.

(9) SIR in combination with inventory control.

(A) A combination of SIR and inventory control may be used as a release detection method for UST system tanks and piping, subject to the following requirements.

 (i) Inventory control procedures must be in compliance with paragraph (1)(B) of this subsection.

 (ii) The SIR methodology as utilized by its provider or vendor, or by its vendor-authorized franchisee or licensee or representative must:

 (I) analyze inventory control records in a manner which can detect a release of 0.2 gallons per hour from any part of the UST system; and

 (II) use a threshold that does not exceed one-half the minimum detectable leak rate.

 (iii) The UST system owner and/or operator must take appropriate steps to assure that they receive an analysis report from the entity which actually performs the SIR analysis for the 30-day period (either the SIR provider/vendor or the provider/vendor-authorized franchisee or licensee or representative) in no more than 15 calendar days following the last day of the 30-day period for which the analysis is performed. This analysis report must, at minimum:

 (I) state the name of the SIR provider/vendor and the name and version of the SIR methodology which was utilized for the analysis as they are listed in the independent third-party evaluation of that methodology;
(II) state the name of the company and the individual (or the name of the individual if no company affiliation) who performed the analysis, if it was performed by a provider/vendor-authorized franchisee or licensee or representative;

(III) state the name and address of the facility at which analysis is performed and provide a description of each UST system for which analysis has been performed;

(IV) state the date that the analysis was conducted;

(V) quantitatively state in gallons per hour for each UST system being monitored: the leak threshold for the 30-day period analyzed, and the minimum detectable leak rate for the 30-day period analyzed, and the indicated leak rate for the 30-day period; and

(VI) qualitatively state one of the following for each UST system being monitored: "pass," "fail," or "inconclusive."

(iv) Any UST system analysis report result other than "pass" must be reported to the agency by the UST system owner or operator as a suspected release in accordance with §334.72 of this title (relating to Reporting of Suspected Releases).

(v) Any UST system analysis report result of "inconclusive" which has not been investigated and quantified as a "pass" (in the form of a replacement UST system analysis report meeting the requirements of clause (iii) of this subparagraph) must be reported to the agency as a suspected release within 72 hours of the time of receipt of the inconclusive analysis report result by the UST system owner or operator.

(B) At least once per calendar quarter, the SIR provider/vendor must select at random, at least one of the individual UST system analyses performed by each of its authorized franchisees or licensees or representatives during that period and audit that analysis to assure that provider/vendor standards are being maintained with regard to the acceptability of inventory control record data, the acceptability of analysis procedures, and the accuracy of analysis results. The written result of that audit must be provided to the authorized franchisee or licensee or representative and to the owner and/or operator of the audited UST system(s) by the SIR provider/vendor during that calendar quarter. In addition, within 30 days following each calendar quarter, the SIR provider/vendor must provide to the agency a list containing the name and address of each of its authorized franchisees or licensees or representatives which specifies for each one, the name and address of each facility at which one or more UST system audits were performed during the previous calendar quarter.
(10) Alternative release detection method. Any other release detection method, or combination of methods, may be used if such method has been reviewed and determined by the agency to be capable of detecting a release from any portion of the UST system in a manner that is no less protective of human health and safety and the environment than the methods described in paragraphs (2) - (9) of this subsection, in accordance with the provisions of §334.43 of this title (relating to Variances and Alternative Procedures).

(e) Release detection records.

(1) Owners and operators shall maintain the release detection records required in this subsection in accordance with the requirements in §334.10(b) of this title (relating to Reporting and Recordkeeping).

(2) Owners and operators shall maintain records adequate to demonstrate compliance with the release detection requirements in this section, and in accordance with the following minimum requirements.

(A) All appropriate installation records related to the release detection system, as listed in §334.46(i) of this title, shall be maintained for as long as the release detection system is used.

(B) All written performance claims pertaining to any release detection system used, and documentation of the manner in which such claims have been justified, verified, or tested by the equipment manufacturer, methodology provider/vendor, or independent third-party evaluator shall be maintained for as long as the release detection system is used.

(C) Records of the results of all manual and/or automatic methods of sampling, testing, or monitoring for releases (including tank tightness tests) shall be maintained for at least five years after the sampling, testing, or monitoring is conducted.

(D) Records and calculations related to inventory control reconciliation shall be maintained for at least five years from the date of reconciliation.

(E) Written documentation of all service, calibration, maintenance, and repair of release detection equipment permanently located on-site shall be maintained for at least five years after the work is completed. Any schedules of required calibration and maintenance provided by the release detection equipment manufacturer shall be retained for as long as the release detection system is used.

(F) Records of site assessments required under subsection (d)(5) and (6) of this section (concerning vapor monitoring and groundwater monitoring) must be
maintained for as long as the methods are used. Records of site assessments must be signed by a professional engineer or professional geologist, or equivalent licensed professional with experience in environmental engineering, hydrogeology, or another relevant technical discipline acceptable to the agency.

Adopted May 9, 2018 Effective May 31, 2018

§334.51. Spill and Overfill Prevention and Control.

(a) General spill and overfill control requirements.

(1) Owners and operators of all new and existing underground storage tank (UST) systems shall ensure that releases of regulated substances due to spills and overfills do not occur.

(2) Prior to regulated substances being transferred and deposited into a UST system, the owner or operator shall ensure that the available volume in the tank is greater than the volume of regulated substances to be transferred into the tank.

(3) During the entire time that regulated substances are being transferred into a UST system, the owner or operator shall ensure that the entire transfer operation is continuously monitored by the person conducting the transfer. Except as provided in paragraph (4) of this subsection, such monitoring may be accomplished by either of the following methods.

(A) The person conducting the transfer shall be physically present at or near the transfer point at all times during the transfer operation, and shall have an unobstructed view of the transfer point to observe the transfer and to abate any spill or overfill.

(B) The person conducting the transfer shall be physically present at the facility at all times during the transfer operation, and shall monitor the transfer operation using a central monitoring station which is electronically connected to remote sensing equipment at each transfer point, where such equipment is designed to detect and prevent any spills or overfills.

(4) When USTs are equipped with ball float valves in the vent openings (or with other similar flow restrictors) for the purposes of compliance with the overfill prevention equipment requirements of subsection (b)(2)(C) of this section, and when regulated substances are transferred into such tanks under pressure (other than routine gravity unloading from normal transport vehicles), the following requirements shall be met during the time that regulated substances are being transferred into the tank.
(A) The person conducting the transfer shall be physically present at or near the transfer point at all times during the transfer operation, and shall have an unobstructed view of the transfer point to observe the transfer and to abate any spill or overfill.

(B) The transfer hose connection shall be equipped with an appropriate back-pressure sensor that will automatically shut off flow into the tank when the pressure in the tank reaches the tank's allowable design pressure (typically five per square inch gauge).

(5) The owners or operators shall assure that the installation and maintenance of all required spill and overfill prevention equipment, as well as the procedures used for the transfers of regulated substances to or from a UST system, are in accordance with codes or standards of practice developed by a nationally recognized association or independent testing laboratory such as:

(A) National Fire Protection Association (NFPA) Standard 385, "Standard for Tank Vehicles for Flammable and Combustible Liquids." The transfer procedures described in NFPA Standard 385 or American Petroleum Institute (API) Recommended Practice 1007, "Loading and Unloading of MC 306/DOT 406 Cargo Tank Motor Vehicles" may be used to comply with this subsection.

(B) API Recommended Practice 1007, "Loading and Unloading of MC 306/DOT 406 Cargo Tank Motor Vehicles," which also may be used to comply with paragraphs (2) and (3) of this subsection; or

(C) API Recommended Practice 1621, "Bulk Liquid Stock Control at Retail Outlets," with further guidance on spill and overfill prevention.

(6) The owner or operator shall assure that all spill and overfill prevention devices installed pursuant to subsection (b) of this section are maintained in good operating condition, and that such devices are inspected and serviced in accordance with the manufacturer's specifications. In addition, the devices shall be monitored or tested in accordance with the requirements in §334.48(g) and (h) of this title (relating to General Operating and Management Requirements).

(7) In the event a release of regulated substance(s) occurs due to a spill or overfill, the owner or operator shall comply with the release reporting, investigation, and corrective action requirements in Subchapter D of this chapter (relating to Release Reporting and Corrective Action).

(b) Spill and overfill prevention equipment. Except as provided in paragraph (4) of this subsection, all UST systems shall be equipped with spill and overfill prevention equipment which shall be designed, installed, and maintained in a manner that will
prevent any spilling or overfilling of regulated substances resulting from transfers to such systems, as provided in this subsection.

(1) Compliance schedule. All UST systems shall be in compliance with the equipment provisions of this subsection from the time of installation through the entire operational life of the system.

(2) Equipment required. UST systems shall be equipped with each of the following spill and overfill prevention equipment or devices.

(A) Tight-fill fitting. The fill pipe of the tank shall be equipped with a tight-fill fitting, adapter, or similar device which shall provide a liquid-tight seal during the transfer of regulated substances into the tank.

(B) Spill containment equipment. The fill tube of the tank either shall be equipped with an attached spill container or catchment basin, or shall be enclosed in a liquid-tight manway, riser, or sump, and such equipment shall meet the following requirements.

(i) The spill containment device shall be designed to prevent the release of regulated substances to the environment when the transfer hose or line is detached from the fill pipe.

(ii) The spill containment device shall be equipped with a liquid-tight lid or cover designed to minimize the entrance of any surface water, groundwater, or other foreign substances into the container.

(C) Overfill prevention equipment. Each tank shall be equipped with a valve or other appropriate device that shall be designed to either:

(i) automatically shut off the flow of regulated substances into the tank when the liquid level in the tank reaches a preset level which shall be no higher than the 95% capacity level for the tank;

(ii) automatically restrict the flow of regulated substances into the tank when the liquid level in the tank reaches a preset level which shall be no higher than the 90% capacity level for the tank, provided that such flow restricting device shall also alert the person responsible for the delivery when such preset level is reached. Flow restrictor devices may not be used when overflow prevention is installed or replaced on or after September 1, 2018; or

(iii) emit an audible and visible alarm capable of alerting the person responsible for the delivery when the liquid level in the tank reaches a preset level which shall be no higher than the 90% capacity level for the tank, provided that the
tank is also equipped with a valve or other device which is designed to automatically shut off or automatically restrict the flow of regulated substances into the tank when the liquid level reaches a preset level which shall be no higher than the 98% capacity level for the tank.

(3) Design and installation requirements.

(A) All spill and overfill prevention equipment shall be installed in accordance with the manufacturer's instructions and a code or standard of practice developed by a nationally recognized association or independent testing laboratory.

(B) All underground components of the spill and overfill prevention equipment which are designed to contain regulated substances shall be properly protected from corrosion in accordance with the applicable provisions in §334.49 of this title (relating to Corrosion Protection).

(C) The surfaces of all spill and overfill prevention equipment which are in direct contact with regulated substances shall be constructed of or lined with materials that are compatible with such regulated substances.

(D) When installing the overfill prevention equipment specified in paragraph (2)(C) of this subsection, appropriate extension devices shall be utilized as necessary to assure that the shut-off or restriction of flow into the tank is achieved at the specified preset levels, which shall be based on the manufacturer's capacity charts for the size, dimensions, and shape of the tank.

(4) Exceptions. UST systems are not required to be equipped with the spill and overfill prevention equipment prescribed in this subsection if one or more of the following conditions are applicable to such system:

(A) the transfers of regulated substances into the UST system do not exceed 25 gallons per occurrence; or

(B) the UST system is equipped with alternative equipment which has been reviewed and determined by the agency to prevent spills and overfills of regulated substances in a manner that is no less protective of human health and the environment than the equipment prescribed in this subsection, pursuant to procedures for variances found in §334.43 of this title (relating to Variances and Alternative Procedures).

(c) Spill and overfill control records.

(1) Owners and operators shall maintain the spill and overfill control records required in this subsection in accordance with the requirements in §334.10(b) of this title (relating to Reporting and Recordkeeping).
(2) Owners and operators shall maintain records adequate to demonstrate compliance with the spill and overfill prevention and control requirements in this section, and in accordance with the following minimum requirements.

(A) All appropriate installation records related to the installation of any spill and overfill prevention equipment, as listed in §334.46(i) of this title (relating to Installation Standards for New Underground Storage Tank Systems), shall be maintained for as long as the spill and overfill prevention equipment is used.

(B) Records of any servicing, calibration, maintenance, inspection, monitoring, testing, and repair of any spill and overfill prevention equipment shall be maintained for at least five years after such work is completed.

(3) If an owner or operator claims an exemption from the spill and overfill equipment requirements under the provisions of subsection (b)(4) of this section (i.e., transfers of 25 gallons or less), such owner or operator shall maintain appropriate transfer or inventory records for at least five years to document the basis for such exemption.

Adopted May 9, 2018 Effective May 31, 2018

§334.52. Underground Storage Tank System Repairs and Relining.

(a) General requirements.

(1) Owners and operators shall ensure that any repair or relining of an underground storage tank (UST) system will prevent releases due to structural failure or corrosion for the remaining operational life of the system.

(2) Owners and operators shall ensure that any repair or relining is conducted by qualified personnel possessing the appropriate skills, experience, competence, and, if applicable, any required license or certification to complete the work in accordance with the provisions of this subsection.

(3) Any repairs or relining shall be properly conducted in accordance with a standard or code of practice developed by a nationally recognized association or independent testing laboratory, such as:

(A) National Fire Protection Association (NFPA) Standard 30, "Flammable and Combustible Liquids Code;"

(B) American Petroleum Institute (API) Recommended Practice RP 2200, "Repairing Hazardous Liquid Pipelines;"
(C) API Recommended Practice RP 1631, "Interior Lining and Periodic Inspection of Underground Storage Tanks;"

(D) NFPA 326, "Standard for the Safeguarding of Tanks and Containers for Entry, Cleaning, or Repair;"

(E) National Leak Prevention Association Standard 631, Chapter A, "Entry, Cleaning, Interior Inspection, Repair, and Lining of Underground Storage Tanks;"

(F) Steel Tank Institute Recommended Practice R972, "Recommended Practice for the Addition of Supplemental Anodes to sti-P3 Tanks;"

(G) NACE International Standard Practice SP 0285, "Corrosion Control of Underground Storage Tank Systems by Cathodic Protection;" or

(H) Fiberglass Tank and Pipe Institute Recommended Practice T-95-02, "Remanufacturing of Fiberglass Reinforced Plastic (FRP) Underground Storage Tanks."

(4) After completion of any repairs or relining of a UST system, the owner or operator shall obtain detailed written records of the repairs or relining from the person who performed the work.

(5) The requirements of this section shall not be applicable to routine and minor maintenance activities related to the tank and piping systems, such as tightening loose fittings and joints, adjusting and calibrating equipment, and conducting routine inspections and tests. Tank and piping systems may be placed back into operation immediately after the satisfactory completion of such minor maintenance activities.

(6) If any release of regulated substances is discovered or suspected during the UST system repair or relining activity, the owner or operator shall comply with the applicable release reporting, investigation, and corrective action requirements in Subchapter D of this chapter (relating to Release Reporting and Corrective Action).

(7) The performance of any repairs or relining of an existing UST shall not relieve the owner or operator from timely compliance with the technical standards for such tanks, as required in §334.47 of this title (relating to Technical Standards for Existing Underground Storage Tank Systems).

(b) Tank repairs and relining.

(1) The provisions of this subsection shall be applicable to the in-place repairs or relining of existing tanks. Tanks that are removed from the ground prior to
repair or relining shall be considered used tanks and shall be brought into compliance with all provisions of §334.53 of this title (relating to Reuse of Used Tanks) prior to being placed back in operation.

(2) A previously used tank may be repaired or relined and placed back in operation, provided that the repair or relining is conducted in accordance with the provisions of this subsection and in a manner that will prevent releases of regulated substances due to structural failure or corrosion for the remaining operational life of the tank.

(3) Repairs or relining of fiberglass-reinforced plastic tanks shall be made only by either:

(A) an authorized representative of the tank manufacturer; or

(B) any other person possessing the requisite experience and qualifications to perform the repairs, provided that such repairs shall be performed in accordance with a standard or code of practice developed by a nationally recognized association or independent testing laboratory.

(4) Additional requirements for relining.

(A) Interior lining material(s) used in the repair or reconditioning of a UST shall be compatible with the stored regulated substance, and shall be applied to a minimum thickness of 100 mils.

(B) The entire lining process, including the tank preparation, lining application, inspection, and testing shall be in accordance with a standard or code of practice developed by a nationally recognized association or independent testing laboratory, such as:

(i) API Recommended Practice 1631, "Interior Lining and Periodic Inspection of Underground Storage Tanks;"

(ii) National Leak Prevention Association Standard 631, Chapter B "Future Internal Inspection Requirements for Lined Tanks;" or

(iii) Ken Wilcox Associates Recommended Practice, "Recommended Practice for Inspecting Buried Lined Steel Tanks Using a Video Camera."

(C) Within 10 years after lining, and every five years thereafter, the lined tank shall be internally inspected and determined to be structurally sound with the lining still performing in accordance with original design specifications. If the internal lining is no longer performing in accordance with original design specifications and
cannot be repaired in accordance with a code of practice developed by a nationally recognized association or independent testing laboratory, then the lined tank must be permanently removed from service in accordance with §334.55 of this title (relating to Permanent Removal from Service).

(5) Prior to placing the tank back into operation, any repaired or relined tank shall be either:

(A) tested by means of a tank tightness test meeting the requirements in §334.50(d)(1)(A) of this title (relating to Release Detection);

(B) internally inspected and assessed in accordance with the requirements in §334.47(b)(1)(A)(iv) of this title; or

(C) tested or assessed by any other method that has been reviewed and determined by the agency to be no less protective of human health and safety and the environment than the standards described in subparagraphs (A) and (B) of this paragraph, in accordance with the procedures in §334.43 of this title (relating to Variances and Alternative Procedures).

(6) Not later than December 22, 1998, the entire UST system shall be equipped with a cathodic protection system. Such system shall be designed by a qualified corrosion specialist and shall be operated and maintained in accordance with the applicable cathodic protection requirements of §334.49(c) of this title (relating to Corrosion Protection).

(c) Piping repairs and maintenance.

(1) When a release of a regulated substance has occurred as a result of holes, damage, or corrosion in the piping, valves, or fittings, the repair of the affected piping, valves, or fittings shall not be allowed. Any damaged, corroded, or defective piping sections, valves, or fittings shall be replaced with materials or components meeting the applicable requirements for new piping systems in §334.45(c) of this title (relating to Technical Standards for New Underground Storage Tank Systems).

(2) The installation or reinstallation of previously used piping, valves, or fittings in any UST system is specifically prohibited, regardless of the source or previous use of such previously used components.

(3) Prior to placing the piping system back into operation, any repaired piping system shall be tested by means of a piping tightness test meeting the requirements of §334.50(b)(2)(A)(ii)(I) of this title.
(4) If a repaired metal piping system has not already been equipped with an acceptable cathodic protection system, then the following minimum requirements shall be met prior to placing the piping system back in operation.

(A) The repaired piping sections and fittings shall be thoroughly coated with a suitable dielectric coating and shall be electrically isolated from the remaining piping system by dielectric fittings.

(B) The repaired piping sections and fittings shall be retrofitted with a field-installed cathodic protection system. Such cathodic protection system shall be designed by a qualified corrosion specialist and shall be operated and maintained in accordance with the applicable cathodic protection requirements in §334.49(c) of this title. The remaining portion of the piping system shall be brought into compliance with the minimum upgrading requirements for existing UST systems in accordance with the procedures and schedules in §334.47 of this title.

(d) Other tank system repairs and ancillary equipment repairs.

(1) Repairs to secondary containment areas of tanks and piping used for interstitial monitoring and to containment sumps used for interstitial monitoring of piping must have the secondary containment tested for tightness according to the manufacturer's instructions, a code of practice developed by a nationally recognized association, or independent testing laboratory within 30 days following the date of completion of the repair. All other repairs to tanks and piping must be tightness tested in accordance with §334.50(b)(2)(A)(ii)(I) and (d)(1)(A) of this title within 30 days following the date of completion of the repair.

(2) Within 30 days following any repair to spill or overfill prevention equipment, the repaired spill or overfill prevention equipment must be tested or inspected, as appropriate, in accordance with §334.48(g) of this title (relating to General Operating and Management Requirements) to ensure it is operating properly.

(e) Records for repairs and relining.

(1) Owners and operators shall maintain the repair and relining records required in this subsection in accordance with the requirements in §334.10(b) of this title (relating to Reporting and Recordkeeping).

(2) Owners and operators shall maintain records adequate to demonstrate compliance with the applicable repairs and relining requirements in this section, and in accordance with the following minimum requirements.

(A) General information related to the repairs or relining shall be maintained for the remaining operational life of the UST system, including:
(i) date and description of the repairs or relining;

(ii) names, addresses, and telephone numbers of the persons who conducted the repairs or relining; and

(iii) copies of all related construction notification, registration, and certification documents filed with the agency.

(B) Results of all inspections, tests, and maintenance activities required in this section shall be maintained for at least five years.

(C) Materials specifications, warranty information, recommended test procedures, and inspection and maintenance schedules applicable to the relining of any tank shall be maintained for the remaining operational life of the UST system.

Adopted May 9, 2018

Effective May 31, 2018

§334.53. Reuse of Used Tanks.

(a) General requirements.

(1) A used tank may be installed or reinstalled and may be returned to service in accordance with the provisions of this section, provided that the tank is designed and constructed in a manner that will prevent releases of regulated substances due to structural failure or corrosion for the remaining operational life of the tank.

(2) Any required repairs or relining of a used tank shall be in accordance with the provisions of §334.52 of this title (relating to Underground Storage Tank System Repairs and Relining).

(3) The tank material, and any interior or exterior lining material, shall be compatible with the stored regulated substance.

(4) The installation or reinstallation of a used tank shall be in accordance with all requirements applicable to a tank installation in a new underground storage tank (UST) system, as provided in the following subparagraphs.

(A) The installation shall be conducted in accordance with the applicable provisions of §334.46 of this title (relating to Installation Standards for New Underground Storage Tank Systems).
(B) The tank shall be equipped with appropriate spill and overfill prevention equipment, in accordance with §334.51 of this title (relating to Spill and Overfill Prevention and Control).

(C) A used steel tank (including steel tanks with an exterior fiberglass-reinforced plastic cladding or laminate) shall be equipped with a factory-installed or field-installed cathodic protection system in accordance with §334.49(c) of this title (relating to Corrosion Protection).

(D) The tank shall be equipped with appropriate release detection equipment in accordance with §334.50 of this title (relating to Release Detection).

(E) The tank shall also be equipped with other tank components which shall be constructed in accordance with §334.45(b)(4) of this title (relating to Technical Standards for New Underground Storage Tank Systems).

(b) Exterior fiberglass-reinforced plastic coatings. The retrofitting of a used steel tank with an exterior coating, cladding, or laminate consisting of fiberglass-reinforced plastic shall be conducted in accordance with a code of practice or standard developed by a nationally recognized association or independent testing laboratory and, at a minimum, shall meet the following additional conditions.

(1) The steel tank shall be sandblasted or otherwise cleaned to bare white metal, and all residual corrosion, oxidation, and coating materials shall be thoroughly removed.

(2) The cleaned tank shall be protected from further corrosion or other damage during the period between the tank cleaning and the application of the exterior coating.

(3) The bonding materials used to bond the fiberglass materials to the tank wall shall be compatible with the stored substance and shall be designed to remain bonded for the operational life of the tank. The fiberglass-reinforced plastic coating shall be applied to a minimum thickness of 100 mils, and shall be thoroughly tested by appropriate means to confirm compliance with such thickness requirements.

(4) The tank shall be retrofitted with a cathodic protection system in accordance with the provisions of §334.49(c) of this title (relating to Corrosion Protection).

(c) Recordkeeping. Detailed records of the used tank installation shall be maintained in accordance with §334.10 of this title (relating to Reporting and Recordkeeping). Such records shall include the date the used tank was placed in service; the name, address, and telephone number of the persons who installed and tested the
tank; and the results of all inspection and tank tightness tests required by this section. Such records shall be maintained for as long as the tank remains in operation.

Effective September 29, 1989

§334.54. Temporary Removal from Service.

(a) Applicability. An underground storage tank (UST) system shall be considered to be temporarily out of service, regardless of whether or not regulated substances remain in the UST system, when the following conditions apply.

(1) The normal operation and use of the UST system is deliberately, but temporarily, discontinued for any reason.

(2) The infrequent use of the UST system cannot be adequately justified as part of its purpose.

(3) The operation, maintenance, and/or release detection procedures are determined to be inadequate or otherwise inconsistent with the monitoring procedures normally associated with in-service systems of similar type and purpose.

(b) All UST systems. Regardless of whether or not regulated substances remain in the UST system, the owner or operator shall assure that the UST system is maintained in compliance with the following requirements for the balance of time that the UST system remains temporarily out of service.

(1) All vent lines shall be kept open and functioning.

(2) All other piping, pumps, manways, tank access points (e.g., fill risers, automatic tank gauging risers, Stage I vapor recovery risers) and ancillary equipment shall be capped, plugged, locked, and/or otherwise secured to prevent access, tampering, or vandalism by unauthorized persons.

(3) The UST system shall be adequately protected from corrosion in accordance with the applicable requirements of §334.49 of this title (relating to Corrosion Protection).

(4) Testing and inspections. Spill and overfill operation and maintenance testing and walkthrough inspections (as listed in §334.48(g) and (h) of this title (relating to General Operating and Management Requirements)) are not required on temporarily out of service UST systems.
(c) Protected and monitored systems. Any UST system may remain out of service indefinitely so long as the following requirements are met during the period that the UST system remains temporarily out of service.

(1) Unless the UST system has been emptied of all regulated substances (as described under subsection (d) of this section) at the time it is temporarily removed from service, the UST system shall be monitored for releases in accordance with the applicable requirements of §334.50 of this title (relating to Release Detection).

(2) Returning UST system to service.

(A) When a protected and empty UST system that has been temporarily out of service for longer than six months is placed back into service, the owner or operator shall ensure the integrity of the system by the performance of tank tightness and piping tightness tests that meet the requirements of §334.50(d)(1)(A) of this title, and as applicable, §334.50(b)(2)(A)(ii)(I) or (B)(i)(I) of this title, prior to bringing the system back into operation;

(B) When either a protected and monitored or a protected and empty UST system is placed back into service, the owner or operator shall also ensure that the UST system either is in compliance or is brought into compliance with all applicable release detection, and spill and overfill prevention requirements of §334.50 of this title and §334.51 of this title (relating to Spill and Overfill Prevention and Control); and

(C) Before any UST system is returned to service under this subsection, the owner or operator must first submit a construction notification form as specified in §334.6(b) of this title (relating to Construction Notification for Underground Storage Tanks (USTs) and UST Systems).

(d) Empty system.

(1) For the purposes of this section only, and specifically for the purpose of exempting certain UST systems (when temporarily out of service) the following requirements shall not apply as long as a UST system is empty:

(A) release detection (as listed in §334.50 of this title); and

(B) release detection operation and maintenance testing and inspections (as listed in §334.48(e)(1) of this title).

(2) A UST system shall be considered empty when all of the following provisions have been met:
(A) all regulated substances have been removed as completely as possible by the use of commonly-employed and accepted industry procedures;

(B) any residue from stored regulated substances which remains in the system (after the completion of the substance removal procedures under subparagraph (A) of this paragraph) shall not exceed a depth of 2.5 centimeters at the deepest point and shall not exceed 0.3% by weight of the system at full capacity; and

(C) the volume or concentration of regulated substances remaining in the system would not pose an unreasonable risk to human health and safety or to the environment if a release occurs during the period when the system is temporarily out of service.

(e) Other requirements.

(1) Releases. If a release of a regulated substance is suspected or confirmed, the owner or operator of a UST system which is temporarily out of service shall comply with all release reporting, investigation, and corrective action requirements in Subchapter D of this chapter (relating to Release Reporting and Corrective Action).

(2) Registration. At the time a UST system is temporarily taken out of service and at the time a UST system is brought back into service, the owner shall comply with the applicable tank registration requirements in §334.7 of this title (relating to Registration for Underground Storage Tanks (USTs) and UST Systems).

(3) Fees. A UST which is temporarily out of service in accordance with this section shall remain subject to the agency's UST fees in Subchapter B of this chapter (relating to Underground Storage Tank Fees).

(4) Recordkeeping for temporary removal from service.

(A) Owners and operators shall maintain records adequate to demonstrate compliance with the requirements in this section, in accordance with §334.10(b) of this title (relating to Reporting and Recordkeeping).

(B) At a minimum, the following records shall be maintained for at least five years after the UST system is temporarily removed from service:

 (i) date that the UST system was temporarily removed from service;

 (ii) name, address, and telephone number of the person who prepared the UST system for the period of non-use;
(iii) documentation of the procedures used to prepare and empty the UST system;

(iv) copies of all documentation relative to any requests and approvals of extensions of time;

(v) name, address, and telephone number of the person who conducted the tank and piping tightness tests, prior to returning the UST system to service;

(vi) results of any tank and piping tightness tests; and

(vii) date that the UST system was returned to service.

(5) Financial assurance requirements for tanks temporarily removed from service. Note that §37.885 of this title (relating to Release from the Requirements) addresses release from financial assurance requirements. To be considered properly temporarily removed from service for release from financial assurance requirements in §37.885 of this title, owners and operators shall:

(A) empty the UST system in accordance with subsection (d) of this section; and

(B) perform a site check and any necessary corrective actions in accordance with the requirements of §334.74 of this title (relating to Release Investigation and Confirmation Steps).

Adopted May 9, 2018 Effective May 31, 2018

§334.55. Permanent Removal from Service.

(a) General provisions.

(1) Any owner or operator who intends to permanently remove an underground storage tank (UST) from service (by either removing the tank from the ground, abandoning the tank in-place, or conducting a permanent change-in-service) shall provide prior notice of this activity to the agency in accordance with §334.6 of this title (relating to Construction Notification for Underground Storage Tanks (USTs) and UST Systems).

(2) The procedures used in permanently removing the UST from service shall conform with accepted industry practices, and shall be in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory.
(3) The permanent removal from service shall be conducted by qualified personnel possessing the appropriate skills, experience, competence, and, if applicable, any required license or certification to complete the activity in accordance with the provisions of this section and in a manner designed to minimize the possibility of any threats to human health and safety or the environment.

(4) All USTs that are intended for permanent removal from service shall be emptied of all regulated substances and accumulated sludges or residues, and shall be purged of all residual vapors in accordance with accepted industry procedures commonly employed for the stored regulated substance.

(5) The handling, transportation, and disposal of any regulated substances removed from a UST system, and any contaminated soils, backfill material, groundwater, wash water, or other similar materials removed from the system or facility, shall be conducted in a safe and environmentally sound manner, and shall be in accordance with all applicable federal, state, and local regulations in effect for the type, volume, contaminant concentration, and classification of the removed material.

(6) As part of the required procedure for the permanent removal of any UST system from service, the owner or operator shall determine whether or not any prior release of a stored regulated substance has occurred from the system.

 (A) This determination shall be performed subsequent to the submittal of notification to the agency as prescribed in §334.6 of this title, but prior to completion of the permanent removal from service.

 (B) This determination shall be made by visual inspection of the area in and immediately surrounding the excavation zone for any above-ground releases and for any exposed below-ground releases, and by using one or both of the following methods or procedures:

 (i) the continual operation (through the time that the stored regulated substances are removed from the UST system) of one or more of the external release monitoring and detection methods operating in accordance with §334.50(d)(5) - (8) of this title (relating to Release Detection); or

 (ii) the performance of a comprehensive site assessment in accordance with the requirements of subsection (e) of this section.

 (C) Any methods or procedures used to make this determination shall be capable of detecting any prior release of stored regulated substances from any portion of the UST system.
(D) Upon completion of this determination, the owner or operator shall:

(i) report any confirmed or suspected releases to the agency and comply with all applicable release investigation and corrective action requirements, as prescribed in Subchapter D of this chapter (relating to Release Reporting and Corrective Action);

(ii) prepare or assemble the detailed written records of this determination, which shall include the methods, procedures, results, and names, addresses, and telephone numbers of the persons involved in conducting such determination. Such records shall be maintained in accordance with the applicable provisions in subsection (f) of this section, and a copy of such records shall be filed with the agency in conjunction with the applicable tank registration requirements of §334.7 of this title (relating to Registration for Underground Storage Tanks (USTs) and UST Systems).

(7) For a UST to be considered permanently out-of-service, the owner or operator shall either remove the tank from the ground in accordance with subsection (b) of this section, abandon in-place and fill the tank with an acceptable solid inert material in accordance with subsection (c) of this section, or conduct a permanent change-in-service in accordance with subsection (d) of this section. Unused tanks (i.e., tanks at facilities which are closed or out-of-business) shall be considered temporarily out-of-service, and shall be subject to the provisions of §334.54 of this title (relating to Temporary Removal from Service), unless they have been permanently removed from service in accordance with this section.

(8) The requirements in this section are applicable to all USTs which are permanently removed from service on or after September 29, 1989.

(9) When directed by the executive director, the owner and operator of a UST system permanently closed before September 29, 1989, must assess the excavation zone and close the UST system in accordance with this subchapter if releases from the UST may, in the judgment of the executive director, pose a current or potential threat to human health and the environment.

(b) Removal from the ground. In addition to the requirements of subsection (a) of this section, the following requirements shall be applicable for the removal of USTs from the ground.

(1) Except as provided under paragraph (2) of this subsection, tanks shall be properly emptied, cleaned, and purged of vapors prior to removal from the ground, in accordance with accepted industry procedures commonly employed for the stored regulated substance.
(2) When an owner or operator can demonstrate good cause for removal of a tank from the ground prior to emptying, cleaning, or purging the vapors, the owner or operator shall obtain approval from the manager of the appropriate regional office (or the manager's designated representative) prior to proceeding with the removal. In this situation, the tank removal shall be accomplished only under the direct supervision of agency personnel and/or local fire officials, and all conditions and requirements imposed by such supervisory officials shall be strictly followed.

(3) Prior to removing the tank from the ground, all connected piping and other ancillary equipment shall be emptied, disconnected, and properly plugged, capped, or removed.

(4) Storage of removed tanks.

(A) After removal, a tank shall be transported from the site within 24 hours of removal, unless prior approval of a longer on-site storage period is obtained from the manager of the appropriate regional office (or the manager's designated representative).

(B) The on-site storage of tanks for a period of 24 hours or less shall be in a designated temporary storage area which shall be an adequate distance from known ignition sources and which shall be clearly identified with appropriate barriers and warning signs to restrict access by unauthorized persons.

(C) On-site storage of removed tanks for more than 24 hours (when approved by the regional manager), and off-site storage for any period, shall only be allowed in locked, securely fenced, or similarly restricted areas where unauthorized persons will not have access.

(D) No later than 24 hours after removal, all removed tanks (regardless of condition) shall be legibly and permanently labeled (in letters at least two inches high) with the name of the former contents, a flammability warning (if applicable), and a warning that the tank is unsuitable for the storage of drinking water or the storage of human or animal food products.

(E) The residual vapor levels in any removed tank which is stored at the UST facility shall be maintained at nonexplosive and nonignitable levels for the entire time that the tank remains at the facility.

(F) Regardless of where the tank is stored, not later than ten days after the tank has been removed from the ground, any residual liquids or vapors shall be permanently removed to render the tank nonignitable and nonexplosive.
(5) Transportation and disposal of removed tanks.

(A) The methods and procedures used for the handling, transporting, and disposing of any removed USTs (and parts of such tanks) shall be protective of human health and safety and the environment, and shall be in accordance with all applicable federal, state, and local regulations.

(B) Removed tanks (and any parts of such tanks) which have been emptied, thoroughly cleaned of all remaining substances and any remaining residues, and permanently purged of vapors may be appropriately disposed by scrapping, junking, or reusing for purposes unrelated to the underground storage of regulated substances.

(C) Prior to transporting any removed tank from the UST facility, the following minimum preparation procedures shall be followed.

(i) The remaining regulated substances shall be removed, and visible residues or sediments shall be cleaned from the tank as completely as possible, in accordance with commonly used and accepted industry practices.

(ii) Residual vapor levels in the tank shall be reduced to nonexplosive and nonignitable levels, and shall be maintained at such levels during the entire period of transportation.

(iii) All holes and openings shall be properly plugged or capped, except for one 1/8-inch diameter vent hole positioned at the top of the tank during transportation.

(D) The subsequent reuse of any removed tanks for the underground storage of regulated substances (whether on-site or off-site) shall only be allowed under the provisions of §334.53 of this title (relating to Reuse of Used Tanks).

(6) The tank owner shall develop and maintain a permanent record of the prior location of the removed tank; the date of removal; the substance previously stored; the method of conditioning the tank for removal; the methods of handling, transportation, storing, and disposing of the tank; the names, addresses, and telephone numbers of the person conducting the activities; and any information regarding any known releases from such tank. If the facility owner is not the same person as the tank owner, the tank owner shall provide a copy of such information to the site or facility owner within 30 days after the date of removal.

(c) Abandonment in-place. A UST may be permanently removed from service by abandonment in-place in lieu of actual removal from the ground. In addition to the requirements of subsection (a) of this section, the following requirements shall be applicable to the abandonment in-place of USTs.
(1) When the UST owner is not the owner of the site or facility where such
tank is located, the tank owner is prohibited from abandoning such tank in-place unless
the following conditions are met.

(A) The tank owner shall provide written notice to the owner of the
site or facility for the abandonment in-place prior to initiating the activity.

(B) After completion of the abandonment in-place, the tank owner
shall provide to the site or facility owner a legible copy of the permanent record of the
abandonment, as described in paragraph (3) of this subsection.

(2) Any tank that is abandoned in-place shall be filled with a solid inert
material as prescribed in this paragraph.

(A) Only solid inert materials which are free of any harmful
contaminants or pollutants shall be used to fill the tank. Acceptable materials include
sand, fine gravel, sand and gravel mixtures, and cement/concrete-based slurries. Other
materials such as native soils, drilling muds, and commercially marketed fill materials
shall not be used for filling the tank unless the material and filling procedures have been
reviewed and approved by the agency in accordance with §334.43 of this title (relating
to Variances and Alternative Procedures).

(B) Adequate access openings shall be made in the top of the tank,
and the tank shall be filled as completely as possible. Voids and air pockets shall be
eliminated.

(C) The fill material and filling procedures shall be adequate to assure
that:

 (i) the filled tank will not surface after completion of the filling
 operation;

 (ii) any settling or instability of the ground surface subsequent
to the abandonment in-place is minimized or eliminated;

 (iii) the fill materials will form a permanent solid inert filler that
can be expected to remain structurally stable in the ground to prevent cave-ins, even
after the subsequent deterioration of the tank walls; and

 (iv) the filled tank and associated piping are disconnected and
capped or sealed so as to preclude their future use for any storage or disposal purposes.
(3) The tank owner shall develop and maintain a permanent record of the name and address of the tank owner (and site or facility owner, if different); the abandoned tank location; the date of abandonment; the substance previously stored; the method of conditioning the tank for abandonment; release assessment results; the names, addresses, and telephone numbers of the persons conducting the activities; and information regarding the extent of any confirmed releases and any resulting remediation activities.

(A) When the tank owner is not the owner of the facility where the tank is located, the tank owner shall provide to the current facility owner a legible copy of the permanent record of the abandonment in-place. Such information shall be provided no later than 30 days after completion of the abandonment in-place.

(B) The facility owner shall maintain a permanent record of the tank abandonment in-place in accordance with subsection (f) of this section.

(C) Prior to the sale or conveyance of the facility where an abandoned UST is located, the facility owner shall provide written documentation of the tank abandonment information to the succeeding property owner.

(d) Change-in-service. In addition to the requirements of subsection (a) of this section, the following requirements shall be applicable for any change-in-service where a UST system storing regulated substances is converted to a system storing materials other than regulated substances.

(1) Prior to refilling with materials other than regulated substances, the UST shall be properly emptied, cleaned, and purged of vapors in accordance with a code or standard of practice developed by a nationally recognized association or independent testing laboratory for the stored regulated substance. The procedures for emptying, cleaning, and purging the UST shall be designed to remove as much as possible of the previously stored regulated substances, including all liquids, vapors, sludges, and residues, in a manner that is protective of human health and safety or the environment.

(2) A change-in-service where a UST storing regulated substances is to be converted for the storage of either drinking water or food products intended for human consumption is specifically prohibited.

(3) Any change-in-service shall be in accordance with all applicable federal, state, and local regulations.

(4) The owner shall develop and maintain a permanent record of the location of the UST; the date of the change-in-service; the regulated substance previously stored; the method of conditioning the tank for the change-in-service; the names, addresses, and telephone numbers of the persons conducting the activities; and
any information regarding any known releases of regulated substances from such tank. If the facility owner is not the same person as the UST owner, the UST owner shall provide a copy of such information to the facility owner within 30 days after the date of the change-in-service.

(5) For the purposes of this section, a UST which has been converted to the storage of materials other than regulated substances (i.e., water) shall be subject to the procedures for temporary removal from service in §334.54 of this title, except when the stored materials are utilized on a regular basis for beneficial purposes.

(e) Site assessment.

(1) A site assessment meeting the requirements of this subsection shall be performed by the owner or operator of a UST system in the following situations to determine whether or not a release has occurred:

(A) when the site assessment is selected as the method to achieve compliance with the release determination requirements of subsection (a)(6) of this section for a UST which is permanently removed from service on or after September 29, 1989;

(B) when the agency determines that a site assessment is necessary at any site or facility where a UST was permanently removed from service prior to September 29, 1989, and where the site assessment or release determination at the time of removal from service was determined to be either nonexistent or inadequate; or

(C) when the agency determines that a site assessment is necessary at any site or facility where a release or suspected release may pose a current or potential threat to human health or safety or the environment.

(2) The site assessment shall be conducted by qualified personnel possessing the appropriate skills, experience, and competence to perform the assessment in accordance with recognized industry practices and the provisions of this section and shall be supervised by a person who is currently licensed by the Texas Commission on Environmental Quality (TCEQ) as a UST installer or on-site supervisor or currently registered with the TCEQ as a corrective action project manager.

(3) Any procedures used for the site assessment must be capable of measuring for the presence of a release from any part of the UST system and, at a minimum, must include measurements for releases at locations where contamination is most likely to be present at the site.

(4) The owner or operator shall assure that in selecting the sampling or measurement methods, the sample types, and the sampling or measurement locations,
the persons conducting the assessment shall take into consideration the following factors to ensure that the presence of any released regulated substances is detected and quantified:

(A) the specific method of removing the UST system from service;

(B) the nature and composition of the stored regulated substance;

(C) the type and characteristics of the backfill material and surrounding soils;

(D) the presence of groundwater, and its depth with relation to the UST system and the surface of the ground; and

(E) any other factors that may affect the reliability or effectiveness of the site assessment procedures or techniques.

(5) One or more of the following methods may be used for conducting the site assessment and release determination required under this section, provided that such methods are in compliance with the performance standards in paragraphs (2) - (4) of this subsection:

(A) collection and analysis of soil samples secured from unsaturated sections of the UST system excavation zone and surrounding soils, where such samples shall be analyzed for major constituents and/or indicator parameters of the stored regulated substance(s);

(B) collection and analysis of groundwater samples secured from the UST system excavation zone and surrounding area, where such samples shall be analyzed for all major constituents or indicator parameters of the stored regulated substance(s); and/or

(C) any other site assessment or release determination method or procedure which has been reviewed and determined by the agency to detect prior releases of the stored regulated substance(s) in a manner that is no less protective of human health and the environment than the methods described in subparagraphs (A) and (B) of this paragraph, as provided under §334.43 of this title.

(D) The owner or operator must report any suspected or confirmed releases indicated by the site assessment to the agency and comply with all applicable release investigation and corrective action requirements, as prescribed in Subchapter D of this chapter.

(f) Records for permanent removal from service.
(1) Owners and operators shall maintain records adequate to demonstrate compliance with the requirements of this section, in accordance with §334.10(b) of this title (relating to Reporting and Recordkeeping).

(2) At a minimum, the following records shall be maintained for five years after the UST system is permanently removed from service:

(A) records of the release determination or site assessment, in accordance with the requirements in subsection (a)(6)(D)(ii) of this section;

(B) records related to the tank removal procedures (as applicable), in accordance with the requirements in subsection (b)(6) of this section;

(C) records related to the abandonment in-place of a UST system (as applicable), in accordance with the requirements in subsection (c)(3) of this section; and

(D) records related to the change-in-service of a UST system (as applicable), in accordance with the requirement in subsection (d)(4) of this section.

(g) Codes of practice. The following cleaning and closure procedures may be used to comply with this section:

(1) American Petroleum Institute (API) Recommended Practice 1604, "Closure of Underground Petroleum Storage Tanks;"

(2) API Standard 2015, "Requirements for Safe Entry and Cleaning of Petroleum Storage Tanks;"

(3) API Recommended Practice 2016, "Guidelines and Procedures for Entering and Cleaning Petroleum Storage Tanks;"

(4) API Recommended Practice 1631, "Interior Lining and Periodic Inspection of Underground Storage Tanks;" and

Adopted May 9, 2018 Effective May 31, 2018

§334.56. Change to Exempt or Excluded Status.

(a) Any owner or operator who intends to change the status of an underground storage tank (UST) system from regulated to exempt or excluded status must determine
whether the tank(s) size (if applicable) and the current and anticipated use of the UST system will allow reclassification to either exempt status as specified in §334.3 of this title (relating to Exemptions for Underground Storage Tanks (USTs) and UST Systems), or to excluded status as specified in §334.4 of this title (relating to Exclusions for Underground Storage Tanks (USTs) and UST Systems).

(b) As part of the required procedure for the change in status of any UST system from regulated to exempt or excluded status, the owner or operator shall determine whether or not any prior release of a stored regulated substance has occurred from the system.

(1) This determination shall be made by visual inspection of the area in and immediately surrounding the excavation zone for any above-ground releases and for any exposed below-ground releases, and by using one or both of the following methods or procedures:

(A) the continual operation (through the time that the stored regulated substances are removed from the UST system) of one or more of the external release monitoring and detection methods operated in accordance with §334.50(d)(5) - (8) of this title (relating to Release Detection); or

(B) the performance of a comprehensive site assessment in accordance with the requirements of subsection (c) of this section.

(2) Any methods or procedures used to make this determination shall be capable of detecting any prior release of stored regulated substances from any portion of the UST system. Upon completion of this determination, the owner or operator shall:

(A) report any confirmed or suspected releases to the agency and comply with all applicable release investigation and corrective action requirements, as prescribed in Subchapter D of this chapter (relating to Release Reporting and Corrective Action);

(B) prepare or assemble the detailed written records of this determination, which shall include the methods, procedures, results, names, addresses, and telephone numbers of the persons involved in conducting this determination. These records shall be maintained in accordance with the applicable provisions in subsection (d) of this section, and a copy of these records shall be filed with the agency in conjunction with the applicable tank registration requirements of §334.7 of this title (relating to Registration for Underground Storage Tanks (USTs) and UST Systems).

(c) Site assessment.
(1) A comprehensive site assessment meeting the requirements of this subsection shall be performed by the owner or operator of a UST system in the following situations to determine whether or not a release has occurred:

(A) when the site assessment is selected as the method to achieve compliance with the release determination requirements of subsection (b) of this section for a UST which is changed from regulated to exempt or excluded status on or after the effective date of this subchapter;

(B) when the agency determines that a comprehensive site assessment is necessary at any site or facility where a release or suspected release may pose a current or potential threat to human health or safety or the environment.

(2) The site assessment shall be conducted by qualified personnel possessing the appropriate skills, experience, and competence to perform the assessment in accordance with recognized industry practices and the provisions of this section and shall be supervised by a person who is currently licensed by the Texas Commission on Environmental Quality (TCEQ) as a UST installer or on-site supervisor or currently registered with the TCEQ as a corrective action project manager.

(3) Any procedures used for the site assessment must be capable of measuring for the presence of a release from any part of the UST system and, at a minimum, must include measurements for releases at locations where contamination is most likely to be present at the site.

(4) The owner or operator shall assure that in selecting the sampling or measurement methods, the sample types, and the sampling or measurement locations, the persons conducting the assessment shall take into consideration the following factors to ensure that the presence of any released regulated substances is detected and quantified:

(A) the nature and composition of the stored regulated substance;

(B) the type and characteristics of the backfill material and surrounding soils;

(C) the presence of groundwater, and its depth with relation to the UST system and the surface of the ground; and

(D) any other factors that may affect the reliability or effectiveness of the site assessment procedures or techniques.

(5) One or more of the following methods may be used for conducting the site assessment and release determination required under this section, provided that
such methods are in compliance with the performance standards in paragraphs (2) - (4) of this subsection:

(A) collection and analysis of soil samples secured from unsaturated sections of the UST system excavation zone and surrounding soils, where such samples shall be analyzed for major constituents and/or indicator parameters of the stored regulated substance(s);

(B) collection and analysis of groundwater samples secured from the UST system excavation zone and surrounding area, where such samples shall be analyzed for all major constituents or indicator parameters of the stored regulated substance(s); and/or

(C) any other site assessment or release determination method or procedure which has been reviewed and determined by the agency to detect prior releases of the stored regulated substance(s) in a manner that is no less protective of human health and the environment than the methods described in subparagraphs (A) and (B) of this paragraph, as provided under §334.43 of this title (relating to Variances and Alternative Procedures).

(D) The owner or operator must report any suspected or confirmed releases indicated by the site assessment to the agency and comply with all applicable release investigation and corrective action requirements, as prescribed in Subchapter D of this chapter.

(d) Records for change to exempt or excluded status.

(1) Owners and operators shall maintain records adequate to demonstrate compliance with the requirements of this section, in accordance with §334.10(b) of this title (relating to Reporting and Recordkeeping).

(2) At minimum, records of the release determination or site assessment, in accordance with the requirements in subsection (b)(2)(A)(ii) of this section shall be maintained for as long as any UST remains in service at the facility, or for five years after the UST system is changed from regulated to exempt or excluded status, whichever is longer.

Adopted October 27, 2004 Effective November 18, 2004