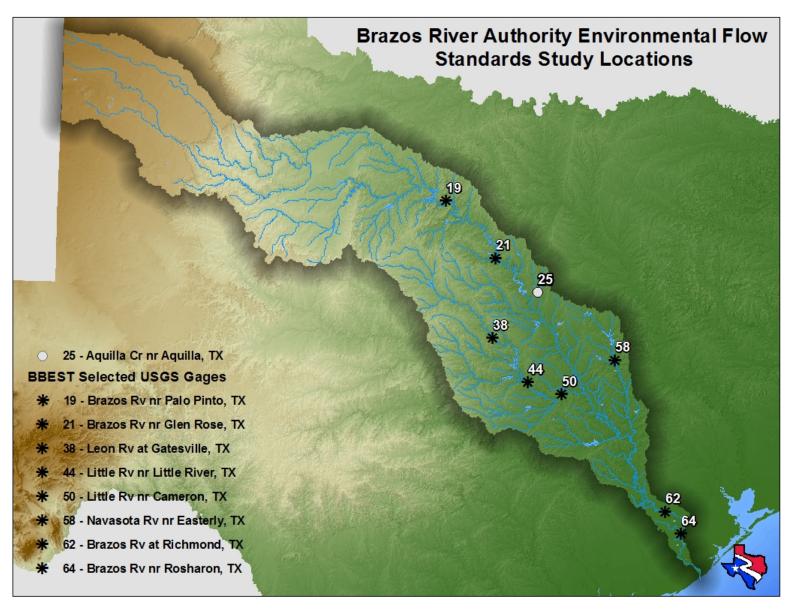


Brazos River Basin Monitoring to Support Environmental Flow Standards

Purpose

- Provide data to support refinement of TCEQ Environmental Flow Standards through SB3 mandated adaptive management mechanisms
- Provide data to Texas Instream Flow Program, as requested
- Voluntary effort


Goal

- Generate baseline data across the range of adopted subsistence and base flows for each location
- Fill knowledge gaps identified during environmental flow standard development

Current Study Locations

Instream Flow Studies (IFS) Performed at Each Location

- Discharge
- Velocity
- Water Quality
 - Temperature, pH, Conductivity,
 Dissolved Oxygen
- Fixed photography
- Habitat mapping
- Channel Surveys

- Macroinvertebrates
- Mussels
- Fish
 - Riparian TreeSurveys
- Sediment

IFS Sampling Frequency

- Biological and Instream Habitat
 - Events scheduled based on flows
 - Goal a total of 15 events at each location, relatively evenly distributed across baseflows
 - Attempt one in spring and one in summer/fall – nature does not always allow
- Riparian and Channel Surveys
 - One per year
 - Goal a total of 5 events per site

- Sediment
 - One initial sample
 - Additional samples collected once/year if a high flow pulse occurs at the site
- Water quality
 - Monthly or quarterly per CRP schedule

Comparability to SWQM Methods - Fish

- IFS reach lengths typically 40x average stream width, up to a maximum of 1 km in large streams
- Sample all mesohabitat types within a reach, plus microhabitats after high-flow pulses
- IFS fish collection effort greater than that required by SWQM

Typical SWQM event:

- Electrofishing: 900 second minimum
- Seine hauls: 6
- Combined Length of Seine Hauls: 60 m

Typical IFS event:

- Electrofishing: 2,650 seconds
- Seine hauls: 13
- Combined Length of Seine Hauls: 185 m

Comparability to SWQM Methods - Macroinvertebrates

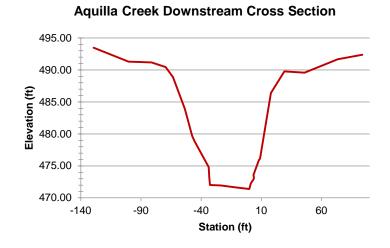
- Using SWQM method for field collection
- IFS counts utilize a greater number of individuals
 - IFS 250 \pm 10%
 - SWQM 175 \pm 20%

Comparability to SWQM Method - Mussels

- Visual survey
- Number collected per time and area searched
- IFS collection equivalent to SWQM methods

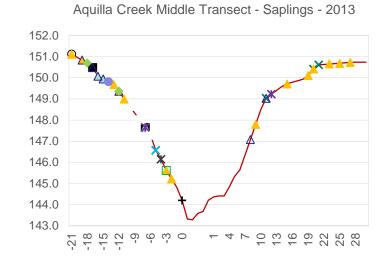
Comparability to SWQM - Sediment

- IFS method more intensive than best professional judgement used in SWQM
- Collection, processing and analysis techniques derived from ASTM C117-04 and ASTM C136-06
- 5 samples per transect, 3 transects per reach
- Size of fine and coarse aggregates quantified
- Particle size distribution graph for each transect



Comparability to SWQM – Channel Survey

- Much more intensive than individual bank angle method in SWQM
- Determine thalweg, bank shape, channel slope and elevation of channel bed



Comparability to SWQM – Riparian Trees

- IFS tree canopy measures use entire densiometer
- Transects perpendicular to stream
 - 3 transects per locations
 - 10 m wide transects
 - Length dependent on site (goal is a minimum 30m)
- Identify all trees, saplings, and seedlings
- Measure DBH on all trees and saplings > 2 inches
- Classify species by USACE Wetland Indicator Category and Stability Rating

Instream Habitat Mapping

Overall

- IFS sampling protocols very similar to ALM protocols
 - Level of effort greater than ALM protocols
- IFS data should be more robust

