Application of Regionalized Benthic Indices of Biotic Integrity (IBI) in the Integrated Report for Clean Water Act Sections 305(b) and 303(d)

Bill Harrison & Lauren Pulliam

Texas Commission on Environmental Quality Surface Water Quality Monitoring Team

Guidance Advisory Workgroup Meeting May 20, 2019

Integrated Report Bioassessments

- Presentation Outline:
 - Overview of bioassessment process
 - Example Datasets
 - Comparison of Statewide and Regionalized Benthic Index of Biotic Integrity (IBI) 2018 IR Results

Bioassessment Process

Locate and Review Data

- Collectors include CRP Partners, TCEQ Regional Staff, TPWD
- SWQMIS, Coordinated Monitoring Schedule

What is required?

- Fish assemblage
- Benthic macroinvertebrate assemblage
- Physical Habitat Habitat Quality Index (HQI)

Data considerations:

- Sample dates within Period of Record
- Adequate benthic kicknet effort
- Minimum number of benthic individuals collected (approx. 140-210)
- Sufficient fish shocking and seining effort (15 minutes/6 seine hauls – 60 meters)
- Complete physical habitat assessment & HQI Score
- Resolve taxonomic issues
- Station/Assessment Unit (AU) relationship
- Station representative of aquatic habitat in the AU

Aquatic Life Use Categories

- Exceptional, High, Intermediate, Limited
 - Assigned to each classified and some unclassified water bodies
 - Appendix A and D in Texas Surface Water Quality Standards
- Presumed ALU for unclassified streams:
 - Perennial High
 - Intermittent with Perennial Pools – Limited
 - Intermittent Minimal

Bioassessment Process – Index Period

- All bioassessment sampling for freshwater streams must be conducted during the index period
 - Exceptions are RWAs (carried out as needed) and special studies (specific seasonal objectives)
- The index period was established to:
 - Minimize year-to-year variability resulting from natural events
 - Maximize gear efficiency and accessibility of targeted assemblages
 - Ensure that a portion of the samples is collected during critical low-flow and temperature conditions
- Critical period: July 1–September 30 → minimum streamflows, maximum temperatures, and minimum dissolved oxygen concentrations
 - Collecting a portion of the samples during critical conditions helps determine if criteria set for the designated uses are being met and maintained when streamflow is at or above critical low flow
 - Assumption is that criteria met under these conditions would be met during other seasons when expected streamflow is greater and water temperatures are lower

Jan	Feb		Mar 15	Apr	May	Jun	Jul 1	Aug	Sep 30	Oct 15	Nov	Dec
	Non-C						Cı	ritical Pe	riod	Non- Critical Period	Ę	5

Temporally Representative Samples

Two bioassessment events

- Both should be collected in the index period
- One of the two events in critical period
- Ideally both samples from same index period
 - Reduces the probability of missing effects of disturbance in the latter portion of the index period

More than two bioassessment events

- Study should be two or more years with two events or more per year
- More than two samples collected during the same year may be considered if:
 - All events should occur during the index period with 1/2 to 2/3 of the events occurring during critical period
 - At least one month between samples
 - Samples collected during periods of moderate to low flow

Jan	Feb	Mar 15	Apr	May	Jun	Jul 1	Aug	Sep 30	Oct 15	Nov	Dec
		No	on-Critica	l Period		Cr	itical Pe	riod	Non- Critical Period	(5

Bioassessment Process - CV

- Recalculate fish and benthic IBIs
 - Compare recalculated IBI values to reported values
 - Calculate average IBIs and apply Coefficient of Variation (CV) for each Assessment Unit
 - Compare resulting CV corrected average to Aquatic Life Use (ALU) point score ranges to determine if designated or presumed ALU is met

Ecoregion/Aq	Ecoregion/Aquatic Life Use Category Specific Coefficients of Variation (CV) for Use with Fish.												
Aquatic Life													
Use	Ecoregion												
	24	25,26	27,29,32	30	31	33,35	34						
Exceptional	2.22% (2)	2.70% (1)	6.28% (6)	4.41% (9)	1.39% (4)	3.87% (6)	-						
High	6.13% (46)	-	6.94% (115)	5.05% (138)	12.27% (4)	5.65% (276)	6.04% (9)						
Intermediate	7.6% (25)	4.1% (5)	6.38% (164)	7.46% (41)		5.86% (211)	3.3% (6)						
Limited	8.25% (42)	14.29% (1)	12.96% (75)	-		6.75% (87)	3.85% (1)						
Samples are co	ollected accord	ing to sampling	protocols descr	ibed in TCEO S	urface Water O	mality Monitoria	ng Procedures						

Samples are collected according to sampling protocols described in TCEQ Surface Water Quality Monitoring Procedures, Volume 2. Each CV represents the average of all ecoregion/Aquatic Life Use Category specific pairwise comparisons used to derive the CV's. The number of pairwise comparisons used to calculate the average is given in parentheses.

Sample Size and Assessment Outcome

	Hee				Data Qualifier				
Assessment	Use Attainment		Inadequate Data (ID)		Limited Data (LD)	Adequate Data (AD)			
Method	or Concern Assessment	Minimum Sample Size	Level(s) of Parameter Support	Minimum Sample Size	Level(s) of Parameter Support	Minimum Sample Size	Level(s) of Parameter Support		
Habitat	Concern Assessment	0	Not Assessed (NA)	1	Screening Level Concern (CS) No Concern (NC)	2	Screening Level Concern (CS) No Concern (NC)		
Macrobenthic community	Use Attainment	0	Not Assessed (NA)	1	Use Concern (CN) No Concern (NC)	2	Nonsupport (NS) Use Concern (CN) Fully Supporting (FS)		
Fish community	Use Attainment	0	Not Assessed (NA)	1	Use Concern (CN) No Concern (NC)	2	Nonsupport (NS) Use Concern (CN) Fully Supporting (FS)		

Decision Matrix for Integrated Assessments of Aquatic Life Use (ALU) Support

Overall ALU Support based on Bioassessment, Dissolved Oxygen, Toxics in Water, and Ambient Toxicity in Water. For three or more lines of evidence, unless otherwise illustrated here, nonattainment of any line of evidence discussed here results in nonsupport of the ALU.

			Aquatic Life Use	Life Use Support Attainment				
	Dissolved Oxy	gen Data	Toxics in Wate	r Testing	Habitat	t Assessment		
Bioassessment Data	Meets Criteria**	DO Not Meet Criteria	All Meet Criteria	Do Not Meet Criteria	Meets Screening Criteria	Does Not Meet Screening Criteria (reported as a concern)		
Benthic macroinvertebrate and fish bioassessments done and both attain designated ALU	Fully Supported	Not Supported*	Fully Supported	Not Supported	Fully Supported	Fully Supported *		
Benthic macroinvertebrate and fish bioassessments done and one of the two does not attain designated ALU	Fully Supporting with a Concern for fish or benthics	Not Supported	Fully Supporting with a Concern for fish or benthics	Not Supported	Fully Supporting with a Concern for fish or benthics	Fully Supporting with a Concern for fish or benthics		
Both benthic macroinvertebrate and fish bioassessment done and both indicate non-attainment of designated ALU	Not Supported	Not Supported	Not Supported	Not Supported	Not Supported	Not Supported		
Only fish bioassessment done and indicates nonattainment of designated ALU	Not Supported	Not Supported	Not Supported	Not Supported	Not Supported	Not Supported		
Only benthic macroinvertebrate bioassessment done and indicates nonattainment of designated ALU	Not Supported	Not Supported	Not Supported	Not Supported	Not Supported	Not Supported		
Only fish bioassessment collected. Fish indicates attainment of designated ALU***	Fully Supported	Not Supported*	Fully Supported	Not Supported	Fully Supported	Fully Supported *		
Only benthic macroinvertebrate bioassessment done and indicates attainment of designated ALU***	Fully Supported	Not Supported*	Fully Supported	Not Supported	Fully Supported	Fully Supported *		
Bioassessment data not available	Fully Supported	Not Supported	Fully Supported	Not Supported	Fully Supported	Not Supported**		

Both fish and macroinvertebrate samples are required to make an ALU attainment determination for 305(b)/303(d) assessment purposes. In certain cases where it is only possible to collect one or the other, the ALU determination may be made based on only fish or benthic macroinvertebrates according to the framework presented in this table. Proper justification is required for why only one type of community was sampled.

^{*} Long-term bioassessment monitoring will be conducted to determine if adverse effects to the fish and/or benthic macroinvertebrates are detected.

^{**} When the habitat index indicates nonsupport, the habitat attainment status is reported as a concern.

^{***} When it is only possible, or appropriate (e.g. due to habitat limitations), to sample either the fish or benthic macroinvertebrate assemblage then the results will be evaluated for support. If samples are collected for only one assemblage but it would be possible or appropriate to sample both the fish and benthic macroinvertebrate assemblage then results will be evaluated as a concern.

Example Dataset No. 1

Criterion: ≥ 20

Statewide High ALU Habitat

Stn. ID	AU ID	Date	Presumed Use	Eco- region	Fish Regional IBI Score	ALU Indicated by Regional Fish IBI Score	Statewide Benthic IBI Score	ALU Indicated by Statewide Benthic IBI Score	N	HQI	ALU Indicated by HQI Score
00000	0000_01	9/15/2010	Н	30	51	Н	41	E	232	24	Н
00000	0000_01	3/16/2010	Н	30	50	Н	35	Η	155	24	Н
00000	0000_01	3/16/2011	Н	30	49	Н	35	Н	228	23.5	Н
00000	0000_01	7/25/2011	Н	30	48	Н	35	Н	132	21.5	Н
				Average	49.5	Н	36.5	E		23.3	Н
	ned High . outine Flo	ALU based ow Data		CV	0.0505		0.0647				
				CV*AVG	2.49975		2.36155				
	High ALU on: <u>></u> 42	Fish		(CV*AVG) + AVG	51.99975	E	38.86155	E			
	vide High <i>i</i> on: <u>></u> 29	ALU Benthio		Sample Std. Dev.	1.2909944		3				

Sample

 CV

0.0260807

0.08219

10

Ecoregion/Aquatic Life Use Category Specific Coefficients of Variation (CV) for Use with Fish.												
Aquatic Life Use	Ecoregion											
	24	25,26		27,2	29,32	30	31	33,3	33,35			
Exceptional	2.22% (2)	2.70%	(1)	6.28	8% (6)	4.41% (9)	1.39% (4)	3.87	1% (6)	-		
High	6.13% (46)	-		6.94	4% (115)	5.05% (138	3) 12.27% (4	4) 5.65	5% (276)	6.04	1% (9)	
Intermediat	= (0/ (05)	4.10/		(26	207 (4.64)	= 4607 (41)		5.04		2 20		
e	2 7.6% (25) 4.1%			6.38	8% (164)	7.46% (41)		5.86	5% (211)	3.3%	% (6)	
Limited	8.25% (42)	14.29%	% (1)	12.9	96% (75)			6.75	5% (8 7)	3.85	5% (1)	
	11ttu 0.23 /0 (42) 14.25 /0 (1											
			Avera	ige	49.5	н	36.5	E		23.3	Н	
Presumed Hig on routine	gh ALU based Flow Data	ł k	CV		0.0505		0.0647					
			CV*A\	VG	2.49975		2.36155					
_	ER 30 High ALU Fish Criterion: >42			VG) ′G	51.99975	E	38.86155	E				
Statewide High ALU Benthic Criterion: <u>></u> 29		ı ic	Sample Std. Dev.		1.2909944		3					
_	Statewide High ALU Habitat Criterion: > 20		Samp CV		0.0260807		0.08219					
1											11	

Ecoregion/Aquatic Life Use Category Specific Coefficients of Variation (CV) for Use with Benthic Macroinvertebrates. **Aquatic Life Use | Ecoregion** 33, 35 34 **30** 31 27, 29, 32 **ALU Indicated** HQI by HQI **Exceptional** 6.47% (6) 4.45% (6) Score High 6.90% (1) 6.28% (56) 5.09% (9) 5.22% (24) 5.95% (40) 24 Н 24 Н **Intermediate** 6.06% (23) 6.43% (13) 8.76% (2) 8.98% (76) 6.31% (7) 23.5 Н Limited 9.78% (5) 7.42% (12)

21.5 Н 49.5 36.5 23.3 Average Н Ε Н **Presumed High ALU based** CV 0.0505 0.0647 on routine Flow Data CV*AVG 2.49975 2.36155 **ER 30 High ALU Fish** (CV*AVG) 51.99975 Ε 38.86155 Ε + AVG **Criterion: >42 Statewide High ALU Benthic** Sample

3

0.08219

1.2909944

0.0260807

Std. Dev.

Sample

CV

Criterion: >29

Criterion: > 20

Statewide High ALU Habitat

Example Dataset No. 1

Stn. ID	AU ID	Date	Presumed Use	Eco- region	Fish Regional IBI Score	ALU Indicated by Regional Fish IBI Score	Statewide Benthic IBI Score	ALU Indicated by Statewid e Benthic IBI Score	N	HQI	ALU Indicated by HQI Score
00000	0000_01	9/15/2010	Н	30	51	Н	41	E	232	24	Н
00000	0000_01	3/16/2010	Н	30	50	Н	35	Н	155	24	Н
00000	0000_01	3/16/2011	Н	30	49	Н	35	Н	228	23.5	Н
00000	0000_01	7/25/2011	Н	30	48	Н	35	Н	132	21.5	Н
				Average	49.5	н	36.5	E		23.3	Н
	ned High outine Flo	ALU based ow Data		CV	0.0505		0.0647				
				CV*AVG	2.49975		2.36155				
Criterio	ER 30 High ALU Fish Criterion: <u>></u> 42				51.99975	E	38.86155	E			
Criterio Statew	on: <u>≥</u> 29	ALU Benthio		Results	Ful	lly suppo	orting fish orting ben ofor habit	thics,			13

Example Dataset No. 2

ER 33 Intermediate ALU Fish

Statewide Intermediate ALU

Statewide Intermediate ALU

Benthic Criterion: ≥22

Habitat Criterion: ≥ 14

Criterion: \geq 36

Stn. ID	AU ID	Date	Designated U	Eco- region	Fish Regional IBI Score	Indicated by Regional Fish IBI Score	Statewide Benthic IBI Score	Indicated by Statewide Benthic IBI Score	N	HQI	ALU Indicated by HQI Score
00001	0000_02	3/30/2010	I	33	44	Н	19	L	204	19.5	Н
00001	0000_02	7/14/2010	I	33	48	Η	20	L	219	17.5	I
00002	0000_02	3/30/2010	I	33	40	I	16	L	214	19.5	Н
00002	0000_02	7/14/2010	I	33	45	Н	21	L	219	18	I
			Average	44.25	н	19	L		18.6	I	
Designated Intermediate ALU based on TSWQS Appendix D			CV	0.0565		0.0742					

2.500125

46.75013

3.304038

0.074667

Н

ALU

1.4098

20.4098

2.160247

0.113697

L

14

ALU

Average

CV

CV*AVG

(CV*AVG)
+ AVG

Sample
Std. Dev.

Sample

CV

Ecoregion/Ac	e Categ	ory S	pecif	ic Coefficio	ents of Varia	ation (CV) fo	or Us	e with	Fish.				
Aquatic													
Life Use	Ecoregion	25.26		27.0	0.22	20	21		22.25		24		
	24	25,26		21,2	29,32	30	31		33,35		34		
			(4)			4.4407 (0)	1.000/ //		• • • • • •				
Exceptional	2.22% (2)	2.70%	(1)	6.28	8% (6)	4.41% (9)	1.39% (4	.)	3.87%	<u>(6)</u>	-		
High	6.13% (46)	-		6.94	<u> (115) </u>	5.05% (138	<u>(a) 12.27% (</u>	(4)	5.65%	<u>(276</u>	6.0	4% (9)	
Intermediat													
e	7.6% (25) 4.1%		(5) 6.38°		3% (164)	7.46% (41)			5.86%	<i>(</i> 211)	3.3% (6)		
	7.0 /0 (23) 4.1 /0			0.00	70 (101)	7110 / 0 (11)	_		2.0070	(=11	<u> </u>	70 (0)	
T imaite d	9.250/ (42)	14 200	/ (1)	12.0	A(0/ (75)			Т	<i>(75</i> 0/	(97)	20	5 0/ (1)	
Limited	8.25% (42)	14.29%	<u>′o (1)</u>	12.9	06% (75)	-			<u>6.75%</u>	(87)	3.8	<u>5% (1)</u>	
			Aver	200	44.25	н	19		L		18.6		
			Avei	age	44.23	n	19				10.0	<u> </u>	
•	Intermediate												
	on TSWQS		C/	/	0.0565		0.0742						
Appe	ndix D		CV*	N/C	2 500125		1 4000						
ED 22 Intown	odioto Alli Fi	a la			2.500125		1.4098						
	ER 33 Intermediate ALU Fish Criterion: > 36		(CV*AVG) + AVG		46.75013	Н	20.4098		L				
Statewide Intermediate ALU Benthic Criterion: >22		LU	Sam Std. I	-	3.304038		2.160247						
Statewide Int Habitat Criter		LU	Sam C\		0.074667		0.113697						15

2.500125

46.75013

3.304038

0.074667

Н

1.4098

20.4098

2.160247

0.113697

L

CV*AVG

(CV*AVG)

+ AVG

Sample

Std. Dev.

Sample

CV

Appendix D

ER 33 Intermediate ALU Fish

Statewide Intermediate ALU

Statewide Intermediate ALU

Benthic Criterion: >22

Habitat Criterion: > 14

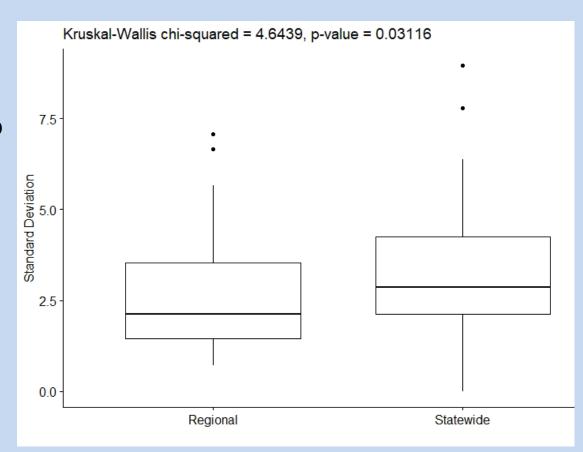
Criterion: > 36

ALU

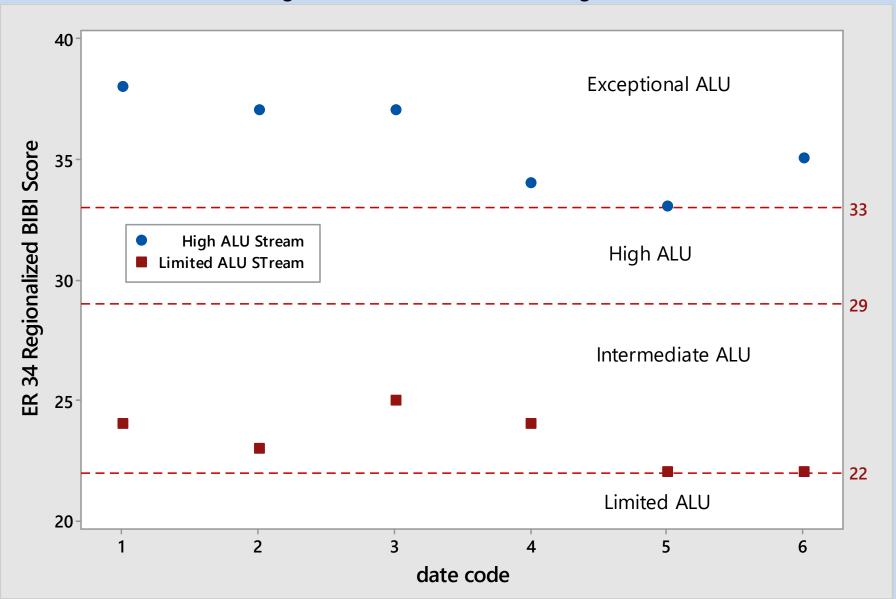
by HQI **Score**

Н

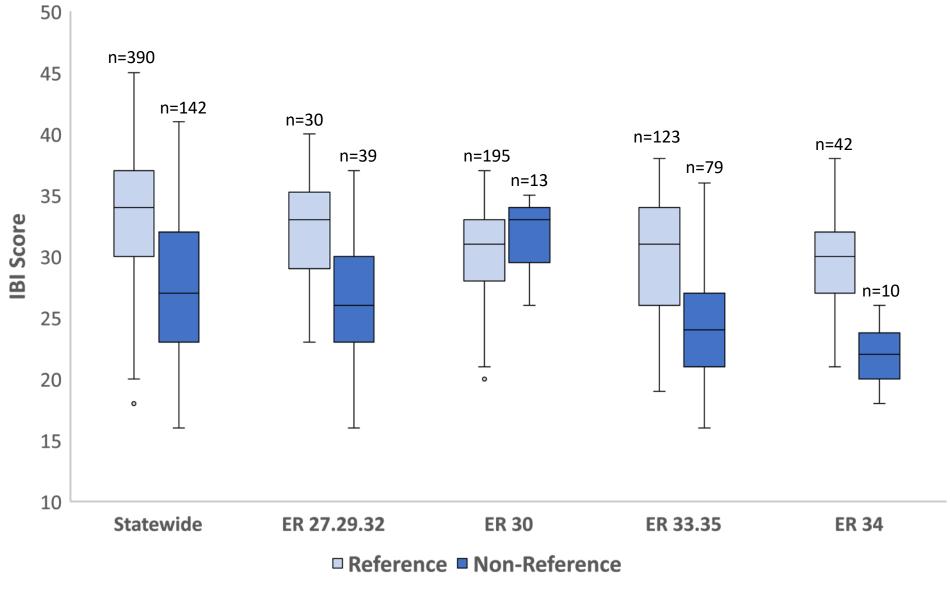
Н

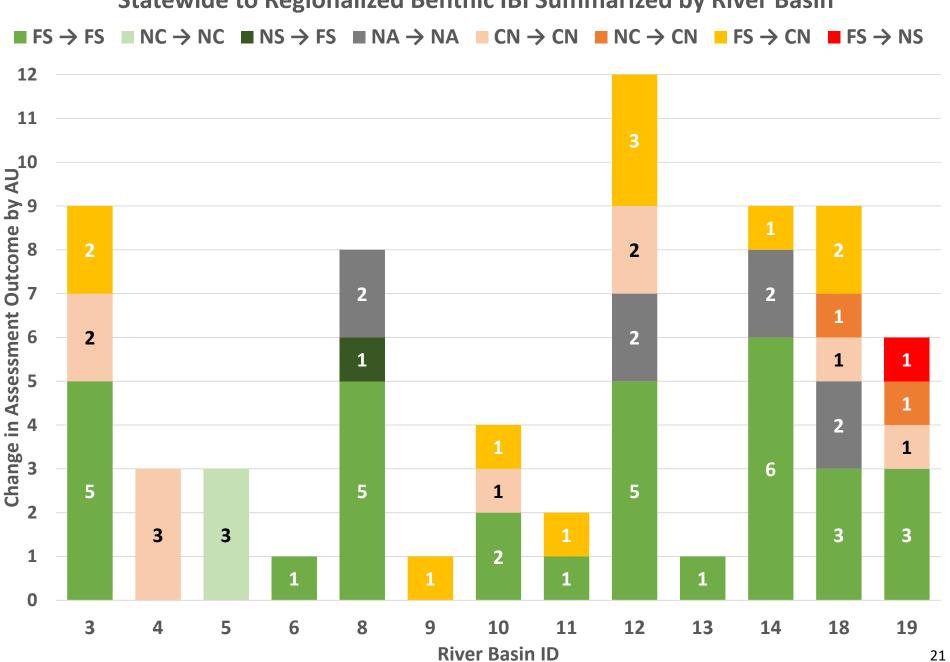

16

Example Dataset No. 2


Stn. ID	AU ID	Date	Designated Use	Eco- region	Fish Regional IBI Score	ALU Indicated by Regional Fish IBI Score	Statewide Benthic IBI Score	ALU Indicated by Statewide Benthic IBI Score	N	HQI	ALU Indicated by HQI Score		
00001	0000_02	3/30/2010	I	33	44	Ξ	19	L	204	19.5	Н		
00001	0000_02	7/14/2010	ı	33	48	Н	20	L	219	17.5	I		
00002	0000_02	3/30/2010	I	33	40	I	16	L	214	19.5	Н		
00002	0000_02	7/14/2010	I	33	45	Н	21	L	219	18	I		
				Average	44.25	Н	19	L		18.6	ı		
_	nated Inte based on Appendia	TSWQS		CV	0.0565		0.0742						
				CV*AVG	2.500125		1.4098						
	ER 33 Intermediate ALU Fish			(CV*AVG) + AVG	46.75013	н	20.4098	L					
Statew	Criterion: <u>></u> 36 Statewide Intermediate ALU Benthic Criterion: <u>></u> 22				Results: Fully supporting fish, Not supporting benthics (reported as a concern,								
	Statewide Intermediate ALU Habitat Criterion: > 14				rather than non-support because fish are FS), No concern for habitat								

Application of Regionalized Benthic IBIs

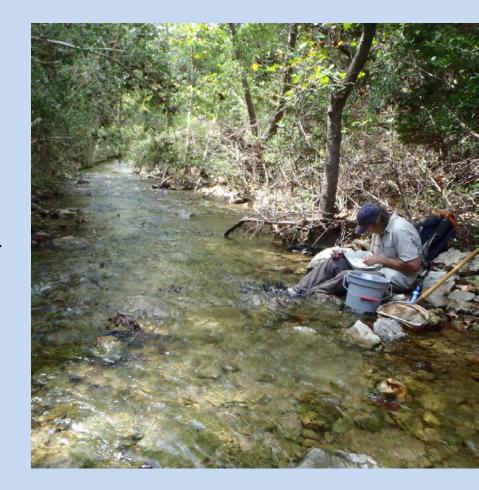

- Comparison using 2018 IR results
 - Recalculated each IBI score using regionalized metric sets
 - Applied CV correction to resulting mean IBI score and compared to ALU point score ranges
- Results:
 - 13 new use concerns
 - 6 are within the 2020
 IR Period of Record
 - 1 new non-supporting
 - 1 new fully supporting
 - Generally lower variability in regionalized datasets


Scatterplot of ER 34 Regionalized IBI scores for 6 sample events at a stream with designated High ALU and a stream with a designated Limited ALU as example of the ability of the regionalized IBI to distinguish between streams of differing classes.

Comparison of Regionalized and Statewide IBI Scores from Reference and Non-Reference Datasets

Change in 2018 IR Assessment Outcome from Statewide to Regionalized Benthic IBI Summarized by River Basin

Bioassessment Resources


- TCEQ Surface Water Quality Monitoring Procedures, Volume 2
 - https://www.tceq.texas.gov/publications/rg/rg-416
 - Chapter 2 Biological monitoring requirements
 - Chapter 3 Freshwater fish collection methods
 - Chapter 5 Freshwater benthic macroinvertebrate collection methods
 - Chapter 9 Physical habitat data collection methods
 - Appendix B IBI metric sets for fish and benthic macroinvertebrates
 - Appendix C Data collection forms and HQI metric set
 - Appendix D Biological Monitoring Fact Sheets
- Draft 2018 Guidance for Assessing and Reporting Surface Water Quality in Texas
 - https://www.tceq.texas.gov/assets/public/waterquality/swqm/asses/gawg/2018/2018 guidance.pdf

22

- Chapter 3 Fish and benthic community assessment methods
- Appendix D Application of the CV to determine aquatic life use attainment

Next Steps

- Consider feedback from the 2020 Guidance Advisory Workgroup meeting
- Apply regionalized benthic IBIs to 2020 IR bioassessment data
 - Statewide metric set will be used for ER 25/26 and ER 31 – regionalized metrics still being developed for these ecoregions
- Questions, Comments, Concerns?
- <u>Lauren.Pulliam@tceq.texas.gov</u>

