Spatial Patterns in Texas Lotic Fish Communities

MICHAEL LANE*, MUSTAFA MOKRECH, STEPHEN CURTIS, JENNY OAKLEY, AND GEORGE GUILLLEN

School of Science and Computer Engineering, University of Houston–Clear Lake, Houston, TX 77058
Environmental Institute of Houston, University of Houston–Clear Lake, Houston, TX 77058
Factors Impacting Rivers and Streams

- Industrialization, urbanization, and agriculture
 - Reservoir construction
 - Increased freshwater diversions
 - Additional wastewater loads
 - Pollution
 - Dredging
 - Saline intrusions
 - Proliferation of exotic species
The National Rivers and Streams Assessment

- First implemented by the EPA in 2008-2009
 - 55% of the nation’s rivers and streams did not support healthy populations of aquatic life (1)

- Second NRSA project completed 2013-2014
 - The Environmental Institute of Houston (EIH) conducted these surveys across Texas in collaboration with TCEQ
Expectations

Fish Communities
- Vary considerably across Texas
- Shift towards greater evenness in statewide diversity\(^{(1)}\)

Longitudinal Gradient
- Exists along western Gulf slope drainages\(^{(2)}\)

Land use/Land cover
- Land disturbances (i.e. development and agriculture) negatively affect fish communities\(^{(3)}\)

\(^{(1)}\) Anderson et al. 1995, \(^{(2)}\) Conner & Suttkus 1986, \(^{(3)}\) Allan 2004
Objectives

- Describe fish community metrics in Texas watersheds and review historic trends
- Evaluate potential longitudinal gradients observed across sample sites
- Assess the relationship between fish community metrics and land use/land cover
Site Selection

- Sampling frame derived from National Hydrography Dataset (NHD); randomly selected sites classified as “boatable” or “wadeable”
- Each site was located with GPS coordinates determined by the EPA
Sampling Methods

- Fish Community
- Benthic macroinvertebrates and periphyton
- Streamflow
- Water quality
- Physical Habitat
 - Instream
 - Riparian
 - Slope & Bearing
Boatable

Small Non-wadeable River: Channel Width < 12.5 m

Medium Non-wadeable River: Channel Width 12.5 m to 25 m

Large Non-wadeable River: Channel Width > 25 m

Wadeable

Small Wadeable Stream: Channel Width < 12.5 m

Medium Wadeable Stream: Channel Width 12.5 m to 25 m

Large Wadeable Stream: Channel Width > 25 m

*At medium & large rivers, if < 500 individuals have been collected after minimum sampling reach, continue fishing to next transect (alternating banks) until 500 individuals are collected or Transect K is reached. (20 subreaches fished)
Fish Community Metrics

- Species richness and Shannon’s diversity were computed for each sample site

- Indexes of biotic integrity (IBIs) adjusted for each ecoregion were calculated for each site

(1) Linam et al. 2002
Relative proportions of families were computed for each drainage and compared:

- To each other with respect to our data
- To (approximated) historical proportions from 1953 and 1986\(^{(1)}\)
Longitudinal Gradients

- Conducted regressions for species richness and diversity against longitude
 - Analyzed all sites as a whole
 - Analyzed sites separated into drainages
GIS Analysis

- Watersheds relative to each sample site were mapped using ArcGIS software.
- Upstream drainage area as well as land use/land cover (LULC) were examined for each site’s watershed.
Comparing fish communities to LULC

- Principal Component Analysis (PCA) conducted to ordinate sites and basins relative to LULC

- Percent disturbed land was regressed against fish community metrics
 - Species richness
 - Shannon’s diversity
 - Index of Biotic Integrity (%)
Community Composition

- In 51 sampling events:
 - 28,442 individuals
 - 20 families
 - 45 genera
 - 91 species

- Richness ranged from 2 to 25
- Diversity ranged from 0.37 to 2.70
Index of Biotic Integrity

<table>
<thead>
<tr>
<th></th>
<th>Sabine</th>
<th>Neches</th>
<th>Trinity</th>
<th>Brazos</th>
<th>Colorado</th>
<th>SanGuad</th>
<th>Nueces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited</td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exceptional</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Index of Biotic Integrity

![Box plot of IBI (%) for different basins](image.png)

- **n=3** for Sabine, Neches, Trinity, Brazos, Colorado, SanGuad, Nueces
- **n=5** for Sabine, Neches, Trinity, Brazos, Colorado, SanGuad
- **n=9** for Trinity, Brazos, Colorado, SanGuad, Nueces
- **n=14** for Trinity, Brazos, Colorado, SanGuad
- **n=10** for Trinity, Brazos, Colorado, SanGuad, Nueces
- **n=5** for Trinity, Brazos, Colorado, SanGuad, Nueces
- **n=4** for Trinity, Brazos, Colorado, SanGuad

10/15/2015
Historical Comparison

West

East

Relative proportion of fish families in different rivers:
- Sabine
- Neches
- Trinity
- Brazos

Families include:
- Aphredoderidae
- Atherinopsidae
- Catostomidae
- Centrarchidae
- Cichlidae
- Clupeidae
- Cyprinidae
- Cyprinodontidae
- Ictaluridae
- Marine families
- Percidae
- Poeciliidae

Scatterplot of Richness vs Longitude

N = 51
$R^2 = 0.044$
P = 0.140
Scatterplot of Richness vs Longitude

- **Basin**
 - N = 10
 - $R^2 = 0.561$
 - $P = 0.013$

- **Colorado**
 - N = 14
 - $R^2 = 0.363$
 - $P = 0.023$
PCA: LULC

The figure shows a Principal Component Analysis (PCA) plot for LULC (Land Use/Land Cover) categories. The plot is based on the first two principal components (PC I and PC II), with PC I accounting for 26.5% of the variance and PC II accounting for 20.4% of the variance.

The LULC categories represented include:
- Shrubland
- Developed
- Forest
- Wetlands
- Water
- Barren
- Agriculture
- Herbaceous

The categories are differentiated by color and shape, with labels indicating the type of land use and the specific region or river basin they represent.
Land Disturbance

![Bar chart showing land disturbance in different regions]

- **Sabine**: Undisturbed - 80%, Disturbed - 20%
- **Neches**: Undisturbed - 90%, Disturbed - 10%
- **Trinity**: Undisturbed - 70%, Disturbed - 30%
- **Brazos**: Undisturbed - 50%, Disturbed - 50%
- **Colorado**: Undisturbed - 30%, Disturbed - 70%
- **SanGuad**: Undisturbed - 60%, Disturbed - 40%
- **Nueces**: Undisturbed - 100%

Percent (%)

- Undisturbed
- Disturbed
Diversity Regression

Diversity (H)

% Disturbed Land

R^2 = 0.108
P = 0.020
Summary

Fish community metrics

- Richness: 2-25, Diversity: 0.37-2.70
- Examining diversity across our sample sites indicates a shift towards evenness in statewide diversity
- Variable findings in regards to historical trends
Summary

Longitudinal gradients

- Significant longitudinal gradients observed in Brazos and Colorado drainages
- Attributable to greater longitudinal span and potentially the distribution of sample sites across a region of steadily shifting topography
Summary

Land use/land cover

- Sabine/Neches: forested, wetlands, open water
- Trinity/Brazos: agriculture, development
- Colorado/Nueces: arid shrubland
Future Work

- As observed in other studies\(^1,2\), LULC will be analyzed within a buffer of rivers/streams

- Physical habitat data collected at sites:
 - Mesohabitat
 - Riparian zones

- Additional analysis required to examine:
 - Hydrology
 - Gear bias
 - Historical data

(1) Lammert & Allan 1999 (2) Diana et al. 2006
Acknowledgements

We would like to especially thank

- The EPA and TCEQ for funding and project oversight
 - Robert Cook
 - Christine Kolbe
 - Michele Blair
- EIH staff, students, and interns for site reconnaissance, trip preparation, and many long, hot days collecting data in the field.
Questions?
National Wetland Condition Assessment 2016

- EIH will be conducting these surveys this coming summer – those interested contact:
 - Jenny Oakley – oakley@uhcl.edu