Colorado River – Aquatic Habitat Studies

BBEST
March 11, 2009

Bryan Cook, LCRA
Overview

- Major accomplishments and study status
- Instream flow recommendations for the lower Colorado River
- Additional Analyses conducted for the LSWP Aquatic Habitat Study
Accomplishments:
- Collected and analyzed extensive physical and biological data on the lower Colorado River
 - hydrology
 - biology
 - geomorphology

Status:
- Complete
Hydrology Activities: Measuring Flow, Depth, and Velocity
Biology Activities: Sampling Aquatic Life

[Images of people engaged in aquatic sampling activities]
Biology Activities: Sampling Aquatic Life

- Over 13,000 individual fish collected
- Representing 50 species
 - Catfish, bass, sunfish, minnows, carp, gar, etc.
◆ Guild – A guild is a group of organisms that are believed to use the same resources in a similar way.
◆ Habitat Guild – A habitat guild is therefore a group of species that use the same habitat types.
Habitat Guild Development: Depth, Velocity and Substrate

Riffles
- Pmir
- Espe
- Mael
- Cano
- Clut
- Cven
- gravel
- silt
- sand

Shallow Runs
- Pcar
- Psci
- Ipuna
- Lcy
- Ccya
- Gaff
- Plat
- Nvol
- Pvig
- Mtre
- Lmeg
- Lmac
- Msal
- Fnot
- silt

Pools/Backwaters
- Deep Runs
- Rapids
- Deep Pools
- Carp
- Celo
- IpunA
- Poli
- MtreA
- Mcon
- Ccar
- IpunB
- Dep
Habitat Guild Development: Species Included

Riffles
- Percina sciera
- Percina carbonaria
- Ictalurus punctatus (<180 mm)
- Phenacobius mirabilis
- Etheostoma spectabile
- Campostoma anomalum
- Macrhybopsis spp.

Deep Runs
- Pylodictis olivaris
- Ictalurus punctatus (>180 mm)
- Moxostoma congestum
- Micropterus treculii (> 170 mm)
- Carpiodes carpio
- Dorosoma cepedianum

Shallow runs
- Cyprinella lutrensis
- Cyprinella venusta
- Pimephales vigilax
- Notropis volucellus
- Micropterus treculi (<170 mm)

Deep Pools
- Ictiobus bubalus
- Cyprinus carpio

Shallow Pools / Edge / Backwaters
- Micropterus salmoides
- Lepomis megalotis
- Lepomis macrochirus
- Lepomis cyanellus
- Cichlasoma cyanoguttatum
- Gambusia affinis
- Poecilia latipinna
- Fundulus notatus
Habitat Suitability Curve Development

- Habitat suitability curves
 - Developed for each habitat guild

- Technique used
 - Continuous variables – depth & velocity
 - Non Parametric Tolerance Limits
 - Categorical variables - substrate
 - Normalized Frequency Distribution
Example of Depth Habitat Suitability Curve: Riffles
Example of **Velocity** Habitat Suitability Curve: *Riffles*
Example of **Substrate**
Habitat Suitability: *Riffles*

![Graph showing habitat suitability for different substrates: Silt, Sand, Gravel, Cobble, Boulder, Bedrock. Gravel has the highest suitability.](image-url)
Major Accomplishments: Understanding of the Blue Sucker

Specific Biological Accomplishment:
- Greatly expanded the knowledge base on the state listed Threatened species – blue sucker.

We now better understand:
- Habitat requirements
- Migration patterns
- Spawning (timing, habitat, larval success)

Status:
- Complete
Overview of Blue Sucker Studies

Tagged Adult

Antenna

Eggs

Fry
Overview of Blue Sucker Studies

Fish 149.380
2004 - 2007
Tagged: October 19, 2004
Tagging Location: Columbus

Instream Flow Guidelines for the lower Colorado River

Final Report Completed – Now online

Five Instream Flow Recommendation Categories
 - Subsistence, Base, High Flow Pulses, Channel Maintenance, and Overbanking

Recommendations applied at four locations
 - Austin, Bastrop, Columbus, and Wharton
Subsistence Flow

Represents minimum conditions at which
- water quality is maintained at acceptable levels, and
- aquatic habitats resemble those found during extreme conditions in a natural setting
Provides a range of suitable conditions with goal of
- maintaining year to year variability, and
- maintaining the ecological functions associated with this level of variability
High Flow Pulses

Provides a myriad of ecological functions including:

- nutrient and organic matter exchange
- limited channel maintenance
- flushing
- vegetation scouring
- seed dispersal
Geomorphology Activities Example: Bedload Samples at Different Flows

374 cfs

662 cfs

787 cfs

862 cfs

924 cfs
Channel Maintenance

Provides for:
- maintenance of channel capacity
- flushing of fine sediments from gravel bar and riffle habitats
- scouring of accumulated sediments from pool habitats
Inundates low floodplain areas adjacent to the river for:

- lateral floodplain and riparian connectivity
- floodplain maintenance and nutrient deposition
- recruitment of organic material and woody debris
Instream Flow Guidelines

Flows in CFS

<table>
<thead>
<tr>
<th>Channel</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTIN REACH</td>
<td></td>
</tr>
<tr>
<td>Subsistence</td>
<td>50</td>
</tr>
<tr>
<td>BASTROP REACH</td>
<td></td>
</tr>
<tr>
<td>Subsistence</td>
<td>208</td>
<td>274</td>
<td>274</td>
<td>184</td>
<td>275</td>
<td>202</td>
<td>137</td>
<td>123</td>
<td>123</td>
<td>127</td>
<td>180</td>
<td>186</td>
</tr>
<tr>
<td>Base-DRY</td>
<td>313</td>
<td>317</td>
<td>274</td>
<td>287</td>
<td>579</td>
<td>418</td>
<td>347</td>
<td>194</td>
<td>236</td>
<td>245</td>
<td>283</td>
<td>311</td>
</tr>
<tr>
<td>Base-AVERAGE</td>
<td>433</td>
<td>497</td>
<td>497</td>
<td>635</td>
<td>824</td>
<td>733</td>
<td>610</td>
<td>381</td>
<td>423</td>
<td>433</td>
<td>424</td>
<td>450</td>
</tr>
<tr>
<td>COLUMBUS REACH</td>
<td></td>
</tr>
<tr>
<td>Subsistence</td>
<td>340</td>
<td>375</td>
<td>375</td>
<td>299</td>
<td>425</td>
<td>534</td>
<td>342</td>
<td>190</td>
<td>279</td>
<td>190</td>
<td>202</td>
<td>301</td>
</tr>
<tr>
<td>Base-DRY</td>
<td>487</td>
<td>590</td>
<td>525</td>
<td>554</td>
<td>966</td>
<td>967</td>
<td>570</td>
<td>310</td>
<td>405</td>
<td>356</td>
<td>480</td>
<td>464</td>
</tr>
<tr>
<td>Base-AVERAGE</td>
<td>828</td>
<td>895</td>
<td>1,020</td>
<td>977</td>
<td>1,316</td>
<td>1,440</td>
<td>895</td>
<td>516</td>
<td>610</td>
<td>741</td>
<td>755</td>
<td>737</td>
</tr>
<tr>
<td>WHARTON REACH</td>
<td></td>
</tr>
<tr>
<td>Subsistence</td>
<td>315</td>
<td>303</td>
<td>204</td>
<td>270</td>
<td>304</td>
<td>371</td>
<td>212</td>
<td>107</td>
<td>188</td>
<td>147</td>
<td>173</td>
<td>202</td>
</tr>
<tr>
<td>Base-DRY</td>
<td>492</td>
<td>597</td>
<td>531</td>
<td>561</td>
<td>985</td>
<td>984</td>
<td>577</td>
<td>314</td>
<td>410</td>
<td>360</td>
<td>486</td>
<td>470</td>
</tr>
<tr>
<td>Base-AVERAGE</td>
<td>838</td>
<td>906</td>
<td>1,036</td>
<td>1,011</td>
<td>1,397</td>
<td>1,512</td>
<td>906</td>
<td>522</td>
<td>617</td>
<td>749</td>
<td>764</td>
<td>746</td>
</tr>
</tbody>
</table>

COLORADO RIVER DOWNSTREAM OF AUSTIN

PULSE FLOWS
- **Base**
 - Magnitude (2,000 to 3,000 cfs);
 - Frequency (8–10 times annually);
 - Duration (3–5 days)
- **High**
 - Magnitude (@ 8,000 cfs);
 - Frequency (2 Events in 3 year period);
 - Duration (2–3 days)

CHANNEL MAINTENANCE
- Magnitude (27,000 - 30,000 cfs);
- Frequency (1 Event in 3 years);
- Duration (3 days)

OVERBANK
- Magnitude (> 30,000 cfs);
- Frequency and Duration (Naturally Driven)
Additional analyses conducted for the LSWP Aquatic Habitat Study

- **Uncertainty Analysis**
 - Phase 1 study specific assessment conducted in 2008
 - Phase 2 comprehensive integration scheduled for 2009

- **Climate Change Analysis**
 - Qualitative assessment incorporated into Phase 1 uncertainty analysis
 - Additional qualitative assessment scheduled for 2009

- **Project Alternatives Analysis**
 - With versus without project scenarios
 - To be conducted in Spring 2009
Conclusions

- Valuable physical and biological data has been collected throughout the river and thoroughly analyzed.
- Instream flow recommendations have been finalized with the goal to protect the aquatic health of the lower Colorado River.
 - This includes at Wharton where no existing instream flow requirements exist.
- Instream flow recommendations and aquatic habitat models are available to assess project alternatives.
Comments / Questions