An Overview of the Hydrology-Based Environmental **Flow Regime** (HEFR) Method

	Winter					Spring					Summe	ar	Fall					
		Dec	Jan	Feb	1	Mar	Apr	May		Jun	Jul	Aug		Sep	Oct	Nov		
Subsistence Flows (cfs)	1839				1839						1839		1839					
(013)			1839				2258				1839				1839			
Base Flows	2350					3670					1839		1839					
High Flow Pulses	4910					5700				2110				1839				
	Q:	4903	۷:	57962	Q:	8735	v:	93710	Q:	3630	v:	36786	Q :	2373	v:	22191		
	F:	1	D:	7	F:	1	D:	7	F:	0	D:	6	F:	0	D:	6		
	Q:	10500	v:	148305	Q:	10500	v:	233782	Q:	8850	v:	89449	Q:	3700	v:	52621		
	F:	1	D:	11	F:	1	D:	14	F:	0	D:	9	F:	0	D:	9		
	Q:	14125	v:	352171	Q:	15550) V:	433473	Q:	11825	v:	278202	Q:	8570	v:	90605		
	F:	0	D:	18	F:	0	D:	22	F:	0	D:	17	F:	0	D:	12		
Flows		Volume (V) : 1743452 (ac-ft)							Peak Flow (Q) : 30000 (cfs)									
Overbank		Re	turn	Period	(R)	: 1 (vear	Duration (D) : 49 (days)										

High Flow

Pulse

Characteri

Wet

Average

Subsisten

Hydrologic

Conditions

Presentation to Trinity-San Jacinto BBEST February 11, 2009

Frequency (per season

D - Duration (days)

Q = Peak Flows (cfs

V = Volume (ac-ft)

Purpose

To develop a preliminary environmental flow regime recommendation for a

- Large river basin, with
- Few site-specific studies available, and
- Limited time and budget

SB3 Language:

"Environmental flow regime" means a schedule of flow quantities that reflects seasonal and yearly fluctuations that typically would vary geographically, by specific location in a watershed, and that are shown to be adequate to support a sound ecological environment and to maintain the productivity, extent, and persistence of key aquatic habitats in and along the affected water body.

Generic Characteristics of a Flow Regime Instream Flow Components Base flow, storms, etc. Ft. Worth 1949 **Hydrologic Conditions** • Dry, average, wet, etc. U.S. Drought Monitor February 3, 2009 Valid 7 a.m. EST Texas Drought Conditions (Percent Area) None 00-D4 D1-D4 Current 4.6 95.4 66.8 42.6 19.6 Last Week 62.1 37.5 16.5 11.6 88.4 4.2 01/27/2009 map 3 Months Ago 59.2 40.8 22.4 14.5 6.8 0.0 11/11/2008 map Start of Calendar Year 41.7 58.3 24.5 15.0 9.1 4.2 01/06/2009 map) Start of Water Year 67.2 32.8 20.5 11.0 3.6 0.0 0/07/2008 map One Year Ago 29.4 0.0 82.9 5.9 0.0 2/05/2008 ma Intensity: D0 Abnormally Dry D3 Drought - Extreme D4 Drought - Exceptional D1 Drought - Moderate D2 Drought - Severe

PARKS

WILDLIFE

Available Data

Hydrologic Data

- Available and consistent
- Long period of record (sometimes)

- Has been considered the "master variable" (Poff et al., 1997 as cited in NRC, 2005)
- Relatively easy to work with

HEFR Basics

Uses hydrologic data Computations are rapid Populates a flow regime matrix

(1) Select Flow Gage

- Many to choose from
- SAC working on guidance

 USGS TX "Core" Network documented here:

http://pubs.usgs.gov/wri/wri014155/

Daily Streamflow Conditions

Select a site to retrieve data and station information. Friday, February 06, 2009 13:30ET

http://waterdata.usgs.gov/tx/nwis/rt

(2) Select Period of Record

Varies by gage

Some discussion in Section 4 of Hydrologic Methods document

(3) Separate (parse) Hydrograph using IHA EFC Algorithm

IHA – Environmental Flow Components function

Splits hydrograph into IFCs

EXAS

PARKS 8

WILDLIFE

Terminology Translator

IHA ⇔ vs. ⇒ SB2/TIFP

Environmental Flow ComponentInstream Flow Componentflow
componentsExtreme low flowSubsistence flowflow
High flow pulseBase flowHigh flow pulse
Small floodHigh flow pulseSmall floodOverbank flowLarge floodOverbank flow

IHA EFC Algorithm

Malysis Properties for Brazos @ Richmond 1923-1959(75,10,50,5,1.5,99,10)	
Analysis Title/Options Analysis Years Analysis Days Statistics Environmental Flow Components	
Environmental Flow Component (EFC) analysis computes statistics for five different flow components: extreme low flows, low flows, high flow pulses, small floods, and large floods. If you wish, this analysis may be performed for two separate seasons (see Analysis Days tab). The parameters used to define EECs can be set below.	
r High Flow Pulses	
All flows that exceed 75 free percent of flows for the period will be classified as high flow pulses.	HFPs partly defined
No flows that are below 25 X percent of flows for the period will be classified as high flow pulses.	
Between these two flow levels, a high flow pulse will begin when flow increases by more than 50 1 percent per day percent per day	HFPs partly defined using rate of change
A small flood event is defined as a high flow pulse with a recurrence time of at least: 1.50 1/2 years. A large flood event is defined as a high flow pulse with a recurrence time of at least: 99.00 1/2 years.	Overbanks defined using return intervals
An extreme low flow is defined as a flow in the lowest 10 10 percent of all low flows in the period.	Subsistence defined using magnitude
Save X Cancel ? Help	

(4) Generate Statistical Summaries in Excel

- IHA generates many statistics
 - Not used in HEFR
- Instead, HEFR uses Excel to generate nonparametric statistics of IFCs for four hydrologic conditions
 - Wet, Average, Dry, and Subsistence
- Outputs may include: flow, volume, duration, frequency

Subsistence Flows

Subsistence Flows

Default Recommendation:

MAX(50th percentile of extreme low flow, 7Q2)

- Calculated by month or season
- Percentile can be changed by user
- User enters 7Q2
- Assigned frequency of subsistence flows can be based on historical frequencies, e.g. 2.5% of the time.

Base Flows

Default Recommendation:

Wet Hydrologic Condition =

MAX(75th %-ile of base flows, 7Q2) Average Hydrologic Condition = $MAX(50^{th} \%)$ -ile of base flows, 7Q2) Dry Hydrologic Condition = $MAX(25^{th} \%)$ -ile of base flows, 7Q2)

Calculated by month or season

High Flow Pulses

High Flow Pulses

Default Recommendation:

Wet Hydrologic Condition = 75^{th} %-ile of peak, volume, and duration Average Hydrologic Condition = 50^{th} %-ile of peak, volume, and duration Dry Hydrologic Condition = 25^{th} %-ile of peak, volume, and duration

- "Qualifying" HFPs identified in period of record and frequency recommendations made accordingly
- Calculated by season

Overbank Flows

Overbank Flows

Default Recommendation:

Median of Peak, Duration, and Volume

- Frequency based on historical number of overbank events and expressed as a return interval
- No "hydrologic condition"

Hydrologic Condition

Example frequencies as percent of time:
2.5% for subsistence
22.5% for dry
50% for average
25% for wet

 $\Sigma = 100\%$

Variety of trigger options

Example Results Matrix

Overbank		Return Period (R) : 1 (years)									Duration (D) : 49 (days)							
Flows	Volume (V) : 1743452 (ac-ft)								Peak Flow (Q) : 30000 (cfs)									
	F:	0	D:	18	F:	0	D:	22	F:	0	D:	17	F:	0	D:	12		
High Flow Pulses	Q:	14125	v:	352171	Q:	15550	v:	433473	Q:	11825	v:	278202	Q:	8570	v:	90605		
	F:	1	D:	11	F:	1	D:	14	F:	0	D:	9	F:	0	D:	9		
	Q:	10500	v:	148305	Q:	10500	v:	233782	Q:	8850	v:	89449	Q:	3700	v:	52621		
	F:	1	D:	7	F:	1	D:	7	F:	0	D:	6	F:	0	D:	6		
	Q:	4903	v:	57962	Q:	8735	v:	93710	Q:	3630	v:	36786	Q:	2373	v:	22191		
Base Flows	4910					5700				2110				1839				
	2350					3670				1		1839						
(013)	1839					2258				1	l.		1839					
Subsistence Flows (cfs)	1839					1839				:			1839					
	[Dec	Jan	Feb	Γ	Лаг	Apr	Мау		Jun	Jul	Aug		Sep	Oct	Nov		
	Winter					S			Summer				Fall					

The Fine Print

- All numerical values in this presentation are for example purposes only!
- Many decisions are required
- HEFR has some flexibility, but enhancements will probably be desired
- Results need to be examined from multiple perspectives
- Does not explicitly address freshwater inflows

HEFR Advantages

- Can be directly applied anywhere a sufficient hydrologic period of record is available
- Can be indirectly applied at ungaged locations using a variety of methods
- Efficient
- Flexibility in both IFC assignments and final statistics
- Has the "look and feel" of SB2/SB3/flow regime concepts

HEFR Disadvantages

- Only uses hydrologic data
- Flexibility means decisions and judgment are required
- No track record of applications in Texas
- Will likely require enhancements by BBEST/SAC and contractors to tailor algorithms

Bottom Line

- HEFR can efficiently populate a flow matrix to generate a "first cut"
- Other disciplines are necessary before reaching a "final" recommendation
 - Biology
 - Geomorphology
 - Water Quality

 These disciplines can be used to guide HEFR parameter selection or as direct overlays that replace HEFR-generated flow recommendations

HEFR Workshop

- *IF* BBEST wants to further consider HEFR:
 - Looking for about 2 BBEST members plus interested consultants or other stakeholders
 - February 24, 10 AM
 - Espey Consultants offices in Austin
 - RSVP: dan.opdyke@tpwd.state.tx.us

