2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1401 Colorado River Tidal

Water body type: Tidal Stream						Water bo	dy size:		27	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed <u>C</u></u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Multiple Chronic Toxic Substances in water	1401_01	Entire segment	0	0	0			ID	NA	NA		No
2006 Multiple Dissolved Oxygen grab minimum	1401_01	Entire segment	0	0	0			ID	NA	NA		No
2008 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1401_01	Entire segment	50	40	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab Foxic Substances in sediment	1401_01	Entire segment	50	40	0		4.00	AD	NC	NC		No
2008 Metals	1401_01	Entire segment	3	3	0			ID	NA	NA		No
2008 Organics	1401_01	Entire segment	2	2				ID	NA	NA		No
General Use												
High pH												
2008 рН	1401_01	Entire segment	50	40	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1401_01	Entire segment	50	50	0		6.50	AD	FS	FS		No
Nutrient Screening Levels	1401 01		10	10	0		0.46					
2008 Ammonia	1401_01	Entire segment	40	40	0		0.46	AD	NC	NC		No
2008 Chlorophyll-a	1401_01	Entire segment	40	40	7		21.00	AD	NC	NC		No
2008 Nitrate	1401_01	Entire segment	41	41	17		1.10	AD	CS	CS		No
2008 Orthophosphorus	1401_01	Entire segment	41	41	0		0.46	AD	NC	NC		No
2008 Total Phosphorus	1401_01	Entire segment	41	41	3		0.66	AD	NC	NC		No
Water Temperature												
2008 Temperature	1401_01	Entire segment	50	40	0		35.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1401 Colorado River Tidal

Water body type: Tidal Stre	am					Wate	er body size:		27	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use												
Bacteria Geomean												
2008 E. coli	1401_01	Entire segment	10	10	0	66.52	126.00	SM	FS	FS		No
2008 Enterococcus	1401_01	Entire segment	30	30	1	70.55	35.00	AD	NS	NS	5a	No
2008 Fecal coliform	1401_01	Entire segment	9	9	0	90.98	200.00	SM	NC	NC		No
Bacteria Single Sample												
2008 E. coli	1401_01	Entire segment	10	10	1		394.00	SM	FS	FS		No
2008 Enterococcus	1401_01	Entire segment	30	30	12		89.00	AD	NS	NS	5a	No
2008 Fecal coliform	1401_01	Entire segment	9	9	2		400.00	SM	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwater St	ream					Water	body size:		150	Μ	files	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab	1402_01	Lower end to Wharton County line	41	37	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1402_02	Wharton County line to US 59	45	40	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1402_04	Colorado County line to US 90A	48	44	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1402_06	Cummins Creek to 5 mi above Fayette County line	44	40	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1402_07	Upper 17 miles of segment	42	36	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level	l											
2008 Dissolved Oxygen Grab	1402_01	Lower end to Wharton County line	41	41	0		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab	1402_02	Wharton County line to US 59	45	40	0		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab	1402_04	Colorado County line to US 90A	48	44	0		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab	1402_06	Cummins Creek to 5 mi above Fayette County line	44	40	0		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab Toxic Substances in sediment	1402_07	Upper 17 miles of segment	42	36	0		5.00	AD	NC	NC		No
2008 Metals	1402_01	Lower end to Wharton County line	3	3	0			ID	NA	NA		No
2008 Organics	1402_01	Lower end to Wharton County line	2	2				ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwate	er Stream					Wate	r body size:		150	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General Use												
Dissolved Solids												
2008 Chloride	1402_01	Lower end to Wharton County line	213	213		42.04	100.00	AD	FS	FS		No
2008 Chloride	1402_02	Wharton County line to US 59	213	213		42.04	100.00	AD	FS	FS		No
2008 Chloride	1402_03	US 59 to Colorado County line	213	213		42.04	100.00	AD	FS	FS		No
2008 Chloride	1402_04	Colorado County line to US 90A	213	213		42.04	100.00	AD	FS	FS		No
2008 Chloride	1402_05	US 90A to Cummins Creek	213	213		42.04	100.00	AD	FS	FS		No
2008 Chloride	1402_06	Cummins Creek to 5 mi above Fayette County line	213	213		42.04	100.00	AD	FS	FS		No
2008 Chloride	1402_07	Upper 17 miles of segment	213	213		42.04	100.00	AD	FS	FS		No
2008 Sulfate	1402_01	Lower end to Wharton County line	213	213		35.98	100.00	AD	FS	FS		No
2008 Sulfate	1402_02	Wharton County line to US 59	213	213		35.98	100.00	AD	FS	FS		No
2008 Sulfate	1402_03	US 59 to Colorado County line	213	213		35.98	100.00	AD	FS	FS		No
2008 Sulfate	1402_04	Colorado County line to US 90A	213	213		35.98	100.00	AD	FS	FS		No
2008 Sulfate	1402_05	US 90A to Cummins Creek	213	213		35.98	100.00	AD	FS	FS		No
2008 Sulfate	1402_06	Cummins Creek to 5 mi above Fayette County line	213	213		35.98	100.00	AD	FS	FS		No
2008 Sulfate	1402_07	Upper 17 miles of segment	213	213		35.98	100.00	AD	FS	FS		No
2008 Total Dissolved Solids	1402_01	Lower end to Wharton County line	206	206		320.27	500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1402_02	Wharton County line to US 59	206	206		320.27	500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1402_03	US 59 to Colorado County line	206	206		320.27	500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1402_04	Colorado County line to US 90A	206	206		320.27	500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1402_05	US 90A to Cummins Creek	206	206		320.27	500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1402_06	Cummins Creek to 5 mi above Fayette County line	206	206		320.27	500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1402_07	Upper 17 miles of segment	206	206		320.27	500.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; DA- Access bed represented by the formation in t

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type:	Freshwater Stream					Water	body size:		150	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
High pH												
2008 рН	1402_01	Lower end to Wharton County line	41	37	0		9.00	AD	FS	FS		No
2008 рН	1402_02	Wharton County line to US 59	45	40	0		9.00	AD	FS	FS		No
2008 рН	1402_04	Colorado County line to US 90A	48	44	0		9.00	AD	FS	FS		No
2008 рН	1402_06	Cummins Creek to 5 mi above Fayette County line	44	40	0		9.00	AD	FS	FS		No
2008 рН	1402_07	Upper 17 miles of segment	42	36	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1402_01	Lower end to Wharton County line	41	37	0		6.50	AD	FS	FS		No
2008 рН	1402_02	Wharton County line to US 59	45	45	0		6.50	AD	FS	FS		No
2008 рН	1402_04	Colorado County line to US 90A	48	44	0		6.50	AD	FS	FS		No
2008 рН	1402_06	Cummins Creek to 5 mi above Fayette County line	44	40	0		6.50	AD	FS	FS		No
2008 рН	1402_07	Upper 17 miles of segment	42	36	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwate	er Stream					Wate	r body size:		150	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Genera	ıl Use	_											
Nutrie	ent Screening Levels												
2008	Ammonia	1402_01	Lower end to Wharton County line	41	41	0		0.33	AD	NC	NC		No
2008	Ammonia	1402_02	Wharton County line to US 59	39	39	0		0.33	AD	NC	NC		No
2008	Ammonia	1402_04	Colorado County line to US 90A	45	45	0		0.33	AD	NC	NC		No
2008	Ammonia	1402_06	Cummins Creek to 5 mi above Fayette County line	39	39	0		0.33	AD	NC	NC		Nc
2008	Ammonia	1402_07	Upper 17 miles of segment	41	41	0		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1402_01	Lower end to Wharton County line	40	40	20		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1402_02	Wharton County line to US 59	40	40	12		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1402_04	Colorado County line to US 90A	47	47	10		14.10	AD	NC	NC		N
2008	Chlorophyll-a	1402_06	Cummins Creek to 5 mi above Fayette County line	41	41	3		14.10	AD	NC	NC		N
2008	Chlorophyll-a	1402_07	Upper 17 miles of segment	40	40	2		14.10	AD	NC	NC		N
2008	Nitrate	1402_01	Lower end to Wharton County line	42	42	7		1.95	AD	NC	NC		N
2008	Nitrate	1402_02	Wharton County line to US 59	42	42	9		1.95	AD	NC	NC		N
2008	Nitrate	1402_04	Colorado County line to US 90A	48	48	10		1.95	AD	NC	NC		N
2008	Nitrate	1402_06	Cummins Creek to 5 mi above Fayette County line	42	42	12		1.95	AD	CS	CS		No
2008	Nitrate	1402_07	Upper 17 miles of segment	41	41	14		1.95	AD	CS	CS		N
2008	Orthophosphorus	1402_01	Lower end to Wharton County line	42	42	5		0.37	AD	NC	NC		N
2008	Orthophosphorus	1402_02	Wharton County line to US 59	42	42	5		0.37	AD	NC	NC		N
2008	Orthophosphorus	1402_04	Colorado County line to US 90A	47	47	8		0.37	AD	NC	NC		N
2008	Orthophosphorus	1402_06	Cummins Creek to 5 mi above Fayette County line	42	42	9		0.37	AD	NC	NC		N
2008	Orthophosphorus	1402_07	Upper 17 miles of segment	41	41	13		0.37	AD	CS	CS		N
2008	Total Phosphorus	1402_01	Lower end to Wharton County line	42	42	1		0.69	AD	NC	NC		Ν
2008	Total Phosphorus	1402_02	Wharton County line to US 59	42	42	1		0.69	AD	NC	NC		N

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below La Grange Segment ID: 1402

Water body ty	ype: Freshwate	r Stream					Water	body size:		150	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use		_											
Nutrient Screeni	ing Levels												
2008 Total Pho	osphorus	1402_04	Colorado County line to US 90A	48	48	5		0.69	AD	NC	NC		No
2008 Total Pho	osphorus	1402_06	Cummins Creek to 5 mi above Fayette County line	42	42	3		0.69	AD	NC	NC		No
2008 Total Pho	osphorus	1402_07	Upper 17 miles of segment	41	41	5		0.69	AD	NC	NC		No
Water Temperat	ture												
2008 Temperat	ture	1402_01	Lower end to Wharton County line	43	39	0		35.00	AD	FS	FS		No
2008 Temperat	ture	1402_02	Wharton County line to US 59	50	45	0		35.00	AD	FS	FS		No
2008 Temperat	ture	1402_04	Colorado County line to US 90A	48	44	0		35.00	AD	FS	FS		No
2008 Temperat	ture	1402_05	US 90A to Cummins Creek	1	1	0		35.00	ID	NA	NA		No
2008 Temperat	ture	1402_06	Cummins Creek to 5 mi above Fayette County line	44	40	0		35.00	AD	FS	FS		No
2008 Temperat	ture	1402_07	Upper 17 miles of segment	42	36	0		35.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID: 1402	Colorado	River Below La Grange										
Wat	er body type: Freshwate	er Stream					Water	· body size:		150	М	iles	
YEAF	<u>}</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Public	Water Supply Use	_											
Finish	ed Drinking Water Dissolve	ed Solids average											
2008	Multiple	1402_01	Lower end to Wharton County line						OE	NC	NC		No
2008	Multiple	1402_02	Wharton County line to US 59						OE	NC	NC		No
2008	Multiple	1402_03	US 59 to Colorado County line						OE	NC	NC		No
2008	Multiple	1402_04	Colorado County line to US 90A						OE	NC	NC		No
2008	Multiple	1402_05	US 90A to Cummins Creek						OE	NC	NC		No
2008	Multiple	1402_06	Cummins Creek to 5 mi above Fayette County line						OE	NC	NC		No
2008	Multiple	1402_07	Upper 17 miles of segment						OE	NC	NC		No
Finish	ed Drinking Water MCLs a												
2008	Multiple	1402_01	Lower end to Wharton County line						OE	FS	FS		No
2008	Multiple	1402_02	Wharton County line to US 59						OE	FS	FS		No
2008	Multiple	1402_03	US 59 to Colorado County line						OE	FS	FS		No
2008	Multiple	1402_04	Colorado County line to US 90A						OE	FS	FS		No
2008	Multiple	1402_05	US 90A to Cummins Creek						OE	FS	FS		No
2008	Multiple	1402_06	Cummins Creek to 5 mi above Fayette County line						OE	FS	FS		No
2008	Multiple	1402_07	Upper 17 miles of segment						OE	FS	FS		No
	ed Drinking Water MCLs (
2008	Multiple	1402_01	Lower end to Wharton County line						OE	NC	NC		No
2008	Multiple	1402_02	Wharton County line to US 59						OE	NC	NC		No
2008	Multiple	1402_03	US 59 to Colorado County line						OE	NC	NC		No
2008	Multiple	1402_04	Colorado County line to US 90A						OE	NC	NC		No
2008	Multiple	1402_05	US 90A to Cummins Creek						OE	NC	NC		No
2008	Multiple	1402_06	Cummins Creek to 5 mi above Fayette County line						OE	NC	NC		No
2008	Multiple	1402_07	Upper 17 miles of segment						OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshw	vater Stream					Wate	er body size:		150	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forware
Recreation Use												
Bacteria Geomean												
2008 E. coli	1402_01	Lower end to Wharton County line	40	40	0	32.22	126.00	AD	FS	FS		No
2008 E. coli	1402_02	Wharton County line to US 59	42	42	0	57.77	126.00	AD	FS	FS		No
2008 E. coli	1402_04	Colorado County line to US 90A	48	48	0	59.22	126.00	AD	FS	FS		No
2008 E. coli	1402_06	Cummins Creek to 5 mi above Fayette County line	42	42	0	63.20	126.00	AD	FS	FS		No
2008 E. coli	1402_07	Upper 17 miles of segment	41	41	0	32.34	126.00	AD	FS	FS		No
2008 Fecal coliform	1402_01	Lower end to Wharton County line	11	11	0	49.40	200.00	SM	FS	FS		No
2008 Fecal coliform	1402_02	Wharton County line to US 59	11	11	0	96.96	200.00	SM	FS	FS		No
2008 Fecal coliform	1402_04	Colorado County line to US 90A	11	11	0	58.54	200.00	SM	FS	FS		No
2008 Fecal coliform	1402_06	Cummins Creek to 5 mi above Fayette County line	11	11	0	76.62	200.00	SM	FS	FS		No
2008 Fecal coliform Bacteria Single Sample	1402_07	Upper 17 miles of segment	11	11	0	38.92	200.00	SM	FS	FS		No
2008 E. coli	1402_01	Lower end to Wharton County line	40	40	4		394.00	AD	FS	FS		No
2008 E. coli	1402_02	Wharton County line to US 59	42	42	4		394.00	AD	FS	FS		No
2008 E. coli	1402_04	Colorado County line to US 90A	48	48	4		394.00	AD	FS	FS		No
2008 E. coli	1402_06	Cummins Creek to 5 mi above Fayette County line	42	42	5		394.00	AD	FS	FS		No
2008 E. coli	1402_07	Upper 17 miles of segment	41	41	2		394.00	AD	FS	FS		No
2008 Fecal coliform	1402_01	Lower end to Wharton County line	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1402_02	Wharton County line to US 59	11	11	1		400.00	AD	FS	FS		No
2008 Fecal coliform	1402_04	Colorado County line to US 90A	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1402_06	Cummins Creek to 5 mi above Fayette County line	11	11	1		400.00	SM	FS	FS		No
2008 Fecal coliform	1402_07	Upper 17 miles of segment	11	11	0		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1402A Cummins Creek (unclassified water body)

Water body type: Freshwater St	ream					Water	r body size:		55	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen 24hr average												
2006 Dissolved Oxygen 24hr Avg	1402A_01	From the confluence with the Colorado River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County	6	6	0		6.00	TR	NA	NA		No
Dissolved Oxygen 24hr minimum												
2006 Dissolved Oxygen 24hr Min	1402A_01	From the confluence with the Colorado River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County	6	6	0		4.00	TR	NA	NA		No
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1402A_01	From the confluence with the Colorado River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County	49	46	0		4.00	AD	FS	FS		No
Dissolved Oxygen grab screening leve	l											
2006 Dissolved Oxygen Grab	1402A_01	From the confluence with the Colorado River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County	49	46	1		6.00	AD	NC	NC		No
Fish Community												
2006 Fish Community	1402A_01	From the confluence with the Colorado River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County	3	3		46.60	52.00	AD	NS	NS	4c	No
Habitat												
2006 Habitat	1402A_01	From the confluence with the Colorado River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County	2	2		22.50	26.00	AD	CS	CS		No
Macrobenthic Community												
2006 Macrobenthic Community	1402A_01	From the confluence with the Colorado River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County	3	3		31.00	36.00	AD	NS	NS	4c	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of supp

Creek at FM 1291 in Colorado County

Segment ID: 1402A **Cummins Creek (unclassified water body)** Water body type: Freshwater Stream Water body size: 55 Miles # of # Mean of 2008 Imp # of Dataset Integ Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward Aquatic Life Use **Toxic Substances in sediment** 2006 Metals From the confluence with the Colorado 0 ID 1402A 01 1 NA NA No River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County General Use Nutrient Screening Levels 2006 Ammonia 1402A 01 From the confluence with the Colorado 38 38 0 0.33 AD NC NC No River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County 1402A 01 From the confluence with the Colorado 40 40 0 AD NC NC 2006 Chlorophyll-a 14.10 No River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County From the confluence with the Colorado 39 2006 Nitrate 1402A 01 39 0 195 AD NC NC No River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County 1402A 01 From the confluence with the Colorado 2006 36 36 0 0.37 NC Orthophosphorus AD NC No River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County 1402A 01 From the confluence with the Colorado 0 NC 2006 **Total Phosphorus** 36 36 0.69 AD NC No River upstream to the confluence of Boggy

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Creek at FM 1291 in Colorado County

Segment ID: 1402A **Cummins Creek (unclassified water body)** Water body type: Freshwater Stream Water body size: 55 Miles # of # Mean of 2008 # of Dataset Integ AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward **Recreation** Use **Bacteria Geomean** 2006 E. coli From the confluence with the Colorado 40 40 42.00 FS FS 1402A 01 126.00 AD River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County 1402A 01 From the confluence with the Colorado 14 14 26.00 2006 Fecal coliform 200.00 SM FS FS River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County **Bacteria Single Sample** 1402A 01 From the confluence with the Colorado 2006 E. coli 40 40 5 394.00 AD FS FS River upstream to the confluence of Boggy Creek at FM 1291 in Colorado County 1402A 01 From the confluence with the Colorado 2006 Fecal coliform 14 14 0 400.00 SM FS FS River upstream to the confluence of Boggy

Imp

Carry

No

No

No

No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1402CBuckners Creek (unclassified water body)

Water body type: Freshwater Stre	am					Water	body size:		17	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen 24hr average												
2006 Dissolved Oxygen 24hr Avg	1402C_01	Entire water body	2	2	1		5.00	ID	NA	NA		No
Dissolved Oxygen 24hr minimum												
2006 Dissolved Oxygen 24hr Min	1402C_01	Entire water body	2	2	0		3.00	ID	NA	NA		No
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1402C_01	Entire water body	20	20	2		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level	14020 01	Partice starts 1	20	20	7		5.00		CC	00		N
2006 Dissolved Oxygen Grab	1402C_01	Entire water body	20	20	/		5.00	AD	CS	CS		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1402C_01	Entire water body	23	23	I		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1402C_01	Entire water body	23	23	14		14.10	AD	CS	CS		No
2006 Nitrate	1402C_01	Entire water body	23	23	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1402C_01	Entire water body	22	22	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1402C_01	Entire water body	22	22	0		0.69	AD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1402C_01	Entire water body	16	16		41.00	126.00	AD	FS	FS		No
2006 Fecal coliform	1402C_01	Entire water body	12	12		43.00	200.00	SM	FS	FS		No
Bacteria Single Sample												
2006 E. coli	1402C_01	Entire water body	16	16	4		394.00	AD	FS	FS		No
2006 Fecal coliform	1402C_01	Entire water body	12	12	2		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1402G Fayette Reservoir (unclassified water body)

Wate	r body type: Reservoir						Water	<u>body size:</u>		2,425	А	cres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
quatio	c Life Use												
Dissolv	ed Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1402G_01	Near discharge canal	30	30	0		3.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1402G_02	Near intake canal	30	30	0		3.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1402G_03	Mid-lake near dam	30	30	0		3.00	AD	FS	FS		No
	ed Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1402G_01	Near discharge canal	30	30	2		5.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1402G_02	Near intake canal	30	30	0		5.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1402G_03	Mid-lake near dam	30	30	1		5.00	AD	NC	NC		No
lenera	l Use												
Nutrie	nt Screening Levels												
2006	Ammonia	1402G_01	Near discharge canal	29	29	0		0.11	AD	NC	NC		No
2006	Ammonia	1402G_02	Near intake canal	28	28	0		0.11	AD	NC	NC		No
2006	Ammonia	1402G_03	Mid-lake near dam	28	28	1		0.11	AD	NC	NC		No
2006	Chlorophyll-a	1402G_01	Near discharge canal	30	30	4		26.70	AD	NC	NC		No
2006	Chlorophyll-a	1402G_02	Near intake canal	30	30	9		26.70	AD	CS	CS		No
2006	Chlorophyll-a	1402G_03	Mid-lake near dam	30	30	12		26.70	AD	CS	CS		No
2006	Nitrate	1402G_01	Near discharge canal	30	30	2		0.37	AD	NC	NC		No
2006	Nitrate	1402G_02	Near intake canal	29	29	0		0.37	AD	NC	NC		No
2006	Nitrate	1402G_03	Mid-lake near dam	29	29	0		0.37	AD	NC	NC		No
2006	Orthophosphorus	1402G_01	Near discharge canal	30	30	0		0.05	AD	NC	NC		No
2006	Orthophosphorus	1402G_02	Near intake canal	28	28	0		0.05	AD	NC	NC		No
2006	Orthophosphorus	1402G_03	Mid-lake near dam	28	28	0		0.05	AD	NC	NC		No
2006	Total Phosphorus	1402G_01	Near discharge canal	29	29	1		0.19	AD	NC	NC		No
2006	Total Phosphorus		Near intake canal	29	29	0		0.19	AD	NC	NC		No
2006	Total Phosphorus	1402G 03		29	29	0		0.19	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1402G Fayette Reservoir (unclassified water body)

Water body type: Reservoir						Water	body size:		2,425	A	eres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> Forwar	
Recreation Use												
Bacteria Geomean												
2006 E. coli	1402G_01	Near discharge canal	30	30		3.00	126.00	AD	FS	FS	No	
2006 E. coli	1402G_02	2 Near intake canal	30	30		1.00	126.00	AD	FS	FS	No	
2006 E. coli	1402G_03	Mid-lake near dam	30	30		1.00	126.00	AD	FS	FS	No	
2006 Fecal coliform	1402G_01	Near discharge canal	10	10		4.00	200.00	SM	FS	FS	No	
2006 Fecal coliform	1402G_02	2 Near intake canal	10	10		1.00	200.00	SM	FS	FS	No	
2006 Fecal coliform	1402G_03	Mid-lake near dam	10	10		2.00	200.00	SM	FS	FS	No	
Bacteria Single Sample												
2006 E. coli	1402G_01	Near discharge canal	30	30	0		394.00	AD	FS	FS	No	
2006 E. coli	1402G_02	Near intake canal	30	30	0		394.00	AD	FS	FS	No	
2006 E. coli	1402G_03	Mid-lake near dam	30	30	0		394.00	AD	FS	FS	No	
2006 Fecal coliform	1402G_01	Near discharge canal	10	10	0		400.00	SM	FS	FS	No	
2006 Fecal coliform	1402G_02	Near intake canal	10	10	0		400.00	SM	FS	FS	No	
2006 Fecal coliform	1402G_03	Mid-lake near dam	10	10	0		400.00	SM	FS	FS	No	

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Skull Creek (unclassified water body) Segment ID: 1402H

Water body type: Freshwater Stre	am					Wate	er body size:		30	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquatic Life Use												
Dissolved Oxygen 24hr average												
2008 Dissolved Oxygen 24hr Avg Dissolved Oxygen 24hr minimum	1402H_01	Entire water body	5	5	4		5.00	LD	NS	NS	5b	No
2008 Dissolved Oxygen 24hr Min Dissolved Oxygen grab minimum	1402H_01	Entire water body	5	5	2		3.00	LD	CN	CN		No
2008 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1402H_01	Entire water body	25	25	0		3.00	SM	NA	NA		Nc
2008 Dissolved Oxygen Grab Fish Community	1402H_01	Entire water body	25	25	9		5.00	SM	NA	NA		Nc
2008 Fish Community Habitat	1402H_01	Entire water body	4	4		48.30	42.00	AD	FS	FS		No
2008 Habitat Macrobenthic Community	1402H_01	Entire water body	4	4		23.50	20.00	AD	NC	NC		No
2008 Macrobenthic Community General Use	1402H_01	Entire water body	4	4		31.00	29.00	AD	FS	FS		N
Nutrient Screening Levels												
2008 Ammonia	1402H_01	Entire water body	26	26	0		0.33	AD	NC	NC		No
2008 Chlorophyll-a	1402H_01	Entire water body	25	25	5		14.10	AD	NC	NC		No
2008 Nitrate	1402H_01	Entire water body	17	17	0		1.95	AD	NC	NC		No
2008 Orthophosphorus	1402H_01	Entire water body	26	26	0		0.37	AD	NC	NC		No
2008 Total Phosphorus	1402H_01	Entire water body	26	26	0		0.69	AD	NC	NC		N
Recreation Use												
Bacteria Geomean												
2008 E. coli	1402H_01	Entire water body	22	22	0	99.34	126.00	AD	FS	FS		No
2008 Fecal coliform Bacteria Single Sample	1402H_01	Entire water body	11	11	1	208.51	200.00	SM	NA	NA		N
2008 E. coli	1402H_01	Entire water body	22	22	4		394.00	AD	FS	FS		Ν
2008 Fecal coliform	1402H_01	Entire water body	11	11	3		400.00	SM	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403 Lake Austin Water body type: Reservoir Water body size: 1.830 Acres # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) YEAR Samples Exc Assessed Oualifier Supp Supp Category Forward Assessed Criteria Aquatic Life Use Acute Toxic Substances in water 32.06 FS FS 2006 Copper 1403 01 From Tom Miller dam to Loop 360 bridge 10 10 0 AD No 2006 Copper 1403 02 Loop 360 bridge to Quinlan Park 8 8 0 32.06 LD NC NC No Quinlan Park upstream to Mansfield Dam 0 NC 2006 Copper 1403 03 4 4 32.06 LD NC No **Chronic Toxic Substances in water** Copper 1403 01 From Tom Miller dam to Loop 360 bridge 10 10 2.61 20.30 AD FS FS 2006 No 2006 Copper 1403 02 Loop 360 bridge to Quinlan Park 8 8 2.36 20.30 LD NC NC No 2.90 2006 Copper 1403 03 Quinlan Park upstream to Mansfield Dam 4 4 20.30 NC NC LD No **Dissolved Oxygen 24hr average** Dissolved Oxygen 24hr Avg 1403 03 Quinlan Park upstream to Mansfield Dam 34 17 NS 2008 34 5.00 AD NS 4c No **Dissolved Oxygen 24hr minimum** Dissolved Oxygen 24hr Min 1403 03 Quinlan Park upstream to Mansfield Dam 34 34 11 3.00 AD NS NS 4c No 2008 **Dissolved Oxygen grab minimum** 2008 Dissolved Oxygen Grab 1403 01 From Tom Miller dam to Loop 360 bridge 355 65 0 3.00 AD FS FS No 2008 Dissolved Oxygen Grab 1403 02 Loop 360 bridge to Quinlan Park 441 71 0 3.00 AD FS FS No SM 2008 Dissolved Oxygen Grab 1403 03 Quinlan Park upstream to Mansfield Dam 78 47 7 NS 3.00 NS No Dissolved Oxygen grab screening level 2008 Dissolved Oxygen Grab 1403 01 From Tom Miller dam to Loop 360 bridge 355 65 2 5.00 AD NC NC No 2008 Dissolved Oxygen Grab 1403 02 Loop 360 bridge to Quinlan Park 441 71 5 5.00 NC NC AD No 2008 Dissolved Oxygen Grab 1403 03 Quinlan Park upstream to Mansfield Dam 78 47 18 5.00 SM CS CS No **Toxic Substances in sediment** 2008 Manganese 1403 01 From Tom Miller dam to Loop 360 bridge 7 7 5 1.100.00 LD CS CS No 2008 Metals 1403 01 From Tom Miller dam to Loop 360 bridge 10 10 0 NC AD NC No NC 2008 Metals 1403 02 Loop 360 bridge to Quinlan Park 8 8 0 NC LD No 2008 1403 01 From Tom Miller dam to Loop 360 bridge 5 5 0 NC Organics LD NC No Loop 360 bridge to Quinlan Park 2008 Organics 1403 02 4 4 0 LD NC NC No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403 Lake Austin Water body type: Reservoir Water body size: 1,830 Acres <u># of</u> # # of Mean of Dataset 2008 Integ Imp Carry AU ID Assessment Area (AU) YEAR Assessed <u>Qualifier</u> Samples 5 1 Assessed Exc Criteria <u>Supp</u> <u>Supp</u> Category Forward Fish Consumption Use HH Bioaccumulative Toxics in water 43 2006 1403_01 From Tom Miller dam to Loop 360 bridge 43 TR NA No Multiple NA 2006 Multiple 1403 03 Quinlan Park upstream to Mansfield Dam 1 1 ID NA NA No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403 Lake Austin Water body type: Reservoir Water body size: 1,830 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed <u>Supp</u> <u>Supp</u> Category Forward Criteria General Use **Dissolved Solids** FS 2008 From Tom Miller dam to Loop 360 bridge 150 150 34.02 100.00 FS Chloride 1403 01 AD No FS 2008 Chloride 1403 02 Loop 360 bridge to Quinlan Park 150 150 34.02 100.00 AD FS No 1403 03 Chloride Quinlan Park upstream to Mansfield Dam 150 150 34.02 100.00 FS 2008 AD FS No Sulfate 1403 01 From Tom Miller dam to Loop 360 bridge 150 150 75.00 FS 2008 23.20 AD FS No FS 2008 Sulfate 1403 02 Loop 360 bridge to Quinlan Park 150 150 23.20 75.00 AD FS No FS 2008 Sulfate 1403 03 Quinlan Park upstream to Mansfield Dam 150 150 23.20 75.00 AD FS No From Tom Miller dam to Loop 360 bridge FS 2008 Total Dissolved Solids 1403 01 196 196 263.13 400.00 AD FS No FS 2008 Total Dissolved Solids 1403 02 Loop 360 bridge to Quinlan Park 196 196 263.13 400.00 AD FS No 196 263.13 FS 2008 Total Dissolved Solids 1403 03 Quinlan Park upstream to Mansfield Dam 196 400.00 AD FS No High pH 2008 pН 1403 01 From Tom Miller dam to Loop 360 bridge 371 66 0 9.00 AD FS FS No 2008 1403 02 Loop 360 bridge to Quinlan Park 461 73 0 FS FS pН 9.00 AD No 2008 pН 1403 03 Quinlan Park upstream to Mansfield Dam 79 48 0 FS 9.00 AD FS No Low pH From Tom Miller dam to Loop 360 bridge FS 2008 1403 01 371 66 0 6.50 AD FS No pН 2008 pН 1403 02 Loop 360 bridge to Quinlan Park 461 73 0 6.50 FS FS No AD 2008 1403 03 Quinlan Park upstream to Mansfield Dam 79 48 0 6.50 AD FS FS pН No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403 Lake Austin Water body type: Reservoir Water body size: 1,830 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Exc Assessed Supp Supp Category Forward Assessed Criteria General Use Nutrient Screening Levels 1403_01 NC 2008 From Tom Miller dam to Loop 360 bridge 66 0 NC Ammonia 66 0.11 AD No NC 2008 Ammonia 1403 02 Loop 360 bridge to Quinlan Park 86 86 0 0.11 AD NC No Quinlan Park upstream to Mansfield Dam 47 47 2 NC 2008 Ammonia 1403 03 0.11 AD NC No 1403 01 From Tom Miller dam to Loop 360 bridge 0 NC NC 2008 Chlorophyll-a 57 57 26.70 AD No NC 2008 Chlorophyll-a 1403 02 Loop 360 bridge to Quinlan Park 63 63 0 26.70 AD NC No Quinlan Park upstream to Mansfield Dam NC 2008 Chlorophyll-a 1403 03 43 43 0 26.70 AD NC No NC 2008 Nitrate 1403 01 From Tom Miller dam to Loop 360 bridge 70 70 5 0.37 AD NC No NC Loop 360 bridge to Quinlan Park 7 2008 Nitrate 1403 02 98 98 0.37 AD NC No 1403 03 47 NC NC 2008 Nitrate Quinlan Park upstream to Mansfield Dam 47 6 0.37 AD No 2008 Orthophosphorus 1403 01 From Tom Miller dam to Loop 360 bridge 68 68 0 0.05 AD NC NC No 2008 Orthophosphorus 1403 02 Loop 360 bridge to Quinlan Park 91 91 0 0.05 AD NC NC No Orthophosphorus 1403 03 Quinlan Park upstream to Mansfield Dam 42 42 0.05 AD NC NC 2008 0 No 65 0.20 NC 2008 **Total Phosphorus** 1403 01 From Tom Miller dam to Loop 360 bridge 65 0 AD NC No Loop 360 bridge to Quinlan Park 95 95 2 0.20 NC NC 2008 **Total Phosphorus** 1403 02 AD No Quinlan Park upstream to Mansfield Dam 0.20 NC 2008 **Total Phosphorus** 1403 03 46 46 AD NC No Water Temperature 2008 Temperature 1403 01 From Tom Miller dam to Loop 360 bridge 373 68 0 32.20 AD FS FS No FS 2008 1403 02 Loop 360 bridge to Quinlan Park 73 0 32.20 FS Temperature 461 AD No FS Quinlan Park upstream to Mansfield Dam 79 48 FS 2008 Temperature 1403 03 0 32.20 AD No

2008 Texas Water Quali	ty Inventory	- Basin Assessment Data by Segme	ent (Mar	ch 19, 2	008)	I.					
NA- Not assessed; NC- No concern; Dataset Qua	lifiers: AD- Adequate Da	support) identifiers: FS- Fully Supporting; CN- Concern for Near non- ata; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Repre- ate; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairn	sentative; SR- Not	Spatially Repre	sentative; SM	A- Superceded by ano	· · · · ·				
Segment ID: 1403	Lake Au	stin									
Water body type: Reservoir						Wate	r body size:		1,830	A	cres
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carry</u> <u>Category</u> Forward
Public Water Supply Use	_										
Finished Drinking Water Dissolve	d Solids average										
2008 Multiple	1403_01	From Tom Miller dam to Loop 360 bridge						OE	NC	NC	No
2008 Multiple	1403_02	Loop 360 bridge to Quinlan Park						OE	NC	NC	No
2008 Multiple	1403_03	Quinlan Park upstream to Mansfield Dam						OE	NC	NC	No
Finished Drinking Water MCLs a		nces running average									
2008 Multiple	1403_01	From Tom Miller dam to Loop 360 bridge						OE	FS	FS	No
2008 Multiple	1403_02	Loop 360 bridge to Quinlan Park						OE	FS	FS	No
2008 Multiple	1403_03	Quinlan Park upstream to Mansfield Dam						OE	FS	FS	No
Finished Drinking Water MCLs C											
2008 Multiple	1403_01	From Tom Miller dam to Loop 360 bridge						OE	NC	NC	No
2008 Multiple	1403_02	Loop 360 bridge to Quinlan Park						OE	NC	NC	No
2008 Multiple	1403_03	Quinlan Park upstream to Mansfield Dam						OE	NC	NC	No
Surface Water HH criteria for PW	8										
2006 Multiple	1403_01	From Tom Miller dam to Loop 360 bridge	43	43				TR	NA	NA	No
2006 Multiple	1403_03	Quinlan Park upstream to Mansfield Dam	1	1				ID	NA	NA	No
Surface Water Toxic Substances a	8		41	41		1.20	15.00	TD	N T 4	NT 4	N
2006 MTBE	1403_01	From Tom Miller dam to Loop 360 bridge	41	41		1.20	15.00	TR	NA	NA	No
2006 MTBE	1403_03	Quinlan Park upstream to Mansfield Dam	1	1		1.00	15.00	ID	NA	NA	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403 Lake Austin Water body type: Reservoir Water body size: 1,830 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> <u>Supp</u> Category Forward **Recreation Use Bacteria Geomean** 1403_01 FS 2008 From Tom Miller dam to Loop 360 bridge 48 0 4.04 FS E. coli 48 126.00 AD No FS 2008 E. coli 1403 02 Loop 360 bridge to Quinlan Park 65 65 0 5.66 126.00 AD FS No 1403 03 Quinlan Park upstream to Mansfield Dam 39 39 0 5.58 FS 2008 E. coli 126.00 AD FS No 1403 01 From Tom Miller dam to Loop 360 bridge 19 19 0 8.75 SM FS 2008 Fecal coliform 200.00 FS No FS 2008 Fecal coliform 1403 02 Loop 360 bridge to Quinlan Park 12 12 0 8.54 200.00 SM FS No FS 2008 Fecal coliform 1403 03 Quinlan Park upstream to Mansfield Dam 14 14 0 21.53 200.00 SM FS No **Bacteria Single Sample** 2008 E. coli 1403 01 From Tom Miller dam to Loop 360 bridge 48 48 0 394.00 AD FS FS No 2008 E. coli 1403 02 Loop 360 bridge to Quinlan Park 65 394.00 FS FS 65 0 AD No 1403 03 Quinlan Park upstream to Mansfield Dam 39 39 0 394.00 FS FS 2008 E. coli AD No 2008 Fecal coliform 1403 01 From Tom Miller dam to Loop 360 bridge 19 19 0 400.00 SM FS FS No 2008 1403 02 Loop 360 bridge to Quinlan Park 12 12 0 400.00 SM FS FS No Fecal coliform 1403 03 Quinlan Park upstream to Mansfield Dam 14 14 2 400.00 SM FS No 2008 Fecal coliform FS

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403ABull Creek (unclassified water body)

Wat	er body type: Freshwater St	ream					Water	· body size:		10	Μ	iles	
YEAF	2	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquat	ic Life Use												
Dissol	ved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	30	30	0		3.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	15	15	1		3.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	20	20	1		3.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	15	15	0		3.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	15	15	0		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening level	l											
2006	Dissolved Oxygen Grab	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	30	30	0		5.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	15	15	1		5.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	20	20	1		5.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	15	15	0		5.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	15	15	2		5.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403ABull Creek (unclassified water body)

Water body type: Freshwater	Stream					Water	body size:		10	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Macrobenthic Community												
2006 Macrobenthic Community	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove						ID	NA	NS	5c	Yes
Toxic Substances in sediment												
2006 Chrysene	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	1	1	1		1,290.00	ID	NA	NA		No
2006 Metals	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	1	1	0			ID	NA	NA		No
2006 Organics	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	1	1	0			ID	NA	NA		No
2006 Pyrene	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	1	1	1		1,520.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403ABull Creek (unclassified water body)

	Water body type:	Freshwater Stream					Wa	ter body size:		10	М	iles	
T				<u># of</u>	<u>#</u>	<u># of</u>	Mean of		Dataset	<u>2008</u>	Integ	Imp	<u>Carry</u>
	<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	Samples	Assessed	Exc	Assessed	<u>Criteria</u>	<u>Qualifier</u>	<u>Supp</u>	<u>Supp</u>	Category	<u>Forward</u>

General Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403ABull Creek (unclassified water body)

Wate	er body type: Freshwate	er Stream					Water	r body size:		10	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use	_											
Nutrie	ent Screening Levels												
2006	Ammonia	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	27	27	0		0.33	AD	NC	NC		No
2006	Ammonia	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	14	14	0		0.33	AD	NC	NC		No
2006	Ammonia	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	15	15	0		0.33	AD	NC	NC		No
2006	Ammonia	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	14	14	0		0.33	AD	NC	NC		No
2006	Ammonia	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	13	13	0		0.33	AD	NC	NC		No
2006	Chlorophyll-a	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	29	29	0		14.10	AD	NC	NC		No
2006	Chlorophyll-a	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	0	0				ID	NA	NA		No
2006	Chlorophyll-a	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	0	0	0		14.10	ID	NA	NA		No
2006	Chlorophyll-a	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	0	0			14.10	ID	NA	NA		No
2006	Nitrate	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	30	30	0		1.95	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403A Bull Creek (unclassified water body)

Water body type: Fi	reshwater Stream					Wate	r body size:		10	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Nutrient Screening Level 2006 Nitrate	ls 1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	14	14	0		1.95	AD	NC	NC		No
2006 Nitrate	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	14	14	0		1.95	AD	NC	NC		No
2006 Nitrate	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	13	13	0		1.95	AD	NC	NC		No
2006 Nitrate	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	13	13	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	28	28	0		0.37	AD	NC	NC		No
2006 Orthophosphorus	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	14	14	0		0.37	AD	NC	NC		No
2006 Orthophosphorus	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	14	14	0		0.37	AD	NC	NC		No
2006 Orthophosphorus	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	13	13	0		0.37	AD	NC	NC		No
2006 Orthophosphorus	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	13	13	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	28	28	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SR- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403ABull Creek (unclassified water body)

Water body type: Freshwate	er Stream					Water	body size:		10	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Nutrient Screening Levels												
2006 Total Phosphorus	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	14	14	0		0.69	AD	NC	NC		No
2006 Total Phosphorus	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	10	10	0		0.69	AD	NC	NC		No
2006 Total Phosphorus	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	9	9	0		0.69	LD	NC	NC		No
2006 Total Phosphorus	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	10	10	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SR- Supporting; CM- Support and the support of the support o

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403A **Bull Creek (unclassified water body)** Water body type: Freshwater Stream Water body size: 10 Miles # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) YEAR Samples Assessed Exc Assessed Oualifier Supp Supp Category Forward Criteria **Recreation Use Bacteria Geomean** 30 30 87.00 FS 2006 E. coli 1403A 01 From the confluence with Lake Austin to the 126.00 AD FS No confluence of West Bull Creek 1403A 02 From the confluence of W Bull Creek 4 71.00 126.00 TR NA NA 2006 E. coli 4 No upstream to the Loop 360 crossing near Lakewood Dr. 1403A 03 From the Loop 360 crossing near Lakewood 2006 E. coli 13 8 107.00 126.00 LD NC NC No Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr. 1403A 04 From Spicewood Springs Rd. crossing near 27.00 2006 E. coli 4 4 126.00 TR NA NA No Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove 1403A 05 From the Spicewood Springs Rd. crossing 37.00 2006 E. coli 4 4 126.00 TR NA NA No near the Oak Grove cemetery upstream to the end of segment 2006 Fecal coliform 1403A 01 From the confluence with Lake Austin to the 11 11 149.00 200.00 SM FS FS No confluence of West Bull Creek 10 2006 Fecal coliform 1403A 02 From the confluence of W Bull Creek 10 1 63.00 200.00 AD FS FS No upstream to the Loop 360 crossing near Lakewood Dr. 2006 Fecal coliform 1403A 03 From the Loop 360 crossing near Lakewood 20 15 121.00 200.00 AD FS FS No Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr. 2006 Fecal coliform 1403A 04 From Spicewood Springs Rd. crossing near 10 10 43.00 200.00 AD FS FS No Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove 1403A 05 From the Spicewood Springs Rd. crossing 10 10 13.00 FS 2006 Fecal coliform 200.00 AD FS No near the Oak Grove cemetery upstream to the end of segment

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403ABull Creek (unclassified water body)

Water body type: Freshwa	ter Stream					Water	body size:		10	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Recreation Use												
Bacteria Single Sample												
2006 E. coli	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	30	30	3		394.00	AD	FS	FS		No
2006 E. coli	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	4	4	0		394.00	TR	NA	NA		No
2006 E. coli	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	13	8	0			LD	NC	NC		No
2006 E. coli	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	4	4	0		394.00	TR	NA	NA		No
2006 E. coli	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	4	4	0		394.00	TR	NA	NA		No
2006 Fecal coliform	1403A_01	From the confluence with Lake Austin to the confluence of West Bull Creek	11	11	3		400.00	SM	FS	FS		No
2006 Fecal coliform	1403A_02	From the confluence of W Bull Creek upstream to the Loop 360 crossing near Lakewood Dr.	10	10	1		400.00	AD	FS	FS		No
2006 Fecal coliform	1403A_03	From the Loop 360 crossing near Lakewood Dr. upstream to the Spicewood Springs Rd crossing near Yaupon Dr.	20	15	1		400.00	AD	FS	FS		No
2006 Fecal coliform	1403A_04	From Spicewood Springs Rd. crossing near Yaupon Dr. upstream to the Spicewood Springs Dr. crossing near Oak Grove	10	10	0		400.00	AD	FS	FS		No
2006 Fecal coliform	1403A_05	From the Spicewood Springs Rd. crossing near the Oak Grove cemetery upstream to the end of segment	10	10	0		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403BWest Bull Creek (unclassified water body)

Water body type: Freshwater St	ream					Wate	er body size:		5	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403B_01	Entire water body	28	28	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level	l											
2006 Dissolved Oxygen Grab	1403B_01	Entire water body	28	28	1		5.00	AD	NC	NC		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1403B_01	Entire water body	29	29	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1403B_01	Entire water body	0	0	0		14.10	ID	NA	NA		No
2006 Nitrate	1403B_01	Entire water body	27	27	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1403B_01	Entire water body	27	27	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1403B_01	Entire water body	19	19	0		0.69	AD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1403B_01	Entire water body	8	8		138.00	126.00	TR	NA	NA		No
2006 Fecal coliform	1403B_01	Entire water body	20	20		200.00	104.00	AD	FS	FS		No
Bacteria Single Sample	_	·										
2006 E. coli	1403B_01	Entire water body	8	8	2		394.00	TR	NA	NA		No
2006 Fecal coliform	1403B_01	Entire water body	20	20	1		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403DBarrow Preserve Tributary (unclassified water body)

Water body type: Freshwater Stre	am					Water	body size:		1	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab	1403D_01	Entire water body	12	12	0		1.50	TR	NA	NA		No
Dissolved Oxygen grab screening level												
2008 Dissolved Oxygen Grab	1403D_01	Entire water body	12	12	0		2.00	TR	NA	NA		No
General Use												
Nutrient Screening Levels												
2008 Ammonia	1403D_01	Entire water body	12	12	0		0.33	JQ	NC	NC		No
2008 Nitrate	1403D_01	Entire water body	11	11	11		1.95	JQ	CS	CS		No
2008 Total Phosphorus	1403D_01	Entire water body	11	11	0		0.69	JQ	NC	NC		No
Recreation Use												
Bacteria Geomean												
2008 E. coli	1403D_01	Entire water body	0	0			126.00	ID	NA	NA		No
2008 Fecal coliform	1403D_01	Entire water body	0	0			200.00	ID	NA	NA		No
Bacteria Single Sample	_											
2008 E. coli	1403D_01	Entire water body	0	0			394.00	ID	NA	NA		No
2008 Fecal coliform	1403D_01	Entire water body	0	0			400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403EStillhouse Hollow (unclassified water body)

Water body type: Freshwater Stre	am					Water	body size:		1	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp		<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1403E_01	Entire water body	12	12	0		3.00	TR	NA	NA		No
2008 Dissolved Oxygen Grab	1403E_01	Entire water body	12	12	0		5.00	TR	NA	NA		No
General Use												
Nutrient Screening Levels												
2008 Ammonia	1403E_01	Entire water body	11	11	0		0.33	JQ	NC	NC		No
2008 Nitrate	1403E_01	Entire water body	11	11	11		1.95	JQ	CS	CS		No
2008 Total Phosphorus	1403E_01	Entire water body	10	10	0		0.69	JQ	NA	NA		No
Recreation Use												
Bacteria Geomean												
2008 E. coli	1403E_01	Entire water body	0	0			126.00	ID	NA	NA		No
Bacteria Single Sample												
2008 E. coli	1403E_01	Entire water body	0	0	0		394.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403FBull Creek Tributary 3 (unclassified water body)

Water body type: Freshwater Str	eam					Water	body size:		3	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403F_01	Entire water body	1	1	0		1.50	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1403F_01	Entire water body	1	1	0		2.00	ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1403F_01	Entire water body	1	1	0		0.11	ID	NA	NA		No
2006 Chlorophyll-a	1403F_01	Entire water body	0	0	0		14.10	ID	NA	NA		No
2006 Nitrate	1403F_01	Entire water body	1	1	0		1.95	ID	NA	NA		No
2006 Orthophosphorus	1403F_01	Entire water body	1	1	0		0.37	ID	NA	NA		No
2006 Total Phosphorus	1403F_01	Entire water body	1	1	0		0.69	ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 Fecal coliform	1403F_01	Entire water body	1	1		6.00	200.00	ID	NA	NA		No
Bacteria Single Sample												
2006 Fecal coliform	1403F_01	Entire water body	1	1	0		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403HBull Creek Tributary 6 (unclassified water body)

Water body type: Freshwater Stre	eam					Wate		3	Miles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403H_01	Entire water body	28	28	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1403H_01	Entire water body	28	28	0		5.00	AD	NC	NC		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1403H_01	Entire water body	30	30	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1403H_01	Entire water body	0	0			14.10	ID	NA	NA		No
2006 Nitrate	1403H_01	Entire water body	29	29	1		1.95	AD	NC	NC		No
2006 Orthophosphorus	1403H_01	Entire water body	30	30	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1403H_01	Entire water body	21	21	1		0.69	AD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1403H_01	Entire water body	8	8		67.00	126.00	TR	NA	NA		No
2006 Fecal coliform	1403H_01	Entire water body	21	21		39.00	200.00	AD	FS	FS		No
Bacteria Single Sample		·										
2006 E. coli	1403H_01	Entire water body	8	8	1		394.00	TR	NA	NA		No
2006 Fecal coliform	1403H_01	Entire water body	21	21	0		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403IBull Creek Tributary 5 (unclassified water body)

Water body type: Freshwater S	tream					Wate		1	Miles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403I_01	Entire water body	10	10	0		1.50	AD	FS	FS		No
Dissolved Oxygen grab screening lev	el											
2006 Dissolved Oxygen Grab	1403I_01	Entire water body	10	10	0		2.00	AD	NC	NC		No
General Use	-											
Nutrient Screening Levels												
2006 Ammonia	1403I_01	Entire water body	10	10	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1403I_01	Entire water body	0	0	0		14.10	ID	NA	NA		No
2006 Nitrate	1403I_01	Entire water body	10	10	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1403I_01	Entire water body	10	10	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1403I 01	Entire water body	10	10	0		0.69	AD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1403I_01	Entire water body	4	4		65.00	126.00	TR	NA	NA		No
2006 Fecal coliform	1403I_01	Entire water body	10	10		37.00	200.00	AD	FS	FS		No
Bacteria Single Sample	_	-										
2006 E. coli	1403I_01	Entire water body	4	4	0		394.00	TR	NA	NA		No
2006 Fecal coliform	1403I_01	Entire water body	10	10	0		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403JSpicewood Tributary to Shoal Creek (unclassified water body)

Water body type: Fresh			Wate	er body size:		1	М	iles				
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Recreation Use												
Bacteria Geomean												
2008 E. coli	1403J_01	Entire water body			0		126.00	ID	NA	NA		No
2008 Fecal coliform	1403J_01	Entire water body					200.00	ID	NA	NS	5c	Yes
Bacteria Single Sample												
2008 E. coli	1403J_01	Entire water body			0		394.00	ID	NA	NA		No
2008 Fecal coliform	1403J_01	Entire water body					400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403KTaylor Slough South (unclassified water body)

Water body	Vater body type: Freshwater Stream							Wate	r body size:		0	М	iles	
<u>YEAR</u>	<u>AU I</u>	<u>ID</u>	Assessment Area (AU)	<u>s</u>	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life U	se													
Dissolved Oxy	gen grab minimum													
2006 Dissol	ved Oxygen Grab 14031	K_01	Entire water body		0	0	0		3.00	ID	NA	NA		No
Dissolved Oxy	gen grab screening level													
2006 Dissol	ved Oxygen Grab 14031	K_01	Entire water body		0	0	0		5.00	ID	NA	NA		No
General Use														
Nutrient Scre	ening Levels													
2006 Ammo	onia 14031	K_01	Entire water body		15	15	0		0.33	AD	NC	NC		No
2006 Chloro	phyll-a 14031	K_01	Entire water body		0	0	0		14.10	ID	NA	NA		No
2006 Nitrate	14031	K_01	Entire water body		14	14	9		1.95	AD	CS	CS		No
2006 Orthop	phosphorus 14031	K_01	Entire water body		15	15	0		0.37	AD	NC	NC		No
2006 Total I	Phosphorus 1403	K 01	Entire water body		0	0	0		0.69	ID	NA	NA		No
Recreation Us	e													
Bacteria Geor	nean													
2006 E. coli	14031	K_01	Entire water body		0	0		0.00	126.00	ID	NA	NA		No
2006 Fecal	coliform 14031	K_01	Entire water body		12	12		414.00	200.00	AD	NS	NS	5c	No
Bacteria Sing	le Sample	_	-											
2006 E. coli	14031	K_01	Entire water body		0	0	0		394.00	ID	NA	NA		No
2006 Fecal	coliform 14031	K_01	Entire water body		12	12	6		400.00	AD	NS	NS	5c	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403LRunning Deer Creek (unclassified water body)

Water body type: Freshwater S				Wate	r body size:		1	М	liles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403L_01	Entire water body	1	1	0		3.00	ID	NA	NA		No
Dissolved Oxygen grab screening leve	el											
2006 Dissolved Oxygen Grab	1403L_01	Entire water body	1	1	0		5.00	ID	NA	NA		No
General Use	1											
Nutrient Screening Levels												
2006 Ammonia	1403L_01	Entire water body	12	12	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1403L_01	Entire water body	0	0	0		14.10	ID	NA	NA		No
2006 Nitrate	1403L_01	Entire water body	11	11	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1403L_01	Entire water body	11	11	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1403L_01	Entire water body	0	0			0.69	ID	NA	NA		No
Recreation Use	_											
Bacteria Geomean												
2006 E. coli	1403L_01	Entire water body	0	0			126.00	ID	NA	NA		No
2006 Fecal coliform	1403L 01	Entire water body	10	10		127.00	200.00	AD	FS	FS		No
Bacteria Single Sample	_	-										
2006 E. coli	1403L_01	Entire water body	0	0	0		394.00	ID	NA	NA		No
2006 Fecal coliform	1403L_01	Entire water body	10	10	1		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403MTurkey Creek (unclassified water body)

Water body type: Freshwater Stre	Vater body type: Freshwater Stream						body size:		4	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403M_01	Entire water body	1	1	0		1.50	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1403M_01	Entire water body	1	1	0		2.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403NPanther Hollow Creek (unclassified water body)

Water body type: Freshwater Str	Water body type: Freshwater Stream					Wat	er body size:		4	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403N_01	Entire water body	1	1	0		3.00	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1403N_01	Entire water body	1	1	0		5.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:14030Cuernavaca Creek (unclassified water body)

Water body type: Freshwater Stre	Vater body type: Freshwater Stream					Wate	er body size:		3	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403O_01	Entire water body	1	1	0		1.50	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	14030_01	Entire water body	1	1	0		2.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1403P Bee Creek (unclassified water body)

YEAR AU ID Assessment Area (AU) # of Samples # of Assessed Mean of Exc Mean of Assessed Dataset 2008 Integ Aquatic Life Use Dissolved Oxygen grab minimum 2006 Dissolved Oxygen Grab 1403P_01 Entire water body 0 0 2.00 ID NA NA Dissolved Oxygen grab screening level 0 0 0 2.00 ID NA NA	Imp Carry Category Forward No No
Dissolved Oxygen grab minimum2006 Dissolved Oxygen Grab1403P_01Entire water body002000 Dissolved Oxygen Grab1403P_01	
2006 Dissolved Oxygen Grab1403P_01Entire water body002.00IDNANA	
Dissolved Oxygen grab screening level	No
Dissolved Oxygen grad screening lever	No
2006 Dissolved Oxygen Grab1403P_01Entire water body003.00IDNANA	
General Use	
Nutrient Screening Levels	
2006 Ammonia 1403P_01 Entire water body 14 14 0 0.33 TR NA NA	No
2006 Chlorophyll-a1403P_01 Entire water body00014.10 IDNANA	No
2006 Nitrate 1403P_01 Entire water body 13 13 0 1.95 TR NA NA	No
2006 Orthophosphorus 1403P_01 Entire water body 13 13 0 0.37 TR NA NA	No
2006 Total Phosphorus 1403P_01 Entire water body 0 0 0 0.69 ID NA NA	No
Recreation Use	
Bacteria Geomean	
2006 E. coli 1403P_01 Entire water body 0 0 126.00 ID NA NA	No
2006 Fecal coliform 1403P_01 Entire water body 13 13 18.00 200.00 TR NA NA	No
Bacteria Single Sample	
2006 E. coli 1403P_01 Entire water body 0 0 394.00 ID NA NA	No
2006 Fecal coliform 1403P_01 Entire water body 13 13 0 400.00 TR NA NA	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403QBear Creek (unclassified water body)

Water body type: Freshwater Str	Water body type: Freshwater Stream					Wat	er body size:		3	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403Q_01	Entire water body	1	1	0		1.50	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1403Q_01	Entire water body	1	1	0		2.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1403RWestlake-Davenport Tributary to Lake Austin (unclassified water body)

Water body type: Freshwater Stream						Water	body size:		2	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1403R_01	Entire water body	1	1	0		2.00	ID	NA	NA		No
Dissolved Oxygen grab screening leve	1											
2006 Dissolved Oxygen Grab	1403R_01	Entire water body	1	1	0		3.00	ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1403R_01	Entire water body	16	16	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1403R_01	Entire water body	0	0			14.10	ID	NA	NA		No
2006 Nitrate	1403R_01	Entire water body	16	16	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1403R_01	Entire water body	16	16	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1403R 01	Entire water body	0	0			0.69	ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1403R_01	Entire water body	0	0			126.00	ID	NA	NA		No
2006 Fecal coliform	1403R 01	Entire water body	16	16		317.00	200.00	AD	NS	NS	5c	No
Bacteria Single Sample	_											
2006 E. coli	1403R_01	Entire water body	0	0			394.00	ID	NA	NA		No
2006 Fecal coliform	1403R_01	Entire water body	16	16	7		400.00	AD	NS	NS	5c	No
4												

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404

Lake Travis

Wate	er body type: Reservoir						Water b	ody size:	1	8,929	А	cres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquati	c Life Use												
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm	978	62	0		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1404_02	Big Sandy Creek Arm	523	41	0		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm	794	41	0		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1404_04	Lakeway area, from Hurst Creek arm upstream to the confluence with Cow Creek	702	40	1		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River	566	41	1		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend	489	41	0		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed	410	41	0		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam	46	41	0		4.00	AD	FS	FS		No

Toxic Substances in sediment

Metals

Organics

1404 01

1404 02

2008

2008

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

From Mansfield Dam upstream to the

confluence with Big Sandy Creek Arm

Big Sandy Creek Arm

Segment ID: 1404 Lake Travis Water body type: Reservoir Water body size: 18.929 # of # Mean of Dataset 2008 # of Integ AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria Supp Supp Aquatic Life Use **Dissolved Oxygen grab screening level** 978 1404 01 From Mansfield Dam upstream to the 62 2 2008 **Dissolved Oxygen Grab** 6.00 AD NC confluence with Big Sandy Creek Arm 2008 Dissolved Oxygen Grab 1404 02 Big Sandy Creek Arm 523 41 6.00 AD NC 1 2008 Dissolved Oxygen Grab 1404 03 Arkansas Bend area, from Sandy Creek Arm 794 41 3 NC 6.00 AD upstream to Hurst Creek Arm Lakeway area, from Hurst Creek arm 2008 Dissolved Oxygen Grab 1404 04 702 40 5 6.00 AD NC upstream to the confluence with Cow Creek From the confluence with Cow Creek Dissolved Oxygen Grab 1404 05 566 41 7 6.00 AD CS 2008 upstream to the confluence of the Pedernales River From the confluence with the Pedernales 489 41 7 CS 2008 Dissolved Oxygen Grab 1404 06 6.00 AD River upstream to Muleshoe Bend From Muleshoe Bend upstream to the 2008 Dissolved Oxygen Grab 1404 07 410 41 5 AD NC 6.00 confluence with Hickory Creed From Hickory Creek confluence upstream to 2008 Dissolved Oxygen Grab 1404 08 46 41 0 6.00 AD NC the headwaters at Max Starcke Dam

3

2

3

2

0

0

Acres

NC

NC

NC

NC

CS

CS

NC

NC

NA

NA

NA

NA

ID

ID

Imp

Category Forward

Carry

No

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008)													
NA- Not assessed; NC- No c	oncern; Dataset Qualifi	iers: AD- Adequate Da	support) identifiers: FS- Fully Supporting; C ata; ID- Inadequate Data; LD- Limited Data; T ate; AU ID - Assessment Unit ID *Note: Carry	R- Not Temporally Representativ	ve; SR- Not S	Spatially Repres	sentative; SM	I- Superceded by and					
Segment ID:	1404	Lake Tr	avis										
Water body type:	Reservoir							Wate	r body size:	18,9	29	Acres	
YEAR		<u>AU ID</u>	Assessment Area (AU)		<u># of</u> amples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> 20 <u>Qualifier</u> S	0 <u>8 Int</u> 1 <u>pp Su</u>		<u>Carry</u> Forward
General Use		_											

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Lake Travis Segment ID: 1404 Water body type: Reservoir <u># of</u> YEAR AU ID Assessment Area (AU) Samples 5 1 Assessed General Use

Genera	al Use										
Dissol	ved Solids										
2008	Chloride	1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm	250	250	37.72	100.00	AD	FS	FS	No
2008	Chloride	1404_02	Big Sandy Creek Arm	250	250	37.72	100.00	AD	FS	FS	No
2008	Chloride	1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm	250	250	37.72	100.00	AD	FS	FS	No
2008	Chloride	1404_04	Lakeway area, from Hurst Creek arm upstream to the confluence with Cow Creek	250	250	37.72	100.00	AD	FS	FS	No
2008	Chloride	1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River	250	250	37.72	100.00	AD	FS	FS	No
2008	Chloride	1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend	250	250	37.72	100.00	AD	FS	FS	No
2008	Chloride	1404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed	250	250	37.72	100.00	AD	FS	FS	No
2008	Chloride	1404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam	250	250	37.72	100.00	AD	FS	FS	No
2008	Sulfate	1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm	250	250	24.19	75.00	AD	FS	FS	No
2008	Sulfate	1404_02	Big Sandy Creek Arm	250	250	24.19	75.00	AD	FS	FS	No
2008	Sulfate	1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm	250	250	24.19	75.00	AD	FS	FS	No
2008	Sulfate	1404_04	Lakeway area, from Hurst Creek arm upstream to the confluence with Cow Creek	250	250	24.19	75.00	AD	FS	FS	No
2008	Sulfate	1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River	250	250	24.19	75.00	AD	FS	FS	No
2008	Sulfate	1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend	250	250	24.19	75.00	AD	FS	FS	No

#

<u># of</u>

Exc

Mean of

Assessed

18,929

2008

Dataset

Qualifier Supp

Acres

Imp

Category Forward

Integ

<u>Supp</u>

Carry

Water body size:

Criteria

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404 Lake Travis Water body type: Reservoir Water body size: 18.929 Acres # of # Mean of Dataset 2008 # of Integ AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use **Dissolved Solids** 2008 Sulfate 1404 07 From Muleshoe Bend upstream to the 250 250 24.19 75.00 AD FS FS confluence with Hickory Creed 1404 08 From Hickory Creek confluence upstream to 250 2008 Sulfate 250 24.19 75.00 AD FS FS the headwaters at Max Starcke Dam From Mansfield Dam upstream to the 2008 Total Dissolved Solids 1404 01 386 386 277.55 400.00 AD FS FS confluence with Big Sandy Creek Arm 1404 02 Big Sandy Creek Arm 386 386 277.55 AD FS FS 2008 Total Dissolved Solids 400.00 2008 1404 03 Arkansas Bend area, from Sandy Creek Arm 386 386 277.55 FS FS Total Dissolved Solids 400.00 AD upstream to Hurst Creek Arm 1404 04 386 386 277.55 FS FS 2008 Total Dissolved Solids Lakeway area, from Hurst Creek arm 400.00 AD upstream to the confluence with Cow Creek From the confluence with Cow Creek 386 2008 Total Dissolved Solids 1404 05 386 277.55 400.00 AD FS FS upstream to the confluence of the Pedernales River From the confluence with the Pedernales 277.55 FS 2008 Total Dissolved Solids 1404 06 386 386 400.00 AD FS River upstream to Muleshoe Bend 1404 07 From Muleshoe Bend upstream to the 386 386 277.55 AD FS FS 2008 Total Dissolved Solids 400.00 confluence with Hickory Creed 1404 08 From Hickory Creek confluence upstream to 386 386 277.55 400.00 FS FS 2008 Total Dissolved Solids AD the headwaters at Max Starcke Dam

Imp

Carry

No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404 I

Lake Travis

Water body type: Reserved	rvoir					Water	body size:	1	8,929	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
High pH												
2008 рН	1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm	979	62	0		9.00	AD	FS	FS		No
2008 рН	1404_02	Big Sandy Creek Arm	523	41	0		9.00	AD	FS	FS		No
2008 рН	1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm	794	41	0		9.00	AD	FS	FS		No
2008 рН	1404_04	Lakeway area, from Hurst Creek arm upstream to the confluence with Cow Creek	702	40	0		9.00	AD	FS	FS		No
2008 рН	1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River	567	41	0		9.00	AD	FS	FS		No
2008 рН	1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend	489	41	0		9.00	AD	FS	FS		No
2008 рН	1404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed	411	41	0		9.00	AD	FS	FS		No
2008 рН	1404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam	46	41	0		9.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404

Water body type:	Reservoir					Water	body size:	1	8,929	A	cres	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
General Use												
Low pH												
2008 рН	1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm	979	62	0		6.50	AD	FS	FS		No
2008 рН	1404_02	Big Sandy Creek Arm	523	41	0		6.50	AD	FS	FS		No
2008 рН	1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm	794	41	0		6.50	AD	FS	FS		No
2008 рН	1404_04	Lakeway area, from Hurst Creek arm upstream to the confluence with Cow Creek	702	40	0		6.50	AD	FS	FS		No
2008 рН	1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River	567	41	0		6.50	AD	FS	FS		No
2008 рН	1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend	489	41	0		6.50	AD	FS	FS		No
2008 рН	1404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed	411	41	0		6.50	AD	FS	FS		No
2008 рН	1404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam	46	41	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404 Lake Travis Water body type: Reservoir Water body size: 18.929 Acres # of # Mean of 2008 # of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use Nutrient Screening Levels From Mansfield Dam upstream to the 41 41 0 NC 2008 Ammonia 1404 01 0.11 AD NC No confluence with Big Sandy Creek Arm 2008 1404 02 Big Sandy Creek Arm 41 41 0 AD NC NC No 0.11 Ammonia 2008 1404 03 Arkansas Bend area, from Sandy Creek Arm 41 41 0 0.11 NC NC No AD Ammonia upstream to Hurst Creek Arm From the confluence with Cow Creek 2008 1404 05 40 40 0 AD NC NC Ammonia 0.11 No upstream to the confluence of the Pedernales River 1404 07 From Muleshoe Bend upstream to the 41 41 AD NC NC No 2008 0 0.11 Ammonia confluence with Hickory Creed 2008 1404 08 36 36 NC NC Ammonia From Hickory Creek confluence upstream to 0 0.11 AD No the headwaters at Max Starcke Dam 2008 Chlorophyll-a 1404 01 From Mansfield Dam upstream to the 60 60 0 26.70 AD NC NC No confluence with Big Sandy Creek Arm 2008 Chlorophyll-a 1404 02 Big Sandy Creek Arm 41 41 0 26.70 AD NC NC No 2008 Chlorophyll-a 1404 03 Arkansas Bend area, from Sandy Creek Arm 41 41 0 26.70 AD NC NC No upstream to Hurst Creek Arm 1404 05 From the confluence with Cow Creek 41 41 0 26.70 AD NC NC No 2008 Chlorophyll-a upstream to the confluence of the Pedernales River 1404 07 From Muleshoe Bend upstream to the 41 41 2 26.70 NC 2008 Chlorophyll-a AD NC No confluence with Hickory Creed 2008 Chlorophyll-a 1404 08 From Hickory Creek confluence upstream to 36 36 0 26.70 AD NC NC No the headwaters at Max Starcke Dam 2008 Nitrate 1404 01 From Mansfield Dam upstream to the 61 61 0.37 AD NC NC No confluence with Big Sandy Creek Arm 2008 Nitrate 1404 02 Big Sandy Creek Arm 42 42 0.37 AD NC NC No

upstream to Hurst Creek Arm

From the confluence with Cow Creek

upstream to the confluence of the Pedernales

1404 05

River

Total Phosphorus

2008

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404 Lake Travis Water body type: Reservoir Water body size: 18.929 Acres # of # Mean of 2008 # of Dataset Integ Imp AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use Nutrient Screening Levels 2008 Nitrate 1404 03 Arkansas Bend area, from Sandy Creek Arm 42 42 0.37 AD NC NC upstream to Hurst Creek Arm 1404 05 From the confluence with Cow Creek 42 42 2008 Nitrate 1 0.37 AD NC NC upstream to the confluence of the Pedernales River 2008 Nitrate 1404 07 From Muleshoe Bend upstream to the 42 42 3 0.37 AD NC NC confluence with Hickory Creed 2008 Nitrate 1404 08 From Hickory Creek confluence upstream to 38 38 4 0.37 AD NC NC the headwaters at Max Starcke Dam 2008 Orthophosphorus 1404 01 From Mansfield Dam upstream to the 36 36 0 0.05 AD NC NC confluence with Big Sandy Creek Arm 37 2008 Orthophosphorus 1404 02 **Big Sandy Creek Arm** 37 0 0.05 AD NC NC Arkansas Bend area, from Sandy Creek Arm 37 37 NC 2008 Orthophosphorus 1404 03 0 0.05 AD NC upstream to Hurst Creek Arm From the confluence with Cow Creek 40 40 2008 Orthophosphorus 1404 05 0.05 AD NC NC upstream to the confluence of the Pedernales River From Muleshoe Bend upstream to the 38 NC 2008 Orthophosphorus 1404 07 38 0 AD NC 0.05 confluence with Hickory Creed From Hickory Creek confluence upstream to 2008 Orthophosphorus 1404 08 39 39 0 0.05 AD NC NC the headwaters at Max Starcke Dam **Total Phosphorus** 1404 01 From Mansfield Dam upstream to the 58 58 0.20 AD NC NC 2008 confluence with Big Sandy Creek Arm 1404 02 Big Sandy Creek Arm 39 39 NC NC 2008 **Total Phosphorus** 0 0.20 AD Arkansas Bend area, from Sandy Creek Arm 41 41 NC NC 2008 **Total Phosphorus** 1404 03 0.20 AD

38

38

0

NC

AD

0.20

NC

Carry

No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404 Lake Travis Water body type: Reservoir Water body size: 18.929 Acres # of # Mean of Dataset 2008 Integ # of Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use **Nutrient Screening Levels** From Muleshoe Bend upstream to the 41 41 2008 Total Phosphorus 1404 07 0 0.20 NC NC No AD confluence with Hickory Creed From Hickory Creek confluence upstream to 2008 **Total Phosphorus** 1404 08 38 38 0 0.20 AD NC NC No the headwaters at Max Starcke Dam Water Temperature 1404 01 From Mansfield Dam upstream to the 979 62 0 32.20 AD FS FS No 2008 Temperature confluence with Big Sandy Creek Arm 1404 02 Big Sandy Creek Arm 523 32.20 FS 2008 41 0 AD FS No Temperature 2008 Temperature 1404 03 Arkansas Bend area, from Sandy Creek Arm 794 41 0 32.20 AD FS FS No upstream to Hurst Creek Arm 2008 Temperature 1404 04 Lakeway area, from Hurst Creek arm 702 40 0 32.20 AD FS FS No upstream to the confluence with Cow Creek 2008 Temperature 1404 05 From the confluence with Cow Creek 567 41 0 32.20 AD FS FS No upstream to the confluence of the Pedernales River 2008 Temperature 1404 06 From the confluence with the Pedernales 489 41 0 32.20 AD FS FS No River upstream to Muleshoe Bend 2008 Temperature 1404 07 From Muleshoe Bend upstream to the 411 41 1 32.20 AD FS FS No confluence with Hickory Creed 2008 Temperature 1404 08 From Hickory Creek confluence upstream to 46 41 0 32.20 AD FS FS No the headwaters at Max Starcke Dam

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. **Segment ID:** 1404 Lake Travis Water body type: Reservoir Water body size: 18.929 Acres # of # Mean of Dataset 2008 Integ Imp # of Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward Public Water Supply Use Finished Drinking Water Dissolved Solids average 2008 1404 01 From Mansfield Dam upstream to the OE NC NC Multiple No confluence with Big Sandy Creek Arm 2008 1404 02 Big Sandy Creek Arm OE NC NC No Multiple 2008 1404 03 Arkansas Bend area, from Sandy Creek Arm OE NC NC No Multiple upstream to Hurst Creek Arm Lakeway area, from Hurst Creek arm 2008 1404 04 OE NC NC Multiple No upstream to the confluence with Cow Creek From the confluence with Cow Creek 1404 05 OE NC NC No 2008 Multiple upstream to the confluence of the Pedernales River From the confluence with the Pedernales OE 1404 06 NC 2008 Multiple NC No River upstream to Muleshoe Bend

From Muleshoe Bend upstream to the

the headwaters at Max Starcke Dam

From Hickory Creek confluence upstream to

confluence with Hickory Creed

1404 07

1404 08

2008

2008

Multiple

Multiple

OE

OE

NC

NC

NC

NC

No

No

NA- Not assessed; NC- No con	ncern; Dataset Qualifi	iers: AD- Adequate Da	support) identifiers: FS- Fully Supporting; CN- Concern for Near non-a ta; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Repres- te; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairment.	entative; SR- Not	Spatially Repres	sentative; SI	M- Superceded by ano						
Segment ID:	1404	Lake Tra	avis										
Water body type:	Reservoir						Water	r body size:	1	8,929	Ac	eres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carr</u> Forwa
Public Water Supply	Use	_											
Finished Drinking W	ater MCLs and	d Toxic Substar	nces running average										
2008 Multiple		1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm						OE	FS	FS		No
2008 Multiple		1404_02	Big Sandy Creek Arm						OE	FS	FS		No
2008 Multiple		1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm						OE	FS	FS		No
2008 Multiple		1404_04	Lakeway area, from Hurst Creek arm upstream to the confluence with Cow Creek						OE	FS	FS		No
2008 Multiple		1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River						OE	FS	FS		No
2008 Multiple		1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend						OE	FS	FS		No
2008 Multiple		1404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed						OE	FS	FS		No
2008 Multiple		1404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam						OE	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segr	nent ID: 14	04 La	ike Tra	vis										
Wat	er body type: R	eservoir						Water	body size:	18	8,929	A	eres	
YEAF	<u> </u>	<u>A</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Public	Water Supply Use													
Finish	ned Drinking Water	MCLs Concern												
2008	Multiple	1	404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm						OE	NC	NC		No
2008	Multiple	1	404_02	Big Sandy Creek Arm						OE	NC	NC		No
2008	Multiple	1	404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm						OE	NC	NC		No
2008	Multiple	1	404_04	Lakeway area, from Hurst Creek arm upstream to the confluence with Cow Creek						OE	NC	NC		No
2008	Multiple	1	404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River						OE	NC	NC		No
2008	Multiple	1	404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend						OE	NC	NC		No
2008	Multiple	1	404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed						OE	NC	NC		No
2008	Multiple	1	404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam						OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1404 Lake Travis Water body type: Reservoir Water body size: 18.929 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward **Recreation Use Bacteria Geomean** From Mansfield Dam upstream to the 41 41 0 1.76 FS FS 2008 E. coli 1404 01 126.00 AD No confluence with Big Sandy Creek Arm 2008 1404 02 Big Sandy Creek Arm 40 40 0 1.38 126.00 AD FS FS No E. coli 2008 1404 03 Arkansas Bend area, from Sandy Creek Arm 38 38 0 0.92 126.00 AD FS FS No E. coli upstream to Hurst Creek Arm From the confluence with Cow Creek 39 2008 1404 05 39 0 1.32 126.00 AD FS FS E. coli No upstream to the confluence of the Pedernales River 1404 06 From the confluence with the Pedernales 0 0 126.00 ID NA No 2008 E. coli NA River upstream to Muleshoe Bend 39 FS 1404 07 From Muleshoe Bend upstream to the 39 0 1.67 FS No 2008 E. coli 126.00 AD confluence with Hickory Creed 2008 1404 08 From Hickory Creek confluence upstream to 36 36 0 8.57 126.00 AD FS FS No E. coli the headwaters at Max Starcke Dam From Mansfield Dam upstream to the 2008 Fecal coliform 1404 01 11 11 0 1.57 200.00 SM FS FS No confluence with Big Sandy Creek Arm Big Sandy Creek Arm 11 11 0 1.29 200.00 SM FS FS No 2008 Fecal coliform 1404 02 Fecal coliform 1404 03 Arkansas Bend area, from Sandy Creek Arm 11 11 0 1.02 200.00 SM FS FS 2008 No upstream to Hurst Creek Arm 0.90 2008 Fecal coliform 1404 05 From the confluence with Cow Creek 11 11 0 200.00 SM FS FS No upstream to the confluence of the Pedernales River 2008 Fecal coliform 1404 06 From the confluence with the Pedernales 0 0 200.00 ID NA NA No River upstream to Muleshoe Bend 2008 Fecal coliform 1404 07 From Muleshoe Bend upstream to the 11 11 0 2.05 200.00 SM FS FS No confluence with Hickory Creed 2008 Fecal coliform 1404 08 From Hickory Creek confluence upstream to 11 11 0 10.47 200.00 SM FS FS No the headwaters at Max Starcke Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; IO- Assesser Indegement: OF- Other Information Evaluated: OS- Out-of-State: AUID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. Segment ID: 1404 Lake Travis

Water body type: Reserv	oir					Wate	r body size:	1	8,929	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use												
Bacteria Single Sample												
2008 E. coli	1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm	41	41	0		394.00	AD	FS	FS		No
2008 E. coli	1404_02	Big Sandy Creek Arm	40	40	0		394.00	AD	FS	FS		No
2008 E. coli	1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm	38	38	0		394.00	AD	FS	FS		No
2008 E. coli	1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River	39	39	0		394.00	AD	FS	FS		No
2008 E. coli	1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend	0	0			394.00	ID	NA	NA		No
2008 E. coli	1404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed	39	39	0		394.00	AD	FS	FS		No
2008 E. coli	1404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam	36	36	0		394.00	AD	FS	FS		No
2008 Fecal coliform	1404_01	From Mansfield Dam upstream to the confluence with Big Sandy Creek Arm	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1404_02	Big Sandy Creek Arm	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1404_03	Arkansas Bend area, from Sandy Creek Arm upstream to Hurst Creek Arm	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1404_05	From the confluence with Cow Creek upstream to the confluence of the Pedernales River	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1404_06	From the confluence with the Pedernales River upstream to Muleshoe Bend	0	0			400.00	ID	NA	NA		No
2008 Fecal coliform	1404_07	From Muleshoe Bend upstream to the confluence with Hickory Creed	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1404_08	From Hickory Creek confluence upstream to the headwaters at Max Starcke Dam	11	11	1		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Hamilton Creek (unclassified water body) Segment ID: 1404A

Wat	er body type: Freshwater Stre	am					Water	body size:		23	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquati	c Life Use												
Dissol	ved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1404A_03	From the confluence of Haynie Branch upstream to CR 110	13	13	0		2.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1404A_03	From the confluence of Haynie Branch upstream to CR 110	13	13	1		3.00	AD	NC	NC		No
Toxic	Substances in sediment												
2006	Metals	1404A_03	From the confluence of Haynie Branch upstream to CR 110	3	3	0			ID	NA	NA		No
Genera	al Use												
Nutrie	ent Screening Levels												
2006	Ammonia	1404A_03	From the confluence of Haynie Branch upstream to CR 110	17	17	0		0.33	AD	NC	NC		No
2006	Chlorophyll-a	1404A_03	From the confluence of Haynie Branch upstream to CR 110	16	16	1		14.10	AD	NC	NC		No
2006	Nitrate	1404A_03	From the confluence of Haynie Branch upstream to CR 110	17	17	0		1.95	AD	NC	NC		No
2006	Orthophosphorus	1404A_03	From the confluence of Haynie Branch upstream to CR 110	17	17	0		0.37	AD	NC	NC		No
2006	Total Phosphorus	1404A_03	From the confluence of Haynie Branch upstream to CR 110	17	17	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1404AHamilton Creek (unclassified water body)

Water body type: Freshwat	er Stream					Wate	r body size:		23	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	-	<u>Carry</u> orward
Recreation Use												
Bacteria Geomean												
2006 E. coli	1404A_03	From the confluence of Haynie Branch upstream to CR 110	11	11		36.00	126.00	AD	FS	FS		No
2006 Fecal coliform	1404A_03	From the confluence of Haynie Branch upstream to CR 110	6	6		121.00	200.00	SM	NC	NC		No
Bacteria Single Sample												
2006 E. coli	1404A_03	From the confluence of Haynie Branch upstream to CR 110	11	11	1		394.00	AD	FS	FS		No
2006 Fecal coliform	1404A_03	From the confluence of Haynie Branch upstream to CR 110	6	6	2		400.00	SM	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1404BCow Creek (unclassified water body)

Water body type: Freshwater St	ream					Wate	r body size:		19	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1404B_01	Entire water body	16	16	0		2.00	AD	FS	FS		No
Dissolved Oxygen grab screening leve	l											
2006 Dissolved Oxygen Grab	1404B_01	Entire water body	16	16	0		3.00	AD	NC	NC		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1404B_01	Entire water body	17	17	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1404B_01	Entire water body	17	17	0		14.10	AD	NC	NC		No
2006 Nitrate	1404B_01	Entire water body	17	17	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1404B_01	Entire water body	17	17	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1404B 01	Entire water body	17	17	0		0.69	AD	NC	NC		No
Recreation Use		-										
Bacteria Geomean												
2006 E. coli	1404B_01	Entire water body	11	11		44.00	126.00	AD	FS	FS		No
2006 Fecal coliform	1404B 01	Entire water body	7	7		19.00	200.00	SM	NC	NC		No
Bacteria Single Sample	_	·										
2006 E. coli	1404B_01	Entire water body	11	11	0		394.00	AD	FS	FS		No
2006 Fecal coliform	1404B_01	Entire water body	7	7	1		400.00	SM	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1404CLong Hollow Creek (unclassified water body)

Water body type: Freshwater Str	eam					Water	body size:		3	М	files	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1404C_01	Entire water body	1	1	0		1.50	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1404C_01	Entire water body	1	1	0		2.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1404DLick Creek (unclassified water body)

Water body type: Freshwater Str				Wate	er body size:		5	М	iles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1404D_01	Entire segment	23	23	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1404D_01	Entire segment	23	23	2		5.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1404EHicks Hollow Creek (unclassified water body)

Water body type: Freshwater Str				Wate	er body size:		3	М	iles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1404E_01	Entire water body	14	14	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1404E_01	Entire water body	14	14	1		5.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1405 Marble Falls Lake

Water body type: Reservoir					Water body	780		Acres				
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed Crit</u>	eria	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	350	42	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1405_02	From Varnhagen Creek confluence upstream to Alvin Wirtz Dam	46	42	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening	level											
2008 Dissolved Oxygen Grab	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	350	42	1		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab	1405_02	From Varnhagen Creek confluence upstream to Alvin Wirtz Dam	46	42	4		5.00	AD	NC	NC		No
Toxic Substances in sediment		-										
2008 Metals	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	4	4	0			LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1405 Marble Falls Lake

Wat	er body type: Reservoir					Wate	780		А	cres		
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> Category Forwa
Genera	al Use											
Dissol	ved Solids											
2008	Chloride	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	84	84		43.07	125.00	AD	FS	FS	No
2008	Chloride	1405_02	From Varnhagen Creek confluence upstream to Alvin Wirtz Dam	84	84		43.07	125.00	AD	FS	FS	No
2008	Sulfate	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	84	84		25.10	75.00	AD	FS	FS	No
2008	Sulfate	1405_02	From Varnhagen Creek confluence upstream to Alvin Wirtz Dam	84	84		25.10	75.00	AD	FS	FS	No
2008	Total Dissolved Solids	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	84	84		282.38	500.00	AD	FS	FS	No
2008	Total Dissolved Solids	1405_02	From Varnhagen Creek confluence upstream to Alvin Wirtz Dam	84	84		282.38	500.00	AD	FS	FS	No
High _l	pH		-									
2008	pH	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	350	42	0		9.00	AD	FS	FS	No
2008	pH	1405_02	From Varnhagen Creek confluence upstream to Alvin Wirtz Dam	46	42	0		9.00	AD	FS	FS	No
Low p	Н		-									
2008	рН	1405_01	From Max Starcke Dam to Varnhagen Creek confluence	350	42	0		6.50	AD	FS	FS	No
2008	pH	1405_02	From Varnhagen Creek confluence upstream to Alvin Wirtz Dam	46	42	0		6.50	AD	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Supporting; CA- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Support State St

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1405 Marble Falls Lake Water body type: Reservoir Water body size: 780 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use Nutrient Screening Levels 2008 From Max Starcke Dam to Varnhagen 41 41 NC Ammonia 1405 01 0.11 AD NC No Creek confluence 2008 1405 02 From Varnhagen Creek confluence 39 39 0 AD NC NC No Ammonia 0.11 upstream to Alvin Wirtz Dam From Max Starcke Dam to Varnhagen 2008 Chlorophyll-a 1405 01 41 41 0 26.70 AD NC NC No Creek confluence From Varnhagen Creek confluence 2008 Chlorophyll-a 1405 02 41 41 0 26.70 AD NC NC No upstream to Alvin Wirtz Dam 2008 Nitrate 1405 01 From Max Starcke Dam to Varnhagen 42 42 5 AD NC NC 0.37 No Creek confluence From Varnhagen Creek confluence 2008 1405 02 41 41 5 0.37 NC NC AD No Nitrate upstream to Alvin Wirtz Dam From Max Starcke Dam to Varnhagen 1405 01 39 39 0 AD NC NC No 2008 Orthophosphorus 0.05 Creek confluence 2008 Orthophosphorus 1405 02 From Varnhagen Creek confluence 38 38 0 0.05 AD NC NC No upstream to Alvin Wirtz Dam From Max Starcke Dam to Varnhagen 39 39 0 NC NC 2008 **Total Phosphorus** 1405 01 0.20 AD No Creek confluence From Varnhagen Creek confluence 39 39 2008 **Total Phosphorus** 1405 02 0 0.20 AD NC NC No upstream to Alvin Wirtz Dam Water Temperature 2008 Temperature 1405 01 From Max Starcke Dam to Varnhagen 350 42 0 34.40 AD FS FS No Creek confluence 2008 Temperature 1405 02 From Varnhagen Creek confluence 46 42 0 34.40 AD FS FS No upstream to Alvin Wirtz Dam

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. **Marble Falls Lake Segment ID:** 1405 Water body type: 780 Reservoir Water body size: Acres # of # Mean of 2008 # of Dataset Integ Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward Public Water Supply Use Finished Drinking Water Dissolved Solids average 2008 Multiple 1405 01 From Max Starcke Dam to Varnhagen OE NC NC No Creek confluence From Varnhagen Creek confluence 1405 02 OE NC NC No 2008 Multiple upstream to Alvin Wirtz Dam Finished Drinking Water MCLs and Toxic Substances running average From Max Starcke Dam to Varnhagen 2008 1405 01 OE FS FS No Multiple Creek confluence 1405 02 From Varnhagen Creek confluence OE FS FS No 2008 Multiple upstream to Alvin Wirtz Dam **Finished Drinking Water MCLs Concern** 2008 Multiple 1405 01 From Max Starcke Dam to Varnhagen OE NC NC No Creek confluence 1405 02 From Varnhagen Creek confluence OE NC NC 2008 Multiple No

upstream to Alvin Wirtz Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1405 **Marble Falls Lake** Water body type: 780 Reservoir Water body size: Acres # of # Mean of 2008 # of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward **Recreation Use Bacteria Geomean** 2.22 2008 E. coli From Max Starcke Dam to Varnhagen 41 41 0 FS FS 1405 01 126.00 AD No Creek confluence From Varnhagen Creek confluence 2008 1405 02 42 42 0 23.44 126.00 AD FS FS No E. coli upstream to Alvin Wirtz Dam 1405 01 From Max Starcke Dam to Varnhagen 3.34 2008 Fecal coliform 11 11 0 200.00 SM FS FS No Creek confluence From Varnhagen Creek confluence 11 2008 Fecal coliform 1405 02 11 0 48.04 200.00 SM FS FS No upstream to Alvin Wirtz Dam **Bacteria Single Sample** 2008 E. coli 1405 01 From Max Starcke Dam to Varnhagen 41 41 0 394.00 AD FS FS No Creek confluence From Varnhagen Creek confluence 42 2008 E. coli 1405 02 42 2 394.00 AD FS FS No upstream to Alvin Wirtz Dam From Max Starcke Dam to Varnhagen 2008 Fecal coliform 1405 01 11 11 1 400.00 SM FS FS No Creek confluence 2008 Fecal coliform 1405 02 From Varnhagen Creek confluence 11 11 0 400.00 SM FS FS No upstream to Alvin Wirtz Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1406 Lake Lyndon B. Johnson

Wate	er body type: Reservoir						Water	body size:		6,375	А	cres	
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquati	ic Life Use												
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals	406	41	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven	367	54	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1406_03	From Granite Shoals upstream to the Llano River confluence	257	41	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1406_04	Llano River arm	116	41	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1406_05	From the confluence with the Llano River arm upstream to a point north of Kinglsland near Pair Lane	194	41	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1406_06	From a point near Pair Lane in Kingsland upstream to Roy Inks Dam	46	38	4		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening leve	el											
2008	Dissolved Oxygen Grab	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals	406	41	9		5.00	AD	CS	CS		No
2008	Dissolved Oxygen Grab	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven	367	54	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1406_03	From Granite Shoals upstream to the Llano River confluence	257	41	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1406_04	Llano River arm	116	41	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1406_05	From the confluence with the Llano River arm upstream to a point north of Kinglsland near Pair Lane	194	41	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1406_06	From a point near Pair Lane in Kingsland upstream to Roy Inks Dam	46	38	8		5.00	AD	CS	CS		No
Toxic	Substances in sediment												
2008	Metals	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals	3	3				ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; DA- Access bed represented by the formation in t

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID	*Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1406	Lake Lyndon B. Johnson						
Water body type: Reservoir				Water body size:	6,375	Acres	
YEAR	AU ID Assessment Area (AU)	<u># of </u> <u>#</u> Samples Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u> <u>Criteria</u>	<u>Dataset</u> 2008 Qualifier Supp	<u>Integ Imp</u> <u>Supp Category</u>	<u>Carry</u> Forward

General Use

Lake Lyndon B. Johnson

Segment ID:

1406

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segr	nent ID: 1406		ndon B. Jonnson									
Wat	er body type: Reservoir						Water	· body size:		6,375	А	cres
YEAF	2	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	ImpCarryCategoryForward
Gener	al Use	_										
Dissol	ved Solids											
2008	Chloride	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals	168	168		45.47	125.00	AD	FS	FS	No
2008	Chloride	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven	168	168		45.47	125.00	AD	FS	FS	No
2008	Chloride	1406_03	From Granite Shoals upstream to the Llano River confluence	168	168		45.47	125.00	AD	FS	FS	No
2008	Chloride	1406_04	Llano River arm	168	168		45.47	125.00	AD	FS	FS	No
2008	Chloride	1406_05	From the confluence with the Llano River arm upstream to a point north of Kinglsland near Pair Lane	168	168		45.47	125.00	AD	FS	FS	No
2008	Chloride	1406_06	From a point near Pair Lane in Kingsland upstream to Roy Inks Dam	168	168		45.47	125.00	AD	FS	FS	No
2008	Sulfate	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals	168	168		27.22	75.00	AD	FS	FS	No
2008	Sulfate	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven	168	168		27.22	75.00	AD	FS	FS	No
2008	Sulfate	1406_03	From Granite Shoals upstream to the Llano River confluence	168	168		27.22	75.00	AD	FS	FS	No
2008	Sulfate	1406_04	Llano River arm	168	168		27.22	75.00	AD	FS	FS	No
2008	Sulfate	1406_05	From the confluence with the Llano River arm upstream to a point north of Kinglsland near Pair Lane	168	168		27.22	75.00	AD	FS	FS	No
2008	Sulfate	1406_06	From a point near Pair Lane in Kingsland upstream to Roy Inks Dam	168	168		27.22	75.00	AD	FS	FS	No
2008	Total Dissolved Solids	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals	257	257		287.55	500.00	AD	FS	FS	No
2008	Total Dissolved Solids	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven	257	257		287.55	500.00	AD	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1406 Lake Lyndon B. Johnson Water body type: Reservoir Water body size: 6,375 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward General Use **Dissolved Solids** 2008 Total Dissolved Solids 1406 03 From Granite Shoals upstream to the Llano 257 257 287.55 500.00 AD FS FS No River confluence Llano River arm 257 287.55 2008 Total Dissolved Solids 1406 04 257 500.00 AD FS FS No From the confluence with the Llano River 257 257 287.55 FS FS 2008 Total Dissolved Solids 1406 05 500.00 AD No arm upstream to a point north of Kinglsland near Pair Lane 1406 06 From a point near Pair Lane in Kingsland 257 257 287.55 500.00 AD FS FS 2008 Total Dissolved Solids No upstream to Roy Inks Dam High pH 2008 pH 1406 01 From Alvin Wirtz Dam upstream to Granite 428 42 0 9.00 AD FS FS No Shoals 2008 1406 02 Mid-lake from Granite Shoals upstream to 368 42 0 9.00 AD FS FS No pН Highland Haven 1406 03 From Granite Shoals upstream to the Llano 268 42 0 AD FS FS 2008 9.00 No pН River confluence 2008 1406 04 Llano River arm 121 42 0 9.00 FS FS No pН AD From the confluence with the Llano River 204 42 0 FS FS 2008 pН 1406 05 9.00 AD No arm upstream to a point north of Kinglsland near Pair Lane From a point near Pair Lane in Kingsland 2008 1406 06 47 39 0 9.00 AD FS FS No pН upstream to Roy Inks Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1406 Lake Lyndon B. Johnson

Water body type:	Reservoir					Water body	size:		6,375	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed <u>Crite</u>	eria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Low pH												
2008 рН	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals	428	42	0		6.50	AD	FS	FS		No
2008 рН	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven	368	42	0		6.50	AD	FS	FS		No
2008 рН	1406_03	From Granite Shoals upstream to the Llano River confluence	268	42	0		6.50	AD	FS	FS		No
2008 pH	1406_04	Llano River arm	121	42	0		6.50	AD	FS	FS		No
2008 рН	1406_05	From the confluence with the Llano River arm upstream to a point north of Kinglsland near Pair Lane	204	42	0		6.50	AD	FS	FS		No
2008 рН	1406_06	From a point near Pair Lane in Kingsland upstream to Roy Inks Dam	47	39	0		6.50	AD	FS	FS		No

Lake Lyndon B. Johnson

Segment ID:

1406

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; O- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; O- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SM- Superceded by another method; ID- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SM- Superceded by another method; ID- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SM- Superceded by another method; ID- Adequate Data; ID- Limited Data; I

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Reservoir Water body size: 6.375 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Supp Supp Category Forward Criteria General Use Nutrient Screening Levels From Alvin Wirtz Dam upstream to Granite 39 39 2 NC 2008 Ammonia 1406 01 0.11 AD NC No Shoals 2008 1406 02 Mid-lake from Granite Shoals upstream to 40 40 0 AD NC NC No 0.11 Ammonia **Highland Haven** 1406 03 From Granite Shoals upstream to the Llano 42 2008 Ammonia 42 0.11 AD NC NC No 1 **River confluence** From a point near Pair Lane in Kingsland 2008 Ammonia 1406 06 39 39 0 0.11 AD NC NC No upstream to Roy Inks Dam 1406 01 From Alvin Wirtz Dam upstream to Granite 41 41 26.70 AD NC NC 2008 Chlorophyll-a 0 No Shoals Mid-lake from Granite Shoals upstream to 1406 02 26.70 NC 2008 Chlorophyll-a 41 41 AD NC No Highland Haven From Granite Shoals upstream to the Llano Chlorophyll-a 1406 03 41 41 26.70 AD NC NC No 2008 4 **River confluence** 2008 Chlorophyll-a 1406 06 From a point near Pair Lane in Kingsland 41 41 2 26.70 AD NC NC No upstream to Roy Inks Dam 1406 01 From Alvin Wirtz Dam upstream to Granite 42 42 NC NC No 2008 Nitrate 4 0.37 AD Shoals Mid-lake from Granite Shoals upstream to 42 42 2008 Nitrate 1406 02 5 0.37 AD NC NC No Highland Haven 2008 1406 03 From Granite Shoals upstream to the Llano 43 43 0.37 AD NC NC No Nitrate 4 **River confluence** 2008 1406 06 From a point near Pair Lane in Kingsland 40 40 0.37 AD NC NC No Nitrate upstream to Roy Inks Dam 2008 Orthophosphorus 1406 01 From Alvin Wirtz Dam upstream to Granite 41 41 0 0.05 AD NC NC No Shoals 2008 Orthophosphorus 1406 02 Mid-lake from Granite Shoals upstream to 39 39 0 0.05 AD NC NC No Highland Haven

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; IO- Assessor, Indeemat: OE- Other Information Evaluated: OS- Out-of State: AUID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1406 Lake Lyndon B. Johnson Water body type: Reservoir Water body size: 6.375 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use **Nutrient Screening Levels** 2008 Orthophosphorus 1406 03 From Granite Shoals upstream to the Llano 41 41 0 0.05 AD NC NC No River confluence From a point near Pair Lane in Kingsland 2008 Orthophosphorus 1406 06 40 40 0 0.05 AD NC NC No upstream to Roy Inks Dam $1406 \ 01$ From Alvin Wirtz Dam upstream to Granite 2008 **Total Phosphorus** 40 40 0 0.20 AD NC NC No Shoals **Total Phosphorus** 1406 02 Mid-lake from Granite Shoals upstream to 40 40 NC NC 2008 0.20 AD No Highland Haven From Granite Shoals upstream to the Llano 1406 03 40 40 0 NC 2008 **Total Phosphorus** 0.20 AD NC No River confluence From a point near Pair Lane in Kingsland 2008 **Total Phosphorus** 1406 06 39 39 1 0.20 AD NC NC No upstream to Roy Inks Dam Water Temperature From Alvin Wirtz Dam upstream to Granite 428 42 0 FS FS 2008 Temperature 1406 01 34.40 AD No Shoals Mid-lake from Granite Shoals upstream to 1406 02 381 55 0 34.40 AD FS FS No 2008 Temperature Highland Haven 2008 Temperature 1406 03 From Granite Shoals upstream to the Llano 268 42 0 34.40 AD FS FS No River confluence Llano River arm 121 42 0 34.40 AD FS FS No 2008 Temperature 1406 04 From the confluence with the Llano River 204 42 1406 05 0 34.40 AD FS FS No 2008 Temperature arm upstream to a point north of Kinglsland near Pair Lane 2008 1406 06 From a point near Pair Lane in Kingsland 47 39 0 34.40 FS FS Temperature AD No upstream to Roy Inks Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID: 1406	Lake Ly	ndon B. Johnson									
Wat	er body type: Reservoir						Water b	ody size:		6,375	А	cres
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> Category Forwar
Public	Water Supply Use	_										
Finish	ed Drinking Water Dissolved	Solids average										
2008	Multiple	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals						OE	NC	NC	No
2008	Multiple	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven						OE	NC	NC	No
2008	Multiple	1406_03	From Granite Shoals upstream to the Llano River confluence						OE	NC	NC	No
2008	Multiple	1406_04	Llano River arm						OE	NC	NC	No
2008	Multiple	1406_05	From the confluence with the Llano River arm upstream to a point north of Kinglsland near Pair Lane						OE	NC	NC	No
2008	Multiple	1406_06	From a point near Pair Lane in Kingsland upstream to Roy Inks Dam						OE	NC	NC	No
Finish	ed Drinking Water MCLs and	l Toxic Substai	nces running average									
2008	Multiple	1406_01	From Alvin Wirtz Dam upstream to Granite Shoals						OE	FS	FS	No
2008	Multiple	1406_02	Mid-lake from Granite Shoals upstream to Highland Haven						OE	FS	FS	No
2008	Multiple	1406_03	From Granite Shoals upstream to the Llano River confluence						OE	FS	FS	No
2008	Multiple	1406_04	Llano River arm						OE	FS	FS	No
2008	Multiple	1406_05	From the confluence with the Llano River arm upstream to a point north of Kinglsland near Pair Lane						OE	FS	FS	No
2008	Multiple	1406_06	From a point near Pair Lane in Kingsland upstream to Roy Inks Dam						OE	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1406 Lake Lyndon B. Johnson Water body type: Reservoir Water body size: 6,375 Acres # of # Mean of Dataset 2008 # of Integ Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward Public Water Supply Use **Finished Drinking Water MCLs Concern** 2008 From Alvin Wirtz Dam upstream to Granite OE NC Multiple 1406 01 NC No Shoals Multiple 1406 02 Mid-lake from Granite Shoals upstream to OE NC NC No 2008 Highland Haven 1406 03 From Granite Shoals upstream to the Llano OE NC 2008 Multiple NC No **River confluence** 2008 Multiple $1406 \ 04$ Llano River arm OE NC NC No Multiple 1406 05 From the confluence with the Llano River OE NC NC 2008 No arm upstream to a point north of Kinglsland near Pair Lane 2008 1406 06 From a point near Pair Lane in Kingsland OE NC Multiple NC No upstream to Roy Inks Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Lake Lyndon B. Johnson **Segment ID:** 1406 Water body type: Reservoir Water body size: 6,375 Acres # of # Mean of Dataset 2008 # of Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward **Recreation Use Bacteria Geomean** 2008 E. coli From Alvin Wirtz Dam upstream to Granite 40 40 0 1.76 FS FS 1406 01 126.00 AD No Shoals 1406 02 Mid-lake from Granite Shoals upstream to 39 39 0 2.47 126.00 AD FS FS No 2008 E. coli Highland Haven 1406 03 From Granite Shoals upstream to the Llano 42 42 5.29 2008 E. coli 0 126.00 AD FS FS No River confluence From a point near Pair Lane in Kingsland 42 2008 E. coli 1406 06 42 0 15.63 126.00 AD FS FS No upstream to Roy Inks Dam Fecal coliform 1406 01 From Alvin Wirtz Dam upstream to Granite 11 11 0 3.21 200.00 AD FS FS 2008 No Shoals Mid-lake from Granite Shoals upstream to FS 11 11 0 3.43 200.00 FS No 2008 Fecal coliform 1406 02 AD Highland Haven From Granite Shoals upstream to the Llano 2008 Fecal coliform 1406 03 11 11 0 4.30 200.00 FS No AD FS River confluence 2008 Fecal coliform 1406 06 From a point near Pair Lane in Kingsland 11 11 0 20.21 200.00 AD FS FS No upstream to Roy Inks Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; O- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; O- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SM- Superceded by another method; ID- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SM- Superceded by another method; ID- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SM- Superceded by another method; ID- Adequate Data; ID- Limited Data; I

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Lake Lyndon B. Johnson **Segment ID:** 1406 Water body type: Reservoir Water body size: 6,375 Acres # of # Mean of Dataset 2008 # of Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward **Recreation Use Bacteria Single Sample** 2008 E. coli From Alvin Wirtz Dam upstream to Granite 40 40 0 FS FS 1406 01 394.00 AD No Shoals 2008 1406 02 Mid-lake from Granite Shoals upstream to 39 39 0 394.00 AD FS FS No E. coli Highland Haven 1406 03 From Granite Shoals upstream to the Llano 42 42 2 2008 E. coli 394.00 AD FS FS No River confluence From a point near Pair Lane in Kingsland 42 2008 E. coli 1406 06 42 1 394.00 AD FS FS No upstream to Roy Inks Dam Fecal coliform 1406 01 From Alvin Wirtz Dam upstream to Granite 11 11 0 400.00 AD FS FS 2008 No Shoals Mid-lake from Granite Shoals upstream to 11 11 0 400.00 FS FS No 2008 Fecal coliform 1406 02 AD Highland Haven From Granite Shoals upstream to the Llano 2008 Fecal coliform 1406 03 11 11 0 400.00 FS No AD FS River confluence 2008 Fecal coliform 1406 06 From a point near Pair Lane in Kingsland 11 11 0 400.00 AD FS FS No upstream to Roy Inks Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1406A Sandy Creek (unclassified water body) Water body type: Freshwater Stream Water body size: # of # Mean of # of Dataset AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria **Aquatic Life Use Dissolved Oxygen 24hr average** 2 From the confluence with Lake LBJ 2 0 2006 Dissolved Oxygen 24hr Avg 1406A 01 2.00 ID upstream to SH 16 **Dissolved Oxygen 24hr minimum** 1406A 01 From the confluence with Lake LBJ 2 2006 Dissolved Oxygen 24hr Min 2 0 1.50 ID upstream to SH 16 **Dissolved Oxygen grab minimum** Dissolved Oxygen Grab From the confluence with Lake LBJ 25 25 0 1.50 2006 1406A 01 AD upstream to SH 16 **Dissolved Oxygen grab screening level** From the confluence with Lake LBJ 25 2006 Dissolved Oxygen Grab 1406A 01 25 0 2.00 AD upstream to SH 16

Gener	al Use										
Nutri	ent Screening Levels										
2006	Ammonia	1406A_01	From the confluence with Lake LBJ upstream to SH 16	31	31	0	0.33	AD	NC	NC	No
2006	Chlorophyll-a	1406A_01	From the confluence with Lake LBJ upstream to SH 16	27	27	1	14.10	AD	NC	NC	No
2006	Nitrate	1406A_01	From the confluence with Lake LBJ upstream to SH 16	30	30	0	1.95	AD	NC	NC	No
2006	Orthophosphorus	1406A_01	From the confluence with Lake LBJ upstream to SH 16	25	25	0	0.37	AD	NC	NC	No
2006	Total Phosphorus	1406A_01	From the confluence with Lake LBJ upstream to SH 16	26	26	1	0.69	AD	NC	NC	No

40

2008

<u>Supp</u>

NA

NA

FS

NC

Miles

Imp

Category Forward

Carry

No

No

No

No

Integ

Supp

NA

NA

FS

NC

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1406ASandy Creek (unclassified water body)

Water body type: Freshv	vater Stream					Wate	er body size:		40	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Recreation Use												
Bacteria Geomean												
2006 E. coli	1406A_01	From the confluence with Lake LBJ upstream to SH 16	28	28		62.00	126.00	AD	FS	FS		No
2006 Fecal coliform	1406A_01	From the confluence with Lake LBJ upstream to SH 16	12	12		30.00	200.00	SM	FS	FS		No
Bacteria Single Sample												
2006 E. coli	1406A_01	From the confluence with Lake LBJ upstream to SH 16	28	28	6		394.00	AD	FS	FS		No
2006 Fecal coliform	1406A_01	From the confluence with Lake LBJ upstream to SH 16	12	12	0		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1407

Water b	oody type: Reservoir						Water	body size:		803	A	cres	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic L	ife Use												
Dissolved	Oxygen grab minimum												
2008 Di	issolved Oxygen Grab	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	347	42	0		3.00	AD	FS	FS		No
2008 Di	issolved Oxygen Grab	1407_02	From Clear Creel Arm upstream to Buchanan Dam	55	42	5		3.00	AD	FS	FS		No
Dissolved	Oxygen grab screening level												
2008 Di	issolved Oxygen Grab	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	347	42	2		5.00	AD	NC	NC		No
2008 Di	issolved Oxygen Grab	1407_02	From Clear Creel Arm upstream to Buchanan Dam	55	42	12		5.00	AD	CS	CS		No
Toxic Sub	ostances in sediment												
2008 M	langanese	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	4	4	3		1,100.00	LD	CS	CS		No
2008 M	letals	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	4	4	0			LD	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1407

Water body type: Reservor	ir					Wate	r body size:		803	А	cres
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> Forwar
General Use											
Dissolved Solids											
2008 Chloride	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	84	84		56.25	150.00	AD	FS	FS	No
2008 Chloride	1407_02	From Clear Creel Arm upstream to Buchanan Dam	84	84		56.25	150.00	AD	FS	FS	No
2008 Sulfate	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	84	84		33.70	100.00	AD	FS	FS	No
2008 Sulfate	1407_02	From Clear Creel Arm upstream to Buchanan Dam	84	84		33.70	100.00	AD	FS	FS	No
2008 Total Dissolved Solids	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	84	84		310.80	600.00	AD	FS	FS	No
2008 Total Dissolved Solids	1407_02	From Clear Creel Arm upstream to Buchanan Dam	84	84		310.80	600.00	AD	FS	FS	No
High pH											
2008 рН	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	348	42	0		9.00	AD	FS	FS	No
2008 рН	1407_02	From Clear Creel Arm upstream to Buchanan Dam	55	42	0		9.00	AD	FS	FS	No
Low pH											
2008 pH	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	348	42	0		6.50	AD	FS	FS	No
2008 pH	1407_02	From Clear Creel Arm upstream to Buchanan Dam	55	42	0		6.50	AD	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; NC- No concern; SN- Not Spatially Representative; SN- Superceded by another method; NC- No concern; SN- Support SN- Not Spatially Representative; SN- Support SN- Not Spatially Representative; SN- Support SN- Not SN- Not Spatially Representative; SN- Support SN- Not SN- No

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1407

Wate	er body type: Reservoir	r					Water b	ody size:		803	А	cres	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	40	40	1		0.11	AD	NC	NC		No
2008	Ammonia	1407_02	From Clear Creel Arm upstream to Buchanan Dam	40	40	4		0.11	AD	NC	NC		No
2008	Chlorophyll-a	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	41	41	4		26.70	AD	NC	NC		No
2008	Chlorophyll-a	1407_02	From Clear Creel Arm upstream to Buchanan Dam	41	41	5		26.70	AD	NC	NC		No
2008	Nitrate	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	42	42	0		0.37	AD	NC	NC		No
2008	Nitrate	1407_02	From Clear Creel Arm upstream to Buchanan Dam	41	41	4		0.37	AD	NC	NC		No
2008	Orthophosphorus	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	39	39	0		0.05	AD	NC	NC		No
2008	Orthophosphorus	1407_02	From Clear Creel Arm upstream to Buchanan Dam	38	38	0		0.05	AD	NC	NC		No
2008	Total Phosphorus	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	36	36	0		0.20	AD	NC	NC		No
2008	Total Phosphorus	1407_02	From Clear Creel Arm upstream to Buchanan Dam	38	38	1		0.20	AD	NC	NC		No
Water	Temperature												
2008	Temperature	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	348	42	0		32.20	AD	FS	FS		No
2008	Temperature	1407_02	From Clear Creel Arm upstream to Buchanan Dam	55	42	0		32.20	AD	FS	FS		No

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. **Segment ID:** 1407 **Inks** Lake Water body type: 803 Reservoir Water body size: Acres # of # Mean of 2008 # of Dataset Integ Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward Public Water Supply Use Finished Drinking Water Dissolved Solids average 1407_01 From Roy Inks Dam upstream to the Clear OE NC 2008 Multiple NC No Creek Arm 1407 02 From Clear Creel Arm upstream to OE NC NC No 2008 Multiple Buchanan Dam Finished Drinking Water MCLs and Toxic Substances running average From Roy Inks Dam upstream to the Clear 2008 1407 01 OE FS FS No Multiple Creek Arm 1407 02 From Clear Creel Arm upstream to OE FS FS No 2008 Multiple Buchanan Dam **Finished Drinking Water MCLs Concern** 2008 Multiple 1407 01 From Roy Inks Dam upstream to the Clear OE NC NC No Creek Arm 1407 02 From Clear Creel Arm upstream to OE NC NC 2008 Multiple No Buchanan Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; NC- No concern; SN- Not Spatially Representative; SN- Superceded by another method; NC- No concern; SN- Support SN- Not Spatially Representative; SN- Support SN- Not Spatially Representative; SN- Support SN- Not SN- Not Spatially Representative; SN- Support SN- Not SN- No

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1407

Water	body type: Reservoir						Wate	r body size:		803	А	cres	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	Criteria	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreati	ion Use												
Bacteria	a Geomean												
2008	E. coli	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	41	41	0	1.76	126.00	AD	FS	FS		No
2008	E. coli	1407_02	From Clear Creel Arm upstream to Buchanan Dam	40	40	0	5.47	126.00	AD	FS	FS		No
2008	Fecal coliform	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	11	11	0	2.00	200.00	SM	FS	FS		No
2008	Fecal coliform	1407_02	From Clear Creel Arm upstream to Buchanan Dam	11	11	0	5.49	200.00	SM	FS	FS		No
Bacteria	a Single Sample												
2008	E. coli	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	41	41	0		394.00	AD	FS	FS		No
2008	E. coli	1407_02	From Clear Creel Arm upstream to Buchanan Dam	40	40	0		394.00	AD	FS	FS		No
2008	Fecal coliform	1407_01	From Roy Inks Dam upstream to the Clear Creek Arm	11	11	0		400.00	SM	FS	FS		No
2008	Fecal coliform	1407_02	From Clear Creel Arm upstream to Buchanan Dam	11	11	0		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Clear Creek 1407A Segment ID:

Water body type: Freshwater S	tream					Wate	er body size:		9	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum	-											
2008 Dissolved Oxygen Grab	1407A_01	From the confluence with Inks Lake upstream to FM 2341	8	8	0		2.00	TR	NA	NA		No
Dissolved Oxygen grab screening leve	el											
2008 Dissolved Oxygen Grab	1407A_01	From the confluence with Inks Lake upstream to FM 2341	8	8	0		3.00	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Clear Creek 1407A Segment ID:

Wate	er body type: Freshwater	Stream					Wate	er body size:		9	М	iles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	ıl Use	_											
Dissol	ved Solids												
2008	Chloride	1407A_01	From the confluence with Inks Lake upstream to FM 2341	7	7		21.50	150.00	JQ	NC	NC		No
2008	Sulfate	1407A_01	From the confluence with Inks Lake upstream to FM 2341	7	7		1,116.00	100.00	JQ	CN	CN		No
2008	Total Dissolved Solids	1407A_01	From the confluence with Inks Lake upstream to FM 2341	8	8		1,536.00	600.00	JQ	CN	CN		No
High p	Н												
2008	рН	1407A_01	From the confluence with Inks Lake upstream to FM 2341	8	8	0		9.00	JQ	NC	NC		No
Low p	Н												
2008	рН	1407A_01	From the confluence with Inks Lake upstream to FM 2341	8	8	6		6.50	JQ	CN	CN		No
Nutrie	nt Screening Levels												
2008	Ammonia	1407A_01	From the confluence with Inks Lake upstream to FM 2341	3	3	1		0.33	ID	NA	NA		No
2008	Chlorophyll-a	1407A_01	From the confluence with Inks Lake upstream to FM 2341	0	0	0		14.10	ID	NA	NA		No
2008	Nitrate	1407A_01	From the confluence with Inks Lake upstream to FM 2341	3	3	0		1.95	ID	NA	NA		No
2008	Orthophosphorus	1407A_01	From the confluence with Inks Lake upstream to FM 2341	0	0			0.37	ID	NA	NA		No
2008	Total Phosphorus	1407A_01	From the confluence with Inks Lake upstream to FM 2341	3	3	0		0.69	ID	NA	NA		No
Water	Temperature		-										
2008	Temperature	1407A_01	From the confluence with Inks Lake upstream to FM 2341	8	8	0		32.20	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1407A Clear Creek

Water body type: Freshw	vater Stream					Wate	r body size:		9	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Recreation Use												
Bacteria Geomean												
2008 E. coli	1407A_01	From the confluence with Inks Lake upstream to FM 2341	0	0	0		126.00	ID	NA	NA		No
Bacteria Single Sample												
2008 E. coli	1407A_01	From the confluence with Inks Lake upstream to FM 2341	0	0			394.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Reservoir						Wate	r body size:	2	3,060	A	cres	
YEAF	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquati	ic Life Use												
Dissol	ved Oxygen 24hr average												
2008	Dissolved Oxygen 24hr Avg	1408_01	Main pool near dam upstream to Flag Island area	1	1	0		5.00	ID	NA	NA		No
	ved Oxygen 24hr minimum												
2008	Dissolved Oxygen 24hr Min	1408_01	Main pool near dam upstream to Flag Island area	1	1	0		3.00	ID	NA	NA		No
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1408_01	Main pool near dam upstream to Flag Island area	677	43	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	602	42	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	430	42	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1408_04	From Paradise Point Resort area upstream to Willow Slough area	317	41	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	63	42	0		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening leve	1											
2008	Dissolved Oxygen Grab	1408_01	Main pool near dam upstream to Flag Island area	677	43	1		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	602	42	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	430	42	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1408_04	From Paradise Point Resort area upstream to Willow Slough area	317	41	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	63	42	1		5.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

Segment ID: 1408	Lake Bu	chanan										
Water body type: Reservoir						Water	body size:	2	3,060	A	cres	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use Toxic Substances in sediment	_											
2008 Metals	1408_01	Main pool near dam upstream to Flag Island area	4	4	0			LD	NC	NC		No
2008 Organics	1408_01	Main pool near dam upstream to Flag Island area	3	3				ID	NA	NA		No

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. 1408 Lake Buchanan Segment ID: Water body type: 23,060 Reservoir Water body size: Acres <u># of</u> # <u># of</u> Mean of Dataset 2008 Integ Imp Carry YEAR AU ID Assessment Area (AU) Qualifier Supp Samples 1 -Assessed Exc Assessed Criteria <u>Supp</u> Category Forward General Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	1408 nent ID: 1408	Lake Bu	chanan										
Wate	er body type: Reservoir						Water	body size:	2	3,060	А	cres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Genera	l Use	_											
Dissol	ved Solids												
2008	Chloride	1408_01	Main pool near dam upstream to Flag Island area	168	168		57.21	150.00	AD	FS	FS		No
2008	Chloride	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	168	168		57.21	150.00	AD	FS	FS		No
2008	Chloride	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	168	168		57.21	150.00	AD	FS	FS		No
2008	Chloride	1408_04	From Paradise Point Resort area upstream to Willow Slough area	168	168		57.21	150.00	AD	FS	FS		No
2008	Chloride	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	168	168		57.21	150.00	AD	FS	FS		No
2008	Sulfate	1408_01	Main pool near dam upstream to Flag Island area	168	168		33.41	100.00	AD	FS	FS		No
2008	Sulfate	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	168	168		33.41	100.00	AD	FS	FS		No
2008	Sulfate	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	168	168		33.41	100.00	AD	FS	FS		No
2008	Sulfate	1408_04	From Paradise Point Resort area upstream to Willow Slough area	168	168		33.41	100.00	AD	FS	FS		No
2008	Sulfate	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	168	168		33.41	100.00	AD	FS	FS		No
2008	Total Dissolved Solids	1408_01	Main pool near dam upstream to Flag Island area	214	214		316.29	600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	214	214		316.29	600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	214	214		316.29	600.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

Seg	ment ID: 1408	Lake Bu	chanan										
Wa	ter body type: Reservoir						Water	body size:	2	3,060	А	cres	
<u>YEA</u>	<u>R</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Gene	ral Use	_											
	lved Solids												
2008	Total Dissolved Solids	1408_04	From Paradise Point Resort area upstream to Willow Slough area	214	214		316.29	600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	214	214		316.29	600.00	AD	FS	FS		No
High	рН												
2008	рН	1408_01	Main pool near dam upstream to Flag Island area	673	42	0		9.00	AD	FS	FS		No
2008	рН	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	599	41	0		9.00	AD	FS	FS		No
2008	pН	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	429	41	0		9.00	AD	FS	FS		No
2008	рН	1408_04	From Paradise Point Resort area upstream to Willow Slough area	316	40	0		9.00	AD	FS	FS		No
2008	рН	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	62	41	0		9.00	AD	FS	FS		No
Low	рН												
2008	рН	1408_01	Main pool near dam upstream to Flag Island area	673	42	0		6.50	AD	FS	FS		No
2008	рН	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	599	41	0		6.50	AD	FS	FS		No
2008	рН	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	429	41	0		6.50	AD	FS	FS		No
2008	pН	1408_04	From Paradise Point Resort area upstream to Willow Slough area	316	40	0		6.50	AD	FS	FS		No
2008	рН	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	62	41	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

0	nent ID: 1408 er body type: Reservoir	Lake Bu	UIAIIAII				XX7_4 1 1 •		23,060	*	cres
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Water body size Mean of Assessed Criteria	e: <u>Dataset</u> <u>Qualifier</u>	2008	Integ	Imp Carry
Genera	ıl Use	_									
Nutrie	nt Screening Levels										
2008	Ammonia	1408_01	Main pool near dam upstream to Flag Island area	42	42	0	0	11 AD	NC	NC	No
2008	Ammonia	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	41	41	0	0	11 AD	NC	NC	No
2008	Ammonia	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	0	0	0	0	11 ID	NA	NA	No
2008	Ammonia	1408_04	From Paradise Point Resort area upstream to Willow Slough area	41	41	0	0	11 AD	NC	NC	No
2008	Ammonia	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	40	40	1	0	11 AD	NC	NC	No
2008	Chlorophyll-a	1408_01	Main pool near dam upstream to Flag Island area	42	42	0	26	70 AD	NC	NC	No
2008	Chlorophyll-a	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	41	41	0	26	70 AD	NC	NC	No
2008	Chlorophyll-a	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	0	0		26	70 ID	NA	NA	No
2008	Chlorophyll-a	1408_04	From Paradise Point Resort area upstream to Willow Slough area	41	41	1	26	70 AD	NC	NC	No
2008	Chlorophyll-a	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	41	41	19	26	70 AD	CS	CS	No
2008	Nitrate	1408_01	Main pool near dam upstream to Flag Island area	42	42	3	0	37 AD	NC	NC	No
2008	Nitrate	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	42	42	3	0	37 AD	NC	NC	No
2008	Nitrate	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	0	0		0	37 ID	NA	NA	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

Segn	nent ID: 1408	Lake Bu	chanan									
Wat	er body type: Reservoir						Water	body size:	2	3,060	А	cres
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carry</u> Category Forwar
Genera	al Use											
Nutrie	ent Screening Levels	-										
2008	Nitrate	1408_04	From Paradise Point Resort area upstream to Willow Slough area	42	42	3		0.37	AD	NC	NC	No
2008	Nitrate	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	41	41	4		0.37	AD	NC	NC	No
2008	Orthophosphorus	1408_01	Main pool near dam upstream to Flag Island area	41	41	0		0.05	AD	NC	NC	No
2008	Orthophosphorus	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	38	38	0		0.05	AD	NC	NC	No
2008	Orthophosphorus	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area			0		0.05	ID	NA	NA	No
2008	Orthophosphorus	1408_04	From Paradise Point Resort area upstream to Willow Slough area	38	38	0		0.05	AD	NC	NC	No
2008	Orthophosphorus	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	37	37	1		0.05	AD	NC	NC	No
2008	Total Phosphorus	1408_01	Main pool near dam upstream to Flag Island area	40	40	1		0.20	AD	NC	NC	No
2008	Total Phosphorus	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	38	38	0		0.20	AD	NC	NC	No
2008	Total Phosphorus	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area	0	0			0.20	ID	NA	NA	No
2008	Total Phosphorus	1408_04	From Paradise Point Resort area upstream to Willow Slough area	39	39	1		0.20	AD	NC	NC	No
2008	Total Phosphorus	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	40	40	1		0.20	AD	NC	NC	No

Lake Buchanan

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1408 Water body type: Reservoir Water body size: 23.060 Acres # of # # of Mean of Dataset 2008 Integ Imp Carry AU ID Assessment Area (AU) Qualifier YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward General Use Water Temperature 2008 Temperature Main pool near dam upstream to Flag Island 678 43 0 32.20 FS FS 1408 01 AD No area 1408 02 Rocky Point area, from Flag Island 602 42 0 32.20 AD FS FS No 2008 Temperature upstream to Shaw Island Park area 1408 03 From Shaw Island Park area upstream to 430 42 32.20 FS 2008 Temperature 0 AD FS No Paradise Point Resort area From Paradise Point Resort area upstream to 2008 Temperature $1408 \ 04$ 317 41 0 32.20 AD FS FS No Willow Slough area 2008 Temperature 1408 05 From the Willow Slough area upstream to 63 42 0 32.20 AD FS FS No the Headwaters near the Yancey Creek confluence

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1408	Lake Bu							-	2 0 6 0			
Water body type: Reserv	voir					Wate	r body size:	2	3,060	Ac	eres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> Forwa
ublic Water Supply Use												
Finished Drinking Water Disso	olved Solids average											
2008 Multiple	1408_01	Main pool near dam upstream to Flag Island area						OE	NC	NC		No
2008 Multiple	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area						OE	NC	NC		No
2008 Multiple	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area						OE	NC	NC		No
2008 Multiple	1408_04	From Paradise Point Resort area upstream to Willow Slough area						OE	NC	NC		No
2008 Multiple	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence						OE	NC	NC		No
Finished Drinking Water MCI	Ls and Toxic Substan	ces running average										
2008 Multiple	1408_01	Main pool near dam upstream to Flag Island area						OE	FS	FS		No
2008 Multiple	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area						OE	FS	FS		No
2008 Multiple	1408_03	From Shaw Island Park area upstream to Paradise Point Resort area						OE	FS	FS		No
2008 Multiple	1408_04	From Paradise Point Resort area upstream to Willow Slough area						OE	FS	FS		Nc
2008 Multiple	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence						OE	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:	1408	Lake Bu	chanan										
Water body type	Reservoir						Wate	r body size:	2	3,060	А	cres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Public Water Supply	y Use												
Finished Drinking	Water MCLs Con	icern											
2008 Multiple		1408_01	Main pool near dam upstream to Flag Island area						OE	NC	NC		No
2008 Multiple		1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area						OE	NC	NC		No
2008 Multiple		1408_03	From Shaw Island Park area upstream to Paradise Point Resort area						OE	NC	NC		No
2008 Multiple		1408_04	From Paradise Point Resort area upstream to Willow Slough area						OE	NC	NC		No
2008 Multiple		1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence						OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

Segm	ent ID: 1408	Lake Bu	chanan									
Wate	r body type: Reservoir						Wate	er body size:	2	3,060	Ac	eres
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> Category Forward
Recreat	tion Use	-										
Bacteri	ia Geomean											
2008	E. coli	1408_01	Main pool near dam upstream to Flag Island area	38	38	0	0.79	126.00	AD	FS	FS	No
2008	E. coli	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	38	38	0	1.05	126.00	AD	FS	FS	No
2008	E. coli	1408_04	From Paradise Point Resort area upstream to Willow Slough area	42	42	0	1.45	126.00	AD	FS	FS	No
2008	E. coli	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	41	41	0	2.59	126.00	AD	FS	FS	No
2008	Fecal coliform	1408_01	Main pool near dam upstream to Flag Island area	11	11	0	1.03	200.00	SM	FS	FS	No
2008	Fecal coliform	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	11	11	0	0.80	200.00	SM	FS	FS	No
2008	Fecal coliform	1408_04	From Paradise Point Resort area upstream to Willow Slough area	11	11	0	1.66	200.00	SM	FS	FS	No
2008	Fecal coliform	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	11	11	0	3.37	200.00	SM	FS	FS	No

Lake Buchanan

Segment ID:

1408

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; ID- Accesser Indexprese Indexpresentative; SM- Superceded by another method;

Wate	r body type: Reservoir						Water b	ody size:	2	3,060	A	cres	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> Forwar
Recreat	tion Use	_											
Bacteri	ia Single Sample												
2008	E. coli	1408_01	Main pool near dam upstream to Flag Island area	38	38	0		394.00	AD	FS	FS		No
2008	E. coli	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	38	38	0		394.00	AD	FS	FS		No
2008	E. coli	1408_04	From Paradise Point Resort area upstream to Willow Slough area	42	42	0		394.00	AD	FS	FS		No
2008	E. coli	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	41	41	0		394.00	AD	FS	FS		No
2008	Fecal coliform	1408_01	Main pool near dam upstream to Flag Island area	11	11	0		400.00	SM	FS	FS		No
2008	Fecal coliform	1408_02	Rocky Point area, from Flag Island upstream to Shaw Island Park area	11	11	0		400.00	SM	FS	FS		No
2008	Fecal coliform	1408_04	From Paradise Point Resort area upstream to Willow Slough area	11	11	0		400.00	SM	FS	FS		No
2008	Fecal coliform	1408_05	From the Willow Slough area upstream to the Headwaters near the Yancey Creek confluence	11	11	0		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wata	er body type: Freshwater St	troom					Weter	hady sizes		37	N	liles	
watt	er bouy type. Freshwater S	tream						body size:					
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquati	c Life Use												
Dissol	ved Oxygen 24hr average												
2008	Dissolved Oxygen 24hr Avg	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		5.00	ID	NA	NA		No
2008	Dissolved Oxygen 24hr Avg	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	10	10	0		5.00	AD	FS	FS		No
Dissol	ved Oxygen 24hr minimum												
2008	Dissolved Oxygen 24hr Min	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		3.00	ID	NA	NA		No
2008	Dissolved Oxygen 24hr Min	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	10	10	0		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		3.00	ID	NA	NA		No
2008	Dissolved Oxygen Grab	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	40	40	0		3.00	SM	FS	FS		No
Dissol	ved Oxygen grab screening leve	el											
2008	Dissolved Oxygen Grab	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		5.00	ID	NA	NA		No
2008	Dissolved Oxygen Grab	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	40	40	0		5.00	SM	NC	NC		No

River

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1409	Colorad	o River Above Lake Buchanan										
Water body type: Freshwater	Stream					Wate	er body size:		37	Mi	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use	_											
Fish Community												
2008 Fish Community	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	7	7		48.50	42.00	AD	FS	FS		No
Habitat												
2008 Habitat	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	5	5		21.50	20.00	AD	NC	NC		No
Macrobenthic Community												
2008 Macrobenthic Community	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	7	7		35.60	29.00	AD	FS	FS		No
Toxic Substances in sediment												
2008 Metals	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	3	3	0			ID	NA	NA		No
2008 Organics	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba	3	3	0			ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers; AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers; AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; SN- Supp

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1409 **Colorado River Above Lake Buchanan** Water body type: Freshwater Stream Water body size: 37 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Supp <u>Supp</u> Category Forward Criteria General Use **Dissolved Solids** 43 50.13 From the Yancey Creek confluence 43 FS FS 2008 Chloride 1409 01 200.00 AD No upstream to the confluence with Cherokee Creek From the confluence with Cherokee Creek 43 50.13 2008 Chloride 1409 02 43 200.00 AD FS FS No upstream to the confluence of the San Saba River 1409 01 From the Yancey Creek confluence 43 43 29.14 200.00 AD FS FS 2008 Sulfate No upstream to the confluence with Cherokee Creek 2008 Sulfate 1409 02 From the confluence with Cherokee Creek 43 43 29.14 200.00 AD FS FS No upstream to the confluence of the San Saba River 2008 Total Dissolved Solids 1409 01 From the Yancey Creek confluence 400 400 410.96 900.00 AD FS FS No upstream to the confluence with Cherokee Creek Total Dissolved Solids 1409 02 From the confluence with Cherokee Creek 400 400 410.96 900.00 AD FS FS 2008 No upstream to the confluence of the San Saba River High pH 2008 pH 1409 01 From the Yancey Creek confluence 1 1 0 9.00 ID NA NA No upstream to the confluence with Cherokee Creek From the confluence with Cherokee Creek 2008 pН 1409 02 41 41 0 9.00 AD FS FS No upstream to the confluence of the San Saba River

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1409Colorado River Above Lake Buchanan

Water body type: Freshwater Stream					Water body size: 37				Miles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Low pH												
2008 рН	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		6.50	ID	NA	NA		No
2008 рН	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	41	41	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; ID- Accesser Indexprese Indexpresentative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1409	Colorad	o River Above Lake Buchanan										
Water body type: Fresh	water Stream					Wate	er body size:		37	Μ	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carr</u> Forwa
General Use												
Nutrient Screening Levels												
2008 Ammonia	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	0	0			0.33	ID	NA	NA		No
2008 Ammonia	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	42	42	0		0.33	AD	NC	NC		No
2008 Chlorophyll-a	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	1		14.10	ID	NA	NA		No
2008 Chlorophyll-a	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	41	41	10		14.10	AD	NC	NC		No
2008 Nitrate	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		1.95	ID	NA	NA		No
2008 Nitrate	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	41	41	0		1.95	AD	NC	NC		No
2008 Orthophosphorus	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	0	0			0.37	ID	NA	NA		No
2008 Orthophosphorus	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	40	40	0		0.37	AD	NC	NC		N
2008 Total Phosphorus	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		0.69	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1409Colorado River Above Lake Buchanan

Water body type: Fres	hwater Stream					Water	· body size:		37	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Nutrient Screening Levels2008Total Phosphorus	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	41	41	0		0.69	AD	NC	NC		No
Water Temperature												
2008 Temperature	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		32.80	ID	NA	NA		No
2008 Temperature	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	42	42	0		32.80	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID: 1409	Colorado) River Above Lake Buchanan									
Wat	er body type: Freshwater S	Stream					Water	body size:		37	М	iles
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> Category Forward
Public	Water Supply Use	-										
Finish	ed Drinking Water Dissolved S	Solids average										
2008	Multiple	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek						OE	NC	NC	No
2008	Multiple	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River						OE	NC	NC	No
Finish	ed Drinking Water MCLs and	Toxic Substar	ices running average									
2008	Multiple	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek						OE	FS	FS	No
2008	Multiple	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River						OE	FS	FS	No
Finish	ed Drinking Water MCLs Cor	icern										
2008	Multiple	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek						OE	NC	NC	No
2008	Multiple	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River						OE	NC	NC	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; ID- Accesser Indexprese Indexpresentative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Freshwate	er Stream					Wate	er body size:		37	M	iles
YEAR	L	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carry</u> Category Forwar
Recrea	tion Use											
Bacter	ria Geomean											
2008	E. coli	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0	16.00	126.00	ID	NA	NA	No
2008	E. coli	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	42	42	0	59.64	126.00	AD	FS	FS	No
2008	Fecal coliform	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0	23.00	200.00	ID	NA	NA	No
2008	Fecal coliform	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	11	11	0	42.25	200.00	SM	FS	FS	No
Bacter	ria Single Sample											
2008	E. coli	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		394.00	ID	NA	NA	No
2008	E. coli	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	42	42	4		394.00	AD	FS	FS	No
2008	Fecal coliform	1409_01	From the Yancey Creek confluence upstream to the confluence with Cherokee Creek	1	1	0		400.00	ID	NA	NA	No
2008	Fecal coliform	1409_02	From the confluence with Cherokee Creek upstream to the confluence of the San Saba River	11	11	1		400.00	SM	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1409ACherokee Creek (unclassified water body)

Wate	er body type: Freshwater Stre	am					Water	body size:		40	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forware
Aquati	ic Life Use												
Dissol	ved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	10	10	0		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	10	10	0		5.00	AD	NC	NC		No
Genera	al Use												
Nutrie	ent Screening Levels												
2006	Ammonia	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	10	10	0		0.33	AD	NC	NC		No
2006	Chlorophyll-a	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	11	11	0		14.10	AD	NC	NC		No
2006	Nitrate	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	11	11	0		1.95	AD	NC	NC		No
2006	Orthophosphorus	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	9	9	0		0.37	LD	NC	NC		No
2006	Total Phosphorus	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	10	10	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1409ACherokee Creek (unclassified water body)

Water body type: Fre	shwater Stream					Wate	er body size:		40	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Recreation Use												
Bacteria Geomean												
2006 E. coli	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	11	11		28.00	126.00	AD	FS	FS		No
2006 Fecal coliform	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	4	4		90.00	200.00	SM	NC	NC		No
Bacteria Single Sample												
2006 E. coli	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	11	11	1		394.00	AD	FS	FS		No
2006 Fecal coliform	1409A_01	From the confluence with the Colorado River in San Saba County upstream to SH 16 north of Cherokee	4	4	1		400.00	SM	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type:	Freshwater Stre	eam					Water	· body size:		138	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use													
Acute Toxic Substance	es in water												
2006 Metals		1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	6	6	0			LD	NC	NC		No
2006 Metals		1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	5	5	0			LD	NC	NC		No
Chronic Toxic Substa	nces in water												
2006 Metals		1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	6	6				LD	NC	NC		No
2006 Metals		1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	5	5				LD	NC	NC		No
Dissolved Oxygen 24h	r average												
2008 Dissolved Oxy	gen 24hr Avg	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	1		5.00	LD	NC	NC		No
2008 Dissolved Oxy	gen 24hr Avg	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	3	3	1		5.00	ID	NA	NA		No
Dissolved Oxygen 24h	r minimum												
2008 Dissolved Oxy	gen 24hr Min	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	1		3.00	LD	NC	NC		No
2008 Dissolved Oxy	gen 24hr Min	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	3	3	1		3.00	ID	NA	NA		No
Dissolved Oxygen gra	b minimum		-										
2008 Dissolved Oxy	gen Grab	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0		3.00	LD	NC	NC		No
2008 Dissolved Oxy	gen Grab	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	59	58	0		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	0		3.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater Stre	eam					Water	body size:		138	М	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquati	c Life Use												
Dissol	ved Oxygen grab screening level												
2008	Dissolved Oxygen Grab	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0		5.00	LD	NC	NC		No
2008	Dissolved Oxygen Grab	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	59	58	1		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	0		5.00	AD	NC	NC		No
Toxic	Substances in sediment												
2008	Metals	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	4	4	0			LD	NC	NC		No
2006	Metals	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	1	1	0			ID	NA	NA		No
2008	Organics	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	2	2	0			ID	NA	NA		No
Fish Co	onsumption Use												
HH Bi	ioaccumulative Toxics in water												
2006	Multiple	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	6	6	0			LD	NC	NC		No
2006	Multiple	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	6	6				LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater	Stream					Wate	r body size:		138	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use	_											
Dissol	ved Solids												
2008	Chloride	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	90	90		255.43	500.00	AD	FS	FS		No
2008	Chloride	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	90	90		255.43	500.00	AD	FS	FS		No
2008	Chloride	1410_03	From the confluence of Home Creek upstream to the confluence of Bull Creek	90	90		255.43	500.00	AD	FS	FS		No
2008	Chloride	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	90	90		255.43	500.00	AD	FS	FS		No
2008	Sulfate	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	90	90		174.65	455.00	AD	FS	FS		No
2008	Sulfate	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	90	90		174.65	455.00	AD	FS	FS		No
2008	Sulfate	1410_03	From the confluence of Home Creek upstream to the confluence of Bull Creek	90	90		174.65	455.00	AD	FS	FS		No
2008	Sulfate	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	90	90		174.65	455.00	AD	FS	FS		No
2008	Total Dissolved Solids	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	453	453		945.03	1,475.00	AD	FS	FS		No
2008	Total Dissolved Solids	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	453	453		945.03	1,475.00	AD	FS	FS		No
2008	Total Dissolved Solids	1410_03	From the confluence of Home Creek upstream to the confluence of Bull Creek	453	453		945.03	1,475.00	AD	FS	FS		No
2008	Total Dissolved Solids	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	453	453		945.03	1,475.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below O. H. Ivie Reservoir Segment ID: 1410

Water body type:	Freshwater Stream					Water	body size:		138	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
High pH												
2008 рН	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0		9.00	LD	NC	NC		No
2008 рН	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	59	58	0		9.00	AD	FS	FS		No
2008 рН	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0		6.50	LD	NC	NC		No
2008 рН	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	59	58	0		6.50	AD	FS	FS		No
2008 рН	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwate	er Stream					Water	· body size:		138	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	1	1	0		0.33	ID	NA	NA		No
2008	Ammonia	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	56	56	0		0.33	AD	NC	NC		No
2008	Ammonia	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	1		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	5		14.10	LD	CS	CS		No
2008	Chlorophyll-a	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	58	58	12		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	4		14.10	AD	NC	NC		No
2008	Nitrate	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	1	1	0		1.95	ID	NA	NA		No
2008	Nitrate	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	58	58	0		1.95	AD	NC	NC		No
2008	Nitrate	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	0		1.95	AD	NC	NC		No
2008	Orthophosphorus	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	1	1	0		0.37	ID	NA	NA		No
2008	Orthophosphorus	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	58	58	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	23	23	0		0.37	AD	NC	NC		No
2008	Total Phosphorus	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0		0.69	LD	NC	NC		No
2008	Total Phosphorus	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	54	54	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwa	ater Stream					Water	body size:		138	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Nutrient Screening Levels2008Total Phosphorus	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	24	24	0		0.69	AD	NC	NC		No
Water Temperature												
2008 Temperature	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0		32.80	LD	NC	NC		No
2008 Temperature	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	60	59	0		32.80	AD	FS	FS		No
2008 Temperature	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	35	35	1		32.80	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type:	Freshwater Stream					Wate	r body size:		138	М	iles	
YEAR	<u>t</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Public	Water Supply	Use											
Finish	ed Drinking Wa	ater Dissolved Solids average											
2008	Multiple	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek						OE	NC	NC		No
2008	Multiple	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek						OE	NC	NC		No
2008	Multiple	1410_03	From the confluence of Home Creek upstream to the confluence of Bull Creek						OE	NC	NC		No
2008	Multiple	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam						OE	NC	NC		No
Finish	ed Drinking Wa	ater MCLs and Toxic Substan	ices running average										
2008	Multiple	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek						OE	FS	FS		No
2008	Multiple	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek						OE	FS	FS		No
2008	Multiple	1410_03	From the confluence of Home Creek upstream to the confluence of Bull Creek						OE	FS	FS		No
2008	Multiple	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam						OE	FS	FS		No
Finish	ed Drinking Wa	ater MCLs Concern											
2008	Multiple	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek						OE	NC	NC		No
2008	Multiple	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek						OE	NC	NC		No
2008	Multiple	1410_03	From the confluence of Home Creek upstream to the confluence of Bull Creek						OE	NC	NC		No
2008	Multiple	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam						OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below O. H. Ivie Reservoir Segment ID: 1410

Wat	er body type: Freshwater Str	eam					Wate	· body size:		138	М	iles	
<u>YEA</u> F	<u>R</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Public	Water Supply Use												
Surfa	ce Water HH criteria for PWS av	verage											
2006	Multiple	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	15	15				AD	FS	FS		No
2006	Multiple	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	15	15				AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Fresh	water Stream					Wate	er body size:		138	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Recreation Use												
Bacteria Geomean												
2008 E. coli	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0	45.88	126.00	LD	NC	NC		No
2008 E. coli	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	55	55	0	26.12	126.00	AD	FS	FS		No
2008 E. coli	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	20	20	0	27.22	126.00	AD	FS	FS		No
2008 Enterococcus	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	1	1	0	32.00	35.00	ID	NA	NA		No
2008 Fecal coliform	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	5	5	0	57.39	200.00	LD	NC	NC		No
2008 Fecal coliform	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	23	23	0	38.02	200.00	SM	FS	FS		No
2008 Fecal coliform	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	13	13	0	45.88	200.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Fresh	water Stream					Water	body size:		138	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Recreation Use												
Bacteria Single Sample												
2008 E. coli	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	6	6	0		394.00	LD	NC	NC		No
2008 E. coli	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	55	55	4		394.00	AD	FS	FS		No
2008 E. coli	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	20	20	1		394.00	AD	FS	FS		No
2008 Enterococcus	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	1	1	0		89.00	ID	NA	NA		No
2008 Fecal coliform	1410_01	From the confluence of the San Saba River upstream to the confluence of Indian Creek	5	5	0		400.00	LD	NC	NC		No
2008 Fecal coliform	1410_02	From the confluence of Indian Creek upstream to the confluence of Home Creek	23	23	1		400.00	SM	FS	FS		No
2008 Fecal coliform	1410_04	From the confluence of Bull Creek upstream to O.H. Ivie Reservoir dam	13	13	0		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: F	Reservoir					Water	body size:	1	4,950	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab	minimum											
2008 Dissolved Oxyge	en Grab 1411_01	Main pool from the dam upstream to the Rough Creek confluence area	130	24	0		3.00	AD	FS	FS		No
2008 Dissolved Oxyge	n Grab 1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	12	12	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab	screening level											
2008 Dissolved Oxyge	en Grab 1411_01	Main pool from the dam upstream to the Rough Creek confluence area	130	24	0		5.00	AD	NC	NC		No
2008 Dissolved Oxyge	m Grab 1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	12	12	0		5.00	AD	NC	NC		No
Toxic Substances in sedi	iment											
2008 Organics	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	1	1	0			ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Reservoir						Wate	er body size:	1	4,950	А	cres	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use	_											
Dissol	ved Solids												
2008	Chloride	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	33	33		944.52	950.00	AD	FS	FS		No
2008	Chloride	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	33	33		944.52	950.00	AD	FS	FS		No
2008	Sulfate	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	33	33		663.00	450.00	AD	NS	NS	4a	No
2008	Sulfate	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	33	33		663.00	450.00	AD	NS	NS	4a	No
2008	Total Dissolved Solids	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	34	34		2,486.11	1,500.00	AD	NS	NS	4a	No
2008	Total Dissolved Solids	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	34	34		2,486.11	1,500.00	AD	NS	NS	4a	No
Fish k	Cill Reports												
2008	Golden Alga	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	4	4				OE	CN	CN		No
2008	Golden Alga	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	4	4				OE	CN	CN		No
High J	эH												
2008	рН	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	130	24	0		9.00	AD	FS	FS		No
2008	рН	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	11	11	0		9.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type:	Reservoir					Wate	r body size:	1	4,950	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
General Use												
Low pH												
2008 рН	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	130	24	0		6.50	AD	FS	FS		No
2008 рН	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	11	11	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Reservoir						Water	r body size:	1	4,950	A	cres	
<u>YEA</u> F	<u>R</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Gener	al Use												
Nutri	ent Screening Levels												
2008	Ammonia	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	23	23	1		0.11	AD	NC	NC		No
2008	Ammonia	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	10	10	1		0.11	AD	NC	NC		No
2008	Chlorophyll-a	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	23	23	7		26.70	AD	CS	CS		No
2008	Chlorophyll-a	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	10	10	1		26.70	AD	NC	NC		No
2008	Nitrate	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	24	24	1		0.37	AD	NC	NC		No
2008	Nitrate	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	11	11	1		0.37	AD	NC	NC		No
2008	Orthophosphorus	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	23	23	0		0.05	AD	NC	NC		No
2008	Orthophosphorus	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	10	10	0		0.05	AD	NC	NC		No
2008	Total Phosphorus	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	23	23	2		0.20	AD	NC	NC		No
2008	Total Phosphorus	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	10	10	1		0.20	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Reservoir						Water	· body size:	1	4,950	А	cres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	nl Use												
Water	Temperature												
2008	Temperature	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	135	25	0		33.90	AD	FS	FS		No
2008	Temperature	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	12	12	0		33.90	AD	FS	FS		No
Public	Water Supply Use												
Finish	ed Drinking Water Dissolved So	lids average											
2008	Chloride	1411_01	Main pool from the dam upstream to the Rough Creek confluence area					300.00	OE	NC	NC		No
2008	Chloride	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek					300.00	OE	NC	NC		No
2008	Sulfate	1411_01	Main pool from the dam upstream to the Rough Creek confluence area					300.00	OE	NC	NC		No
2008	Sulfate	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek					300.00	OE	NC	NC		No
Finish	ed Drinking Water MCLs and T	oxic Substar	nces running average										
2008	Multiple	1411_01	Main pool from the dam upstream to the Rough Creek confluence area						OE	FS	FS		No
2008	Multiple	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek						OE	FS	FS		No
Finish	ed Drinking Water MCLs Conce	ern											
2008	Multiple	1411_01	Main pool from the dam upstream to the Rough Creek confluence area						OE	NC	NC		No
2008	Multiple	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek						OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Reservor	ir					Wate	er body size:	1	4,950	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Recreation Use												
Bacteria Geomean												
2008 E. coli	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	22	22	0	1.15	126.00	AD	FS	FS		No
2008 E. coli	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	5	5	0	123.07	126.00	LD	NC	NC		No
Bacteria Single Sample												
2008 E. coli	1411_01	Main pool from the dam upstream to the Rough Creek confluence area	22	22	0		394.00	AD	FS	FS		No
2008 E. coli	1411_02	From the Rough Creek confluence area upstream to the confluence of Little Silver Creek	5	5	1		394.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas Segment ID: 1412 Water body type: 99 Freshwater Stream Water body size: Miles <u># of</u> # <u># of</u> Mean of 2008 Dataset Integ Imp Carry YEAR AU ID Assessment Area (AU) Qualifier Samples 5 1 Assessed Exc Assessed Criteria <u>Supp</u> <u>Supp</u> Category Forward

Aquatic Life Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water b	body type: Freshwater St	tream					Wate	r body size:		99	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Li	ife Use												
Acute Toy	xic Substances in water												
2006 Al	luminum	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	3	3	0		991.00	ID	NA	NA		No
2006 AI	luminum	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	9	9	0		991.00	LD	NC	NC		No
2006 Ai	rsenic	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	13	13	0		360.00	AD	FS	FS		No
2006 Ai	rsenic	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		360.00	AD	FS	FS		No
2006 Ca	admium	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	17	17	0		252.05	AD	FS	FS		No
2006 Ca	admium	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		252.05	AD	FS	FS		No
2006 Cł	hromium	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	14	14	0		2,412.96	AD	FS	FS		No
2006 Cł	hromium	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		2,412.96	AD	FS	FS		No
2006 Co	opper	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	12	12			101.24	AD	FS	FS		No
2006 Co	opper	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		101.24	AD	FS	FS		No
2006 Le	ead	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	15	15	0		725.36	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water b	oody type: Freshwater S	tream					Water	body size:		99	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquatic Li	ife Use												
Acute Tox	xic Substances in water												
2006 Le	ead	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		725.36	AD	FS	FS		No
2006 Ni	ickel	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	3	3	0		6,535.37	ID	NA	NA		No
2006 Ni	ickel	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		6,535.37	AD	FS	FS		No
2006 Se	elenium	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	7	7	0		20.00	LD	NC	NC		No
2006 Sil	lver	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	17	17	0		0.80	AD	FS	FS		No
2006 Sil	lver	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		0.80	AD	FS	FS		No
2006 Zin	nc	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	17	17	0		529.68	AD	FS	FS		No
2006 Zin	nc	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10	0		529.68	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater St	ream					Wate	r body size:		99	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	c Life Use												
Chron	ic Toxic Substances in water												
2006	Arsenic	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	13	13		3.88	190.00	AD	FS	FS		No
2006	Arsenic	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		6.73	190.00	AD	FS	FS		No
2006	Cadmium	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	17	17		0.14	4.27	AD	FS	FS		No
2006	Cadmium	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		2.60	4.27	AD	FS	FS		No
2006	Chromium	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	14	14		0.66	782.74	AD	FS	FS		No
2006	Chromium	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		2.29	782.74	AD	FS	FS		No
2006	Copper	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	12	12		0.99	57.60	AD	FS	FS		No
2006	Copper	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		7.39	57.60	AD	FS	FS		No
2006	Lead	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	15	15		0.71	25.18	AD	FS	FS		No
2006	Lead	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		2.13	25.18	AD	FS	FS		No
2006	Nickel	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	3	3		1.05	725.81	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas Segment ID: 1412

Wat	er body type: Freshwater St	ream					Wate	r body size:		99	Μ	liles	
YEAF	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquati	ic Life Use												
Chror	ic Toxic Substances in water												
2006	Nickel	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		6.75	725.81	AD	FS	FS		No
2006	Selenium	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	7	7		7.61	5.00	LD	FS	FS		No
2006	Zinc	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	17	17		31.62	483.68	AD	FS	FS		No
2006	Zinc	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		3.05	483.68	AD	FS	FS		No
Dissol	ved Oxygen 24hr average		1 1										
2008	Dissolved Oxygen 24hr Avg	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	3	3	1		3.00	ID	NA	NA		No
Dissol	ved Oxygen 24hr minimum												
2008	Dissolved Oxygen 24hr Min	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	3	3	1		3.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater Str	eam					Water	body size:		99	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	ic Life Use												
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	154	154	1		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	89	89	2		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	76	76	1		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	64	64	1		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	64	64	1		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening level												
2008	Dissolved Oxygen Grab	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	154	154	5		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	89	89	11		5.00	AD	CS	CS		No
2008	Dissolved Oxygen Grab	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	76	76	3		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	64	64	6		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	64	64	4		5.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas Segment ID: 1412

Wat	er body type: Freshwater Stre	eam					Water	body size:		99	М	iles
YEAF	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Carr Category Forw
Aquat	ic Life Use											
Toxic	Substances in sediment											
2008	Metals	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	2	2	0			ID	NA	NA	No
Fish C	onsumption Use											
HH B	ioaccumulative Toxics in water											
2006	Chromium	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	12	12		0.73	3,320.00	AD	FS	FS	No
2006	Chromium	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		2.28	3,320.00	AD	FS	FS	No
2006	Lead	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	14	14		0.73	25.30	AD	FS	FS	No
2006	Lead	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	10	10		2.13	25.30	AD	FS	FS	Nc

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas Segment ID: 1412 Water body type: 99 Freshwater Stream Water body size: Miles <u># of</u> # <u># of</u> Mean of 2008 Dataset Integ Imp Carry YEAR AU ID Assessment Area (AU) Qualifier Samples 5 1 Assessed Exc Assessed Criteria <u>Supp</u> <u>Supp</u> Category Forward

General Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water	body type: Freshwater	Stream						r body size:		99	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
General	Use	_											
Dissolve	d Solids												
2008 (Chloride	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	429	429		2,343.91	11,000.00	AD	FS	FS		No
2008 (Chloride	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	429	429		2,343.91	11,000.00	AD	FS	FS		No
2008 (Chloride	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	429	429		2,343.91	11,000.00	AD	FS	FS		No
2008 (Chloride	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	429	429		2,343.91	11,000.00	AD	FS	FS		No
2008 (Chloride	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	429	429		2,343.91	11,000.00	AD	FS	FS		No
2008 S	Sulfate	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	430	430		957.67	2,500.00	AD	FS	FS		No
2008 S	Sulfate	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	430	430		957.67	2,500.00	AD	FS	FS		No
2008 S	Sulfate	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	430	430		957.67	2,500.00	AD	FS	FS		No
2008 S	Sulfate	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	430	430		957.67	2,500.00	AD	FS	FS		No
2008 S	Sulfate	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	430	430		957.67	2,500.00	AD	FS	FS		No
2008 Т	Fotal Dissolved Solids	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	460	460		5,134.16	20,000.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas Segment ID: 1412

Wate	er body type: Freshwater	Stream					Wate	er body size:		99	Μ	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	ıl Use	_											
Dissol 2008	ved Solids Total Dissolved Solids	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	460	460		5,134.16	20,000.00	AD	FS	FS		No
2008	Total Dissolved Solids	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	460	460		5,134.16	20,000.00	AD	FS	FS		No
2008	Total Dissolved Solids	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	460	460		5,134.16	20,000.00	AD	FS	FS		No
2008	Total Dissolved Solids	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	460	460		5,134.16	20,000.00	AD	FS	FS		No
High p	θH												
2008	рН	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	149	149	0		9.00	AD	FS	FS		No
2008	pH	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	84	84	0		9.00	AD	FS	FS		No
2008	рН	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	67	67	0		9.00	AD	FS	FS		No
2008	рН	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	63	63	0		9.00	AD	FS	FS		No
2008	pH	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	47	47	0		9.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas Segment ID: 1412

Water body type:	Freshwater Stream					Water	body size:		99	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> <u>Forward</u>
General Use												
Low pH												
2008 рН	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	149	149	0		6.50	AD	FS	FS		No
2008 рН	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	84	84	0		6.50	AD	FS	FS		No
2008 рН	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	67	67	0		6.50	AD	FS	FS		No
2008 рН	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	63	63	0		6.50	AD	FS	FS		No
2008 рН	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	47	47	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	r body type: Freshwate	er Stream					Water	· body size:		99	М	iles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General	l Use	_											
Nutrie	nt Screening Levels												
2008	Ammonia	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	27	27	0		0.33	AD	NC	NC		No
2008	Ammonia	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	26	26	1		0.33	AD	NC	NC		No
2008	Ammonia	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	13	13	0		0.33	AD	NC	NC		No
2008	Ammonia	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	0	0	0		0.33	ID	NA	NA		No
2008	Ammonia	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	0	0			0.33	ID	NA	NA		No
008	Chlorophyll-a	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	11	11	8		14.10	AD	CS	CS		No
.008	Chlorophyll-a	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	25	25	18		14.10	AD	CS	CS		No
.008	Chlorophyll-a	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	11	11	9		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	0	0	0		14.10	ID	NA	NA		No
2008	Chlorophyll-a	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	0	0			14.10	ID	NA	NA		No
2008	Nitrate	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	88	88	0		1.95	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas Segment ID: 1412

Wate	er body type: Freshwat	er Stream					Water	r body size:		99	Μ	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwai
Genera	al Use												
	ent Screening Levels												
2008	Nitrate	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	55	55	1		1.95	AD	NC	NC		No
2008	Nitrate	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	45	45	3		1.95	AD	NC	NC		No
2008	Nitrate	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	29	29	0		1.95	AD	NC	NC		No
2008	Nitrate	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	29	29	0		1.95	AD	NC	NC		No
2008	Orthophosphorus	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	25	25	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	25	25	2		0.37	AD	NC	NC		No
2008	Orthophosphorus	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	12	12	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	0	0	0		0.37	ID	NA	NA		No
2008	Orthophosphorus	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	0	0			0.37	ID	NA	NA		No
2008	Total Phosphorus	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	13	13	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	25	25	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Lake J. B. Thomas 1412 Segment ID:

Wate	r body type: Freshwate	er Stream					Water	body size:		99	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General	Use												
Nutrier	nt Screening Levels												
2008	Total Phosphorus	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	13	13	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	0	0	0		0.69	ID	NA	NA		No
2008	Total Phosphorus	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	0	0			0.69	ID	NA	NA		No
Water '	Temperature												
2008	Temperature	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	164	164	0		33.90	AD	FS	FS		No
2008	Temperature	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	109	109	0		33.90	AD	FS	FS		No
2008	Temperature	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	88	88	0		33.90	AD	FS	FS		No
2008	Temperature	1412_04	From the confluence of Deep Creek upstream to the Confluence of Willow Creek	63	63	0		33.90	AD	FS	FS		No
2008	Temperature	1412_05	From the confluence of Willow Creek upstream to Lake J.B. Thomas dam	49	49	0		33.90	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1412 Colorado River Below Lake J. B. Thomas

Wat	er body type: Freshwa	ater Stream					Wate	er body size:		99	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recrea	tion Use												
Bacter	ria Geomean												
2008	E. coli	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	14	14	0	27.70	126.00	AD	FS	FS		No
2008	E. coli	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	18	18	1	170.80	126.00	AD	NS	NS	5c	No
2008	E. coli	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	15	15	0	53.71	126.00	AD	FS	FS		No
2008	Enterococcus	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	1	1	1	470.00	35.00	ID	NA	NA		No
2008	Fecal coliform	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	15	15	0	78.29	200.00	SM	NA	NA		No
Bacter	ria Single Sample												
2008	E. coli	1412_01	From the confluence of Little Silver Creek upstream to the confluence of Beals Creek	14	14	0		394.00	AD	FS	FS		No
2008	E. coli	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	18	18	8		394.00	AD	NS	NS	5c	No
2008	E. coli	1412_03	From the dam below Barber Reservoir pump station upstream to the confluence of Deep Creek	15	15	2		394.00	AD	FS	FS		No
2008	Enterococcus	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	1	1	1		89.00	ID	NA	NA		No
2008	Fecal coliform	1412_02	From the confluence of Beals Creek upstream to the dam below Barber Reservoir pump station	15	15	4		400.00	SM	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; DA- Access bed represented by the formation in t

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1412ALake Colorado City (unclassified water body)

Water body type: Reservoir						Water	· body size:		1,612	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Metals	1412A_01	Entire water body	2	2	0			ID	NA	NA		No
Chronic Toxic Substances in water												
2006 Metals	1412A_01	Entire water body	2	2				ID	NA	NA		No
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab		Entire water body	36	36	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1412A_01	Entire water body	36	36	0		5.00	AD	NC	NC		No
Toxic Substances in sediment												
2006 Manganese	1412A_01	Entire water body	2	2	1		1,100.00	ID	NA	NA		No
2006 Metals	1412A_01	Entire water body	2	2	0			ID	NA	NA		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Multiple	1412A_01	Entire water body	2	2				ID	NA	NA		No
General Use												
Fish Kill Reports												
2006 Golden Alga	1412A_01	Entire water body	3	3				OE	CN	CN		No
Nutrient Screening Levels												
2006 Ammonia	1412A_01	Entire water body	4	4	0		0.11	LD	NC	NC		No
2006 Chlorophyll-a	1412A_01	Entire water body	4	4	2		26.70	LD	CS	CS		No
2006 Nitrate	1412A_01	Entire water body	14	14	0		0.37	AD	NC	NC		No
2006 Orthophosphorus	1412A 01	Entire water body	4	4	0		0.05	LD	NC	NC		No
2006 Total Phosphorus	1412A 01	Entire water body	4	4	0		0.20	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1412ALake Colorado City (unclassified water body)

Water body type: Reservoir						Water	body size:		1,612	A	eres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Public Water Supply Use												
Finished Drinking Water Dissolved Soli	ds average											
2006 Multiple	1412A_01	Entire water body						OE	NC	NC		No
Finished Drinking Water MCLs and To	xic Substan	ces running average										
2006 Multiple	1412A_01	Entire water body						OE	FS	FS		No
Finished Drinking Water MCLs Concer	'n											
2006 Multiple	1412A_01	Entire water body						OE	NC	NC		No
Surface Water HH criteria for PWS ave	erage											
2006 Multiple	1412A_01	Entire water body	3	3				ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1412A_01	Entire water body	2	2		8.00	126.00	ID	NA	NA		No
2006 Fecal coliform	1412A_01	Entire water body	4	4		3.00	200.00	LD	NC	NC		No
Bacteria Single Sample												
2006 E. coli	1412A_01	Entire water body	2	2	0		394.00	ID	NA	NA		No
2006 Fecal coliform	1412A_01	Entire water body	4	4	0		400.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1412B Beals Creek (unclassified water body)

Water body type: Fr	reshwater Stream					Wate	r body size:		73	M	iles	
<u>YEAR</u>	AU ID	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> Exc	<u>Mean of</u> Assessed	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward

Aquatic Life Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Freshwater St	tream					Water	r body size:		73	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	ic Life Use												
Acute	Toxic Substances in water												
2006	Aluminum	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	3	3	0		991.00	ID	NA	NA		No
2006	Arsenic	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4	0		360.00	LD	NC	NC		No
2006	Cadmium	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	5	5	0		252.05	LD	NC	NC		No
2006	Chromium	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4	0		2,412.96	LD	NC	NC		No
2006	Copper	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4	0		725.36	LD	NC	NC		No
2006	Lead	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	5	5	0		725.36	LD	NC	NC		No
2006	Multiple	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4	0			TR	NA	NA		No
2006	Nickel	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4	0		6,535.37	LD	NC	NC		No
2006	Selenium	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	3	3	0		20.00	ID	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SR- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Supporting; CM- Supporting; CM- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Supporting; CM- Supporting; CM-

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	ter body type: Freshwater St	ream					Water	body size:		73	М	iles	
YEA	<u>R</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquat	tic Life Use												
Acute 2006	e Toxic Substances in water Selenium	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4	2		20.00	TR	NA	NA		No
2006	Silver	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	5	5	0		0.80	LD	NC	NC		No
2006	Zinc	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4	0		483.68	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body t	ype: Freshwater Stream					Wate	er body size:		73	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Us	e											
Chronic Toxic	Substances in water											
2006 Arsenic	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4		4.15	190.00	LD	NC	NC		No
2006 Cadmiu	m 1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	5	5		2.00	4.27	LD	NC	NC		No
2006 Chromin	ım 1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4		3.28	782.74	LD	NC	NC		No
2006 Copper	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4		3.28	57.60	LD	NC	NC		No
2006 Lead	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	5	5		1.36	25.18	LD	NC	NC		No
2006 Multiple	e 1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4	0			TR	NA	NA		No
2006 Nickel	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4		6.31	725.81	LD	NC	NC		No
2006 Seleniur	n 1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	3	3		4.76	5.00	ID	NA	NA		No
2006 Seleniur	m 1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4		25.70	5.00	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	r body type: Freshwater S	Stream					Wate	r body size:		73	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquatio	c Life Use	-											
	ic Toxic Substances in water												
2006	Zinc	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4		3.50	483.68	LD	NC	NC		No
Dissolv	ed Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	36	36	0		2.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1412B_02	From the confluence of Bull Creek upstream to the confluence of Gutherie Draw	47	47	0		2.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	100	100	3		2.00	AD	FS	FS		No
Dissolv	ed Oxygen grab screening lev	el											
2006	Dissolved Oxygen Grab	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	36	36	0		3.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1412B_02	From the confluence of Bull Creek upstream to the confluence of Gutherie Draw	47	47	0		3.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	100	100	6		3.00	AD	NC	NC		No
Toxic S	Substances in sediment												
2006	Metals	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	1	1	0			ID	NA	NA		No
2006	Metals	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4	0			LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwater St	ream					Wate	r body size:		73	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Chromium	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	3	3		2.32	3,320.00	ID	NA	NA		No
2006 Chromium	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4		2.11	3,320.00	TR	NA	NA		No
2006 Lead	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	4	4		1.40	1.45	LD	NC	NC		No
2006 Lead	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4		0.50	25.30	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1412B Beals Creek (unclassified water body)

Water body type:	Freshwater Stream					Wat	er body size:		73	М	liles	
			<u># of</u>	<u>#</u>	<u># of</u>	Mean of		Dataset	2008	Integ	Imp	Carry
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	Samples	Assessed	Exc	Assessed	<u>Criteria</u>	<u>Qualifier</u>	<u>Supp</u>	<u>Supp</u>	Category	<u>y</u> <u>Forward</u>

General Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ-Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-state; AU ID - Assessment Unit ID "Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate i

Wate	er body type: Freshwater	Stream					Water	body size:		73	М	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Genera	ıl Use	_											
Nutrie	ent Screening Levels												
2006	Ammonia	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	11	11	0		0.33	AD	NC	NC		No
2006	Ammonia	1412B_02	From the confluence of Bull Creek upstream to the confluence of Gutherie Draw	1	1	0		0.33	ID	NA	NA		No
2006	Ammonia	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	35	35	12		0.33	AD	CS	CS		No
2006	Chlorophyll-a	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	10	10	3		14.10	AD	NC	NC		No
2006	Chlorophyll-a	1412B_02	From the confluence of Bull Creek upstream to the confluence of Gutherie Draw	1	1	1		14.10	ID	NA	NA		No
2006	Chlorophyll-a	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	4	4	1		14.10	LD	NC	NC		No
2006	Nitrate	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	29	29	0		1.95	AD	NC	NC		No
2006	Nitrate	1412B_02	From the confluence of Bull Creek upstream to the confluence of Gutherie Draw	30	30	3		1.95	AD	NC	NC		No
2006	Nitrate	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	73	73	41		1.95	AD	CS	CS		No
2006	Orthophosphorus	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	11	11	0		0.37	AD	NC	NC		No
2006	Orthophosphorus	1412B_02	From the confluence of Bull Creek upstream to the confluence of Gutherie Draw	1	1	0		0.37	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Beals Creek (unclassified water body) Segment ID: 1412B

Water body type: Freshwa	ter Stream					Water	body size:		73	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Nutrient Screening Levels												
2006 Orthophosphorus	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	36	36	27		0.37	AD	CS	CS		No
2006 Total Phosphorus	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	10	10	0		0.69	AD	NC	NC		No
2006 Total Phosphorus	1412B_02	From the confluence of Bull Creek upstream to the confluence of Gutherie Draw	1	1	0		0.69	ID	NA	NA		No
2006 Total Phosphorus	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	36	36	35		0.69	AD	CS	CS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1412B Beals Creek (unclassified water body)

Creek

Water	r body type: Freshwat	er Stream					Wate	r body size:		73	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Recreat	ion Use												
Bacteri	ia Geomean												
2006	E. coli	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	10	10		68.00	126.00	AD	FS	FS		No
2006	E. coli	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	7	7		375.00	126.00	LD	CN	CN		No
2006	Fecal coliform	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	8	8		98.00	200.00	LD	NC	NC		No
Bacteri	ia Single Sample												
2006	E. coli	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull Creek	10	10	1		394.00	AD	FS	FS		No
2006	E. coli	1412B_03	From the confluence of Gutherie Draw upstream to the confluence of Mustang Draw and Sulphur Springs Draw	7	7	4		394.00	LD	CN	CN		No
2006	Fecal coliform	1412B_01	From the confluence with the Colorado River upstream to the confluence of Bull	8	8	1		400.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1413 Lake J. B. Thomas

Water body type: Reservoir						Water	body size:		7,808	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Metals	1413_01	Entire water body	2	2	0			ID	NA	NA		No
Chronic Toxic Substances in water												
2006 Metals	1413_01	Entire water body	2	2				ID	NA	NA		No
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab	1413_01	Entire water body	64	11	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening leve	el											
2008 Dissolved Oxygen Grab	1413_01	Entire water body	64	11	0		5.00	AD	NC	NC		No
Toxic Substances in sediment												
2006 Metals	1413_01	Entire water body	2	2	0			ID	NA	NA		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Chromium	1413_01	Entire water body	2	2		1.75	100.00	ID	NA	NA		No
2006 Lead	1413 01	Entire water body	2	2		0.50	4.98	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Lake J. B. Thomas Segment ID: 1413 Water body type: Reservoir Water body size: # of # Mean of # of AU ID Assessment Area (AU) YEAR Samples Assessed Exc Assessed Criteria General Use **Dissolved Solids** 88.11 2008 1413 01 10 10 80.00 Chloride Entire water body 2008 Sulfate 1413 01 Entire water body 10 10 75.81 110.00 2008 Total Dissolved Solids Entire water body 11 435.83 500.00 1413 01 11 High pH 2008 pH 1413 01 Entire water body 64 11 0 9.00 Low pH 1413 01 Entire water body 11 0 6.50 2008 pH 64 **Nutrient Screening Levels** 2008 1413 01 10 10 0 Ammonia Entire water body 0.11

2008	Ammonia	1413_01	Entire water body	10	10	0	0.11	AD	NC	NC	No
2008	Chlorophyll-a	1413_01	Entire water body	10	10	1	26.70	AD	NC	NC	No
2008	Nitrate	1413_01	Entire water body	10	10	0	0.37	AD	NC	NC	No
2008	Orthophosphorus	1413_01	Entire water body	10	10	0	0.05	AD	NC	NC	No
2008	Total Phosphorus	1413_01	Entire water body	10	10	0	0.20	AD	NC	NC	No
Water	r Temperature										
2008	Temperature	1413_01	Entire water body	64	11	0	32.20	AD	FS	FS	No
Public	Water Supply Use										
Finish	ed Drinking Water Dissolved Soli	ids average									
2008	Multiple	1413_01	Entire water body					OE	NC	NC	No
Finish	ed Drinking Water MCLs and To	oxic Substan	ces running average								
2008	Multiple	1413_01	Entire water body					OE	FS	FS	No
Finish	ed Drinking Water MCLs Conce	rn									
2008	Multiple	1413_01	Entire water body					OE	NC	NC	No
Surfa	ce Water HH criteria for PWS ave	erage									
2006	Multiple	1413_01	Entire water body	2	2			ID	NA	NA	No

7,808

2008

<u>Supp</u>

NS

FS

FS

FS

FS

Dataset

<u>Qualifier</u>

AD

AD

AD

AD

AD

Acres

Imp

5c

Category Forward

Carry

No

No

No

No

No

Integ

Supp

NS

FS

FS

FS

FS

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Lake J. B. Thomas Segment ID: 1413 Water body type: 7,808 Reservoir Water body size: Acres # of # Mean of Dataset 2008 # of Integ Imp Carry AU ID Assessment Area (AU) <u>Qualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward **Recreation Use Bacteria Geomean** 9 9 0.90 NC 2008 E. coli 1413 01 Entire water body 0 126.00 NC No LD 2008 Fecal coliform 1413 01 Entire water body 3 3 0 2.29 200.00 ID NA NA No **Bacteria Single Sample** 2008 E. coli 1413 01 Entire water body 9 9 0 394.00 LD NC NC No 2008 Fecal coliform 1413 01 Entire water body 3 3 0 400.00 ID NA No NA

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater Stre	eam					Water	r body size:		125	Μ	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquati	c Life Use												
Dissolv	ved Oxygen 24hr average												
2008	Dissolved Oxygen 24hr Avg	1414_01	End of segment to falls in Pedernales Falls State Park	3	3	0		5.00	ID	NA	NA		No
Dissolv	ved Oxygen 24hr minimum												
2008	Dissolved Oxygen 24hr Min	1414_01	End of segment to falls in Pedernales Falls State Park	3	3	0		3.00	ID	NA	NA		No
Dissolv	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1414_01	End of segment to falls in Pedernales Falls State Park	71	67	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1414_02	Pedernales Falls to Johnson City Dam	45	42	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1414_03	Johnson City Dam to Gillespie County line	45	42	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1414_04	Gillespie County line to Gellermann Lane	49	49	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1414_05	Gellermann Lane to Live Oak Creek	68	63	0		3.00	AD	FS	FS		No
2008 Dissolv	Dissolved Oxygen Grab ved Oxygen grab screening level	1414_06	Remainder of segment	0	0	0		3.00	ID	NA	NA		No
2008	Dissolved Oxygen Grab	1414_01	End of segment to falls in Pedernales Falls State Park	71	67	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1414_02	Pedernales Falls to Johnson City Dam	45	42	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1414_03	Johnson City Dam to Gillespie County line	45	42	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1414_04	Gillespie County line to Gellermann Lane	49	49	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1414_05	Gellermann Lane to Live Oak Creek	68	63	1		5.00	AD	NC	NC		No
2008 Fish C	Dissolved Oxygen Grab ommunity	1414_06	Remainder of segment	0	0				ID	NA	NA		No
2008	Fish Community	1414_01	End of segment to falls in Pedernales Falls State Park	3	3		50.00	42.00	AD	FS	FS		No
Habita	ıt												
2008	Habitat	1414_01	End of segment to falls in Pedernales Falls State Park	2	2		22.00	20.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Freshwater S	tream					Wate	r body size:		125	М	iles	
<u>YEA</u> F	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquat	ic Life Use	-											
Macro	obenthic Community												
2008	Macrobenthic Community	1414_01	End of segment to falls in Pedernales Falls State Park	3	3		37.00	29.00	AD	FS	FS		No
Toxic	Substances in sediment												
2008	Metals	1414_02	Pedernales Falls to Johnson City Dam	3	3	0			ID	NA	NA		No
2008	Organics	1414_02	Pedernales Falls to Johnson City Dam	2	2	0			ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	r body type: Freshwater	Stream					Wate	er body size:		125	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General	l Use	_											
Dissolv	ed Solids												
2008	Chloride	1414_01	End of segment to falls in Pedernales Falls State Park	187	187		49.81	125.00	AD	FS	FS		No
2008	Chloride	1414_02	Pedernales Falls to Johnson City Dam	187	187		49.81	125.00	AD	FS	FS		No
2008	Chloride	1414_03	Johnson City Dam to Gillespie County line	187	187		49.81	125.00	AD	FS	FS		No
2008	Chloride	1414_04	Gillespie County line to Gellermann Lane	187	187		49.81	125.00	AD	FS	FS		No
2008	Chloride	1414_05	Gellermann Lane to Live Oak Creek	187	187		49.81	125.00	AD	FS	FS		No
2008	Chloride	1414_06	Remainder of segment	187	187		49.81	125.00	AD	FS	FS		No
2008	Sulfate	1414_01	End of segment to falls in Pedernales Falls State Park	187	187		31.03	75.00	AD	FS	FS		No
2008	Sulfate	1414_02	Pedernales Falls to Johnson City Dam	187	187		31.03	75.00	AD	FS	FS		No
2008	Sulfate	1414_03	Johnson City Dam to Gillespie County line	187	187		31.03	75.00	AD	FS	FS		No
2008	Sulfate	1414_04	Gillespie County line to Gellermann Lane	187	187		31.03	75.00	AD	FS	FS		No
2008	Sulfate	1414_05	Gellermann Lane to Live Oak Creek	187	187		31.03	75.00	AD	FS	FS		No
2008	Sulfate	1414_06	Remainder of segment	187	187		31.03	75.00	AD	FS	FS		No
2008	Total Dissolved Solids	1414_01	End of segment to falls in Pedernales Falls State Park	267	267		382.95	525.00	AD	FS	FS		No
2008	Total Dissolved Solids	1414_02	Pedernales Falls to Johnson City Dam	267	267		382.95	525.00	AD	FS	FS		No
2008	Total Dissolved Solids	1414_03	Johnson City Dam to Gillespie County line	267	267		382.95	525.00	AD	FS	FS		No
2008	Total Dissolved Solids	1414_04	Gillespie County line to Gellermann Lane	267	267		382.95	525.00	AD	FS	FS		No
2008	Total Dissolved Solids	1414_05	Gellermann Lane to Live Oak Creek	267	267		382.95	525.00	AD	FS	FS		No
2008	Total Dissolved Solids	1414_06	Remainder of segment	267	267		382.95	525.00	AD	FS	FS		No
High pl	Н												
2008	pH	1414_01	End of segment to falls in Pedernales Falls State Park	49	45	0		9.00	AD	FS	FS		No
2008	pН	1414_02	Pedernales Falls to Johnson City Dam	45	42	0		9.00	AD	FS	FS		No
2008	pН	1414_03	Johnson City Dam to Gillespie County line	45	42	0		9.00	AD	FS	FS		No
2008	pH	1414_05	Gellermann Lane to Live Oak Creek	68	63	0		9.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type:	Freshwater Stream					Wate	er body size:		125	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Low pH												
2008 рН	1414_01	End of segment to falls in Pedernales Falls State Park	49	45	0		6.50	AD	FS	FS		No
2008 рН	1414_02	Pedernales Falls to Johnson City Dam	45	42	0		6.50	AD	FS	FS		No
2008 рН	1414_03	Johnson City Dam to Gillespie County line	45	42	0		6.50	AD	FS	FS		No
2008 рН	1414_05	Gellermann Lane to Live Oak Creek	68	63	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	r body type: Freshwate	er Stream					Wate	r body size:		125	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	l Use	_											
Nutrie	nt Screening Levels												
2008	Ammonia	1414_01	End of segment to falls in Pedernales Falls State Park	42	42	0		0.33	AD	NC	NC		No
2008	Ammonia	1414_02	Pedernales Falls to Johnson City Dam	40	40	0		0.33	AD	NC	NC		No
2008	Ammonia	1414_03	Johnson City Dam to Gillespie County line	41	41	0		0.33	AD	NC	NC		No
2008	Ammonia	1414_05	Gellermann Lane to Live Oak Creek	60	60	0		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1414_01	End of segment to falls in Pedernales Falls State Park	40	40	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1414_02	Pedernales Falls to Johnson City Dam	41	41	4		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1414_03	Johnson City Dam to Gillespie County line	41	41	1		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1414_05	Gellermann Lane to Live Oak Creek	61	61	1		14.10	AD	NC	NC		No
2008	Nitrate	1414_01	End of segment to falls in Pedernales Falls State Park	40	40	0		1.95	AD	NC	NC		No
2008	Nitrate	1414_02	Pedernales Falls to Johnson City Dam	42	42	1		1.95	AD	NC	NC		No
2008	Nitrate	1414_03	Johnson City Dam to Gillespie County line	42	42	1		1.95	AD	NC	NC		No
2008	Nitrate	1414_05	Gellermann Lane to Live Oak Creek	62	62	1		1.95	AD	NC	NC		No
2008	Orthophosphorus	1414_01	End of segment to falls in Pedernales Falls State Park	39	39	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1414_02	Pedernales Falls to Johnson City Dam	39	39	1		0.37	AD	NC	NC		No
2008	Orthophosphorus	1414_03	Johnson City Dam to Gillespie County line	41	41	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1414_05	Gellermann Lane to Live Oak Creek	60	60	0		0.37	AD	NC	NC		No
2008	Total Phosphorus	1414_01	End of segment to falls in Pedernales Falls State Park	38	38	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1414_02	Pedernales Falls to Johnson City Dam	40	40	1		0.69	AD	NC	NC		No
2008	Total Phosphorus	1414_03	Johnson City Dam to Gillespie County line	40	40	1		0.69	AD	NC	NC		No
2008	Total Phosphorus	1414_05	Gellermann Lane to Live Oak Creek	57	57	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type:	Freshwater Stream					Wate	r body size:		125	М	iles	
<u>YEAR</u>	<u></u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Genera	al Use												
Water	Temperature												
2008	Temperature	1414_01	End of segment to falls in Pedernales Falls State Park	71	67	0		32.70	AD	FS	FS		No
2008	Temperature	1414_02	Pedernales Falls to Johnson City Dam	45	42	0		32.70	AD	FS	FS		No
2008	Temperature	1414_03	Johnson City Dam to Gillespie County line	45	42	0		32.70	AD	FS	FS		No
2008	Temperature	1414_04	Gillespie County line to Gellermann Lane	51	51	0		32.70	AD	FS	FS		No
2008	Temperature	1414_05	Gellermann Lane to Live Oak Creek	68	63	0		32.70	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1	414 Pederna	les River									
Water body type:	Freshwater Stream					Wate	er body size:		125	М	liles
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> Forwa
Public Water Supply Us	se										
Finished Drinking Wat	er Dissolved Solids average										
2008 Multiple	1414_01	End of segment to falls in Pedernales Falls State Park						OE	NC	NC	No
2008 Multiple	1414_02	Pedernales Falls to Johnson City Dam						OE	NC	NC	No
2008 Multiple	1414_03	Johnson City Dam to Gillespie County line						OE	NC	NC	No
2008 Multiple	1414_04	Gillespie County line to Gellermann Lane						OE	NC	NC	No
2008 Multiple	1414_05	Gellermann Lane to Live Oak Creek						OE	NC	NC	No
2008 Multiple	1414_06	Remainder of segment						OE	NC	NC	No
Finished Drinking Wat	er MCLs and Toxic Substa	ices running average									
2008 Multiple	1414_01	End of segment to falls in Pedernales Falls State Park						OE	FS	FS	No
2008 Multiple	1414_02	Pedernales Falls to Johnson City Dam						OE	FS	FS	No
2008 Multiple	1414_03	Johnson City Dam to Gillespie County line						OE	FS	FS	No
2008 Multiple	1414_04	Gillespie County line to Gellermann Lane						OE	FS	FS	No
2008 Multiple	1414_05	Gellermann Lane to Live Oak Creek						OE	FS	FS	No
2008 Multiple	1414_06	Remainder of segment						OE	FS	FS	No
Finished Drinking Wat	er MCLs Concern										
2008 Multiple	1414_01	End of segment to falls in Pedernales Falls State Park						OE	NC	NC	No
2008 Multiple	1414_02	Pedernales Falls to Johnson City Dam						OE	NC	NC	No
2008 Multiple	1414_03	Johnson City Dam to Gillespie County line						OE	NC	NC	No
2008 Multiple	1414_04	Gillespie County line to Gellermann Lane						OE	NC	NC	No
2008 Multiple	1414_05	Gellermann Lane to Live Oak Creek						OE	NC	NC	No
2008 Multiple	1414_06	Remainder of segment						OE	NC	NC	No
Surface Water HH crit	eria for PWS average										
2006 Fluoride	1414_05	Gellermann Lane to Live Oak Creek	15	15		0.34	4,000.00	AD	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshw	vater Stream					Wate	er body size:		125	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Recreation Use												
Bacteria Geomean												
2008 E. coli	1414_01	End of segment to falls in Pedernales Falls State Park	42	42	0	20.18	126.00	AD	FS	FS		No
2008 E. coli	1414_02	Pedernales Falls to Johnson City Dam	42	42	0	39.29	126.00	AD	FS	FS		No
2008 E. coli	1414_03	Johnson City Dam to Gillespie County line	42	42	0	35.23	126.00	AD	FS	FS		No
2008 E. coli	1414_05	Gellermann Lane to Live Oak Creek	55	55	0	100.82	126.00	AD	FS	FS		No
2008 E. coli	1414_06	Remainder of segment	0	0			126.00	ID	NA	NA		No
2008 Fecal coliform	1414_01	End of segment to falls in Pedernales Falls State Park	11	11	0	11.11	200.00	SM	FS	FS		No
2008 Fecal coliform	1414_02	Pedernales Falls to Johnson City Dam	11	11	0	43.65	200.00	SM	FS	FS		No
2008 Fecal coliform	1414_03	Johnson City Dam to Gillespie County line	11	11	0	22.56	200.00	SM	FS	FS		No
2008 Fecal coliform	1414_05	Gellermann Lane to Live Oak Creek	13	13	0	130.55	200.00	SM	FS	FS		No
Bacteria Single Sample												
2008 E. coli	1414_01	End of segment to falls in Pedernales Falls State Park	42	42	3		394.00	AD	FS	FS		No
2008 E. coli	1414_02	Pedernales Falls to Johnson City Dam	42	42	6		394.00	AD	FS	FS		No
2008 E. coli	1414_03	Johnson City Dam to Gillespie County line	42	42	5		394.00	AD	FS	FS		No
2008 E. coli	1414_05	Gellermann Lane to Live Oak Creek	55	55	12		394.00	AD	FS	FS		No
2008 E. coli	1414_06	Remainder of segment	0	0			394.00	ID	NA	NA		No
2008 Fecal coliform	1414_01	End of segment to falls in Pedernales Falls State Park	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1414_02	Pedernales Falls to Johnson City Dam	11	11	2		400.00	SM	FS	FS		No
2008 Fecal coliform	1414_03	Johnson City Dam to Gillespie County line	11	11	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1414_05	Gellermann Lane to Live Oak Creek	13	13	2		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwater Stre	am					Wate	r body size:		24	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1414B_01	Entire water body	19	19	0		3.00	AD	FS	FS		No
2006 Dissolved Oxygen Grab General Use	1414B_01	Entire water body	19	19	0		5.00	AD	NC	NC		No
Nutrient Screening Levels												
2006 Ammonia	1414B_01	Entire water body	13	13	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1414B_01	Entire water body	20	20	0		14.10	AD	NC	NC		No
2006 Nitrate	1414B_01	Entire water body	13	13	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1414B_01	Entire water body	20	20	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1414B_01	Entire water body	20	20	0		0.69	AD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1414B_01	Entire water body	13	13		73.00	126.00	AD	FS	FS		No
2006 Fecal coliform Bacteria Single Sample	1414B_01	Entire water body	10	10		87.00	200.00	SM	FS	FS		No
2006 E. coli	1414B_01	Entire water body	13	13	0		394.00	AD	FS	FS		No
2006 Fecal coliform	1414B_01	Entire water body	10	10	1		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1414CLive Oak Creek (unclassified water body)

Water body type: Freshwater Str	ream					Wat	er body size:		15	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1414C_01	Entire water body	24	18	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level	l											
2006 Dissolved Oxygen Grab	1414C_01	Entire water body	24	18	2		5.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1414DMiller Creek (unclassified water body)

Water bo	dy type: Freshwater Strea	am					Water	body size:		25	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Aquatic Life	e Use												
Dissolved O	xygen grab minimum												
2006 Diss	solved Oxygen Grab	1414D_01	Entire water body	5	5	0		2.00	LD	NC	NC		No
Dissolved O	xygen grab screening level												
2006 Diss	solved Oxygen Grab	1414D_01	Entire water body	5	5	0		3.00	LD	NC	NC		No
General Use													
Nutrient Sci	reening Levels												
2006 Amr	monia	1414D_01	Entire water body	5	5	0		0.33	LD	NC	NC		No
2006 Chlo	orophyll-a	1414D_01	Entire water body	5	5	0		14.10	LD	NC	NC		No
2006 Nitra	ate	1414D_01	Entire water body	5	5	0		1.95	LD	NC	NC		No
2006 Orth	nophosphorus	1414D_01	Entire water body	5	5	0		0.37	LD	NC	NC		No
2006 Tota	al Phosphorus	1414D_01	Entire water body	5	5	0		0.69	LD	NC	NC		No
Recreation U	Use												
Bacteria Ge	eomean												
2006 E. co	oli	1414D_01	Entire water body	3	3		12.00	126.00	ID	NA	NA		No
2006 Feca	al coliform	1414D_01	Entire water body	5	5		105.00	200.00	LD	NC	NC		No
Bacteria Sir	ngle Sample												
2006 E. co	oli	1414D_01	Entire water body	3	3	0		394.00	ID	NA	NA		No
2006 Feca	al coliform	1414D_01	Entire water body	5	5	0		400.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1414E Heinz Creek

Water body type: Freshwater Stre	am					Water bo	ody size:		4	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1414E_01	Entire water body	24	24	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1414E_01	Entire water body	24	24	2		5.00	AD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1414E_01	Entire water body	0	0			126.00	ID	NA	NA		No
Bacteria Single Sample												
2006 E. coli	1414E_01	Entire water body	0	0			394.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

Water	body type: Freshwater St	ream					Water	body size:		231	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic	Life Use												
Dissolve	d Oxygen 24hr average												
2008 1	Dissolved Oxygen 24hr Avg	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	3	3	0		5.00	ID	NA	NA		No
2008	Dissolved Oxygen 24hr Avg	1415_02	From the dam in Llano upstream to US 87 in Mason County	17	17	0		5.00	AD	FS	FS		No
2008 1	Dissolved Oxygen 24hr Avg	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	3	3	0		5.00	ID	NA	NA		No
2008 1	Dissolved Oxygen 24hr Avg	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	2	2	0		5.00	ID	NA	NA		No
2008]	Dissolved Oxygen 24hr Avg	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	14	14	0		5.00	AD	FS	FS		No
Dissolve	d Oxygen 24hr minimum												
2008	Dissolved Oxygen 24hr Min	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	3	3	0		3.00	ID	NA	NA		No
2008	Dissolved Oxygen 24hr Min	1415_02	From the dam in Llano upstream to US 87 in Mason County	17	17	0		3.00	AD	FS	FS		No
2008]	Dissolved Oxygen 24hr Min	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	3	3	0		3.00	ID	NA	NA		No
2008 1	Dissolved Oxygen 24hr Min	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	2	2	0		3.00	ID	NA	NA		No
2008]	Dissolved Oxygen 24hr Min	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	14	14	0		3.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415

Water body ty	pe: Freshwater S	Stream					Water bo	ody size:		231	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forwar
Aquatic Life Use		_											
Dissolved Oxyger	n grab minimum	-											
2008 Dissolved	Oxygen Grab	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	81	76	0		3.00	AD	FS	FS		No
2008 Dissolved	Oxygen Grab	1415_02	From the dam in Llano upstream to US 87 in Mason County	49	47	0		3.00	SM	FS	FS		No
2008 Dissolved	Oxygen Grab	1415_03	From US 87 upstream to Kimble County line	0	0	0		3.00	ID	NA	NA		No
2008 Dissolved	Oxygen Grab	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	49	48	0		3.00	AD	FS	FS		No
2008 Dissolved	Oxygen Grab	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	22	22	0		3.00	AD	FS	FS		No
2008 Dissolved	Oxygen Grab	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	25	25	0		3.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

Wat	er body type: Freshwater Str	ream					Water	r body size:		231	М	iles	
YEAR	<u>_</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forware
Aquati	c Life Use												
Dissol	ved Oxygen grab screening level	l											
2008	Dissolved Oxygen Grab	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	81	76	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1415_02	From the dam in Llano upstream to US 87 in Mason County	49	47	2		5.00	SM	NC	NC		No
2008	Dissolved Oxygen Grab	1415_03	From US 87 upstream to Kimble County line	0	0			5.00	ID	NA	NA		No
2008	Dissolved Oxygen Grab	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	49	48	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	22	22	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	25	25	0		5.00	SM	NC	NC		No
Fish C	Community												
2008	Fish Community	1415_02	From the dam in Llano upstream to US 87 in Mason County	8	8		53.40	42.00	AD	FS	FS		No
2008	Fish Community	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	6	6		54.10	42.00	AD	FS	FS		No
Habita	at												
2008	Habitat	1415_02	From the dam in Llano upstream to US 87 in Mason County	5	5		23.10	20.00	AD	NC	NC		No
2008	Habitat	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	5	5		23.50	20.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

~ 8													
Wat	er body type: Freshwater S	tream					Wate	r body size:		231	М	iles	
YEAF	3	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquat	ic Life Use												
Macro	obenthic Community												
2008	Macrobenthic Community	1415_02	From the dam in Llano upstream to US 87 in Mason County	8	8		37.60	29.00	AD	FS	FS		No
2008	Macrobenthic Community	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	6	6		41.30	29.00	AD	FS	FS		No
Toxic	Substances in sediment												
2008	Cadmium	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	4	4	1		4.98	LD	NC	NC		No
2008	Metals	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	4	4	0			ID	NA	NA		No
2008	Organics	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	3	3	0			ID	NA	NA		No
2008	Organics	1415_02	From the dam in Llano upstream to US 87 in Mason County	1	1	0			ID	NA	NA		No

2008 Texas W	ater Quality	y Inventory	- Basin Assessment Data b	y Segment (Mar	ch 19, 20	008)	1						
NA- Not assessed; NC- No c	oncern; Dataset Qualifi	iers: AD- Adequate Da	support) identifiers: FS- Fully Supporting; CN- Concer ata; ID- Inadequate Data; LD- Limited Data; TR- Not Te ate; AU ID - Assessment Unit ID *Note: Carry-forward r	mporally Representative; SR- Not	Spatially Repres	sentative; SM	A- Superceded by anothe						
Segment ID:	1415	Llano Ri	iver										
Water body type	Freshwater	Stream					Water	body size:		231	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
General Use		_											

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SR- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Lla

Water body type: Fresh	water Stream					Wate	er body size:		231	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General Use												
Dissolved Solids												
2008 Chloride	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	243	243		19.50	50.00	AD	FS	FS		No
2008 Chloride	1415_02	From the dam in Llano upstream to US 87 in Mason County	243	243		19.50	50.00	AD	FS	FS		No
2008 Chloride	1415_03	From US 87 upstream to Kimble County line	243	243		19.50	50.00	AD	FS	FS		No
2008 Chloride	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	243	243		19.50	50.00	AD	FS	FS		No
2008 Chloride	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	243	243		19.50	50.00	AD	FS	FS		No
2008 Chloride	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	243	243		19.50	50.00	AD	FS	FS		No
2008 Sulfate	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	244	244		12.21	50.00	AD	FS	FS		No
2008 Sulfate	1415_02	From the dam in Llano upstream to US 87 in Mason County	244	244		12.21	50.00	AD	FS	FS		No
2008 Sulfate	1415_03	From US 87 upstream to Kimble County line	244	244		12.21	50.00	AD	FS	FS		No
2008 Sulfate	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	244	244		12.21	50.00	AD	FS	FS		No
2008 Sulfate	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	244	244		12.21	50.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

Water body type: Freshwa	ater Stream					Wate	er body size:		231	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Dissolved Solids												
2008 Sulfate	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	244	244		12.21	50.00	AD	FS	FS		No
2008 Total Dissolved Solids	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	239	239		240.16	350.00	AD	FS	FS		No
2008 Total Dissolved Solids	1415_02	From the dam in Llano upstream to US 87 in Mason County	239	239		240.16	350.00	AD	FS	FS		No
2008 Total Dissolved Solids	1415_03	From US 87 upstream to Kimble County line	239	239		240.16	350.00	AD	FS	FS		No
2008 Total Dissolved Solids	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	239	239		240.16	350.00	AD	FS	FS		No
2008 Total Dissolved Solids	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	239	239		240.16	350.00	AD	FS	FS		No
2008 Total Dissolved Solids	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards	239	239		240.16	350.00	AD	FS	FS		No

County

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

Water body type: Freshwater Stream						Water body size:			231	Miles		
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forwar
General Use												
High pH												
2008 pH	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	83	78	0		9.00	AD	FS	FS		No
2008 рН	1415_02	From the dam in Llano upstream to US 87 in Mason County	48	46	0		9.00	AD	FS	FS		No
2008 рН	1415_03	From US 87 upstream to Kimble County line	0	0	0		9.00	ID	NA	NA		No
2008 рН	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	48	47	0		9.00	AD	FS	FS		No
2008 рН	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	22	22	0		9.00	AD	FS	FS		No
2008 рН	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	24	24	0		9.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

Water body type: Freshw	vater Stream					Wate	r body size:		231	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forwar
General Use												
Low pH												
2008 рН	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	83	78	0		6.50	AD	FS	FS		No
2008 pH	1415_02	From the dam in Llano upstream to US 87 in Mason County	48	46	0		6.50	AD	FS	FS		No
2008 pH	1415_03	From US 87 upstream to Kimble County line	0	0	0		6.50	ID	NA	NA		No
2008 рН	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	48	47	0		6.50	AD	FS	FS		No
2008 рН	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	22	22	0		6.50	AD	FS	FS		No
2008 рН	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	24	24	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

т 1 Segment ID: 1415

Water body type: Freshwater Stream							Water	r body size:		231	231 Miles		
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	84	84	0		0.33	AD	NC	NC		No
2008	Ammonia	1415_02	From the dam in Llano upstream to US 87 in Mason County	56	56	0		0.33	AD	NC	NC		No
2008	Ammonia	1415_03	From US 87 upstream to Kimble County line	0	0	0		0.33	ID	NA	NA		No
2008	Ammonia	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	46	46	0		0.33	AD	NC	NC		No
2008	Ammonia	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	22	22	0		0.33	AD	NC	NC		No
2008	Ammonia	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	29	29	0		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	83	83	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1415_02	From the dam in Llano upstream to US 87 in Mason County	50	50	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1415_03	From US 87 upstream to Kimble County line	0	0	0		14.10	ID	NA	NA		No
2008	Chlorophyll-a	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	46	46	1		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	21	21	1		14.10	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

Water body type: Freshwater Stream						Wate	r body size:		231	Miles		
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
Nutrient Screening Levels												
2008 Chlorophyll-a	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	29	29	0		14.10	AD	NC	NC		No
2008 Nitrate	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	86	86	1		1.95	AD	NC	NC		No
2008 Nitrate	1415_02	From the dam in Llano upstream to US 87 in Mason County	55	55	0		1.95	AD	NC	NC		No
2008 Nitrate	1415_03	From US 87 upstream to Kimble County line	0	0			1.95	ID	NA	NA		No
2008 Nitrate	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	47	47	1		1.95	AD	NC	NC		No
2008 Nitrate	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	21	21	0		1.95	AD	NC	NC		No
2008 Nitrate	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	29	29	0		1.95	AD	NC	NC		No
2008 Orthophosphorus	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	86	86	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1415_02	From the dam in Llano upstream to US 87 in Mason County	56	56	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1415_03	From US 87 upstream to Kimble County line	0	0	0		0.37	ID	NC	NC		No
2008 Orthophosphorus	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	47	47	0		0.37	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1415 I lono Dia Segment ID:

15	Llano	River	

Water body type: Freshwater Stream				Water		231	М	liles					
<u>YEAR</u>	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Genera	al Use	_											
Nutrie 2008	ent Screening Levels Orthophosphorus	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	22	22	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	29	29	0		0.37	AD	NC	NC		No
2008	Total Phosphorus	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	83	83	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1415_02	From the dam in Llano upstream to US 87 in Mason County	55	55	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1415_03	From US 87 upstream to Kimble County line	0	0	0		0.69	ID	NA	NA		No
2008	Total Phosphorus	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	48	48	1		0.69	AD	NC	NC		No
2008	Total Phosphorus	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	22	22	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	29	29	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Llano River

Water body type: Fresh	water Stream					Water	body size:		231	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> Forwa
General Use												
Water Temperature												
2008 Temperature	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	89	84	0		32.80	AD	FS	FS		No
2008 Temperature	1415_02	From the dam in Llano upstream to US 87 in Mason County	49	47	0		32.80	AD	FS	FS		No
2008 Temperature	1415_03	From US 87 upstream to Kimble County line	0	0			32.70	ID	NA	NA		No
2008 Temperature	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	49	48	0		32.80	AD	FS	FS		No
2008 Temperature	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	26	26	0		32.80	AD	FS	FS		No
2008 Temperature	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	25	25	0		32.80	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID: 1415	Llano Ri	ver										
Wate	er body type: Freshwater S	tream					Water	· body size:		231	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Public	Water Supply Use												
Finish	ed Drinking Water Dissolved S	olids average											
2008	Multiple	1415_01	From the confluence of Honey Creek upstream to the dam in Llano						OE	NC	NC		No
2008	Multiple	1415_02	From the dam in Llano upstream to US 87 in Mason County						OE	NC	NC		No
2008	Multiple	1415_03	From US 87 upstream to Kimble County line						OE	NC	NC		No
2008	Multiple	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork						OE	NC	NC		No
2008	Multiple	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County						OE	NC	NC		No
2008	Multiple	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County						OE	NC	NC		No

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. **Segment ID:** 1415 Llano River Water body type: Freshwater Stream Water body size: 231 Miles # of # Mean of 2008 # of Dataset Integ Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward Public Water Supply Use Finished Drinking Water MCLs and Toxic Substances running average 1415 01 From the confluence of Honey Creek OE FS FS 2008 Multiple No upstream to the dam in Llano 1415 02 From the dam in Llano upstream to US 87 OE FS FS No 2008 Multiple in Mason County From US 87 upstream to Kimble County OE 2008 Multiple 1415 03 FS FS No line From the Kimble County line upstream to 2008 Multiple $1415 \ 04$ OE FS FS No the confluence of the North Concho River and the South Concho River Johnson Fork North Llano River from the confluence of 1415 05 OE FS FS 2008 Multiple No the South Llano upstream to FM 864 in Sutton County South Llano from the confluence with the 2008 Multiple 1415 06 OE FS FS No North Llano River to SH 55 in Edwards County

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID:	1415	Llano Riv	ver									
Wat	er body type	Freshwater	Stream					Wate	r body size:		231	М	iles
YEAR	2		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	ImpCarryCategoryForwar
Public	Water Suppl	y Use											
Finish	ed Drinking	Water MCLs C	oncern										
2008	Multiple		1415_01	From the confluence of Honey Creek upstream to the dam in Llano						OE	NC	NC	No
2008	Multiple		1415_02	From the dam in Llano upstream to US 87 in Mason County						OE	NC	NC	No
2008	Multiple		1415_03	From US 87 upstream to Kimble County line						OE	NC	NC	No
2008	Multiple		1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork						OE	NC	NC	No
2008	Multiple		1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County						OE	NC	NC	No
2008	Multiple		1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County						OE	NC	NC	No
Surfac	ce Water HH	criteria for PW	'S average										
2006	Fluoride		1415_02	From the dam in Llano upstream to US 87 in Mason County	14	14		0.22	4,000.00	AD	FS	FS	No
2006	Fluoride		1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	13	13		0.21	4,000.00	AD	FS	FS	No
2006	Fluoride		1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	11	11		0.24	4,000.00	AD	FS	FS	No
2006	Fluoride		1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	12	12		0.21	4,000.00	AD	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Lla

Wat	er body type: Fresh	water Stream					Wate	er body size:	, •	231	Miles			
YEAF	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar	
Recrea	ation Use													
Bacter	ria Geomean													
2008	E. coli	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	89	89	0	32.83	126.00	AD	FS	FS		No	
2008	E. coli	1415_02	From the dam in Llano upstream to US 87 in Mason County	49	49	0	7.49	126.00	AD	FS	FS		No	
2008	E. coli	1415_03	From US 87 upstream to Kimble County line	0	0			126.00	ID	NA	NA		No	
2008	E. coli	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	46	46	0	24.71	126.00	AD	FS	FS		No	
2008	E. coli	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	21	21	0	35.71	126.00	AD	FS	FS		No	
2008	E. coli	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	20	20	0	29.69	126.00	AD	FS	FS		No	
2008	Fecal coliform	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	27	27	0	21.75	200.00	SM	FS	FS		No	
2008	Fecal coliform	1415_02	From the dam in Llano upstream to US 87 in Mason County	15	15	0	7.56	200.00	SM	FS	FS		No	
2008	Fecal coliform	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	14	14	0	12.68	200.00	SM	FS	FS		No	
2008	Fecal coliform	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	9	9	0	38.12	200.00	LD	NC	NC		No	
2008	Fecal coliform	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	9	9	0	33.02	200.00	LD	NC	NC		No	

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SR- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1415 Lla

ver
ver

Wate	er body type: Fre	eshwater Stream					Wate	r body size:		231	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Recrea	tion Use												
Bacter	ria Single Sample												
2008	E. coli	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	89	89	12		394.00	AD	FS	FS		No
2008	E. coli	1415_02	From the dam in Llano upstream to US 87 in Mason County	49	49	1		394.00	AD	FS	FS		No
2008	E. coli	1415_03	From US 87 upstream to Kimble County line	0	0			394.00	ID	NA	NA		No
2008	E. coli	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	46	46	1		394.00	AD	FS	FS		No
2008	E. coli	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	21	21	0		394.00	AD	FS	FS		No
2008	E. coli	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	20	20	0		394.00	AD	FS	FS		No
2008	Fecal coliform	1415_01	From the confluence of Honey Creek upstream to the dam in Llano	27	27	3		400.00	SM	FS	FS		No
2008	Fecal coliform	1415_02	From the dam in Llano upstream to US 87 in Mason County	15	15	0		400.00	SM	FS	FS		No
2008	Fecal coliform	1415_04	From the Kimble County line upstream to the confluence of the North Concho River and the South Concho River Johnson Fork	14	14	0		400.00	SM	FS	FS		No
2008	Fecal coliform	1415_05	North Llano River from the confluence of the South Llano upstream to FM 864 in Sutton County	9	9	0		400.00	LD	NC	NC		No
2008	Fecal coliform	1415_06	South Llano from the confluence with the North Llano River to SH 55 in Edwards County	9	9	1		400.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Freshwater St	tream					Wate	r body size:		137	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquati	ic Life Use												
Dissol	ved Oxygen 24hr average												
2008	Dissolved Oxygen 24hr Avg	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	11	11	1		5.00	AD	FS	FS		No
Dissol	ved Oxygen 24hr minimum												
2008	Dissolved Oxygen 24hr Min	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	11	11	0		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	45	45	0		3.00	SM	FS	FS		No
2008	Dissolved Oxygen Grab	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	26	26	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1416_05	FM 2092 upstream to end of segment	1	1	0		3.00	ID	NA	NA		No
Dissol	ved Oxygen grab screening leve												
2008	Dissolved Oxygen Grab	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	45	45	0		5.00	SM	NC	NC		No
2008	Dissolved Oxygen Grab	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	26	26	1		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1416_05	FM 2092 upstream to end of segment	1	1	0		5.00	ID	NA	NA		No
Fish C	Community	—											
2008	Fish Community	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	7	7		50.00	41.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

San Saba River **Segment ID:** 1416 Water body type: Freshwater Stream Water body size: 137 Miles # of # Mean of 2008 Imp # of Dataset Integ Carry AU ID Assessment Area (AU) <u>Qualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward **Aquatic Life Use** Habitat From the confluence with the Colorado 5 5 20.90 2008 Habitat NC 1416 01 20.00 AD NC No River in San Saba County upstream to the US 190 **Macrobenthic Community** From the confluence with the Colorado 7 7 2008 Macrobenthic Community 1416 01 34.40 29.00 FS FS No AD River in San Saba County upstream to the US 190 **Toxic Substances in sediment** 2008 Metals 3 1416 01 From the confluence with the Colorado 3 0 ID NA No NA River in San Saba County upstream to the US 190

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. San Saba River Segment ID: 1416 Water body type: Freshwater Stream Water body size: 137 Miles <u># of</u> # <u># of</u> Mean of Dataset 2008 Integ Imp Carry Assessment Area (AU) YEAR AU ID Qualifier Samples 1 -Assessed Exc Assessed Criteria <u>Supp</u> <u>Supp</u> Category Forward General Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416 San Saba River Water body type: Freshwater Stream Water body size: 137 Miles # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Supp Supp Category Forward Criteria General Use **Dissolved Solids** 25.58 From the confluence with the Colorado 69 69 FS FS 2008 Chloride 1416 01 50.00 AD No River in San Saba County upstream to the US 190 From US 190 upstream to McCulloch 25.58 2008 Chloride 1416 02 69 69 50.00 AD FS FS No County line McCulloch County/San Saba County line 2008 Chloride 1416 03 69 69 25.58 50.00 AD FS FS No upstream to McCulloch County/Mason County line 69 25.58 FS FS 2008 Chloride 1416 04 Mason County to FM 2092 69 50.00 AD No FS 69 69 25.58 FS 2008 Chloride 1416 05 FM 2092 upstream to end of segment 50.00 AD No FS From the confluence with the Colorado 69 69 18.51 2008 Sulfate 1416 01 50.00 AD FS No River in San Saba County upstream to the US 190 From US 190 upstream to McCulloch 69 18.51 2008 Sulfate 1416 02 69 50.00 AD FS FS No County line McCulloch County/San Saba County line 69 69 18.51 50.00 AD FS FS No 2008 Sulfate 1416 03 upstream to McCulloch County/Mason County line 69 69 18.51 FS FS 2008 Sulfate 1416 04 Mason County to FM 2092 50.00 AD No 69 69 18.51 FS FS 2008 Sulfate 1416 05 FM 2092 upstream to end of segment 50.00 AD No From the confluence with the Colorado 79 79 316.12 425.00 FS FS 2008 Total Dissolved Solids 1416 01 AD No River in San Saba County upstream to the **US 190** 2008 Total Dissolved Solids 1416 02 From US 190 upstream to McCulloch 79 79 316.12 425.00 AD FS FS No County line McCulloch County/San Saba County line 79 79 316.12 FS 2008 1416 03 425.00 AD FS No Total Dissolved Solids upstream to McCulloch County/Mason County line

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416	San Saba	a River									
Water body type: Freshwater	Stream					Wate	r body size:		137	Mi	les
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carry</u> Category Forward
General Use	_										
Dissolved Solids											
2008 Total Dissolved Solids	1416_04	Mason County to FM 2092	79	79		316.12	425.00	AD	FS	FS	No
2008 Total Dissolved Solids	1416_05	FM 2092 upstream to end of segment	79	79		316.12	425.00	AD	FS	FS	No
High pH											
2008 рН	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	45	45	0		9.00	AD	FS	FS	No
2008 pH	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	26	26	0		9.00	AD	FS	FS	No
2008 pH	1416 05	FM 2092 upstream to end of segment	1	1	0		9.00	ID	NA	NA	No
Low pH	—	, C									
2008 рН	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	45	45	0		6.50	AD	FS	FS	No
2008 рН	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	26	26	0		6.50	AD	FS	FS	No
2008 рН	1416_05	FM 2092 upstream to end of segment	1	1	0		6.50	ID	NA	NA	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segme	ent ID: 1416	San Saba	ı River										
Water	body type: Freshwater	r Stream					Water	r body size:		137	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
General I	Use												
Nutrient	Screening Levels												
2008 A	Ammonia	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	41	41	0		0.33	AD	NC	NC		No
2008 A	Ammonia	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	25	25	1		0.33	AD	NC	NC		No
2008 C	Chlorophyll-a	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	43	43	4		14.10	AD	NC	NC		No
2008 C	Chlorophyll-a	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	24	24	1		14.10	AD	NC	NC		No
2008 N	Vitrate	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	44	44	0		1.95	AD	NC	NC		No
2008 N	Vitrate	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	23	23	0		1.95	AD	NC	NC		No
2008 C	Orthophosphorus	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	42	42	0		0.37	AD	NC	NC		No
2008 C	Orthophosphorus	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	24	24	0		0.37	AD	NC	NC		No
2008 Т	Total Phosphorus	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	44	44	2		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416 San Saba River Water body type: Freshwater Stream Water body size: 137 Miles # of # Mean of 2008 Imp # of Dataset Integ Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward General Use **Nutrient Screening Levels** 2008 Total Phosphorus 1416 03 McCulloch County/San Saba County line 23 23 2 0.69 AD NC NC No upstream to McCulloch County/Mason County line Water Temperature 2008 Temperature 1416 01 From the confluence with the Colorado 46 46 0 32.20 AD FS FS No River in San Saba County upstream to the US 190 2008 Temperature 1416 03 McCulloch County/San Saba County line 27 27 0 32.20 AD FS FS No upstream to McCulloch County/Mason County line 1416 05 FM 2092 upstream to end of segment 0 32.20 NC NC No 2008 Temperature 6 6 LD

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416	San Saba	1 River									
Water body type: Fresh	water Stream					Water	· body size:		137	М	iles
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> Category Forward
Public Water Supply Use											
Finished Drinking Water Dis	solved Solids average										
2008 Multiple	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190						OE	NC	NC	No
2008 Multiple	1416_02	From US 190 upstream to McCulloch County line						OE	NC	NC	No
2008 Multiple	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line						OE	NC	NC	No
2008 Multiple	1416_04	Mason County to FM 2092						OE	NC	NC	No
2008 Multiple	1416_05	FM 2092 upstream to end of segment						OE	NC	NC	No
Finished Drinking Water MC	CLs and Toxic Substar	ces running average									
2008 Multiple	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190						OE	FS	FS	No
2008 Multiple	1416_02	From US 190 upstream to McCulloch County line						OE	FS	FS	No
2008 Multiple	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line						OE	FS	FS	No
2008 Multiple	1416_04	Mason County to FM 2092						OE	FS	FS	No
2008 Multiple	1416_05	FM 2092 upstream to end of segment						OE	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ-Assessor Judgement; OE-Other Information Evaluated; OS-Out-of-State; AU ID- Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID: 1416	San Saba	a River									
Wate	er body type: Freshwater S	Stream					Water	body size:		137	М	iles
YEAR	L	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> Forwar
Public	Water Supply Use	_										
Finish	ed Drinking Water MCLs Cor	icern										
2008	Multiple	1416_01	From the confluence with the Colorado						OE	NC	NC	No
			River in San Saba County upstream to the US 190									
2008	Multiple	1416_02	From US 190 upstream to McCulloch County line						OE	NC	NC	No
2008	Multiple	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line						OE	NC	NC	No
2008	Multiple	1416_04	Mason County to FM 2092						OE	NC	NC	No
2008	Multiple	1416_05	FM 2092 upstream to end of segment						OE	NC	NC	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Freshwat	er Stream					Wate	er body size:		137	Mi	iles	
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recrea	ntion Use	_											
Bacter	ria Geomean												
2008	E. coli	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	44	44	1	197.63	126.00	AD	NS	NS	5c	No
2008	E. coli	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	25	25	0	56.94	126.00	AD	FS	FS		No
2008	Fecal coliform	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	12	12	0	121.66	200.00	SM	FS	FS		No
2008	Fecal coliform	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	4	4	0	65.46	200.00	LD	NC	NC		No
Bacter	ria Single Sample		-										
2008	E. coli	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	44	44	7		394.00	AD	FS	FS		No
2008	E. coli	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	25	25	4		394.00	AD	FS	FS		No
2008	Fecal coliform	1416_01	From the confluence with the Colorado River in San Saba County upstream to the US 190	12	12	1		400.00	SM	FS	FS		No
2008	Fecal coliform	1416_03	McCulloch County/San Saba County line upstream to McCulloch County/Mason County line	4	4	1		400.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416A Brady Creek (unclassified water body)

Water body type: Freshwater Strea	am					Water body siz	e:	35	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use											
Acute Toxic Substances in water											
2006 Metals	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	10	10	0		AD	FS	FS		No
Chronic Toxic Substances in water											
2006 Metals	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	10	10			AD	FS	FS		No
Dissolved Oxygen 24hr average											
2008 Dissolved Oxygen 24hr Avg Dissolved Oxygen 24hr minimum	1416A_03	From FM 714 upstream to Brady Lake dam	6	6	4	4.)0 LD	NS	NS	5c	No
2008 Dissolved Oxygen 24hr Min Dissolved Oxygen grab minimum	1416A_03	From FM 714 upstream to Brady Lake dam	6	6	5	3.)0 LD	NS	NS	5c	No
2008 Dissolved Oxygen Grab	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	28	28	0	3.	00 AD	FS	FS		No
2008 Dissolved Oxygen Grab	1416A_03	From FM 714 upstream to Brady Lake dam	24	24	5	3.	00 SM	NS	NS		No
Dissolved Oxygen grab screening level											
2008 Dissolved Oxygen Grab	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	28	28	0	4.	00 AD	NC	NC		No
2008 Dissolved Oxygen Grab	1416A_03	From FM 714 upstream to Brady Lake dam	24	24	11	4.	00 AD	CS	CS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416A Brady Creek (unclassified water body)

Water body ty	pe: Freshwater Stream	m					Water	body size:		35	М	iles	
<u>YEAR</u>	4	AU ID	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use													
Toxic Substance	in sediment												
2008 Metals	1	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	7	7	0			LD	NC	NC		No
2008 Nickel	1	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	7	7	1		48.60	LD	NC	NC		No
2008 Organics]	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	5	5	0			LD	NC	NC		No
Fish Consumptio	ı Use												
HH Bioaccumula	tive Toxics in water												
2006 Chromiur	1	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	10	10		1.75	3,320.00	AD	FS	FS		No
2006 Lead	1	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	10	10		0.50	25.30	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1416ABrady Creek (unclassified water body)

Wate	er body type: Freshwate	er Stream					Water	r body size:		35	М	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> Forwar
Genera	ıl Use												
Nutrie	nt Screening Levels												
2008	Ammonia	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	27	27	0		0.33	AD	NC	NC		No
2008	Ammonia	1416A_03	From FM 714 upstream to Brady Lake dam	13	13	1		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	27	27	18		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1416A_03	From FM 714 upstream to Brady Lake dam	7	7	6		14.10	LD	CS	CS		No
2008	Nitrate	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	28	28	25		1.95	AD	CS	CS		No
2008	Nitrate	1416A_03	From FM 714 upstream to Brady Lake dam	13	13	0		1.95	AD	NC	NC		No
2008	Orthophosphorus	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	28	28	27		0.37	AD	CS	CS		No
2008	Orthophosphorus	1416A_03	From FM 714 upstream to Brady Lake dam	13	13	0		0.37	AD	NC	NC		No
2008	Total Phosphorus	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	27	27	26		0.69	AD	CS	CS		No
2008	Total Phosphorus	1416A_03	From FM 714 upstream to Brady Lake dam	9	9	0		0.69	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416A Brady Creek (unclassified water body)

Water body type:	Freshwater Stream					Wate	er body size:		35	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forwar
Recreation Use												
Bacteria Geomean												
2008 E. coli	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	23	23	0	49.09	126.00	AD	FS	FS		No
2008 E. coli	1416A_03	From FM 714 upstream to Brady Lake dam	9	9	0	31.25	126.00	LD	NC	NC		No
2008 Fecal coliform	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	12	12	0	53.98	200.00	SM	FS	FS		No
2008 Fecal coliform	1416A_03	From FM 714 upstream to Brady Lake dam	6	6	0	25.98	200.00	LD	NC	NC		No
Bacteria Single Sampl	e											
2008 E. coli	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	23	23	3		394.00	AD	FS	FS		No
2008 E. coli	1416A_03	From FM 714 upstream to Brady Lake dam	9	9	1		394.00	LD	NC	NC		No
2008 Fecal coliform	1416A_02	From the confluence of an unnamed tributary approximately 5 km east of FM 2309 east of Brady upstream to FM 714	12	12	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1416A_03	From FM 714 upstream to Brady Lake dam	6	6	0		4.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1416B Brady Creek Reservoir (unclassified water body)

Wate	er body type: Reservoir						Water	body size:		2,020	А	cres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	c Life Use												
Dissolv	ved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	14	14	0		3.00	AD	FS	FS		No
Dissolv	ved Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	14	14	2		5.00	AD	NC	NC		No
Genera	l Use												
Nutrie	nt Screening Levels												
2006	Ammonia	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	13	13	1		0.11	AD	NC	NC		No
2006	Chlorophyll-a	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	14	14	2		26.70	AD	NC	NC		No
2006	Nitrate	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	14	14	0		0.37	AD	NC	NC		No
2006	Orthophosphorus	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	13	13	0		0.05	AD	NC	NC		No
2006	Total Phosphorus	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	11	11	0		0.20	AD	NC	NC		No
Recrea	tion Use												
Bacter	ia Geomean												
2006	E. coli	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	14	14		2.00	126.00	AD	FS	FS		No
Bacter	ia Single Sample												
2006	E. coli	1416B_01	From Brady Creek Reservoir dam up to pool elevation 1,743 ft.	14	14	0		394.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1417 Lower Pecan Bayou

Water body	type: Freshwater Stre	am					Wate	r body size:		30	М	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life U	se												
Dissolved Oxy	gen 24hr average												
	ved Oxygen 24hr Avg	1417_01	Entire water body	5	5	0		5.00	LD	NC	NC		No
•	gen 24hr minimum												
	ved Oxygen 24hr Min	1417_01	Entire water body	5	5	0		3.00	LD	NC	NC		No
-	gen grab minimum												
	ved Oxygen Grab	1417_01	Entire water body	41	41	0		3.00	AD	FS	FS		No
-	gen grab screening level	1417 01	Further starts 1	41	41	0		5.00		NC	NC		N.
	ved Oxygen Grab ces in sediment	1417_01	Entire water body	41	41	0		5.00	AD	NC	NC		No
2008 Metals		1417 01	Entire water body	3	3	0			ID	NA	NA		No
General Use		1117_01	Entrie water body	5	5	Ū			ID	1 17 1	1 17 1		110
Dissolved Soli	de												
2008 Chlorid		1417 01	Entire water body	42	42		91.75	310.00	AD	FS	FS		No
2008 Sulfate		1417 01	Entire water body	42	42		69.57	120.00	AD	FS	FS		No
	Dissolved Solids	1417_01	Entire water body	51	51		463.09	1,025.00	AD	FS	FS		No
High pH	Jissofved Solids	1417_01	Entire water body	51	51		405.07	1,025.00	AD	15	15		INU
2008 pH		1417_01	Entire water body	41	41	1		9.00	AD	FS	FS		No
Low pH		_	5										
2008 pH		1417_01	Entire water body	41	41	0		6.50	AD	FS	FS		No
Nutrient Scree	ening Levels												
2008 Ammo	nia	1417_01	Entire water body	42	42	0		0.33	AD	NC	NC		No
2008 Chloro	phyll-a	1417_01	Entire water body	40	40	22		14.10	AD	CS	CS		No
2008 Nitrate		1417_01	Entire water body	41	41	13		1.95	AD	CS	CS		No
2008 Orthop	hosphorus	1417_01	Entire water body	40	40	6		0.37	AD	NC	NC		No
2008 Total H	hosphorus	1417_01	Entire water body	42	42	0		0.69	AD	NC	NC		No
Water Tempe	rature		·										
2008 Tempe	rature	1417_01	Entire water body	51	51	0		32.20	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1417 Lower Pecan Bayou

Water body type: Freshwater Stream						Wate		30	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	ImpCarryCategoryForward
Recreation Use											
Bacteria Geomean											
2008 E. coli	1417_01	Entire water body	42	42	0	120.32	126.00	AD	FS	FS	No
2008 Fecal coliform	1417_01	Entire water body	11	11	0	104.25	200.00	SM	FS	FS	No
Bacteria Single Sample											
2008 E. coli	1417_01	Entire water body	42	42	11		394.00	AD	CN	CN	No
2008 Fecal coliform	1417_01	Entire water body	11	11	2		400.00	SM	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Supporting; CA- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Support State St

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1418 Lake Brownwood Water body type: Reservoir Water body size: 7,290 Acres # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Exc Assessed Supp Supp Category Forward Assessed Criteria Aquatic Life Use Acute Toxic Substances in water 5 2006 5 NC NC Metals 1418 01 Mid-lake near dam 0 LD No 2006 Metals 1418 02 West arm of lake 5 5 0 LD NC NC No North arm of lake 5 5 0 NC 2006 Metals 1418 03 LD NC No **Chronic Toxic Substances in water** 2006 1418 01 Mid-lake near dam 5 5 LD NC NC Metals No 5 5 2006 Metals 1418 02 West arm of lake LD NC NC No 5 5 2006 Metals 1418 03 North arm of lake LD NC NC No **Dissolved Oxygen grab minimum** 1418 01 Mid-lake near dam 105 14 FS 2008 Dissolved Oxygen Grab 0 3.00 AD FS No Dissolved Oxygen Grab 1418 02 West arm of lake 40 14 0 FS FS 2008 3.00 AD No Dissolved Oxygen Grab 1418 03 North arm of lake 14 FS 2008 47 0 3.00 AD FS No **Dissolved Oxygen grab screening level** 2008 Dissolved Oxygen Grab 1418 01 Mid-lake near dam 105 14 0 5.00 AD NC NC No 2008 Dissolved Oxygen Grab 1418 02 West arm of lake 40 14 0 5.00 AD NC NC No Dissolved Oxygen Grab 1418 03 NC 2008 North arm of lake 47 14 0 5.00 AD NC No **Toxic Substances in sediment** 3 CS CS 1418 01 Mid-lake near dam 3 3 1.100.00 JQ 2008 Manganese No 3 3 2008 Metals 1418 01 Mid-lake near dam 0 ID NA NA No 3 3 2008 Metals 1418 02 West arm of lake 0 ID NA NA No 1418_03 3 3 ID 2008 Metals North arm of lake 0 NA NA No 0 ID 2008 Organics 1418 03 North arm of lake 1 NA NA No Fish Consumption Use **Bioaccumulative Toxics in fish tissue** 1418 01 Mid-lake near dam 2 2 0 2006 Multiple ID NA NA No HH Bioaccumulative Toxics in water 5 2006 Multiple 1418 01 Mid-lake near dam 5 LD NC NC No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1418 Lake Brownwood

Water body type: Reservoir							Water body size:			А	cres
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> Forwar
General Use	_										
Dissolved Solids											
2008 Chloride	1418_01	Mid-lake near dam	42	42		55.05	150.00	AD	FS	FS	No
2008 Chloride	1418_02	West arm of lake	42	42		55.05	150.00	AD	FS	FS	No
2008 Chloride	1418_03	North arm of lake	42	42		55.05	150.00	AD	FS	FS	No
2008 Sulfate	1418_01	Mid-lake near dam	42	42		36.57	100.00	AD	FS	FS	No
2008 Sulfate	1418_02	West arm of lake	42	42		36.57	100.00	AD	FS	FS	No
2008 Sulfate	1418_03	North arm of lake	42	42		36.57	100.00	AD	FS	FS	No
2008 Total Dissolved Solids	1418_01	Mid-lake near dam	45	45		297.31	500.00	AD	FS	FS	No
2008 Total Dissolved Solids	1418_02	West arm of lake	45	45		297.31	500.00	AD	FS	FS	No
2008 Total Dissolved Solids	1418_03	North arm of lake	45	45		297.31	500.00	AD	FS	FS	No
High pH											
2008 рН	1418_01	Mid-lake near dam	105	14	0		9.00	AD	FS	FS	No
2008 pH	1418_02	West arm of lake	40	14	0		9.00	AD	FS	FS	No
2008 рН	1418_03	North arm of lake	47	14	0		9.00	AD	FS	FS	No
Low pH											
2008 pH	1418_01	Mid-lake near dam	105	14	0		6.50	AD	FS	FS	No
2008 pH	1418_02	West arm of lake	40	14	0		6.50	AD	FS	\mathbf{FS}	No
2008 рН	1418_03	North arm of lake	47	14	0		6.50	AD	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; NC- No concern; SN- Not Spatially Representative; SN- Superceded by another method; NC- No concern; SN- Support SN- Not Spatially Representative; SN- Support SN- Not Spatially Representative; SN- Support SN- Not SN- Not Spatially Representative; SN- Support SN- Not SN- No

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1418 Lake Brownwood

Water body type: Reservoir						Water	r body size:		7,290	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
General Use												
Nutrient Screening Levels												
2008 Ammonia	1418_01	Mid-lake near dam	12	12	0		0.11	AD	NC	NC		No
2008 Ammonia	1418_02	West arm of lake	13	13	0		0.11	AD	NC	NC		No
2008 Ammonia	1418_03	North arm of lake	13	13	0		0.11	AD	NC	NC		No
2008 Chlorophyll-a	1418_01	Mid-lake near dam	14	14	0		26.70	AD	NC	NC		No
2008 Chlorophyll-a	1418_02	West arm of lake	14	14	0		26.70	AD	NC	NC		No
2008 Chlorophyll-a	1418_03	North arm of lake	14	14	0		26.70	AD	NC	NC		No
2008 Nitrate	1418_01	Mid-lake near dam	13	13	0		0.37	AD	NC	NC		No
2008 Nitrate	1418_02	West arm of lake	13	13	0		0.37	AD	NC	NC		No
2008 Nitrate	1418_03	North arm of lake	13	13	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1418_01	Mid-lake near dam	13	13	0		0.05	AD	NC	NC		No
2008 Orthophosphorus	1418_02	West arm of lake	13	13	0		0.05	AD	NC	NC		No
2008 Orthophosphorus	1418_03	North arm of lake	13	13	1		0.05	AD	NC	NC		No
2008 Total Phosphorus	1418_01	Mid-lake near dam	12	12	0		0.20	AD	NC	NC		No
2008 Total Phosphorus	1418_02	West arm of lake	13	13	0		0.20	AD	NC	NC		No
2008 Total Phosphorus	1418_03	North arm of lake	13	13	0		0.20	AD	NC	NC		No
Water Temperature												
2008 Temperature	1418_01	Mid-lake near dam	105	14	0		32.20	AD	FS	FS		No
2008 Temperature	1418_02	West arm of lake	40	14	0		32.20	AD	FS	FS		No
2008 Temperature	1418_03	North arm of lake	47	14	0		32.20	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1418	Lake Bro	ownwood										
Water body type: Reservoir						Wate	r body size:		7,290	A	eres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Public Water Supply Use												
Finished Drinking Water Dissolved S	Solids average											
2008 Multiple	1418_01	Mid-lake near dam						OE	NC	NC		No
2008 Multiple	1418_02	West arm of lake						OE	NC	NC		No
2008 Multiple	1418_03	North arm of lake						OE	NC	NC		No
Finished Drinking Water MCLs and	Toxic Substar	ces running average										
2008 Multiple	1418_01	Mid-lake near dam						OE	FS	FS		No
2008 Multiple	1418_02	West arm of lake						OE	FS	FS		No
2008 Multiple	1418_03	North arm of lake						OE	FS	FS		No
Finished Drinking Water MCLs Con	cern											
2008 Multiple	1418_01	Mid-lake near dam						OE	NC	NC		No
2008 Multiple	1418_02	West arm of lake						OE	NC	NC		No
2008 Multiple	1418_03	North arm of lake						OE	NC	NC		No
Surface Water HH criteria for PWS	average											
2006 Multiple	1418_01	Mid-lake near dam	5	5				LD	NC	NC		No
2006 Multiple	1418_02	West arm of lake	5	5				LD	NC	NC		No
2006 Multiple	1418_03	North arm of lake	5	5				LD	NC	NC		No
Surface Water Toxic Substances ave	rage concern											
2006 MTBE	1418_01	Mid-lake near dam	2	2		0.25	15.00	ID	NA	NA		No
2006 MTBE	1418_02	West arm of lake	2	2		0.25	15.00	ID	NA	NA		No
2006 MTBE	1418_03	North arm of lake	2	2		0.25	15.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SR- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Supporting; CM- Supporting; CM- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Supporting; CM- Supporting; CM-

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1418 Lake Brownwood

np <u>Carry</u> gory Forward
No
No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1418BJim Ned Creek (unclassified water body)

Water body t	ype: Freshwater Stre	eam					Wate	r body size:		39	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use													
Acute Toxic Sul	ostances in water												
2006 Metals		1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0			ID	NA	NA		No
Chronic Toxic S	Substances in water												
2006 Metals		1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0			ID	NA	NA		No
Dissolved Oxyge	en grab minimum												
2006 Dissolve	d Oxygen Grab	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0		3.00	ID	NA	NA		No
Dissolved Oxyge	en grab screening level												
2006 Dissolve	d Oxygen Grab	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0		4.00	ID	NA	NA		No
Toxic Substance	es in sediment												
2006 Metals		1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	2	2	0			ID	NA	NA		No
Fish Consumption	on Use												
HH Bioaccumul	ative Toxics in water												
2006 Chromiu	m	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3		1.50	3,320.00	ID	NA	NA		No
2006 Lead		1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3		0.83	25.30	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1418BJim Ned Creek (unclassified water body)

Wat	Water body type: Freshwater Stream						Water body size:			39	М	liles	
YEAF	<u>t</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> Category	<u>Carry</u> Forward
Gener	al Use												
Nutri	ent Screening Levels												
2006	Ammonia	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	2	2	0		0.33	ID	NA	NA		No
2006	Chlorophyll-a	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0		14.10	ID	NA	NA		No
2006	Nitrate	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0		1.95	ID	NA	NA		No
2006	Orthophosphorus	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0		0.37	ID	NA	NA		No
2006	Total Phosphorus	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	2	2	0		0.69	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1418BJim Ned Creek (unclassified water body)

Water body type:	Freshwater Stream					Wate	r body size:		39	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use												
Bacteria Geomean												
2006 E. coli	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	0	0			126.00	ID	NA	NA		No
2006 Fecal coliform	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3		14.00	200.00	ID	NA	NA		No
Bacteria Single Sample												
2006 E. coli	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	0	0	0		394.00	ID	NA	NA		No
2006 Fecal coliform	1418B_01	From the confluence of Lake Brownwood in Brown County upstream to the confluence of Indian Creek.	3	3	0		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1418C Hords Creek Reservoir (unclassified water body)

Water body type: Reservoir						Water	body size:		510	A		
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Metals	1418C_01	Entire water body	3	3	0			ID	NA	NA		No
Chronic Toxic Substances in water												
2006 Metals	1418C_01	Entire water body	3	3				ID	NA	NA		No
Dissolved Oxygen grab minimum	14100 01		2	•	0		2.00	ID				N
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1418C_01	Entire water body	2	2	0		3.00	ID	NA	NA		No
2006 Dissolved Oxygen Grab	1418C 01	Entire water body	2	2	0		5.00	ID	NA	NA		No
Toxic Substances in sediment	14100_01	Entric water body	2	2	0		5.00	ID	117	INA		NU
2006 Manganese	1418C_01	Entire water body	1	1	1		1,100.00	ID	NA	NA		No
2006 Metals	1418C_01	Entire water body	1	1	0			ID	NA	NA		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Chromium	1418C_01	Entire water body	3	3		1.70	100.00	ID	NA	NA		No
2006 Lead	1418C_01	Entire water body	3	3		1.50	4.98	ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1418C_01	Entire water body	3	3	0		0.11	ID	NA	NA		No
2006 Chlorophyll-a	1418C_01	Entire water body	3	3	0		26.70	ID	NA	NA		No
2006 Nitrate	1418C_01	Entire water body	3	3	0		0.37	ID	NA	NA		No
2006 Orthophosphorus	1418C_01	Entire water body	3	3	0		0.05	ID	NA	NA		No
2006 Total Phosphorus	1418C_01	Entire water body	3	3	0		0.20	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1418C Hords Creek Reservoir (unclassified water body)

Water body type: Reservoir						Wate	er body size:		510	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Public Water Supply Use												
Finished Drinking Water Dissolve	ed Solids average											
2006 Multiple	1418C_01	Entire water body						OE	NC	NC		No
Finished Drinking Water MCLs a	and Toxic Substa	ices running average										
2006 Multiple	1418C_01	Entire water body						OE	FS	FS		No
Finished Drinking Water MCLs C	Concern											
2006 Multiple	1418C_01	Entire water body						OE	NC	NC		No
Surface Water HH criteria for PV	VS average											
2006 Multiple	1418C_01	Entire water body	3	3				ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1418C_01	Entire water body	1	1		0.50	126.00	ID	NA	NA		No
2006 Fecal coliform	1418C_01	Entire water body	2	2		1.00	200.00	ID	NA	NA		No
Bacteria Single Sample												
2006 E. coli	1418C_01	Entire water body	1	1	0		394.00	ID	NA	NA		No
2006 Fecal coliform	1418C_01	Entire water body	2	2	0		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1419 Lake Coleman

Water body type: Reservoir						Water	body size:		2,000	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Multiple	1419_01	Entire lake	7	7	0			TR	NA	NA		No
Chronic Toxic Substances in water												
2006 Multiple	1419_01	Entire lake	7	7				TR	NA	NA		No
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab	1419_01	Entire lake	75	14	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening lev	el											
2008 Dissolved Oxygen Grab	1419_01	Entire lake	75	14	1		5.00	AD	NC	NC		No
Toxic Substances in sediment												
2008 Metals	1419_01	Entire lake	4	4	0			LD	NC	NC		No
2006 Organics	1419_01	Entire lake	1	1	0			ID	NA	NA		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Multiple	1419_01	Entire lake	7	7				TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1419	Lake Co	leman									
Water body type: Reservoir						Wate	r body size:		2,000	A	cres
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp <u>Carry</u> Category Forward
General Use	_										
Dissolved Solids											
2008 Chloride	1419_01	Entire lake	15	15		55.07	150.00	AD	FS	FS	No
2008 Sulfate	1419_01	Entire lake	15	15		40.60	100.00	AD	FS	FS	No
2008 Total Dissolved Solids	1419_01	Entire lake	16	16		298.60	500.00	AD	FS	FS	No
High pH											
2008 pH	1419_01	Entire lake	75	14	0		9.00	AD	FS	FS	No
Low pH	1410_01	Frating Isla	75	14	0		(50		FC	EC	N
2008 pH Nutrient Screening Levels	1419_01	Entire lake	/5	14	0		6.50	AD	FS	FS	No
2008 Ammonia	1419 01	Entire lake	13	13	0		0.11	AD	NC	NC	No
2008 Chlorophyll-a	1419 01	Entire lake	15	15	0		26.70	AD	NC	NC	No
2008 Nitrate	1419 01	Entire lake	14	14	0		0.37	AD	NC	NC	No
2008 Orthophosphorus	1419 01	Entire lake	15	15	0		0.05	AD	NC	NC	No
2008 Total Phosphorus	1419 01	Entire lake	13	13	0		0.20	AD	NC	NC	No
Water Temperature	1117_01		15	15	Ŭ		0.20		1.0	1.0	110
2008 Temperature	1419_01	Entire lake	75	14	0		33.90	AD	FS	FS	No
Public Water Supply Use	_										
Finished Drinking Water Dissolved	Solids average										
2008 Multiple	1419_01	Entire lake						OE	NC	NC	No
Finished Drinking Water MCLs and		ices running average									
2008 Multiple	1419_01	Entire lake						OE	FS	FS	No
Finished Drinking Water MCLs Con								0.5		NG	
2008 Multiple Surface Water HH criteria for PWS	1419_01	Entire lake						OE	NC	NC	No
2006 Multiple	1419_01	Entire lake	7	7				TR	NA	NA	No
2000 Multiple	1419_01	Entire lake	/	/				IK	INA	INA	1NO

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Lake Coleman Segment ID: 1419 Water body type: 2,000 Reservoir Water body size: Acres <u># of</u> # # of Mean of Dataset 2008 Integ Imp Carry AU ID Assessment Area (AU) Samples <u>Qualifier</u> YEAR Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward **Recreation Use Bacteria Geomean** FS 2008 E. coli 1419_01 Entire lake 10 10 0 1.17 FS No 126.00 AD 2008 Fecal coliform 1419 01 Entire lake 6 6 0 1.20 200.00 SM NC NC No **Bacteria Single Sample** 2008 E. coli 1419 01 Entire lake 10 10 0 394.00 AD FS FS No 2008 Fecal coliform 1419 01 Entire lake 6 6 0 400.00 SM NC NC No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Pecan Bayou Above Lake Brownwood Segment ID: 1420

Water body type: Freshwater Stre	am					Wate	r body size:		51	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> Forward
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Multiple Chronic Toxic Substances in water	1420_01	Lower 25 miles	14	14	0			AD	FS	FS		No
2006 Multiple Dissolved Oxygen 24hr average	1420_01	Lower 25 miles	14	14				AD	FS	FS		No
2008 Dissolved Oxygen 24hr Avg Dissolved Oxygen 24hr minimum	1420_01	Lower 25 miles	4	4	0		5.00	LD	NC	NC		No
2008 Dissolved Oxygen 24hr Min Dissolved Oxygen grab minimum	1420_01	Lower 25 miles	4	4	0		3.00	LD	NC	NC		No
2008 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1420_01	Lower 25 miles	45	31	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab Toxic Substances in sediment	1420_01	Lower 25 miles	45	31	3		5.00	AD	NC	NC		No
2008 Metals Fish Consumption Use	1420_01	Lower 25 miles	4	4	0			LD	NC	NC		No
HH Bioaccumulative Toxics in water												
2006 Chromium	1420_01	Lower 25 miles	14	14		1.50	100.00	AD	FS	FS		No
2006 Lead	1420_01	Lower 25 miles	14	14		0.60	4.98	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; DA- Access bed represented by the formation in t

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1420 Pecan Bayou Above Lake Brownwood

Segment ID:

Water body type: Freshwater	Stream					Water body size:			51	Miles		
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General Use	_											
Dissolved Solids	_											
2008 Chloride	1420_01	Lower 25 miles	36	36		70.88	500.00	AD	FS	FS		No
2008 Chloride	1420_02	Remainder of segment	36	36		70.88	500.00	AD	FS	FS		No
2008 Sulfate	1420_01	Lower 25 miles	36	36		68.88	500.00	AD	FS	FS		No
2008 Sulfate	1420_02	Remainder of segment	36	36		68.88	500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1420_01	Lower 25 miles	40	40		402.71	1,500.00	AD	FS	FS		No
2008 Total Dissolved Solids	1420_02	Remainder of segment	40	40		402.71	1,500.00	AD	FS	FS		No
High pH	_	-										
2008 рН	1420_01	Lower 25 miles	49	35	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1420_01	Lower 25 miles	49	35	0		6.50	AD	FS	FS		No
Nutrient Screening Levels												
2008 Ammonia	1420_01	Lower 25 miles	35	35	0		0.33	AD	NC	NC		No
2008 Chlorophyll-a	1420_01	Lower 25 miles	36	36	10		14.10	AD	CS	CS		No
2008 Nitrate	1420_01	Lower 25 miles	35	35	0		1.95	AD	NC	NC		No
2008 Orthophosphorus	1420_01	Lower 25 miles	35	35	1		0.37	AD	NC	NC		No
2008 Total Phosphorus	1420_01	Lower 25 miles	34	34	0		0.69	AD	NC	NC		No
Water Temperature												
2008 Temperature	1420_01	Lower 25 miles	49	35	0		32.20	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1420 Pecan Bayou Above Lake Brownwood

Water body type: Freshwater Stream					Water		51	М	iles	
YEAR <u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carr</u> <u>Category</u> Forwa
Public Water Supply Use										
Finished Drinking Water Dissolved Solids averag										
2008 Multiple 1420_01	Lower 25 miles						OE	NC	NC	No
2008 Multiple 1420_02	Remainder of segment						OE	NC	NC	No
Finished Drinking Water MCLs and Toxic Substa	nces running average									
2008 Multiple 1420_01	Lower 25 miles						OE	FS	FS	No
2008 Multiple 1420_02	Remainder of segment						OE	FS	FS	No
Finished Drinking Water MCLs Concern										
2008 Multiple 1420_01	Lower 25 miles						OE	NC	NC	No
2008 Multiple 1420_02	Remainder of segment						OE	NC	NC	No
Surface Water HH criteria for PWS average										
2006 Multiple 1420_01	Lower 25 miles	14	14				AD	FS	FS	No
Recreation Use										
Bacteria Geomean										
2008 E. coli 1420_01	Lower 25 miles	24	24	0	29.14	126.00	AD	FS	FS	No
2008 Fecal coliform 1420_01	Lower 25 miles	23	23	0	35.58	200.00	SM	FS	FS	No
Bacteria Single Sample										
2008 E. coli 1420_01	Lower 25 miles	24	24	1		394.00	AD	FS	FS	No
2008 Fecal coliform 1420_01	Lower 25 miles	23	23	1		400.00	SM	FS	FS	No

Concho River

Segment ID:

1421

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; ID- Accesser Indexprese Indexpresentative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body	type: Freshwater Stre	am					Water body size	•	68	М	iles
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u> <u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Carry Category Forwar
Aquatic Life Us	e										
Acute Ambient	Toxicity tests in water										
2006 Water A	Acute Toxicity	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	3	3	0		ID	NA	NA	No
Acute Toxic Su	bstances in water										
2006 Metals		1421_01	Downstream end to Chandler Lake confluence	14	14	0		AD	FS	FS	No
2006 Metals		1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	4	3	0		TR	NA	NA	No
2006 Metals		1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	9	9	0		LD	NC	NC	No
2006 Organic	S	1421_01	Downstream end to Chandler Lake confluence	1	1	0		ID	NA	NA	No
Chronic Ambie	ent Toxicity tests in wate	r									
2006 Water C	Chronic Toxicity	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	3	3	0		ID	NA	NA	No
Chronic Toxic	Substances in water										
2006 Metals		1421_01	Downstream end to Chandler Lake confluence	14	14			AD	FS	FS	No
2006 Metals		1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	4	3			TR	NA	NA	No
2006 Metals		1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	9	9			LD	NC	NC	No
2006 Organic	S	1421_01	Downstream end to Chandler Lake confluence	1	1			ID	NA	NA	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Water body type: Freshwat	er Stream					Wate	r body size:		68	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen 24hr average												
2008 Dissolved Oxygen 24hr A	vg 1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	4	4	0		5.00	LD	NC	NC		No
2008 Dissolved Oxygen 24hr A	vg 1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	21	21	10		5.00	AD	NS	NS	5c	No
2008 Dissolved Oxygen 24hr A	vg 1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	4	4	0		5.00	LD	NC	NC		No
Dissolved Oxygen 24hr minimun	I											
2008 Dissolved Oxygen 24hr M	in 1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	4	4	1		3.00	LD	NC	NC		No
2008 Dissolved Oxygen 24hr M	in 1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	21	21	9		3.00	AD	NS	NS	5c	No
2008 Dissolved Oxygen 24hr M	in 1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	4	4	0		3.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Concho River

Water body type:	Freshwater Stream					Water bo	ody size:		68	М	Ailes	
YEAR	<u>AU I</u>	D Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquatic Life Use												
Dissolved Oxygen gra	b minimum											
2008 Dissolved Oxy	gen Grab 1421_	01 Downstream end to Chandler Lake confluence	74	74	0		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421_	02 From Chandler Lake confluence upstream confluence of Puddle Ck.	to 24	24	0		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421_	03 From the confluence of Puddle Creek upstream to the confluence of Willow Cree	20 ek	20	1		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421	04 From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	28	28	0		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421	05 From the confluence of an unnamed tributary near Chandler Rd. upstream to th confluence of Red Ck.	22 e	22	0		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421_	66 From the confluence of Red Creek upstrea to the dam near Vines Rd.	m 27	27	1		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421	07 From the dam near Vines Road upstream t the confluence of the North Concho River and the South Concho River	o 83	82	1		3.00	AD	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421	08 North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	150	130	5		3.00	SM	FS	FS		No
2008 Dissolved Oxy	gen Grab 1421	09 South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	32	32	2		3.00	AD	FS	FS		No

O.C. Fisher dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 **Concho River** Water body type: Freshwater Stream Water body size: 68 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Supp Supp Category Forward Criteria Aquatic Life Use **Dissolved Oxygen grab screening level** 1421 01 Downstream end to Chandler Lake 74 74 2008 Dissolved Oxygen Grab 6 5.00 AD NC NC No confluence Dissolved Oxygen Grab 1421 02 From Chandler Lake confluence upstream to 24 24 3 AD NC NC No 2008 5.00 confluence of Puddle Ck. 2008 Dissolved Oxygen Grab 1421 03 From the confluence of Puddle Creek 20 20 5.00 AD CS CS No 6 upstream to the confluence of Willow Creek From the confluence of Willow Creek 28 2008 Dissolved Oxygen Grab 1421 04 28 0 5.00 AD NC NC No upstream to the confluence of an unnamed tributary near Chandler Road From the confluence of an unnamed 22 1421 05 22 CS CS 2008 Dissolved Oxygen Grab 6 5.00 AD No tributary near Chandler Rd. upstream to the confluence of Red Ck. From the confluence of Red Creek upstream Dissolved Oxygen Grab 1421 06 27 27 5 5.00 AD CS CS No 2008 to the dam near Vines Rd. From the dam near Vines Road upstream to 83 82 CS CS 2008 Dissolved Oxygen Grab 1421 07 10 5.00 AD No the confluence of the North Concho River and the South Concho River 150 130 27 CS Dissolved Oxygen Grab 1421 08 North Concho River, from the confluence 5.00 SM CS No 2008 with the South Concho River upstream to O.C. Fisher dam Dissolved Oxygen Grab 1421 09 South Concho River, from the confluence 32 32 9 5.00 AD CS CS No 2008 with the North Concho upstream to Nasworthy Dam **Elutriate Toxicity tests in sediment** 2006 1421 08 3 3 ID Sediment Elutriate Toxicity North Concho River, from the confluence No with the South Concho River upstream to

2008 Texas Water Quality	y Inventory	- Basin Assessment Data by Segm	ent (Mar	ch 19, 20	008)							
NA- Not assessed; NC- No concern; Dataset Qualifi	iers: AD- Adequate Da	support) identifiers: FS- Fully Supporting; CN- Concern for Near non- ta; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Repre te; AU ID - Assessment Unit ID *Note: Carry-forward refers to impair	sentative; SR- Not	Spatially Repre	sentative; S	M- Superceded by anot						
Segment ID: 1421	Concho	River										
Water body type: Freshwater	Stream					Water	· body size:		68	Ν	files	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use	_											
Macrobenthic Community 2008 Macrobenthic Community	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	0	0				ID	NA	NS	5c	Yes

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Water	body type: Freshwater	Stream					Water	body size:		68	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic I	Life Use	_											
Toxic Su	bstances in sediment												
2008 C	Chromium	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	12	12	1		111.00	AD	NC	NC		No
2008 C	Chrysene	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	4	4	1		1,290.00	LD	NC	NC		No
2008 C	Copper	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	12	12	1		149.00	AD	NC	NC		No
2008 L	lead	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	12	12	1		128.00	AD	NC	NC		No
2008 N	Aetals	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	12	12	0			AD	NC	NC		No
2006 N	Multiple	1421_01	Downstream end to Chandler Lake confluence	1	1	0			ID	NA	NA		No
2008 N	Vickel	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	12	12	1		48.60	AD	NC	NC		No
2006 C	Organics	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	5	5	0			LD	NC	NC		No
2008 P	Pyrene	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	4	4	1		1,520.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Water body type: Freshwater St	ream					Water body s	ize:	68	М	liles
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u> <u>Criter</u>	<u>Dataset</u> ia <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carry</u> <u>Category Forward</u>
Fish Consumption Use										
Bioaccumulative Toxics in fish tissue										
2006 Multiple	1421_01	Downstream end to Chandler Lake confluence	2	2	0		ID	NA	NA	No
HH Bioaccumulative Toxics in water										
2006 Multiple	1421_01	Downstream end to Chandler Lake confluence	10	10			AD	FS	FS	No
2006 Multiple	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	4	3			ID	NA	NA	No
2006 Multiple	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	4	4			LD	NC	NC	No

	2008 Texas Water Qu	ality Inventory	v - Basin Assessment Da	ata by Segment (Marc	h 19, 20	08)						
	NA- Not assessed; NC- No concern; Datase	et Qualifiers: AD- Adequate D	support) identifiers: FS- Fully Supporting; CN ata; ID- Inadequate Data; LD- Limited Data; TF ate; AU ID - Assessment Unit ID *Note: Carry-	R- Not Temporally Representative; SR- Not S	patially Repres	entative; SM	I- Superceded by another meth					
	Segment ID: 1421	Concho	River									
	Water body type: Freshw	water Stream					Water bod	y size:	68	М	iles	
	YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed <u>Cri</u>	<u>Dataset</u> teria Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
١	General Use											

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 Concho River

Wate	er body type: Freshwater	Stream					Wate	r body size:		68	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use	-											
Dissol	ved Solids												
2008	Chloride	1421_01	Downstream end to Chandler Lake confluence	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	327	327		422.41	775.00	AD	FS	FS		No
2008	Chloride	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	327	327		422.41	775.00	AD	FS	FS		No
2008	Sulfate	1421_01	Downstream end to Chandler Lake confluence	324	324		262.56	425.00	AD	FS	FS		No
2008	Sulfate	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	324	324		262.56	425.00	AD	FS	FS		No
2008	Sulfate	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	324	324		262.56	425.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 Concho River

Wate	r body type: Freshwater	Stream					Wate	r body size:		68	М	iles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Genera	l Use	_											
	ved Solids Sulfate	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	324	324		262.56	425.00	AD	FS	FS		No
2008	Sulfate	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	324	324		262.56	425.00	AD	FS	FS		No
2008	Sulfate	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	324	324		262.56	425.00	AD	FS	FS		No
2008	Sulfate	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	324	324		262.56	425.00	AD	FS	FS		No
2008	Sulfate	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	324	324		262.56	425.00	AD	FS	FS		No
2008	Sulfate	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	324	324		262.56	425.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_01	Downstream end to Chandler Lake confluence	442	442		1,254.71	1,600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	442	442		1,254.71	1,600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	442	442		1,254.71	1,600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	442	442		1,254.71	1,600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	442	442		1,254.71	1,600.00	AD	FS	FS		No

Concho River

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Wat	er body type: Freshwater	Stream					Wate	r body size:		68	М	liles	
<u>YEA</u> F	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Gener	al Use	_											
Dissol	ved Solids												
2008	Total Dissolved Solids	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	442	442		1,254.71	1,600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	442	442		1,254.71	1,600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	442	442		1,254.71	1,600.00	AD	FS	FS		No
2008	Total Dissolved Solids	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	442	442		1,254.71	1,600.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

$\mathbf{\alpha}$. Segment ID: 1421

Water body type: Fre	eshwater Stream					Water	· body size:		68	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
General Use												
High pH												
2008 рН	1421_01	Downstream end to Chandler Lake confluence	79	79	0		9.00	AD	FS	FS		No
2008 рН	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	23	23	0		9.00	AD	FS	FS		No
2008 рН	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	24	24	0		9.00	AD	FS	FS		No
2008 рН	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	28	28	0		9.00	AD	FS	FS		No
2008 рН	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	21	21	0		9.00	AD	FS	FS		No
2008 рН	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	26	26	0		9.00	AD	FS	FS		No
2008 рН	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	79	78	1		9.00	AD	FS	FS		No
2008 рН	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	145	125	0		9.00	AD	FS	FS		No
2008 рН	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	32	32	0		9.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 Concho River

Wate	er body type: Freshwater	Stream					Water	body size:		68	М	iles	
<u>YEAR</u>	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use	_											
Low p	Н												
2008	рН	1421_01	Downstream end to Chandler Lake confluence	79	79	0		6.50	AD	FS	FS		No
2008	рН	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	23	23	0		6.50	AD	FS	FS		No
2008	рН	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	24	24	0		6.50	AD	FS	FS		No
2008	рН	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	28	28	0		6.50	AD	FS	FS		No
2008	рН	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	21	21	0		6.50	AD	FS	FS		No
2008	рН	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	26	26	0		6.50	AD	FS	FS		No
2008	рН	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	79	78	0		6.50	AD	FS	FS		No
2008	рН	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	145	125	0		6.50	AD	FS	FS		No
2008	рН	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	32	32	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Concho River

Wate	er body type: Freshwate	er Stream					Water	body size:		68	М	iles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1421_01	Downstream end to Chandler Lake confluence	38	38	4		0.33	AD	NC	NC		No
2008	Ammonia	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	17	17	1		0.33	AD	NC	NC		No
2008	Ammonia	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	16	16	2		0.33	AD	NC	NC		No
2008	Ammonia	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	28	28	0		0.33	AD	NC	NC		No
2008	Ammonia	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	14	14	3		0.33	AD	NC	NC		No
2008	Ammonia	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	18	18	3		0.33	AD	NC	NC		No
2008	Ammonia	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	43	43	5		0.33	AD	NC	NC		No
2008	Ammonia	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	33	33	0		0.33	AD	NC	NC		No
2008	Ammonia	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	20	20	1		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1421_01	Downstream end to Chandler Lake confluence	10	10	9		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	4	4	4		14.10	LD	CS	CS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 Co

Wate	er body type: Freshwate	er Stream					Water	body size:		68	М	iles	
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Genera	al Use												
	ent Screening Levels Chlorophyll-a	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	27	27	16		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	28	28	18		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	27	27	19		14.10	AD	CS	CS		No
2008	Chlorophyll-a	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	1	1	0		14.10	ID	NA	NA		No
2008	Nitrate	1421_01	Downstream end to Chandler Lake confluence	60	60	15		1.95	AD	NC	NC		No
2008	Nitrate	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	17	17	8		1.95	AD	CS	CS		No
2008	Nitrate	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	19	19	9		1.95	AD	CS	CS		No
2008	Nitrate	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	27	27	11		1.95	AD	CS	CS		No
2008	Nitrate	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	15	15	5		1.95	AD	CS	CS		No
2008	Nitrate	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	18	18	6		1.95	AD	CS	CS		No
2008	Nitrate	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	54	54	3		1.95	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 Concho River

Wat	er body type: Freshwate	er Stream					Wate	r body size:		68	М	iles	
YEAF	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Gener	al Use												
	ent Screening Levels												
2008	Nitrate	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	32	32	1		1.95	AD	NC	NC		No
2008	Nitrate	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	21	21	5		1.95	AD	NC	NC		No
2008	Orthophosphorus	1421_01	Downstream end to Chandler Lake confluence	37	37	7		0.37	AD	NC	NC		No
2008	Orthophosphorus	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	14	14	7		0.37	AD	CS	CS		No
2008	Orthophosphorus	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	14	14	5		0.37	AD	CS	CS		No
2008	Orthophosphorus	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	27	27	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	17	17	4		0.37	AD	NC	NC		No
2008	Orthophosphorus	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	15	15	5		0.37	AD	CS	CS		No
2008	Orthophosphorus	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	40	40	5		0.37	AD	NC	NC		No
2008	Orthophosphorus	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	27	27	1		0.37	AD	NC	NC		No
2008	Orthophosphorus	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	21	21	6		0.37	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SR- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Wate	r body type: Freshwate	er Stream					Water	body size:		68	М	iles
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carr</u> Category Forw
General	l Use	_										
Nutrier	nt Screening Levels											
2008	Total Phosphorus	1421_01	Downstream end to Chandler Lake confluence	13	13	0		0.69	AD	NC	NC	No
2008	Total Phosphorus	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	5	5	0		0.69	LD	NC	NC	No
2008	Total Phosphorus	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	7	7	0		0.69	LD	NC	NC	No
2008	Total Phosphorus	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	28	28	0		0.69	AD	NC	NC	No
2008	Total Phosphorus	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	5	5	0		0.69	LD	NC	NC	No
2008	Total Phosphorus	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	31	31	0		0.69	AD	NC	NC	No
2008	Total Phosphorus	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	31	31	0		0.69	AD	NC	NC	No
2008	Total Phosphorus	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	6	6	0		0.69	LD	NC	NC	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 Concho River

Water	body type:	Freshwater Stream					Water	body size:		68	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General	Use												
Water T	Temperature												
2008	Temperature	1421_01	Downstream end to Chandler Lake confluence	83	83	1		32.20	AD	FS	FS		No
2008	Temperature	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	24	24	0		32.20	AD	FS	FS		No
2008	Temperature	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	24	24	0		32.20	AD	FS	FS		No
2008	Temperature	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	28	28	0		32.20	AD	FS	FS		No
2008	Temperature	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	22	22	0		32.20	AD	FS	FS		No
2008	Temperature	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	27	27	0		32.20	AD	FS	FS		No
2008	Temperature	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	95	94	3		32.20	AD	FS	FS		No
2008	Temperature	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	150	130	0		32.20	AD	FS	FS		No
2008	Temperature	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	32	32	0		32.20	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:	1421 Concho	River										
Water body type:	Freshwater Stream					Wat	ter body size:		68	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>

Public Water Supply Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID:	1421	Concho I	River										
Wat	er body type:	Freshwater S	Stream					Wate	r body size:		68	М	iles	
YEAR	<u> </u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Public	Water Supply	Use	-											
Finish	ed Drinking W	ater Dissolved S	Solids average											
2008	Chloride		1421_01	Downstream end to Chandler Lake confluence					300.00	OE	NC	NC		No
2008	Chloride		1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.					300.00	OE	NC	NC		No
2008	Chloride		1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek					300.00	OE	NC	NC		No
2008	Chloride		1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road					300.00	OE	NC	NC		No
2008	Chloride		1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.					300.00	OE	NC	NC		No
2008	Chloride		1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.					300.00	OE	NC	NC		No
2008	Chloride		1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River					300.00	OE	NC	NC		No
2008	Chloride		1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam					300.00	OE	NC	NC		No
2008	Chloride		1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam					300.00	OE	NC	NC		No
2008	Sulfate		1421_01	Downstream end to Chandler Lake confluence					300.00	OE	NC	NC		No
2008	Sulfate		1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.					300.00	OE	NC	NC		No
2008	Sulfate		1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek					300.00	OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater	Stream					Wate	er body size:		68	М	iles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
ublic	Water Supply Use	_											
	ed Drinking Water Dissolved	0											
2008	Sulfate	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road					300.00	OE	NC	NC		No
2008	Sulfate	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.					300.00	OE	NC	NC		No
2008	Sulfate	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.					300.00	OE	NC	NC		No
2008	Sulfate	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River					300.00	OE	NC	NC		No
2008	Sulfate	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam					300.00	OE	NC	NC		No
2008	Sulfate	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam					300.00	OE	NC	NC		No
2008	Total Dissolved Solids	1421_01	Downstream end to Chandler Lake confluence					1,000.00	OE	NC	NC		No
2008	Total Dissolved Solids	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.					1,000.00	OE	NC	NC		No
2008	Total Dissolved Solids	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek					1,000.00	OE	NC	NC		No
2008	Total Dissolved Solids	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road					1,000.00	OE	NC	NC		No
2008	Total Dissolved Solids	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.					1,000.00	OE	NC	NC		No

Concho River

Segment ID:

1421

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; IO- Assessor Judgement: OF- Other Information Evaluated: OS- Out-of-State: AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwate	er Stream					Wate	r body size:		68	М	iles
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Ca</u> Category For
Public Water Supply Use											
Finished Drinking Water Dissolv	ed Solids average										
2008 Total Dissolved Solids	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.					1,000.00	OE	NC	NC	Ν
2008 Total Dissolved Solids	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River					1,000.00	OE	NC	NC	Ν
2008 Total Dissolved Solids	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam					1,000.00	OE	NC	NC	Ν
2008 Total Dissolved Solids	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam					1,000.00	OE	NC	NC	Ν

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. Segment ID: 1421 **Concho River** Water body type: Freshwater Stream Water body size: 68 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier <u>Supp</u> YEAR Samples Assessed Exc Assessed Criteria Supp Category Forward Public Water Supply Use Finished Drinking Water MCLs and Toxic Substances running average 1421 01 Downstream end to Chandler Lake OE FS FS 2008 Multiple No confluence Multiple 1421 02 From Chandler Lake confluence upstream to OE FS FS No 2008 confluence of Puddle Ck. 1421 03 From the confluence of Puddle Creek OE 2008 Multiple FS FS No upstream to the confluence of Willow Creek From the confluence of Willow Creek 2008 Multiple $1421 \ 04$ OE FS FS No upstream to the confluence of an unnamed tributary near Chandler Road From the confluence of an unnamed 1421 05 OE FS FS 2008 Multiple No tributary near Chandler Rd. upstream to the confluence of Red Ck. From the confluence of Red Creek upstream 2008 Multiple 1421 06 OE FS FS No to the dam near Vines Rd. From the dam near Vines Road upstream to OE FS FS 2008 Multiple 1421 07 No the confluence of the North Concho River and the South Concho River North Concho River, from the confluence OE 2008 Multiple 1421 08 FS FS No with the South Concho River upstream to O.C. Fisher dam Multiple 1421 09 South Concho River, from the confluence OE FS FS No 2008 with the North Concho upstream to Nasworthy Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID:	1421	Concho I	River									
Wat	er body type	Freshwater	r Stream					Water	body size:		68	М	iles
YEAF	<u>k</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	ImpCarryCategoryForward
Public	Water Supply	y Use	_										
Finish	ed Drinking V	Water MCLs C	oncern										
2008	Multiple		1421_01	Downstream end to Chandler Lake confluence						OE	NC	NC	No
2008	Multiple		1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.						OE	NC	NC	No
2008	Multiple		1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek						OE	NC	NC	No
2008	Multiple		1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road						OE	NC	NC	No
2008	Multiple		1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.						OE	NC	NC	No
2008	Multiple		1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.						OE	NC	NC	No
2008	Multiple		1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River						OE	NC	NC	No
2008	Multiple		1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam						OE	NC	NC	No
2008	Multiple		1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam						OE	NC	NC	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Concho River Segment ID: 1421 Water body type: Freshwater Stream Water body size: 68 Miles # of # Mean of 2008 # of Dataset Integ Imp AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria <u>Supp</u> Supp Category Forward Public Water Supply Use Surface Water HH criteria for PWS average From the confluence of Willow Creek 2006 Fluoride 14 14 0.45 4,000.00 FS FS 1421 04 AD upstream to the confluence of an unnamed tributary near Chandler Road 2006 Fluoride North Concho River, from the confluence 12 12 4,000.00 1421 08 AD FS FS with the South Concho River upstream to O.C. Fisher dam 1421 01 Downstream end to Chandler Lake 11 11 AD FS FS 2006 Multiple confluence From the dam near Vines Road upstream to 1421 07 14 14 FS FS 2006 Multiple AD the confluence of the North Concho River and the South Concho River Surface Water Toxic Substances average concern 2006 MTBE 1421 08 North Concho River, from the confluence 15.00 TR 4 4 NA NA with the South Concho River upstream to O.C. Fisher dam

Carry

No

No

No

No

No

	2008 Texas Water Quality Invento	ory - Basin Assessment D	Data by Segment (Marc	h 19, 2(008)	1									
	NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequat	2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.													
	Segment ID: 1421 Conch	o River													
	Water body type: Freshwater Stream					Water body size	ze:	68	М	liles					
	YEAR AU ID	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u> <u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>				
1	Recreation Use														

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1421Concho River

Wate	er body type: Fre	shwater Stream					Wate	er body size:		68	Μ	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recrea	tion Use												
Bacter	ria Geomean												
2008	E. coli	1421_01	Downstream end to Chandler Lake confluence	13	13	0	23.15	126.00	AD	FS	FS		No
2008	E. coli	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	6	6	0	34.74	126.00	LD	NC	NC		No
2008	E. coli	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	6	6	0	97.89	126.00	LD	NC	NC		No
2008	E. coli	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	22	22	0	12.77	126.00	AD	FS	FS		No
2008	E. coli	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	1	1	0	77.00	126.00	ID	NA	NA		No
2008	E. coli	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	6	6	0	31.85	126.00	LD	NC	NC		No
2008	E. coli	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	28	28	0	36.71	126.00	AD	FS	FS		No
2008	E. coli	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	27	27	1	152.51	126.00	AD	NS	NS	5c	No
2008	E. coli	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	9	9	0	31.10	126.00	LD	NC	NC		No
2008	Fecal coliform	1421_01	Downstream end to Chandler Lake confluence	16	16	0	37.03	200.00	SM	FS	FS		No
2008	Fecal coliform	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	14	14	0	61.03	200.00	AD	FS	FS		No
2008	Fecal coliform	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	14	14	0	37.73	200.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Concho River Segment ID: 1421

Water body type: Freshwater Stream							Water body size:			68	М		
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use													
Bacter 2008	ria Geomean Fecal coliform	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	13	13	0	20.49	200.00	SM	FS	FS		No
2008	Fecal coliform	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	18	18	0	68.45	200.00	AD	FS	FS		No
2008	Fecal coliform	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	16	16	0	19.56	200.00	AD	FS	FS		No
2008	Fecal coliform	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	27	27	0	52.05	200.00	SM	FS	FS		No
2008	Fecal coliform	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	13	13	0	102.47	200.00	SM	FS	FS		No
2008	Fecal coliform	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	18	18	0	19.24	200.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421

Concho River

Wate	Water body type: Freshwater Stream						Water body size:			68	Miles		
<u>YEAR</u>	<u>L</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recrea	tion Use												
Bacter	ria Single Sample												
2008	E. coli	1421_01	Downstream end to Chandler Lake confluence	13	13	0		394.00	AD	FS	FS		No
2008	E. coli	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	6	6	0		394.00	LD	NC	NC		No
2008	E. coli	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	6	6	0		394.00	LD	NC	NC		No
2008	E. coli	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	22	22	1		394.00	AD	FS	FS		No
2008	E. coli	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	1	1	0		394.00	ID	NA	NA		No
2008	E. coli	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	6	6	0		394.00	LD	NC	NC		No
2008	E. coli	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	28	28	1		394.00	AD	FS	FS		No
2008	E. coli	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	27	27	7		394.00	AD	FS	FS		No
2008	E. coli	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	9	9	1		394.00	LD	NC	NC		No
2008	Fecal coliform	1421_01	Downstream end to Chandler Lake confluence	16	16	1		400.00	SM	FS	FS		No
2008	Fecal coliform	1421_02	From Chandler Lake confluence upstream to confluence of Puddle Ck.	14	14	2		400.00	AD	FS	FS		No
2008	Fecal coliform	1421_03	From the confluence of Puddle Creek upstream to the confluence of Willow Creek	14	14	1		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1421 Con

Water	body type: Freshwa	ter Stream					Water	body size:		68	M	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
Recreati	on Use												
Bacteria	a Single Sample												
2008 1	Fecal coliform	1421_04	From the confluence of Willow Creek upstream to the confluence of an unnamed tributary near Chandler Road	13	13	0		400.00	SM	FS	FS		No
2008 1	Fecal coliform	1421_05	From the confluence of an unnamed tributary near Chandler Rd. upstream to the confluence of Red Ck.	18	18	2		400.00	AD	FS	FS		No
2008 1	Fecal coliform	1421_06	From the confluence of Red Creek upstream to the dam near Vines Rd.	16	16	0		400.00	AD	FS	FS		No
2008 1	Fecal coliform	1421_07	From the dam near Vines Road upstream to the confluence of the North Concho River and the South Concho River	27	27	4		400.00	SM	FS	FS		No
2008 1	Fecal coliform	1421_08	North Concho River, from the confluence with the South Concho River upstream to O.C. Fisher dam	13	13	2		400.00	SM	FS	FS		No
2008 1	Fecal coliform	1421_09	South Concho River, from the confluence with the North Concho upstream to Nasworthy Dam	18	18	1		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1421ADry Hollow Creek (unclassified water body)

Water body type: Freshwater St	ream					Wate	r body size:		17	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1421A_01	Entire water body	10	10	1		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening leve	l											
2006 Dissolved Oxygen Grab	1421A_01	Entire water body	10	10	1		5.00	AD	NC	NC		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1421A_01	Entire water body	2	2	0		0.33	ID	NA	NA		No
2006 Chlorophyll-a	1421A_01	Entire water body	2	2	1		14.10	ID	NA	NA		No
2006 Nitrate	1421A_01	Entire water body	10	10	4		1.95	AD	CS	CS		No
2006 Orthophosphorus	1421A_01	Entire water body	3	3	0		0.37	ID	NA	NA		No
2006 Total Phosphorus	1421A_01	Entire water body	3	3	0		0.69	ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1421A_01	Entire water body	1	1		55.00	126.00	ID	NA	NA		No
2006 Fecal coliform	1421A_01	Entire water body	0	0			200.00	ID	NA	NA		No
Bacteria Single Sample												
2006 E. coli	1421A_01	Entire water body	1	1	0		394.00	ID	NA	NA		No
2006 Fecal coliform	1421A_01	Entire water body	0	0			400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Kickapoo Creek (unclassified water body) Segment ID: 1421B

vater Stream					Wate	er body size:		47	М	iles	
<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
um											
1421B_01	Lower 25 miles of creek	9	9	0		2.00	LD	NC	NC		No
ng level											
1421B_01	Lower 25 miles of creek	9	9	1		3.00	LD	NC	NC		No
1421B_01	Lower 25 miles of creek	2	2	0		0.33	ID	NA	NA		No
1421B_01	Lower 25 miles of creek	2	2	0		14.10	ID	NA	NA		No
1421B_01	Lower 25 miles of creek	9	9	0		1.95	LD	NC	NC		No
1421B_01	Lower 25 miles of creek	3	3	0		0.37	ID	NA	NA		No
1421B_01	Lower 25 miles of creek	3	3	0		0.69	ID	NA	NA		No
1421B_01	Lower 25 miles of creek	1	1		1.80	126.00	ID	NA	NA		No
_											
1421B_01	Lower 25 miles of creek	1	1	0		394.00	ID	NA	NA		No
	AU ID am 1421B_01 1421B_01 1421B_01 1421B_01 1421B_01 1421B_01 1421B_01 1421B_01 1421B_01 1421B_01 1421B_01	AU IDAssessment Area (AU)Im1421B_01Lower 25 miles of creekIng level1421B_01Lower 25 miles of creek1421B_01Lower 25 miles of creek	AU IDAssessment Area (AU)# of SamplesIm ng level1421B_01Lower 25 miles of creek91421B_01Lower 25 miles of creek91421B_01Lower 25 miles of creek21421B_01Lower 25 miles of creek21421B_01Lower 25 miles of creek91421B_01Lower 25 miles of creek31421B_01Lower 25 miles of creek1	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{Samples}}$ $\frac{\#}{\text{Assessed}}$ Im1421B_01Lower 25 miles of creek99Id21B_01Lower 25 miles of creek991421B_01Lower 25 miles of creek221421B_01Lower 25 miles of creek221421B_01Lower 25 miles of creek331421B_01Lower 25 miles of creek331421B_01Lower 25 miles of creek331421B_01Lower 25 miles of creek11	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{Samples}}$ $\frac{\# \text{ of }}{\text{Assessed}}$ $\frac{\# \text{ of }}{\text{Exc}}$ Im1421B_01Lower 25 miles of creek9901421B_01Lower 25 miles of creek9911421B_01Lower 25 miles of creek2201421B_01Lower 25 miles of creek2201421B_01Lower 25 miles of creek9901421B_01Lower 25 miles of creek3301421B_01Lower 25 miles of creek3301421B_01Lower 25 miles of creek3301421B_01Lower 25 miles of creek3301421B_01Lower 25 miles of creek111	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{Samples}}$ $\frac{\# \text{ of }}{\text{Assessed}}$ $\frac{\# \text{ of }}{\text{Exc}}$ $\frac{\text{Mean of }}{\text{Assessed}}$ Im1421B_01Lower 25 miles of creek9901421B_01Lower 25 miles of creek9911421B_01Lower 25 miles of creek2201421B_01Lower 25 miles of creek2201421B_01Lower 25 miles of creek9901421B_01Lower 25 miles of creek3301421B_01Lower 25 miles of creek3301421B_01Lower 25 miles of creek3301421B_01Lower 25 miles of creek111.80	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{Samples}}$ $\frac{\# \text{ of }}{\text{Assessed}}$ $\frac{\text{Mean of }}{\text{Exc}}$ $\frac{\text{Mean of }}{\text{Assessed}}$ Im1421B_01Lower 25 miles of creek9902.001421B_01Lower 25 miles of creek9913.001421B_01Lower 25 miles of creek2200.331421B_01Lower 25 miles of creek22014.101421B_01Lower 25 miles of creek9901.951421B_01Lower 25 miles of creek3300.371421B_01Lower 25 miles of creek3300.691421B_01Lower 25 miles of creek111.80126.00	AU IDAssessment Area (AU) $\frac{\# \text{ of}}{\text{Samples}}$ $\frac{\# \text{ of}}{\text{Assessed}}$ $\frac{\text{Mean of}}{\text{Exc}}$ $\frac{\text{Detaset}}{\text{Assessed}}$ Im ng level1421B_01Lower 25 miles of creek9902.00LD1421B_01Lower 25 miles of creek9913.00LD1421B_01Lower 25 miles of creek2200.33ID1421B_01Lower 25 miles of creek22014.10ID1421B_01Lower 25 miles of creek9901.95LD1421B_01Lower 25 miles of creek3300.37ID1421B_01Lower 25 miles of creek3300.69ID1421B_01Lower 25 miles of creek111.80126.00ID	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{Samples}}$ $\frac{\# \text{ of }}{\text{Assessed}}$ $\# \text{$	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{Samples}}$ $\frac{\# \text{ of }}{\text{Assessed}}$ $\frac{\# \text{ of }}{\text{Exc}}$ $\frac{\text{Mean of }}{\text{Assessed}}$ $\frac{\text{Dataset }}{\text{Criteria}}$ $\frac{2008}{\text{Dualifier}}$ $\frac{\text{Integ }}{\text{Supp}}$ Im1421B_01Lower 25 miles of creek9902.00LDNCNC1421B_01Lower 25 miles of creek9913.00LDNCNC1421B_01Lower 25 miles of creek2200.33IDNANA1421B_01Lower 25 miles of creek22014.10IDNANA1421B_01Lower 25 miles of creek22014.10IDNANA1421B_01Lower 25 miles of creek3300.37IDNANA1421B_01Lower 25 miles of creek3300.37IDNANA1421B_01Lower 25 miles of creek3300.37IDNANA1421B_01Lower 25 miles of creek3300.69IDNANA1421B_01Lower 25 miles of creek111.80126.00IDNANA	AU IDAssessment Area (AU) $\frac{\# of}{Samples}$ $\frac{\# of}{Assessed}$ $\frac{\# of}{Exc}$ $\frac{Mean of}{Assessed}$ $Criteria$ $Dataset}{Qualifier}$ 2008 IntegIntegImpIm1421B_01Lower 25 miles of creek9902.00LDNCNC1421B_01Lower 25 miles of creek9913.00LDNCNC1421B_01Lower 25 miles of creek2200.33IDNANA1421B_01Lower 25 miles of creek22014.10IDNANA1421B_01Lower 25 miles of creek3300.37IDNANA1421B_01Lower 25 miles of creek3300.37IDNANA1421B_01Lower 25 miles of creek111.80126.00IDNANA1421B_01Lower 25 miles of creek3300.37IDNANA1421B_01Lower 25 miles of creek111.80126.00IDNANA

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers; AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; SN- Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers; AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Supporting; SN- Supp

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1422 Lake Nasworthy Water body type: Reservoir Water body size: 1.596 Acres # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed <u>Supp</u> Supp Category Forward Criteria Aquatic Life Use Acute Toxic Substances in water 2006 Metals Lower half of lake 7 7 0 NC 1422 01 LD NC No **Chronic Toxic Substances in water** 2006 Metals 1422 01 Lower half of lake 7 7 LD NC NC No **Dissolved Oxygen grab minimum** 1422 01 371 84 0 FS FS 2008 Dissolved Oxygen Grab Lower half of lake 3.00 AD No FS 2008 Dissolved Oxygen Grab 1422 02 Upper half of lake 118 38 0 3.00 AD FS No **Dissolved Oxygen grab screening level** 2008 1422 01 Lower half of lake 371 84 NC Dissolved Oxygen Grab 2 5.00 AD NC No Dissolved Oxygen Grab 1422 02 Upper half of lake 118 38 0 NC NC 2008 5.00 AD No **Toxic Substances in sediment** 2008 1422 01 Lower half of lake NC NC Metals 6 0 LD No 6 2008 1422 01 Lower half of lake 5 5 0 LD NA Organics NA No 2008 Pyrene 1422 01 Lower half of lake 5 5 46.52 LD NC NC No Fish Consumption Use **Bioaccumulative Toxics in fish tissue** 1422 01 Lower half of lake 2 2 0 ID 2006 Multiple NA NA No HH Bioaccumulative Toxics in water 2006 Multiple 1422 01 Lower half of lake 7 7 LD NC NC No 7 7 LD NC NC 2006 Multiple 1422 02 Upper half of lake No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1422 Lake Nasworthy Water body type: Reservoir Water body size: 1.596 Acres # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) YEAR Samples Exc Assessed Qualifier Supp Supp Category Forward Assessed Criteria General Use **Dissolved Solids** Lower half of lake 111 FS FS 2008 Chloride 1422 01 111 345.95 450.00 AD No 2008 Chloride 1422 02 Upper half of lake 111 111 345.95 450.00 AD FS FS No Sulfate Lower half of lake 111 125.54 FS 2008 1422 01 111 400.00 AD FS No 111 125.54 FS 2008 Sulfate 1422 02 Upper half of lake 111 400.00 AD FS No 2008 Total Dissolved Solids 1422 01 Lower half of lake 124 124 1.006.70 1.500.00 AD FS FS No 2008 Total Dissolved Solids 1422 02 Upper half of lake 124 124 1.006.70 1,500.00 AD FS FS No High pH 2008 1422 01 Lower half of lake 373 85 0 9.00 AD FS FS No pН 119 FS 2008 рH 1422 02 Upper half of lake 38 0 9.00 AD FS No Low pH 1422 01 Lower half of lake 373 85 6.50 AD FS 2008 pН 0 FS No 2008 pН 1422 02 Upper half of lake 119 38 0 6.50 AD FS FS No Nutrient Screening Levels 2008 1422 01 Lower half of lake 71 71 0.11 AD NC NC Ammonia 7 No 1422 02 33 33 0 NC 2008 Ammonia Upper half of lake 0.11 AD NC No 2008 1422 01 Lower half of lake 55 55 2 NC NC Chlorophyll-a 26.70 AD No 2008 1422 02 25 25 3 26.70 NC NC Chlorophyll-a Upper half of lake AD No 2008 1422 01 Lower half of lake 74 74 0.37 AD NC NC No Nitrate 6 2008 Nitrate 1422 02 Upper half of lake 31 31 0 0.37 AD NC NC No NC 2008 1422 01 67 67 NC Orthophosphorus Lower half of lake 13 0.05 AD No NC 2008 1422 02 31 31 8 NC Orthophosphorus Upper half of lake 0.05 AD No NC 2008 **Total Phosphorus** 1422 01 Lower half of lake 60 60 0 0.20 AD NC No NC 2008 **Total Phosphorus** 1422 02 Upper half of lake 28 28 0 0.20 AD NC No Water Temperature 2008 Temperature 1422 01 Lower half of lake 373 85 0 33.90 AD FS FS No 119 38 33.90 FS 2008 Temperature 1422 02 Upper half of lake 0 AD FS No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1422	Lake Na	sworthy									
Water body type: Reservoir						Water bo	ody size:		1,596	Ac	cres
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> <u>Forward</u>
Public Water Supply Use											
Finished Drinking Water Dissolved S	olids average										
2008 Multiple	1422_01	Lower half of lake						OE	NC	NC	No
2008 Multiple	1422_02	Upper half of lake						OE	NC	NC	No
Finished Drinking Water MCLs and	Toxic Substan	ices running average									
2008 Multiple	1422_01	Lower half of lake						OE	FS	FS	No
2008 Multiple	1422_02	Upper half of lake						OE	FS	FS	No
Finished Drinking Water MCLs Con	cern										
2008 Multiple	1422_01	Lower half of lake						OE	NC	NC	No
2008 Multiple	1422_02	Upper half of lake						OE	NC	NC	No
Surface Water HH criteria for PWS	average										
2006 Fluoride	1422_01	Lower half of lake	32	32			4,000.00	AD	FS	FS	No
2006 Fluoride	1422_02	Upper half of lake	10	10			4,000.00	AD	FS	FS	No
2006 Multiple	1422_01	Lower half of lake	7	7				LD	NC	NC	No
2006 Multiple	1422_02	Upper half of lake	7	7				LD	NC	NC	No
Surface Water Toxic Substances aver	rage concern										
2006 MTBE	1422_01	Lower half of lake	7	7			15.00	LD	NC	NC	No
2006 MTBE	1422_02	Upper half of lake	7	7			15.00	LD	NC	NC	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1422 Lake Nasworthy

Water bo	dy type: Reservoir					Water b	ody size:		1,596	A	cres	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation U	Use											
Bacteria Ge	eomean											
2008 E. co	toli 1422_01	Lower half of lake	49	49	0	10.31	126.00	AD	FS	FS		No
2008 E. co	oli 1422_02	Upper half of lake	23	23	0	6.41	126.00	AD	FS	FS		No
2008 Ente	erococcus 1422_01	Lower half of lake	1	1	0	5.00	35.00	ID	NA	NA		No
2008 Feca	al coliform 1422_01	Lower half of lake	43	43	0	14.16	200.00	SM	FS	FS		No
2008 Feca	al coliform 1422_02	Upper half of lake	23	23	0	15.85	200.00	SM	FS	FS		No
Bacteria Sir	ngle Sample											
2008 E. co	toli 1422_01	Lower half of lake	49	49	1		394.00	AD	FS	FS		No
2008 E. co	oli 1422_02	Upper half of lake	23	23	0		394.00	AD	FS	FS		No
2008 Ente	erococcus 1422_01	Lower half of lake	1	1	0		89.00	ID	NA	NA		No
2008 Feca	al coliform 1422_01	Lower half of lake	43	43	0		400.00	SM	FS	FS		No
2008 Feca	al coliform 1422_02	Upper half of lake	23	23	1		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1423 Twin Buttes Reservoir

Water body type: Reservoir						Water body siz		9,080	А	cres	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u> <u>Criteria</u>	<u>Datase</u> Qualifi		<u>Integ</u> <u>Supp</u>		a <u>rry</u> ward
Aquatic Life Use											
Dissolved Oxygen grab minimum											
2008 Dissolved Oxygen Grab	1423_01	North pool	90	29	0	3.	0 AD	\mathbf{FS}	FS	Ν	No
2008 Dissolved Oxygen Grab	1423_02	South pool	82	26	0	3.0	0 AD	FS	FS	Ν	No
Dissolved Oxygen grab screening level											
2008 Dissolved Oxygen Grab	1423_01	North pool	90	29	1	5.0	0 AD	NC	NC	N	No
2008 Dissolved Oxygen Grab	1423_02	South pool	82	26	0	5.0	0 AD	NC	NC	Ν	No
Fish Consumption Use											
Bioaccumulative Toxics in fish tissue											
2006 Multiple	1423_01	North pool	2	2	0		ID	NA	NA	Ν	No
HH Bioaccumulative Toxics in water											
2006 Multiple	1423_01	North pool	3	3			ID	NA	NA	Ν	No
2006 Multiple	1423_02	South pool	3	3			ID	NA	NA	Ν	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1423 Twin Buttes Reservoir

Water body type: Reservoir						Wate	er body size:		9,080	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
General Use	_											
Dissolved Solids												
2008 Chloride	1423_01	North pool	55	55		113.85	200.00	AD	FS	FS		No
2008 Chloride	1423_02	South pool	55	55		113.85	200.00	AD	FS	FS		No
2008 Sulfate	1423_01	North pool	55	55		50.93	100.00	AD	FS	FS		No
2008 Sulfate	1423_02	South pool	55	55		50.93	100.00	AD	FS	FS		No
2008 Total Dissolved Solids	1423_01	North pool	55	55		473.15	700.00	AD	FS	FS		No
2008 Total Dissolved Solids	1423_02	South pool	55	55		473.15	700.00	AD	FS	FS		No
High pH												
2008 рН	1423_01	North pool	90	29	0		9.00	AD	FS	FS		No
2008 pH	1423_02	South pool	82	26	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1423_01	North pool	90	29	0		6.50	AD	FS	FS		No
2008 рН	1423_02	South pool	82	26	0		6.50	AD	FS	FS		No
Nutrient Screening Levels	1422 01	Newtowe 1	26	26	e		0.11		NC	NC		NL.
2008 Ammonia	1423_01	North pool	26	26	5		0.11	AD	NC	NC		Nc
2008 Ammonia	1423_02	South pool	23	23	1		0.11	AD	NC	NC		No
2008 Chlorophyll-a	1423_01	North pool	17	17	l		26.70	AD	NC	NC		No
2008 Chlorophyll-a	1423_02	South pool	17	17	1		26.70	AD	NC	NC		No
2008 Nitrate	1423_01	North pool	27	27	9		0.37	AD	CS	CS		No
2008 Nitrate	1423_02	South pool	24	24	5		0.37	AD	NC	NC		No
2008 Orthophosphorus	1423_01	North pool	25	25	10		0.05	AD	CS	CS		No
2008 Orthophosphorus	1423_02	South pool	22	22	8		0.05	AD	CS	CS		No
2008 Total Phosphorus	1423_01	North pool	19	19	0		0.20	AD	NC	NC		No
2008 Total Phosphorus	1423_02	South pool	19	19	0		0.20	AD	NC	NC		No
Water Temperature												
2008 Temperature	1423_01	North pool	90	29	0		32.20	AD	FS	FS		No
2008 Temperature	1423_02	South pool	82	26	0		32.20	AD	FS	FS		No

Twin Buttes Reservoir

1423

Segment ID:

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ- Assessor Judgenein, OE- Other Information Evaluated, OS- Out-of-state, AO ID - Assessment Offit ID - Note. Carry-forward refers to impairments without sufficient information in 2008 to re-evalu

Water body type: Reservoir Water body size: 9.080 Acres # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Exc Assessed Supp Supp Category Forward Assessed Criteria Public Water Supply Use Finished Drinking Water Dissolved Solids average 2008 OE NC NC Multiple 1423 01 North pool No 2008 Multiple 1423 02 South pool OE NC NC No Finished Drinking Water MCLs and Toxic Substances running average OE FS 2008 Multiple 1423 01 North pool FS No 2008 Multiple 1423 02 OE FS South pool FS No **Finished Drinking Water MCLs Concern** 2008 1423 01 OE NC NC Multiple North pool No 1423 02 OE NC 2008 Multiple South pool NC No Surface Water HH criteria for PWS average 7 4,000.00 LD NC NC 2006 Fluoride 1423 01 North pool 7 No 7 7 2006 Fluoride 1423 02 4,000.00 LD NC NC South pool No Surface Water Toxic Substances average concern 2006 MTBE 1423 01 North pool 3 3 15.00 ID NA NA No 3 3 2006 MTBE 1423 02 South pool 15.00 ID NA NA No **Recreation Use Bacteria Geomean** 2008 E. coli 1423 01 North pool 15 15 0 1.96 126.00 AD FS FS No 2008 E. coli 1423 02 South pool 15 15 0 2.29 126.00 AD FS FS No 2008 Fecal coliform 1423 01 North pool 17 17 0 4.04 200.00 SM FS FS No 2008 13 13 0 200.00 Fecal coliform 1423 02 South pool 2.63 SM FS FS No **Bacteria Single Sample** 2008 E. coli 1423 01 North pool 15 15 0 394.00 AD FS FS No 15 0 2008 E. coli 1423 02 South pool 15 394.00 AD FS FS No 2008 Fecal coliform 1423 01 North pool 17 17 0 400.00 SM FS FS No 2008 Fecal coliform 1423 02 South pool 13 13 0 400.00 SM FS FS No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1423ASpring Creek (unclassified water body)

Water body type: Freshwater St	tream					Water	body size:		58	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1423A_01	From the confluence of Twin Buttes Reservoir upstream to Duncan Avenue crossing in Mertzon	20	20	0		2.00	AD	FS	FS		No
2006 Dissolved Oxygen Grab	1423A_02	From Duncan Avenue crossing in Mertzon upstream to the upstream perennial portion of the stream northeast of Ozona in Crockett	12	12	0		2.00	AD	FS	FS		No
Dissolved Oxygen grab screening leve	ł											
2006 Dissolved Oxygen Grab	1423A_01	From the confluence of Twin Buttes Reservoir upstream to Duncan Avenue crossing in Mertzon	20	20	0		3.00	AD	NC	NC		No
2006 Dissolved Oxygen Grab	1423A_02	From Duncan Avenue crossing in Mertzon upstream to the upstream perennial portion of the stream northeast of Ozona in Crockett	12	12	0		3.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

of the stream northeast of Ozona in Crockett

Spring Creek (unclassified water body) Segment ID: 1423A

Wate	er body type: Fres	hwater Stream					Water	· body size:		58	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use												
Nutrie	ent Screening Levels												
2006	Ammonia	1423A_01	From the confluence of Twin Buttes Reservoir upstream to Duncan Avenue crossing in Mertzon	14	14	4		0.33	AD	NC	NC		No
2006	Ammonia	1423A_02	From Duncan Avenue crossing in Mertzon upstream to the upstream perennial portion of the stream northeast of Ozona in Crockett	6	6	0		0.33	LD	NC	NC		No
2006	Nitrate	1423A_01	From the confluence of Twin Buttes Reservoir upstream to Duncan Avenue crossing in Mertzon	15	15	0		1.95	AD	NC	NC		No
2006	Nitrate	1423A_02	From Duncan Avenue crossing in Mertzon upstream to the upstream perennial portion of the stream northeast of Ozona in Crockett	7	7	0		1.95	LD	NC	NC		No
2006	Orthophosphorus	1423A_01	From the confluence of Twin Buttes Reservoir upstream to Duncan Avenue crossing in Mertzon	16	16	2		0.37	AD	NC	NC		No
2006	Orthophosphorus	1423A_02	From Duncan Avenue crossing in Mertzon upstream to the upstream perennial portion	8	8	1		0.37	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; ID- Accesser Indexprese Indexpresentative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1423ASpring Creek (unclassified water body)

Water body type: Fresh	water Stream					Wate	r body size:		58	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use												
Bacteria Geomean												
2006 Fecal coliform	1423A_01	From the confluence of Twin Buttes Reservoir upstream to Duncan Avenue crossing in Mertzon	19	19		6.00	200.00	AD	FS	FS		No
2006 Fecal coliform	1423A_02	From Duncan Avenue crossing in Mertzon upstream to the upstream perennial portion of the stream northeast of Ozona in Crockett	11	11		11.00	200.00	AD	FS	FS		No
Bacteria Single Sample												
2006 Fecal coliform	1423A_01	From the confluence of Twin Buttes Reservoir upstream to Duncan Avenue crossing in Mertzon	19	19	0		400.00	AD	FS	FS		No
2006 Fecal coliform	1423A_02	From Duncan Avenue crossing in Mertzon upstream to the upstream perennial portion of the stream northeast of Ozona in Crockett	11	11	0		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1423BDove Creek (unclassified water body)

Water	body type: Freshwater Stre	am					Water	r body size:		35	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic l	Life Use												
Dissolve	d Oxygen grab minimum												
2006 I	Dissolved Oxygen Grab	1423B_01	From the confluence of Spring Creek upstream to RR 915	20	20	0		3.00	AD	FS	FS		No
Dissolve	d Oxygen grab screening level		-										
2006 I	Dissolved Oxygen Grab	1423B_01	From the confluence of Spring Creek upstream to RR 915	20	20	5		5.00	AD	CS	CS		No
General	Use												
Nutrient	t Screening Levels												
2006 A	Ammonia	1423B_01	From the confluence of Spring Creek upstream to RR 915	13	13	0		0.33	AD	NC	NC		No
2006	Nitrate	1423B_01	From the confluence of Spring Creek upstream to RR 915	15	15	0		1.95	AD	NC	NC		No
2006 (Orthophosphorus	1423B_01	From the confluence of Spring Creek upstream to RR 915	16	16	0		0.37	AD	NC	NC		No
Recreatio	on Use												
Bacteria	Geomean												
2006 F	Fecal coliform	1423B_01	From the confluence of Spring Creek upstream to RR 915	19	19		32.00	200.00	AD	FS	FS		No
Bacteria	Single Sample												
2006 F	Fecal coliform	1423B_01	From the confluence of Spring Creek upstream to RR 915	19	19	1		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1424Middle Concho/South Concho River

Water body type: Freshwater St	ream					Water b	ody size:		75	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	43	43	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	6	6	0		3.00	LD	NC	NC		No
Dissolved Oxygen grab screening level	1											
2008 Dissolved Oxygen Grab	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	43	43	1		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	6	6	0		5.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1424 Middle Concho/South Concho River Water body type: Freshwater Stream Water body size: 75 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) <u>Oualifier</u> YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use **Dissolved Solids** 51 53.77 South Concho River from a point 4 km 51 FS FS 2008 Chloride 1424 01 150.00 AD No downstream of FM 2335 t the confluence of Bois D'Arc Draw Middle Concho River from a point 100 m 2008 Chloride 1424 02 51 51 53.77 150.00 AD FS FS No upstream of US 67 upstream to CR 412 Middle Concho from CR 412 upstream to 2008 Chloride 1424 03 51 51 53.77 150.00 AD FS FS No the confluence of Three Bluff Draw and Indian Creek on the Middle Concho River in 51 2008 1424 01 South Concho River from a point 4 km 51 25.87 150.00 FS FS Sulfate AD No downstream of FM 2335 t the confluence of Bois D'Arc Draw Middle Concho River from a point 100 m 51 51 25.87 2008 Sulfate 1424 02 150.00 AD FS FS No upstream of US 67 upstream to CR 412 Middle Concho from CR 412 upstream to 51 51 25.87 FS FS 2008 Sulfate 1424 03 150.00 AD No the confluence of Three Bluff Draw and Indian Creek on the Middle Concho River in South Concho River from a point 4 km 376.81 FS 2008 Total Dissolved Solids 1424 01 66 66 700.00 AD FS No downstream of FM 2335 t the confluence of Bois D'Arc Draw 2008 Total Dissolved Solids 1424 02 Middle Concho River from a point 100 m 66 66 376.81 700.00 AD FS FS No upstream of US 67 upstream to CR 412 376.81 2008 Total Dissolved Solids 1424 03 Middle Concho from CR 412 upstream to 66 66 700.00 AD FS FS No the confluence of Three Bluff Draw and Indian Creek on the Middle Concho River in

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1424 Middle Concho/South Concho River

Water body type:	Freshwater Stream					Water	body size:		75	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
General Use												
High pH												
2008 рН	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	43	43	0		9.00	AD	FS	FS		No
2008 рН	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	6	6	0		9.00	LD	NC	NC		No
Low pH												
2008 рН	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	43	43	0		6.50	AD	FS	FS		No
2008 рН	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	6	6	0		6.50	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JO- Assessor Judgement: OF- Other Information Evaluated: OS- Out-of-State: AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. Segment ID: 1424 Middle Concho/South Concho River

Wat	er body type: Freshwate	er Stream					Water	· body size:		75	М	iles	
YEAF	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	34	34	0		0.33	AD	NC	NC		No
2008	Ammonia	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	6	6	0		0.33	LD	NC	NC		No
2008	Chlorophyll-a	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	14	14	0		14.10	AD	NC	NC		No
2008	Nitrate	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	31	31	1		1.95	AD	NC	NC		No
2008	Nitrate	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	4	4	0		1.95	LD	NC	NC		No
2008	Orthophosphorus	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	35	35	3		0.37	AD	NC	NC		No
2008	Orthophosphorus	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	5	5	2		0.37	LD	NC	NC		No
2008	Total Phosphorus	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	17	17	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	1	1	0		0.69	ID	NA	NA		No
Water	• Temperature												
2008	Temperature	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	47	47	0		32.20	AD	FS	FS		No
2008	Temperature	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	17	17	0		32.20	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segn	nent ID: 1424	Middle (Concho/South Concho River										
Wat	er body type: Fresh	hwater Stream					Wate	r body size:		75	М	iles	
YEAR	<u>}</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forwar
Public	Water Supply Use												
Finish	ed Drinking Water Di	ssolved Solids average											
2008	Multiple	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw						OE	NC	NC		No
2008	Multiple	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412						OE	NC	NC		No
2008	Multiple	1424_03	Middle Concho from CR 412 upstream to the confluence of Three Bluff Draw and Indian Creek on the Middle Concho River in						OE	NC	NC		No
Finish	ed Drinking Water M	CLs and Toxic Substan	nces running average										
2008	Multiple	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw						OE	FS	FS		No
2008	Multiple	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412						OE	FS	FS		No
2008	Multiple	1424_03	Middle Concho from CR 412 upstream to the confluence of Three Bluff Draw and Indian Creek on the Middle Concho River in						OE	FS	FS		No
Finish	ed Drinking Water M	CLs Concern											
2008	Multiple	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw						OE	NC	NC		No
2008	Multiple	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412						OE	NC	NC		No
2008	Multiple	1424_03	Middle Concho from CR 412 upstream to the confluence of Three Bluff Draw and Indian Creek on the Middle Concho River in						OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1424 Middle Concho/South Concho River

Water body type: Free	shwater Stream					Wate	er body size:		75	Μ	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Public Water Supply Use												
Surface Water HH criteria	for PWS average											
2006 Fluoride	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	6	6		0.34	4,000.00	LD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2008 E. coli	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	15	15	0	12.56	126.00	AD	FS	FS		No
2008 E. coli	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	2	2	0	79.67	126.00	ID	NA	NA		No
2008 Fecal coliform	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	28	28	0	17.86	200.00	SM	FS	FS		No
2008 Fecal coliform	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	3	3	0	18.61	200.00	ID	NA	NA		No
Bacteria Single Sample												
2008 E. coli	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	15	15	0		394.00	AD	FS	FS		No
2008 E. coli	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	2	2	0		394.00	ID	NA	NA		No
2008 Fecal coliform	1424_01	South Concho River from a point 4 km downstream of FM 2335 t the confluence of Bois D'Arc Draw	28	28	0		400.00	SM	FS	FS		No
2008 Fecal coliform	1424_02	Middle Concho River from a point 100 m upstream of US 67 upstream to CR 412	3	3	0		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1424AWest Rocky Creek (unclassified water body)

Water body type: Freshwater Stre	eam					Water	body size:		25	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1424A_01	Entire water body	10	10	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1424A_01	Entire water body	10	10	2		5.00	AD	NC	NC		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1424A_01	Entire water body	10	10	0		0.33	AD	NC	NC		No
2006 Chlorophyll-a	1424A_01	Entire water body	0	0	0		14.10	ID	NA	NA		No
2006 Nitrate	1424A_01	Entire water body	10	10	0		1.95	AD	NC	NC		No
2006 Orthophosphorus	1424A_01	Entire water body	10	10	0		0.37	AD	NC	NC		No
2006 Total Phosphorus	1424A 01	Entire water body	0	0	0		0.69	ID	NA	NA		No
Recreation Use	—	-										
Bacteria Geomean												
2006 Fecal coliform	1424A_01	Entire water body	10	10		7.00	200.00	AD	FS	FS		No
Bacteria Single Sample2006Fecal coliform	1424A_01	Entire water body	10	10	0		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1425 O. C. Fisher Lake

Water body type: Reservoir						Wate	r body size:		5,440	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forwar</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1425_01	Entire reservoir	79	32	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1425_01	Entire reservoir	79	32	4		5.00	AD	NC	NC		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Multiple	1425_01	Entire reservoir	3	3				ID	NA	NA		No
General Use												
Dissolved Solids												
2008 Chloride	1425_01	Entire reservoir	31	31		191.48	150.00	AD	NS	NS	5c	No
2008 Sulfate	1425_01	Entire reservoir	31	31		78.44	150.00	AD	FS	FS		No
2008 Total Dissolved Solids	1425_01	Entire reservoir	32	32		646.27	700.00	AD	FS	FS		No
High pH												
2008 рН	1425_01	Entire reservoir	79	32	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1425_01	Entire reservoir	79	32	0		6.50	AD	FS	FS		No
Nutrient Screening Levels	1425 01	Paties and a la	29	20	10		0.11		CC	00		NI.
2008 Ammonia	1425_01	Entire reservoir	28	28	12		0.11	AD	CS	CS		No
2008 Chlorophyll-a	1425_01	Entire reservoir	17	17	10		26.70	AD	CS	CS		No
2008 Nitrate	1425_01	Entire reservoir	29	29	7		0.37	AD	NC	NC		No
2008 Orthophosphorus	1425_01	Entire reservoir	27	27	9		0.05	AD	CS	CS		No
2008 Total Phosphorus	1425_01	Entire reservoir	19	19	6		0.20	AD	CS	CS		No
Water Temperature								. –				
2008 Temperature	1425_01	Entire reservoir	79	32	0		32.20	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; OA assessed Index and Care Information in 2009 to the State Advantage Concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; OA assessment Index and Care Information in 2009 to the State Advantage Concern; DA assessment Integrated State Advantage Concern; Dataset Concern; D

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

O. C. Fisher Lake **Segment ID:** 1425 Water body type: Reservoir Water body size: 5,440 Acres # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Exc Assessed <u>Supp</u> Supp Category Forward Assessed Criteria Public Water Supply Use Finished Drinking Water Dissolved Solids average 2008 Multiple OE NC 1425 01 Entire reservoir NC No Finished Drinking Water MCLs and Toxic Substances running average 1425 01 OE FS 2008 Multiple Entire reservoir FS No **Finished Drinking Water MCLs Concern** 1425 01 OE NC NC 2008 Multiple Entire reservoir No Surface Water HH criteria for PWS average 2006 Multiple 1425 01 Entire reservoir 7 7 LD NC NC No Surface Water Toxic Substances average concern 3 3 ID 2006 MTBE 1425 01 Entire reservoir 15.00 NA NA No **Recreation Use Bacteria Geomean** 2008 E. coli 1425 01 Entire reservoir 16 16 0 22.69 126.00 AD FS FS No 1425 01 19 19 0 28.56 200.00 SM FS 2008 Fecal coliform Entire reservoir FS No **Bacteria Single Sample** 2008 E. coli 1425 01 16 16 4 394.00 FS FS Entire reservoir AD No 19 19 1425 01 1 SM FS FS 2008 Fecal coliform Entire reservoir 400.00 No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1425A North Concho River (unclassified water body)

Wate	r body type: Freshwater Stre	eam					Water	body size:		95	Μ	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquatio	c Life Use												
Dissolv	ed Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1425A_01	Lower end of water body to Sterling County line	35	35	0		2.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1425A_02	Sterling County line to SH 163	14	14	2		2.00	AD	FS	FS		No
2006 Dissolv	Dissolved Oxygen Grab ved Oxygen grab screening level	1425A_03	SH 163 to US 87	16	16	0		2.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1425A_01	Lower end of water body to Sterling County line	35	35	2		3.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1425A_02	Sterling County line to SH 163	14	14	4		3.00	AD	CS	CS		No
2006	Dissolved Oxygen Grab	1425A_03	SH 163 to US 87	16	16	1		3.00	AD	NC	NC		No
Genera	l Use												
Nutrie	nt Screening Levels												
2006	Ammonia	1425A_01	Lower end of water body to Sterling County line	6	6	0		0.33	LD	NC	NC		No
2006	Ammonia	1425A_02	Sterling County line to SH 163	8	8	0		0.33	LD	NC	NC		No
2006	Ammonia	1425A_03	SH 163 to US 87	11	11	0		0.33	AD	NC	NC		No
2006	Chlorophyll-a	1425A_02	Sterling County line to SH 163	8	8	2		14.10	LD	NC	NC		No
2006	Chlorophyll-a	1425A_03	SH 163 to US 87	8	8	0		14.10	LD	NC	NC		N
2006	Nitrate	1425A_01	Lower end of water body to Sterling County line	8	8	0		1.95	LD	NC	NC		No
2006	Nitrate	1425A_02	Sterling County line to SH 163	8	8	0		1.95	LD	NC	NC		No
2006	Nitrate	1425A_03	SH 163 to US 87	14	14	0		1.95	AD	NC	NC		No
2006	Orthophosphorus	1425A_01	Lower end of water body to Sterling County line	9	9	1		0.37	LD	NC	NC		N
2006	Orthophosphorus	1425A_02	Sterling County line to SH 163	8	8	0		0.37	LD	NC	NC		No
2006	Orthophosphorus	1425A_03	SH 163 to US 87	15	15	1		0.37	AD	NC	NC		N
2006	Total Phosphorus	1425A_02	Sterling County line to SH 163	8	8	0		0.69	LD	NC	NC		N
2006	Total Phosphorus	1425A_03	SH 163 to US 87	8	8	0		0.69	LD	NC	NC		N

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1425ANorth Concho River (unclassified water body)

Wate	er body type: Fresl	hwater Stream					Wate	r body size:		95	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Recrea	tion Use												
Bacter	ia Geomean												
2006	E. coli	1425A_02	Sterling County line to SH 163	2	2		139.00	126.00	ID	NA	NA		No
2006	E. coli	1425A_03	SH 163 to US 87	2	2		28.00	126.00	ID	NA	NA		No
2006	Fecal coliform	1425A_01	Lower end of water body to Sterling County line	11	11		26.00	200.00	AD	FS	FS		No
2006	Fecal coliform	1425A_02	Sterling County line to SH 163	8	8		257.00	200.00	LD	CN	CN		No
2006	Fecal coliform	1425A_03	SH 163 to US 87	12	12		19.00	200.00	AD	FS	FS		No
Bacter	ia Single Sample												
2006	E. coli	1425A_02	Sterling County line to SH 163	2	2	0		394.00	ID	NA	NA		No
2006	E. coli	1425A_03	SH 163 to US 87	2	2	0		394.00	ID	NA	NA		No
2006	Fecal coliform	1425A_01	Lower end of water body to Sterling County line	11	11	0		400.00	AD	FS	FS		No
2006	Fecal coliform	1425A_02	Sterling County line to SH 163	8	8	0		400.00	LD	NC	NC		No
2006	Fecal coliform	1425A_03	SH 163 to US 87	12	12	0		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1426 Colorado River Below E. V. Spence Reservoir

Water	body type: Freshwater Str	eam					Wate	r body size:		66	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquatic	Life Use												
Acute T	Coxic Substances in water												
2006	Multiple	1426_02	Country Club Lake to Coke County line	9	9	0			LD	NC	NC		No
Chronic	e Toxic Substances in water												
	Multiple	1426_02	Country Club Lake to Coke County line	9	9				LD	NC	NC		No
Dissolve	ed Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1426_01	Lower end of segment to Country Club Lake	123	123	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1426_02	Country Club Lake to Coke County line	135	135	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1426_03	Coke County line to SH 208	135	135	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1426_04	SH 208 to dam	124	124	5		3.00	AD	FS	FS		No
Dissolve	ed Oxygen grab screening level												
2008	Dissolved Oxygen Grab	1426_01	Lower end of segment to Country Club Lake	123	123	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1426_02	Country Club Lake to Coke County line	135	135	0		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1426_03	Coke County line to SH 208	135	135	8		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1426 04	SH 208 to dam	124	124	15		5.00	AD	CS	CS		Nc
	ubstances in sediment	_											
2006	Multiple	1426_02	Country Club Lake to Coke County line	3	3	0			ID	NA	NA		No
Fish Co	nsumption Use												
HH Bio	accumulative Toxics in water												
2006	Chromium	1426 02	Country Club Lake to Coke County line	8	8		1.90	100.00	LD	NC	NC		No
2006	Lead	1426 02	Country Club Lake to Coke County line	8	8		0.65	4.98	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1426 Colorado River Below E. V. Spence Reservoir

Segment ID:

Water body type: Freshwater	Stream					Wate	r body size:		66	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General Use	_											
Dissolved Solids												
2008 Chloride	1426_01	Lower end of segment to Country Club Lake	532	532		775.21	610.00	AD	NS	NS	4a	No
2008 Chloride	1426_02	Country Club Lake to Coke County line	532	532		775.21	610.00	AD	NS	NS	4a	No
2008 Chloride	1426_03	Coke County line to SH 208	532	532		775.21	610.00	AD	NS	NS	4a	No
2008 Chloride	1426_04	SH 208 to dam	532	532		775.21	610.00	AD	NS	NS	4a	No
2008 Sulfate	1426_01	Lower end of segment to Country Club Lake	532	532		694.96	980.00	AD	FS	FS		No
2008 Sulfate	1426_02	Country Club Lake to Coke County line	532	532		694.96	980.00	AD	FS	FS		No
2008 Sulfate	1426_03	Coke County line to SH 208	532	532		694.96	980.00	AD	FS	FS		No
2008 Sulfate	1426_04	SH 208 to dam	532	532		694.96	980.00	AD	FS	FS		No
2008 Total Dissolved Solids	1426_01	Lower end of segment to Country Club Lake	536	536		2,334.47	2,000.00	AD	NS	NS	4a	No
2008 Total Dissolved Solids	1426_02	Country Club Lake to Coke County line	536	536		2,334.47	2,000.00	AD	NS	NS	4a	No
2008 Total Dissolved Solids	1426 03	Coke County line to SH 208	536	536		2,334.47	2,000.00	AD	NS	NS	4a	No
2008 Total Dissolved Solids	1426 04	SH 208 to dam	536	536		2,334.47	2,000.00	AD	NS	NS	4a	No
High pH	—											
2008 рН	1426_01	Lower end of segment to Country Club Lake	117	117	0		9.00	AD	FS	FS		No
2008 рН	1426_02	Country Club Lake to Coke County line	128	128	0		9.00	AD	FS	FS		No
2008 рН	1426_03	Coke County line to SH 208	130	130	0		9.00	AD	FS	FS		No
2008 рН	1426_04	SH 208 to dam	118	118	2		9.00	AD	FS	FS		No
Low pH												
2008 pH	1426_01	Lower end of segment to Country Club Lake	117	117	0		6.50	AD	FS	FS		No
2008 pH	1426_02	Country Club Lake to Coke County line	128	128	0		6.50	AD	FS	FS		No
2008 рН	1426_03	Coke County line to SH 208	130	130	0		6.50	AD	FS	FS		No
2008 рН	1426_04	SH 208 to dam	118	118	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1426 Colorado River Below E. V. Spence Reservoir

Segment ID:

Water body type: Freshwa	ter Stream					Wate	r body size:		66	Μ	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
General Use												
Nutrient Screening Levels												
2008 Ammonia	1426_01	Lower end of segment to Country Club Lake	13	13	0		0.33	AD	NC	NC		No
2008 Ammonia	1426_02	Country Club Lake to Coke County line	25	25	0		0.33	AD	NC	NC		No
2008 Ammonia	1426_03	Coke County line to SH 208	12	12	0		0.33	AD	NC	NC		No
2008 Ammonia	1426_04	SH 208 to dam	40	40	8		0.33	AD	NC	NC		No
2008 Chlorophyll-a	1426_01	Lower end of segment to Country Club Lake	12	12	6		14.10	AD	CS	CS		No
2008 Chlorophyll-a	1426_02	Country Club Lake to Coke County line	23	23	11		14.10	AD	CS	CS		No
2008 Chlorophyll-a	1426_03	Coke County line to SH 208	11	11	5		14.10	AD	CS	CS		No
2008 Chlorophyll-a	1426_04	SH 208 to dam	14	14	7		14.10	AD	CS	CS		No
2008 Nitrate	1426_01	Lower end of segment to Country Club Lake	69	69	3		1.95	AD	NC	NC		No
2008 Nitrate	1426_02	Country Club Lake to Coke County line	79	79	0		1.95	AD	NC	NC		No
2008 Nitrate	1426_03	Coke County line to SH 208	79	79	0		1.95	AD	NC	NC		No
2008 Nitrate	1426_04	SH 208 to dam	68	68	0		1.95	AD	NC	NC		No
2008 Orthophosphorus	1426_01	Lower end of segment to Country Club Lake	12	12	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1426_02	Country Club Lake to Coke County line	24	24	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1426_03	Coke County line to SH 208	11	11	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1426_04	SH 208 to dam	40	40	1		0.37	AD	NC	NC		No
2008 Total Phosphorus	1426_01	Lower end of segment to Country Club Lake	13	13	0		0.69	AD	NC	NC		No
2008 Total Phosphorus	1426_02	Country Club Lake to Coke County line	25	25	0		0.69	AD	NC	NC		No
2008 Total Phosphorus	1426_03	Coke County line to SH 208	12	12	0		0.69	AD	NC	NC		No
2008 Total Phosphorus	1426_04	SH 208 to dam	41	41	1		0.69	AD	NC	NC		No
Water Temperature												
2008 Temperature	1426_01	Lower end of segment to Country Club Lake	122	122	4		32.80	AD	FS	FS		No
2008 Temperature	1426_02	Country Club Lake to Coke County line	149	149	0		32.80	AD	FS	FS		No
2008 Temperature	1426_03	Coke County line to SH 208	134	134	4		32.80	AD	FS	FS		No
2008 Temperature	1426_04	SH 208 to dam	123	123	1		32.80	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1426 Colorado River Below E. V. Spence Reservoir

Water body type: Fres	hwater Stream					Wate	r body size:		66	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Public Water Supply Use												
Finished Drinking Water Di	issolved Solids average											
2008 Multiple	1426_01	Lower end of segment to Country Club Lake						OE	NC	NC		No
2008 Multiple	1426_02	Country Club Lake to Coke County line						OE	NC	NC		No
2008 Multiple	1426_03	Coke County line to SH 208						OE	NC	NC		No
2008 Multiple	1426_04	SH 208 to dam						OE	NC	NC		No
Finished Drinking Water M	ICLs and Toxic Substar	ces running average										
2008 Multiple	1426_01	Lower end of segment to Country Club Lake						OE	FS	FS		No
2008 Multiple	1426_02	Country Club Lake to Coke County line						OE	FS	FS		No
2008 Multiple	1426_03	Coke County line to SH 208						OE	FS	FS		No
2008 Multiple	1426_04	SH 208 to dam						OE	FS	FS		No
Finished Drinking Water M	ICLs Concern											
2008 Multiple	1426_01	Lower end of segment to Country Club Lake						OE	NC	NC		No
2008 Multiple	1426_02	Country Club Lake to Coke County line						OE	NC	NC		No
2008 Multiple	1426_03	Coke County line to SH 208						OE	NC	NC		No
2008 Multiple	1426_04	SH 208 to dam						OE	NC	NC		No
Surface Water HH criteria f	for PWS average											
2006 Fluoride	1426_01	Lower end of segment to Country Club Lake	1	1		0.34	4,000.00	ID	NA	NA		No
2006 Fluoride	1426_04	SH 208 to dam	1	1		0.57	4,000.00	ID	NA	NA		No
2006 Multiple	1426_02	Country Club Lake to Coke County line	8	8				LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1426 Colorado River Below E. V. Spence Reservoir

Segment ID:

Water body type: Freshwat	ter Stream					Wate	r body size:		66	М	iles
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carry</u> Category Forward
Recreation Use											
Bacteria Geomean											
2008 E. coli	1426_01	Lower end of segment to Country Club Lake	14	14	0	60.90	126.00	AD	FS	FS	No
2008 E. coli	1426_02	Country Club Lake to Coke County line	20	20	0	65.20	126.00	AD	FS	FS	No
2008 E. coli	1426_03	Coke County line to SH 208	12	12	0	80.05	126.00	AD	FS	FS	No
2008 E. coli	1426_04	SH 208 to dam	15	15	0	36.52	126.00	AD	FS	FS	No
2008 Fecal coliform	1426_02	Country Club Lake to Coke County line	12	12	0	72.73	200.00	SM	FS	FS	No
2008 Fecal coliform	1426_04	SH 208 to dam	7	7	0	79.90	200.00	LD	NC	NC	No
Bacteria Single Sample											
2008 E. coli	1426_01	Lower end of segment to Country Club Lake	14	14	1		394.00	AD	FS	FS	No
2008 E. coli	1426_02	Country Club Lake to Coke County line	20	20	1		394.00	AD	FS	FS	No
2008 E. coli	1426_03	Coke County line to SH 208	12	12	1		394.00	AD	FS	FS	No
2008 E. coli	1426_04	SH 208 to dam	15	15	0		394.00	AD	FS	FS	No
2008 Fecal coliform	1426_02	Country Club Lake to Coke County line	12	12	1		400.00	SM	FS	FS	No
2008 Fecal coliform	1426_04	SH 208 to dam	7	7	0		400.00	LD	NC	NC	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1426A Oak Creek Reservoir (unclassified water body)

Water body type: Reservoir						Water	body size:		2,375	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1426A_01	Entire water body	38	38	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1426A_01	Entire water body	38	38	1		5.00	AD	NC	NC		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1426A_01	Entire water body	8	8	1		0.11	LD	NC	NC		No
2006 Chlorophyll-a	1426A_01	Entire water body	8	8	2		26.70	LD	NC	NC		No
2006 Nitrate	1426A_01	Entire water body	18	18	0		0.37	AD	NC	NC		No
2006 Orthophosphorus	1426A_01	Entire water body	8	8	0		0.05	LD	NC	NC		No
2006 Total Phosphorus	1426A 01	Entire water body	8	8	0		0.20	LD	NC	NC		No
Public Water Supply Use												
Finished Drinking Water Dissolved Sol	ids average											
2006 Sulfate	1426A_01	Entire water body	5	5		425.00	300.00	OE	CS	CS		No
Finished Drinking Water MCLs and To		8 8										
2006 Multiple		Entire water body						OE	FS	FS		No
Finished Drinking Water MCLs Conce												
2006 Multiple	_	Entire water body						OE	NC	NC		No
Surface Water HH criteria for PWS ave	0		_	_		0.60						
2006 Fluoride	1426A_01	Entire water body	7	7		0.60	4,000.00	LD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1426A_01	Entire water body	7	7		2.00	126.00	LD	NC	NC		No
2006 Fecal coliform	1426A_01	Entire water body	5	5		1.00	200.00	LD	NC	NC		No
Bacteria Single Sample	110(1-01		-	_	0		204.00		NG	216		27
2006 E. coli	1426A_01	Entire water body	7	7	0		394.00	LD	NC	NC		No
2006 Fecal coliform	1426A_01	Entire water body	5	5	0		400.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1426BElm Creek (unclassified water body)

Wate	er body type: Freshwater Str	eam					Water	body size:		22	М	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquati	c Life Use												
Acute	Toxic Substances in water												
2006	Multiple	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	7	7	0			LD	NC	NC		No
Chron	ic Toxic Substances in water												
2006	Multiple	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	7	7				LD	NC	NC		No
Dissol	ved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	37	37	0		3.00	AD	FS	FS		No
2006	Dissolved Oxygen Grab	1426B_02	From the low water dam downstream of US 67 upstream to Lake Winters dam	47	47	0		2.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	37	37	2		5.00	AD	NC	NC		No
2006	Dissolved Oxygen Grab	1426B_02	From the low water dam downstream of US 67 upstream to Lake Winters dam	47	47			3.00	AD	NC	NC		No
Toxic	Substances in sediment												
2006	Multiple	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	3	3	0			ID	NA	NA		No
Fish Co	onsumption Use												
HH Bi	oaccumulative Toxics in water												
2006	Multiple	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	5	5				LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ- Assessor Judgement; OE- Other information Evaluated, OS- Out-of-state; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1426BElm Creek (unclassified water body)

Wate	er body type: Freshwate	er Stream					Water	r body size:		22	Μ	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use												
Nutrie	ent Screening Levels												
2006	Ammonia	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	31	31	0		0.33	AD	NC	NC		No
2006	Ammonia	1426B_02	From the low water dam downstream of US 67 upstream to Lake Winters dam	2	2	0		0.33	ID	NA	NA		No
2006	Chlorophyll-a	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	16	16	4		14.10	AD	NC	NC		No
2006	Chlorophyll-a	1426B_02	From the low water dam downstream of US 67 upstream to Lake Winters dam	2	2	0		14.10	ID	NA	NA		No
2006	Nitrate	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	31	31	4		1.95	AD	NC	NC		No
2006	Nitrate	1426B_02	From the low water dam downstream of US 67 upstream to Lake Winters dam	35	35	7		1.95	AD	NC	NC		No
2006	Orthophosphorus	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	31	31	0		0.37	AD	NC	NC		No
2006	Orthophosphorus	1426B_02	From the low water dam downstream of US 67 upstream to Lake Winters dam	2	2	0		0.37	ID	NA	NA		No
2006	Total Phosphorus	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	31	31	0		0.69	AD	NC	NC		No
2006	Total Phosphorus	1426B_02	From the low water dam downstream of US 67 upstream to Lake Winters dam	2	2	0		0.69	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1426BElm Creek (unclassified water body)

Water body type: Freshw	ater body type: Freshwater Stream					Wate	r body size:		22 Miles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use												
Bacteria Geomean												
2006 E. coli	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	13	13		44.00	126.00	AD	FS	FS		No
2006 Fecal coliform	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	12	12		53.00	200.00	SM	FS	FS		No
Bacteria Single Sample												
2006 E. coli	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	13	13	2		394.00	AD	FS	FS		No
2006 Fecal coliform	1426B_01	From the confluence with the Colorado River upstream to the low water dam downstream of US 67	12	12	1		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1426C Bluff Creek (unclassified water body)

Wate	er body type: Freshwater Stre	am					Water	body size:		36	Μ	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquatio	c Life Use												
Dissolv	ved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	22	22	0		3.00	AD	FS	FS		No
Dissolv	ved Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	22	22	1		5.00	AD	NC	NC		No
Genera	l Use												
Nutrie	nt Screening Levels												
2006	Ammonia	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	2	2	0		0.33	ID	NA	NA		No
2006	Chlorophyll-a	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	2	2	0		14.10	ID	NA	NA		No
2006	Nitrate	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	17	17	14		1.95	AD	CS	CS		No
2006	Orthophosphorus	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	2	2	0		0.37	ID	NA	NA		No
2006	Total Phosphorus	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	2	2	0		0.69	ID	NA	NA		No
Recrea	tion Use												
Bacter	ia Geomean												
2006	E. coli	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	2	2		32.00	126.00	ID	NA	NA		No
2006	Fecal coliform	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	0	0			200.00	ID	NA	NA		No
Bacter	ia Single Sample												
2006	E. coli	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	2	2	0		394.00	ID	NA	NA		No
2006	Fecal coliform	1426C_01	From the confluence with Elm Creek upstream to the confluence of Mill Creek	0	0			400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1426DCoyote Creek (unclassified water body)

Water body type: Freshwater S	Stream					Wate	r body size:		11	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Sample</u>	<u>#</u> s <u>Assessed</u>	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use	-											
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1426D_01	Entire water body	23	23	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening lev	vel											
2006 Dissolved Oxygen Grab	1426D_01	Entire water body	23	23	0		5.00	AD	NC	NC		No
General Use	_											
Nutrient Screening Levels												
2006 Ammonia	1426D_01	Entire water body	2	2	0		0.33	ID	NA	NA		No
2006 Chlorophyll-a	1426D_01	Entire water body	2	2	0		14.10	ID	NA	NA		No
2006 Nitrate	1426D_01	Entire water body	18	18	9		1.95	AD	CS	CS		No
2006 Orthophosphorus	1426D 01	Entire water body	2	2	0		0.37	ID	NA	NA		No
2006 Total Phosphorus	1426D 01	Entire water body	2	2	0		0.69	ID	NA	NA		No
Recreation Use		-										
Bacteria Geomean	-											
2006 E. coli	1426D_01	Entire water body	2	2		3.00	126.00	ID	NA	NA		No
2006 Fecal coliform	1426D_01	Entire water body	0	0			200.00	ID	NA	NA		No
Bacteria Single Sample	_	-										
2006 E. coli	1426D_01	Entire water body	2	2	0		394.00	ID	NA	NA		No
2006 Fecal coliform	1426D_01	Entire water body	0	0			400.00	ID	NA	NA		No

Onion Creek

1427

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: Water body type: Freshwater Stream Water body size: 78 Miles # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) YEAR Samples Assessed Exc Assessed Oualifier Supp Supp Category Forward Criteria Aquatic Life Use Acute Toxic Substances in water 2006 Lead From US 183 upstream to FM 967 0 142.62 NA 1427 02 1 ID NA No From FM 967 upstream to Jackson Branch 2006 Multiple $1427 \ 03$ 1 1 0 ID NA NA No confluence **Chronic Toxic Substances in water** 2006 Lead 1427 02 From US 183 upstream to FM 967 2.40 4.95 ID NA NA 1 No 1427 03 From FM 967 upstream to Jackson Branch ID NA NA 2006 Multiple 1 No confluence **Dissolved Oxygen 24hr average** Dissolved Oxygen 24hr Avg 1427 01 From the confluence with the Colorado 18 18 2 5.00 AD FS FS No 2008 River upstream to US 183 2008 Dissolved Oxygen 24hr Avg 1427 02 From US 183 upstream to FM 967 20 20 2 5.00 AD FS FS No From FM 967 upstream to Jackson Branch 27 27 2 FS FS 2008 Dissolved Oxygen 24hr Avg 1427 03 5.00 AD No confluence 2008 Dissolved Oxygen 24hr Avg 1427 04 From Jackson Branch confluence to end of 20 20 3 5.00 AD FS FS No segment **Dissolved Oxygen 24hr minimum** Dissolved Oxygen 24hr Min 1427 01 From the confluence with the Colorado 18 18 2 3 00 AD FS FS No 2008 River upstream to US 183 1427 02 From US 183 upstream to FM 967 20 20 FS FS 2008 Dissolved Oxygen 24hr Min 3.00 AD No From FM 967 upstream to Jackson Branch Dissolved Oxygen 24hr Min 27 0 FS FS 2008 1427 03 27 3.00 AD No confluence $1427 \ 04$ From Jackson Branch confluence to end of 20 20 FS FS 2008 Dissolved Oxygen 24hr Min 3.00 AD No segment

segment

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427 **Onion Creek** Water body type: Freshwater Stream Water body size: 78 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Supp Supp Category Forward Criteria Aquatic Life Use **Dissolved Oxygen grab minimum** Dissolved Oxygen Grab From the confluence with the Colorado 93 89 0 FS FS 2008 1427 01 3.00 SM No River upstream to US 183 1427 02 From US 183 upstream to FM 967 105 105 0 SM FS FS No 2008 Dissolved Oxygen Grab 3.00 2008 Dissolved Oxygen Grab 1427 03 From FM 967 upstream to Jackson Branch 60 60 0 3.00 SM FS FS No confluence From Jackson Branch confluence to end of 1427 04 44 44 SM FS FS 2008 Dissolved Oxygen Grab 3.00 No segment **Dissolved Oxygen grab screening level** 1427 01 From the confluence with the Colorado 93 89 SM NC NC 2008 Dissolved Oxygen Grab 2 5.00 No River upstream to US 183 2008 Dissolved Oxygen Grab 1427 02 From US 183 upstream to FM 967 105 105 7 5.00 SM NC NC No 2008 Dissolved Oxygen Grab 1427 03 From FM 967 upstream to Jackson Branch 60 60 6 5.00 SM NC NC No confluence 2008 **Dissolved Oxygen Grab** 1427 04 From Jackson Branch confluence to end of 44 44 5 5.00 SM NC NC No segment **Fish Community** From the confluence with the Colorado 2008 Fish Community 1427 01 3 3 44.30 41.00 AD FS FS No River upstream to US 183 2008 Fish Community 1427 02 From US 183 upstream to FM 967 3 3 42.00 41.00 AD FS FS No From FM 967 upstream to Jackson Branch 2 2 FS 2008 Fish Community 1427 03 44.00 42.00 AD FS No confluence Fish Community From Jackson Branch confluence to end of 3 3 42.00 42.00 FS FS 2008 1427 04 AD No

Onion Creek

Segment ID:

1427

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Freshwater Str	eam					Wate	r body size:		78	Μ	iles
YEAF	2	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> Category Forward
Aquat	ic Life Use											
Habit	at											
2008	Habitat	1427_01	From the confluence with the Colorado River upstream to US 183	3	3		23.60	20.00	AD	NC	NC	No
2008	Habitat	1427_02	From US 183 upstream to FM 967	3	3		19.00	20.00	JQ	NC	NC	No
2008	Habitat	1427_03	From FM 967 upstream to Jackson Branch confluence	2	2		18.00	20.00	JQ	NC	NC	No
2008	Habitat	1427_04	From Jackson Branch confluence to end of segment	3	3		18.30	20.00	JQ	NC	NC	No
Macro	obenthic Community		-									
2008	Macrobenthic Community	1427_01	From the confluence with the Colorado River upstream to US 183	3	3		31.60	29.00	AD	FS	FS	No
2008	Macrobenthic Community	1427_02	From US 183 upstream to FM 967	3	3		31.30	29.00	AD	FS	FS	No
2008	Macrobenthic Community	1427_03	From FM 967 upstream to Jackson Branch confluence	2	2		34.50	29.00	AD	FS	FS	No
2008	Macrobenthic Community	1427_04	From Jackson Branch confluence to end of segment	3	3		31.00	29.00	AD	FS	FS	No
Toxic	Substances in sediment											
2008	Metals	1427_01	From the confluence with the Colorado River upstream to US 183	4	4	0			LD	NC	NC	No
2006	Metals	1427_02	From US 183 upstream to FM 967	1	1	0			ID	NA	NA	No
2008	Organics	1427_01	From the confluence with the Colorado River upstream to US 183	3	3	0			ID	NA	NA	No
2006	Organics	1427_02	From US 183 upstream to FM 967	1	1	0			ID	NA	NA	No
Fish C	onsumption Use											
HH B	ioaccumulative Toxics in water											
2006	Multiple	1427_03	From FM 967 upstream to Jackson Branch confluence	2	2				ID	NA	NA	No

segment

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ- Assessor judgement; OE- Other information Evaluated; OS- Out-of-state; AU ID - Assessment Unit ID * Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support

Segment ID: 1427 **Onion Creek** Water body type: Freshwater Stream Water body size: 78 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Criteria Supp Supp Category Forward General Use **Dissolved Solids** From the confluence with the Colorado 264 264 24.88 100.00 FS FS 2008 Chloride 1427 01 AD No River upstream to US 183 2008 1427 02 From US 183 upstream to FM 967 264 264 24.88 100.00 AD FS FS No Chloride 2008 1427 03 From FM 967 upstream to Jackson Branch 264 264 24.88 50.00 FS FS No Chloride AD confluence From Jackson Branch confluence to end of 1427 04 264 264 24.88 50.00 AD FS FS 2008 No Chloride segment 1427 01 From the confluence with the Colorado 259 259 40.16 100.00 AD FS FS No 2008 Sulfate River upstream to US 183 1427 02 259 259 FS FS 2008 Sulfate From US 183 upstream to FM 967 40.16 100.00 AD No 2008 Sulfate 1427 03 From FM 967 upstream to Jackson Branch 259 259 40.16 50.00 AD FS FS No confluence 2008 Sulfate 1427 04 From Jackson Branch confluence to end of 259 259 40.16 50.00 AD FS FS No segment 2008 Total Dissolved Solids 1427 01 From the confluence with the Colorado 334 334 342.28 500.00 AD FS FS No River upstream to US 183 2008 Total Dissolved Solids 1427 02 From US 183 upstream to FM 967 334 334 342.28 500.00 AD FS FS No 2008 Total Dissolved Solids 1427 03 From FM 967 upstream to Jackson Branch 334 334 342.28 400.00 AD FS FS No confluence Total Dissolved Solids 1427 04 From Jackson Branch confluence to end of 334 334 342.28 400.00 AD FS FS No 2008

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427 Onion Creek

Water body type: Fresh	water Stream		Water body size						78	М		
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use												
High pH												
2008 pH	1427_01	From the confluence with the Colorado River upstream to US 183	99	95	0		9.00	AD	FS	FS		No
2008 рН	1427_02	From US 183 upstream to FM 967	114	114	0		9.00	AD	FS	FS		No
2008 pH	1427_03	From FM 967 upstream to Jackson Branch confluence	59	59	0		9.00	AD	FS	FS		No
2008 рН	1427_04	From Jackson Branch confluence to end of segment	49	49	0		9.00	AD	FS	FS		No
Low pH												
2008 pH	1427_01	From the confluence with the Colorado River upstream to US 183	99	95	0		6.50	AD	FS	FS		No
2008 рН	1427_02	From US 183 upstream to FM 967	114	114	1		6.50	AD	FS	FS		No
2008 pH	1427_03	From FM 967 upstream to Jackson Branch confluence	59	59	1		6.50	AD	FS	FS		No
2008 рН	1427_04	From Jackson Branch confluence to end of segment	49	49	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427

Onion	Creek
-------	-------

Wat	er body type: Freshwate	er Stream					Wate	r body size:		78	М	liles	
YEAR	<u>L</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1427_01	From the confluence with the Colorado River upstream to US 183	89	89	7		0.33	AD	NC	NC		No
2008	Ammonia	1427_02	From US 183 upstream to FM 967	105	105	8		0.33	AD	NC	NC		No
2008	Ammonia	1427_03	From FM 967 upstream to Jackson Branch confluence	63	63	15		0.33	AD	NC	NC		No
2008	Ammonia	1427_04	From Jackson Branch confluence to end of segment	43	43	7		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1427_01	From the confluence with the Colorado River upstream to US 183	69	69	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1427_02	From US 183 upstream to FM 967	40	40	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1427_03	From FM 967 upstream to Jackson Branch confluence	55	55	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1427_04	From Jackson Branch confluence to end of segment	15	15	0		14.10	AD	NC	NC		No
2008	Nitrate	1427_01	From the confluence with the Colorado River upstream to US 183	88	88	7		1.95	AD	NC	NC		No
2008	Nitrate	1427_02	From US 183 upstream to FM 967	99	99	2		1.95	AD	NC	NC		No
2008	Nitrate	1427_03	From FM 967 upstream to Jackson Branch confluence	62	62	3		1.95	AD	NC	NC		No
2008	Nitrate	1427_04	From Jackson Branch confluence to end of segment	41	41	1		1.95	AD	NC	NC		No
2008	Orthophosphorus	1427_01	From the confluence with the Colorado River upstream to US 183	85	85	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1427_02	From US 183 upstream to FM 967	100	100	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1427_03	From FM 967 upstream to Jackson Branch confluence	61	61	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1427_04	From Jackson Branch confluence to end of segment	41	41	0		0.37	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427

Wate	er body type: Freshwate	er Stream					Water body size:			78	М	Miles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forwa
Genera	ıl Use												
Nutrie	ent Screening Levels												
2008	Total Phosphorus	1427_01	From the confluence with the Colorado River upstream to US 183	75	75	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1427_02	From US 183 upstream to FM 967	81	81	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1427_03	From FM 967 upstream to Jackson Branch confluence	57	57	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1427_04	From Jackson Branch confluence to end of segment	29	29	1		0.69	AD	NC	NC		No
Water	Temperature												
2008	Temperature	1427_01	From the confluence with the Colorado River upstream to US 183	107	103	1		32.20	AD	FS	FS		No
2008	Temperature	1427_02	From US 183 upstream to FM 967	116	116	1		32.20	AD	FS	FS		No
2008	Temperature	1427_03	From FM 967 upstream to Jackson Branch confluence	65	65	0		32.20	AD	FS	FS		No
2008	Temperature	1427_04	From Jackson Branch confluence to end of segment	49	49	0		32.20	AD	FS	FS		No

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. Segment ID: 1427 **Onion Creek** Water body type: Freshwater Stream Water body size: 78 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier <u>Supp</u> YEAR Samples Assessed Exc Assessed Supp Category Forward Criteria Public Water Supply Use Finished Drinking Water Dissolved Solids average From the confluence with the Colorado OE NC NC 2008 Multiple 1427 01 No River upstream to US 183 2008 1427 02 From US 183 upstream to FM 967 OE NC NC No Multiple 2008 1427 03 From FM 967 upstream to Jackson Branch OE NC NC No Multiple confluence From Jackson Branch confluence to end of 1427 04 OE NC NC 2008 Multiple No segment Finished Drinking Water MCLs and Toxic Substances running average 1427 01 From the confluence with the Colorado OE FS FS 2008 Multiple No River upstream to US 183 2008 1427 02 From US 183 upstream to FM 967 OE FS FS No Multiple 2008 Multiple 1427 03 From FM 967 upstream to Jackson Branch OE FS FS No confluence From Jackson Branch confluence to end of 2008 Multiple 1427 04 OE FS FS No segment **Finished Drinking Water MCLs Concern** From the confluence with the Colorado 2008 Multiple 1427 01 OE NC NC No River upstream to US 183 2008 Multiple 1427 02 From US 183 upstream to FM 967 OE NC NC No 2008 Multiple 1427 03 From FM 967 upstream to Jackson Branch OE NC NC No confluence 1427 04 From Jackson Branch confluence to end of OE NC No 2008 Multiple NC

segment

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427 Onion Creek

Water body type:	Vater body type: Freshwater Stream								78	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	-	<u>Carry</u> Forward
Public Water Supply	Use											
Surface Water HH c	riteria for PWS average											
2006 Fluoride	1427_01	From the confluence with the Colorado River upstream to US 183	14	14		0.29	4,000.00	AD	FS	FS		No
2006 Fluoride	1427_02	From US 183 upstream to FM 967	14	14		0.19	4,000.00	AD	FS	FS		No
2006 Fluoride	1427_03	From FM 967 upstream to Jackson Branch confluence	15	15		0.21	4,000.00	AD	FS	FS		No
2006 Multiple	1427_03	From FM 967 upstream to Jackson Branch confluence	1	1				ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427 (

Onion	Creek
-------	-------

Water body type: Freshwater Stream						Wate		78	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carr</u> Category Forw
Recreation Use											
Bacteria Geomean											
2008 E. coli	1427_01	From the confluence with the Colorado River upstream to US 183	75	75	0	41.89	126.00	AD	FS	FS	No
2008 E. coli	1427_02	From US 183 upstream to FM 967	51	51	0	23.71	126.00	AD	FS	FS	No
2008 E. coli	1427_03	From FM 967 upstream to Jackson Branch confluence	45	45	0	32.93	126.00	AD	FS	FS	No
2008 E. coli	1427_04	From Jackson Branch confluence to end of segment	24	24	0	19.72	126.00	AD	FS	FS	No
2008 Fecal coliform	1427_01	From the confluence with the Colorado River upstream to US 183	39	39	0	79.37	200.00	SM	FS	FS	No
2008 Fecal coliform	1427_02	From US 183 upstream to FM 967	66	66	0	41.41	200.00	SM	FS	FS	No
2008 Fecal coliform	1427_03	From FM 967 upstream to Jackson Branch confluence	38	38	0	47.33	200.00	SM	FS	FS	No
2008 Fecal coliform	1427_04	From Jackson Branch confluence to end of segment	30	30	0	57.61	200.00	SM	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427

Onion Creek

Wate	Water body type: Freshwater Stream						Water body size: 7					8 Miles		
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>	
Recrea	tion Use													
Bacter	ria Single Sample													
2008	E. coli	1427_01	From the confluence with the Colorado River upstream to US 183	75	75	5		394.00	AD	FS	FS		No	
2008	E. coli	1427_02	From US 183 upstream to FM 967	51	51	1		394.00	AD	FS	FS		No	
2008	E. coli	1427_03	From FM 967 upstream to Jackson Branch confluence	45	45	1		394.00	AD	FS	FS		No	
2008	E. coli	1427_04	From Jackson Branch confluence to end of segment	24	24	1		394.00	AD	FS	FS		No	
2008	Fecal coliform	1427_01	From the confluence with the Colorado River upstream to US 183	39	39	6		400.00	SM	FS	FS		No	
2008	Fecal coliform	1427_02	From US 183 upstream to FM 967	66	66	6		400.00	SM	FS	FS		No	
2008	Fecal coliform	1427_03	From FM 967 upstream to Jackson Branch confluence	38	38	2		400.00	SM	FS	FS		No	
2008	Fecal coliform	1427_04	From Jackson Branch confluence to end of segment	30	30	3		400.00	SM	FS	FS		No	

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Slaughter Creek (unclassified water body) 1427A Segment ID:

Water body type: Freshwater Str	eam						Water body size: 16			М		
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen 24hr average												
2006 Dissolved Oxygen 24hr Avg Dissolved Oxygen 24hr minimum	1427A_01	Entire water body	10	10	2		5.00	AD	CN	CN		No
2006 Dissolved Oxygen 24hr Min Dissolved Oxygen grab minimum	1427A_01	Entire water body	10	10	2		3.00	AD	CN	CN		No
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1427A_01	Entire water body	6	6	0		3.00	TR	NA	NA		No
2006 Dissolved Oxygen Grab Macrobenthic Community	1427A_01	Entire water body	6	6	1		5.00	TR	NA	NA		No
2006 Macrobenthic Community Toxic Substances in sediment	1427A_01	Entire water body	0	0				ID	NA	NS	5b	Yes
2006 Iron General Use	1427A_01	Entire water body	1	1	0		40,000.00	ID	NA	NA		No
Nutrient Screening Levels												
2006 Ammonia	1427A_01	Entire water body	9	9	0		0.33	TR	NA	NA		No
2006 Chlorophyll-a	1427A_01	Entire water body	3	3	0		14.10	TR	NA	NA		No
2006 Nitrate	1427A_01	Entire water body	9	9	0		1.95	TR	NA	NA		No
2006 Orthophosphorus	1427A_01	Entire water body	8	8	0		0.37	TR	NA	NA		No
2006 Total Phosphorus	1427A_01	Entire water body	8	8	0		0.69	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1427BWilliamson Creek (unclassified water body)

Water body type: Freshwater Str	eam					Wate	16		Miles			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1427B_01	Entire water body	49	47	0		3.00	AD	FS	FS		No
2006 Dissolved Oxygen Grab Toxic Substances in sediment	1427B_01	Entire water body	49	47	2		5.00	AD	NC	NC		No
2006 Metals	1427B_01	Entire water body	1	1	0			ID	NA	NA		No
2006 Organics	1427B_01	Entire water body	1	1	0			ID	NA	NA		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 DDE	1427B_01	Entire water body	3	3		0.00	0.01	ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1427B_01	Entire water body	11	11	1		0.33	TR	NA	NA		No
2006 Nitrate	1427B_01	Entire water body	12	12	0		1.95	TR	NA	NA		No
2006 Orthophosphorus	1427B_01	Entire water body	11	11	0		0.37	TR	NA	NA		No
2006 Total Phosphorus	1427B_01	Entire water body	7	7	0		0.69	TR	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 Fecal coliform	1427B_01	Entire water body	6	6		368.00	200.00	TR	NA	NA		No
Bacteria Single Sample												
2006 Fecal coliform	1427B_01	Entire water body	6	6	1		400.00	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1427C Bear Creek (unclassified water body) Segment ID:

Water body type: Freshwater Stre	am					Wate	er body size:		15	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1427C_01	Entire water body	8	8	0		2.00	LD	NC	NC		No
2006 Dissolved Oxygen Grab Toxic Substances in sediment	1427C_01	Entire water body	8	8	1		3.00	LD	NC	NC		No
2006 Iron	1427C_01	Entire water body	1	1	0		40,000.00	ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1427C_01	Entire water body	8	8	0		0.33	LD	NC	NC		No
2006 Chlorophyll-a	1427C_01	Entire water body	8	8	0		14.10	LD	NC	NC		No
2006 Nitrate	1427C_01	Entire water body	8	8	2		1.95	LD	NC	NC		No
2006 Orthophosphorus	1427C_01	Entire water body	8	8	0		0.37	LD	NC	NC		No
2006 Total Phosphorus	1427C_01	Entire water body	8	8	0		0.69	LD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1427C_01	Entire water body	8	8		42.00	126.00	LD	NC	NC		No
2006 Fecal coliform Bacteria Single Sample	1427C_01	Entire water body	3	3		38.00	200.00	ID	NA	NA		No
2006 E. coli	1427C_01	Entire water body	8	8	2		394.00	LD	NC	NC		No
2006 Fecal coliform	1427C_01	Entire water body	3	3	0		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1427G Granada Hills Tributary to Slaughter Creek (unclassified water body)

Water body type: Freshwater Stre	eam					Wate	r body size:		2	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp		<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1427G_01	Entire water body	0	0			1.50	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1427G_01	Entire water body	0	0			2.00	ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1427G_01	Entire water body	10	10	0		0.33	AD	NC	NC		No
2006 Nitrate	1427G_01	Entire water body	10	10	5		1.95	AD	CS	CS		No
2006 Orthophosphorus	1427G_01	Entire water body	10	10	0		0.37	AD	NC	NC		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1427G_01	Entire water body	0	0			126.00	ID	NA	NA		No
2006 Fecal coliform	1427G 01	Entire water body	9	9		161.00	200.00	LD	NC	NC		No
Bacteria Single Sample	_	-										
2006 E. coli	1427G_01	Entire water body	0	0			394.00	ID	NA	NA		No
2006 Fecal coliform	1427G_01	Entire water body	9	9	2		400.00	LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1427HPier Branch (unclassified water body)

Water body type: Freshwater Stre	am					Water	body size:		5	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum2006Dissolved Oxygen GrabDissolved Oxygen grab screening level2006Dissolved Oxygen GrabRecreation Use	1427H_01 1427H_01	5	34 34	34 34	0 0		3.00 5.00	AD AD	FS NC	FS NC		No No
Bacteria Geomean 2006 E. coli Bacteria Single Sample 2006 E. coli	1427H_01 1427H_01	Entire water body Entire water body	0 0	0 0	0		126.00 394.00	ID ID	NA NA	NA NA		No No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1428 Colorado River Below Town Lake

Wate	er body type: Freshwater Str	eam					Water	body size:		41	Μ	liles	
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Aquati	ic Life Use												
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1428_01	Lower end of segment to Gilleland Creek confluence	45	42	0		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	39	35	0		4.00	AD	FS	FS		No
	Dissolved Oxygen Grab ved Oxygen grab screening level	1428_03	Walnut Creek to Longhorn Dam	79	73	0		4.00	AD	FS	FS		No
			Lower and of account to Cilloland Creek	45	42	1		6.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1428_01	Lower end of segment to Gilleland Creek confluence	45	42	1		6.00					No
2008	Dissolved Oxygen Grab	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	39	35	0		6.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1428_03	Walnut Creek to Longhorn Dam	79	73	6		6.00	AD	NC	NC		No
Fish C	Community												
2008	Fish Community	1428_01	Lower end of segment to Gilleland Creek confluence	0	0			49.00	ID	NA	CN		Yes
Macro	obenthic Community												
2008	Macrobenthic Community	1428_01	Lower end of segment to Gilleland Creek confluence	0	0				ID	NA	CN		Yes
Toxic	Substances in sediment												
2008	Mercury	1428_01	Lower end of segment to Gilleland Creek confluence	3	3	1		1.06	ID	NA	NA		No
2008	Metals	1428_01	Lower end of segment to Gilleland Creek confluence	3	3	0			ID	NA	NA		No
2008	Organics	1428_01	Lower end of segment to Gilleland Creek confluence	2	2	0			ID	NA	NA		No
Fish C	onsumption Use												
Bioaco	cumulative Toxics in fish tissue												
	Multiple	1428_01	Lower end of segment to Gilleland Creek confluence	1	1				ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Town Lake Segment ID: 1428

Wate	er body type: Freshwater	Stream					Wate	er body size:		41	Μ	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	ıl Use	_											
Dissolv	ved Solids												
2008	Chloride	1428_01	Lower end of segment to Gilleland Creek confluence	118	118		37.71	100.00	AD	FS	FS		No
2008	Chloride	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	118	118		37.71	100.00	AD	FS	FS		No
2008	Chloride	1428_03	Walnut Creek to Longhorn Dam	118	118		37.71	100.00	AD	FS	FS		No
2008	Sulfate	1428_01	Lower end of segment to Gilleland Creek confluence	118	118		30.85	100.00	AD	FS	FS		No
2008	Sulfate	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	118	118		30.85	100.00	AD	FS	FS		No
2008	Sulfate	1428_03	Walnut Creek to Longhorn Dam	118	118		30.85	100.00	AD	FS	FS		No
2008	Total Dissolved Solids	1428_01	Lower end of segment to Gilleland Creek confluence	155	155		303.72	500.00	AD	FS	FS		No
2008	Total Dissolved Solids	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	155	155		303.72	500.00	AD	FS	FS		No
2008 High p	Total Dissolved Solids	1428_03	Walnut Creek to Longhorn Dam	155	155		303.72	500.00	AD	FS	FS		No
2008	рН	1428_01	Lower end of segment to Gilleland Creek confluence	45	42	0		9.00	AD	FS	FS		No
2008	pH	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	39	35	0		9.00	AD	FS	FS		No
2008 Low p		1428_03	Walnut Creek to Longhorn Dam	79	73	0		9.00	AD	FS	FS		No
2008		1428_01	Lower end of segment to Gilleland Creek confluence	45	42	0		6.50	AD	FS	FS		No
2008	pН	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	39	35	0		6.50	AD	FS	FS		No
2008	рН	1428_03	Walnut Creek to Longhorn Dam	79	73	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ-Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-state; AU ID - Assessment Unit ID "Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evalu

Segment ID: 1428 Colorado River Below Town Lake

Wate	er body type: Freshwate	er Stream					Wate	r body size:		41	М	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	ıl Use												
Nutrie	nt Screening Levels												
2008	Ammonia	1428_01	Lower end of segment to Gilleland Creek confluence	41	41	0		0.33	AD	NC	NC		No
2008	Ammonia	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	35	35	0		0.33	AD	NC	NC		No
2008	Ammonia	1428_03	Walnut Creek to Longhorn Dam	39	39	0		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1428_01	Lower end of segment to Gilleland Creek confluence	40	40	1		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	34	34	1		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1428_03	Walnut Creek to Longhorn Dam	40	40	1		14.10	AD	NC	NC		No
2008	Nitrate	1428_01	Lower end of segment to Gilleland Creek confluence	40	40	22		1.95	AD	CS	CS		No
2008	Nitrate	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	35	35	8		1.95	AD	NC	NC		No
2008	Nitrate	1428_03	Walnut Creek to Longhorn Dam	41	41	0		1.95	AD	NC	NC		No
2008	Orthophosphorus	1428_01	Lower end of segment to Gilleland Creek confluence	41	41	22		0.37	AD	CS	CS		No
2008	Orthophosphorus	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	36	36	9		0.37	AD	NC	NC		No
2008	Orthophosphorus	1428_03	Walnut Creek to Longhorn Dam	38	38	0		0.37	AD	NC	NC		No
2008	Total Phosphorus	1428_01	Lower end of segment to Gilleland Creek confluence	41	41	13		0.69	AD	CS	CS		No
2008	Total Phosphorus	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	36	36	4		0.69	AD	NC	NC		No
2008	Total Phosphorus	1428_03	Walnut Creek to Longhorn Dam	41	41	0		0.69	AD	NC	NC		No

2008

Multiple

1428 03

Walnut Creek to Longhorn Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Town Lake Segment ID: 1428 Water body type: Freshwater Stream Water body size: 41 Miles # of # 2008 # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed Supp Supp Category Forward Criteria General Use Water Temperature 2008 Temperature Lower end of segment to Gilleland Creek 45 42 0 35.00 FS FS 1428 01 AD No confluence 1428 02 From the confluence of Gilleland Creek 39 35 0 35.00 AD FS FS No 2008 Temperature upstream to the confluence of Walnut Ck. 1428 03 84 78 2008 Temperature Walnut Creek to Longhorn Dam 0 35.00 AD FS FS No **Public Water Supply Use** Finished Drinking Water Dissolved Solids average 2008 Multiple 1428 01 Lower end of segment to Gilleland Creek OE NC NC No confluence From the confluence of Gilleland Creek OE NC NC 2008 Multiple 1428 02 No upstream to the confluence of Walnut Ck. 2008 1428 03 Walnut Creek to Longhorn Dam OE NC NC No Multiple Finished Drinking Water MCLs and Toxic Substances running average 1428 01 Lower end of segment to Gilleland Creek OE FS FS 2008 Multiple No confluence From the confluence of Gilleland Creek 1428 02 OE FS FS 2008 Multiple No upstream to the confluence of Walnut Ck. 2008 Multiple 1428 03 Walnut Creek to Longhorn Dam OE FS FS No **Finished Drinking Water MCLs Concern** 2008 Multiple 1428 01 Lower end of segment to Gilleland Creek OE NC NC No confluence 2008 Multiple 1428 02 From the confluence of Gilleland Creek OE NC NC No upstream to the confluence of Walnut Ck.

No

OE

NC

NC

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River Below Town Lake Segment ID: 1428

Wate	er body type: Fresh	water Stream					Wate	er body size:		41	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> <u>Forward</u>
Recrea	ition Use												
Bacter	ria Geomean												
2008	E. coli	1428_01	Lower end of segment to Gilleland Creek confluence	41	41	0	47.13	126.00	AD	FS	FS		No
2008	E. coli	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	36	36	0	48.47	126.00	AD	FS	FS		No
2008	E. coli	1428_03	Walnut Creek to Longhorn Dam	41	41	1	143.03	126.00	AD	NS	NS	5c	No
2008	Fecal coliform	1428_01	Lower end of segment to Gilleland Creek confluence	11	11	0	55.12	200.00	SM	FS	FS		No
2008	Fecal coliform	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	6	6	0	53.21	200.00	LD	NC	NC		No
2008	Fecal coliform	1428_03	Walnut Creek to Longhorn Dam	11	11	1	232.14	200.00	SM	NS	NS		No
Bacter	ria Single Sample												
2008	E. coli	1428_01	Lower end of segment to Gilleland Creek confluence	41	41	1		394.00	AD	FS	FS		No
2008	E. coli	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	36	36	2		394.00	AD	FS	FS		No
2008	E. coli	1428_03	Walnut Creek to Longhorn Dam	41	41	5		394.00	AD	FS	FS		No
2008	Fecal coliform	1428_01	Lower end of segment to Gilleland Creek confluence	11	11	0		400.00	SM	FS	FS		No
2008	Fecal coliform	1428_02	From the confluence of Gilleland Creek upstream to the confluence of Walnut Ck.	6	6	0		400.00	LD	NC	NC		No
2008	Fecal coliform	1428_03	Walnut Creek to Longhorn Dam	11	11	4		400.00	SM	CN	CN		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428ABoggy Creek (unclassified water body)

Water body type: Freshwater Stre	am					Wate	er body size:		7	М	files	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u> <u>I</u>	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1428A_01	Entire water body	3	3	0		2.00	TR	NA	NA		No
2006 Dissolved Oxygen Grab Toxic Substances in sediment	1428A_01	Entire water body	3	3	0		3.00	TR	NA	NA		No
2006 Metals	1428A_01	Entire water body	1	1	0			ID	NA	NA		No
2006 Organics	1428A_01	Entire water body	1	1	0			ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1428A_01	Entire water body	2	2	0		0.33	ID	NA	NA		No
2006 Chlorophyll-a	1428A_01	Entire water body	0	0			14.10	ID	NA	NA		No
2006 Nitrate	1428A_01	Entire water body	1	1	0		1.95	ID	NA	NA		No
2006 Orthophosphorus	1428A_01	Entire water body	2	2	0		0.37	ID	NA	NA		No
2006 Total Phosphorus	1428A_01	Entire water body	0	0			0.69	ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 Fecal coliform Bacteria Single Sample	1428A_01	Entire water body	1	1		480.00		ID	NA	NA		No
2006 Fecal coliform	1428A_01	Entire water body	1	1	1		400.00	ID	NA	NA		No

1

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support

1428B Walnut Creek (unclassified water body) Segment ID: Water body type: Freshwater Stream Water body size: 20 Miles 2008 # of # # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) YEAR Samples Exc Oualifier Supp Supp Category Forward Assessed Assessed Criteria Aquatic Life Use Dissolved Oxygen 24hr average 2 2 2008 Dissolved Oxygen 24hr Avg 1428B 03 From old Manor Road upstream to Dessau 5.00 ID NA NA No Road **Dissolved Oxygen 24hr minimum** 2008 Dissolved Oxygen 24hr Min 1428B 03 From old Manor Road upstream to Dessau 2 2 0 3.00 ID NA NA No Road **Dissolved Oxygen grab minimum** From the Colorado River upstream to FM 14 FS 2008 Dissolved Oxygen Grab 1428B 01 14 0 3.00 AD FS No 969 From FM 969 upstream to Old Manor Rd. FS 2008 Dissolved Oxygen Grab 1428B 02 10 10 0 3.00 AD FS No From old Manor Road upstream to Dessau 0 FS 2008 Dissolved Oxygen Grab 1428B 03 15 15 3.00 AD FS No Road Dissolved Oxygen Grab 1428B 04 From Dessau Rd. upstream to MoPac/Loop 19 19 0 AD FS FS 2008 3.00 No 2008 Dissolved Oxygen Grab 1428B 05 From MoPac/Loop 1 upstream to railroad 10 10 0 AD FS FS 2.00No tracks west of Loop 1 **Dissolved Oxygen grab screening level** 2008 **Dissolved Oxygen Grab** 1428B 01 From the Colorado River upstream to FM 14 14 0 5.00 AD NC NC No 969 1428B 02 2008 Dissolved Oxygen Grab From FM 969 upstream to Old Manor Rd. 10 10 0 5.00 AD NC NC No 2008 Dissolved Oxygen Grab From old Manor Road upstream to Dessau 15 15 0 NC 1428B 03 5.00 AD NC No Road 2008 Dissolved Oxygen Grab 1428B 04 From Dessau Rd. upstream to MoPac/Loop 19 19 0 5.00 AD NC NC No From MoPac/Loop 1 upstream to railroad 2008 Dissolved Oxygen Grab 1428B 05 10 10 0 3.00 AD NC NC No tracks west of Loop 1 **Macrobenthic Community** 2008 Macrobenthic Community 1428B 04 From Dessau Rd. upstream to MoPac/Loop ID NA CN Yes

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wat	er body type: Freshwater S	tream					Water bod	ly size:		20	М	iles	
YEAF	<u>3</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed <u>Cr</u>	riteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquat	ic Life Use												
Toxic	Substances in sediment												
2006	Metals	1428B_01	From the Colorado River upstream to FM 969	1	1	0			ID	NA	NA		No
2006	Organics	1428B_01	From the Colorado River upstream to FM 969	1	1	0			ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Walnut Creek (unclassified water body) Segment ID: 1428B Water body type: Freshwater Stream Water body size: <u># of</u> # Mean of <u># of</u> Dataset YEAR AU ID Assessment Area (AU) Qualifier Samples 1 -Assessed Exc Assessed Criteria

General Use

20

2008

<u>Supp</u>

Miles

Imp

Category Forward

Carry

Integ

<u>Supp</u>

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwate	er Stream					Wate	r body size:		20	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1428B_01	From the Colorado River upstream to FM 969	10	10	0		0.33	AD	NC	NC		No
2008	Ammonia	1428B_02	From FM 969 upstream to Old Manor Rd.	10	10	0		0.33	AD	NC	NC		No
2008	Ammonia	1428B_03	From old Manor Road upstream to Dessau Road	16	16	0		0.33	AD	NC	NC		No
2008	Ammonia	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	18	18	0		0.33	AD	NC	NC		No
2008	Ammonia	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	10	10	0		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1428B_03	From old Manor Road upstream to Dessau Road	0	0			14.10	ID	NA	NA		No
2008	Chlorophyll-a	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	1	1	0		14.10	ID	NA	NA		No
2008	Chlorophyll-a	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	0	0	0		14.10	ID	NA	NA		No
2008	Nitrate	1428B_01	From the Colorado River upstream to FM 969	12	12	0		1.95	AD	NC	NC		No
2008	Nitrate	1428B_02	From FM 969 upstream to Old Manor Rd.	10	10	0		1.95	AD	NC	NC		No
2008	Nitrate	1428B_03	From old Manor Road upstream to Dessau Road	14	14	0		1.95	AD	NC	NC		No
2008	Nitrate	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	15	15	0		1.95	AD	NC	NC		No
2008	Nitrate	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	10	10	0		1.95	AD	NC	NC		No
2008	Orthophosphorus	1428B_01	From the Colorado River upstream to FM 969	13	13	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1428B_02	From FM 969 upstream to Old Manor Rd.	10	10	0		0.37	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwat	er Stream					Water	body size:		20	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	ıl Use												
Nutrie	nt Screening Levels												
2008	Orthophosphorus	1428B_03	From old Manor Road upstream to Dessau Road	13	13	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	16	16	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	9	9	0		0.37	LD	NC	NC		No
2008	Total Phosphorus	1428B_01	From the Colorado River upstream to FM 969	4	4	0		0.69	LD	NC	NC		No
2008	Total Phosphorus	1428B_02	From FM 969 upstream to Old Manor Rd.	10	10	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1428B_03	From old Manor Road upstream to Dessau Road	3	3	0		0.69	ID	NA	NA		No
2008	Total Phosphorus	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	10	10	0		0.69	AD	NC	NC		No
2008	Total Phosphorus	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	0	0	0		0.69	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater St	ream					Water	· body size:		20	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Recrea	tion Use												
Bacter	ria Geomean												
2008	E. coli	1428B_01	From the Colorado River upstream to FM 969	7	7	1	160.91	126.00	LD	CN	CN		No
2008	E. coli	1428B_03	From old Manor Road upstream to Dessau Road	9	9	0	90.15	126.00	LD	NC	NC		No
2008	E. coli	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	9	9	1	144.24	126.00	SM	CN	CN		No
2008	E. coli	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	7	7		978.80	126.00	LD	CN	CN		No
2008	Fecal coliform	1428B_01	From the Colorado River upstream to FM 969	10	10	1	259.00	200.00	AD	NS	NS	5c	No
2008	Fecal coliform	1428B_02	From FM 969 upstream to Old Manor Rd.	10	10	0	95.69	200.00	AD	FS	FS		No
2008	Fecal coliform	1428B_03	From old Manor Road upstream to Dessau Road	10	10	0	208.00	200.00	AD	NS	NS	5c	No
2008	Fecal coliform	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	10	10		194.00	200.00	AD	FS	FS		No
2008	Fecal coliform	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	0	0			200.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	er body type: Freshwater Stre	eam					Water		20		Miles		
YEAR	2	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> <u>Forward</u>
Recrea	ition Use												
Bacter	ria Single Sample												
2008	E. coli	1428B_01	From the Colorado River upstream to FM 969	7	7	1		394.00	LD	NC	NC		No
2008	E. coli	1428B_03	From old Manor Road upstream to Dessau Road	9	9	0		394.00	LD	NC	NC		No
2008	E. coli	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	9	9	1		394.00	SM	NC	NC		No
2008	E. coli	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	7	7	7		394.00	LD	NS	NS	5c	No
2008	Fecal coliform	1428B_01	From the Colorado River upstream to FM 969	10	10	3		400.00	AD	FS	FS		No
2008	Fecal coliform	1428B_02	From FM 969 upstream to Old Manor Rd.	10	10	1		400.00	AD	FS	FS		No
2008	Fecal coliform	1428B_03	From old Manor Road upstream to Dessau Road	10	10	1		400.00	AD	FS	FS		No
2008	Fecal coliform	1428B_04	From Dessau Rd. upstream to MoPac/Loop 1	10	10	3		400.00	AD	FS	FS		No
2008	Fecal coliform	1428B_05	From MoPac/Loop 1 upstream to railroad tracks west of Loop 1	0	0	0		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428CGilleland Creek (unclassified water body)

Vater body type: Freshwater Stream					Water body size:				24	М		
	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
: Life Use												
ed Oxygen 24hr average												
Dissolved Oxygen 24hr Avg	1428C_01	From the Colorado River upstream to Taylor Lane	10	10	0		5.00	AD	FS	FS		No
ed Oxygen 24hr minimum												
Dissolved Oxygen 24hr Min	1428C_01	From the Colorado River upstream to Taylor Lane	10	10	0		3.00	AD	FS	FS		No
ed Oxygen grab minimum												
Dissolved Oxygen Grab	1428C_01	From the Colorado River upstream to Taylor Lane	42	42	0		3.00	SM	FS	FS		No
Dissolved Oxygen Grab	1428C_02	From Taylor Lane upstream to Old Highway 20	10	10	0		3.00	AD	FS	FS		No
Dissolved Oxygen Grab	1428C_03	From Old Highway 20 to Cameron Road	10	10	0		3.00	AD	FS	FS		No
Dissolved Oxygen Grab	1428C_04	From Cameron Road to the spring source	29	29	0		3.00	AD	FS	FS		No
red Oxygen grab screening level												
Dissolved Oxygen Grab	1428C_01	From the Colorado River upstream to Taylor Lane	42	42	0		5.00	SM	NC	NC		No
Dissolved Oxygen Grab	1428C_02	From Taylor Lane upstream to Old Highway 20	10	10	0		5.00	AD	NC	NC		No
Dissolved Oxygen Grab	1428C_03	From Old Highway 20 to Cameron Road	10	10	0		5.00	AD	NC	NC		No
Dissolved Oxygen Grab	1428C 04	From Cameron Road to the spring source	29	29	0		5.00	AD	NC	NC		No
	E Life Use red Oxygen 24hr average Dissolved Oxygen 24hr Avg red Oxygen 24hr minimum Dissolved Oxygen 24hr Min red Oxygen grab minimum Dissolved Oxygen Grab Dissolved Oxygen Grab	AU IDCLIFE Usered Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01red Oxygen 24hr minimumDissolved Oxygen 24hr Min1428C_01red Oxygen grab minimumDissolved Oxygen Grab1428C_02Dissolved Oxygen Grab1428C_03Dissolved Oxygen Grab1428C_04red Oxygen grab screening levelDissolved Oxygen Grab1428C_04red Oxygen Grab1428C_05Dissolved Oxygen Grab1428C_06Dissolved Oxygen Grab1428C_07Dissolved Oxygen Grab1428C_08Dissolved Oxygen Grab1428C_09Dissolved Oxygen Grab1428C_01Dissolved Oxygen Grab1428C_02Dissolved Oxygen Grab1428C_02Dissolved Oxygen Grab1428C_02Dissolved Oxygen Grab1428C_02Dissolved Oxygen Grab1428C_02Dissolved Oxygen Grab1428C_02Dissolved Oxygen Grab1428C_03Dissolved Oxygen Grab1428C_04Dissolved Oxygen Grab1428C_05Dissolved Oxygen Grab1428C_06Dissolved Oxygen Grab1428C_07Dissolved Oxygen Grab1428C_07Dissolved Oxygen Grab1428C_07Dissolved Oxygen Grab1428C_07Dissolved Oxygen Grab1428C_07Dissolved Oxygen Grab1428C_07 <td>AU IDAssessment Area (AU)Elife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lanered Oxygen 24hr minimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lanered Oxygen grab minimumDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron RoadDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From Cameron Road to the spring sourceed Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20Dissolved Oxygen Grab1428C_02From Taylor LaneDissolved Oxygen Grab1428C_03From Taylor LaneDissolved Oxygen Grab1428C_03From Taylor LaneDissolved Oxygen Grab1428C_03From Taylor LaneDissolved Oxygen Grab<td>AU IDAssessment Area (AU)$\frac{\# of}{Samples}$E Life UseEEEEed Oxygen 24hr average1428C_01From the Colorado River upstream to Taylor Lane10 Taylor LaneDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10 Taylor Laneed Oxygen grab minimumI428C_01From the Colorado River upstream to Taylor Lane10 Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane10 Dissolved Oxygen GrabDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 2010 Dissolved Oxygen GrabDissolved Oxygen Grab1428C_03From Cameron Road to the spring source Taylor Lane29 EdDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolve</td><td>AU IDAssessment Area (AU)$\frac{\# \text{ of }}{\text{Samples}}$$\frac{\#}{\text{Assessed}}$E Life Useed Oxygen 24hr averagebissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane1010ed Oxygen 24hr minimumbissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane1010ed Oxygen grab minimumbissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane1010ed Oxygen grab minimumbissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101010Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road1010Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane2929ed Oxygen Grab1428C_01From the Colorado River upstream to 204242Dissolved Oxygen Grab1428C_02From Cameron Road to the spring source2929ed Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_04From Taylor Lane upstream to Taylor Lane4242</td><td>AU IDAssessment Area (AU)# of Samples# of<br samples<="" th=""/># of<br exc<="" th=""/>ELife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen grab minimumI128C_01From the Colorado River upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane29290Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane4242<td>AU IDAssessment Area (AU)$\frac{\# \text{ of }}{\text{ samples}}$$\frac{\# \text{ of }}{\text{ Assessed}}$$\frac{\text{Mean of }}{\text{ Assessed}}$Life Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr minimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen grab minimumDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 2010100Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane29290Dissolved Oxygen Grab1428C_01From the Colorado River upstream to 2042420Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From the Colorado River upstream to 2042420Dissolved Oxygen Grab1428C_03From Cameron Road101</td><td>AU IDAssessment Area (AU)$\frac{\# \text{ of}}{\text{Samples}}$$\frac{\# \text{ of}}{\text{Assessed}}$$\frac{\# \text{ of}}{\text{Exc}}$$\frac{\text{Mean of}}{\text{Assessed}}$Elife Use ed Oxygen 24hr average Dissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane101005.00ed Oxgen 24hr minimum Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ed Oxgen grab minimum Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane101003.00ed Oxgen grab minimum Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane424203.00Dissolved Oxygen Grab1428C_03From the Colorado River upstream to Old Highway 20101003.00Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00Dissolved Oxygen Grab1428C_01From the Colorado River upstream to 20101003.00Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane424205.00Dissolved Oxygen Grab1428C_03From Cameron Road to the spring source Taylor Lane292905.00Dissolved Oxygen Grab1428C_03From Taylor Lane upstream to Old Highway 20<</td><td>AU IDAssessment Area (AU)$\frac{\# of}{samples}$$\frac{\# of}{ssessed}$$\frac{\# of}{exc}$Mean of AssessedDataset CriteriaDataset QualifierElife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane101005.00ADed Oxgen 24hr minimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADed Oxgen grab minimumDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane424203.00SMOne to Colorado River upstream to Taylor Lane424203.00ADDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADDissolved Oxygen Grab1428C_02From Taylor Lane101003.00ADDissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road101003.00ADDissolved Oxygen Grab1428C_04From Taylor Lane upstream to Old Highway 2020205.00SMDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101005.00ADDissolved Oxygen Grab1428C_03From Taylor Lane upstream to Old Highway 201010<</td><td>AU IDAssessment Area (AU)$\frac{\# of}{Samples}$$\frac{\# of}{Assessed}$$\frac{\# of}{Exc}$$\frac{Mean of}{Assessed}$$\frac{Mean of}{Criteria}$$\frac{Dataset}{Qualifie}$$\frac{2008}{Qualifie}$Life Useed Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver ageDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100$5.00$ADFSed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100$3.00$ADFSed Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42420$3.00$ADFSDissolved Oxygen Grab1428C_03From Calcorado River upstream to Old Highway 2010100$3.00$ADFSDissolved Oxygen Grab1428C_03From Calcorado River upstream to Old Highway 2010100$3.00$ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100$3.00$ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100$3.00$ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100$5.00$AD<td>AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Assessed2008 SuppInteg SuppELife Useed Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver age1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSed Oxygen 24hr Min Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSed Oxygen grab minimum Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSDissolved Oxygen Grab1428C_03From Cameron Road to the spring source 202903.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane10003.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_02From Cameron Road to the spring source Taylor Lane2424205.00<t< td=""><td>AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Quilifie2008late Supplate SuppImp CategoryLife Usecd Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr Main1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSFScd Oxygen 24hr MinimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSFScd Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Old Highway 20 to Cameron Road101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway Taylor Lane101005.00ADNC<t< td=""></t<></td></t<></td></td></br></br></td></td>	AU IDAssessment Area (AU)Elife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lanered Oxygen 24hr minimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lanered Oxygen grab minimumDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron RoadDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From Cameron Road to the spring sourceed Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor LaneDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20Dissolved Oxygen Grab1428C_02From Taylor LaneDissolved Oxygen Grab1428C_03From Taylor LaneDissolved Oxygen Grab1428C_03From Taylor LaneDissolved Oxygen Grab1428C_03From Taylor LaneDissolved Oxygen Grab <td>AU IDAssessment Area (AU)$\frac{\# of}{Samples}$E Life UseEEEEed Oxygen 24hr average1428C_01From the Colorado River upstream to Taylor Lane10 Taylor LaneDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10 Taylor Laneed Oxygen grab minimumI428C_01From the Colorado River upstream to Taylor Lane10 Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane10 Dissolved Oxygen GrabDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 2010 Dissolved Oxygen GrabDissolved Oxygen Grab1428C_03From Cameron Road to the spring source Taylor Lane29 EdDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolve</td> <td>AU IDAssessment Area (AU)$\frac{\# \text{ of }}{\text{Samples}}$$\frac{\#}{\text{Assessed}}$E Life Useed Oxygen 24hr averagebissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane1010ed Oxygen 24hr minimumbissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane1010ed Oxygen grab minimumbissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane1010ed Oxygen grab minimumbissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101010Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road1010Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane2929ed Oxygen Grab1428C_01From the Colorado River upstream to 204242Dissolved Oxygen Grab1428C_02From Cameron Road to the spring source2929ed Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_04From Taylor Lane upstream to Taylor Lane4242</td> <td>AU IDAssessment Area (AU)# of Samples# of<br samples<="" th=""/># of<br exc<="" th=""/>ELife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen grab minimumI128C_01From the Colorado River upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane29290Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane4242<td>AU IDAssessment Area (AU)$\frac{\# \text{ of }}{\text{ samples}}$$\frac{\# \text{ of }}{\text{ Assessed}}$$\frac{\text{Mean of }}{\text{ Assessed}}$Life Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr minimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen grab minimumDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 2010100Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane29290Dissolved Oxygen Grab1428C_01From the Colorado River upstream to 2042420Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From the Colorado River upstream to 2042420Dissolved Oxygen Grab1428C_03From Cameron Road101</td><td>AU IDAssessment Area (AU)$\frac{\# \text{ of}}{\text{Samples}}$$\frac{\# \text{ of}}{\text{Assessed}}$$\frac{\# \text{ of}}{\text{Exc}}$$\frac{\text{Mean of}}{\text{Assessed}}$Elife Use ed Oxygen 24hr average Dissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane101005.00ed Oxgen 24hr minimum Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ed Oxgen grab minimum Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane101003.00ed Oxgen grab minimum Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane424203.00Dissolved Oxygen Grab1428C_03From the Colorado River upstream to Old Highway 20101003.00Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00Dissolved Oxygen Grab1428C_01From the Colorado River upstream to 20101003.00Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane424205.00Dissolved Oxygen Grab1428C_03From Cameron Road to the spring source Taylor Lane292905.00Dissolved Oxygen Grab1428C_03From Taylor Lane upstream to Old Highway 20<</td><td>AU IDAssessment Area (AU)$\frac{\# of}{samples}$$\frac{\# of}{ssessed}$$\frac{\# of}{exc}$Mean of AssessedDataset CriteriaDataset QualifierElife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane101005.00ADed Oxgen 24hr minimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADed Oxgen grab minimumDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane424203.00SMOne to Colorado River upstream to Taylor Lane424203.00ADDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADDissolved Oxygen Grab1428C_02From Taylor Lane101003.00ADDissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road101003.00ADDissolved Oxygen Grab1428C_04From Taylor Lane upstream to Old Highway 2020205.00SMDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101005.00ADDissolved Oxygen Grab1428C_03From Taylor Lane upstream to Old Highway 201010<</td><td>AU IDAssessment Area (AU)$\frac{\# of}{Samples}$$\frac{\# of}{Assessed}$$\frac{\# of}{Exc}$$\frac{Mean of}{Assessed}$$\frac{Mean of}{Criteria}$$\frac{Dataset}{Qualifie}$$\frac{2008}{Qualifie}$Life Useed Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver ageDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100$5.00$ADFSed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100$3.00$ADFSed Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42420$3.00$ADFSDissolved Oxygen Grab1428C_03From Calcorado River upstream to Old Highway 2010100$3.00$ADFSDissolved Oxygen Grab1428C_03From Calcorado River upstream to Old Highway 2010100$3.00$ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100$3.00$ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100$3.00$ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100$5.00$AD<td>AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Assessed2008 SuppInteg SuppELife Useed Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver age1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSed Oxygen 24hr Min Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSed Oxygen grab minimum Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSDissolved Oxygen Grab1428C_03From Cameron Road to the spring source 202903.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane10003.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_02From Cameron Road to the spring source Taylor Lane2424205.00<t< td=""><td>AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Quilifie2008late Supplate SuppImp CategoryLife Usecd Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr Main1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSFScd Oxygen 24hr MinimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSFScd Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Old Highway 20 to Cameron Road101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway Taylor Lane101005.00ADNC<t< td=""></t<></td></t<></td></td></br></br></td>	AU IDAssessment Area (AU) $\frac{\# of}{Samples}$ E Life UseEEEEed Oxygen 24hr average1428C_01From the Colorado River upstream to Taylor Lane10 Taylor LaneDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10 Taylor Laneed Oxygen grab minimumI428C_01From the Colorado River upstream to Taylor Lane10 Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane10 Dissolved Oxygen GrabDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 2010 Dissolved Oxygen GrabDissolved Oxygen Grab1428C_03From Cameron Road to the spring source Taylor Lane29 EdDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane42 Taylor LaneDissolve	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{Samples}}$ $\frac{\#}{\text{Assessed}}$ E Life Useed Oxygen 24hr averagebissolved Oxygen 24hr Avg 1428C_01From the Colorado River upstream to Taylor Lane1010 ed Oxygen 24hr minimumbissolved Oxygen 24hr Min 1428C_01From the Colorado River upstream to Taylor Lane1010 ed Oxygen grab minimumbissolved Oxygen Grab 1428C_01From the Colorado River upstream to Taylor Lane1010 ed Oxygen grab minimumbissolved Oxygen Grab 1428C_02From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101010Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road1010Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane2929 ed Oxygen Grab 1428C_01From the Colorado River upstream to 204242Dissolved Oxygen Grab1428C_02From Cameron Road to the spring source2929 ed Oxygen Grab 1428C_01From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_03From the Colorado River upstream to Taylor Lane4242Dissolved Oxygen Grab1428C_04From Taylor Lane upstream to Taylor Lane4242	AU IDAssessment Area (AU)# of Samples# of # of ELife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100ed Oxygen grab minimumI128C_01From the Colorado River upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane29290Dissolved Oxygen Grab1428C_01From the Colorado River upstream to 	AU IDAssessment Area (AU) $\frac{\# \text{ of }}{\text{ samples}}$ $\frac{\# \text{ of }}{\text{ Assessed}}$ $\frac{\text{Mean of }}{\text{ Assessed}}$ Life Useed Oxygen 24hr average Dissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane10100 ed Oxygen 24hr minimum Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100 ed Oxygen grab minimum Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane42420Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 2010100Dissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road10100Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane29290Dissolved Oxygen Grab1428C_01From the Colorado River upstream to 2042420Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane10100Dissolved Oxygen Grab1428C_02From the Colorado River upstream to 2042420Dissolved Oxygen Grab1428C_03From Cameron Road101	AU IDAssessment Area (AU) $\frac{\# \text{ of}}{\text{Samples}}$ $\frac{\# \text{ of}}{\text{Assessed}}$ $\frac{\# \text{ of}}{\text{Exc}}$ $\frac{\text{Mean of}}{\text{Assessed}}$ Elife Use ed Oxygen 24hr average Dissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane101005.00 ed Oxgen 24hr minimum Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00 ed Oxgen grab minimum Dissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane101003.00 ed Oxgen grab minimum Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane424203.00Dissolved Oxygen Grab1428C_03From the Colorado River upstream to Old Highway 20101003.00Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00Dissolved Oxygen Grab1428C_01From the Colorado River upstream to 20101003.00Dissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00Dissolved Oxygen Grab1428C_02From Taylor Lane upstream to Taylor Lane424205.00Dissolved Oxygen Grab1428C_03From Cameron Road to the spring source Taylor Lane292905.00Dissolved Oxygen Grab1428C_03From Taylor Lane upstream to Old Highway 20<	AU IDAssessment Area (AU) $\frac{\# of}{samples}$ $\frac{\# of}{ssessed}$ $\frac{\# of}{exc}$ Mean of AssessedDataset CriteriaDataset QualifierElife Useed Oxygen 24hr averageDissolved Oxygen 24hr Avg1428C_01From the Colorado River upstream to Taylor Lane101005.00ADed Oxgen 24hr minimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADed Oxgen grab minimumDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane424203.00SMOne to Colorado River upstream to Taylor Lane424203.00ADDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADDissolved Oxygen Grab1428C_02From Taylor Lane101003.00ADDissolved Oxygen Grab1428C_03From Old Highway 20 to Cameron Road101003.00ADDissolved Oxygen Grab1428C_04From Taylor Lane upstream to Old Highway 2020205.00SMDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101005.00ADDissolved Oxygen Grab1428C_03From Taylor Lane upstream to Old Highway 201010<	AU IDAssessment Area (AU) $\frac{\# of}{Samples}$ $\frac{\# of}{Assessed}$ $\frac{\# of}{Exc}$ $\frac{Mean of}{Assessed}$ $\frac{Mean of}{Criteria}$ $\frac{Dataset}{Qualifie}$ $\frac{2008}{Qualifie}$ Life Useed Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver ageDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100 5.00 ADFSed Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane10100 3.00 ADFSed Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane42420 3.00 ADFSDissolved Oxygen Grab1428C_03From Calcorado River upstream to Old Highway 2010100 3.00 ADFSDissolved Oxygen Grab1428C_03From Calcorado River upstream to Old Highway 2010100 3.00 ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100 3.00 ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100 3.00 ADFSDissolved Oxygen Grab1428C_04From Calcorado River upstream to 2010100 5.00 AD <td>AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Assessed2008 SuppInteg SuppELife Useed Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver age1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSed Oxygen 24hr Min Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSed Oxygen grab minimum Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSDissolved Oxygen Grab1428C_03From Cameron Road to the spring source 202903.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane10003.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_02From Cameron Road to the spring source Taylor Lane2424205.00<t< td=""><td>AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Quilifie2008late Supplate SuppImp CategoryLife Usecd Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr Main1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSFScd Oxygen 24hr MinimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSFScd Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Old Highway 20 to Cameron Road101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway Taylor Lane101005.00ADNC<t< td=""></t<></td></t<></td>	AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Assessed2008 SuppInteg SuppELife Useed Oxygen 24hr Aver ageDissolved Oxygen 24hr Aver age1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSed Oxygen 24hr Min Dissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSed Oxygen grab minimum Dissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSDissolved Oxygen Grab1428C_03From Cameron Road to the spring source 202903.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_01From the Colorado River upstream to Taylor Lane10003.00ADFSFSDissolved Oxygen Grab1428C_04From Cameron Road to the spring source Taylor Lane292903.00ADFSFSDissolved Oxygen Grab1428C_02From Cameron Road to the spring source Taylor Lane2424205.00 <t< td=""><td>AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Quilifie2008late Supplate SuppImp CategoryLife Usecd Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr Main1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSFScd Oxygen 24hr MinimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSFScd Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Old Highway 20 to Cameron Road101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway Taylor Lane101005.00ADNC<t< td=""></t<></td></t<>	AU IDAssessment Area (AU)# of Samples# of AssessedMean of ExcDataset Quilifie2008late Supplate SuppImp CategoryLife Usecd Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr AverageDissolved Oxygen 24hr Main1428C_01From the Colorado River upstream to Taylor Lane101005.00ADFSFSFScd Oxygen 24hr MinimumDissolved Oxygen 24hr Min1428C_01From the Colorado River upstream to Taylor Lane101003.00ADFSFSFScd Oxygen grab minimumDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00SMFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway 20101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Old Highway 20 to Cameron Road101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From the Colorado River upstream to Taylor Lane101003.00ADFSFSFSDissolved Oxygen Grab1428C_02From Taylor Lane upstream to Old Highway Taylor Lane101005.00ADNC <t< td=""></t<>

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428CGilleland Creek (unclassified water body)

Wate	er body type: Freshwate	er Stream					Water body size:			24	М	Miles		
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar	
Genera	al Use	_												
Nutrie	ent Screening Levels													
2008	Ammonia	1428C_01	From the Colorado River upstream to Taylor Lane	39	39	0		0.33	AD	NC	NC		No	
2008	Ammonia	1428C_02	From Taylor Lane upstream to Old Highway 20	8	8	0		0.33	ID	NA	NA		No	
2008	Ammonia	1428C_03	From Old Highway 20 to Cameron Road	8	8	1		0.33	TR	NA	NA		No	
2008	Ammonia	1428C_04	From Cameron Road to the spring source	4	4	0		0.33	LD	NC	NC		No	
2008	Chlorophyll-a	1428C_01	From the Colorado River upstream to Taylor Lane	35	35	2		14.10	AD	NC	NC		No	
2008	Chlorophyll-a	1428C_02	From Taylor Lane upstream to Old Highway 20	4	4	0		14.10	ID	NA	NA		No	
2008	Chlorophyll-a	1428C_04	From Cameron Road to the spring source	4	4	0		0.33	LD	NC	NC		No	
2008	Nitrate	1428C_01	From the Colorado River upstream to Taylor Lane	36	36	30		1.95	AD	CS	CS		No	
2008	Nitrate	1428C_02	From Taylor Lane upstream to Old Highway 20	4	4	3		1.95	JQ	CS	CS		No	
2008	Orthophosphorus	1428C_01	From the Colorado River upstream to Taylor Lane	37	37	19		0.37	AD	CS	CS		No	
2008	Orthophosphorus	1428C_02	From Taylor Lane upstream to Old Highway 20	4	4	1		0.37	ID	NA	NA		No	
2008	Total Phosphorus	1428C_01	From the Colorado River upstream to Taylor Lane	37	37	9		0.69	AD	NC	NC		No	
2008	Total Phosphorus	1428C_02	From Taylor Lane upstream to Old Highway 20	4	4	0		0.69	ID	NA	NA		No	

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428CGilleland Creek (unclassified water body)

Water body	type: Freshwater Stream					Wate	er body size:		24	Μ	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
Recreation Use												
Bacteria Geon	iean											
2008 E. coli	1428C_	01 From the Colorado River upstream to Taylor Lane	41	41	1	166.35	126.00	AD	NS	NS	5a	No
2008 E. coli	1428C_	02 From Taylor Lane upstream to Old Highway 20	9	9	1	147.32	126.00	LD	CN	CN		No
2008 E. coli	1428C_	03 From Old Highway 20 to Cameron Road	8	8	1	175.55	126.00	LD	CN	CN		No
2008 E. coli	1428C_	04 From Cameron Road to the spring source	4	4	1	135.20	126.00	LD	CN	CN		No
2008 Fecal c	oliform 1428C_	01 From the Colorado River upstream to Taylor Lane	11	11	1	351.52	200.00	SM	NS	NS		No
Bacteria Singl	e Sample											
2008 E. coli	1428C_	01 From the Colorado River upstream to Taylor Lane	41	41	7		394.00	AD	FS	FS		No
2008 E. coli	1428C_	02 From Taylor Lane upstream to Old Highway 20	9	9	2		394.00	LD	NC	NC		No
2008 E. coli	1428C_	03 From Old Highway 20 to Cameron Road	8	8	1		394.00	LD	NC	NC		No
2008 E. coli	1428C_	04 From Cameron Road to the spring source	4	4	1		394.00	LD	NC	NC		No
2008 Fecal c	oliform 1428C_	01 From the Colorado River upstream to Taylor Lane	11	11	4		400.00	SM	CN	CN		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water	body type: Freshwater Stre				Water		6	Miles					
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic I	Life Use												
Dissolved	d Oxygen grab minimum												
	Dissolved Oxygen Grab d Oxygen grab screening level	1428D_01	Entire water body	4	4	0		3.00	TR	NA	NA		No
	Dissolved Oxygen Grab bstances in sediment	1428D_01	Entire water body	4	4	0		5.00	TR	NA	NA		No
2006 N	/ letals	1428D_01	Entire water body	1	1	0			ID	NA	NA		No
2006 O	Organics	1428D_01	Entire water body	1	1	0			ID	NA	NA		No
General U	Use												
Nutrient	Screening Levels												
2006 A	Ammonia	1428D_01	Entire water body	2	2	0		0.33	ID	NA	NA		No
2006 N	Vitrate	1428D_01	Entire water body	2	2	0		1.95	ID	NA	NA		No
2006 O	Orthophosphorus	1428D_01	Entire water body	2	2	0		0.37	ID	NA	NA		No
Recreatio	on Use												
Bacteria	Geomean												
	ecal coliform Single Sample	1428D_01	Entire water body	2	2			200.00	ID	NA	NA		No
2006 F	fecal coliform	1428D_01	Entire water body	2	2	1		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428EFort Branch Creek (unclassified water body)

Water body type: Freshwater Stre				Water body size:			2	Miles				
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1428E_01	Entire water body	6	6	0		2.00	TR	NA	NA		No
2006 Dissolved Oxygen Grab Toxic Substances in sediment	1428E_01	Entire water body	6	6	0		3.00	TR	NA	NA		No
2006 Metals	1428E_01	Entire water body	1	1	0			ID	NA	NA		No
2006 Organics	1428E_01	Entire water body	1	1	0			ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1428E_01	Entire water body	1	1	0		0.33	ID	NA	NA		No
2006 Nitrate	1428E_01	Entire water body	1	1	0		1.95	ID	NA	NA		No
2006 Orthophosphorus	1428E_01	Entire water body	1	1	0		0.37	ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 Fecal coliform Bacteria Single Sample	1428E_01	Entire water body	1	1		400.00	200.00	ID	NA	NA		No
2006 Fecal coliform	1428E_01	Entire water body	1	1	0		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428FTannehill Branch Creek (unclassified water body)

Water body type: Freshwater Stre				Water bo		4	М	iles				
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u> <u>C</u>	riteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1428F_01	Entire water body	4	4	0		2.00	TR	NA	NA		No
2006 Dissolved Oxygen Grab Toxic Substances in sediment	1428F_01	Entire water body	4	4	0		3.00	TR	NA	NA		No
2006 Metals	1428F_01	Entire water body	1	1	0			ID	NA	NA		No
2006 Organics Recreation Use	1428F_01	Entire water body	39	39	0		1.00	AD	NC	NC		No
Bacteria Geomean												
2006 Fecal coliform Bacteria Single Sample	1428F_01	Entire water body	1	1		940.00	200.00	ID	NA	NA		No
2006 Fecal coliform	1428F_01	Entire water body	1	1	1		400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428IDecker Creek (unclassified water body)

Water body type: Freshwater Stre	eam					Wat	er body size:	6	М			
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1428I_01	Entire water body	2	2	0		1.50	ID	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1428I_01	Entire water body	2	2	0		2.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1428JHarris Branch (unclassified water body)

Water body type: Freshwater Stre	am					Wat	er body size:		5	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1428J_01	Entire water body	3	3	0		3.00	TR	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1428J_01	Entire water body	3	3	0		5.00	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1429

Town Lake

Wate	er body type: Reservoir						Water	· body size:		500	А	cres	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwarc
Aquati	c Life Use												
Acute	Toxic Substances in water												
2006	Copper	1429_01	Longhorn Dam upstream to Lamar Street bridge	10	10	0		35.24	AD	FS	FS		No
2006	Copper	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	10	10	0		35.24	AD	FS	FS		No
2006	Lead	1429_01	Longhorn Dam upstream to Lamar Street bridge	3	3	0		174.29	ID	NA	NA		No
2006	Lead	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	3	3	0		174.29	ID	NA	NA		No
Chron	ic Toxic Substances in water												
2006	Copper	1429_01	Longhorn Dam upstream to Lamar Street bridge	10	10		3.05	22.12	AD	FS	FS		No
2006	Copper	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	10	10		2.68	22.12	AD	FS	FS		No
2006	Lead	1429_01	Longhorn Dam upstream to Lamar Street bridge	3	3		0.50	6.05	ID	NA	NA		No
2006	Lead	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	3	3		0.50	6.05	ID	NA	NA		No
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1429_01	Longhorn Dam upstream to Lamar Street bridge	483	147	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	328	102	0		3.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening level												
2008	Dissolved Oxygen Grab	1429_01	Longhorn Dam upstream to Lamar Street bridge	483	147	1		5.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	328	102	1		5.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1429

Town	Lake

Wate	er body type: Reservoir						Water	body size:		500	A	cres	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	c Life Use												
Toxic	Substances in sediment												
2008	Dibenz(a,h)anthracene	1429_01	Longhorn Dam upstream to Lamar Street bridge	5	5	1		140.00	LD	NC	NC		No
2008	Metals	1429_01	Longhorn Dam upstream to Lamar Street bridge	9	9	0			LD	NC	NC		No
2008	Metals	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	3	3	0			ID	NA	NA		No
2008	Organics	1429_01	Longhorn Dam upstream to Lamar Street bridge	5	5	0			LD	NC	NC		No
2008	Organics	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	2	2	0			ID	NA	NA		No
2008	Pyrene	1429_01	Longhorn Dam upstream to Lamar Street bridge	5	5	1		1,520.00	LD	NC	NC		No
Fish C	onsumption Use												
DSHS	Advisories, Closures, and Risk	Assessments											
2008	Risk Assess No Advisory	1429_01	Longhorn Dam upstream to Lamar Street bridge						OE	FS	FS		No
2008	Risk Assess No Advisory	1429_02	From Lamar Street bridge upstream to Tom Miller Dam						OE	FS	FS		No
HH Bi	oaccumulative Toxics in water												
2006	Lead	1429_01	Longhorn Dam upstream to Lamar Street bridge	6	6		1.13	4.98	TR	NA	NA		No
2006	Lead	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	6	6		0.51	4.98	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1429

Town Lake

Water body type: Reservoir						Wate	r body size:		500	А	cres
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> Forwar
General Use	_										
Dissolved Solids											
2008 Chloride	1429_01	Longhorn Dam upstream to Lamar Street bridge	101	101		30.10	75.00	AD	FS	FS	No
2008 Chloride	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	101	101		30.10	75.00	AD	FS	FS	No
2008 Sulfate	1429_01	Longhorn Dam upstream to Lamar Street bridge	135	135		25.09	75.00	AD	FS	FS	No
2008 Sulfate	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	135	135		25.09	75.00	AD	FS	FS	No
2008 Total Dissolved Solids	1429_01	Longhorn Dam upstream to Lamar Street bridge	249	249		305.75	400.00	AD	FS	FS	No
2008 Total Dissolved Solids	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	249	249		305.75	400.00	AD	FS	FS	No
High pH											
2008 рН	1429_01	Longhorn Dam upstream to Lamar Street bridge	483	147	0		9.00	AD	FS	FS	No
2008 рН	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	328	102	0		9.00	AD	FS	FS	No
Low pH											
2008 рН	1429_01	Longhorn Dam upstream to Lamar Street bridge	483	147	0		6.50	AD	FS	FS	No
2008 pH	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	328	102	0		6.50	AD	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SN- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1429

Town Lake

Wate	er body type: Reservoi	r					Water	body size:		500	А	cres	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Genera	ıl Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1429_01	Longhorn Dam upstream to Lamar Street bridge	153	153	5		0.11	AD	NC	NC		No
2008	Ammonia	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	112	112	1		0.11	AD	NC	NC		No
2008	Chlorophyll-a	1429_01	Longhorn Dam upstream to Lamar Street bridge	115	115	15		26.70	AD	NC	NC		No
2008	Chlorophyll-a	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	76	76	2		26.70	AD	NC	NC		No
2008	Nitrate	1429_01	Longhorn Dam upstream to Lamar Street bridge	155	155	41		0.37	AD	CS	CS		No
2008	Nitrate	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	114	114	19		0.37	AD	NC	NC		No
2008	Orthophosphorus	1429_01	Longhorn Dam upstream to Lamar Street bridge	158	158	4		0.05	AD	NC	NC		No
2008	Orthophosphorus	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	109	109	0		0.05	AD	NC	NC		No
2008	Total Phosphorus	1429_01	Longhorn Dam upstream to Lamar Street bridge	146	146	1		0.20	AD	NC	NC		No
2008	Total Phosphorus	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	107	107	0		0.20	AD	NC	NC		No
Water	Temperature												
2008	Temperature	1429_01	Longhorn Dam upstream to Lamar Street bridge	483	147	0		32.20	AD	FS	FS		No
2008	Temperature	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	328	102	0		32.20	AD	FS	FS		No

2008 Texas Water Quality Inventory - Basin Assessment Data by Segment (March 19, 2008) 2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support. **Segment ID:** 1429 **Town Lake** Water body type: Reservoir Water body size: 500 Acres # 2008 # of # of Mean of Dataset Integ Imp Carry AU ID Assessment Area (AU) Oualifier YEAR Samples Assessed Exc Assessed <u>Supp</u> <u>Supp</u> Category Forward Criteria Public Water Supply Use Finished Drinking Water Dissolved Solids average 1429 01 Longhorn Dam upstream to Lamar Street OE 2008 Multiple NC NC No bridge From Lamar Street bridge upstream to Tom 1429 02 OE NC NC 2008 Multiple No Miller Dam Finished Drinking Water MCLs and Toxic Substances running average Longhorn Dam upstream to Lamar Street 1429 01 OE FS FS 2008 Multiple No bridge 1429 02 From Lamar Street bridge upstream to Tom OE FS FS 2008 Multiple No Miller Dam **Finished Drinking Water MCLs Concern** 2008 Multiple 1429 01 Longhorn Dam upstream to Lamar Street OE NC NC No bridge 1429 02 From Lamar Street bridge upstream to Tom OE 2008 Multiple NC NC No Miller Dam Surface Water HH criteria for PWS average 1429 01 Longhorn Dam upstream to Lamar Street 2 2 0.14 2006 Fluoride 4,000.00 ID NA NA No bridge 2006 Fluoride $1429 \ 02$ From Lamar Street bridge upstream to Tom 2 2 0.15 4,000.00 ID NA NA No Miller Dam

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1429

Town Lak	ĸe
----------	----

Water body type: Reservo	ir					Wate	er body size:		500	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use												
Bacteria Geomean												
2008 E. coli	1429_01	Longhorn Dam upstream to Lamar Street bridge	67	67	0	49.42	126.00	AD	FS	FS		No
2008 E. coli	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	42	42	0	7.91	126.00	AD	FS	FS		No
2008 Fecal coliform	1429_01	Longhorn Dam upstream to Lamar Street bridge	64	64	0	116.28	200.00	SM	FS	FS		No
2008 Fecal coliform	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	48	48	0	17.89	200.00	SM	FS	FS		No
Bacteria Single Sample												
2008 E. coli	1429_01	Longhorn Dam upstream to Lamar Street bridge	67	67	4		394.00	AD	FS	FS		No
2008 E. coli	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	42	42	1		394.00	AD	FS	FS		No
2008 Fecal coliform	1429_01	Longhorn Dam upstream to Lamar Street bridge	64	64	9		400.00	SM	FS	FS		No
2008 Fecal coliform	1429_02	From Lamar Street bridge upstream to Tom Miller Dam	48	48	5		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1429AShoal Creek (unclassified water body)

Water body type: Freshwater Stre	eam					Water	r body size:		10	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1429A_01	Entire water body	5	5	0		1.50	TR	NA	NA		No
2006 Dissolved Oxygen Grab Toxic Substances in sediment	1429A_01	Entire water body	5	5	0		2.00	TR	NA	NA		No
2006 Metals	1429A_01	Entire water body	1	1	0			ID	NA	NA		No
2006 Organics	1429A_01	Entire water body	1	1	0			ID	NA	NA		No
General Use												
Nutrient Screening Levels												
2006 Ammonia	1429A_01	Entire water body	4	4	0		0.33	TR	NA	NA		No
2006 Chlorophyll-a	1429A_01	Entire water body	0	0			14.10	ID	NA	NA		No
2006 Nitrate	1429A_01	Entire water body	4	4	0		1.95	TR	NA	NA		No
2006 Orthophosphorus	1429A_01	Entire water body	4	4	0		0.37	TR	NA	NA		No
2006 Total Phosphorus	1429A_01	Entire water body	0	0			0.69	ID	NA	NA		No
Recreation Use												
Bacteria Geomean												
2006 E. coli	1429A_01	Entire water body	7	7		4,281.00	126.00	TR	NA	NA		No
2006 Fecal coliform Bacteria Single Sample	1429A_01	Entire water body	11	11		2,628.00	200.00	TR	NA	NA		No
2006 E. coli	1429A_01	Entire water body	7	7	7		394.00	TR	NA	NA		No
2006 Fecal coliform	1429A_01	Entire water body	11	11	11		400.00	TR	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1429BEanes Creek (unclassified water body)

Water body type: Freshwater Stre	am					Water	body size:		6	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum 2006 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1429B_01	Entire water body	31	31	0		1.50	AD	FS	FS		No
2006 Dissolved Oxygen Grab	1429B_01	Entire water body	31	31	0		2.00	AD	NC	NC		No
Recreation Use												
Bacteria Geomean2008Fecal coliformBacteria Single Sample	1429B_01	Entire water body	0	0			200.00	ID	NA	NS	5c	Yes
2008 Fecal coliform	1429B_01	Entire water body	0	0			400.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1429C Waller Creek (unclassified water body)

Water body type: Freshwater St	ream					Water	body size:		5	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1429C_01	From the confluence with Town Lake to East MLK Blvd.	10	10	0		3.00	AD	FS	FS		No
2006 Dissolved Oxygen Grab	1429C_02	From East MLK Blvd. to East 41st Street	10	10	0		2.00	AD	FS	FS		No
2006 Dissolved Oxygen Grab	1429C_03	Upper portion of creek	15	15	0		2.00	AD	FS	FS		No
Dissolved Oxygen grab screening leve	1											
2006 Dissolved Oxygen Grab	1429C_01	From the confluence with Town Lake to East MLK Blvd.	10	10	1		5.00	AD	NC	NC		No
2006 Dissolved Oxygen Grab	1429C_02	From East MLK Blvd. to East 41st Street	10	10	0		3.00	AD	NC	NC		No
2006 Dissolved Oxygen Grab	1429C_03	Upper portion of creek	15	15	0		3.00	AD	NC	NC		No
Macrobenthic Community												
2006 Macrobenthic Community	1429C_01	From the confluence with Town Lake to East MLK Blvd.						ID	NA	NS	5c	Yes

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1429C Waller Creek (unclassified water body)

Wate	r body type: Freshwater	Stream					Water	body size:		5	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic	: Life Use	_											
Toxic §	Substances in sediment												
2006	Benz(a)anthracene	1429C_02	From East MLK Blvd. to East 41st Street	2	2	1		1,050.00	ID	NA	CS		Yes
2006	Benzo(a)pyrene	1429C_02	From East MLK Blvd. to East 41st Street	2	2	1		1,450.00	ID	NA	CS		Yes
2006	Chromium	1429C_02	From East MLK Blvd. to East 41st Street	1	1	1		111.00	ID	NA	NA		No
2006	Chrysene	1429C_02	From East MLK Blvd. to East 41st Street	2	2	1		1,290.00	ID	NA	CS		Yes
2006	Dibenz(a,h)anthracene	1429C_01	From the confluence with Town Lake to East MLK Blvd.	2	2	1		140.00	ID	NA	NA		No
2006	Dibenz(a,h)anthracene	1429C_02	From East MLK Blvd. to East 41st Street	2	2	1		140.00	ID	NA	CS		Yes
2006	Fluoranthene	1429C_01	From the confluence with Town Lake to East MLK Blvd.	2	2	1		2,230.00	ID	NA	NA		No
2006	Fluoranthene	1429C_02	From East MLK Blvd. to East 41st Street	2	2	1		2,230.00	ID	NA	CS		Yes
2006	Lead	1429C_02	From East MLK Blvd. to East 41st Street	1	1	1		128.00	ID	NA	CS		Yes
2006	Metals	1429C_01	From the confluence with Town Lake to East MLK Blvd.	1	1	0			ID	NA	NA		No
2006	Metals	1429C_02	From East MLK Blvd. to East 41st Street	1	1	0			ID	NA	NA		No
2006	Organics	1429C_01	From the confluence with Town Lake to East MLK Blvd.	2	2	0			ID	NA	NA		No
2006	Organics	1429C_02	From East MLK Blvd. to East 41st Street	3	3	0			ID	NA	NA		No
2006	Phenanthrene	1429C_02	From East MLK Blvd. to East 41st Street	2	2	1		1,170.00	ID	NA	CS		Yes
2006	Pyrene	1429C_01	From the confluence with Town Lake to East MLK Blvd.	2	2	1		1,520.00	ID	NA	NA		No
2006	Pyrene	1429C_02	From East MLK Blvd. to East 41st Street	2	2	1		1,520.00	ID	NA	CS		Yes

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1429C Waller Creek (unclassified water body) Segment ID:

Wate	r body type: Freshwate	er Stream					Water	body size:		5	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Genera	l Use												
Nutrie	nt Screening Levels												
2006	Ammonia	1429C_01	From the confluence with Town Lake to East MLK Blvd.	10	10	0		0.33	AD	NC	NC		No
2006	Ammonia	1429C_02	From East MLK Blvd. to East 41st Street	10	10	0		0.33	AD	NC	NC		No
2006	Ammonia	1429C_03	Upper portion of creek	17	17	2		0.33	AD	NC	NC		No
2006	Chlorophyll-a	1429C_01	From the confluence with Town Lake to East MLK Blvd.	3	3	0		14.10	ID	NA	NA		No
2006	Chlorophyll-a	1429C_02	From East MLK Blvd. to East 41st Street	8	8	0		14.10	LD	NC	NC		No
2006	Chlorophyll-a	1429C_03	Upper portion of creek	3	3	1		14.10	ID	NA	NA		No
2006	Nitrate	1429C_01	From the confluence with Town Lake to East MLK Blvd.	10	10	0		1.95	AD	NC	NC		No
2006	Nitrate	1429C_02	From East MLK Blvd. to East 41st Street	10	10	0		1.95	AD	NC	NC		No
2006	Nitrate	1429C_03	Upper portion of creek	13	13	0		1.95	AD	NC	NC		No
2006	Orthophosphorus	1429C_01	From the confluence with Town Lake to East MLK Blvd.	10	10	1		0.37	AD	NC	NC		No
2006	Orthophosphorus	1429C_02	From East MLK Blvd. to East 41st Street	10	10	0		0.37	AD	NC	NC		No
2006	Orthophosphorus	1429C_03	Upper portion of creek	15	15	0		0.37	AD	NC	NC		No
2006	Total Phosphorus	1429C_01	From the confluence with Town Lake to East MLK Blvd.	10	10	0		0.69	AD	NC	NC		No
2006	Total Phosphorus	1429C_02	From East MLK Blvd. to East 41st Street	8	8	0		0.69	LD	NC	NC		No
2006	Total Phosphorus	1429C_03	Upper portion of creek	11	11	0		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

1429C Waller Creek (unclassified water body) Segment ID:

Water body type: Fre	shwater Stream					Wate	er body size:		5	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Recreation Use												
Bacteria Geomean												
2006 E. coli	1429C_01	From the confluence with Town Lake to East MLK Blvd.	3	3		625.00	126.00	ID	NA	NA		No
2006 E. coli	1429C_02	From East MLK Blvd. to East 41st Street	3	3		599.00	126.00	ID	NA	NA		No
2006 E. coli	1429C_03	Upper portion of creek	3	3		287.00	126.00	ID	NA	NA		No
2006 Fecal coliform	1429C_01	From the confluence with Town Lake to East MLK Blvd.	8	8		1,384.00	200.00	LD	CN	CN		No
2006 Fecal coliform	1429C_02	From East MLK Blvd. to East 41st Street	5	4		2,029.00	200.00	LD	CN	CN		No
2006 Fecal coliform Bacteria Single Sample	1429C_03	Upper portion of creek	11	11		286.00	200.00	AD	NS	NS	5c	No
2006 E. coli	1429C_01	From the confluence with Town Lake to East MLK Blvd.	3	3	1		394.00	ID	NA	NA		No
2006 E. coli	1429C_02	From East MLK Blvd. to East 41st Street	3	3	2		394.00	ID	NA	NA		No
2006 E. coli	1429C_03	Upper portion of creek	3	3	1		394.00	ID	NA	NA		No
2006 Fecal coliform	1429C_01	From the confluence with Town Lake to East MLK Blvd.	8	8	7		400.00	LD	NS	NS	5c	No
2006 Fecal coliform	1429C_02	From East MLK Blvd. to East 41st Street	5	4	4		400.00	LD	CN	CN		No
2006 Fecal coliform	1429C_03	Upper portion of creek	11	11	7		400.00	AD	NS	NS	5c	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1429DEast Bouldin Creek (unclassified water body)

Wate	er body type: Freshwater Stre	eam					Wate	er body size:		4	Μ	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	c Life Use												
Dissolv	ved Oxygen grab minimum												
	Dissolved Oxygen Grab	1429D_01	Entire water body	7	7	0		2.00	TR	NA	NA		No
Dissolv	ved Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1429D_01	Entire water body	7	7	0		3.00	TR	NA	NA		No
	Substances in sediment												
2006	Benz(a)anthracene	1429D_01	Entire water body	1	1	0		1,050.00	ID	NA	CS		Yes
2006	Cadmium	1429D_01	Entire water body	1	1	0		4.98	ID	NA	CS		Yes
2006	Chrysene	1429D_01	Entire water body	1	1	0		1,290.00	ID	NA	CS		Yes
2006	Dibenz(a,h)anthracene	1429D_01	Entire water body	1	1	0		140.00	ID	NA	CS		Yes
2006	Fluoranthene	1429D_01	Entire water body	1	1	0		2,230.00	ID	NA	CS		Yes
2006	Lead	1429D_01	Entire water body	1	1	0		128.00	ID	NA	CS		Yes
2006	Metals	1429D_01	Entire water body	1	1	0			ID	NA	NA		No
2006	Organics	1429D_01	Entire water body	1	1	0			ID	NA	NA		No
2006	Phenanthrene	1429D 01	Entire water body	1	1	0		1,170.00	ID	NA	CS		Yes
2006	Pyrene	1429D 01	Entire water body	1	1	0		1,170.00	ID	NA	CS		Yes
Genera		_	2					,					
Nutrie	nt Screening Levels												
2006	Ammonia	1429D 01	Entire water body	7	7	0		0.33	TR	NA	NA		No
2006	Nitrate	1429D 01	Entire water body	7	7	4		1.95	TR	NA	NA		No
2006	Orthophosphorus	1429D 01	Entire water body	7	7	0		0.37	TR	NA	NA		No
2006	Total Phosphorus	1429D 01	Entire water body	, 1	1	0		0.69	TR	NA	NA		No
•	tion Use	1.272_01	Linite Huter obug	1		v		0.07		1 11 1	1 12 1		110
	ia Geomean												
	Fecal coliform	1429D 01	Entire water body	6	6		304.00	200.00	TR	NA	NA		No
	ia Single Sample			0	č		5000	_00.00					1.0
	Fecal coliform	1429D 01	Entire water body	6	6	4		400.00	TR	NA	NA		No
			5										

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1429EWest Bouldin Creek (unclassified water body)

Wa	ter body type: Freshwater Stre	am					Water	body size:		3	М	iles	
<u>YEA</u>	<u>R</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
Aqua	tic Life Use												
Disso	lved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1429E_01	Entire water body	3	3	0		1.50	TR	NA	NA		No
Disso	lved Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1429E_01	Entire water body	3	3	0		2.00	TR	NA	NA		No
Toxi	e Substances in sediment												
2006	Metals	1429E_01	Entire water body	1	1	0			ID	NA	NA		No
2006	Organics	1429E_01	Entire water body	1	1	0			ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1429FBlunn Creek (unclassified water body)

Wate	er body type: Freshwater Stre	am					Wate	r body size:		3	Μ	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carr</u> Forwa
Aquati	c Life Use												
Dissolv	ved Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1429F_01	From the confluence with Town Lake upstream to East Mary Street	2	2	0		2.00	ID	NA	NA		No
2006 Dissolv	Dissolved Oxygen Grab ved Oxygen grab screening level	1429F_02	From East Mary Street to SH 71	3	3	0		1.50	ID	NA	NA		No
2006	Dissolved Oxygen Grab	1429F_01	From the confluence with Town Lake upstream to East Mary Street	2	2	0		3.00	ID	NA	NA		No
2006	Dissolved Oxygen Grab	1429F_02	From East Mary Street to SH 71	3	3	0		2.00	ID	NA	NA		No
Toxic	Substances in sediment												
2006	Metals	1429F_01	From the confluence with Town Lake upstream to East Mary Street	1	1	0			ID	NA	NA		N
2006	Organics	1429F_01	From the confluence with Town Lake upstream to East Mary Street	1	1	0			ID	NA	NA		N
2006	Pyrene	1429F_01	From the confluence with Town Lake upstream to East Mary Street	1	1	1		1,520.00	ID	NA	NA		No
Genera	ll Use												
Nutrie	nt Screening Levels												
2006	Ammonia	1429F_01	From the confluence with Town Lake upstream to East Mary Street	3	3	0		0.33	ID	NA	NA		N
2006	Ammonia	1429F_02	From East Mary Street to SH 71	7	7	0		0.33	TR	NA	NA		N
2006	Nitrate	1429F_01	From the confluence with Town Lake upstream to East Mary Street	3	3	0		1.95	ID	NA	NA		N
2006	Nitrate	1429F_02	From East Mary Street to SH 71	6	6	0		1.95	TR	NA	NA		Ne
2006	Orthophosphorus	1429F_01	From the confluence with Town Lake upstream to East Mary Street	3	3	0		0.37	ID	NA	NA		N
2006	Orthophosphorus	1429F_02	From East Mary Street to SH 71	7	7	0		0.37	TR	NA	NA		N
2006	Total Phosphorus		From the confluence with Town Lake upstream to East Mary Street	1	1	0		0.69	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

JQ- Assessor Judgement; OE- Other information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1429FBlunn Creek (unclassified water body)

Water body type: Freshwa	ter Stream					Wate	r body size:		3	М	iles
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> <u>Forward</u>
Recreation Use											
Bacteria Geomean											
2006 Fecal coliform	1429F_01	From the confluence with Town Lake upstream to East Mary Street	2	2		2,808.00	200.00	ID	NA	NA	No
2006 Fecal coliform	1429F_02	From East Mary Street to SH 71	6	6		143.00	200.00	TR	NA	NA	No
Bacteria Single Sample											
2006 Fecal coliform	1429F_01	From the confluence with Town Lake upstream to East Mary Street	2	2	2		400.00	ID	NA	NA	No
2006 Fecal coliform	1429F_02	From East Mary Street to SH 71	6	6	2		400.00	TR	NA	NA	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1429GHarper's Branch (unclassified water body)

Water body type: Freshwater Stre	am					Water bo	dy size:		1	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed <u>C</u></u>	Criteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1429G_01	Entire water body	4	4	0		1.50	TR	NA	NA		No
Dissolved Oxygen grab screening level												
2006 Dissolved Oxygen Grab	1429G_01	Entire water body	4	4	0		2.00	TR	NA	NA		No
Toxic Substances in sediment												
2006 Benz(a)anthracene	1429G_01	Entire water body	1	1	1		1,050.00	ID	NA	NA		No
2006 Benzo(a)pyrene	1429G_01	Entire water body	1	1	1		1,450.00	ID	NA	NA		No
2006 Chrysene	1429G_01	Entire water body	1	1	1		1,290.00	ID	NA	NA		No
2006 Dibenz(a,h)anthracene	1429G_01	Entire water body	1	1	1		140.00	ID	NA	NA		No
2006 Fluoranthene	1429G_01	Entire water body	1	1	1		2,230.00	ID	NA	NA		No
2006 Metals	1429G_01	Entire water body	1	1	0			ID	NA	NA		No
2006 Organics	1429G_01	Entire water body	1	1	0			ID	NA	NA		No
2006 Phenanthrene	1429G_01	Entire water body	1	1	1		1,170.00	ID	NA	NA		No
2006 Pyrene	1429G_01	Entire water body	1	1	1		1,520.00	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; NC- No concern; SN- Not Spatially Representative; SN- Superceded by another method; NC- No concern; SN- Support SN- Not Spatially Representative; SN- Support SN- Not Spatially Representative; SN- Support SN- Not SN- Not Spatially Representative; SN- Support SN- Not SN- No

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430

Wate	er body type: Freshwater St	ream					Water	· body size:		38	М	iles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	c Life Use												
Acute	Toxic Substances in water												
2006	Metals	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	3	3	0			TR	NA	NA		No
2006	Metals	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	1	1	0			ID	NA	NA		No
Chron	ic Toxic Substances in water												
2006	Metals	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	3	3				TR	NA	NA		No
2006	Metals	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	1	1				ID	NA	NA		No
Chron	ic Toxicity tests in whole sedime	ent											
2008	Sediment Chronic Toxicity	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	2	2	0			ID				No
2008	Sediment Chronic Toxicity	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	6	6	2			LD				No
2008	Sediment Chronic Toxicity	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	2	2	0			ID				No
2008	Sediment Chronic Toxicity	1430_04	SH 71 upstream to Hays County Line	0	0				ID				No
2008 Dissol	Sediment Chronic Toxicity ved Oxygen grab minimum	1430_05	Hays County Line upstream to FM 12	0	0	0			ID				No
2008	Dissolved Oxygen Grab	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	23	23	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	65	65	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	138	138	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1430_04	SH 71 upstream to Hays County Line	41	41	0		3.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1430_05	Hays County Line upstream to FM 12	21	21	0		3.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; NC- No concern; SN- Not Spatially Representative; SN- Superceded by another method; NC- No concern; SN- Support SN- Not Spatially Representative; SN- Support SN- Not Spatially Representative; SN- Support SN- Not SN- Not Spatially Representative; SN- Support SN- Not SN- No

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430

Water body type: Fres	hwater Stream					Water b	ody size:		38	М	liles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen grab scre	ening level											
2008 Dissolved Oxygen G	rab 1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	23	23	0		5.00	AD	NC	NC		No
2008 Dissolved Oxygen G	rab 1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	65	65	0		5.00	AD	NC	NC		No
2008 Dissolved Oxygen G	rab 1430_03	From a point 2 miles upstream of Loop 1 to SH 71	138	138	6		5.00	AD	NC	NC		No
2008 Dissolved Oxygen G	rab 1430_04	SH 71 upstream to Hays County Line	41	41	8		5.00	AD	CS	CS		No
2008 Dissolved Oxygen G	rab 1430_05	Hays County Line upstream to FM 12	21	21	0		5.00	AD	NC	NC		No
LOE Toxic Sediment condit	tion											
2008 Sediment Toxicity (L	LOE) 1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1						JQ	CN	CN		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430

Wate	er body type: Freshwater	Stream					Wate	r body size:		38	М	liles	
YEAR	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	ic Life Use	_											
Toxic	Substances in sediment												
2008	Benz(a)anthracene	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	21	21	1		1,050.00	AD	NC	NC		No
2008	Benz(a)anthracene	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	10	10	1		1,050.00	AD	NC	NC		No
2008	Benzo(a)pyrene	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	24	24	1		1,450.00	AD	NC	NC		No
2008	Chrysene	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	24	24	1		1,290.00	AD	NC	NC		No
2008	Chrysene	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	10	10	1		1,290.00	AD	NC	NC		No
2008	Dibenz(a,h)anthracene	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	22	22	1		140.00	AD	NC	NC		No
2008	Fluoranthene	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	10	10	1		2,230.00	AD	NC	NC		No
2008	Metals	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	6	6	0			LD	NC	NC		No
2008	Metals	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	24	24	0			AD	NC	NC		No
2008	Metals	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	10	10	0			AD	NC	NC		No
2008	Organics	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	4	4	0			LD	NC	NC		No
2008	Organics	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	24	24	0			AD	NC	NC		No
2008	Organics	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	10	10	0			AD	NC	NC		No
2008	Pyrene	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	24	24	2		1,520.00	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430 Barton Creek

Water body type: Freshwater St	ream					Water	body size:		38	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Toxic Substances in sediment2008Pyrene	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	10	10	2		1,520.00	AD	NC	NC		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Multiple	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	9	7				TR	NA	NA		No
2006 Multiple	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	1	1				ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430

Wate	er body type: Freshwater	Stream					Wate	r body size:		38	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	ıl Use	_											
Dissolv	ved Solids												
2008	Chloride	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	82	82		30.51	50.00	AD	FS	FS		No
2008	Chloride	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	82	82		30.51	50.00	AD	FS	FS		No
2008	Chloride	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	82	82		30.51	50.00	AD	FS	FS		No
2008	Chloride	1430_04	SH 71 upstream to Hays County Line	82	82		30.51	50.00	AD	FS	FS		No
2008	Chloride	1430_05	Hays County Line upstream to FM 12	82	82		30.51	50.00	AD	FS	FS		No
2008	Sulfate	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	82	82		44.46	50.00	AD	FS	FS		No
2008	Sulfate	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	82	82		44.46	50.00	AD	FS	FS		No
2008	Sulfate	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	82	82		44.46	50.00	AD	FS	FS		No
2008	Sulfate	1430_04	SH 71 upstream to Hays County Line	82	82		44.46	50.00	AD	FS	FS		No
2008	Sulfate	1430_05	Hays County Line upstream to FM 12	82	82		44.46	50.00	AD	FS	FS		No
2008	Total Dissolved Solids	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	298	298		392.62	500.00	AD	FS	FS		No
2008	Total Dissolved Solids	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	298	298		392.62	500.00	AD	FS	FS		No
2008	Total Dissolved Solids	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	298	298		392.62	500.00	AD	FS	FS		No
2008	Total Dissolved Solids	1430_04	SH 71 upstream to Hays County Line	298	298		392.62	500.00	AD	FS	FS		No
2008	Total Dissolved Solids	1430_05	Hays County Line upstream to FM 12	298	298		392.62	500.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

n Segment ID: 1430

Creek

Water body type: Freshwater Stream						Wate	r body size:		38	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward
General Use												
High pH												
2008 pH	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	24	24	0		9.00	AD	FS	FS		No
2008 рН	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	68	68	0		9.00	AD	FS	FS		No
2008 рН	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	140	140	0		9.00	AD	FS	FS		No
2008 рН	1430_04	SH 71 upstream to Hays County Line	43	43	0		9.00	AD	FS	FS		No
2008 рН	1430_05	Hays County Line upstream to FM 12	22	22	0		9.00	AD	FS	FS		No
Low pH												
2008 pH	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	24	24	0		6.50	AD	FS	FS		No
2008 рН	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	68	68	0		6.50	AD	FS	FS		No
2008 рН	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	140	140	0		6.50	AD	FS	FS		No
2008 рН	1430_04	SH 71 upstream to Hays County Line	43	43	0		6.50	AD	FS	FS		No
2008 рН	1430_05	Hays County Line upstream to FM 12	22	22	1		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; NC- No concern; SN- Not Spatially Representative; SN- Superceded by another method; NC- No concern; SN- Support SN- Not Spatially Representative; SN- Support SN- Not Spatially Representative; SN- Support SN- Not SN- Not Spatially Representative; SN- Support SN- Not SN- No

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430

Wate	er body type: Freshwate	er Stream					Water	· body size:		38	М	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
Genera	al Use												
Nutrie	ent Screening Levels												
2008	Ammonia	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	21	21	0		0.33	AD	NC	NC		No
2008	Ammonia	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	58	58	0		0.33	AD	NC	NC		No
2008	Ammonia	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	120	120	0		0.33	AD	NC	NC		No
2008	Ammonia	1430_04	SH 71 upstream to Hays County Line	35	35	0		0.33	AD	NC	NC		No
2008	Ammonia	1430_05	Hays County Line upstream to FM 12	19	19	0		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	9	9	0		14.10	LD	NC	NC		No
2008	Chlorophyll-a	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	28	28	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	50	50	1		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1430_04	SH 71 upstream to Hays County Line	18	18	0		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1430_05	Hays County Line upstream to FM 12	8	8	0		14.10	LD	NC	NC		No
2008	Nitrate	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	20	20	0		1.95	AD	NC	NC		No
2008	Nitrate	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	59	59	1		1.95	AD	NC	NC		No
2008	Nitrate	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	115	115	0		1.95	AD	NC	NC		No
2008	Nitrate	1430_04	SH 71 upstream to Hays County Line	35	35	0		1.95	AD	NC	NC		No
2008	Nitrate	1430_05	Hays County Line upstream to FM 12	19	19	0		1.95	AD	NC	NC		No
2008	Orthophosphorus	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	21	21	0		0.37	AD	NC	NC		No
2008	Orthophosphorus	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	58	58	0		0.37	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430

Water body type: Freshwa	ter Stream					Water	body size:		38	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forwar
General Use												
Nutrient Screening Levels												
2008 Orthophosphorus	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	122	122	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1430_04	SH 71 upstream to Hays County Line	35	35	0		0.37	AD	NC	NC		No
2008 Orthophosphorus	1430_05	Hays County Line upstream to FM 12	19	19	0		0.37	AD	NC	NC		No
2008 Total Phosphorus	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	10	10	0		0.69	AD	NC	NC		No
2008 Total Phosphorus	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	40	40	0		0.69	AD	NC	NC		No
2008 Total Phosphorus	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	62	62	0		0.69	AD	NC	NC		No
2008 Total Phosphorus	1430_04	SH 71 upstream to Hays County Line	19	19	0		0.69	AD	NC	NC		No
2008 Total Phosphorus	1430_05	Hays County Line upstream to FM 12	10	10	0		0.69	AD	NC	NC		No
Water Temperature												
2008 Temperature	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	24	24	0		32.20	AD	FS	FS		No
2008 Temperature	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	66	66	4		32.20	AD	FS	FS		No
2008 Temperature	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	140	140	2		32.20	AD	FS	FS		No
2008 Temperature	1430_04	SH 71 upstream to Hays County Line	43	43	0		32.20	AD	FS	FS		No
2008 Temperature	1430 05	Hays County Line upstream to FM 12	22	22	0		32.20	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Barton Creek Segment ID: 1430

Water b	body type: Freshwater S	Stream					Wate	r body size:		38	М	liles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u> <u>I</u>	<u>Carry</u> Forward
Recreation	n Use	_											
Bacteria (Geomean												
2008 E.	. coli	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	11	11	0	35.44	126.00	AD	FS	FS		No
2008 E.	. coli	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	21	21	0	44.16	126.00	AD	FS	FS		No
2008 E.	. coli	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	61	61	0	25.42	126.00	AD	FS	FS		No
2008 E.	. coli	1430_04	SH 71 upstream to Hays County Line	15	15	0	47.72	126.00	AD	FS	FS		No
2008 E.	. coli	1430_05	Hays County Line upstream to FM 12	9	9	0	39.23	126.00	LD	NC	NC		No
2008 Fe	ecal coliform	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	9	9	0	116.60	200.00	LD	NC	NC		No
2008 Fe	ecal coliform	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	34	34	0	22.18	200.00	SM	FS	FS		No
2008 Fe	ecal coliform	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	61	61	0	26.89	200.00	SM	FS	FS		No
2008 Fe	ecal coliform	1430_04	SH 71 upstream to Hays County Line	20	20	0	56.89	200.00	SM	FS	FS		No
2008 Fe	ecal coliform	1430_05	Hays County Line upstream to FM 12	10	10	0	45.54	200.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; DA- Access bed represented by the formation in t

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430

Water body type: Fres	hwater Stream					Wate	r body size:		38	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp		arry_ ward
Recreation Use												
Bacteria Single Sample												
2008 E. coli	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	11	11	0		394.00	AD	FS	FS	Ν	No
2008 E. coli	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	21	21	1		394.00	AD	FS	FS	Ν	No
2008 E. coli	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	61	61	0		394.00	AD	FS	FS	Ν	No
2008 E. coli	1430_04	SH 71 upstream to Hays County Line	15	15	1		394.00	AD	FS	FS	Ν	No
2008 E. coli	1430_05	Hays County Line upstream to FM 12	9	9	0		394.00	LD	NC	NC	Ν	No
2008 Fecal coliform	1430_01	From confluence with Town Lake to downstream dam of Barton Springs Pool	9	9	1		400.00	LD	NC	NC	Ν	ю
2008 Fecal coliform	1430_02	From Barton Springs Pool upstream dam to a point 2 miles upstream of Loop 1	34	34	1		400.00	SM	FS	FS	Ν	Мо
2008 Fecal coliform	1430_03	From a point 2 miles upstream of Loop 1 to SH 71	61	61	0		400.00	SM	FS	FS	Ν	No
2008 Fecal coliform	1430_04	SH 71 upstream to Hays County Line	20	20	1		400.00	SM	FS	FS	Ν	No
2008 Fecal coliform	1430_05	Hays County Line upstream to FM 12	10	10	0		400.00	AD	FS	FS	Ν	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1430ABarton Springs (unclassified water body)

Water body type: Freshwater Stream						Water body	size:		0	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed Crit</u>	teria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Organics	1430A_01	Barton Springs Pool - entire water body	2	2	0			ID	NA	NA		No
Chronic Toxic Substances in water 2006 Organics	14304 01	Barton Springs Pool - entire water body	2	2				ID	NA	NA		No
Chronic Toxicity tests in whole sedime	_	Darton Springs 1001 - entire water body	2	2				ID	1 1 1	1471		110
2006 Sediment Chronic Toxicity Dissolved Oxygen grab minimum		Barton Springs Pool - entire water body	13	13	8			AD				No
2008 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1430A_01	Barton Springs Pool - entire water body	90	90	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab LOE Toxic Sediment condition	1430A_01	Barton Springs Pool - entire water body	90	90	8		5.00	AD	NC	NC		No
2006 Sediment Toxicity (LOE) Toxic Substances in sediment	1430A_01	Barton Springs Pool - entire water body						JQ	CN	CN		No
2008 Chrysene	1430A 01	Barton Springs Pool - entire water body	34	34	2	1,2	290.00	AD	NC	NC		No
2008 Copper	1430A 01	Barton Springs Pool - entire water body	36	36	4		149.00	AD	NC	NC		No
2008 Dibenz(a,h)anthracene	1430A_01	Barton Springs Pool - entire water body	26	26	3	-	140.00	AD	NC	NC		No
2008 Fluoranthene	1430A_01	Barton Springs Pool - entire water body	34	34	2	2,2	230.00	AD	NC	NC		No
2008 Mercury	1430A_01	Barton Springs Pool - entire water body	32	32	1		1.06	AD	NC	NC		No
2008 Metals	1430A_01	Barton Springs Pool - entire water body	36	36	0			AD	NC	NC		No
2008 Organics	1430A_01	Barton Springs Pool - entire water body	32	32	0			AD	NC	NC		No
2008 Pyrene	1430A_01	Barton Springs Pool - entire water body	34	34	3	1,:	520.00	AD	NC	NC		No
2008 Silver	1430A_01	Barton Springs Pool - entire water body	35	35	1		2.20	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Barton Springs (unclassified water body) Segment ID: 1430A

Water body type: Freshwater	Stream					Water body size:			0	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use	_											
Dissolved Solids												
2008 Chloride	1430A_01	Barton Springs Pool - entire water body	64	64		24.90	50.00	AD	FS	FS		No
2008 Sulfate	1430A_01	Barton Springs Pool - entire water body	64	64		29.86	50.00	AD	FS	FS		No
2008 Total Dissolved Solids	1430A_01	Barton Springs Pool - entire water body	115	115		423.26	500.00	AD	FS	FS		No
High pH												
2006 рН	1430A_01	Barton Springs Pool - entire water body	88	88	0		9.00	AD	FS	FS		No
Low pH												
2006 рН	1430A_01	Barton Springs Pool - entire water body	88	88	0		6.50	AD	FS	FS		No
Nutrient Screening Levels												
2008 Ammonia	—	Barton Springs Pool - entire water body	125	125	0		0.33	AD	NC	NC		No
2008 Chlorophyll-a	1430A_01	Barton Springs Pool - entire water body	52	52	0		14.10	AD	NC	NC		No
2008 Nitrate	1430A_01	Barton Springs Pool - entire water body	142	142	1		1.95	AD	NC	NC		No
2008 Orthophosphorus	1430A_01	Barton Springs Pool - entire water body	127	127	0		0.37	AD	NC	NC		No
2008 Total Phosphorus	1430A_01	Barton Springs Pool - entire water body	70	70	0		0.69	AD	NC	NC		No
Water Temperature												
2006 Temperature	1430A_01	Barton Springs Pool - entire water body	88	88	0		32.20	AD	FS	FS		No
Recreation Use	_											
Bacteria Geomean												
2008 E. coli	1430A_01	Barton Springs Pool - entire water body	8	8	0	10.05	126.00	LD	NC	NC		No
2008 Fecal coliform	1430A_01	Barton Springs Pool - entire water body	10	10	0	43.31	200.00	AD	FS	FS		No
Bacteria Single Sample												
2008 E. coli	1430A_01	Barton Springs Pool - entire water body	8	8	1		394.00	LD	NC	NC		No
2008 Fecal coliform	1430A_01	Barton Springs Pool - entire water body	10	10	0		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Wate	r body type: Freshwater Stre	eam					Wate	r body size:		55	М	iles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwa
quati	c Life Use												
Acute '	Toxic Substances in water												
2006	Organics	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	1	1	0			ID	NA	NA		No
Chron	ic Toxic Substances in water												
2006	Organics	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	1	1				ID	NA	NA		N
Dissolv	ed Oxygen grab minimum												
2006	Dissolved Oxygen Grab	1430B_01	Tributaries entering Barton Cr from a point 2 mi upstream of Loop 1 upstream to Barton Creek Blvd.	49	49	0		1.50	AD	FS	FS		N
2006	Dissolved Oxygen Grab	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	9	9	0		1.50	TR	NA	NA		N
2006	Dissolved Oxygen Grab	1430B_03	Little Barton Creek	8	8	0		3.00	LD	NC	NC		Ν
2006	Dissolved Oxygen Grab	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	30	30	0		2.00	AD	FS	FS		N
2006	Dissolved Oxygen Grab	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	37	37	0		2.00	AD	FS	FS		N
Dissolv	ed Oxygen grab screening level												
2006	Dissolved Oxygen Grab	1430B_01	Tributaries entering Barton Cr from a point 2 mi upstream of Loop 1 upstream to Barton Creek Blvd.	49	49	0		2.00	AD	NC	NC		N
2006	Dissolved Oxygen Grab	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	9	9	0		2.00	TR	NA	NA		N
2006	Dissolved Oxygen Grab	1430B_03	Little Barton Creek	8	8	1		5.00	LD	NC	NC		N
2006	Dissolved Oxygen Grab	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	30	30	0		3.00	AD	NC	NC		N
2006	Dissolved Oxygen Grab	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	37	37	0		3.00	AD	NC	NC		N

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwater Str	eam					Water	body size:		55	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Toxic Substances in sediment												
2006 Metals	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	1	1	0			ID	NA	NA		No
2006 Metals	1430B_03	Little Barton Creek	2	2				ID	NA	NA		No
2006 Metals	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	1	1	0			ID	NA	NA		No
2006 Organics	1430B_03	Little Barton Creek	2	2	0			ID	NA	NA		No
2006 Organics	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	1	1	0			ID	NA	NA		No
2006 Silver	1430B_03	Little Barton Creek	2	2	1		2.20	ID	NA	NA		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Multiple	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	1	1				ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430B Tributaries to Barton Creek (unclassified water bodies)

	Water body type:	Freshwater Stream					Wat	er body size:		55	М	iles	
T				$\frac{\# \text{ of }}{2}$	<u>#</u>	<u># of</u>	Mean of	<u> </u>	Dataset	<u>2008</u>	Integ	<u>Imp</u>	<u>Carry</u>
	YEAR	<u>AU ID</u>	Assessment Area (AU)	Samples	Assessed	Exc	Assessed	Criteria	<u>Qualifier</u>	<u>Supp</u>	Supp	Category	Forv

General Use

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwater S		er Stream					Wate		55	М	iles		
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwai
Genera	ıl Use												
Nutrie	nt Screening Levels												
2006	Ammonia	1430B_01	Tributaries entering Barton Cr from a point 2 mi upstream of Loop 1 upstream to Barton Creek Blvd.	117	117	3		0.33	AD	NC	NC		No
2006	Ammonia	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	64	64	0		0.33	AD	NC	NC		No
2006	Ammonia	1430B_03	Little Barton Creek	10	10	1		0.33	AD	NC	NC		No
2006	Ammonia	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	27	27	0		0.33	AD	NC	NC		No
2006	Ammonia	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	32	32	0		0.33	AD	NC	NC		No
2006	Chlorophyll-a	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	0	0			14.10	ID	NA	NA		No
2006	Chlorophyll-a	1430B_03	Little Barton Creek	0	0	0			ID	NA	NA		No
2006	Chlorophyll-a	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	0	0	0		14.10	ID	NA	NA		No
2006	Chlorophyll-a	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	10	10	0		14.10	AD	NC	NC		No
2006	Nitrate	1430B_01	Tributaries entering Barton Cr from a point 2 mi upstream of Loop 1 upstream to Barton Creek Blvd.	116	116	48		1.95	AD	CS	CS		No
2006	Nitrate	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	64	64	0		1.95	AD	NC	NC		No
2006	Nitrate	1430B_03	Little Barton Creek	10	10	0		1.95	AD	NC	NC		No
2006	Nitrate	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	27	27	0		1.95	AD	NC	NC		No
2006	Nitrate	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	32	32	0		1.95	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwater Stream							Water body size:			55	Miles			
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> Forward	
Genera	ıl Use													
Nutrie	ent Screening Levels													
2006	Orthophosphorus	1430B_01	Tributaries entering Barton Cr from a point 2 mi upstream of Loop 1 upstream to Barton Creek Blvd.	117	117	3		0.37	AD	NC	NC		No	
2006	Orthophosphorus	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	64	64	1		0.37	AD	NC	NC		No	
2006	Orthophosphorus	1430B_03	Little Barton Creek	10	10	0		0.37	AD	NC	NC		No	
2006	Orthophosphorus	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	27	27	0		0.37	AD	NC	NC		No	
2006	Orthophosphorus	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	32	32	0		0.37	AD	NC	NC		No	
2006	Total Phosphorus	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	0	0			0.69	ID	NA	NA		No	
2006	Total Phosphorus	1430B_03	Little Barton Creek	0	0	0		0.69	ID	NA	NA		No	
2006	Total Phosphorus	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	0	0	0		0.69	ID	NA	NA		No	
2006	Total Phosphorus	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	10	10	0		0.69	AD	NC	NC		No	

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Freshwater Stream						Water body size:			55	Miles			
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recrea	tion Use												
Bacter	ria Geomean												
2006	E. coli	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	0	0			126.00	ID	NA	NA		No
2006	E. coli	1430B_03	Little Barton Creek	0	0			126.00	ID	NA	NA		No
2006	E. coli	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	0	0			126.00	ID	NA	NA		No
2006	E. coli	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	5	5		88.00	126.00	TR	NA	NA		No
2006	Fecal coliform	1430B_01	Tributaries entering Barton Cr from a point 2 mi upstream of Loop 1 upstream to Barton Creek Blvd.	114	114		30.00	200.00	AD	FS	FS		No
2006	Fecal coliform	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	59	59		35.00	200.00	AD	FS	FS		No
2006	Fecal coliform	1430B_03	Little Barton Creek	10	10		25.00	200.00	AD	FS	FS		No
2006	Fecal coliform	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	27	27		41.00	200.00	AD	FS	FS		No
2006	Fecal coliform	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	25	25		78.00	200.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1430B Tributaries to Barton Creek (unclassified water bodies)

Wate	er body type: Freshwa	ter Stream					Water	· body size:		55	М	liles	
YEAR		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Recrea	tion Use												
Bacter	ia Single Sample												
2006	E. coli	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	0	0			394.00	ID	NA	NA		No
2006	E. coli	1430B_03	Little Barton Creek	0	0	0		394.00	ID	NA	NA		No
2006	E. coli	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	0	0			394.00	ID	NA	NA		No
2006	E. coli	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	5	5	0		394.00	TR	NA	NA		No
2006	Fecal coliform	1430B_01	Tributaries entering Barton Cr from a point 2 mi upstream of Loop 1 upstream to Barton Creek Blvd.	114	114	6		400.00	AD	FS	FS		No
2006	Fecal coliform	1430B_02	From Barton Creek Blvd. crossing upstream to SH 71	59	59	0		400.00	AD	FS	FS		No
2006	Fecal coliform	1430B_03	Little Barton Creek	10	10	0		400.00	AD	FS	FS		No
2006	Fecal coliform	1430B_04	Tributaries entering Barton Cr from SH 71 upstream to the Hays County line	27	27	1		400.00	AD	FS	FS		No
2006	Fecal coliform	1430B_05	Tributaries entering Barton Creek from the Hays County line upstream to CR 169	25	25	2		400.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1431 Mid Pecan Bayou

Water body type: Freshwater Str	ream					Wate	r body size:		13	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Dissolved Oxygen 24hr average												
2008 Dissolved Oxygen 24hr Avg Dissolved Oxygen 24hr minimum	1431_01	Entire water body	2	2	0		2.00	ID	NA	NA		No
2008 Dissolved Oxygen 24hr Min Dissolved Oxygen grab minimum	1431_01	Entire water body	2	2	0		1.50	ID	NA	NA		No
2008 Dissolved Oxygen Grab Dissolved Oxygen grab screening level	1431_01	Entire water body	30	30	0		1.50	AD	FS	FS		No
2008 Dissolved Oxygen Grab Toxic Substances in sediment	1431_01	Entire water body	30	30	0		2.00	AD	NC	NC		No
2008 Metals	1431_01	Entire water body	9	9	0			LD	NC	NC		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Chromium	1431_01	Entire water body	10	10		1.60	3,320.00	AD	FS	FS		No
2006 Lead	1431_01	Entire water body	10	10		0.65	25.30	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1431 Mid Pecan Bayou

							•					,
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General Use	_											
Dissolved Solids												
2008 Chloride	1431_01	Entire water body	28	28		108.86	410.00	AD	FS	FS		No
2008 Sulfate	1431_01	Entire water body	28	28		80.57	120.00	AD	FS	FS		No
2008 Total Dissolved Solids High pH	1431_01	Entire water body	31	31		553.52	1,100.00	AD	FS	FS		No
2008 рН Low pH	1431_01	Entire water body	30	30	0		9.00	AD	FS	FS		No
2008 pH Nutrient Screening Levels	1431_01	Entire water body	30	30	0		6.50	AD	FS	FS		No
2008 Ammonia	1431 01	Entire water body	28	28	0		0.33	AD	NC	NC		No
2008 Chlorophyll-a	1431_01	Entire water body	28	28	2		14.10	AD	NC	NC		No
2008 Nitrate	1431_01	Entire water body	28	28	22		1.95	AD	CS	CS		No
2008 Orthophosphorus	1431_01	Entire water body	28	28	21		0.37	AD	CS	CS		No
2008 Total Phosphorus Water Temperature	1431_01	Entire water body	28	28	20		0.69	AD	CS	CS		No
2008 Temperature Recreation Use	1431_01	Entire water body	30	30	0		32.20	AD	FS	FS		No
Bacteria Geomean	-											
2008 E. coli	1431_01	Entire water body	21	21	1	281.77	126.00	AD	NS	NS	5c	No
2008 Fecal coliform Bacteria Single Sample	1431_01	Entire water body	15	15	0	103.68	200.00	SM	FS	FS		No
2008 E. coli	1431_01	Entire water body	21	21	5		394.00	AD	FS	FS		No
2008 Fecal coliform	1431_01	Entire water body	15	15	1		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1432 Upper Pecan Bayou

Water body type: Freshwater Stre	eam					Water	body size:		15	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Metals	1432_01	Entire water body	10	10	0			AD	FS	FS		No
Chronic Toxic Substances in water												
2006 Metals	1432_01	Entire water body	10	10				AD	FS	FS		No
Dissolved Oxygen grab minimum												
2008 Dissolved Oxygen Grab	1432_01	Entire water body	27	27	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2008 Dissolved Oxygen Grab	1432_01	Entire water body	27	27	3		5.00	AD	NC	NC		No
Toxic Substances in sediment												
2008 Manganese	1432_01	Entire water body	4	4	1		1,100.00	LD	NC	NC		No
2008 Metals	1432_01	Entire water body	4	4	0			LD	NC	NC		No
Fish Consumption Use												
HH Bioaccumulative Toxics in water												
2006 Chromium	1432_01	Entire water body	10	10		1.60	100.00	AD	FS	FS		No
2006 Lead	1432_01	Entire water body	10	10		0.60	4.98	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1432 Upper Pecan Bayou

Water body type: Freshwater	Stream					Wate	er body size:		15	М	liles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
General Use	_											
Dissolved Solids												
2008 Chloride	1432_01	Entire water body	28	28		74.36	200.00	AD	FS	FS		No
2008 Sulfate	1432_01	Entire water body	28	28		55.46	150.00	AD	FS	FS		No
2008 Total Dissolved Solids High pH	1432_01	Entire water body	28	28		405.93	800.00	AD	FS	FS		No
2008 рН Low pH	1432_01	Entire water body	27	27	0		9.00	AD	FS	FS		No
2008 pH Nutrient Screening Levels	1432_01	Entire water body	27	27	0		6.50	AD	FS	FS		No
2008 Ammonia	1432_01	Entire water body	28	28	1		0.33	AD	NC	NC		No
2008 Chlorophyll-a	1432_01	Entire water body	28	28	2		14.10	AD	NC	NC		No
2008 Nitrate	1432_01	Entire water body	28	28	2		1.95	AD	NC	NC		No
2008 Orthophosphorus	1432_01	Entire water body	28	28	1		0.37	AD	NC	NC		No
2008 Total Phosphorus Water Temperature	1432_01	Entire water body	28	28	2		0.69	AD	NC	NC		No
2008 Temperature Public Water Supply Use	1432_01	Entire water body	27	27	0		32.20	AD	FS	FS		No
Finished Drinking Water Dissolved	l Solids average											
2008 Multiple	1432_01	Entire water body						OE	NC	NC		No
Finished Drinking Water MCLs an		ices running average										
2008 Multiple Finished Drinking Water MCLs Co	1432_01	Entire water body						OE	FS	FS		No
2008 Multiple	1432 01	Entire water body						OE	NC	NC		No
Surface Water HH criteria for PW								02				1.0
2006 Multiple	1432_01	Entire water body	14	14				AD	FS	FS		No
•	_	-										

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1432 Upper Pecan Bayou

Water body type: F	Freshwater Stream					Wate	er body size:		15	М	iles	
<u>YEAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
Recreation Use												
Bacteria Geomean												
2008 E. coli	1432_01	Entire water body	20	20	0	113.79	126.00	AD	FS	FS		No
2008 Fecal coliform	1432_01	Entire water body	14	14	0	123.87	200.00	SM	FS	FS		No
Bacteria Single Sample												
2008 E. coli	1432_01	Entire water body	20	20	2		394.00	AD	FS	FS		No
2008 Fecal coliform	1432_01	Entire water body	14	14	1		400.00	SM	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Not Spatially Representative; SN- Supporting; CM- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; NC- No concern; SN- Not Spatially Representative; SN- Superceded by another method; NC- No concern; SN- Support SN- Not Spatially Representative; SN- Support SN- Not Spatially Representative; SN- Support SN- Not SN- Not Spatially Representative; SN- Support SN- Not SN- No

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Reservoir						Water bod	ly size:	1	9,150	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed C1</u>	riteria	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquatic Life Use												
Acute Toxic Substances in water												
2006 Metals	1433_01	Main pool near dam	6	6	0			LD	NC	NC		No
2006 Metals	1433_02	Concho River arm	3	3	0			ID	NA	NA		No
2006 Metals	1433_03	Colorado River arm	3	3	0			ID	NA	NA		No
Chronic Toxic Substances in water												
2006 Metals	1433_01	Main pool near dam	6	6	0			LD	NC	NC		No
2006 Metals	1433_02	Concho River arm	3	3				ID	NA	NA		No
2006 Metals	1433_03	Colorado River arm	3	3				ID	NA	NA		No
Dissolved Oxygen 24hr average												
2008 Dissolved Oxygen 24hr Avg	1433_02	Concho River arm	4	4	0		5.00	LD	NC	NC		No
Dissolved Oxygen 24hr minimum												
2008 Dissolved Oxygen 24hr Min	1433_02	Concho River arm	4	4	0		3.00	LD	NC	NC		No
Dissolved Oxygen grab minimum	1 422 01		22.6	26	0		2 00	1.5	FG	EG		
2008 Dissolved Oxygen Grab	1433_01	Main pool near dam	226	26	0		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1433_02	Concho River arm	67	23	1		3.00	AD	FS	FS		No
2008 Dissolved Oxygen Grab	1433_03	Colorado River arm	89	20	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening level												
2008 Dissolved Oxygen Grab	1433_01	Main pool near dam	226	26	0		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab	1433_02	Concho River arm	67	23	3		5.00	AD	NC	NC		No
2008 Dissolved Oxygen Grab	1433_03	Colorado River arm	89	20	1		5.00	AD	NC	NC		No
Toxic Substances in sediment												
2008 Manganese	1433_01	Main pool near dam	3	3	1	1	,100.00	ID	NA	NA		No
2008 Metals	1433_01	Main pool near dam	3	3	0			ID	NA	NA		No
2008 Metals	1433_02	Concho River arm	2	2	0			ID	NA	NA		No
2008 Metals	1433_03	Colorado River arm	2	2	0			ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Reservoir						Wate	r body size:	1	9,150	A	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	 ^f of mples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Fish Consumption Use	1											
Bioaccumulative Toxics in fish tissue												
2006 Multiple	1433_01	Main pool near dam	2	2	0			ID	NA	NA		No
2006 Multiple	1433_02	Concho River arm	2	2	0			ID	NA	NA		No
2006 Multiple	1433_03	Colorado River arm	2	2	0			ID	NA	NA		No
DSHS Advisories, Closures, and Risk	Assessments											
2008 Risk Assess No Advisory	1433_01	Main pool near dam						OE	FS	FS		No
2008 Risk Assess No Advisory	1433_02	Concho River arm						OE	FS	FS		No
2008 Risk Assess No Advisory	1433_03	Colorado River arm						OE	FS	FS		No
2008 Risk Assess No Advisory	1433_04	Remainder of reservoir						OE	FS	FS		No
HH Bioaccumulative Toxics in water												
2006 Chromium	1433_01	Main pool near dam	4	4		2.00	100.00	LD	NC	NC		No
2006 Chromium	1433_02	Concho River arm	3	3		1.70	100.00	ID	NA	NA		No
2006 Chromium	1433_03	Colorado River arm	3	3		1.70	100.00	ID	NA	NA		No
2006 Lead	1433_01	Main pool near dam	5	5		1.29	4.98	LD	NC	NC		No
2006 Lead	1433_02	Concho River arm	3	3		0.50	4.98	ID	NA	NA		No
2006 Lead	1433_03	Colorado River arm	3	3		1.00	4.98	ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Reservo	oir					Water	body size:	1	9,150	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forwar
General Use												
High pH												
2008 рН	1433_01	Main pool near dam	221	25	0		9.00	AD	FS	FS		No
2008 рН	1433_02	Concho River arm	65	22	0		9.00	AD	FS	FS		No
2008 рН	1433_03	Colorado River arm	86	19	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1433_01	Main pool near dam	221	25	0		6.50	AD	FS	FS		No
2008 рН	1433_02	Concho River arm	65	22	0		6.50	AD	FS	FS		No
2008 рН	1433_03	Colorado River arm	86	19	0		6.50	AD	FS	FS		No
Nutrient Screening Levels												
2008 Ammonia	1433_01	Main pool near dam	24	24	1		0.11	AD	NC	NC		No
2008 Ammonia	1433_02	Concho River arm	20	20	1		0.11	AD	NC	NC		No
2008 Ammonia	1433_03	Colorado River arm	18	18	1		0.11	AD	NC	NC		No
2008 Chlorophyll-a	1433_01	Main pool near dam	25	25	0		26.70	AD	NC	NC		No
2008 Chlorophyll-a	1433_02	Concho River arm	20	20	2		26.70	AD	NC	NC		No
2008 Chlorophyll-a	1433_03	Colorado River arm	18	18	1		26.70	AD	NC	NC		No
2008 Nitrate	1433_01	Main pool near dam	24	24	1		0.37	AD	NC	NC		No
2008 Nitrate	1433_02	Concho River arm	21	21	3		0.37	AD	NC	NC		No
2008 Nitrate	1433_03	Colorado River arm	19	19	3		0.37	AD	NC	NC		No
2008 Orthophosphorus	1433_01	Main pool near dam	25	25	0		0.05	AD	NC	NC		No
2008 Orthophosphorus	1433_02	Concho River arm	20	20	0		0.05	AD	NC	NC		No
2008 Orthophosphorus	1433_03	Colorado River arm	18	18	0		0.05	AD	NC	NC		No
2008 Total Phosphorus	1433_01	Main pool near dam	24	24	0		0.20	AD	NC	NC		No
2008 Total Phosphorus	1433_02	Concho River arm	20	20	0		0.20	AD	NC	NC		No
2008 Total Phosphorus	1433_03	Colorado River arm	18	18	0		0.20	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

O. H. Ivie Reservoir Segment ID: 1433

Water body type: Reserve	voir					Wate	er body size:	1	9,150	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	Imp Category	<u>Carry</u> Forward
General Use												
Water Temperature												
2008 Temperature	1433_01	Main pool near dam	226	26	0		33.90	AD	FS	FS		No
2008 Temperature	1433_02	Concho River arm	67	23	0		33.90	AD	FS	FS		No
2008 Temperature	1433_03	Colorado River arm	89	20	0		33.90	AD	FS	FS		No
Public Water Supply Use												
Finished Drinking Water Diss	solved Solids average											
2008 Multiple	1433_01	Main pool near dam						OE	NC	NC		No
2008 Multiple	1433_02	Concho River arm						OE	NC	NC		No
2008 Multiple	1433_03	Colorado River arm						OE	NC	NC		No
2008 Multiple	1433_04	Remainder of reservoir						OE	NC	NC		No
Finished Drinking Water MC	CLs and Toxic Substan	ices running average										
2008 Multiple	1433_01	Main pool near dam						OE	FS	FS		No
2008 Multiple	1433_02	Concho River arm						OE	FS	FS		No
2008 Multiple	1433_03	Colorado River arm						OE	FS	FS		No
2008 Multiple	1433_04	Remainder of reservoir						OE	FS	FS		No
Finished Drinking Water MC	CLs Concern											
2008 Multiple	1433_01	Main pool near dam						OE	NC	NC		No
2008 Multiple	1433_02	Concho River arm						OE	NC	NC		No
2008 Multiple	1433_03	Colorado River arm						OE	NC	NC		No
2008 Multiple	1433_04	Remainder of reservoir						OE	NC	NC		No
Surface Water HH criteria fo	8											
2006 Multiple	1433_01	Main pool near dam	7	7				LD	NC	NC		No
2006 Multiple	1433_02	Concho River arm	5	5				LD	NC	NC		No
2006 Multiple	1433_03	Colorado River arm	5	5				LD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Water body type: Reservoir						Wate	er body size:	1	9,150	A	cres
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Carry</u> <u>Category</u> Forward
Recreation Use											
Bacteria Geomean											
2008 E. coli	1433_01	Main pool near dam	22	22	0	0.90	126.00	AD	FS	FS	No
2008 E. coli	1433_02	Concho River arm	15	15	0	2.64	126.00	AD	FS	FS	No
2008 E. coli	1433_03	Colorado River arm	14	14	0	1.51	126.00	AD	FS	FS	No
2008 Fecal coliform	1433_01	Main pool near dam	8	8	0	1.65	200.00	LD	NC	NC	No
2008 Fecal coliform	1433_02	Concho River arm	7	7	0	3.47	200.00	LD	NC	NC	No
2008 Fecal coliform	1433_03	Colorado River arm	7	7	0	4.27	200.00	LD	NC	NC	No
Bacteria Single Sample											
2008 E. coli	1433_01	Main pool near dam	22	22	0		394.00	AD	FS	FS	No
2008 E. coli	1433_02	Concho River arm	15	15	0		394.00	AD	FS	FS	No
2008 E. coli	1433_03	Colorado River arm	14	14	0		394.00	AD	FS	FS	No
2008 Fecal coliform	1433_01	Main pool near dam	8	8	0		400.00	LD	NC	NC	No
2008 Fecal coliform	1433_02	Concho River arm	7	7	0		400.00	LD	NC	NC	No
2008 Fecal coliform	1433_03	Colorado River arm	7	7	0		400.00	LD	NC	NC	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1434 Colorado River above La Grange

Wate	er body type: Freshwater S	tream					Water	body size:		74	Μ	liles	
YEAR	<u>.</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Aquati	c Life Use												
Dissol	ved Oxygen grab minimum												
2008	Dissolved Oxygen Grab	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	46	41	0		4.00	AD	FS	FS		No
2008	Dissolved Oxygen Grab	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	45	41	0		4.00	AD	FS	FS		No
Dissol	ved Oxygen grab screening leve	el											
2008	Dissolved Oxygen Grab	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	46	41	1		6.00	AD	NC	NC		No
2008	Dissolved Oxygen Grab	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	45	41	0		6.00	AD	NC	NC		No
Toxic	Substances in sediment												
2008	Metals	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	3	3	0			ID	NA	NA		No
2008	Organics	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	2	2				ID	NA	NA		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River above La Grange Segment ID: 1434

Wat	er body type: Freshwate	r Stream					Wate	r body size:		74	М	liles	
YEAF	<u></u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Genera	al Use	_											
Dissol	ved Solids												
2008	Chloride	1434_01	From a point 100 m downstream of SH 71 upstream to the Southern Pacific Railroad crossing	82	82		42.39	100.00	AD	FS	FS		No
2008	Chloride	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	82	82		42.39	100.00	AD	FS	FS		No
2008	Chloride	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	82	82		42.39	100.00	AD	FS	FS		No
2008	Sulfate	1434_01	From a point 100 m downstream of SH 71 upstream to the Southern Pacific Railroad crossing	82	82		37.02	100.00	AD	FS	FS		No
2008	Sulfate	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	82	82		37.02	100.00	AD	FS	FS		No
2008	Sulfate	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	82	82		37.02	100.00	AD	FS	FS		No
2008	Total Dissolved Solids	1434_01	From a point 100 m downstream of SH 71 upstream to the Southern Pacific Railroad crossing	88	88		317.90	500.00	AD	FS	FS		No
2008	Total Dissolved Solids	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	88	88		317.90	500.00	AD	FS	FS		No
2008	Total Dissolved Solids	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	88	88		317.90	500.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1434 Colorado River above La Grange

Water body type:	Freshwater Stream					Water	body size:		74	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> <u>Forward</u>
General Use												
High pH												
2008 рН	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	46	41	0		9.00	AD	FS	FS		No
2008 рН	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	45	41	0		9.00	AD	FS	FS		No
Low pH												
2008 рН	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	46	41	0		6.50	AD	FS	FS		No
2008 рН	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	45	41	0		6.50	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; LD- Limited Data; TR- Not Temporally Representative; SN- Superceded by another method; DA- Access bed represented by the formation in t

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1434Colorado River above La Grange

Wat	er body type: Freshwate	er Stream					Wate	r body size:		74	М	liles	
YEAF	<u>R</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Gener	al Use	_											
Nutrie	ent Screening Levels												
2008	Ammonia	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	39	39	0		0.33	AD	NC	NC		No
2008	Ammonia	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	39	39	0		0.33	AD	NC	NC		No
2008	Chlorophyll-a	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	40	40	1		14.10	AD	NC	NC		No
2008	Chlorophyll-a	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	40	40	0		14.10	AD	NC	NC		No
2008	Nitrate	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	41	41	17		1.95	AD	CS	CS		No
2008	Nitrate	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	41	41	19		1.95	AD	CS	CS		No
2008	Orthophosphorus	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	41	41	18		0.37	AD	CS	CS		No
2008	Orthophosphorus	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	41	41	18		0.37	AD	CS	CS		No
2008	Total Phosphorus	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	41	41	6		0.69	AD	NC	NC		No
2008	Total Phosphorus	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	41	41	7		0.69	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1434 Colorado River above La Grange

Water body type:	Freshwater Stream					Water	body size:		74	М	iles	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> <u>Category</u>	<u>Carry</u> <u>Forward</u>
General Use												
Water Temperature												
2008 Temperature	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	47	42	0		35.00	AD	FS	FS		No
2008 Temperature	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	49	45	0		35.00	AD	FS	FS		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1434 Colorado River above La Grange

Water bo	ody type: Freshwater S	tream					Water	· body size:		74	М	iles	
<u>YEAR</u>		<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
Public Wat	ter Supply Use												
Finished D	Drinking Water Dissolved S	olids average											
2008 Mu	ultiple	1434_01	From a point 100 m downstream of SH 71 upstream to the Southern Pacific Railroad crossing						OE	NC	NC		No
2008 Mu	ıltiple	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville						OE	NC	NC		No
2008 Mu	ultiple	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment						OE	NC	NC		No
Finished D	Drinking Water MCLs and	Toxic Substa											
2008 Mu	ultiple	1434_01	From a point 100 m downstream of SH 71 upstream to the Southern Pacific Railroad crossing						OE	FS	FS		No
2008 Mu	ıltiple	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville						OE	FS	FS		No
2008 Mu	ultiple	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment						OE	FS	FS		No
Finished D	Drinking Water MCLs Con	cern											
2008 Mu	ultiple	1434_01	From a point 100 m downstream of SH 71 upstream to the Southern Pacific Railroad crossing						OE	NC	NC		No
2008 Mu	ıltiple	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville						OE	NC	NC		No
2008 Mu	ultiple	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment						OE	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS-Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Colorado River above La Grange Segment ID: 1434

Wat	er body type: Freshw	ater Stream					Wate	er body size:		74	М	liles
YEAF	<u> </u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> Samples	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp Carry</u> Category Forward
Recrea	ition Use											
Bacte	ria Geomean											
2008	E. coli	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	41	41	0	42.84	126.00	AD	FS	FS	No
2008	E. coli	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	41	41	0	47.06	126.00	AD	FS	FS	No
2008	Fecal coliform	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	11	11	0	57.66	200.00	SM	FS	FS	No
2008	Fecal coliform	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	11	11	0	52.30	200.00	SM	FS	FS	No
Bacte	ria Single Sample											
2008	E. coli	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	41	41	2		394.00	AD	FS	FS	No
2008	E. coli	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	41	41	3		394.00	AD	FS	FS	No
2008	Fecal coliform	1434_02	Southern-Pacific RR upstream to the confluence of Reeds Creek west of Smithville	11	11	0		400.00	SM	FS	FS	No
2008	Fecal coliform	1434_03	From the confluence of Reeds Creek west of Smithville upstream to the end of segment	11	11	0		400.00	SM	FS	FS	No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting;

NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; ID- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method;

JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID:1434BCedar Creek (unclassified water body)

			1	Miles	
<u>Dataset</u> Qualifier					<u>Carry</u> Forward
ID	ID	NA	NA		No
ID	ID	NA	NA		No
AD	AD	FS	FS		No
		00	00		NI.
AD	AD	CS	CS		No
					No
AD	AD	NC	NC		No
AD	AD	NC	NC		No
AD	AD	NC	NC		No
AD	AD	NC	NC		No
AD	AD	FS	FS		No
SM	SM	FS	FS		No
AD	AD	FS	FS		No
SM	SM	FS	FS		No
		ID ID AD AD AD AD AD AD AD SM AD	QualifierSupplementIDNAIDNAADFSADCSADNCADNCADNCADNCADSMADFSSMFSADFS	QualifierSuppSuppIDNANAIDNANAADFSFSADCSCSADNCNCADNCNCADNCNCADNCNCADSFSADFSFSADFSFSADFSFSADFSFSADFSFSADFSFS	QualifierSuppSuppCategoryIDNANAIDNANAADFSFSADCSCSADNCNCADNCNCADNCNCADNCNCADSFSADSFSADSSADSSADSSADSSADSSADSSADSSADSSADSSADSSADSS

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1434C Lake Bastrop (unclassified water body)

Water body type: Reservoir						Water	r body size:		906	A	cres	
<u>/EAR</u>	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	<u>Mean of</u> <u>Assessed</u>	<u>Criteria</u>	<u>Dataset</u> <u>Qualifier</u>	<u>2008</u> <u>Supp</u>	<u>Integ</u> Supp	<u>Imp</u> Category	<u>Carry</u> Forward
quatic Life Use												
Dissolved Oxygen grab minimum												
2006 Dissolved Oxygen Grab	1434C_01	South arm of lake near intake	30	30	0		3.00	AD	FS	FS		No
2006 Dissolved Oxygen Grab	1434C_02	Mid-lake	31	31	0		3.00	AD	FS	FS		No
2006 Dissolved Oxygen Grab	1434C_03	North arm of lake near discharge	30	30	0		3.00	AD	FS	FS		No
Dissolved Oxygen grab screening												
2006 Dissolved Oxygen Grab	1434C_01	South arm of lake near intake	30	30	1		5.00	AD	NC	NC		No
2006 Dissolved Oxygen Grab	1434C_02	Mid-lake	31	31	2		5.00	AD	NC	NC		No
2006 Dissolved Oxygen Grab	1434C_03	North arm of lake near discharge	30	30	1		5.00	AD	NC	NC		No
eneral Use												
Nutrient Screening Levels												
2006 Ammonia	1434C_01	South arm of lake near intake	30	30	0		0.11	AD	NC	NC		No
2006 Ammonia	1434C_02	Mid-lake	29	29	0		0.11	AD	NC	NC		No
2006 Ammonia	1434C_03	North arm of lake near discharge	27	27	0		0.11	AD	NC	NC		No
2006 Chlorophyll-a	1434C_01	South arm of lake near intake	30	30	1		26.70	AD	NC	NC		No
2006 Chlorophyll-a	1434C_02	Mid-lake	30	30	5		26.70	AD	NC	NC		No
2006 Chlorophyll-a	1434C_03	North arm of lake near discharge	30	30	1		26.70	AD	NC	NC		No
2006 Nitrate	1434C_01	South arm of lake near intake	29	29	0		0.37	AD	NC	NC		No
2006 Nitrate	1434C_02	Mid-lake	29	29	0		0.37	AD	NC	NC		No
2006 Nitrate	1434C_03	North arm of lake near discharge	29	29	0		0.37	AD	NC	NC		No
2006 Orthophosphorus	1434C_01	South arm of lake near intake	30	30	0		0.05	AD	NC	NC		No
2006 Orthophosphorus	1434C 02	Mid-lake	29	29	0		0.05	AD	NC	NC		No
2006 Orthophosphorus	1434C 03	North arm of lake near discharge	28	28	0		0.05	AD	NC	NC		No
2006 Total Phosphorus	1434C 01	South arm of lake near intake	29	29	0		0.20	AD	NC	NC		No
2006 Total Phosphorus	1434C 02		28	28	0		0.20	AD	NC	NC		No
2006 Total Phosphorus	1434C 03		28	28	0		0.20	AD	NC	NC		No

2008 Supp (level of support) and Integ Supp (integrated 303(d) level of support) identifiers: FS- Fully Supporting; CN- Concern for Near non-attainment; CS- Concern for Screening level; NS- Non-Supporting; NA- Not assessed; NC- No concern; Dataset Qualifiers: AD- Adequate Data; ID- Inadequate Data; LD- Limited Data; TR- Not Temporally Representative; SR- Not Spatially Representative; SM- Superceded by another method; JQ- Assessor Judgement; OE- Other Information Evaluated; OS- Out-of-State; AU ID - Assessment Unit ID *Note: Carry-forward refers to impairments without sufficient information in 2008 to re-evaluate the level of support.

Segment ID: 1434C Lake Bastrop (unclassified water body)

Water body type: Reservoir						Wate	er body size:		906	А	cres	
YEAR	<u>AU ID</u>	Assessment Area (AU)	<u># of</u> <u>Samples</u>	<u>#</u> Assessed	<u># of</u> <u>Exc</u>	Mean of Assessed	<u>Criteria</u>	<u>Dataset</u> Qualifier	<u>2008</u> <u>Supp</u>	<u>Integ</u> <u>Supp</u>	<u>Imp</u> Category	<u>Carry</u> Forward
Recreation Use												
Bacteria Geomean	_											
2006 E. coli	1434C_01	South arm of lake near intake	30	30		2.00	126.00	AD	FS	FS		No
2006 E. coli	1434C_02	Mid-lake	30	30		3.00	126.00	AD	FS	FS		No
2006 E. coli	1434C_03	North arm of lake near discharge	30	30		2.00	126.00	AD	FS	FS		No
2006 Fecal coliform	1434C_01	South arm of lake near intake	10	10		4.00	200.00	SM	FS	FS		No
2006 Fecal coliform	1434C_02	Mid-lake	10	10		6.00	200.00	SM	FS	FS		No
2006 Fecal coliform	1434C_03	North arm of lake near discharge	10	10		5.00	200.00	SM	FS	FS		No
Bacteria Single Sample												
2006 E. coli	1434C_01	South arm of lake near intake	30	30	0		394.00	AD	FS	FS		No
2006 E. coli	1434C_02	Mid-lake	30	30	0		394.00	AD	FS	FS		No
2006 E. coli	1434C_03	North arm of lake near discharge	30	30	1		394.00	AD	FS	FS		No
2006 Fecal coliform	1434C_01	South arm of lake near intake	10	10	1		400.00	SM	FS	FS		No
2006 Fecal coliform	1434C_02	Mid-lake	10	10	0		400.00	SM	FS	FS		No
2006 Fecal coliform	1434C_03	North arm of lake near discharge	10	10	1		400.00	SM	FS	FS		No