

Incorporating Drought Evaluations in the Integrated Report for Clean Water Act Sections 305(b) and 303(d)

Sarah Whitley

Texas Commission on Environmental Quality Surface Water Quality Monitoring Team

Guidance Advisory Workgroup Meeting August 24, 2018

Lake Travis - drought impacts on reservoir level

Outline

- Revisit Drought Severity Index Scores (DSI)
- Incorporating drought evaluations
 - Methods tested and used for 2016 Integrated Report
- Drought in reservoirs
 - Discussion items
 - Onset of drought
 - Conclusion of drought
 - Data exclusion for drought period
 - Water quality data evaluation
- Drought in large rivers

Outline

- Revisit Drought Severity Index Scores (DSI)
- Incorporating drought evaluations
 - Methods tested and used for 2016 Integrated Report
- Drought in reservoirs
 - Discussion items
 - Onset of drought
 - Conclusion of drought
 - Data exclusion for drought period
 - Water quality data evaluation
- Drought in large rivers

National Drought Mitigation Center

National Drought Mitigation Center (NDMC) based in the School of Natural Resources at the University of Nebraska-Lincoln (UNL).

NDMC partner entities include:

- National Integrated Drought Information System (NIDIS)
- National Oceanic and Atmospheric Administration (NOAA)
- U.S. Department of Agriculture (USDA)
- U.S. Geological Survey (USGS)
- National Climatic Data Center (NDMC)
- National Weather Service (NWS)

MISSION: The National Drought Mitigation Center (NDMC) helps people and institutions develop and implement measures to reduce societal vulnerability to drought, stressing preparedness and risk management rather than crisis management.

U.S. Drought Monitor Classification Scheme: Drought Severity Index

		Ranges							
Category	Description	Possible Impacts	Palmer Drought Index	CPC Soil Moisture Model (Percentiles)	USGS Weekly Streamflow (Percentiles)	Standardized Precipitation Index (SPI)	Objective Short and Long-term Drought Indicator Blends (Percentiles)		
D0	Abnormally Dry	Going into drought: short-term dryness slowing planting, growth of crops or pastures. Coming out of drought: some lingering water deficits; pastures or crops not fully recovered	-1.0 to -1.9	21-30	21-30	-0.5 to -0.7	21-30		
D1	Moderate Drought	Some damage to crops, pastures; streams, reservoirs, or wells low, some water shortages developing or imminent; voluntary water-use restrictions requested	-2.0 to -2.9	11-20	11-20	-0.8 to -1.2	11-20		
D2	Severe Drought	Crop or pasture losses likely; water shortages common; water restrictions imposed	-3.0 to -3.9	6-10	6-10	-1.3 to -1.5	6-10		
D3	Extreme Drought	Major crop/pasture losses; widespread water shortages or restrictions	-4.0 to -4.9	3-5	3-5	-1.6 to -1.9	3-5		
D4	Exceptional Drought	Exceptional and widespread crop/pasture losses; shortages of water in reservoirs, streams, and wells creating water emergencies	-5.0 or less	0-2	0-2	-2.0 or less	0-2		

U.S. Drought Monitor Texas

November 6, 2012

(Released Thursday, Nov. 8, 2012) Valid 7 a.m. EST

Drought Conditions (Percent Area)

	None	D0	D1	D2	D3	D4
Current	15.44	24.65	26.35	16.57	12.30	4.68
Last Week 10-30-2012	<mark>1</mark> 5.36	26.78	26.24	<mark>1</mark> 5.38	12.56	3.67
3 Month s Ago 08-07-2012	11.39	13.40	35.25	29.10	10.11	0.75
Start of Calendar Year 01-03-2012	0.01	2.15	13.02	17.48	34.92	32.40
Start of Water Year 09-25-2012	<mark>9.1</mark> 3	12.13	21.32	32. <mark>5</mark> 1	19.72	<mark>5. 1</mark> 8
One Year Ago 11-08-2011	0.00	0.00	1.92	7.77	24.49	65.82

Intensity:

D3 Extreme Drought

D4 Exceptional Drought

D2 Severe Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

David Miskus NOAA/NWS/NCEP/CPC

http://droughtmonitor.unl.edu/

Outline

Revisit Drought Severity Index Scores (DSI)

- Incorporating drought evaluations
 - Methods tested and used for 2016 Integrated Report
- Drought in reservoirs
 - Discussion items
 - Onset of drought
 - Conclusion of drought
 - Data exclusion for drought period
 - Water quality data evaluation
- Drought in large rivers

Incorporating Drought Evaluations

- Appendix E incorporated in the 2014 Guidance for Assessment
- Identifying candidate impairments to better characterize drought impacts using the 2014 IR

Exploratory Statistical Analysis

 Can we detect a quantifiable relationship between the DSI Scores and Surface Water Quality Monitoring Data?

- Waterbody Selection
 - Adequate data for 305(b)
 Assessment
 - Segments listed as
 Category 5 for Dissolved
 Solids in the 2016 IR
 - Not previously listed for dissolved solids

- Diversion Lake
- Mackenzie Reservoir
- Bardwell Reservoir
- Elm Fork Trinity River below Lewisville Lake
- Nolan River
- White River Lake
- Frio River above Choke Canyon Reservoir
- Red Bluff Reservoir

- Waterbody Selection
 - Adequate data for 305(b)
 Assessment
 - Segments listed as
 Category 5 for Dissolved
 Solids in the 2016 IR
 - Not previously listed for dissolved solids

- Diversion Lake
- Mackenzie Reservoir
- Bardwell Reservoir
- Elm Fork Trinity River below Lewisville Lake
- Nolan River
- White River Lake
- Frio River above Choke Canyon Reservoir
- Red Bluff Reservoir

• ANOVA

- Meet assumption of equal variances
- Significant result (p < 0.05)
- Tukey's test successful

- Diversion Lake
- Mackenzie Reservoir
- Bardwell Reservoir
- Elm Fork Trinity River below Lewisville Lake
- Frio River above Choke Canyon Reservoir
- Red Bluff Reservoir

- ANOVA
 - Meet assumption of equal variances
 - Significant result (p < 0.05)
 - Tukey's test successful

- Diversion Lake
- Mackenzie Reservoir
- Bardwell Reservoir
- Elm Fork Trinity River below Lewisville Lake
- Frio River above Choke Canyon Reservoir
- Red Bluff Reservoir

ANOVA Results: Diversion Lake

ANOVA Results: Mackenzie Reservoir

ANOVA Results: Bardwell Reservoir

Preliminary Drought Methods

- ANOVAs provided marginal results
 - Potential interpretation errors
 - Some water quality datasets are small
 - Few quantitative factors
- Focus efforts on reservoirs

Reservoir Nutrients in 2016 IR

- Recently developed nutrient criteria using a line of evidence approach
- Applied ANOVAs to new nutrient impairments in reservoirs
 - DSI
 - Chlorophyll a
 - Reservoir level

Candidate Waterbodies:

- Lake Cypress Springs
- Hubbard Creek Reservoir
- White River Lake
- Lake Coleman
- Choke Canyon Reservoir

Lake Cypress Springs

Hubbard Creek Reservoir

White River Lake

Lake Coleman

Choke Canyon Reservoir

Method Used for 2016 Assessment

Reservoir Nutrients in 2016 IR

- ANOVAs and data graphs not telling the same story
- Modified graphs to better visualize trends
 - Chlorophyll a
 - DSI weighted average
 - Reservoir percent full
- Determined onset and conclusion of drought
- Removed all sample results within drought period and reassessed

Lake Cypress Springs - 0405

Hubbard Creek Reservoir - 1233

Choke Canyon Reservoir - 2116

Reservoir Nutrients in 2016 IR

- Reviewed data and potential watershed impacts
- Results of drought evaluations on nutrient impairments (Category 3)
 - Hubbard Creek Reservoir
 FS
 - Lake Coleman
 - FS
 - Choke Canyon Reservoir
 - insufficient data
- Resulted in two nutrient listings (Category 5)

Waterbodies:

- Lake Cypress Springs
- Hubbard Creek Reservoir
- White River Lake
- Lake Coleman
- Choke Canyon Reservoir

Factors that potentially complicate the relationship between the Drought Severity Index and Surface Water Quality

Discharges

- Reservoir releases
- Spring flow
- Water extraction
- Land use
- Instantaneous grab sampling of WQ data
- Broad-scale intent of Drought Monitor map

Outline

- Revisit Drought Severity Index Scores (DSI)
- Incorporating drought evaluations
 - Methods tested and used for 2016 Integrated Report
- Drought in reservoirs
 - Discussion items
 - Onset of drought
 - Conclusion of drought
 - Data exclusion for drought period
 - Water quality data evaluation
- Drought in large rivers

Drought in Reservoirs

- Method applied to nutrients in reservoirs in 2016
- Refinement to be applied for all parameters in 2018
- Discussion items
 - Onset
 - Conclusion
 - Data exclusion
 - Water quality evaluation

Drought Options: Onset

A. Reservoir percent full declines towards historic low

Historical Reservoir Levels

Lake Cypress Springs: 94.1% full as of 2017-10-12

Historical Reservoir Levels

Lake Limestone: 82.7% full as of 2017-10-12

Historical Reservoir Levels

Choke Canyon Reservoir: 32.8% full as of 2017-10-12

Drought Options: Onset

- A. Reservoir percent full declines towards historic low
- B. Reservoir percent full drops below historical average percent full

Bardwell Reservoir - 815

Drought Options: Onset

- A. Reservoir percent full declines towards historic low
- B. Reservoir percent full drops below historical average percent full
- C. Wt. DSI = 5 (exceptional) Wt. DSI = 4 (extreme)

Bardwell Reservoir - 815

Drought Options: Onset

- A. Reservoir percent full declines towards historic low
- B. Reservoir percent full drops below historical average percent full
- C. Wt. DSI = 5 (exceptional) Wt. DSI = 4 (extreme)
- D. A combination of the above
- E. Other options and/or parameters?

Bardwell Reservoir - 815

Lake Limestone - 1252

Drought Options: Conclusion

- A. Reservoir percent full increases above historical average percent full
- B. Wt. DSI ≤ 2 (moderate drought)
 Wt. DSI < 2 (more towards abnormally dry)
 Wt. DSI ≤ 1 (abnormally dry)
- C. A combination of the above
- D. Other options and/or parameters?

Lake Cypress Springs - 0405

Lake Limestone - 1252

Drought Options: Data Exclusion

A. Exclude all sample results within drought period

Determination of Standards Attainment

§307.9 (b). Samples to determine standards attainment are collected at locations approved by the commission. Samples collected at nonapproved locations may be accepted at the discretion of the commission. Samples to determine standards attainment in ambient water must be representative in terms of location, seasonal variations, and hydrologic conditions. Locations must be typical of significant areas of a water body. Temporal sampling must be sufficient to appropriately address seasonal variations of concern. Sample results that are used to assess standards attainment must not include samples that are collected during extreme hydrologic conditions such as high-flows and flooding immediately after heavy rains. Further guidance on representative sampling, both spatially, temporally, and hydrologically, can be found in the TCEQ Surface Water Quality Monitoring Procedures and the TCEQ Guidance for Assessing and Reporting Surface Water Quality in Texas as amended.

Drought Options: Data Exclusion

A. Exclude all sample results within drought period

 B. Exclude only exceedances within drought period

			Summary outcome	Summary outcome
		Summary outcome	(all drought	(drought exceedances
Reservoir Name	Segment ID	(no drought)	removed)	removed)
Lake Cypress Springs	0405	not supporting	not supporting	fully supporting
Hubbard Creek Reservoir	1233	not supporting	fully supporting	fully supporting
White River Lake	1240	not supporting	not supporting	fully supporting
Lake Coleman	1419	not supporting	fully supporting	fully supporting
Choke Canyon Reservoir	2116	not supporting	insufficient data (TN)	insufficient data (TN)

	sample	sample count (all	sample count (drought exceedances			Chl-a median (all	Chl-a median (drought exceedances
Reservoir Name	count	drought removed)	removed)	Criteria Chl-a	Chl-a median	drought removed)	removed)
Lake Cypress Springs	24	15	19	17.54	18	17.9	16.4
Hubbard Creek Reservoir	15	8	10	5.61	5.89	5.08	3.0
White River Lake	22	10	12	13.85	15.5	14.15	13.3
Lake Coleman	15	8	10	6.07	6.85	4.8	4.53
Choke Canyon Reservoir	28	15	17	12.05	14.55	10.8	10.8

Lake Cypress Springs - 0405

Choke Canyon Reservoir - 2116

Bardwell Reservoir - 815

Drought Options: Water Quality Data

- How should we evaluate if and what water quality data should be excluded?
 - Overall data trends
 - Additional information and best professional judgement
 - Do not take water quality data into consideration
 - Other options?

Outline

- Revisit Drought Severity Index Scores (DSI)
- Incorporating drought evaluations
 - Methods tested and used for 2016 Integrated Report
- Drought in reservoirs
 - Discussion items
 - Onset of drought
 - Conclusion of drought
 - Data exclusion for drought period
 - Water quality data evaluation
- Drought in large rivers

Drought in Rivers

- Small rivers and streams are already evaluated during low-flow conditions or are dry during drought conditions
- What methods should be used to evaluate drought in large rivers?
 - Statistics
 - Naturally small sample size due to monitoring schedule
 - Lower sample size when exceedances are removed
 - Values have wide range (focus is on impairments)
 - Graph visualizations
 - Flow variations

Drought in Rivers

- Factors to consider
 - Water quality
 - DSI
 - Flow
 - Other parameters?
- Examples of preliminary ANOVAs and graphs for new impairments in 2016 IR

Frio River - Chloride

ANOVA significant; Tukey's did not show individual significance

Frio River - 2117 - Chloride

Flow and Chloride (log10)

Sulphur River - Bacteria

Sulphur River - 303 - Bacteria

E.coli and Flow (log 10)

Elm Fork Trinity River - Sulfate

Elm Fork Trinity River - 0822 - Sulfate

Flow (cfs) and Sulfate (mg/L)

Salt Fork Brazos River – TDS and Chloride

Salt Fork of the Brazos River - 1238 - TDS and Chloride

Drought in Rivers

- How should we evaluate if and what water quality data should be excluded?
 - Overall data trends
 - Additional information and best professional judgement
 - Consider gaging stations and associated flows
 - Do not take water quality data into consideration
 - Other options?

Drought Methods

- Methods continue to be developed
 - Is there a better method that we have not explored?
 - Can the same or similar method be applied to rivers as we used for reservoirs?
 - Can one method be applied to all water quality parameters for the same waterbody type?
 - Dissolved Solids
 - Bacteria
 - pH

Evaluating Drought Assessments on Water Quality

THOUGHTS SUGGESTIONS QUESTIONS?

sarah.whitley@tceq.texas.gov