CHAPTER 217: DESIGN CRITERIA
STAKEHOLDERS GROUP (DCSG)
Meeting

November 1, 2011, 1:30 - 4:00 p.m.

Building E, Room 201S

Event Moderator:
Jaya Zyman-Ponebshek, P.E., Assistant Director
Water Quality Division
Office of Water

Outreach Coordinator: Korey B. Sykes
Texas Commission on Environmental Quality
Design Criteria Stakeholders Group (DCSG)
Meeting *

November 1, 2011, 1:30 p.m.
Building E, Room 2018

AGENDA

1:30 p.m. Welcome and Introductions Jaya Zyman-Ponebshek, P.E.

TCEQ Staff Updates:

Overview of Chapter 217 Rule Louis C. Herrin, III, P.E.

Proposed Revisions to the Rule by TCEQ Herrin, III, P.E./Richard Smith, P.E
 ➤ Liner language on amended in-situ soils
 ➤ Cloth media filters
 ➤ Manhole testing requirements
 ➤ Sludge digesters
 ➤ Review integration facultative lagoon language
 ➤ Clarify “grandfather clause”
 ➤ Review separation distances requirements for service laterals and water lines
 ➤ Emergency/Back-up power requirements

--- BREAK ---

Stakeholders Input Herrin, III, P.E./Smith, P.E.
 ➤ Petition for rule revisions to manholes and lift stations
 ➤ Other items (open floor)

Announcements

4:00 p.m. Adjournment Zyman-Ponebshek, P.E.

* Available by Webcast by clicking on “Advisory, Stakeholder Group and Special Meetings” at the time of the meeting.
http://www.texasadmin.com/tceqs.shtml

The following e-mail address will be available for questions or comments during the time of the meeting by sending to: Outreach@tceq.texas.gov
AGENDA ITEM REQUEST
for a Petition for Rulemaking

AGENDA REQUESTED: August 31, 2011

DATE OF REQUEST: August 12, 2011

INDIVIDUAL TO CONTACT REGARDING CHANGES TO THIS REQUEST, IF NEEDED: Bruce McAnally, (512) 239-2141

The petition was filed with the Texas Commission on Environmental Quality on July 11, 2011, by Eric J. Dupré. The petitioner requested that the commission amend 30 TAC Sections 217.55 and 217.60 to provide design criteria to rehabilitate existing manholes, lift stations and other wastewater treatment plant structures. (Jaya Zyman-Ponebshek, Kathy Humphreys) (Project No. 2011-049-PET-NR)

L'Oreal Stepney, P.E. Charles Maguire
Deputy Director Division Director

Bruce McAnally
Agenda Coordinator
Texas Commission on Environmental Quality
Interoffice Memorandum

To: Commissioners

Date: August 12, 2011

Thru: Melissa Chao, Acting Chief Clerk
 Mark R. Vickery, P.G., Executive Director

From: L'Oreal Stepney, P.E.
 Office of Water

Subject: Consideration of a Petition for Rulemaking

Docket No: 2011-1164-RUL

Project No: 2011-049-PET-NR

Who Submitted the Petition:
Eric J. Dupré submitted the petition to the commission on July 11, 2011.

What the Petitioner Requests:
The petitioner requests that the commission amend 30 TAC §217.55 (Manholes and
Related Structures) and §217.60 (Lift Station, Wet Well, and Dry Well Designs) to include
design criteria to rehabilitate existing manholes, lift stations, and other wastewater
treatment plant structures. The current rules only address design criteria for new facilities
and do not address rehabilitation needs for these structures. The petitioner states that
corrosion is the leading cause of premature failure of concrete and masonry structures and
Chapter 217 is missing key minimal design standards to help correct this issue found all
over the State of Texas in every county.

As text for the proposed rules, the petitioner provides the following language to be
cluded:

Manhole and Lift Stations Rehabilitation
"Surface of preparation is the first step in a successful application of Manhole Mortar
product. Surface shall be hydroblasted to clean, remove loose debris, and to etch the
surface back to solid substrate up to ¼ "anything beyond ½" is not surface prep but hydro
demolition a different scope of work. Once that is completed the next step is to moisten
the surface of the substrate with water just enough to be damp or SSD Saturated Surface Dry.
Then the structure is ready to have Manhole Mortar applied to it. Once all gases have
reached a safe level naturally or by supplied fresh air the Nozzlemen shall conform to
OSHA confined space regulations and lowered into place to be able to start
spray applying the product to the substrate surface at its proscribed thickness not to exceed
4 inches in a single application. Once surface area has been completely sprayed by the
Nozzlemen it will then be steel trowel out having a sealed smooth surface. If a top coating
of Epoxy is to be applied to this surface it will receive a brushed tooled finish to allow the
epoxy to anchor onto it (see epoxy manufactures recommendation, ASTM, or SSPC
standards). Once all these steps have been executed properly the mortar will have already
been begun to cure and will increase in strength within 24 hours, 7 days, and peak at 28 days. In
Commissioners
Page 2
August 12, 2011

Re: Docket No. 2011-1164-RUL

order to be considered an approved equal product must meet or exceed physical properties shown on the Manhole Mortar Data sheet. The information subsequent to this paragraph goes into further technical details of the entire process which conform to ASTM F2551 guidelines for using a cementitious liner system to rehab manholes. This specification can also be applied to other structures such as Lift Stations and/or other deteriorated concrete or masonry structures."

Protective Coatings
"All concrete/metal structures exposed to H2S and other harsh corrosive materials shall be coated with an epoxy coating in order to resist premature failure and maintains design thickness without compromise."

Recommended Action and Justification:
TCEQ recognizes that there is a need to add design criteria to rehabilitate existing manholes and lift stations to minimize premature failure of such infrastructure due to corrosion, the current rules do not prohibit adding these requirements. Under the existing rules (Chapter 217), the owner of a new collection system must ensure that the structural life cycles of such infrastructure last at least 50 years. Without such requirements, some infrastructure may last closer to 15 years or even less, depending on the configuration of the systems and the concentration of pollutants in the waste streams. Infrastructure associated with the discharge from long force mains is especially vulnerable to corrosion due to low pH.

It should be noted that the current design criteria is mainly intended for new construction and is silent on the rehabilitation of existing infrastructure, leaving such responsibility to the owner and engineer to determine how to fix the problems. Currently, the commission does not review and/or approve routine maintenance of the collection systems. The only section within the existing criteria that deals with collection system rehabilitation is the portion that deals with trenchless pipe installation, which defines the technologies that may be used for lining existing collection system pipes. The petitioner is asking that the commission consider expanding this section of the rule to also include manholes and lift stations.

Because of the importance of these changes, the Executive Director recommends that the petition be denied at this time and the staff addresses the issue presented by the petitioner, along with other potential revisions, through a comprehensive stakeholder process.

Applicable Law:
- Texas Government Code, §2001.021, which establishes the procedures by which an interested person may petition a state agency for the adoption of a rule;
- 30 TAC §20.15, which provides such procedures specific to the commission;
Commissioners
Page 3
August 12, 2011

Re: Docket No. 2011-1164-RUL

- Texas Water Code (TWC), §5.013, which establishes the general jurisdiction of the commission over other areas of responsibility as assigned to the commission under the TWC and other laws of the state;
- TWC, §5.102, which establishes the commission's authority necessary to carry out its jurisdiction;
- TWC, §5.103 and §5.105, which authorize the commission to adopt rules and policies necessary to carry out its responsibilities and duties under TWC, §5.013;
- TWC, §7.002, which authorizes the commission to enforce provisions of the TWC;
- TWC, §26.027, which authorized the commission to issue permits;
- TWC, §26.034, which provides the commission's authority to adopt rules for the approval of disposal system plans; and
- TWC, §26.121, which provides the commission's authority to prohibit unauthorized discharges.

Agency contacts:
Jaya Zyman-Ponebshek, Project Manager, 239-2012, Water Quality Division
Kathy Humphreys, Staff Attorney, 239-3417
Bruce McAnally, Texas Register Coordinator, 239-2141

Attachment
Petition

cc: Chief Clerk, 2 copies
 Executive Director's Office
 Susana M. Hildebrand, P.E.
 Annie Ideal
 Curtis Seaton
 Ashley Morgan
 Office of General Counsel
 Jaya Zyman-Ponebshek
 Kathy Humphreys
 Bruce McAnally
DECISION OF THE COMMISSION
REGARDING THE PETITION FOR RULEMAKING
FILED BY ERIC J. DUPRÉ

Docket No. 2011-1164-RUL

On August 31, 2011, the Texas Commission on Environmental Quality (Commission) considered the petition for rulemaking filed by Southern Trenchless Solutions, LLC. The petition, filed on July 11, 2011, requests that the commission initiate rulemaking to amend 30 Texas Administrative Code (TAC) § 217.55 (Manholes and Related Structures) and § 217.60 (Lift Station, Wet Well, and Dry Well Designs) to include design criteria to rehabilitate existing manholes, lift stations, and other wastewater treatment plant structures.

IT IS THE DECISION OF THE COMMISSION pursuant to Administrative Procedure Act (APA), Texas Government Code, § 2001.021 and Texas Water Code, § 5.102 to deny the petition pursuant to 30 TAC § 20.15.

This Decision constitutes the decision of the Commission required by the Texas Government Code, § 2001.021(c).

Issued date:

TWO COMMISSION ON
ENVIRONMENTAL QUALITY

Bryan W. Shaw, Ph.D., Chairman
TCEQ Rules Petition

Submittal:
7/11/2011
To:
Texas Commission on Environmental Quality
PO Box 13087
Austin, TX 78711-3087

Petitioner:
Eric J. Dupre
16043 Country Bend Rd.
Houston, TX 77095
(956)763.7898

Introduction and Object of proposed rule:

Identify that Chapter 217 Design Criteria for Wastewater Systems does not have any rules or minimal design criteria in regards to trenchless rehabilitation of existing manholes, lift station, and other vital system components. Corrosion is the leading cause of premature failure of concrete and masonry structures and Chapter 217 is missing key minimal design standards to help correct this issue found all over the State of Texas in every County. The design phase is the most important and critical point before actual procurement or construction begins therefore by not having any minimal design criteria on some of the most frequently performed procurements leaves a large uncontrolled variance in what is or isn’t being done. The Director of the U.S. Department of Defense has also gone on to say that of all the Federal, State, and local governments, there is no central process or mechanism for curbing the cost of mitigating infrastructure corrosion. Nonetheless, it is paramount that we follow certain corrosion prevention and mitigation protocols as we repair and rebuild our aging infrastructure. Currently product manufacturers have more influence and control than the State of Texas because these rules/ minimal standards do not currently exist in Chapter 217. The industry is begging to have some type of consistent and uniformed standard across the State of Texas.

Rules in which could be effected by addition of this missing criteria:

Currently there are no rules or design criteria to rehab existing manhole, lift stations or WWTP structures so the rules would need to be added not to change or amended.
Rule 217.55 Manholes and Related Structures (does not cover existing structures)
Rule 217.60 Lift Station, Wet Well, and Dry Well Designs (does not cover existing structures)
But not limited to newly built or existing concrete/masonry structures exposed to harsh H₂S gases found in heads works, and other turbulent/volatile components found in the Wastewater System.

Language to be adopted and/or injected into Chapter 217 as seen fit for its uses and applications:

Manhole and Lift Stations Rehabilitation
Surface of preparation is the first step in a successful application of Manhole Mortar product. Surface shall be hydro blasted to clean, remove loose debris, and to etch the surface back to solid substrate up to 1/4” anything beyond 1/4” is not surface prep but hydro demolition a different scope of work. Once that is completed the next step is to moisten the surface of the substrate with water just enough to be damp or SSD Saturated Surface Dry. Then the structure is ready to have Manhole Mortar applied to it. Once all gases have reached a safe level naturally or by supplied fresh air the Nozzlemen shall conform to OSHA confined space regulations and lowered into place to be able to start spray applying the product to the substrate surface at its proscribed thickness not to exceed 4 inches in a single

Written by Eric J. Dupre
956.763.7898
TCEQ Rules Petition

application. Once surface area has been completely sprayed by the Nozzelmen it will then be steel trowel out having a sealed smooth surface. If a top coating of Epoxy is to be applied to this surface it will receive a brushed tool finish to allow the epoxy to anchor onto it (see epoxy manufacturers recommendation, ASTM, or SSPC standards). Once all these steps have been executed properly the mortar will have already begun to cure and will increase in strength within 24 hours, 7 days, and peak at 28 days. In order to be considered an approved equal product must meet or exceed physical properties shown on the Manhole Mortar Data sheet. The information subsequent to this paragraph goes into further technical details of the entire process which conform to ASTM F2551 guidelines for using a cementitious liner system to rehab manholes. This specification can also be applied to other structures such as Lift Stations and/or other deteriorated concrete or masonry structures.

Protective Coatings
All concrete/metal structures exposed to H₂S and other harsh corrosive materials shall be coated with an epoxy coating in order to resist premature failure and maintains design thickness without compromise.

Adopted resolution from the following provided specifications and industry standards:

The following documents supplied can be used by TCEQ to inject and adopted these standards as a minimal standard for section 217.55 & 217.60. The two materials identified in the documents are the most cost effective and successfully proven products for this scope of work and for whatever reason are identified in 217.56 Trenchless Pipe Installation (c) 1 cement mortar lining (c) 2 epoxy spray lining but not in the other mentioned sections when they are most utilized to rehabilitate manholes, lift stations, and/or WWTP.

SEE ATTACHED DOCUMENT FOR MANHOLE REHABILITATION AND SUPPORTING DOCUMENTS

Conclusion:

Since the majority of all Professional Engineers in the State of Texas follow and use TCEQ’s chapter 217 Design Criteria the State of Texas at all levels will continue to deal with these major corrosion issues and will endure the costs associated with doing nothing. If a criterion is set where it is currently missing it will enable owners to adopt some type of consistency and uniformity to help curb costs and control over their aging infrastructure. The first question contemplated when making this request was would this rule change benefit Texans? After much dialog with many Engineers, Professionals, and clients the answer was unquestionably yes. We implore this Commission take action on this matter to add these standards and criteria to strengthen the Chapter 217 Design Criteria. We thank you for your time and efforts with this matter. Please contact Eric Dupre’ at 956.763.7898 or eric@SouthernTrenchless.com, if you have any questions or need additional information.

Respectfully
Eric J. Dupre’

cc: Senator Dan Patrick
Texas House Rep Bill Callegari
Cheli Castro

Written by Eric J. Dupre
956.763.7898
Standard Practice for
Installing a Protective Cementitious Liner System in
Sanitary Sewer Manholes

This standard is issued under the fixed designation F 2551; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

A sanitary sewer manhole may be repaired or rehabilitated by applying a prepackaged cementitious liner to the interior surface after it has been properly prepared and cleaned. Sanitary sewer manholes can be damaged by dynamic loading, abrasion, erosion, and corrosion.

1. Scope

1.1 This specification describes all the work required to structurally reinforce, seal, and protect sanitary sewer manholes. Applications include applying a prepackaged cementitious liner that can function as a full depth restoration or a partial depth repair. A uniform high-strength, fiber-reinforced cementitious mortar should be manually sprayed and hand troweled or centrifugally cast in a uniform, prescribed thickness to all cleaned, interior surfaces from the bottom of the frame to the bench. The cementitious liner may be applied to manholes constructed of brick, concrete, block, and various other materials.

1.2 A manufacturer’s approved applicator shall furnish the complete application of the protective, prepackaged cementitious liner material. All of the cleaning, preparation, and application procedures shall be in accordance with the manufacturer’s recommendations.

1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Manholes are permit required confined spaces in accordance with OSHA definition and should be treated as such, requiring confined space entry permits, appropriate monitoring equipment, and the associated personal protective equipment.

2. Referenced Documents

2.1 ASTM Standards:
C 99/C 99M Test Method for Compressive Strength of Cylindrical Concrete Specimens
C 309 Specification for Liquid Membrane-Forming Compounds for Curing Concrete
C 494/C 494M Specification for Chemical Admixtures for Concrete
C 969 Practice for Infiltration and Exfiltration Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines
C 1140 Practice for Preparing and Testing Specimens from Shotcrete Test Panels
C 1244 Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test Prior to Backfill
C 1315 Specification for Liquid Membrane-Forming Compounds Having Special Properties for Curing and Sealing Concrete
F 2414 Practice for Sealing Sewer Manholes Using Chemical Grouting

2.2 ACI Standards:
ACI 301-05 Specifications for Structural Concrete
ACI 305R-99 Hot Weather Concreting
ACI 306R-88 Cold Weather Concreting
ACI 308R Practice for Curing Concrete
ACI 506R Guide to Shotcrete

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

Copyright by ASTM Int'l (all rights reserved); Tue Sep 15 14:44:50 EDT 2009
Downloaded/printed by
(Standard Cement Materials Inc.) pursuant to License Agreement. No further reproductions authorized.
2.3 ICRI Technical Guidelines:*
Guideline No. 03732 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, and Polymer Overlays
Guideline No. 03737 Guide for the Preparation of Concrete Surfaces for Repair Using Hydro-demolition Methods

3. Ordering Information
3.1 Submittals—Orders for all prepackaged materials listed under this practice shall include the following:
3.1.1 Product data, including manufacturer and brand name;
3.1.2 Technical data stipulating physical characteristics of applied liner material; and
3.1.3 Manufacturer’s Safety Data Sheets.
3.2 Delivery, Storage, and Handling:
3.2.1 The prepackaged cementitious materials should be stored according to the manufacturer’s recommendations. No modification should be made to the manufacturer’s recommendations for handling and delivery of these products.

4. Materials and Manufacture
4.1 All prepackaged materials shall be designed, manufactured, and intended for sewer manhole rehabilitation and the specific application in which they are used. Each material shall be designed for application over damp surfaces without degradation of the final product or the bond between the product and the manhole surface.
4.2 Materials for Substrate Repairs—All voids and irregularities of the substrate should be filled or repaired with structurally sound materials before applying the cementitious liner material.
4.2.1 Cementitious Repair Materials—Hand mix and apply for filling voids and reforming benches and resurfacing the brick, concrete walls, and bench surfaces of the sewer manhole. Mix the cement repair material and apply according to the manufacturer’s instructions. The cementitious liner material can be used as the repair material.
4.3 Infiltration Water Control Materials—Specifically formulated for stopping water leaks and minor infiltration.
4.3.1 Cementitious Water Control Materials—Used to stop flowing water leaks in concrete and masonry structures. This material may be applied in dry form directly to the leak area or mixed with potable water to a soft putty consistency for larger active leaks. This material is held in place until it sets and the leak stops. Mix and use according to the manufacturer’s instructions.
4.3.2 No modification should be made to the products recommendations for handling, mixing, placing, and finishing without the manufacturers prior written approval.
4.4 Chemical Grout Material—To stop water leaks and infiltration with chemical grout, refer to Practice F 2414.
4.5 Lining Material—Prepackaged cementitious lining materials are specifically designed to repair or rehabilitate sewer manholes.

4.6 Other Materials—No other material shall be used with or added to the prepackaged cementitious liner materials without prior written approval from the manufacturer.

5. Surface Preparation, Cleaning, and Repair
5.1 The applicator is responsible to ensure that the manhole is properly cleaned and prepared.
5.2 Place wooden or plastic covers or other protective devices over the sewer manhole invert while clearing the manhole wall and bench sections before applying the prepackaged cementitious liner. Wire mesh and fabric filters allowing water to pass are also acceptable.
5.3 Remove all foreign materials from the manhole wall and bench sections. Remove all loose and protruding bricks, mortar, and concrete. Remove metal, plastic, or brick stairs, if required, before applying the new liner. Fill any large voids with fast setting cementitious repair material.

5.4 Surface Cleaning Procedures:
5.4.1 High Pressure Cleaning—Properly cleaning the surface of the structure is critical to the success of this rehabilitation method. Use a high-pressure washer delivering a minimum of 3500 psi (2413 MPa). A minimum of two and a half gallons per minute (9.46 litres per minute) should be delivered through the spray tip. The spray tip should be kept between 6 and 12 in. (15.24 and 30.48 cm) from the surface and be held at an angle between 45° and 90° to the surface being cleaned. The spray tip should be directed across the surface at a speed of no more than one foot per second (0.3 metres per second). If the surface is especially dirty or greasy, cleaning agents may be added to the pressure washer water or the water may be heated. When hot water is required, it should be heated to 210°F (99°C). Care should be taken to clean the frame seating surface where the lid fits into the frame, removing any debris or other materials that negatively impact the lids ability to seal against the frame. Cleaning should begin with the frame surface and progress down to and include the bench. A rotating spray nozzle may be used for cleaning, if it meets pressure and flow requirements. Care should be taken to avoid further structural damage to the existing surface.
5.4.2 In some situations, when removing existing coatings or linings, pneumatic hammers, hydro-demolition, or sand blasting may be required. Refer to Guideline No. 03732 or Guideline No. 03737.
5.4.3 Some substrates may require more surface preparation including acid washing. If acid washing is performed, the acid cleaned surface should be neutralized.
5.4.4 Remove any loose material after all preparations and cleaning has been completed. Do not allow soil, sand, debris, or runoff to enter the sewer system. Properly dispose of any deleterious materials removed from the manhole according to local, state, and federal guidelines.

5.5 Surface Repair:
5.5.1 Repair the Invert and Bench Sections—Repair any invert and bench section that exhibits visible damage, degradation, or water infiltration. Remove obstructions and loose materials from benches prior to shaping inverts. Form smooth, u-shaped channels across the floor of the manhole. Use a high-strength, fast-setting cementitious repair material. Control or divert the flow to allow sufficient setting time for the...
material used. Make finished benches and inverts smooth without defects. Allow no accumulation of debris.

6. Mixing of Prepackaged Cementitious Repair Materials

6.1 The applicator shall bear complete responsibility for mixing of the materials, applying, and finishing of the sewer manhole repair system.

6.1.1 The prepackaged cementitious liner material should be mixed with water in accordance with the manufacturer's recommendations. Tempering of the material above the manufacturers published limits should not be allowed.

6.1.2 Use clean and potable water for mixing.

6.1.3 No modifications or changes should be made to the product without prior written approval of the manufacturer.

6.1.4 During hot weather, the cementitious liner material should be mixed at temperatures below 90°F (32.2°C) in order to avoid rapid loss of workability, to decrease water evaporation, and to prevent premature set time. Retarding admixtures Type A, B, or D that meet Specification C 494/C 494M may be used to allow work in hotter weather. However, applicators should obtain manufacturers permission or use products recommended by manufacturer. Apply admixtures in accordance with ACI 305R-99 recommendations for hot weather conditions.

6.1.5 If work is to be performed near 40°F (4.4°C), preheat the water and keep prepackaged material warm. The mix should be kept near 70°F (21.1°C). Apply in accordance with ACI 305R-88 recommendations for cold weather conditions. Some liner materials are capable of setting in cold weather; consult with manufacturer for suitability.

7. Execution—Application of the Cement Liner

7.1 Spray Application—Manual Surface Sealing:

7.1.1 Dampen the manhole wall surface. Surface must be damp without noticeable free water droplets or running water (surface, saturated, dry). Spray or apply the cementitious liner material to a uniform thickness as specified. Use a hand trowel to hand work and compact the manhole cementitious liner material into all the voids and crevices but do not over trowel. Allow the cementitious liner material to set as recommended by the manufacturer.

7.1.2 Spray the cementitious liner material to a nominal thickness of ½ in. (1.25 cm) in one or more passes. The thickness of the cementitious lining material applied to the surface depends on a wide array of variables. These variables include overall condition of the manhole, depth, construction materials, location, dynamic traffic load, source and state of corrosion, diameter, hydrostatic pressure, soil type, and any other factors that might impact the design of the cementitious liner. The design engineer should determine appropriate liner thickness and liner material properties and be prepared to include the addition of protective coatings or other methods used to limit or eliminate corrosion factors. Use a wet gauge to measure applied cementitious liner material thickness at three sections of the manhole: the cone/corbel section, middle of barrel, and the barrel near the invert. The liner shall be even and uniform with a troweled, brushed, or natural finish.

7.1.3 Not all manufacturers recommend the use of a protective coating over the cementitious liner material. If the liner is to receive a top coating, then an anchor tooth finish is recommended and shall be free of curing or similar compounds. For dry gunite applications, finish in accordance with ACI 506R, using the recommended trowel.

7.1.4 Apply the prepackaged cementitious liner material from the top of the manhole down to the bench. Overlay the bench with a gradual slope from the wall to the edge of the channel. The wall and bench intersection should have a rounded and uniform radius. The thickness of the bench shall be no less than ½ in. (1.25 cm) at the edge of the channel and shall increase in the direction of the wall so as to provide the required slope.

7.2 Spray Application—Centrifugal Process:

7.2.1 Position the high-speed, bi-directional, rotating applicator within the center of the manhole at the lowest point desired for the new wall and commence pumping the mixed prepackaged cementitious liner material. Man-entry may be required to ensure the lining has been effectively applied, as on the underside of any brickwork or around laterals. As the cementitious liner material begins to be centrifugally cast evenly around the interior, retrieve the applicator head at the prescribed speed for applying the thickness that has been selected. Controlled multiple passes in both clockwise and counterclockwise directions are made until the desired thickness is attained.

7.2.2 If the procedure is interrupted for any reason, simply arrest the retrieval of the applicator head until flows are recommenced. Verify the desired thickness with a wet gage. The liners shall be even and uniform with a brushed or natural finish. If the liner is to receive a top coating refer to 7.1.3. Benches and channels are finished by hand as in 7.1.4.

8. Curing of Freshly Applied Cementitious Liner Material

8.1 Protect the freshly applied cementitious liner from extreme weather conditions. According to ACI 301-05, ACI 305R-99, ACI 306R-88, and ACI 305R, curing compounds should be used to minimize the loss of moisture to ensure the continuation of the cement hydration process. Curing compounds are used to obtain adequate and specified strength gain of the applied material. Liquid membrane curing compounds that are specified in Specifications C 309 or C 1315 should be used for these purposes.

8.2 During hot, dry weather conditions, protect the finished cementitious liner material at early ages to prevent rapid water loss. Use an accepted liquid membrane curing compound in accordance with Specifications C 309 or C 1315 on the finished cementitious liners to limit water loss. Apply curing compounds according to manufacturer's specification. Protect liner materials in accordance with ACI 305R-99.

8.3 During cold weather application provide protection of the cementitious liner at early ages to prevent damage from freezing. Do not apply prepackaged liner, when ambient temperature falls below 40°F (4.4°C) or freezing temperatures are expected within 24 h, or both. Protect liner materials in accordance with ACI 306R-88. Some liner materials are capable of setting in cold weather; consult with manufacturer for suitability.
8.4 The sewer manhole rehabilitation system is acceptable for day, nighttime, or continuous 24-h work schedules in the proper environment.

9. Sampling

9.1 Use cylinders as in accordance with Test Method C 39/C 39M, cubes as in accordance with Test Method C 109/C 109M, or shotted panels as in accordance with Practice C 1140, or as specified by the manufacturer or engineer document for testing compressive strength. Make cylinders, cubes, or panels from each day's work and label each with the date, location, project, and product batch numbers. The product batch numbers are located on each cement material bag or on the pallet. Send the cylinder, cube, or panel to a third-party laboratory or the manufacturer for verification. Test the cementitious liner material for compliance with specified strengths at 28 days or in accordance with the engineer's instructions. Retain one sample for further instructions should the others fail to meet the 28-day requirement. Field samples should not be moved for a minimum of the first 24 h and should be maintained according to ASTM specifications.

9.2 The engineer should approve the inspection and quality control protocol before project startup.

10. Manhole Verification and Testing

10.1 At the owner's option, one or more of the following procedures may be employed to verify the quality of the applied liner.

10.1.1 Vacuum testing in accordance with Test Method C 1244.

10.1.2 The water exfiltration method in accordance with Practice C 969.

10.1.3 A visual inspection which may be recorded in still or video digital format.

10.1.4 Other methods as specified by the project engineer.

11. Quality Assurance

11.1 The engineer should verify that the repaired manhole meets specifications.

11.2 If the repaired manhole does not comply with the prescribed standards, the applicator should make corrections and repeat the test procedures until design specifications are met.

12. Keywords

12.1 cement liner; cementitious liner; corrosion protection; manhole rehabilitation; manhole renewal; sanitary sewer manhole; sewer manhole; stopping water infiltration; structural enhancement; structural rehabilitation

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either resubmitted or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2955, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).
MANHOLE REHAB SPECIFICATION
Product Application Procedure
Micro Silica Cementitious Spray Applied Structural Repair Liner for Manhole Rehab

Overview of Application of Manhole Mortar

Surface preparation is the first step in a successful application of Manhole Mortar product. Surface shall be hydro blasted to clean, remove loose debris, and to etch the surface back to solid substrate up to 1/4" anything beyond 1/4" is not surface prep but hydro demolition a different scope of work. Once that is completed the next step is to moisten the surface of the substrate with water just enough to be damp or SSD Saturated Surface Dry. Then the structure is ready to have Manhole Mortar applied to it. Once all gases have reached a safe level naturally or by supplied fresh air the Nozzlemen shall conform to OSHA confined space regulations and lowered into place to be able to start spraying the product to the substrate surface at its prescribed thickness not to exceed 4 inches in a single application. Once surface area has been completely sprayed by the Nozzlemen it will then be steel troweled out having a sealed smooth surface, If a top coating of Epoxy is to be applied to this surface it will receive a brushed finish to allow the epoxy to anchor onto it (see epoxy manufacturer’s recommendation, ASTM, or SSPC standards). Once all these steps have been executed properly the mortar will have already begun to cure and will increase in strength within 24 hours, 7days, and peak at 28 days. In order to be considered an approved equal product must meet or exceed physical properties shown on the Manhole Mortar Data sheet.

The information subsequent to this paragraph goes into further technical details of the entire process which conform to ASTM F2551 guidelines for using a cementitious liner system to rehab manholes. This specification can also be applied to other structures such as Lift Stations and/or other deteriorated concrete or masonry structures.

Surface Preparation:
5.4 Surface Cleaning Procedures:
5.4.1 High Pressure Cleaning—Properly cleaning the surface of the structure is critical to the success of this rehabilitation method. Use a high-pressure washer delivering a minimum of 3500 psi (2413 MPa). A minimum of two and a half gallons per minute (9.46 litres per minute) should be delivered through the spray tip. The spray tip should be kept between 6 and 12 in. (15.24 and 30.48 cm) from the surface and be held at an angle between 45° and 90° to the surface being cleaned. The spray tip should be directed across the surface at a speed of no more than one foot per second (0.3 metres per second). If the surface is especially dirty or greasy, cleaning agents may be added to the pressure washer water or the water may be heated. When hot water is required, it should be heated to 210°F (99°C). Care should be taken to clean the frame sealing surface where the lid fits into the frame, removing any debris or other materials that negatively impact the lid’s ability to seal against the frame. Cleaning should begin with the frame surface and progress down to and include the bench. A rotating spray nozzle may be used for cleaning, if it meets pressure and flow requirements. Care should be taken to avoid further structural damage to the existing surface. Preparing surfaces to be repaired by water blasting, abrasive blast, hand or power tool to remove unsound concrete, contaminants, dirt, and/or debris. Contact your Southern Trenchless Representative for information on removal techniques that are best for your application.

Mixing of Prepackaged Cementitious Repair Materials
6.1 The applicator shall bear complete responsibility for mixing of the materials, applying, and finishing of the sewer manhole repair system.
6.1.1 The prepackaged cementitious liner material should be mixed with water in accordance with the manufacturer’s recommendations. Tempering of the material above the manufacturer’s published limits should not be allowed.
6.1.2 Use clean and potable water for mixing.
6.1.3 No modifications or changes should be made to the product without prior written approval of the manufacturer.
6.1.4 During hot weather, the cementitious liner material should be mixed at temperatures below 90°F (32.2°C) in order to avoid rapid loss of workability, to decrease water evaporation, and to prevent premature set time. Retarding admixtures Type A, B, or D that meet Specification C 494/C 494M may be used to allow work in hotter weather. However, applicators should obtain manufacturers permission or use products recommended by Southern Trenchless Representative.

Apply admixtures in accordance with ACI 305R-99 recommendations for hot weather conditions.
6.1.5 If work is to be performed near 40°F (4.4°C), preheat the water and keep prepackaged material warm. The mix should be kept near 70°F (21.1°C). Apply in accordance with ACI 305R-88 recommendations for cold weather concreting. Some liner materials are capable of setting in cold weather, consult Southern Trenchless Representative for suitability.
MANHOLE REHAB SPECIFICATION

Product Application Procedure
Micro Silica Cementitious Spray Applied Structural Repair Liner for Manhole Rehab

Application of the Cement Liner
7.1 Spray Application—Manual Surface Sealing:
7.1.1 Dampen the manhole wall surface. Surface must be damp without noticeable free water droplets or running water (surface, saturated, dry). Spray or apply the cementitious liner material to a uniform thickness as specified. Use a hand trowel to hand work and compact the manhole cementitious liner material into all the voids and crevices but do not over trowel. Allow the cementitious liner material to set as recommended by the manufacturer.
7.1.2 Spray the cementitious liner material to a nominal thickness of 6 in. (1.25 cm) in one or more passes. The thickness of the cementitious lining material applied to the surface depends on a wide array of variables. These variables include overall condition of the manhole, depth, construction materials, location, dynamic traffic load, source and state of corrosion, diameter, hydrostatic pressure, soil type, and any other factors that might impact the design of the cementitious liner. The design engineer should determine appropriate liner thickness and liner material properties and may be prepared to include the addition of protective coatings or other methods used to limit or eliminate corrosion factors. Use a wet gauge to measure applied cementitious liner material thickness at three sections of the manhole: the cone/corbel section, middle of barrel, and the barrel near the invert. The liner shall be even and uniform with a troweled, brushed, or natural finish.
7.1.3 Not all manufacturers recommend the use of a protective coating over the cementitious liner material. If the liner is to receive a top coating, then an anchor tooth finish is recommended and shall be free of curing or similar compounds. For dry grout applications, finish in accordance with ACI 506R, using the recommended trowel.
7.1.4 Apply the prepackaged cementitious liner material from the top of the manhole down to the bench. Overlay the bench with a gradual slope from the wall to the edge of the channel. The wall and bench intersection should have a rounded and uniform radius. The thickness of the bench shall be no less than 6 in. (1.25 cm) at the edge of the channel and shall increase in the direction of the wall so as to provide the required slope.
7.2 Spray Application—Centrifugal Process:
7.2.1 Position the high-speed, bi-directional, rotating applicator within the center of the manhole at the lowest point desired for the new wall and commence pumping the mixed prepackaged cementitious liner material. Maneuver may be required to assure the lining has been effectively applied, as on the underside of any brickwork or around laterals. As the cementitious liner material begins to centrifugally cast evenly around the interior, retrieve the applicator head at the prescribed speed for applying the thickness that has been selected. Controlled multiple passes in both clockwise and counterclockwise directions are made until the desired thickness is attained.
7.2.2 If the procedure is interrupted for any reason, simply arrest the retrieval of the applicator head until flows are recommenced. Verify the desired thickness with a wet gage. The liners shall be even and uniform with a brushed or natural finish. If the liner is to receive a top coating refer to 7.1.3.

Benches and channels are finished by hand as in 7.1.4.

Quality Assurance
Since the nozzleman is a key element to quality in the shotcrete process the applicator performing this work must hold an ACI Nozzlemaster Certification and be an employee at the applicator firm. The name and certification ID must be submitted at the time of bid. Applicator shall also present OSHA confined space credentials at the time of the bid. Credentials, qualifications, and all applicable certifications must also be submitted at the time of the bid in order to qualify the applicator as capable to perform this scope of work. The stated quality assurance requirements described above are obtainable to anyone and help protect the owner from faulty craftsmanship from unqualified firms who do not meet these requirements.

Reference
ACI: American Concrete Institute
ASA: American Shotcrete Association
NASSCO: National Association of Sewer Service Companies
SSPC: The Society for Protective Coatings
NACE: National Association of Corrosion Engineers
NACE News: Rebuilding Infrastructure Through Better Decisions
A roadmap to help federal, state, and local officials tackle infrastructure corrosion is currently in place. But the process for implementing this model is very different from the framework the U.S. Department of Defense (DoD) uses to fight corrosion on our military weapon systems.

When I speak of infrastructure, I refer to our highways, roads, and bridges, as well as our pipeline, utility, and wastewater systems. By now, members of NACE International are familiar with the seminal NACE-sponsored study, which estimates that corrosion of this infrastructure directly costs the United States $276 billion annually. Moreover, we should understand that within the myriad agencies comprising the U.S. DoD, U.S. Department of Transportation, and our federal, state, and local governments, there is no central process or mechanism for curbing the cost of mitigating infrastructure corrosion. Nonetheless, it is paramount that we follow certain corrosion prevention and mitigation protocols as we repair and rebuild our aging infrastructure.

First and foremost, potential corrosion concerns must be addressed as new systems are being designed, based on the availability of resources. At first blush, this is easier said than done because the system designers and decision-makers don’t fall under the auspices of a single entity. Our first key challenge is to educate the decision-makers within DoD, local municipalities, cities, and state governments, and to make them aware that there are corrosion challenges to be considered in the design of our bridges, roads, water and sewer systems, and military installations.

Second, coordination among policy-makers, engineers, and contractors is paramount so the best possible coatings, metals, and cathodic protection (CP) systems are used. Decision-makers should ensure that subject matter experts select materials that are appropriate and properly employed. Organizations such as NACE, above all, can lead the way toward our meeting this challenge by forming public and private partnerships and engaging state and local governments to address corrosion in the design phase at the federal, state, and county level.

If you examine any of our DoD-approved CP technologies reviewed by the Government Accountability Office, you’ll find that the return on investment (ROI) is worth every cent expended by taxpayers, because they ensure that the life of our military installations are prolonged for as long as possible.

DoD has a model in place for tackling infrastructure corrosion. This model can and must be adapted and transferred to the executive branch, states, counties, and municipalities. This framework consists of DoD instructions, corrosion prevention projects with a high ROI, guidebooks and technical handbooks, and myriad collaborative efforts among DoD, industry, and academia. We need public administrators and subject matter experts to adopt the DoD model and adapt it to their own needs and requirements.

Finally, I should point out that corrosion is not the most important issue that must be considered in preserving infrastructure. The DoD Corrosion Office recognizes that important trade-offs must often be
made at the design level. But corrosion must be appropriately considered because we cannot afford to ignore it anymore.

The DoD models for tackling infrastructure corrosion can be found at the CorrDefense Web site at www.corrdefense.org.
Reference list in regards to products and methods for rehabilitation and protective coatings for Wastewater Systems

http://www.nace.org/content.cfm?parentid=1671¤tID=1751

http://www.ttc.latech.edu/publications/other/manhole.availableproducts.pdf

http://www.trenchlessonline.com/index/webapp-stories-action?id=1748

http://msds.carboline.com/website/carbmsds.nsf/(all)/442C8F294F076EE08525705A00434C60/$file/Pla-site+4500+S+FDS+9-09.pdf

• Tim Smith NACE Inspector #30155 281.739.8302 timothy.smith555@yahoo.com
 One of the foremost experts with field QC and technical specification writer in the State of Texas

• Kevin L. Morris Global Director for Sherwin Williams Industrial Coatings
 kevin.l.morris@sherwin.com One of the foremost experts in this Industry

http://www.trenchlessonline.com/index/webapp-stories-action?id=1748

• Eric Dupre’ ACI Certified #01197519 Materials specialist, trainer, and procurement specialist
 956.763.7898 eric@southernrenchless.com www.SouthernTrenchless.com

These are solid industry resources, specifications, and typical product data specs for cementitious structural repair lines and epoxy protective coatings.
<table>
<thead>
<tr>
<th>Rule</th>
<th>Proposed Change</th>
<th>Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>217.32(a)(1)(B) Organic Loadings and Flows</td>
<td>For a facility less than 1.0 mgd, the design flow is the maximum 30-day average flow estimated by multiplying the average annual flow by a factor of at least 1.5.</td>
<td>Permitted flow is defined by the discharge permit. The design flow should be calculated by this method when determining the flow requested in permit.</td>
</tr>
<tr>
<td>217.32(a)(3) Table B.1 Organic Loadings and Flows</td>
<td>Under the "Municipality" and "Subdivision" section, revise "Wastewater Strength" to 235-350</td>
<td>Increase the minimum value due to noticed increases in concentrations across the Board. Plants designed at 200 mg/L are commonly seeing organic capacity issues prior to the next hydraulic expansion.</td>
</tr>
<tr>
<td>217.33 (c)(2)(A) Flow Measurement</td>
<td>A channel approach section to a weir should be straight for at least 20 times the maximum expected head on a weir.</td>
<td>On smaller plants, typically a larger weir to lower head loss and enable compliance. A larger weir limits accuracy of flow measurement. The accuracy added by this rule is lost with the resulting changes on smaller plants. ISCO flow manual uses the word should in their recommendations.</td>
</tr>
<tr>
<td>217.36(c)(3) Emergency Power Revisions</td>
<td>Any offsite lift station must follow the requirements in section 217.63.</td>
<td>The requirements for an offsite lift station in this section differ from the requirements for offsite lift station in 217.63. This section requires generators as the only auxiliary option.</td>
</tr>
<tr>
<td>217.36(c)(3) Emergency Power Revisions</td>
<td>If storage is used in lieu of backup power generators, the report must show the hydraulic grade line of a collection system is such that in no case will wastewater be allowed to bypass the treatment facility for a flow event equal to the longest outage in the power records. Peak flow rates shall be used for outages up to 2 hours. Outages longer than 2 hours shall use peak flow rates for the first 2 hours and average flow rates for all additional outage time.</td>
<td>Peak flows are defined and handled at plant for a maximum of 2 hours. Many of longest outages are in far excess of 2 hours.</td>
</tr>
<tr>
<td>217.36(d)(1)(B) Emergency Power Revisions</td>
<td>Delete subsection (2) under subsection (d)</td>
<td>This subsection is not required with the above proposed rule change. These rules are not consistent with other offsite rules in section 217.63.</td>
</tr>
<tr>
<td>217.58(b)(2)(H) Testing Requirements for Manholes</td>
<td>Will utilize ASTM testing requirements for manholes</td>
<td>Any uncoated manhole cannot meet this requirement.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>217.59(b)(3)</td>
<td>Lift Station Site Requirements</td>
<td>An intruder-resistant fence must use a minimum of a 6.0 feet high chain link, masonry, board fence or other ornamental fence with at least three strands of barbed wire or 8.0 feet high chain link, masonry, board or other ornamental fence. Want to ensure other ornamental, intruder resistant fences may be used. On fences of 8 feet, do not want barbed wire for aesthetic in neighborhoods where detracts from surrounding appearance. Additional height should be equivalent to six foot with 3 strand barb requirement.</td>
</tr>
<tr>
<td>217.59(c)</td>
<td>Flood Protection</td>
<td>Delete the words "and operate during". If not contained within an intruder resistant fence, all operating equipment and valves should be secured and tamper proof, below or above ground. Above ground valves located within the confines of an intruder resistant fence, but not enclosed in a structure, must be chained and locked to prevent unauthorized operation. This requirement is unrealistic along the coast. Enable aboveground lockable enclosure. Clarifying what is allowed by this rule. Paul Wood working on wording, This is CDC wording</td>
</tr>
<tr>
<td>217.60(b)(6)</td>
<td>Lift Station, Wet Well and Dry Well Designs</td>
<td>A check valve must be a swing type valve with an external position indicator. Current rule requires swing levers. Doesn't allow all types of swing valves such as a "Surge Buster"</td>
</tr>
<tr>
<td>217.62(b)(1)(A)</td>
<td>Lift Station Pipes</td>
<td>The retention capacity in a lift station's wet well and incoming gravity pipes must prevent discharges or untreated wastewater at the lift station or any point upstream for a period of time equal to the longest electrical outage recorded during the past 24 months, but not less than 20 minutes. Peak flow rates shall be used for outages up to 2 hours. Outages longer than 2 hours shall use peak flow rates for the first 2 hours and average flow rates for all additional outage time. Match sizing criteria at wastewater treatment plants in prior section, 217.36.</td>
</tr>
</tbody>
</table>
217.63(d)(2)(A) Emergency Provisions for Lift Stations

On Site Generators and Auxiliary Pumps. A lift station may be provided emergency power by on-site, automatic electrical generators or on-site engine driven automatic pump sized to operate the lift station at its firm pumping capacity or at the average daily flow, if the peak flow can be stored in the collection system.

Allow the use of engine driven auxiliary pumps in lieu of generators.

217.63(d)(3)(C) Emergency Provisions for Lift Stations

The size of a portable generator or auxiliary pump must handle the firm pumping capacity of the lift station or the capacity determined in 217.63(d)(2).

Allow the use of portable auxiliary pumps in lieu of portable generators and to allow capacity sizing to be based on average flow rates if the peak rates can be stored in the collection system.

217.63(d)(3)(D) Portable Generators and Pumps

Fuel tanks shall be sized for 24 hours of continuous running.

Allow the use of gravity relief sewers as an overflow prevention design.

217.63(d)(4) Emergency Provisions for Lift Stations

Add a section (4) for Gravity Relief Sewers.

This rule currently limits the usefulness of VFDs. Not require operation during 100-yr. This system is not necessary during flood events.

217.67(a)(3)(A) Force main Velocities

Change "in operation" to "at full speed".

All electrical equipment must be protected from potential flooding from a wet well and flooding.

Current rule requires swing levers. Doesn't allow all types of swing valves such as a "Surge Buster".

217.69(h)(1)(A) Reclaimed Water Facilities

A check valve must be a swing type valve with an external position indicator.

A coarse screen does not do anything with ground solids.

217.69(h)(3)(B) Reclaimed Water Facilities

Add a section to not require a screening device if all flow entering the plant is pumped with grinder pumps.

217.121 Coarse Screening Devices

Add a section to not require a screening device if all flow entering the plant is pumped with grinder pumps.

217.158 Requirements for Clarifiers

The flow velocity in a sludge pipe must be greater than 0.5 feet per second and should be greater than 2.0 feet per second where possible.

This section could also be deleted. On small plants with small clarifiers, this requirement cannot be met with a 4-inch diameter pipe. The 4-inch pipe is a better rule to keep than the velocity rule.

217.152(d)(3) Requirements for Clarifiers

Add a max clarifier diameter for 10' min. SWD and a 12' min SWD section for clarifiers

10' minimum is a poor design value on larger clarifiers. The cutoff point needs to be determined from models/calculations/discussion with vendors.
217.153(c)(2) Requirements for both Aeration Basins and Clarifiers

This should be clarified as only requirement hydraulic overflows to be prevented and that it does not require oversized treatment basins.

If loading criteria for treatment are maintained it makes very oversized basins which makes treatment difficult at under loaded plants.

217.155 (a)(2) Aeration Sizing Equipment

Mechanical and diffusers aeration system must supply the O2R calculated by Equation F.2 located in paragraph (3) of this subsection or use the recommend values presented in Table F.3 in paragraph (3) of this subsection, whichever is greater.

Clarify design oxygen needs but set a conservative minimum for high ammonia plants on O2R requirements.

217.155 (a)(2) Aeration Sizing Equipment

Units on Equation F.2 are incorrect

Need to revise units to be consistent.

Delete the existing section and create a table showing max allowed % Transfer efficiency at depths varying from 7-22 feet for coarse and fine bubble.

The percent value maximums are dependent on depth. Equipment is capable of producing transfer efficiencies far in excess of these values in deeper tanks. Since manufacturers are required to provide testing lab data to support their equipment, these values are protected from the use of different manufacturers.

217.155 (b)(2)(D) Table F.5(iii) Aeration Sizing Equipment

Footnote: Correction factors shall not be used if manufacturer laboratory testing data is provided at the exact diffuser submergence depth of the design.

Actual test data is better since equipment and testing procedures can improve in time.

217.155 (b)(4)(B) Aeration Sizing Equipment

Replace "actual air requirements" with "maximum air requirements".

Designing for the maximum is worst case.

217.155 (b)(5)(A)(ii) Aeration Sizing Equipment

A submerged depth for a diffuser of less than 7.0 feet requires a variance.

Why prohibited? With proper engineer application this can work.

This design reference is different from activated sludge requirements. Requirements should be more generic.

217.157(c)(5)(B) Membrane Bioreactor Systems

Delete this section and replace with a reference to 217.163

No design criteria. This is a crucial item in plants that use air lifts for process flow where measurement is critical.

217.158 (c)(2) Solids Management

Add a section on air lift pump design

Good practice to match the velocities on similar lines.

217.158 (e)(2) Solids Management

The sludge pipe velocity does not match that on clarifier sludge pipes. These values should be consistent

No design criteria. This is a crucial item in plants that use air lifts for process flow where measurement is critical.

217.161(c) Fault Monitoring

Add "clarifier" to list. Add "(Unless airlift pumps are used.)" After the word "failure".