<u>MIRASOL SPRINGS</u> <u>RANCH</u>

2023 TLAP

Submittal Date: April 28th, 2023

WATER RECLAMATION FACILITY

PERMIT NUMBER: NEW PERMIT

APP000001

TEXAS LAND APPLICATION PERMIT PACKET for the MIRASOL SPRINGS RANCH WATER RECLAMATION FACILITY

Prepared for:

Mirasol Springs Ranch c/o Clancy Utility Holdings, LLC 4143 Maple Avenue, Suite 400 Dallas, TX 75219

Prepared by:

Murfee Engineering Company, Inc. Texas Registered Firm No. F-353 1101 Capital of Texas Highway South Building D, Suite 110 Austin, Texas 78746 (512) 327-9204

April 2023

TABLE OF CONTENTS

- Domestic Wastewater Permit Application Checklist
- Administrative Report 1.0
- Administrative Report 1.1
- Technical Report 1.0
- Technical Report 1.1
- Worksheet 3.0 Land Disposal of Effluent
- Worksheet 3.3 Subsurface Area Drip Dispersal System (SADDS) Land Disposal of Effluent
- Worksheet 6.0 Industrial Waste Contribution
- Worksheet 7.0 TCEQ Class V Injection Well Inventory/Authorization Form

ATTACHMENTS

- Attachment 1 Core Data Form
- Attachment 2 Original full-size USGS Topographic Map
- Attachment 3 Original Photographs
- Attachment 4 Buffer Zone Map
- Attachment 5 Treatment Process Description
- Attachment 6 Process Flow Diagram
- Attachment 7 Site Drawing
- Attachment 8 Sludge Transport Letter and Sludge Management Plan
- Attachment 9 Justification for Permit
- Attachment 10 Design Calculations
- Attachment 11 FEMA Firm Map(s) #48209C0025F Sep 2,2005 ; #48453C0360H Sep 26, 2008
- Attachment 12 Annual Cropping Plan
- Attachment 13 USGS Well Map
- Attachment 14 Well Data Table
- Attachment 15 Well Reports
- Attachment 16 Groundwater Quality Technical Report
- Attachment 17 USDA Soil Survey Map
- Attachment 18 Recharge Feature Plan
- Attachment 19 Soil Evaluation Plan and Soil Sampling and Testing
- Attachment 20 Site Preparation Plan
- Attachment 21 Deed Recorded Easement
- Attachment 22 Wind Rose
- Attachment 23 Affected Landowners Map
- Attachment 24 Slope Exhibit
- Attachment 25 Public Involvement Plan

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT: Clancy Utility Holdings, LLC

PERMIT NUMBER: WQ0016335001

Indicate if each of the following items is included in your application.

ът

- 7

	Y	Ν
Administrative Report 1.0	\boxtimes	
Administrative Report 1.1	\boxtimes	
SPIF		
Core Data Form	\boxtimes	
Public Involvement Plan Form	\boxtimes	
Technical Report 1.0	\boxtimes	
Technical Report 1.1	\boxtimes	
Worksheet 2.0		\boxtimes
Worksheet 2.1		\boxtimes
Worksheet 3.0	\boxtimes	
Worksheet 3.1		\boxtimes
Worksheet 3.2		\boxtimes
Worksheet 3.3	\boxtimes	
Worksheet 4.0		\boxtimes
Worksheet 5.0		\boxtimes
Worksheet 6.0	\boxtimes	
Worksheet 7.0	\boxtimes	

Original USGS Map	\boxtimes	
Affected Landowners Map	\boxtimes	
Landowner Disk or Labels	\boxtimes	
Buffer Zone Map	\boxtimes	
Flow Diagram	\boxtimes	
Site Drawing	\boxtimes	
Original Photographs	\boxtimes	
Design Calculations	\boxtimes	
Solids Management Plan	\boxtimes	
Water Balance		\boxtimes

Y

Ν

For TCEQ Use Only

Segment Number	County
Expiration Date	Region
Permit Number	

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR A DOMESTIC WASTEWATER PERMIT ADMINISTRATIVE REPORT 1.0

If you have questions about completing this form please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 29)

Indicate the amount submitted for the application fee (check only one).

Flow <0.05 MGD ≥0.05 but <0.10 MGD ≥0.10 but <0.25 MGD ≥0.25 but <0.50 MGD ≥0.50 but <1.0 MGD ≥1.0 MGD	New/Major Amend \$350.00 ⊠ \$550.00 □ \$850.00 □ \$1,250.00 □ \$1,650.00 □ \$2,050.00 □	ment Renewal \$315.00 \$ \$515.00 \$ \$815.00 \$ \$1,215.00 \$ \$1,615.00 \$ \$2,015.00 \$
Minor Amendment (for any flow		
Payment Information:		
Check/Mone	ey Order Number: <u>565</u> ey Order Amount: <u>\$35</u> ed on Check: <u>TCEO Fir</u>	
EPAY Voucher Nu	mber:	nter text.
Copy of Payment Voucher	enclosed?	Yes 🗆
Section 2. Type of Appli	cation (Instructi	ons Page 29)
□ New TPDES	\boxtimes	New TLAP
Major Amendment <u>with</u> Ren	iewal 🗆	Minor Amendment <u>with</u> Renewal
Major Amendment <u>without</u> I	Renewal 🗆	Minor Amendment <u>without</u> Renewal
□ Renewal without changes		Minor Modification of permit
For amendments or modification	ıs, describe the prop	osed changes:
For existing permits:		
Permit Number: WQ00	to enter text.	
EPA I.D. (TPDES only): TX	re to enter text.	
Expiration Date:	nter text.	

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 29)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

Clancy Utility Holdings, LLC

(*The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.*)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>605924489</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: <u>Shaun Miller</u>

Credential (P.E, P.G., Ph.D., etc.):

Title: President

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

(*The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.*)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: <u>http://www15.tceq.texas.gov/crpub/</u>

CN:

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss):
First and Last Name:
Credential (P.E, P.G., Ph.D., etc.):
Title: Click here to enter text
varide a brief description of the need for a concernittee.

Provide a brief description of the need for a co-permittee:

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0.

Attachment: <u>Attachment 1: Core Data Form</u>

Section 4. Application Contact Information (Instructions Page 30)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A.	Prefix (Mr., Ms., Miss): <u>Mrs.</u>					
	First and Last Name: <u>Andrea Wyatt</u>					
	Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>					
	Title: <u>Project Engineer</u>					
	Organization Name: Murfee Engineering Company, Inc.					
	Mailing Address: <u>1101 S. Capital of Texas Hwy, Bldg D.</u>					
	City, State, Zip Code: <u>Austin, TX 78746</u>					
	Phone No.: <u>512-327-9204</u> Ext.: Fax No.: <u>512-327-2947</u>					
	E-mail Address: <u>awyatt@murfee.com</u>					
	Check one or both: 🛛 Administrative Contact 🖾 Technical Contact					
B.	Prefix (Mr., Ms., Miss): <u>Mr.</u>					
	First and Last Name: <u>George Murfee</u>					
	Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>					
	Title: <u>President</u>					
	Organization Name: Murfee Engineering Company, Inc.					
	Mailing Address: <u>1101 S. Capital of Texas Hwy, Bldg D.</u>					
	City, State, Zip Code: <u>Austin, TX 78746</u>					
	Phone No.: <u>512-327-9204</u> Ext.: Fax No.: <u>512-327-2947</u>					
	E-mail Address: <u>gmurfee@murfee.com</u>					
	Check one or both: 🛛 Administrative Contact 🗖 Technical Contact					

Section 5. Permit Contact Information (Instructions Page 30)

Provide two names of individuals that can be contacted throughout the permit term.

A. Prefix (Mr., Ms., Miss): <u>Mr.</u>

	First and Last Name: <u>Shaun Miller</u>
	Credential (P.E, P.G., Ph.D., etc.):
	Title: <u>President</u>
	Organization Name: <u>Clancy Utility Holdings, LLC</u>
	Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
	City, State, Zip Code: <u>Dallas, TX 75219</u>
	Phone No.: <u>214-301-4255</u> Ext.: Fax No.: <u>Not available</u>
	E-mail Address: <u>smiller@winnfamily.org</u>
B.	Prefix (Mr., Ms., Miss): <u>Mr.</u>
	First and Last Name: <u>Jim Truitt</u>
	Credential (P.E, P.G., Ph.D., etc.):
	Title: <u>Vice President</u>
	Organization Name: <u>Clancy Utility Holdings, LLC</u>
	Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
	City, State, Zip Code: <u>Dallas, TX 75219</u>
	Phone No.: (214) 301-4277 Ext.: Fax No.: Not available
	F-mail Address: itruitt@mirasolcanital.com

Section 6. Billing Information (Instructions Page 30)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix (Mr., Ms., Miss): <u>Mr.</u>
First and Last Name: <u>Jim Truitt</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>Vice President</u>
Organization Name: <u>Clancy Utility Holdings, LLC</u>
Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
City, State, Zip Code: <u>Dallas, TX 75219</u>
Phone No.: (214) 301-4277 Ext.: Fax No.: Not available
E-mail Address: <u>jtruitt@mirasolcapital.com</u>

Section 7. DMR/MER Contact Information (Instructions Page 31)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (EPA 3320-1) or maintain Monthly Effluent Reports.

Prefix (Mr., Ms., Miss): <u>Mr.</u>
First and Last Name: <u>Shaun Miller</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>President</u>
Organization Name: <u>Clancy Utility Holdings, LLC</u>
Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
City, State, Zip Code: <u>Dallas, TX 75219</u>
Phone No.: (214) 301-4277 Ext.: Fax No.: Not available
E-mail Address: <u>smiller@winnfamily.org</u>

DMR data is required to be submitted electronically. Create an account at:

https://www.tceq.texas.gov/permitting/netdmr/netdmr.html.

Section 8. Public Notice Information (Instructions Page 31)

A. Individual Publishing the Notices

Prefix (Mr., Ms., Miss): <u>Mrs.</u> First and Last Name: <u>Andrea Wyatt</u> Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u> Title: <u>Project Engineer</u> Organization Name: <u>Murfee Engineering Company</u> Mailing Address: <u>1101 S. Capital of Texas Highway, Building D</u> City, State, Zip Code: <u>Austin, TX, 78746</u> Phone No.: <u>512-327-9204</u> Ext.: <u>310</u> Fax No.: <u>512-327-2947</u> E-mail Address: <u>awyatt@murfee.com</u>

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- ⊠ E-mail Address
- □ Fax
- Regular Mail

C. Contact person to be listed in the Notices

Prefix (Mr., Ms., Miss): <u>Mrs.</u>

First and Last Name: Andrea Wyatt

Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>

Title: Project Engineer

Organization Name: <u>Murfee Engineering Company, Inc.</u>

Phone No.: <u>512-327-9204</u> Ext.: <u>310</u>

E-mail: <u>awyatt@murfee.com</u>

D. Public Viewing Information

If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.

Public building name: <u>Bee Cave Public Library; Dripping Springs Community Library</u>

Location within the building: Public Access Section/ Front Desk

Physical Address of Building: <u>4000 Galleria Pkwy, Bee Cave, TX 78738; 501 Sportsplex Dr.</u> <u>Dripping Springs, TX 78620</u>

City: <u>Bee Cave, TX; Dripping Springs, TX</u> County: <u>Travis; Hays</u>

Contact Name:

Phone No.: <u>512-757-6620; 512-858-7825</u> Ext.:

E. Bilingual Notice Requirements:

This information **is required** for **new**, **major amendment**, **minor amendment or minor modification**, **and renewal applications**.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

🗆 Yes 🖾 No

If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

□ Yes □ No

3. Do the students at these schools attend a bilingual education program at another location?

🗆 Yes 🗆 No

4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)?

□ Yes □ No

5. If the answer is yes to question 1, 2, 3, or 4, public notices in an alternative language are required. Which language is required by the bilingual program?

F. Public Involvement Plan Form

Complete the Public Involvement Plan Form (TCEQ Form 20960) for each application for a **new permit or major amendment to a permit** and include as an attachment.

Attachment: Attachment 25 - Public Involvement Plan Form

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 33)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN**

Search the TCEQ's Central Registry at <u>http://www15.tceq.texas.gov/crpub/</u> to determine if the site is currently regulated by TCEQ.

B. Name of project or site (the name known by the community where located):

Mirasol Springs Ranch Water Reclamation Facility

C. Owner of treatment facility: <u>Clancy Utility Holdings, LLC</u>

Ownership of Facility:		Public	\boxtimes	Private		Both		Federal
------------------------	--	--------	-------------	---------	--	------	--	---------

D. Owner of land where treatment facility is or will be:

Prefix (Mr., Ms., Miss):

First and Last Name: <u>Mirasol Springs, LLC</u>

Mailing Address: <u>4143 Maple Avenue, Suite 400</u>

City, State, Zip Code: Dallas, TX 75219

Phone No.: <u>214-301-4255</u> E-mail Address: <u>smiller@winnfamily.org</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>Attachment 21: Deed Recorded Easement</u>

E. Owner of effluent disposal site:

Prefix (Mr., Ms., Miss):

First and Last Name: Mirasol Springs, LLC

Mailing Address: <u>4143 Maple Avenue</u>, <u>Suite 400</u>

City, State, Zip Code: Dallas, TX 75219

Phone No.: <u>214-301-4255</u> E-mail Address: <u>smiller@winnfamily.org</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Attachment 21: Deed Recorded Easement

F. Owner of sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant):

Prefix (Mr., Ms., Miss):
First and Last Name:
Mailing Address:
City, State, Zip Code:
Phone No.: E-mail Address:
If the landowner is not the same person as the facility owner or co-applicant, attach a

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment:

Section 10. TPDES Discharge Information (Instructions Page 34)

A. Is the wastewater treatment facility location in the existing permit accurate?

🗆 Yes 🗆 No

If **no**, **or a new permit application**, please give an accurate description:

- **B.** Are the point(s) of discharge and the discharge route(s) in the existing permit correct?
 - 🗆 Yes 🗆 No

If **no**, **or a new or amendment permit application**, provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in 30 TAC Chapter 307:

<u>N/A</u>

N/A

City nearest the outfall(s):	<u>Click here to enter text.</u>	
County in which the outfal	ls(s) is/are located:	

Outfall Latitude: Longitude: Longitude:

C. Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?

□ Yes □ No

If **yes**, indicate by a check mark if:

Authorization granted 🛛 🗖 Authoriza

Authorization pending

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment:

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge.

<u>N/A</u>

Section 11. TLAP Disposal Information (Instructions Page 36)

A. For TLAPs, is the location of the effluent disposal site in the existing permit accurate?

If **no, or a new or amendment permit application**, provide an accurate description of the disposal site location:

<u>0.8 mile southwest of the intersection of Hamilton Pool Road and Stagecoach Ranch</u> <u>Road.</u>

- B. City nearest the disposal site: Bee Cave, TX
- **C.** County in which the disposal site is located: <u>Travis and Hays</u>
- **D.** Disposal Site Latitude: <u>N30°19'46"</u>; <u>N30°19'47"</u> Longitude: <u>W98°08'18"</u>; <u>W98°08'18"</u>
- E. For TLAPs, describe the routing of effluent from the treatment facility to the disposal site:

<u>Effluent will discharge from plant into an effluent holding tank. It will be pumped into</u> <u>drip irrigation fields from the effluent lift station at various on-site locations.</u>

F. For **TLAPs**, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained:

Unnamed tributary to Pedernales River.

Section 12. Miscellaneous Information (Instructions Page 37)

- A. Is the facility located on or does the treated effluent cross American Indian Land?
 - 🗆 Yes 🖾 No
- **B.** If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
 - \Box Yes \Box No \boxtimes Not Applicable

If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.

C. Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?

🗆 Yes 🖾 No

If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application:

D. Do you owe any fees to the TCEQ?

□ Yes	\boxtimes	No
-------	-------------	----

If **yes**, provide the following information:

Account number:

E. Do you owe any penalties to the TCEQ?

🗆 Yes 🖾 No

If **yes**, please provide the following information:

Enforcement order number:

Amount past due:

Amount past due:

Section 13. Attachments (Instructions Page 38)

Indicate which attachments are included with the Administrative Report. Check all that apply:

Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.

- Original full-size USGS Topographic Map with the following information:
 - Applicant's property boundary
 - Treatment facility boundary
 - Labeled point of discharge for each discharge point (TPDES only)
 - Highlighted discharge route for each discharge point (TPDES only)
 - Onsite sewage sludge disposal site (if applicable)
 - Effluent disposal site boundaries (TLAP only)
 - New and future construction (if applicable)
 - 1 mile radius information
 - 3 miles downstream information (TPDES only)
 - All ponds.

Attachment 1 for Individuals as co-applicants

Other Attachments. Please specify: <u>Attachment 21 – Deed Recorded Easement;</u> <u>Attachment 2 – Original Full-Sized USGS Topographic Map; Attachment 25 – Public</u> <u>Involvement Plan Form</u>

Section 14. Signature Page (Instructions Page 39)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: New Permit Application

Applicant: Clancy Utility Holdings, LLC

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Shaun Miller

Signatory title: <u>President</u>

Signature:	Man	m	Date: April	25,2023
	(Use blue ink)			
on this	and Sworn to before 25^{th} sion expires on the system of the system	ore me by the said day ofA eJ	Shaun Mill- Sune	er , 20 <u>23</u> . , 20 <u>25</u> .
Notary Publi	long_			[SEAL]
County, Tex	los	ur S	Notary ID My Commis	E LONG #676415-6 islon Expires 1, 2025

Section 15. Plain Language Summary (Instructions Page 40)

If you are subject to the alternative language notice requirements in <u>30 Texas Administrative Code</u> <u>\$39.426</u>, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package</u>. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS

DOMESTIC WASTEWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application. Clancy Utility Holdings, LLC (CN605924489) proposes to operate Mirasol Springs Ranch Water Reclamation Facility and disposal facilities (RN111731972). an activated sludge treatment system operated as single stage nitrification with tertiary filtration. The facility will be located 0.8 miles southwest of the intersection of Hamilton Pool Road and Stagecoach Ranch Road , in Bee Cave, Travis/Hays County, Texas 78738.

This application is for a new application to discharge at a daily average flow of 39,000 gallons per day of treated domestic wastewater. This permit will not authorize a discharge of pollutants into water in the state.

Discharges from the facility are expected to contain low levels of Biochemical Oxygen Demand (5-day), Total Suspended Solids (TSS), and Ammonia Nitrogen (NH₃-N). Domestic wastewater will be treated by an activated sludge treatment system operated as single stage nitrification with tertiary filtration. Treatment units include an influent screen, anoxic basin, aeration basin, clarifier, cloth filter, and chlorine contact chamber and the process produces Type I effluent.

PLANTILLA EN ESPAÑOL PARA SOLICITUDES NUEVAS/RENOVACIONES/ENMIENDAS TPDES o TLAP

AGUAS RESIDUALES DOMÉSTICAS

El siguiente resumen se proporciona para esta solicitud de permiso de calidad del agua pendiente que está siendo revisada por la Comisión de Calidad Ambiental de Texas según lo requerido por el Capítulo 39 del Código Administrativo de Texas 30. La información proporcionada en este resumen puede cambiar durante la revisión técnica de la solicitud y no son representaciones federales exigibles de la solicitud de permiso.

Clancy Utility Holdings, LLC (CN605924489) propone operar la instalación de recuperación de agua Mirasol Springs Ranch y las instalaciones de disposición (RN111731972), un sistema de tratamiento de lodos activados operado como nitrificación de una sola etapa con filtración terciaria. La instalación estará ubicada 0.8 millas al suroeste de la intersección de Hamilton Pool Road y Stagecoach Ranch Road, en Bee Cave, en el Condado de Travis/Hays, Texas 78738.

Esta solicitud es para una nueva solicitud para descargar a un flujo promedio diario de 39,000 galones por día de aguas residuales domésticas tratadas. Este permiso no autorizará una descarga de contaminantes en el agua en el estado.

Se espera que las descargas de la instalación contengan niveles bajos de demanda bioquímica de oxígeno (5 días), sólidos suspendidos totales (TSS) y nitrógeno amoniacal (NH3-N). Las aguas residuales domésticas serán tratadas por un sistema de tratamiento de lodos activados operado como nitrificación de una sola etapa con filtración terciaria. Las unidades de tratamiento incluyen una pantalla de entrada, un tanque anóxico, un tanque de aireación, un clarificador, un filtro de tela y una cámara de contacto con cloro, y el proceso produce efluentes de Tipo I.

DOMESTIC ADMINISTRATIVE REPORT 1.1

The following information is required for new and amendment applications.

Section 1. Affected Landowner Information (Instructions Page 41)

- **A.** Indicate by a check mark that the landowners map or drawing, with scale, includes the following information, as applicable:
 - The applicant's property boundaries
 - The facility site boundaries within the applicant's property boundaries
 - □ The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone
 - The property boundaries of all landowners surrounding the applicant's property (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
 - The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream
 - □ The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge
 - The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides
 - The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property
 - The property boundaries of all landowners surrounding the effluent disposal site
 - □ The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is located
 - □ The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (for example, sludge surface disposal site or sludge monofill) is located
- **B.** Indicate by a check mark that a separate list with the landowners' names and mailing addresses cross-referenced to the landowner's map has been provided.
- C. Indicate by a check mark in which format the landowners list is submitted:
 - \boxtimes USB Drive \square Four sets of labels
- **D.** Provide the source of the landowners' names and mailing addresses: <u>Travis and Hays County</u> <u>Central Appraisal District Websites</u>
- **E.** As required by *Texas Water Code § 5.115*, is any permanent school fund land affected by this application?
 - 🗆 Yes 🖾 No

If **yes**, provide the location and foreseeable impacts and effects this application has on the land(s):

Section 2. Original Photographs (Instructions Page 44)

Provide original ground level photographs. Indicate with checkmarks that the following information is provided.

- At least one original photograph of the new or expanded treatment unit location
- At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
- At least one photograph of the existing/proposed effluent disposal site
- A plot plan or map showing the location and direction of each photograph

Section 3. Buffer Zone Map (Instructions Page 44)

- **A.** Buffer zone map. Provide a buffer zone map on 8.5 x 11-inch paper with all of the following information. The applicant's property line and the buffer zone line may be distinguished by using dashes or symbols and appropriate labels.
 - The applicant's property boundary;
 - The required buffer zone; and
 - Each treatment unit; and
 - The distance from each treatment unit to the property boundaries.
- **B.** Buffer zone compliance method. Indicate how the buffer zone requirements will be met. Check all that apply.
 - ⊠ Ownership
 - □ Restrictive easement
 - □ Nuisance odor control
 - □ Variance
- **C.** Unsuitable site characteristics. Does the facility comply with the requirements regarding unsuitable site characteristic found in 30 TAC § 309.13(a) through (d)?

THIS PAGE INTENTIONALLY LEFT BLANK

CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

Core Data Form (TCEQ Form No. 10400) (Required for all applications types. Must be completed in its entirety and si Note: Form may be signed by applicant representative.)	igned.		\square	Yes
Correct and Current Industrial Wastewater Permit Application Forms (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or later.)			\boxtimes	Yes
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions for mailing address.)				Yes
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)			\boxtimes	Yes
Current/Non-Expired, Executed Lease Agreement or Easement Attached		N/A	\boxtimes	Yes
Landowners Map (See instructions for landowner requirements)		N/A	\boxtimes	Yes

Things to Know:

- All the items shown on the map must be labeled.
- The applicant's complete property boundaries must be delineated which includes boundaries of contiguous property owned by the applicant.
- The applicant cannot be its own adjacent landowner. You must identify the landowners immediately adjacent to their property, regardless of how far they are from the actual facility.
- If the applicant's property is adjacent to a road, creek, or stream, the landowners on the opposite side must be identified. Although the properties are not adjacent to applicant's property boundary, they are considered potentially affected landowners. If the adjacent road is a divided highway as identified on the USGS topographic map, the applicant does not have to identify the landowners on the opposite side of the highway.

Landowners Cross Reference List (See instructions for landowner requirements)		N/A	\boxtimes	Yes
Landowners Labels or USB Drive attached (See instructions for landowner requirements)		N/A	\boxtimes	Yes
Original signature per 30 TAC § 305.44 – Blue Ink Preferred (If signature page is not signed by an elected official or principle executive of a copy of signature authority/delegation letter must be attached)	fficer,		\boxtimes	Yes

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY **DOMESTIC WASTEWATER PERMIT APPLICATION**

DOMESTIC TECHNICAL REPORT 1.0

The Following Is Required For All Applications Renewal, New, And Amendment

Section 1. Permitted or Proposed Flows (Instructions Page 51)

A. Existing/Interim I Phase

Design Flow (MGD): <u>NA</u> 2-Hr Peak Flow (MGD): <u>NA</u> Estimated construction start date: Estimated waste disposal start date:

B. Interim II Phase

Design Flow (MGD): <u>NA</u> 2-Hr Peak Flow (MGD): <u>NA</u> Estimated construction start date: Estimated waste disposal start date:

C. Final Phase

Design Flow (MGD): <u>0.039</u> 2-Hr Peak Flow (MGD): <u>0.156</u> Estimated construction start date: <u>2024</u> Estimated waste disposal start date: <u>2025</u>

D. Current operating phase: <u>None</u> Provide the startup date of the facility:

Section 2. Treatment Process (Instructions Page 51)

A. Treatment process description

Provide a detailed description of the treatment process. Include the type of

Page 1 of 80

treatment plant, mode of operation, and all treatment units. Start with the plant's head works and finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed in the permit, a description of** *each phase* **must be provided**. Process description:

The headworks will consist of a self-cleaning screen which will discharge into a conventional aerated sludge system consisting of an anoxic basin, an aeration basin, and a clarifier. Clarifier effluent will be filtered using a cloth filter and filtrate will be disinfected in a dedicated disinfection channel using free chlorine for disinfection. Effluent will be stored in an inground basin for pumping to the drip fields. The waste sludge from the clarifier will be stored in a sludge storage basin, dewatered using a mechanical dewatering device and discharge into a dumpster for disposal by a third party wastewater solids facility. Attachment 5: Treatment Process Description

Port or pipe diameter at the discharge point, in inches: <u>NA</u>

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) **of each treatment unit, accounting for** *all* **phases of operation**.

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
Screen	1	
Anoxic Basin	1	12' x 12' x 15'
Aeration Basin	1	12' x 38' x 15'
Clarifier	1	12' Diameter 14' depth
CT Basin	1	12' x 2.5 x 15'
Sludge Basin	1	12' x 10' x 15'
Effluent Storage	1	218,000 Gallons

Table 1.0(1) – Treatment Units

C. Process flow diagrams

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: <u>Attachment 6: Process Flow Diagram</u>

Section 3. Site Drawing (Instructions Page 52)

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: <u>Attachment 7: Site Drawing</u>

Provide the name and a description of the area served by the treatment facility.

<u>Once built, the waste water treatment plant will serve the residents and guests within the Mirasol Springs Ranch.</u>

Section 4. Unbuilt Phases (Instructions Page 52)

Is the application for a renewal of a permit that contains an unbuilt phase or

phases?

Yes □ No ⊠

If yes, does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ?

Yes □ No □ N/A

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.

<u>N/A</u>

Section 5. Closure Plans (Instructions Page 53)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

Yes 🗆

If yes, was a closure plan submitted to the TCEQ?

No 🖂

Yes 🗆 No 🗆 N/A

If yes, provide a brief description of the closure and the date of plan approval.

<u>N/A</u>

Section 6. Permit Specific Requirements (Instructions Page 53)

For applicants with an existing permit, check the *Other Requirements* or *Special Provisions* of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

Yes 🗆 No 🗆 N/A – New Permit

If yes, provide the date(s) of approval for each phase: N/A

Provide information, including dates, on any actions taken to meet a requirement or provision pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable.

<u>N/A</u>

B. Buffer zones

Have the buffer zone requirements been met?

Yes 🛛 🛛 No 🗆

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

Page 4 of 80

<u>Buffer zones will be met as shown in the various attachments. Where</u> <u>necessary the discharge areas will be setback from existing and proposed</u> <u>facilities and features requiring buffer zones.</u>

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

Yes D No D N/A

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

N/A	

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

Yes 🗆 🛛 No 🖂

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit_disposal?

Yes 🗆 🛛 No 🗆

If No, contact the TCEQ Municipal Solid Waste team at 512-239-0000. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

Describe the method of grit disposal.

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-0000.

Describe how the decant and grease are treated and disposed of after grit separation.

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

Yes □ No ⊠

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

Page 6 of 80

Yes □ No ⊠

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

Yes 🗆 No 🗆

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

or TXRNE

TXR05

If no, do you intend to seek coverage under TXR050000?

Yes 🗆 🛛 No 🗆

3. Conditional exclusion

Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?

Yes 🗆 🛛 No 🗆

If yes, please explain below then proceed to Subsection F, Other Wastes

Received:

4. Existing coverage in individual permit

Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?

Yes 🗆 No 🗆

If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

Click here to enter text.

5. Zero stormwater discharge

Do you intend to have no discharge of stormwater via use of evaporation or other means?

Yes 🗆 🛛 No 🗆

If yes, explain below then skip to Subsection F. Other Wastes Received.

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

Yes 🗆 🛛 No 🗆

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed? Yes \square No \boxtimes

If yes, a Sewage Sludge Solids Management Plan is required. See Example 5 in the instructions.

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does the facility accept or will it accept sludge from other treatment plants at the facility site? _____

Yes 🗆 🛛 No 🖂

If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.

In addition, provide the date that the plant started accepting sludge or is anticipated to start accepting sludge, an estimate of monthly sludge

acceptance (gallons or millions of gallons), an estimate of the BOD₅

concentration of the sludge, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

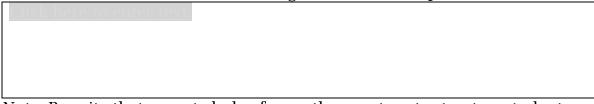
Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

Yes 🗆 🛛 No 🖂

If yes, does the facility have a Type V processing unit?


Yes 🗆 🛛 No 🗆

If yes, does the unit have a Municipal Solid Waste permit?

Yes 🗆 🛛 No 🗆

If yes to any of the above, provide a the date that the plant started accepting septic waste, or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design

BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is the facility accepting or will it accept wastes that are not domestic in nature excluding the categories listed above?

Yes □ No ⊠

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 58)

Is the facility in operation? Yes □ No ⊠

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). W*ater treatment facilities* discharging filter backwash water, complete Table 1.0(3).

Note: The sample date must be within 1 year of application submission.

	Average	Max	No. of	Sample	Sample
Pollutant	Conc.	Conc.	Samples	Туре	Date/Time
CBOD ₅ , mg/l					
Total Suspended Solids, mg/l					
Ammonia Nitrogen, mg/l					
Nitrate Nitrogen, mg/l					
Total Kjeldahl Nitrogen, mg/l					
Sulfate, mg/l					
Chloride, mg/l					
Total Phosphorus, mg/l					
pH, standard units					
Dissolved Oxygen*, mg/l					
Chlorine Residual, mg/l					
<i>E.coli</i> (CFU/100ml) freshwater					
Entercocci (CFU/100ml)					

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Page **11** of **80**

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
saltwater					
Total Dissolved Solids, mg/l					
Electrical Conductivity, µmohs/cm, †					
Oil & Grease, mg/l					
Alkalinity (CaCO ₃)*, mg/l					

*TPDES permits only

†TLAP permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average	Max	No. of	Sample	Sample
Pollulalli	Conc.	Conc.	Samples	Туре	Date/Time
Total Suspended Solids, mg/l					
Total Dissolved Solids, mg/l					
pH, standard units					
Fluoride, mg/l					
Aluminum, mg/l					
Alkalinity (CaCO ₃), mg/l					

Section 8. Facility Operator (Instructions Page 60)

Facility Operator Name: <u>TBD</u>

Facility Operator's License Classification and Level:

Facility Operator's License Number:

Section 9. Sewage Sludge Management and Disposal (Instructions Page 60)

A. Sludge disposal method

Identify the current or anticipated sludge disposal method or methods from the

Page 12 of 80

following list. Check all that apply.

- □ Permitted landfill
- Permitted or Registered land application site for beneficial use
- □ Land application for beneficial use authorized in the wastewater permit
- Permitted sludge processing facility
- □ Marketing and distribution as authorized in the wastewater permit
- Composting as authorized in the wastewater permit
- Permitted surface disposal site (sludge monofill)
- Surface disposal site (sludge monofill) authorized in the wastewater permit
- Transported to another permitted wastewater treatment plant or permitted sludge processing facility. If you selected this method, a written statement or contractual agreement from the wastewater treatment plant or permitted sludge processing facility accepting the sludge must be included with this application.
- □ Other: <u>Attachment 8: Sludge Transport Letter</u>

B. Sludge disposal site

Disposal site name: <u>Austin Wastewater Processing Facility</u> TCEQ permit or registration number: <u>MSW 2384</u> County where disposal site is located: <u>Travis</u>

C. Sludge transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: <u>Wastewater Transport Services, LLC</u>

Hauler registration number: 24343

Sludge is transported as a:

Liquid \Box	
---------------	--

semi-liquid 🗆

semi-solid		
------------	--	--

solid 🛛

Page 13 of 80

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 60)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

Yes 🗆 🛛 No 🖂

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

Yes 🗆 No 🗆

If yes, is the completed **Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)** attached to this permit application (see the instructions for details)?

Yes 🗆 🛛 No 🗆

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting	Yes 🗆	No 🗆
Marketing and Distribution of sludge	Yes 🗆	No 🗆
Sludge Surface Disposal or Sludge Monofill	Yes 🗆	No 🗆
Temporary storage in sludge lagoons	Yes □	No 🗆

If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056)** attached to this permit application?

Yes 🗆 🛛 No 🗆

Section 11. Sewage Sludge Lagoons (Instructions Page 61)

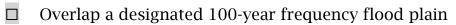
Does this facility include sewage sludge lagoons?

Yes 🗆 🛛 No 🖂

If yes, complete the remainder of this section. If no, proceed to Section 12.

A. Location information

The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.


Page 14 of 80

- Original General Highway (County) Map: Attachment:
- USDA Natural Resources Conservation Service Soil Map: Attachment:
- Federal Emergency Management Map: Attachment:
- Site map:

Attachment:

Discuss in a description if any of the following exist within the lagoon area.

Check all that apply.

- Soils with flooding classification
- Overlap an unstable area
- □ Wetlands
- □ Located less than 60 meters from a fault
- \Box None of the above

Attachment:

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in Section 7 of Technical Report 1.0.

Nitrate Nitrogen, mg/kg:

Total Kjeldahl Nitrogen, mg/kg:

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg:

Phosphorus, mg/kg:

Page 15 of 80

Potassium, mg/kg:
pH, standard units:
Ammonia Nitrogen mg/kg:
Arsenic: Dick here to enter text
Cadmium: Click here to enter text
Chromium: Click here to enter text
Copper: Click here to enter text
Lead: Click here to enter text.
Mercury: Click here to enter text
Molybdenum: Alick here to enter text
Nickel: Click here to enter text
Selenium:
Zinc: Click here to enter text
Total PCBs: Click here to enter text
Provide the following information: Volume and frequency of sludge to the lagoon(s):
Total dry tons stored in the lagoons(s) per 365-day period:
Total dry tons stored in the lagoons(s) over the life of the unit:
enter fext.
C. Liner information
Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1x10 ⁻⁷ cm/sec? Yes No
If yes, describe the liner below. Please note that a liner is required.

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the

Page 16 of 80

lagoon(s):

Attach the following documents to the application.

• Plan view and cross-section of the sludge lagoon(s)

Attachment:

• Copy of the closure plan

Attachment:

• Copy of deed recordation for the site

Attachment:

• Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons

Attachment:

• Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment:

• Procedures to prevent the occurrence of nuisance conditions

Attachment:

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

Yes □ No ⊠

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment:

Section 12. Authorizations/Compliance/Enforcement

(Instructions Page 63)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

Yes □ No ⊠

If yes, provide the TCEQ authorization number and description of the authorization:

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

Yes 🗆 🛛 No 🖂

Is the permittee required to meet an implementation schedule for compliance or enforcement?

Yes □ No ⊠

If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:

Section 13. RCRA/CERCLA Wastes (Instructions Page 63)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

Yes 🗆 🛛 No 🖾

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

Yes 🗆 🛛 No 🖂

Page 18 of 80

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment:

Section 14. Laboratory Accreditation (Instructions Page 64)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - located in another state and is accredited or inspected by that state; or
 - performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review *30 TAC Chapter 25* for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.*

Printed Name: <u>Shaun Miller</u>

Title: <u>President</u>

Signature: Mun Mrt Date: April 25, 2023

Page 20 of 80

DOMESTIC TECHNICAL REPORT 1.1

The following is required for new and amendment applications

Section 1. Justification for Permit (Instructions Page 66)

A. Justification of permit need

Provide a detailed discussion regarding the need for any phase(s) not currently permitted. Failure to provide sufficient justification may result in the Executive Director recommending denial of the proposed phase(s) or permit.

The permit is needed in order to dispose of the wastewater produced in the surrounding Mirasol development. There are no nearby wastewater treatment facilities, installing a force main to the nearest facility would be cost prohibitive. Treating the wastewater on site and disposing of the effluent produced via land application will best protect the environment and surrounding ecosystem. Attachment 9: Justification of Permit

B. Regionalization of facilities

Provide the following information concerning the potential for regionalization of domestic wastewater treatment facilities:

1. Municipally incorporated areas

If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.

Is any portion of the proposed service area located in an incorporated city?

Yes \Box No \boxtimes Not Applicable \Box

If yes, within the city limits of:

If yes, attach correspondence from the city.

Attachment:

If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached.

Attachment:

2. Utility CCN areas

TCEQ-10054 (06/01/2017) Domestic Wastewater Permit Application, Technical Reports Page 21 of 80

Is any portion of the proposed service area located inside another utility's CCN area?

Yes \Box No \boxtimes

If yes, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion.

Attachment:

3. Nearby WWTPs or collection systems

Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility?

Yes □ No ⊠

If yes, attach a list of these facilities that includes the permittee's name and permit number, and an area map showing the location of these facilities.

Attachment:

If yes, attach copies of your certified letters to these facilities **and** their response letters concerning connection with their system.

Attachment:

Does a permitted domestic wastewater treatment facility or a collection system located within three (3) miles of the proposed facility currently have the capacity to accept or is willing to expand to accept the volume of wastewater proposed in this application?

Yes 🗆 🛛 No 🗆

If yes, attach an analysis of expenditures required to connect to a permitted wastewater treatment facility or collection system located within 3 miles versus the cost of the proposed facility or expansion.

Attachment:

Section 2. Organic Loading (Instructions Page 67)

Is this facility in operation?

Yes □ No ⊠

If no, proceed to Item B, Proposed Organic Loading.

Page 22 of 80

If yes, provide organic loading information in Item A, Current Organic Loading

A. Current organic loading

Facility Design Flow (flow being requested in application):

Average Influent Organic Strength or BOD₅ Concentration in mg/l:

Average Influent Loading (lbs/day = total average flow X average BOD₅ conc. X 8.34):

Provide the source of the average organic strength or BOD₅ concentration.

B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Source	Total Average Flow (MGD)	Influent BOD ₅ Concentration (mg/l)
Municipality		
Subdivision	0.0116	300
Trailer park - transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria,		

 Table 1.1(1) - Design Organic Loading

Source	Total Average Flow (MGD)	Influent BOD ₅ Concentration (mg/l)
no showers		
Recreational park, overnight use		
Recreational park, day use		
Office building or factory	0.0005	300
Motel	0.013	300
Restaurant	0.012	1000
Hospital		
Nursing home		
Other	0.0016	300
TOTAL FLOW from all sources	0.0387	
AVERAGE BOD ₅ from all sources		517

Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 68)

A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: <u>N/A</u>

Total Suspended Solids, mg/l: N/A

Ammonia Nitrogen, mg/l: <u>N/A</u>

Total Phosphorus, mg/l: <u>N/A</u>

Dissolved Oxygen, mg/l: <u>N/A</u>

Other: <u>N/A</u>

B. Interim II Phase Design Effluent Quality Biochemical Oxygen Demand (5-day), mg/l: <u>N/A</u> Total Suspended Solids, mg/l: <u>N/A</u> Ammonia Nitrogen, mg/l: <u>N/A</u> Total Phosphorus, mg/l: <u>N/A</u> Dissolved Oxygen, mg/l: <u>N/A</u> Other: <u>N/A</u>

C. Final Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: <<u>10</u> Total Suspended Solids, mg/l: <<u>15</u> Ammonia Nitrogen, mg/l: <<u>2</u> Total Phosphorus, mg/l: <u>N/A</u> Dissolved Oxygen, mg/l: <u>N/A</u> Other:

D. Disinfection Method

Identify the proposed method of disinfection.

- Chlorine: <u>4</u> mg/l after <u>20</u> minutes detention time at peak flow Dechlorination process: <u>None</u>
- □ Ultraviolet Light: seconds contact time at peak flow
- \Box Other:

Section 4. Design Calculations (Instructions Page 68)

Attach design calculations and plant features for each proposed phase. Example 4 of the instructions includes sample design calculations and plant features.

Attachment: <u>Attachment 10: Design Calculations</u>

Section 5. Facility Site (Instructions Page 68)

A. 100-year floodplain

Will the proposed facilities be located <u>above</u> the 100-year frequency flood level?

Yes 🖂 🛛 No 🗆

If no, describe measures used to protect the facility during a flood event. Include a site map showing the location of the treatment plant within the 100-year frequency flood level. If applicable, provide the size and types of protective structures.

Provide the source(s) used to determine 100-year frequency flood plain.

<u>Attachment 11: FEMA FIRM Maps # 48453C0360H Sep 26, 2008 and 48209C0025F Sep 2, 2005</u>

For a new or expansion of a facility, will a wetland or part of a wetland be filled?

Yes 🗆 🛛 No 🗆

If yes, has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?

Yes 🗆 No 🗆

If yes, provide the permit number:

If no, provide the approximate date you anticipate submitting your application to the Corps:

B. Wind rose

Attach a wind rose. Attachment: <u>Attachment 22: Wind Rose</u>

Section 6. Permit Authorization for Sewage Sludge Disposal (Instructions Page 69)

A. Beneficial use authorization

Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit?

Page 26 of 80

Yes \Box No \boxtimes

If yes, attach the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)

Attachment:

B. Sludge processing authorization

Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:

- □ Sludge Composting
- □ Marketing and Distribution of sludge
- Sludge Surface Disposal or Sludge Monofill

If any of the above sludge options are selected, attach a completed DOMESTIC WASTEWATER PERMIT APPLICATION: SEWAGE SLUDGE TECHNICAL REPORT (TCEQ Form No. 10056).

Attachment:

Section 7. Sewage Sludge Solids Management Plan (Instructions Page 69)

Attach a solids management plan to the application.

Attachment: Attachment 8a: Sludge Management Plan

The sewage sludge solids management plan must contain the following information:

- Treatment units and processes dimensions and capacities
- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

DOMESTIC WORKSHEET 3.0

LAND DISPOSAL OF EFFLUENT

The following is required for all permit applications

Renewal, New, and Amendments

Section 1. Type of Disposal System (Instructions Page 77)

Identify the method of land disposal:

	Surface application		Subsurface application			
	Irrigation		Subsurface soils absorption			
	Drip irrigation system	\boxtimes	Subsurface area drip dispersal system			
	Evaporation					
	Evapotranspiration beds					
	Other (describe in detail):		ere to enter text.			
NOTE: All applicants without authorization or proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0.						

For existing authorizations, provide Registration Number:

Section 2. Land Application Site(s) (Instructions Page 77)

In table 3.0(1), provide the requested information for the land application sites. Include the agricultural or cover crop type (wheat, cotton, alfalfa, bermuda grass, native grasses, etc.), land use (golf course, hayland, pastureland, park, row crop, etc.), irrigation area, amount of effluent applied, and whether or not the public has access to the area. Specify the amount of land area and the amount of effluent that will be allotted to each agricultural or cover crop, if more than one crop will be used.

Crop Type & Land Use	Irrigation	Effluent	Public
	Area	Application	Access?
	(acres)	(GPD)	Y/N
Common Area, Pearl Millet and Mixed Native Species	16.2	39,000	Y

Table 3.0(1) - Land Application Site Crops

Section 3. Storage and Evaporation Lagoons/Ponds (Instructions Page 77)

Pond Number	Surface Area (acres)	Storage Volume (acre-feet)	Dimensions	Liner Type
Tank	N/A	0.671	N/A	N/A

Attach a copy of a liner certification that was prepared, signed, and sealed by a Texas licensed professional engineer for each pond.

Attachment: <u>N/A – Concrete tank will be used</u>

Section 4. Flood and Runoff Protection (Instructions Page 77)

Is the land application site <u>within</u> the 100-year frequency flood level?

Yes \Box No \boxtimes

If yes, describe how the site will be protected from inundation.

Provide the source used to determine the 100-year frequency flood level:

Attachment 11: FEMA Firm Map(s) #48209C0025F Sep 2,2005 ; #48453C0360H Sep 26, 2008

Provide a description of tailwater controls and rainfall run-on controls used for the land application site.

Page 37 of 80

The majority of the storm runoff will be diverted away from the sites via drainage swales or drip area slope. The subsurface irrigation process should not be adversely affected by the small amount of non-concentrated runoff from the adjacent lots.

Section 5. Annual Cropping Plan (Instructions Page 77)

Attach an Annual Cropping Plan which includes a discussion of each of the following items. If not applicable, provide a detailed explanation indicating why.

Attachment: <u>Attachment 12: Annual Cropping Plan</u>

- Soils map with crops
- Cool and warm season plant species
- Crop yield goals
- Crop growing season
- Crop nutrient requirements
- Additional fertilizer requirements
- Minimum/maximum harvest height (for grass crops)
- Supplemental watering requirements
- Crop salt tolerances
- Harvesting method/number of harvests
- Justification for not removing existing vegetation to be irrigated

Section 6. Well and Map Information (Instructions Page 78)

Attach a USGS map with the following information shown and labeled. If not applicable, provide a detailed explanation (on a separate page) indicating why.

Attachment: Attachment 13: USGS Well Map

- The boundaries of the land application site(s)
- Waste disposal or treatment facility site(s)
- On-site buildings
- Buffer zones
- Effluent storage and tailwater control facilities
- All water wells within 1 mile of the disposal site or property boundaries
- All springs and seeps onsite and within 500 feet of the property boundaries

- All surface waters in the state onsite and within 500 feet of the property boundaries
- All faults and sinkholes onsite and within 500 feet of the property

List and cross reference all water wells shown on the USGS map in the following table. Attach additional pages as necessary to include all of the wells.

Well ID	Well Use	Producing? Y/N	Open, cased, capped, or plugged?	Proposed Best Management Practice
			Choose an item.	<u>Attachment 14: Well Data</u> <u>Table</u>

Table 3.0(3) – Water Well Data

If water quality data or well log information is available please include the information in an attachment listed by Well ID.

Attachment: Attachment 15: Well Data Reports

Section 7. Groundwater Quality (Instructions Page 79)

Attach a Groundwater Quality Technical Report which assesses the impact of the wastewater disposal system on groundwater. This report shall include an evaluation of the water wells (including the information in the well table provided in Item 6. above), the wastewater application rate, and pond liners. Indicate by a check mark that this report is provided.

Attachment: <u>Attachment 16: Groundwater Quality Technical Report</u>

Are groundwater monitoring wells available onsite? Yes \Box No \boxtimes

Do you plan to install ground water monitoring wells or lysimeters around the land application site? Yes \Box No \boxtimes

If yes, then provide the proposed location of the monitoring wells or lysimeters on a site map.

Attachment:

Section 8. Soil Map and Soil Analyses (Instructions Page 79)

A. Soil map

Attach a USDA Soil Survey map that shows the area to be used for effluent disposal.

Attachment: <u>Attachment 17: USDA Soil Survey Map</u>

B. Soil analyses

Attach the laboratory results sheets from the soil analyses. **Note**: for renewal applications, the current annual soil analyses required by the permit are acceptable as long as the test date is less than one year prior to the submission of the application.

Attachment: <u>Attachment 19: Soil Evaluation Plan and Soil Sampling</u> and Testing

List all USDA designated soil series on the proposed land application site. Attach additional pages as necessary.

	Depth		Available	Curve
Soil Series	from	Permeability	Water	Number
	Surface		Capacity	
Brackett-Rock outcrop-Real	0-60"	Moderate	Very Low	80
Krum clay (KrC)	0-80'	Moderate	Moderate	80

Table 3.0(4) – Soil Data

Section 9. Effluent Monitoring Data (Instructions Page 80)

Is the facility in operation? Yes \square No \boxtimes

If no, this section is not applicable and the worksheet is complete.

If yes, provide the effluent monitoring data for the parameters regulated in the existing permit. If a parameter is not regulated in the existing permit, enter N/A.

Table 3.0(5) - Effluent Monitoring Data

Date	30 Day Avg Flow MGD	BOD5 mg/l	TSS mg/l	рН	Chlorine Residual mg/l	Acres irrigated

Provide a discussion of all persistent excursions above the permitted limits and any corrective actions taken.

Click here to enter text.		

DOMESTIC WORKSHEET 3.3

SUBSURFACE AREA DRIP DISPERSAL SYSTEM (SADDS) LAND DISPOSAL OF EFFLUENT

The following is required for new and major amendment subsurface area drip dispersal system applications. Renewal and minor amendments may

require the worksheet on a case by case basis.

NOTE: All applicants proposing new or amended subsurface disposal MUST complete and submit Worksheet 7.0. This worksheet applies to any subsurface disposal system that meets the definition of a subsurface area drip dispersal system as defined in *30 TAC Chapter 222, Subsurface Area Drip Dispersal System.*

Section 1. Administrative Information (Instructions Page 84)

A. Provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the treatment facility.

Clancy Utility Holdings, LLC

- **B.** Is the owner of the land where the treatment facility is located the same as the owner of the treatment facility?
 - Yes 🗆 🛛 No 🖂

If **no**, provide the legal name of all corporations or other business entities managed, owned, or otherwise closely related to the owner of the land where the treatment facility is located.

Mirasol Springs, LLC

C. Owner of the subsurface area drip dispersal system:

<u>Clancy Utility Holdings, LLC</u>

Is the owner of the subsurface area drip dispersal system the same as the owner of the wastewater treatment facility or the site where the wastewater treatment facility is located?

Yes 🛛 🛛 No 🗆

If **no**, identify the names of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in Item 1.C.

Page 48 of 80

D. Owner of the land where the subsurface area drip dispersal system is located:

Mirasol Springs, LLC

- Is the owner of the land where the subsurface area drip dispersal system is located the same as owner of the wastewater treatment facility, the site where the wastewater treatment facility is located, or the owner of the subsurface area drip dispersal system?
 - Yes 🛛 🛛 No 🗆

If **no**, identify the name of all corporations or other business entities managed, owned, or otherwise closely related to the entity identified in item 1.E.

Section 2. Subsurface Area Drip Dispersal System (Instructions Page 84)

A. Type of system

- Subsurface Drip Irrigation
- □ Surface Drip Irrigation
- □ Other, specify:

B. Irrigation operations

Application area, in acres: <u>16.2</u>

Infiltration Rate, in inches/hour: 0.06-1.98

Average slope of the application area, percent (%): Zone A: 6.16%; Zone B: 13.73%; Zone C: 5.30%; Zone D: 9.98%; Zone E: 6.18%; Zone F: 10.43%; Zone G: 4.33%; Zone H: 9.72%

Maximum slope of the application area, percent (%): Zone A: 56.56%; Zone B: 41.78%; Zone C: 44.82%; Zone D: 72.01; Zone E: 77.36%; Zone F: 90.02%; Zone G: 36.36%; Zone H: 194.76%

Storage volume, in gallons: <u>218,000</u>

Major soil series: <u>BtG and KrC</u>

Page 49 of 80

Depth to groundwater, in feet: approx. 80 feet

C. Application rate

Is the facility located **west** of the boundary shown in *30 TAC § 222.83* **and** also using a vegetative cover of non-native grasses over seeded with cool season grasses during the winter months (October-March)?

Yes 🖂 🛛 No 🗆

If yes, then the facility may propose a hydraulic application rate not to exceed 0.1 gal/square foot/day.

Is the facility located **east** of the boundary shown in *30 TAC § 222.83* **or** in any part of the state when the vegetative cover is any crop other than non-native grasses?

Yes □ No ⊠

If **yes**, the facility must use the formula in *30 TAC §222.83* to calculate the maximum hydraulic application rate.

Do you plan to submit an alternative method to calculate the hydraulic application rate for approval by the executive director?

Yes 🗆 🛛 No 🗆

Hydraulic application rate, in gal/square foot/day: <u>0.1 gal/sf/day</u>

Nitrogen application rate, in lbs/gal/day: <u>0.0001 lbs/gal/day</u>

D. Dosing information

Number of doses per day: $\underline{1}$

Dosing duration per area, in hours: <u>12</u>

Rest period between doses, in hours: <u>12</u>

Dosing amount per area, in inches/day: Maximum of 0.13

Number of zones: <u>7</u>

Does the proposed subsurface drip irrigation system use tree vegetative cover as a crop?

Yes 🗆 🛛 No 🖂

If **yes**, provide a vegetation survey by a certified arborist. Please call the Water Quality Assessment Team at (512) 239-4671 to schedule a pre-application meeting.

Page 50 of 80

Attachment:

Section 3. Required Plans (Instructions Page 84)

A. Recharge feature plan

Attach a Recharge Feature Plan with all information required in *30 TAC §222.79*.

Attachment: <u>Attachment 18: Recharge Feature Plan</u>

B. Soil evaluation

Attach a Soil Evaluation with all information required in 30 TAC §222.73.

Attachment: <u>Attachment 19: Soil Evaluation Plan and Soil Sampling</u> and Testing

C. Site preparation plan

Attach a Site Preparation Plan with all information required in *30 TAC §222.75*.

Attachment: Attachment 20: Site Preparation Plan

D. Soil sampling/testing

Attach soil sampling and testing that includes all information required in *30 TAC §222.157*.

Attachment: <u>Attachment 19: Soil Evaluation Plan and Soil Sampling</u> and Testing

Section 4. Floodway Designation (Instructions Page 85)

A. Site location

Is the existing/proposed land application site within a designated floodway?

 $Yes \Box \qquad No \boxtimes$

B. Flood map

Attach either the FEMA flood map or alternate information used to determine the floodway.

Attachment: <u>Attachment 11: FEMA Firm Map(s) #48209C0025F Sep</u> 2,2005 ; #48453C0360H Sep 26, 2008

Page 51 of 80

Section 5. Surface Waters in the State (Instructions Page 85)

A. Buffer Map

Attach a map showing appropriate buffers on surface waters in the state, water wells, and springs/seeps.

Attachment: <u>Attachment 4: Buffer Zone Map</u>

B. Buffer variance request

Do you plan to request a buffer variance from water wells or waters in the

state?

Yes 🗆 🛛 No 🖂

If yes, then attach the additional information required in *30 TAC* § *222.81(c).*

Attachment:

Section 6. Edwards Aquifer (Instructions Page 85)

A. Is the SADDS located on the Edwards Aquifer Recharge Zone as mapped by the TCEQ?

Yes 🗆 🛛 No 🖾

B. Is the SADDS located on the Edwards Aquifer Transition Zone as mapped by the TCEQ?

Yes \Box No \boxtimes

If yes to either question, then the SADDS may be prohibited by *30 TAC §213.8*. Please call the Municipal Permits Team at 512-239-4671 to schedule a pre-application meeting.

DOMESTIC WORKSHEET 4.0

POLLUTANT ANALYSES REQUIREMENTS*

The following is required for facilities with a permitted or proposed flow of 1.0 MGD or greater, facilities with an approved pretreatment program, or facilities classified as a major facility. See instructions for further details.

This worksheet is not required for minor amendments without renewal

Section 1. Toxic Pollutants (Instructions Page 87)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab 🗆 Compo

Composite $\Box \quad \underline{N/A}$

Date and time sample(s) collected:

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Acrylonitrile				50
Aldrin				0.01
Aluminum				2.5
Anthracene				10
Antimony				5
Arsenic				0.5
Barium				3
Benzene				10
Benzidine				50
Benzo(a)anthracene				5

Table 4.0(1) - Toxics Analysis

Page 53 of 80

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Benzo(a)pyrene				5
Bis(2-chloroethyl)ether				10
Bis(2-ethylhexyl)phthalate				10
Bromodichloromethane				10
Bromoform				10
Cadmium				1
Carbon Tetrachloride				2
Carbaryl				5
Chlordane*				0.2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroform				10
Chlorpyrifos				0.05
Chromium (Total)				3
Chromium (Tri) (*1)				N/A
Chromium (Hex)				3
Copper				2
Chrysene				5
p-Chloro-m-Cresol				10
4,6-Dinitro-o-Cresol				50
p-Cresol				10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Cyanide (*2)				10
4,4'- DDD				0.1
4,4'- DDE				0.1
4,4'- DDT				0.02
2,4-D				0.7
Demeton (O and S)				0.20
Diazinon				0.5/0.1
1,2-Dibromoethane				10
m-Dichlorobenzene				10
o-Dichlorobenzene				10
p-Dichlorobenzene				10
3,3'-Dichlorobenzidine				5
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
Dichloromethane				20
1,2-Dichloropropane				10
1,3-Dichloropropene				10
Dicofol				1
Dieldrin				0.02
2,4-Dimethylphenol				10
Di-n-Butyl Phthalate				10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Diuron				0.09
Endosulfan I (alpha)				0.01
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Ethylbenzene				10
Fluoride				500
Guthion				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclohexane (alpha)				0.05
Hexachlorocyclohexane (beta)				0.05
gamma-Hexachlorocyclohexane (Lindane)				0.05
Hexachlorocyclopentadiene				10
Hexachloroethane				20
Hexachlorophene				10
Lead				0.5
Malathion				0.1

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Mercury				0.005
Methoxychlor				2
Methyl Ethyl Ketone				50
Mirex				0.02
Nickel				2
Nitrate-Nitrogen				100
Nitrobenzene				10
N-Nitrosodiethylamine				20
N-Nitroso-di-n-Butylamine				20
Nonylphenol				333
Parathion (ethyl)				0.1
Pentachlorobenzene				20
Pentachlorophenol				5
Phenanthrene				10
Polychlorinated Biphenyls (PCB's) (*3)				0.2
Pyridine				20
Selenium				5
Silver				0.5
1,2,4,5-Tetrachlorobenzene				20
1,1,2,2-Tetrachloroethane				10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Tetrachloroethylene				10
Thallium				0.5
Toluene				10
Toxaphene				0.3
2,4,5-TP (Silvex)				0.3
Tributyltin (see instructions for explanation)				0.01
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
2,4,5-Trichlorophenol				50
TTHM (Total Trihalomethanes)				10
Vinyl Chloride				10
Zinc				5

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248,

1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab □ Composite □

Date and time sample(s) collected:

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony				5
Arsenic				0.5
Beryllium				0.5
Cadmium				1
Chromium (Total)				3
Chromium (Hex)				3
Chromium (Tri) (*1)				N/A
Copper				2
Lead				0.5
Mercury				0.005
Nickel				2
Selenium				5
Silver				0.5
Thallium				0.5
Zinc				5
Cyanide (*2)				10
Phenols, Total				10

Table 4.0(2)A - Metals, Cyanide, Phenols

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein				50
Acrylonitrile				50
Benzene				10
Bromoform				10
Carbon Tetrachloride				2
Chlorobenzene				10
Chlorodibromomethane				10
Chloroethane				50
2-Chloroethylvinyl Ether				10
Chloroform				10
Dichlorobromomethane				
[Bromodichloromethane]				10
1,1-Dichloroethane				10
1,2-Dichloroethane				10
1,1-Dichloroethylene				10
1,2-Dichloropropane				10
1,3-Dichloropropylene				
[1,3-Dichloropropene]				10
1,2-Trans-Dichloroethylene				10
Ethylbenzene				10
Methyl Bromide				50
Methyl Chloride				50
Methylene Chloride				20
1,1,2,2-Tetrachloroethane				10
Tetrachloroethylene				10

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Toluene				10
1,1,1-Trichloroethane				10
1,1,2-Trichloroethane				10
Trichloroethylene				10
Vinyl Chloride				10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol				10
2,4-Dichlorophenol				10
2,4-Dimethylphenol				10
4,6-Dinitro-o-Cresol				50
2,4-Dinitrophenol				50
2-Nitrophenol				20
4-Nitrophenol				50
P-Chloro-m-Cresol				10
Pentalchlorophenol				5
Phenol				10
2,4,6-Trichlorophenol				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene				10
Acenaphthylene				10
Anthracene				10
Benzidine				50
Benzo(a)Anthracene				5
Benzo(a)Pyrene				5
3,4-Benzofluoranthene				10
Benzo(ghi)Perylene				20
Benzo(k)Fluoranthene				5
Bis(2-Chloroethoxy)Methane				10
Bis(2-Chloroethyl)Ether				10
Bis(2-Chloroisopropyl)Ether				10
Bis(2-Ethylhexyl)Phthalate				10
4-Bromophenyl Phenyl Ether				10
Butyl benzyl Phthalate				10
2-Chloronaphthalene				10
4-Chlorophenyl phenyl ether				10
Chrysene				5
Dibenzo(a,h)Anthracene				5
1,2-(o)Dichlorobenzene				10
1,3-(m)Dichlorobenzene				10
1,4-(p)Dichlorobenzene				10
3,3-Dichlorobenzidine				5
Diethyl Phthalate				10
Dimethyl Phthalate				10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Di-n-Butyl Phthalate				10
2,4-Dinitrotoluene				10
2,6-Dinitrotoluene				10
Di-n-Octyl Phthalate				10
1,2-Diphenylhydrazine (as Azo-				
benzene)				20
Fluoranthene				10
Fluorene				10
Hexachlorobenzene				5
Hexachlorobutadiene				10
Hexachlorocyclo-pentadiene				10
Hexachloroethane				20
Indeno(1,2,3-cd)pyrene				5
Isophorone				10
Naphthalene				10
Nitrobenzene				10
N-Nitrosodimethylamine				50
N-Nitrosodi-n-Propylamine				20
N-Nitrosodiphenylamine				20
Phenanthrene				10
Pyrene				10
1,2,4-Trichlorobenzene				10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Aldrin				0.01
alpha-BHC				
(Hexachlorocyclohexane)				0.05
beta-BHC				
(Hexachlorocyclohexane)				0.05
gamma-BHC				
(Hexachlorocyclohexane)				0.05
delta-BHC				
(Hexachlorocyclohexane)				0.05
Chlordane				0.2
4,4-DDT				0.02
4,4-DDE				0.1
4,4,-DDD				0.1
Dieldrin				0.02
Endosulfan I (alpha)				0.01
Endosulfan II (beta)				0.02
Endosulfan Sulfate				0.1
Endrin				0.02
Endrin Aldehyde				0.1
Heptachlor				0.01
Heptachlor Epoxide				0.01
PCB-1242				0.2
PCB-1254				0.2
PCB-1221				0.2
PCB-1232				0.2

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
PCB-1248				0.2
PCB-1260				0.2
PCB-1016				0.2
Toxaphene				0.3

* For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

- **A.** Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply.
- 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the

conditions of its/their presence at the facility.

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

Yes 🗆 No 🗆

If **yes**, provide a brief description of the conditions for its presence.

If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected:

Compound	Toxic Equivalency Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5

TABLE 4.0(2)F - DIOXIN/FURAN COMPOUNDS

Page 66 of 80

Compound	Toxic Equivalency Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WORKSHEET 6.0

INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works (POTWs)

Section 1. All POTWs (Instructions Page 99)

A. Industrial users

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: $\underline{0}$

Average Daily Flows, in MGD:

Significant IUs – non-categorical:

Number of IUs: <u>0</u>

Average Daily Flows, in MGD:

Other IUs:

Number of IUs: <u>0</u>

Average Daily Flows, in MGD:

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

Yes 🗆 No 🗆 N/A, New Facility

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

Yes 🗆 No 🗆 N/A, New Facility

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

D. Pretreatment program

Does your POTW_have an approved pretreatment program?

Yes 🗆 🛛 No 🖂

If yes, complete Section 2 only of this Worksheet.

Is your POTW required to develop an approved pretreatment program? Yes □ No ⊠

If yes, complete Section 2.c. and 2.d. only, and skip Section 3.

If no to either question above, skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.

Section 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 100)

A. Substantial modifications

Have there been any **substantial modifications** to the approved pretreatment program that have not been submitted to the TCEQ for approval according to *40 CFR §403.18*?

Yes 🗆 🛛 No 🗆

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

Click here to enter text.		

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

Yes □ No □

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Pollutant	Concentration	MAL	Units	Date

Table 6.0(1) - Parameters Above the MAL

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

Yes 🗆 🛛 No 🗆

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 100)

A. General information

Company Name: <u>None – No Industrial Users</u>

SIC Code:

Telephone number:

Contact name:

Address:

City, State, and Zip Code:

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

No SIUs or CIUs			

C. Product and service information

Provide a description of the principal product(s) or services performed.

Page 73 of 80

011.1			
t nek nere i			
CHUR HULL			

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater:

Discharge, in gallons/day:	
Discharge Type: Continuous Batch	Intermittent
Non-Process Wastewater:	
Discharge, in gallons/day:	
Discharge Type: 🗖 🛛 Continuous 🗖 🛛 Batch	Intermittent

E. Pretreatment standards

Is the SIU or CIU subject to technically based local limits as defined in the instructions?

Yes 🗆 🛛 No 🗆

Is the SIU or CIU subject to categorical pretreatment standards found in *40 CFR Parts 405-471*?

Yes □ No □

If subject to categorical pretreatment standards, indicate the applicable category and subcategory for each categorical process.

Category: Subcategories:
Category: Subcategories:
Category: Subcategories:
Category: Subcategories:
Category: Subcategories:

Page 74 of 80

F. Industrial user interruptions

Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?

Yes □ No □

If yes, identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.

WORKSHEET 7.0

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

CLASS V INJECTION WELL INVENTORY/AUTHORIZATION FORM

Submit to: TCEQ IUC Permits Team Radioactive Materials Division MC-233 PO Box 13087 Austin, Texas 78711-3087 512-239-6466

For TCEQ Use Only

Reg. No._____

Date Received___

Date Authorized_

Section 1. General Information (Instructions Page 102)

1. TCEQ Program Area

Program Area (PST, VCP, IHW, etc.): <u>Municipal Domestic Wastewater</u> Program ID: <u>N/A</u>

Contact Name: <u>N/A</u>

Phone Number: <u>N/A</u>

2. Agent/Consultant Contact Information

Contact Name: <u>Andrea Wyatt, P.E.</u> Address: <u>1101 S. Capital of Texas Hwy, Bldg D.</u> City, State, and Zip Code: <u>Austin, TX, 78746</u> Phone Number: <u>512-327-9204</u>

3. Owner/Operator Contact Information

Owner ⊠ Operator □

Owner/Operator Name: <u>Clancy Utility Holdings, LLC</u>

Contact Name: Jim Truitt

Address: <u>4143 Maple Avenue, Suite 400</u>

City, State, and Zip Code: Dallas, TX 75219

Phone Number: <u>214-301-4277</u>

4. Facility Contact Information

Facility Name: <u>TBD</u>

Page 76 of 80

Address:

City, State, and Zip Code:

Location description (if no address is available):

Facility Contact Person:

Phone Number:

5. Latitude and Longitude, in degrees-minutes-seconds

Latitude: <u>N30°19'44"</u> Longitude: <u>W98°08'15"</u>

Method of determination (GPS, TOPO, etc.): <u>GPS and TOPO</u>

Attach topographic quadrangle map as attachment A.

6. Well Information

Type of Well Construction, select one:

- Vertical Injection
- Subsurface Fluid Distribution System
- □ Infiltration Gallery
- Temporary Injection Points
- □ Other, Specify:

Number of Injection Wells:

7. Purpose

Detailed Description regarding purpose of Injection System:

<u>Safely discharge treated wastewater to subsurface irrigation of open fields</u> of Pearl Millet grass and other species. Attachment 7 shows the Site Map

Attach a Site Map as Attachment B (Attach the Approved Remediation Plan, if appropriate.)

8. Water Well Driller/Installer

Water Well Driller/Installer Name:	

City, State, and Zip Code:

Phone Number:

Page 77 of 80

License Number:

Section 2. Proposed Down Hole Design

Attach a diagram signed and sealed by a licensed engineer as Attachment C.

Table 7.0(1) -Down Hole Design Table

Name of	Size	Setting	Sacks Cement/Grout -	Hole	Weight
String		Depth	Slurry Volume – Top of	Size	(lbs/ft)
			Cement		PVC/Steel
Casing					
Tubing					
Screen					

Section 3. Proposed Trench System, Subsurface Fluid Distribution System, or Infiltration Gallery

Attach a diagram signed and sealed by a licensed engineer as Attachment D. System(s) Dimensions:

System(s) Construction:

Section 4. Site Hydrogeological and Injection Zone Data

- 1. Name of Contaminated Aquifer: <u>N/A</u>
- 2. Receiving Formation Name of Injection Zone: <u>Trinity Group Glen Rose</u>
- **3.** Well/Trench Total Depth: <u>6 inches</u>
- 4. Surface Elevation: <u>870 900 ft MSL</u>
- 5. Depth to Ground Water: <u>80 ft approximate</u>
- 6. Injection Zone Depth: <u>6 inches</u>
- 7. Injection Zone vertically isolated geologically? Yes \Box No \boxtimes

Impervious Strata between Injection Zone and	nearest Underground
Source of Drinking Water:	

Name: <u>N/A</u>

Thickness:

Page 78 of 80

8. Provide a list of contaminants and the levels (ppm) in contaminated aquifer

Attach as Attachment E.

- **9.** Horizontal and Vertical extent of contamination and injection plume Attach as Attachment F.
- **10.** Formation (Injection Zone) Water Chemistry (Background levels) TDS, etc. Attach as Attachment G.
- Injection Fluid Chemistry in PPM at point of injection Attach as Attachment H.
- **12.** Lowest Known Depth of Ground Water with < 10,000 PPM TDS: <u>N/A</u>
- **13.** Maximum injection Rate/Volume/Pressure: <u>N/A</u>
 - Water wells within 1/4 mile radius (attach map as Attachment I): <u>Three, Attachment 13 - USGS Topo map- Water wells within 1/4 mile</u> <u>radius</u>
- **15.** Injection wells within 1/4 mile radius (attach map as Attachment J): <u>One,</u> <u>Attachment 13 - USGS Topo map- Water wells within 1/4 mile radius</u>
- **16.** Monitor wells within 1/4 mile radius (attach drillers logs and map as Attachment K): <u>None</u>
- **17.** Sampling frequency: <u>Once/week</u>
- **18.** Known hazardous components in injection fluid: <u>None</u>

Section 5. Site History

- 1. Type of Facility: <u>Wastewater Treatment Facility</u>
- 2. Contamination Dates: <u>N/A</u>
- **3.** Original Contamination (VOCs, TPH, BTEX, etc.) and Concentrations (attach as Attachment L): <u>N/A</u>
- 4. Previous Remediation: <u>N/A</u>

Attach results of any previous remediation as attachment M

NOTE: Authorization Form should be completed in detail and authorization given by the TCEQ before construction, operation, and/or conversion can

begin. Attach additional pages as necessary.

Class V Injection Well Designations

- 5A07 Heat Pump/AC return (IW used for groundwater to heat and/or cool buildings)
 5A19 Industrial Cooling Water Return Flow (IW used to cool industrial process equipment)
 5B22 Salt Water Intrusion Barrier (IW used to inject fluids to prevent the intrusion
- of salt water into an aquifer)
- 5D02 Storm Water Drainage (IW designed for the disposal of rain water)
- 5D04 Industrial Stormwater Drainage Wells (IW designed for the disposal of rain water associated with industrial facilities)
- 5F01 Agricultural Drainage (IW that receive agricultural runoff)
- 5R21 Aquifer Recharge (IW used to inject fluids to recharge an aquifer)
- 5S23 Subsidence Control Wells (IW used to control land subsidence caused by ground water withdrawal)
- 5W09 Untreated Sewage
- 5W10 Large Capacity Cesspools (Cesspools that are designed for 5,000 gpd or greater)
- 5W11 Large Capacity Septic systems (Septic systems designed for 5,000 gpd or greater)
- 5W12 WTTP disposal
- 5W20 Industrial Process Waste Disposal Wells
- 5W31 Septic System (Well Disposal method)
- 5W32 Septic System Drainfield Disposal
- 5X13 Mine Backfill (IW used to control subsidence, dispose of mining byproducts, and/or fill sections of a mine)
- 5X25 Experimental Wells (Pilot Test) (IW used to test new technologies or tracer dye studies)
- 5X26 Aquifer Remediation (IW used to clean up, treat, or prevent contamination of a USDW)
- 5X27 Other Wells
- 5X28 Motor Vehicle Waste Disposal Wells (IW used to dispose of waste from a motor vehicle site These are currently banned)
- 5X29 Abandoned Drinking Water Wells (waste disposal)

Attachment 1 – Core Data Form

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

<u>ECTION</u>	<u>I: Gen</u>	eral Inform	<u>nation</u>										
1. Reason fo	r Submis	sion (If other is	checked plea	se des	scribe iı	n space	provi	ded.)					
New Per	mit, Regis	stration or Authoria	zation (Core I	Data F	orm sh	ould be	subm	itted w	ith the p	rogram applicatio	n.)		
Renewa	I (Core D	ata Form should	be submitted	with th	ne rene	wal forr	n)	0	ther				
2. Customer	Reference	e Number <i>(if i</i> ss	ued)		low this l			3. R	egulate	d Entity Referen	ce Number	(if issued)	
CN					<u>CN or RI</u> Central I			nn RN					
ECTION	II: Cu	stomer Info	ormation										
4. General Customer Information 5. Effective Date for Customer Info						Infor	matior	n Updat	es (mm/dd/yyyy)	N/A			
New Customer Update to Customer Information Change in Regulated Entity Ownership Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)													
	-				-					,		active with the	
		f State (SOS)	-	-				•					
6. Customer	Legal Na	me (If an individua	l, print last narr	e first:	eg: Doe	, John)		<u>If</u>	new Cu	stomer, enter previ	ious Custome	er below:	
5		oldings, LLC											
7. TX SOS/C	PA Filing	Number	8. TX State	e Tax ID (11 digits)			9	. Federa	al Tax ID (9 digits)	10. DUNS	S Number (if applicable)		
80365968	9		3207476	51407			8	86-1937134					
11. Type of (Customer	: 🛛 🖂 Corporati	on	Individual				Partnership: 🖸 General 🗋 Limited					
Government:	🗌 City 🔲	County 🗌 Federal	🛾 State 🔲 Othe	r		Sole P	roprietorship 🛛 Other: Limited Liability Company				ompany		
12. Number				_	7 - 6 /			13. Independently Owned and Operated?					
⊠ 0-20 [21-100	101-250	251-500			nd high							
14. Custome	r Role (Pr	oposed or Actual) -	- as it relates to	the Re	egulated	l Entity I	isted o	n this fo	orm. Plea	se check one of the	following:		
Owner		Opera				Owner 8	•			_			
	nal Licens	ee 🗌 Respo	onsible Party		Ľν	'oluntar	y Clea	anup A	pplicant	Other:			
	4143 N	Maple Avenu	e, Suite 40	0									
15. Mailing Address:													
					ZIP	752	19	ZIP + 4	3289				
16. Country	Mailing In	formation (if outsi	ide USA)				17. E	E-Mail Address (if applicable)					
							smiller@winnfamily.org						
18. Telephor	ne Numbe	r		19. E	19. Extension or Code 20. Fax Number (if appl)				e r (if applicab	ole)			
(214)301-4255 () -													

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity' is selected below this form should be accompanied by a permit application) New Regulated Entity Update to Regulated Entity Name Update to Regulated Entity Information

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC.)

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Mirasol Springs Water Reclamation Facility

			_		_							
23. Street Address of	No addr	ress on file										
the Regulated Entity: (No PO Boxes)				1				1				
	City			State	TΣ	K	ZIP			ZIP + 4		
24. County	Hays											
	En	ter Physical Lo	ocati	on Description	if no	street	address i	s prov	ided.			
25. Description to Physical Location:	0.8 mile Road.											
26. Nearest City	"I							State	;	Nea	rest ZIP Code	
Bee Cave TX 78738									738			
27. Latitude (N) In Deci	mal:	30.32889				28. Lo	ongitude (N) Ir	Decimal:	-98.1375	0	
Degrees	Minutes		Seco	onds		Degree	s		Minutes		Seconds	
30		19		44			98			8	15	
29. Primary SIC Code (4 d	ligits) 30.	Secondary SI	C Co	de (4 digits)		Primar 6 digits)	Y NAICS C	ode	32. S (5 or 6	econdary NA digits)	ICS Code	
4952					221	320						
33. What is the Primary I	Business of	this entity?	Do no	t repeat the SIC or I	NAICS	descript	ion.)					
Wastewater Treatm	ent Plant											
34. Mailing												
Address:	City			State			ZIP			ZIP + 4		
35. E-Mail Address												
	one Number			37. Extensio	n or (Code		3	8. Fax Num	nber <i>(if appli</i> c	able)	
()	-		1						() -		
9. TCEQ Programs and ID prm. See the Core Data Form in				write in the permi	ts/regi	istration	numbers th	at will b	e affected by	the updates su	omitted on this	
Dam Safety	Districts			Edwards Aquifer		ΪΓ	Emissions	Invent	ory Air	Industrial H	azardous Waste	
Municipal Solid Waste	New Sor	urce Review Air		OSSF	 3F		Petroleum Storage Tank			D PWS		
Sludge	Storm W	ater		Title V Air] Tires			🗌 Used Oil		

SECTION IV: Preparer Information

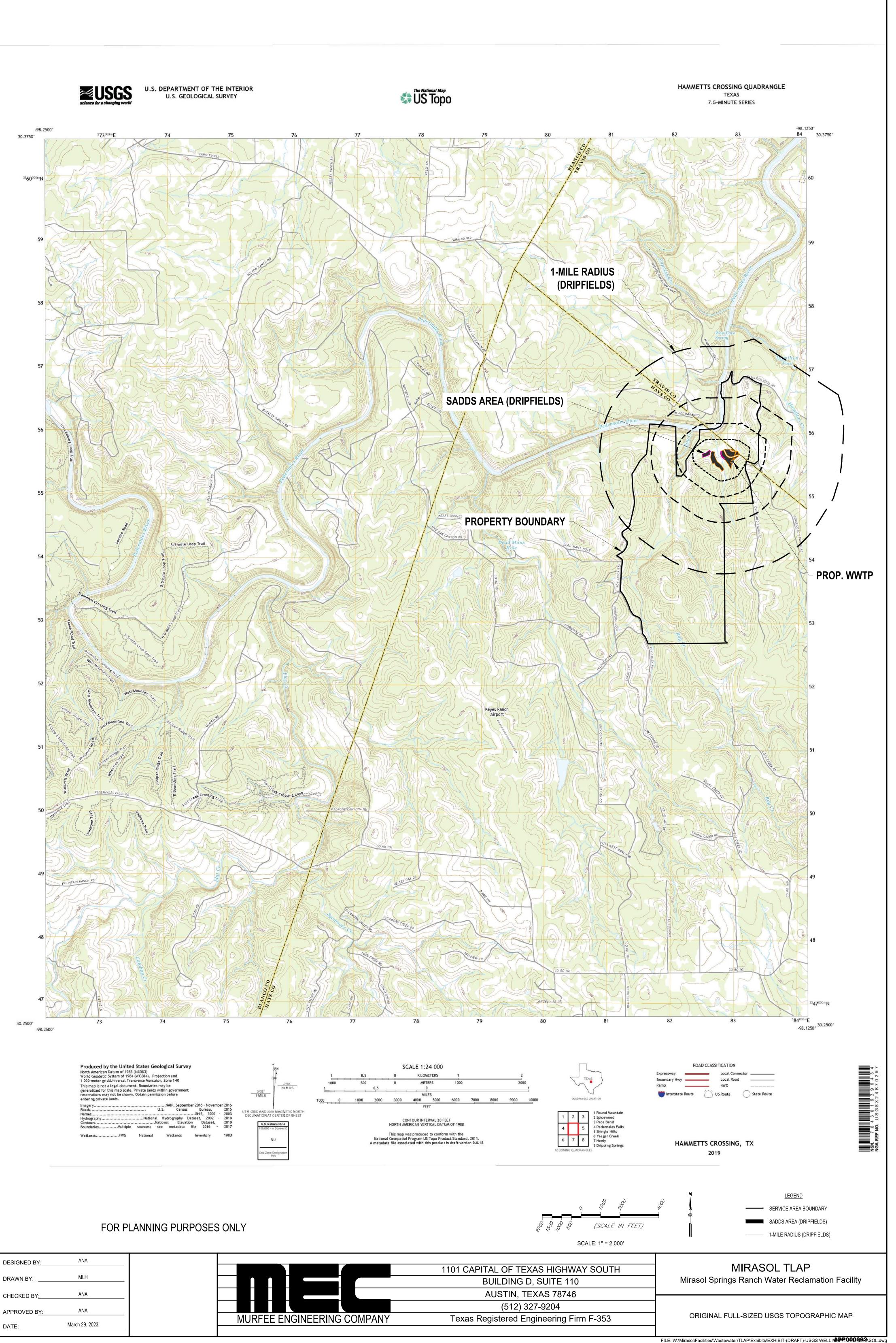
Waste Water

40. Name: Mrs. Andre	a Wyatt, P.E.		41. Title:	Project Engineer
42. Telephone Number	43. Ext./Code	44. Fax Number	45. E-Mail	Address
(512) 327-9204		(512) 327-2947	awyatt@)nurfee.com

Wastewater Agriculture

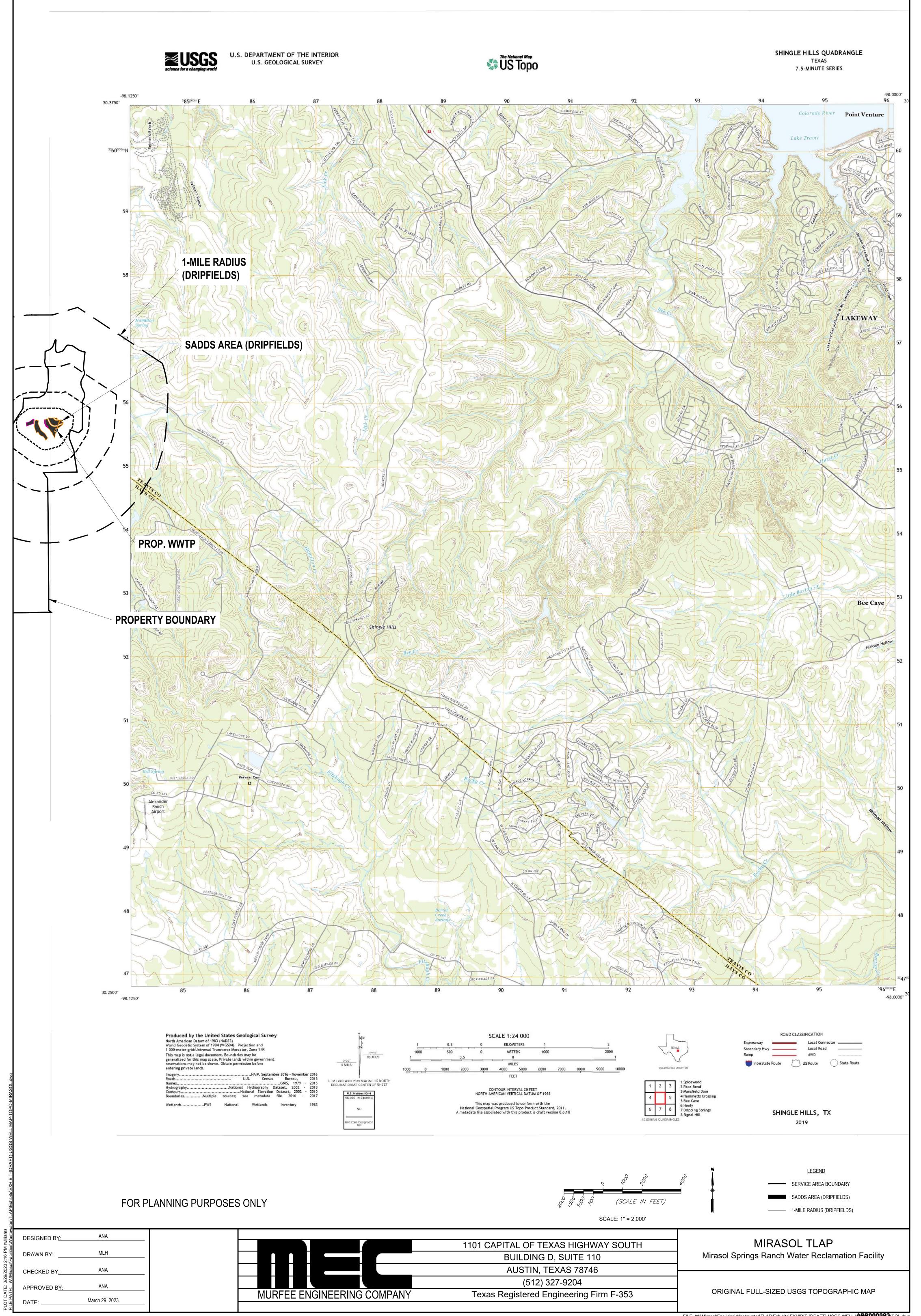
Water Rights

SECTION V: Authorized Signature

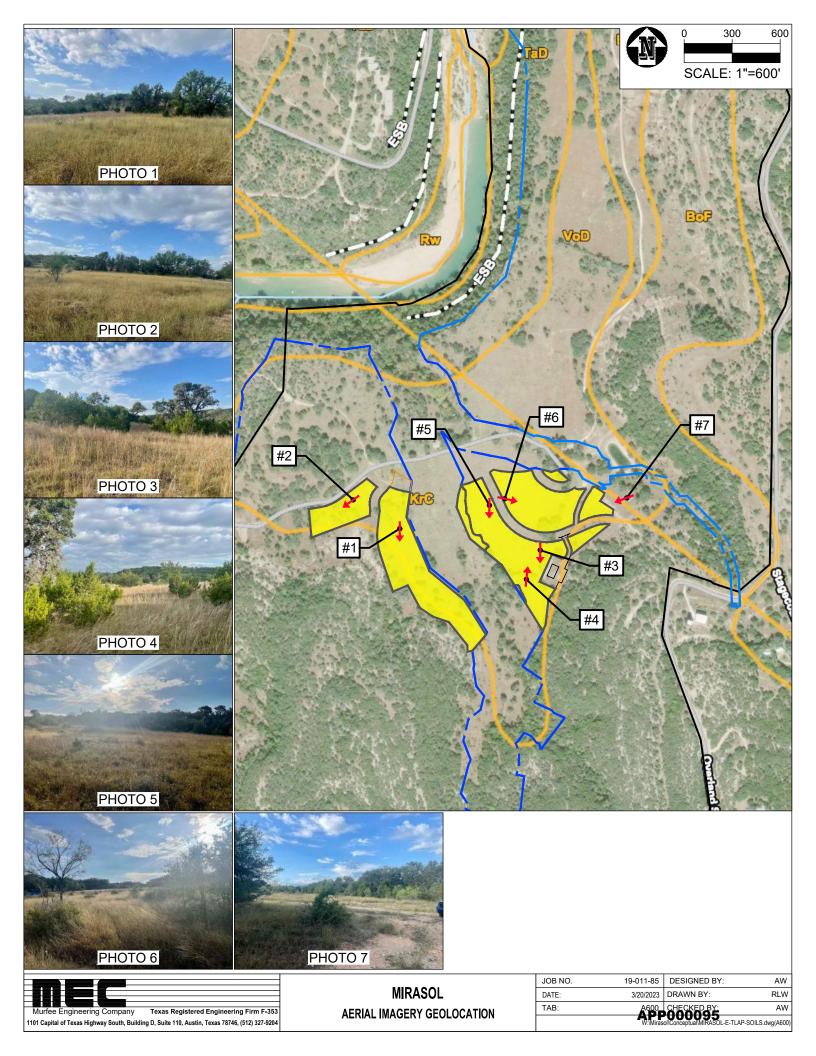

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Clancy Utility Holdings, ŁLC	Job Title:	President		
Name(In Print) :	Shaun Miller			Phone:	(214) 301-4255
Signature:	Shan mo			Date:	4-25-23

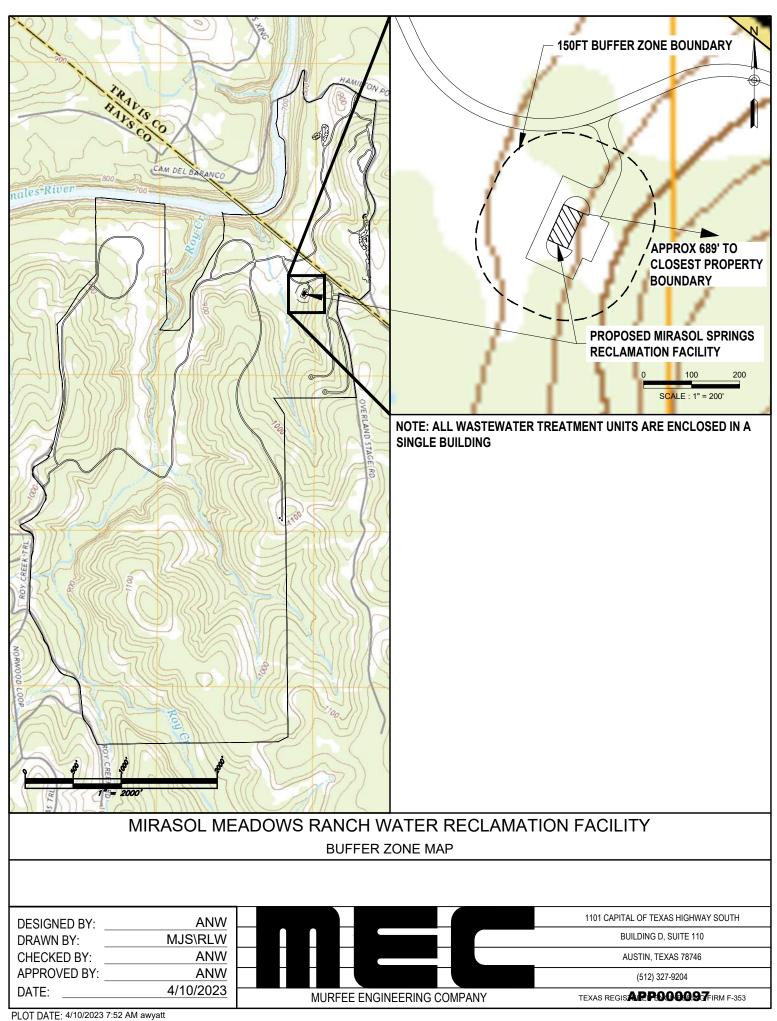
Voluntary Cleanup


Other:

<u>Attachment 2 – Original full-size USGS Topographic</u> <u>Map</u>


3/29/2023 2:16 PM W:\Mirasol\Facilitie

PLOT DATE: FILE PATH:



FILE: W:\Mirasol\Facilities\Wastewater\TLAP\Exhibits\EXHIBIT-(DRAFT)-USGS WELL

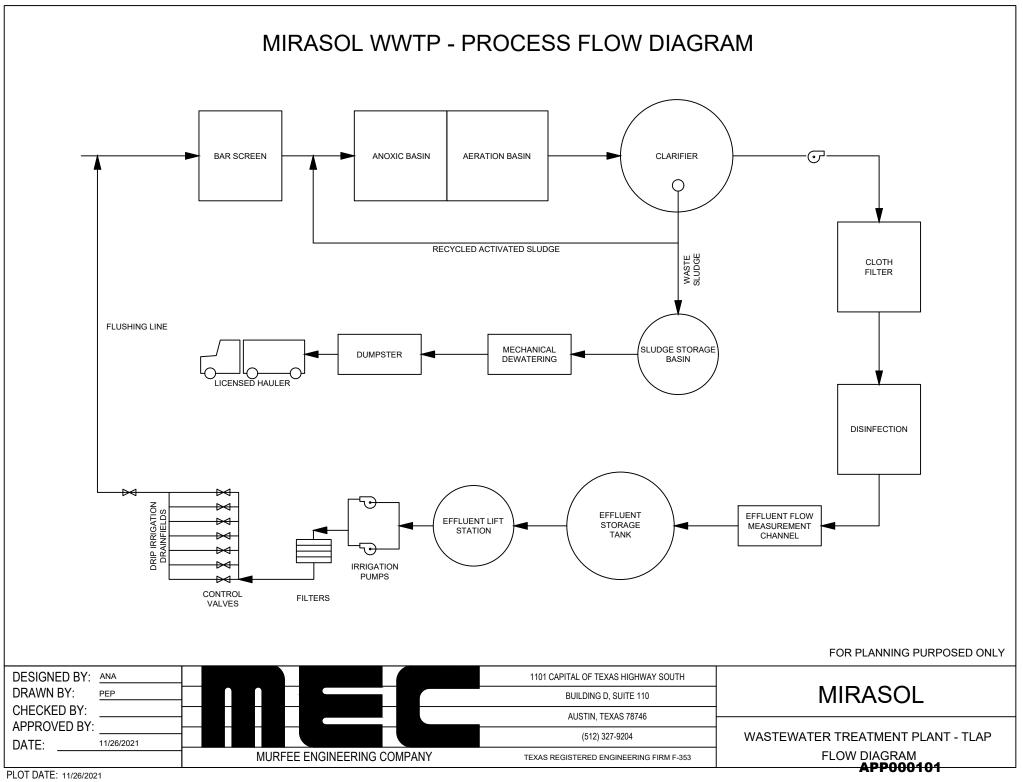
Attachment 3 – Original Photographs

<u>Attachment 4 – Buffer Zone Map</u>

FILE PATH: W:\Mirasol\Facilities\Wastewater\TLAP\CAD\Exhibit-Mirasol-TLAP BUFFER ZONE MAP-230410.dwg

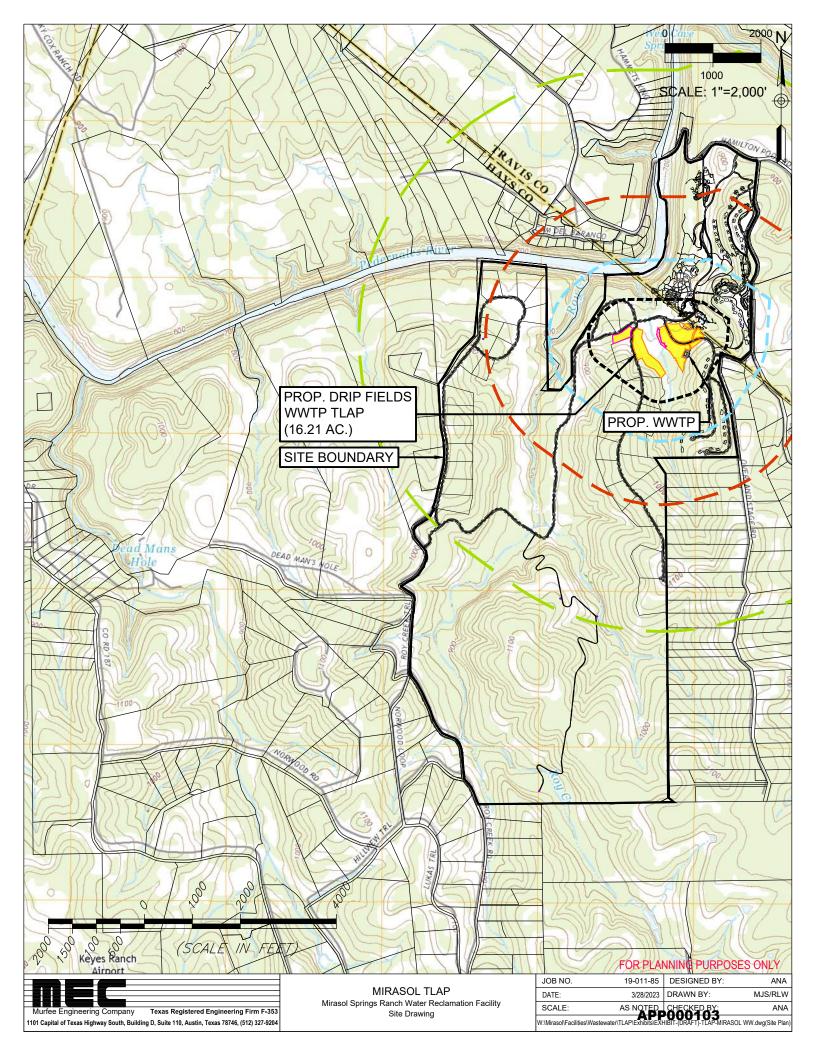
Attachment 5 – Treatment Process Description

Treatment Process Description - Mirasol Springs Ranch Water Reclamation Facility


The Mirasol Springs Ranch Water Reclamation Facility will serve the Mirasol commercial development and branded residential homes. This treatment system will be constructed in a single phase capable of treating the full permit capacity of 39,000 gallons per day. The proposed treatment process is an activated sludge treatment system operated as single stage nitrification with tertiary filtration.

Treatment units include an influent screen, anoxic basin, aeration basin, clarifier, cloth filter, and chlorine contact chamber and the process produces Type I effluent. Following treatment, effluent is directed to an effluent flow monitoring channel and discharged into a 218,000 gallon (0.67 acre-feet) storage basin.

Effluent irrigation pumps will withdraw from the storage basin and pump effluent to a 16.2-acre subsurface area drip dispersal system.


Waste sludge will be stored in a sludge storage basin prior to dewatering. Dewatered sludge will meet the requirements for hauling as a solid and be stored on-site in a dumpster prior to hauling by a licensed hauler to a licensed disposal site.

Attachment 6 – Process Flow Diagrams

FILE PATH: W:\Mirasol\Facilities\Wastewater\TLAP\Exhibits\MIRASOL PROCESS FLOW DIAGRAM_.dwg(INITIAL)

<u>Attachment 7 – Site Drawing</u>

<u>Attachment 8 – Sludge Transport Letter and Sludge</u> <u>Management Plan</u>

Waste Stream Acceptance

Wastewater Residuals Management, LLC an affiliate of Wastewater Transport Services, LLC, owns and operates the Austin Wastewater Processing Facility. This facility has been permitted by the TCEQ and assigned permit number MSW 2384. The disposal facility is expected to be open for at least the next 5 years. Wastewater Residuals Management reserves the right to discontinue acceptance of the below mentioned waste at any time.

The facility has been permitted to receive the following non-categorical waste streams:

- Wastewater Treatment Plant Sludge
- Water Treatment Plant Sludge
- Leachate
- Septic
- Sanitary Sewer
- Storm Water**
- Food Service Grease
- Lint Trap Waste
- Other Non-Hazardous Liquid Waste**

The facility has also been permitted as a centralized waste treatment facility to receive and treat the following categorical waste steams:

- Grit Trap Waste (Car Wash)**
- Other Oils Treatment and Recovery**

We agree to accept the following waste stream from the below listed generator:

Generator: Mirasol Water Reclamation Facility

Waste Stream(s): <u>WWTP Sludge</u>, Raw Sewage

Profile Number: N/A

April 20, 2020

Wastewater Residuals Management, LLC

^{**}Waste stream will need a profile and may need analytical

SLUDGE MANAGEMENT PLAN for the MIRASOL SPRINGS WATER RECLAMATION FACILITY TLAP

Prepared for:

Mirasol Springs Ranch c/o Clancy Utility Holdings, LLC 4143 Maple Avenue, Suite 400 Dallas, TX 75219

Prepared by:

Murfee Engineering Company, Inc. Texas Registered Firm No. F-353 1101 Capital of Texas Highway South Building D, Suite 110 Austin, Texas 78746 (512) 327-9204

May 5th, 2023

MEC File No. 98084.413

The following information is provided to meet the requirements of item 10 of the Domestic Technical Report 1.0.

The Mirasol Springs Water Reclamation Facility will process wastewater produced by the proposed inn and branded residential housing. The anticipated wastewater has the following characteristics:

```
Influent Design Flow = 0.039 MGD
Influent BOD Concentration = 480 mg/L
Aeration Basin MLSS = 2,500 mg/L
Sludge Yield = 0.7
Solids Concentration in Storage = 1%
```

Table 1 shows the anticipated wet sludge production given the various influent flow rates.

Solids Generated	100% flow	75% flow	50% flow	25% flow
Pounds Influent BOD ₅	156	117	78	39
Pounds of sludge to process	109	82	55	27
Pounds of wet sludge produced	10,929	8,197	5,464	2,732
Gallons of wet sludge produced	1,310	983	655	328

Table 1: Sludge Production

Sludge will be wasted from the RAS flow stream to the proposed 10,000-gallon aerated sludge holding basin. Sludge will be pumped to the volute dewatering device with a proposed treatment capacity of 15 gallons per minute and produce approximately 80 pounds of dry solids per hour. Filtrate from the dewatering device will be introduced back to the anoxic treatment basin. Solids produced by the dewatering device will be hauled from site for further processing and final disposal by a licensed facility. The minimum dry solids produced by the dewatering device will be 85%. Table 2 shows the anticipated dry sludge production and the various influent flow rates.

Dry Solids Generated	100% flow	75% flow	50% flow	25% flow
Solids %	85%	85%	85%	85%
Pounds of dry solids produced	728	546	364	182
Cu ft of dry solids	9.34	7.01	4.67	2.34

Table 2: Dry Solids Production

Table 3 shows the removal schedule for the dry sludge assuming a four-yard dumpster is used and allowed to fill completely prior to removal. Dry sludge will be removed from the site regularly. The twenty-yard dumpster will be used to hold the dry solids and will be emptied once each month, regardless of how full it is.

Table 3: Solid Sludge Removal Schedule

Removal Schedule (days)	100% flow	75% flow	50% flow	25% flow
Days between Sludge Removal	57	77	115	231

In the event of a failure of the dewatering device, the proposed sludge storage tank will follow the removal schedule shown in Table 4.

Table 4: Liquid Sludge Removal Schedule

Removal Schedule (days)	100% flow	75% flow	50% flow	25% flow
Days between Sludge Removal	8	10	15	31

The sludge will be transported by licensed hauler, Wastewater Transport Services, Registration # 24343 to Wastewater Residual Management's disposal facility: Austin Wastewater Processing Facility, Permit No. MSW 2384 in Travis County.

Attachment 9 – Justification for Permit

APP000109

Justification of Permit Need - Mirasol Springs Ranch Water Reclamation Facility

Proposed Flows

Final phase

Design Flow: 0.039 MGD

2-Hr Peak Flow: 0.156 MGD

Construction Start Date: 2024

Waste Disposal Date: 2025

The proposed flows are based on the current land plan for the service area. The service area includes a hotel made up of 71 rooms (with a potential for 12 additional rooms), two restaurants, an events venue, a variety of visitor venues, a few retail areas, 69 single-family residences (with a potential for 8 additional residences, and a University of Texas Field Station. Wastewater production was estimated in two manners. First, the number of living unit equivalents was estimated using the square footage of the planned program areas and an estimate of how many gallons of wastewater would be produced per LUE. The second method used the TCEQ flow per unit method to estimate the wastewater production of a development. The following table summarizes the LUE method:

Use Type	Total Sqft or rooms	LUE/SQFT or rooms		Anticipated mg/L BOD
Single Family	77	1	77	300
Hotel rooms	83	0.5	41.50	300
office	8,984	3.33E-04	2.99	300
Restaurant/Cafeteria	15,127	5.00E-03	75.64	1,000
Retail and Misc	77,020	6.02E-04	46.40	300
UT Field Station			10.99	300
Pools	6,615	6.02E-04	3.98	5
Total			258.5	
Gallons per LUE	150	Total Gallons	38,850	499

Туре	Flow per Unit (GPD)	Unit	Est # Units	Total Flow (GPD)	Anticipated mg/L BOD
Office Building	20	people in largest shift	150	3,000	300
The Inn	50	beds	166	8,300	300
Restaurant	7	meal	1,500	10,500	1,000
Catering/Events	10	per attendee	55	550	1,000
Residential	50	per person	193	9,625	300
UT Field Station	100	Person	20	2,000	300
Totals				33,975	528

The following table summarizes the TCEQ method:

Given the results of these analyses, 39,000 gallons per day was selected as the design flow, based on the LUE method. As this is a new system with no flow data, the TCEQ regulatory requirement a peaking factor of 4 for the 2-hour peak flow.

There are currently no plans for future development other than what has been presented.

Attachment 10 – Design Calculations

Mirasol Process Calculations

Design Parameters

Average Daily Flow	39,000	GPD
Peak 2 Hour Flow	156,000	GPD
Influent BOD Concentration	525	mg/L
Influent TKN Concentration	60	mg/L

Required Process Limits

Aeration Basin Air Requirement	3,200	SCF/day/lb BOD
Clarifier Maximum Surface Loading	1,800	gal/day/sf
Maximum Weir Loading Rate	20,000	gal/day/ft
Minimum Detention Time at Peak Flow	1.8	hours
Chlorine Contact time at Peak Flow	20	minutes
Effluent Storage	3	days

Resultant Minimum Basin Sizing

	Operating Volume	Width	Length	Operating Depth
Anoxic Basin	13,000 gallons	12 feet	10 feet	15 feet
Aeration Basin	51,100 gallons	12 feet	36 feet	15 feet
Chlorine Contact	2,170 gallons	12 feet	2 feet	15 feet
Sludge Storage	13,400 gallons	12 feet	10 feet	15 feet
Clarifier	11,845 gallons	12 feet		14 feet
Effluent Storage	117,000 gallons	Irregular Shape	2,090 square feet	14 feet

Design Calculations

Clarifier Sizing

Clarifier size is dictated by surface loading rate, detention time. or weir loading rate. Surface loading rate is the limiting characteristic in this case.

$$SLR = \frac{Q_{peak}}{SA}$$

$$SLR \equiv Surface \ Loading \ Rate \ \left(1,800 \frac{gal}{day \cdot sf}\right)$$

$$SA = \frac{Q_{peak}}{SLR} = \frac{156,000 \ \text{gpd}}{1,800 \frac{gal}{day \cdot sf}} = 87 \ \text{sf}$$

$$Clarifier \ Diameter \equiv 10.5 \ feet \ minimum$$

Aeration Basin Sizing

Aeration basin size is determined by the BOD loading rate.

$$MaximumLoadingRate(MLR) = \frac{25 \text{ pounds BOD}}{day \cdot 1,000 \text{ cf}}$$
$$BOD \text{ Loading} = 525 \frac{mg}{L} * Q_{peak} = 170.7 \frac{lbs}{day}$$
$$V_{AB} = \frac{BOD \text{ Load}}{MLR} = \frac{170.7 \frac{lbs}{day}}{\frac{25 \text{ pounds BOD}}{day \cdot 1,000 \text{ cf}}} = 6,830 \text{ cf or } 51,092 \text{ gallon}$$

Anoxic Basin Sizing

Anoxic basin size is determined by the nitrogen load, unless the load results in a low detention time. A nitrogen load of 19.5 pounds per day was used based on influent concentration of 60 mg/L. The nitrogen load yielded a basin size of 9,364 gallons. In this case, the detention time is set to 2 hours yielding a basin volume of 13,000 gallons or 1,738 cf.

$$V_{Anox} = \frac{Detention Time * Q_{peak}}{24 \frac{hours}{day}}$$
$$V_{Anox} = \frac{2 hrs * 156,000 \frac{gallons}{day}}{24 \frac{hours}{day}} = 13,000 gallons \text{ or } 1,738 \text{ cf}$$

Chlorine Contact Basin Sizing

Chlorine contact basins must provide at least 20 minutes of hydraulic detention time at the 2-hour peak flow. This yields a Contact Basin volume of 2,167 gallons or 290 cubic feet.

$$V_{CT} = \frac{Detention Time * Q_{peak}}{24 \text{ hours}/day * 60 \text{ minutes}/hour}$$
$$V_{CT} = \frac{20 \text{ minutes} * 156,000 \frac{gallons}{day}}{24 \frac{hours}{day} * 60 \frac{\text{minutes}}{hour}} = 2,167 \text{ gallons or } 289.6 \text{ cf}$$

APP000114

Sludge Basin Sizing

There are no standards for sizing sludge basins. This system includes a sludge dewatering process which will not be installed with redundant capacity. Therefore, the sludge basin size was calculated based on a seven-day storage volume for wasted sludge. Waste sludge is assumed to have a solids concentration of approximately 1%.

$$BOD \ loading = 170.7 \frac{lbs}{day}$$

$$Sludge \ Yield = 0.7$$

$$Sludge \ Produced = 0.7 * 162.6 \frac{lbs}{day} = 119.5 \frac{lbs}{day}$$

$$Pounds \ of \ Wet \ Sludge = \frac{119.5 \frac{lbs}{day}}{1\%} = 11,953 \ lbs$$

$$V_{wet \ sludge} = \frac{11,953 \ lbs}{78 \frac{lbs}{cf}} = 191.6 \ cf \ or \ 1,433.3 \ gallons$$

$$V_{sludge \ storage} = 7 \times V_{wet \ sludge} = 1341 \ cf \ or \ 10,033 \ gallons$$

Effluent Storage

The effluent storage basin is sized to contain a minimum of three (3) days volume of treated effluent. This results in a basin with an operating volume of at least 117,000 gallons. The design intent is to construct a below-ground effluent clearwell within the footprint of the wastewater treatment plant (WWTP). The proposed WWTP is enclosed in an 80-foot by 45-foot building and roughly 1,335 square foot is dedicated to treatment basins. The remaining area available is approximately 2,090 square feet. The proposed operating depth of the basin is 14 feet. This provides 218,000 gallons of available effluent storage.

<u>Attachment 11 – FEMA Firm Maps #48209C0025F</u> <u>Sep 2,2005 ; #48453C0360H Sep 26, 2008</u>

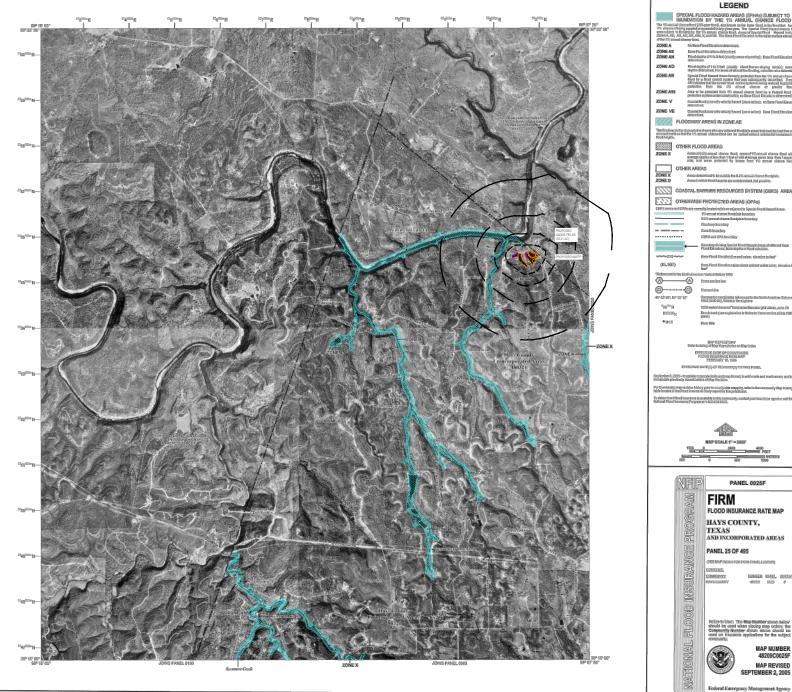
NOTES TO USERS

This map in for task in administration the Matienal Flood Interaword Program. It data that not meets which define of mono subject to fixeding, particularly from food exchange for each of which data. This commentatively map reproductory shield its contrained for ved, waers are encouraged to a ramony of Biblisseer Elevations (ins and leadness Data and/or Sources of Allowater Linearizes taking consistent of the Float instance float of effect speech the comparison in the Sources taking d instance that SFEs shows on the FHM supressed in control of sources of sources and the speech speech of the SHE statement of the SHE statement taking speech of the SHE statement of the SHE speech speech speech of the SHE speech speech speech speech speech speech speech speech of the SHE speech speech speech speech speech speech speech speech of the SHE speech speech speech speech speech speech speech speech speech of the SHE speech speec laries of Par **Handscape** were completed at cross sociects and interpolated an attack ordinar. The Bootshap's were based on hydraulis anniotentions with 10 may been used of the Battachan Board Insurance Program. Facultury within the particent Roadieny data are provided in the Fired Insurance Study regist. regard to res Controls summer not in Special Florad Hazard Assess many by pretected by Road control structures. Rober in Election 2.4 "Facad Finite-fite Meansant" of the Florad Immuness Floring summer for information and Social structures in this structure. exjection cand in the preparation of his map can their rank Transceras for (UTM) passe 14. The backgood datam was NAD 25, (HTM2 approxi-tants in datam, sphered), sphered approximate of the predation of the object paintedness may result in sight pendamid differences in map to access installed paraticipation. These offerences is not determined in the

nd admittione receipt to compared to structure and general admittion to status works at distant. For information regarding conversion from Generatics Version Datam of 1620 and the North America of 1550, visit the National Generation Service works to

 Statistics, secondarios, second inclusion distribution along the broads within maps, planare contact fine information Dervices Branch of the site Strengy att (2014) 742-3242, or visit their soubside at its. Markin Interest

patern Digital Orientizata Gendrungtes (DOD) produced at a scale on theinernite dater 1960.

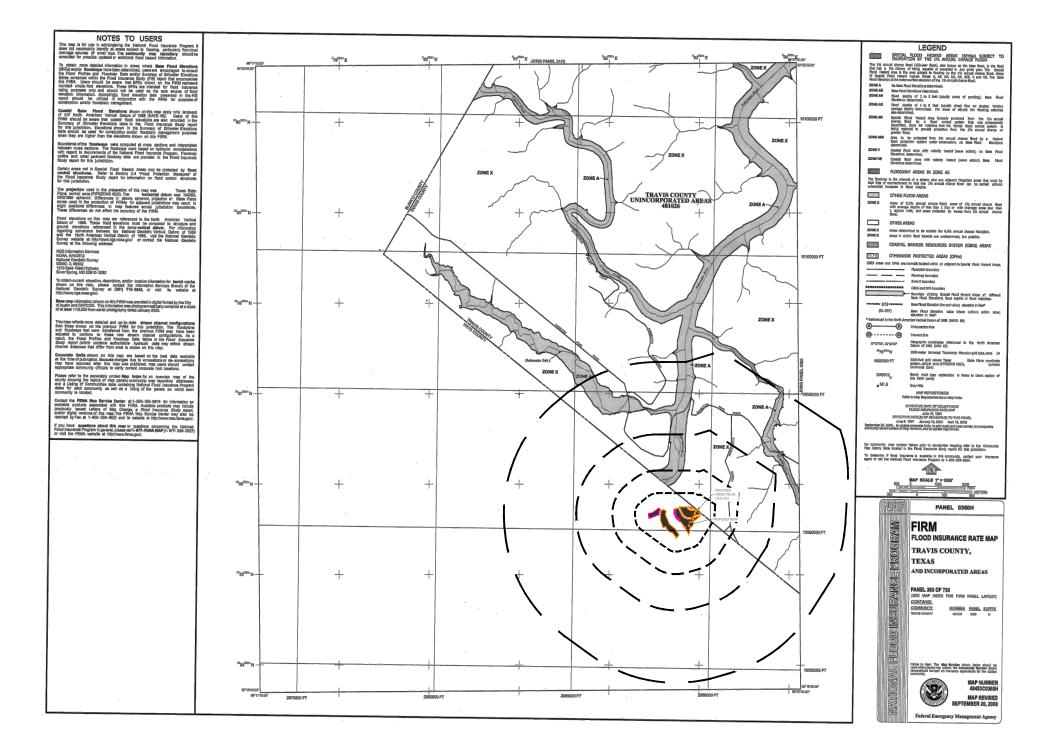

resp reflects more detailed up/acides stream shareset nonfigurations increase house on the products FRM by this subsidiary. The Exceptions Stream Products and the contrast of the stream stream of the products that the contrast to bisins and narrow stream character configurations. All a 1, the Text) Ferdina and Facadaus (Salta bables in the Food Imparation by speed path), which and activity by hybriding the product annum and distance that distant dataway the stream of the resp.

ed en fac titatish. Because charges that is erementions or deantecations may have red other this may was published, may users should contact appropriate contact the transfer of the contact of the second second second second second second second second second second

Finite order to the separately privat Hap ledge for an average map of the courty eleving the legal of map panels; contractly map separately addresses; and a Linky of Communities take containing Hallman Road historees Program.

c) Con FEMA Map. Survice Contex at 4-500-005-0010 t listile products associated with file FIRM. Available product mly instant Lafters of Map. Obserger, in Food Insurance Obsig-valuation of files runs. The FEMA Man. Environ Context runs alon. noy include

r have questions about this map or questions constraining the National Florid man Program in general, planars and 5-877-FEMA NAP (1-077-000-0007) or



LEGEND SPECIAL FLOOD HAZARD AREAS (SFNAR) SURJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD community transmitterial (100 page flood, all in literate and a last that have in the state that the state is a state of the state of t No Name Printed Tales and state deformation of First depite of 4 to 3 feet (analy about four analysis) array depite defendent. For annual alaxied for fiteding, velocities also determine Equival Field Hazard Assure forwards predenined terms for 10% arrends field by a fixed control system 20% area and assured by described. Advised and the fixed terms for a fixed and the system in grantering predecing from fixed to 10% attempt chance or predecing Area to be presented from 1% densel characterized by a Federal from evolution externation conductively to Rave Disol Universities debryinged. finantial final tenerolity wirely haven (associating to finan Final Evo Constant Reconstruction with value by Record (server active)). Neuror Freed Educations designments FLOODWAY AREAS IN ZONE AE The Readowy is the channel of a streng plot only relianced functions generate that result he implicits of strengthment on backfur 1% initial characterized can be tartied when a maximum processing to from backets. Annield Müllingenal charge float, gean of Warmall charge field with memory diplications float Walter with desirage series here from 9 second mile; well were preferred by layers from 4% annual status float. Arean defermined to be exhible the 6.2% scenario chance the rights. Arean in which therefore are undefermined, but passible. COASTAL BARRIER RESOURCES SYSTEM (CERS) AREAS CONTRACTOR OTHERWISE PROTECTED AREAS (OPAs) al COPAes and presentable Decemberd with the care definition of the Science and File 115 annual chance for 0.215 annual chance B Finalesciencies CBR2 and DFA brandley Boundary division Result Neural Among of ethe Fixed Elementers, Band depths or Sood valuation. Reserved Floradoralization; alconics in Res? Boom Frond Elevation value advant unitary within access elevation. In Sector n Austral Elabors (1983) Generate his constitution technologies do the Westle Assertions Datamet failed pathbolics, Westlein HerningSterm 4000 erester Licharnen Travensene blemater grid vallans, anne 64 Bendt mark (ann naplavaller in Noter in Sternausting all big Fit MAP OLY CONTONY Rather to Balang Of Maps Regressionies on Maps Index PERSONAL DATE OF COUNTYINGS FROM PROPARED FOR MAP FEDERATY 10, 1988 ATEN OF BRAN Constructions C., COVER - In application assopriously lawsless and reaso Harrowsky for and Inclusion and providentity induced Lamyres of Mapp Harchillon. energianity energy equivilant biology prior to consult solar mapping, value i tradiction from Planck Internetion (Media respect for this Interfactory, To define the William Device were in available in February matty, context you National Physician processor in the Address Matters at MAP SCALE 1" = 2055" 1000 0 2000 4000 620 PANEL 0025F FIRM FLOOD INSURANCE RATE MAP HAYS COUNTY, TEXAS AND INCORPORATED AREAS PANEL 25 OF 495 CEENAPOIDES FOR FIRM GRAPH, LANSUTE EDMAN INTY ARTER FRANK, SUPER, ARTER 0028 P ten placing map orders; the er shown above should be a for the subley MAP NUMBER 48209C0025F

APP000117

MAP REVISED

SEPTEMBER 2, 2005

APP000118

Attachment 12 – Annual Cropping Plan

Annual Cropping Plan – Mirasol Springs Ranch Water Reclamation Facility

The same crops will be planted across the entire proposed TLAP area, refer to Attachment 3 for the area and soil map and to Attachment 17 for additional soil information. The flora in the TLAP area will be removed to plant the proposed mix of grasses. To preserve the native flora and fauna in the surrounding area, we propose that a blend of non-native and native, deep-rooted, quick germinating grasses be used to seed the irrigated areas in the summer and cereal rye grain be overseeded for winter growth. The development has an agronomist involved to monitor the area foliage and he, along with the environmental conservation consultant, will plant a seed mix including Texas native grasses that have water and nutrient demands similar to Bermuda grass along with pearl millet grass to meet the requirement for a non-Native summer growing grass species. Cereal rye grain will be used for winter over-seeding. Irrigated areas will be installed in advance of the anticipated use for effluent disposal to ensure sufficient plant growth for nutrient/water uptake. Extensive data is not available, but the grasses in the proposed list have similar nutrient uptake capacities as Bermuda. The average monthly use, expressed in inches for rye grass, was derived from Bulletin 6019, "Consumptive Use of Water by Major Crops in Texas," a publication of The Texas Board of Water Engineers, a predecessor of the Water Commission. Specifically, rye grass rates of consumptive use are derived from Table 8 – Small Grains, from the publication. Bermuda grass rates were taken from "Mean Crop Consumptive Use and Free-Water Evaporation for Texas," by John Borrelli, et. al. at Texas Tech University. The total monthly rates are calculated as follows:

Month	Bermuda (in/month)	Rye (in/month)	Total (in/month)
January	2.2	1.3	3.5
February	2.3	2.3	4.6
March	3.4	5.7	9.1
April	4.1	7.4	11.5
May	4.4	5.6	10.0
June	5.1		5.1
July	6.2		6.2
August	5.8		5.8
September	4.7		4.7
October	3.5	1.2	4.7
November	2.4	1.6	4.0
December	2.0	1.3	3.3
Total	46.1	26.4	72.5
Average			6.04

The design irrigation rate of 0.1 GPD/ft^2 is equivalent to 4.87 inches per month, which is based on design flow. Results from similar existing projects tend to have an actual irrigation rate at 80% or less of the design irrigation rate value. Actual flows will result in an average application rate of 3.9 inches per month. It is normal for wastewater flows in the winter months to be less than the average flow rate.

A nitrogen (total) loading was calculated for the irrigated areas, based on 25 mg/l of TN in the effluent. The annual application rate is 332 pounds per acre per year, which is below the quantity that can be used by the two grass crops. Additional nutrients do not appear to be a critical necessity. No additional watering or fertilizing of crops is anticipated to be necessary to maintain adequate growth of the two grass crops proposed. Grass will be mowed as necessary.

Mirasol Springs Ranch TLAP Field Seed List

September 12, 2022

Warm-season crops:

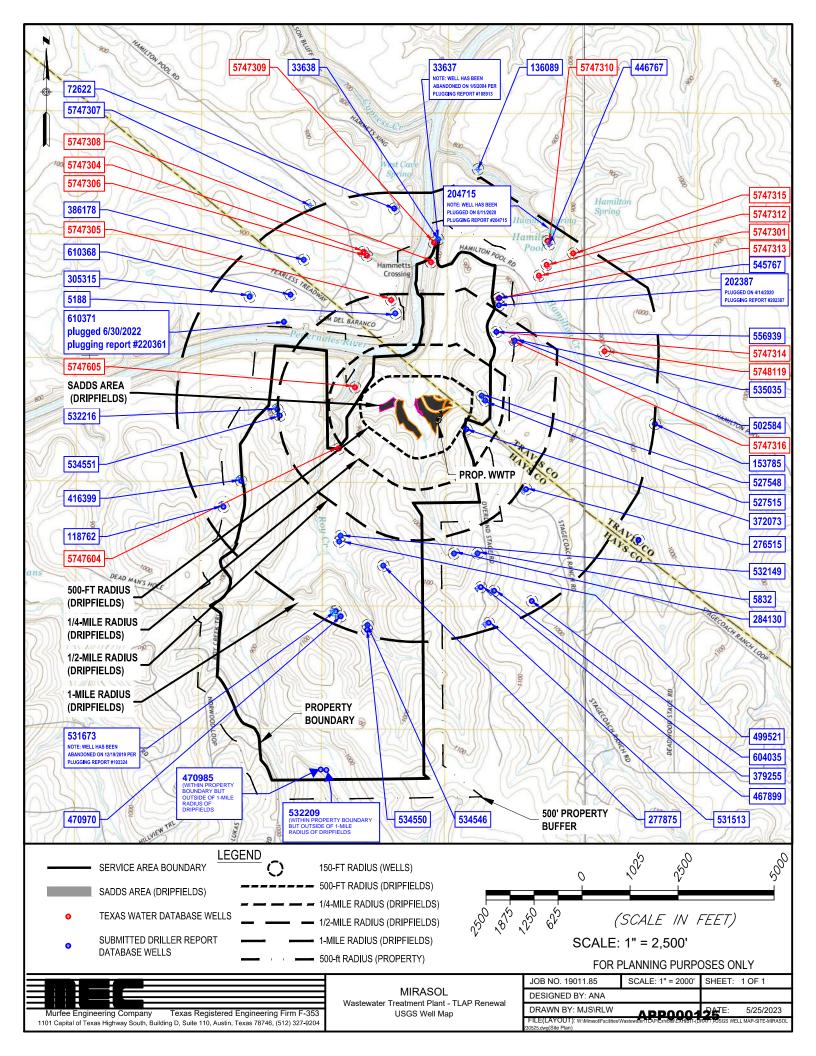
- Non-native primary crop
 - o Pearl millet, Pennisetum glaucum, seed, 6lbs/ac
- Native crops (upland fields)
 - o Switchgrass, *Panicum virgatum*, **4" plugs** 12 feet o.c.
 - Eastern gamagrass, *Tripsacum dactyloides*, **4" plugs** 12 feet o.c.
 - o Switchgrass, *Panicum virgatum*, 3lbs **seed** /acre
 - Eastern gamagrass, *Tripsacum dactyloides*, 3lbs **seed** /acre
 - o Green sprangletop, *Leptochloa dubia*, 4lbs **seed**/acre
 - o Little bluestem, *Schizachrium scoparium*, 6lbs **seed** /acre
- Native crops (lowland fields)
 - Switchgrass, *Panicum virgatum*, **4" plugs** 12 feet o.c.
 - Eastern gamagrass, *Tripsacum dactyloides*, **4**" plugs 12 feet o.c.
 - o Switchgrass, *Panicum virgatum*, 3lbs **seed** /acre
 - Eastern gamagrass, *Tripsacum dactyloides*, 3lbs **seed** /acre
 - Big bluestem, Andropogon gerardii, 3lbs seed /acre
 - Bushy bluestem, *Andropogon glomeratus*, 3lbs **seed** /acre

Note: the total quantity of 4" plugs to be planted 6 feet on-center, with each of the two grasses to make up half of the total and to be evenly distributed.

Cool-season crops:

- Non-native primary crop
 - Cereal rye grain, Secale cereale, 25lbs/acre
- Native crops
 - o Virginia wildrye, *Elymus virginicus*, 6lbs/acre
 - o Canada wildrye, *Elymus canadensis*, 6lbs/acre
 - o Texas wintergrass, *Nassella leucotricha*, 8lbs/acre

Additional native species recommended for ecological diversity, 10lbs/acre total to be overseeded across the entire TLAP fields:


- Maximilian sunflower, *Helianthus maximilianii*
- Late goldenrod, *Solidago altissima*
- Butterfly weed, Asclepias tuberosa

- Standing cypress, *Ipomopsis rubra*
- Datura, Datura wrightii
- Buffalo gourd, *Cucurbita foetidissima*
- Lemon mint, *Monarda citriodora*
- Cutleaf daisy, Engelmannia peristenia
- Lanceleaf coreopsis, *Coreopsis lanceolata*
- Black-eyed susan, *Rudbeckia hirta*
- Firewheel, Gaillardia pulchella
- Texas bluebonnet, *Lupinus texensis*
- Texas gayfeather, *Liatris mucronate*
- Zemenia, Wedelia texana

Mowing regime:

- Mow twice per year in February and August.
- Mow 8" height minimum.

Attachment 13 – USGS Well Map

Attachment 14 – Well Data Table

Well Table

Well ID	Well Use	Producing? Y/N	Open/cased/capped or plugged	Proposed Best Management Practice
5188	Injection	No	No Data	Applicable buffer distance will be met
5832	Domestic	Yes	Open Hole	Applicable buffer distance will be met
33637	Domestic	No	Plugged	Well has been plugged
33638	Domestic	Yes	Filter Packed	Applicable buffer distance will be met
72622	Domestic	Yes	Open Hole	Applicable buffer distance will be met
118762	Domestic	Yes	Open Hole	Applicable buffer distance will be met
136089	Domestic	Yes	Open Hole	Applicable buffer distance will be met
153785	Domestic	Yes	Cased	Applicable buffer distance will be met
202387	Test Well	No	Plugged	Well has been plugged
204715	No Data	No	Plugged	Well has been plugged
276515	Domestic	Yes	Cased	Applicable buffer distance will be met
277875	Domestic	Yes	Straight Wall	Applicable buffer distance will be met
284130	Domestic	Yes	Straight Wall	Applicable buffer distance will be met
305315	Domestic	Yes	Straight Wall	Applicable buffer distance will be met
372073	Domestic	Yes	Open Hole	Applicable buffer distance will be met
379255	Domestic	Yes	Cased	Applicable buffer distance will be met
386178	Domestic	Yes	Filter Packed	Applicable buffer distance will be met
416399	Domestic	Yes	Open Hole	Applicable buffer distance will be met
446767	Public Supply	Yes	Filter Packed	Applicable buffer distance will be met
467899	Domestic	Yes	No Data	Applicable buffer distance will be met
470985*	Test Well	Yes	Filter Packed	Applicable buffer distance will be met
470970	Test Well	Yes	Filter Packed	Applicable buffer distance will be met
499521	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
502584	Test Well	No	Open Hole	Applicable buffer distance will be met
527515	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
527548	Public Supply	Yes	Perforated or Slotted	Applicable buffer distance will be met
531513	Domestic	Yes	Straight Wall	Applicable buffer distance will be met
531673	Domestic	No	Plugged	Well has been plugged
532149	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
532209*	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
532216	Domestic	No Data	Perforated or Slotted	Applicable buffer distance will be met
534546	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
534550	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
534551	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
535035	Public Supply	Yes	Straight Wall	Applicable buffer distance will be met
545767	Monitor	Yes	Filter Packed	Applicable buffer distance will be met
556939	Monitor	Yes	Filter Packed	Applicable buffer distance will be met
604035	Domestic	Yes	Perforated or Slotted	Applicable buffer distance will be met
610368	Domestic	Yes	Screened; Straight Wall	Applicable buffer distance will be met
610371	Domestic	No	Plugged	Well has been plugged
5747301	Oil and Gas	No Data	No Data	Applicable buffer distance will be met
5747304	Stock	Yes	Open Hole	Applicable buffer distance will be met
5747305	Domestic	Yes	Open Hole	Applicable buffer distance will be met
5747306	Other	Yes	Open Hole	Applicable buffer distance will be met

Well Table

5747307	Domestic	Yes	No Data	Applicable buffer distance will be met
5747308	No Data	No Data	No Data	Applicable buffer distance will be met
5747309	No Data	No Data	No Data	Applicable buffer distance will be met
5747310	Public Supply	Yes	Filter Packed	Applicable buffer distance will be met
5747312	Public Supply	Yes	Filter Packed	Applicable buffer distance will be met
5747313	Monitor	No Data	No Data	Applicable buffer distance will be met
5747314	Monitor	Yes	No Data	Applicable buffer distance will be met
5747604	Unused	Yes	Spring	Applicable buffer distance will be met
5747605	Domestic	Yes	Spring	Applicable buffer distance will be met
5747315	Unused	No Data	No Data	Applicable buffer distance will be met
5747316	Public Supply	Yes	No Data	Applicable buffer distance will be met
5748119	Stock	Yes	Cased	Applicable buffer distance will be met

*Well not within 1-mile radius of WWTP & SADDS area; but still within 500 feet of property boundary.

Attachment 15 – Well Reports

STATE OF TEXAS WELL REPORT for Tracking #5188					
Owner:	Lower Colorado River Authority	Owner Well #:	No Data		
Address:	3700 Lake Austin Blvd Austin, TX 78703	Grid #:	57-47-3		
Well Location:	Westcave Preserve 24814 Hamilton	Latitude:	30° 20' 11" N		
	Pool Road Round Mountain, TX 78663	Longitude:	098° 08' 27" W		
Well County:	Travis	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Injection		

Drilling Start Date: 2/21	/2002 Drilling	End Date: 2/24/2002	2			
	Diameter (in.)	Top De	pth (ft.)	Bottom Depth (ft.)		
Borehole:	4.75	(300		
Drilling Method:	Air Rotary					
Borehole Completion:	Unknown					
	Top Depth (ft.)	Bottom Depth (ft.)	Des	scription (number of sacks & material)		
Annular Seal Data:	0	300		9 per well		
	nseal EZ Mud Pres out	ssure Dis	stance to Pro	operty Line (ft.): No Data		
Sealed By: Dri	ller			c Field or other ntamination (ft.): 55		
		C	istance to S	Septic Tank (ft.): No Data		
			Method	d of Verification: Tape Measure		
Surface Completion:	Alternative Procedure Used					
Water Level:	No Data					
Packers:	No Data					
Type of Pump:	No Data					

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type	
Water Quality:	No Data	No Data	
		Chemical Analysis Mad	e: Unknown
	Did the driller	knowingly penetrate any strata which contained injurious constituents	
Certification Data:	driller's direct superv correct. The driller u	at the driller drilled this well (or the vision) and that each and all of the standerstood that failure to complete th turned for completion and resubmitte	atements herein are true and e required items will result in
Company Information:	Ball Drilling Comp	any	
	P. O. Box 201717 Austin, TX 78720		
Driller Name:	Lonnie C. Ball	License	e Number: 2298
Comments:	No Data		
Lit DESCRIPTION & COLOF	hology: R OF FORMATION M	ATERIAL BLANK PIPE	Casing: & WELL SCREEN DATA
From (ft) To (ft) Desc	ription	Dia. (in.) New/Used Type	e Setting From/To (ft.)
0 to 22 White Limestone		1 inch New Polyethyle	ene Loop -4 to 300
22 to 23 Clay			
23 to 100 Grey Shale wit	h Limestone Streaks	5	
100 to 155 Red Shale			
155 to 220 Limestone (H	ard)		
220 to 300 Grey Shale			
10 Closed Loop Wells			

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

STATE OF TEXAS WELL REPORT for Tracking #5832					
Owner:	BLAINE WILLIAMS	Owner Well #:	001		
Address:	204 E. 35TH ST. AUSTIN, TX 78705	Grid #:	57-47-6		
Well Location:	1316 OVERLAND STAGE RD.	Latitude:	30° 19' 09" N		
	DRIPPING SPRINGS, TX 78620	Longitude:	098° 08' 03" W		
Well County:	Hays	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 2/22/2002 Drilling End Date: 2/22/2002

	Diameter (in.,) Top De	epth (ft.)	Bottom Depth (ft.)	
Borehole:	8.75		0	30	
	6.125	3	0	350	
Drilling Method:	Air Rotary				
Borehole Completion:	Open Hole				
	Top Depth (ft.)	Bottom Depth (ft.)	Des	scription (number of sacks & material)	
Annular Seal Data:	0	30		2	
Seal Method: SL	URRIED & POURE	D Di	stance to Pr	operty Line (ft.): No Data	
Sealed By: BO	OBBY ROBERTS			c Field or other ntamination (ft.): 60	
		ſ	Distance to S	Septic Tank (ft.): No Data	
			Method	d of Verification: NOT YET INS	ΓALLED
Surface Completion:	Surface Sleeve Ir	nstalled			
Water Level:	261 ft. below land	d surface on 2002-02	-23 Meas	urement Method: Unknown	
Packers:	PLASTIC 30 PLASTIC 260				
Type of Pump:	Submersible		Pu	mp Depth (ft.): 320	
Well Tests:	Jetted	Yield: 5 GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Made	: No	
		ingly penetrate any strata which contained injurious constituents?		
Certification Data:	driller's direct supervision) correct. The driller unders	e driller drilled this well (or the we and that each and all of the stat stood that failure to complete the ed for completion and resubmitta	tements here required ite	ein are true and
Company Information:	BEE CAVE DRILLING,	INC.		
	185 ANGELFIRE DR.			
	DRIPPING SPRINGS, T	X 78620		
Driller Name:	DRIPPING SPRINGS, T JIM BLAIR		Number:	54416
Driller Name: Apprentice Name:		License	Number: ice Number:	

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dia. (in.) New/Used Type Setting From/To (ft.)
0	1	TOPSOIL	4.5 NEW PLASTIC 0-260
1	20	CALICHE	4.5 NEW PERFORATED 260-350
20	55	GREY LIMESTONE	
55	60	GREY SHALE	
60	75	GREY LIMESTONE	
75	85	BLUE SHALE	
85	90	GREY LIMESTONE	
90	110	BLUE SHALE	
110	200	GREY LIMESTONE	
200	235	GREY ROCK	
235	250	GREY SHALE	
250	290	PINK ROCK	
290	300	GREY SHALE	
300	320	WHITE ROCK W/B 5 GPM	
320	325	GREY SHALE	
325	342	GREY LIMESTONE	
342	350	GREY SHALE	

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

S	STATE OF TEXA	S WELL REP	ORT for Tra	acking #33	3637	
Owner:	DAVID GRESSETT		Owner Well #:	01		
			Grid #:	57-47-3		
	AUSTIN, TX 78704 24601 HAMILTON POO)L RD	Latitude:	30°20'3	30" N	
	DRIPPING SPRINGS, T		Longitude:	098°08'	14" W	
Well County:	Fravis		Elevation:	830 ft. abc	ove sea level	
			**Plugged Wit	thin 48 Hours	**	
This we	II has been plugged	<u>Pluggir</u>	ng Report Tracki	ng #108913		
Type of Work: New Well Proposed Use: Domestic						
Drilling Start Date:	1/5/2004 Drillin	g End Date: 1/6/200	D4	Bottom Dep	oth (ft.)	
Borehole:	10		0	30		
	7		30 59)	
Drilling Method:	Air Hammer					
Borehole Completi	ion: Unknown					
	Top Depth (ft.)	Bottom Depth (ft.)	Descriț	otion (number of s	acks & material)	
Annular Seal Data	:	2				
	d: Unknown		Distance to Prope	•	No Data	
Sealed B	y: GREG SVETLIK		stance to Septic F Incentrated contai		No Data	
			Distance to Sep			
Surface Completio	n: Unknown		Method of	f Verification: I	No Data	
Water Level:	No Data					
Packers:	NONE					
Type of Pump:	No Data					
Well Tests:	Unknown	Yield: 0 GPM				
	Descript	tion (number of sacks & ı	material)	Top Depth (ft.)	Bottom Depth (ft.)	
Plug Information:		0 - 2 2 CEMENT				

Well Report Tracking Number 33637 Submitted on: 3/4/2004

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis	Made: No	
		vingly penetrate any strata v contained injurious constitue		
	driller's direct supervision correct. The driller under	e driller drilled this well (or t) and that each and all of th stood that failure to complet ed for completion and resub	e statements here the required ite	rein are true and
Company Information:	BEE CAVE DRILLING,	INC.		
	185 ANGELFIRE DR. DRIPPING SPRINGS, 1	TX 78620		
Driller Name:	JIM BLAIR	Lic	ense Number:	54416
Apprentice Name:	GREG SVETLIK	Ар	prentice Number	: WWDAPP00001 734
Comments:	updated lat/long by TV	VDB on 2/12/08 - BA		

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dia. (in.) New/Use	d Type	Setting From/To (ft
0	1	TOPSOIL	No Data		
1	10	WHITE ROCK			
10	30	TAN LIMESTONE			
30	45	GREY LIMESTONE			
45	70	BLUE CLAY			
70	105	GREY LIMESTONE			
105	155	TAN ROCK / DRY			
155	200	LT GREY LIMESTONE			
200	202	LT GREY CLAY			
202	230	LT GREY ROCK			
230	275	BLUE / GREEN CLAY			
275	340	GREY SHALE			
340	550	DARK GREY LIMESTONE W/ CLAY			
550	590	GREY CLAY			

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

Owner:	DAVID GRESSETT	Owner Well	#: 01
	006 DAWSON	Grid #:	57-47-3
	AUSTIN, TX 78704 24601 HAMILTON POOL RD	Latitude:	30° 20' 30" N
	DRIPPING SPRINGS, TX 78620		098° 08' 14" W
Well County:	Fravis	Elevation:	830
Well Type:	Domestic		
Drilling Information			
Company: BEE	CAVE DRILLING, INC.	Date Drilled	l: 1/6/2004
Driller: Jim	Blair	License Nu	mber: 54416
Well Report Tra	<u>cking #33637</u>		
	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	10	0	30
	7	30	590
Plugging Informatio	n		
Date Plugged:	1/6/2004	Plugger: JIM BLAIR	
Plug Method:	Unknown		
Casing I	∟eft in Well:	Plug(s)	Placed in Well:
		Description (number of sacks &	material)
No	Data	0 - 2 2 CEMENT	
		2 - 590 CUTTINGS	

driller's direct supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the reports(s) being returned for completion and resubmittal.

Company Information:	BEE CAVE DRILLING, INC.		
	185 ANGELFIRE DR. DRIPPING SPRINGS, TX 78620		
Driller Name:	JIM BLAIR	License Number:	54416
Apprentice Name:	GREG SVETLIK	Apprentice Number:	WWDAPP00001 734
Comments:	updated lat/long by TWDB on 2/12/08 - BA		

	STATE OF TEXAS WELL REPORT for Tracking #33638				
Owner:	DAVID GRESSETT	Owner Well #:	01		
Address:	906 DAWSON AUSTIN, TX 78704	Grid #:	57-47-3		
Well Location:		Latitude:	30° 20' 30" N		
	DRIPPING SPRINGS, TX 78620	Longitude:	098° 08' 14" W		
Well County:	Travis	Elevation:	844 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 1/6/2004

Drilling End Date: 1/7/2004

	Diameter	(in.)	Top Depth (ft.)	Bottom Dept	h (ft.)	
Borehole:	10		0	30		
	7		30	230		
Drilling Method:	Air Hammer					
Borehole Completion:	Filter Packed					
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size	
Filter Pack Intervals:	130	230	Gr	avel		
	Top Depth (ft.)	Bottom Depth	(ft.) D	Description (number of sacks & material)		
Annular Seal Data:	0	30		22 CEMEN	22 CEMENT	
	115	130		2 HOLE PLU	JG	
Seal Method: SL	URRIED & POU	RED	Distance to P	Property Line (ft.): N	o Data	
Sealed By: GF	REG SVETLIK			tic Field or other ontamination (ft.):	lo Data	
			Distance to	Septic Tank (ft.): N	lo Data	
			Metho	od of Verification: N	OT YET INSTALLED	
Surface Completion:	Surface Sleeve	Installed				
Water Level:	No Data					
Packers:	1 PLASTIC 30					
Type of Pump:	DID NOT SET					

Well Tests: Jetted Yield: 15 GPM

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysi	s Made: No	
		vingly penetrate any strata contained injurious consti		
Certification Data:	correct. The driller under	e driller drilled this well (o) and that each and all of stood that failure to comp ed for completion and res	the statements her lete the required ite	ein are true and
Company Information:	BEE CAVE DRILLING,	INC.		
	185 ANGELFIRE DR. DRIPPING SPRINGS, 7	FX 78620		
Driller Name:	JIM BLAIR	L	icense Number:	54416
Apprentice Name:	GREG SVETLIK	ŀ	Apprentice Number	: WWDAPP00001 734

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dia. (in.) New/Used
0	1	TOPSOIL	4.5 NEW PLAST
1	23	WHITE ROCK	4.5 NEW SCREE
23	35	TAN LIMESTONE	4.5 NEW PLAST
35	48	GOLD SANDSTONE	
48	65	BLUE LIMESTONE / CLAY STREAKS	
65	130	BLUE SHALE	
130	226	TAN ROCK W/B 15 GPM	
226	230	LT GREY CLAY	

Dia. (in.)	New/Used	Туре	Setting From/To (ft.)
4.5 NEV	/ PLASTIC	C 0 - 16	D
4.5 NEW	SCREEN	MFG.	160 - 220 .10

TIC 220 - 230

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 334-5540

STATE OF TEXAS WELL REPORT for Tracking #72622					
Owner:	TED STE	WART #3		Owner Well #:	No Data
Address:	26800 HAMILTON POOL RD.		Grid #:	57-47-3	
Well Location:		UND MOUNTAIN, TX 78654 PRESS CREEK - PEDERNALES		Latitude:	30° 20' 38" N
	PASTURE ROUND MOUNTAIN, TX 78654			Longitude:	098° 08' 27" W
Well County:	Travis			Elevation:	877 ft. above sea level
Type of Work: New Well				Proposed Use	Domestic
Drilling Start Date: 11/17/2005 Drilling End Date: 11/18/2005					
		Diameter (in.)	Тор	Depth (ft.)	Bottom Depth (ft.)
Borehole:		8		0	10

Drilling Method: Air Rotary

Borehole Completion: **Open Hole**

	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)
Annular Seal Data:	0	8	5 CEMENT
	8	10	1 HOLEPLUG

10

Seal Method: SLURRIED & POURED Sealed By: Driller

Distance to Property Line (ft.): No Data

Distance to Septic Field or other concentrated contamination (ft.): No Data

Distance to Septic Tank (ft.): No Data

Method of Verification: NOT YET INSTALLED

235

Surface Completion: **Surface Sleeve Installed**

6.75

Water Level:	No Data	
Packers:	PLASTIC 10 NEOPRENE 60	
Type of Pump:	DID NOT SET	
Well Tests:	Jetted	Yield: 15 GPM

Water Quality:	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis M	ade: Yes	
	Did the driller kn	owingly penetrate any strata wh contained injurious constituer		
Certification Data:	driller's direct supervision correct. The driller und	the driller drilled this well (or th on) and that each and all of the erstood that failure to complete rned for completion and resubm	statements he the required it	rein are true and
Certification Data: Company Informatior	driller's direct supervision correct. The driller und the report(s) being retu	on) and that each and all of the erstood that failure to complete rned for completion and resubm	statements he the required it	rein are true and
	driller's direct supervision correct. The driller und the report(s) being retu	on) and that each and all of the erstood that failure to complete rned for completion and resubn G, INC.	statements he the required it	rein are true and
	driller's direct supervision correct. The driller und the report(s) being retu n: BEE CAVE DRILLING 185 ANGELFIRE DR	on) and that each and all of the erstood that failure to complete rned for completion and resubn G, INC. , TX 78620	statements he the required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	GREY ROCK
1	12	TAN CLAY
12	15	SANDSTONE
15	16	TAN CLAY
16	20	SAND
20	30	TAN CLAY
30	40	BROWN & RED CLAY
40	52	RED SAND
52	65	RED CLAY
65	100	WHITE ROCK W/B 5 GPM TDS 450
100	123	GREY ROCK
123	165	GREY CLAY
165	170	RED CLAY
170	180	RED SAND
180	220	RED & WHITE ROCK
220	230	GREY CLAY
230	232	WHITE & GREY ROCK

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.)	New/Used	Туре	Setting From/To (ft.)		
4.5 NE\	N PLASTI	C 0 - 6	0		
4.5 NEW SCREEN MFG. 60 - 100 .05					
4.5 NE\	N PLASTI	C 100 -	· 140		

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #118762					
Owner:	GRINTA LLC	Owner Well #:	No Data		
Address:	98 SAN JACINTO, STE 430 AUSTIN, TX 78701	Grid #:	57-47-6		
Well Location:		Latitude:	30° 19' 22" N		
	DRIPPING SPRINGS, TX 78620	Longitude:	098° 09' 19" W		
Well County:	Hays	Elevation:	1077 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

	Diameter (in.)	Top De	epth (ft.)	Bottom Depth	(ft.)
Borehole:	10		0	12	
	6.75	1	12	295	
Drilling Method:	Air Hammer				
Borehole Completion:	Open Hole				
	Top Depth (ft.)	Bottom Depth (ft.)	Des	cription (number of sack	ks & material)
Annular Seal Data:	0	6		5	
	6	12		4	
Seal Method: SL	URRIED & POURE	Di Di	istance to Pro	operty Line (ft.): No	Data
Sealed By: CE	SAR RAMOS			c Field or other tamination (ft.): No	o Data
		I	Distance to S	Septic Tank (ft.): No	Data
			Method	of Verification: NC	OT YET INSTALLED
Surface Completion:	Surface Sleeve Ir	stalled			
Water Level:	246 ft. below land	d surface on 2007-07	7-17 Meas	urement Method:	Unknown
Packers:	NEOPRENE 12 NEOPRENE 210 NEOPRENE 243 NEOPRENE 245				
Type of Pump:	Submersible		Pur	mp Depth (ft.): 280)
Well Tests:	Jetted	Yield: 30 GPM			

Water Ouslity	Strata Depth (ft.)	Water Type	—	
Water Quality:	No Data	No Data		
		Chemical Analysis Mad	e: Yes	
		vingly penetrate any strata whic		
	(contained injurious constituents	?: No	
Certification Data:	driller's direct supervision correct. The driller under	e driller drilled this well (or the v) and that each and all of the sta stood that failure to complete th ed for completion and resubmitt	atements here e required ite	rein are true and
Certification Data: Company Information:	driller's direct supervision correct. The driller unders the report(s) being returne) and that each and all of the sta stood that failure to complete th ed for completion and resubmitt	atements here e required ite	rein are true and
	driller's direct supervision correct. The driller unders the report(s) being returne) and that each and all of the sta stood that failure to complete th ed for completion and resubmitt INC	atements here e required ite	rein are true and
	driller's direct supervision) correct. The driller unders the report(s) being returned BEE CAVE DRILLING I 185 ANGELFIRE DR) and that each and all of the sta stood that failure to complete th ed for completion and resubmitt INC TX 78620	atements here e required ite	rein are true and
Company Information:	driller's direct supervision) correct. The driller unders the report(s) being returned BEE CAVE DRILLING I 185 ANGELFIRE DR DRIPPING SPRINGS, T) and that each and all of the sta stood that failure to complete th ed for completion and resubmitt INC IX 78620 License	atements hei e required ite al.	rein are true and ems will result in 54416

Top (ft.)	Bottom (ft.)	Description
0	5	SURFACE ROCK
5	12	CALICHE
12	45	TAN ROCK
45	95	GRAY LIMESTONE
95	105	BLUE SHALE
105	170	GRAY ROCK
170	195	BROWN SANDSTONE
195	205	BLUE CLAY
205	230	BROWN SAND
230	245	RED CLAY
245	290	WHITE ROCK W/B 30 GPM TDS 500
290	295	GREY LIMESTONE

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.) New/Used Type Setting From/To (ft.)

4.5 NEW PLASTIC 0-245

4.5 NEW SCREEN MFG 245-295 .050

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #136089						
Owner:	ALAN FETT	Y	Owne	er Well #:	#1	
Address:			Grid #	#:	57-47-3	
Vell Location:		UNTAIN, TX 78663	Latitu	de:	30° 20' 48" N	
	ROUND MOUNTAIN, TX 78663		Longi	tude:	098° 08' 02" W	
Well County:	Travis		Eleva	tion:	862 ft. above sea level	
Type of Work: New Well			Propo	osed Use:	Domestic	
Drilling Start Dat	te: 2/26/2008	Drilling End Da				
)		Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)	
Borehole:		10	0		12	
		6.75	12		290	

Drilling Method: Air Hammer

Borehole Completion: Open Hole

	Top Depth (ft.)	Bottom Depth (ft.)	Description (number of sacks & material)
Annular Seal Data:	0	6	6
	6	12	5

Seal Method: SLURRIED & POURED Sealed By: Driller

Surface Sleeve Installed

Distance to Property Line (ft.): No Data

Distance to Septic Field or other concentrated contamination (ft.): **No Data**

Distance to Septic Tank (ft.): No Data

Method of Verification: NOT YET INSTALLED

Water Level:	No Data	
Packers:	NEOPRENE 12	
	NEOPRENE 45	
	NEOPRENE 155	
	NEOPRENE 185	
	NEOPRENE 190	
Type of Pump:	No Data	
Well Tests:	Jetted	Yield: 5 GPM

Surface Completion:

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Mac	de: Yes	
	Did the driller	knowingly penetrate any strata whi contained injurious constituents		
Certification Data:	driller's direct superv correct. The driller u	at the driller drilled this well (or the ision) and that each and all of the s nderstood that failure to complete t turned for completion and resubmit	tatements her	ein are true and
Company Information:	BEE CAVE DRILL	ING INC		
	185 ANGELFIRE D DRIPPING SPRING			
Driller Name:	BOBBY ROBERTS	S Licens	se Number:	54416
Comments:	No Data			

Top (ft.)	Bottom (ft.)	Description
0	2	TOPSOIL
2	14	CALICHE
14	25	BROWN CLAY
25	45	TAN LIMESTONE
45	75	WHITE ROCK W/B 12 GPM TDS 500
75	150	BLUE SHALE
150	172	BROWN ROCK W/B 3 GPM TDS 600
172	185	BROWN CLAY
185	248	BROWN ROCK W/B 5 GPM TDS 700
248	252	BROWN CLAY
252	278	BROWN SANDSTONE
278	290	GREEN CLAY

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.)	New/Used	Туре	Setting From/To (ft.)				
4.5 NEV	V PLASTI	C 0-215					
4.5 NEV	4.5 NEW MFG SCREEN 215-255 .050						
4.5 NEV	V PLASTI	C 255-2	90				

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #153785						
Owner:	MICHAEL MYERS	Owner Well #:	No Data			
Address:	23707 HAMILTON POOL RD. DRIPPING SPRINGS, TX 78620	Grid #:	57-48-4			
Well Location:	23611 HAMILTON POOL RD.	Latitude:	30° 19' 42" N			
	DRIPPING SPRINGS, TX 78620	Longitude:	098° 07' 10" W			
Well County:	Travis	Elevation:	No Data			
Type of Work:	New Well	Proposed Use:	Domestic			

Drilling Start Date: 8/5/2008 Drilling End Date: 8/5/2008

	Diameter (in.,) Top Dep	oth (ft.)	Bottom De	əpth (ft.)	
Borehole:	8.625	0	0)	
	6.5	50)	25	D	
Drilling Method:	Air Rotary					
Borehole Completion:	tion: CASED					
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of	sacks & material)	
Annular Seal Data:	0	50		5 CEMENT		
	0	50	5 VOLCLAY		.AY	
Seal Method: SI	urry	Dis	tance to Pr	roperty Line (ft.):	N/A	
Sealed By: Dr	iller			ic Field or other ntamination (ft.):	N/A	
		D	istance to	Septic Tank (ft.):	No Data	
			Metho	d of Verification:	WELL DRILLED FIRST	
Surface Completion:	Surface Sleeve Ir	nstalled				
Water Level:	No Data					
Packers:	5 BURLAP, PVC, PLASTIC 50', 100', 120', 180', 220'					
Type of Pump:	Submersible					
Well Tests:	Jetted Yield: 40 GPM					

	Strata Depth (ft.)	Water Type	
Water Quality:	60	MIDDLE TRINITY	
	Did the driller	Chemical Analysis Mac	
		contained injurious constituents	
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the ision) and that each and all of the st nderstood that failure to complete th eturned for completion and resubmit	atements herein are true and ne required items will result in
Company Information:	CENTRAL TEXAS	DRILLING, INC.	
	2520 HWY. 290 W DRIPPING SPRING		
Driller Name:	AARON GLASS	Licens	e Number: 4227
Comments:	No Data		
D-2 ROCK		5" OD N SDR17 PVC	
0-2 ROCK		5" OD N SDR17 PVC	+3 TO 250
2-18 TAN (CALICHE)			SLOT 120 TO 140 .032
18-20 BLUE LIMESTONE		5" OD N SDR17 PVC	SLOT 180 TO 220 .032
20-70 GRAY LIMESTON			
70-80 WHITE LIMESTON	IE		
80-90 TAN LIMESTONE			
90-120 GRAY LIMESTON			
120-130 GRAY/TAN LIM 130-150 TAN H20 FORM			
150-170 BROWN W/RED			
& BLUE CLAY			
170-175 WHITE/TAN/GR	AY LIMESTONE		
175-200 WHITE/TAN LIM			
200-220 TAN LIMESTON			
220-225 GRAY LIMESTO			
225-240 BROWN LIMES ⁻			
240-250 CLAY & GRAY I			

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATI	E OF TEXAS PL	UGG	SING RI	EPORT f	or Tracking #204715
Owner: Trav	vis County Parks			Owner We	ell #: 1
	00 Hamilton Pool Roa			Grid #:	57-47-3
-	ping Springs, TX 786			Latitude:	30° 20' 31.67" N
	ping Springs, TX 786			Longitude	098° 07' 40.33" W
Well County: Trav	ris			Elevation:	No Data
Well Type:	Jnknown				
Drilling Information					
Company: No Data	I			Date Drill	ed: No Data
Driller: No Data	I			License N	umber: No Data
	Diameter (in.)		Тор	Depth (ft.)	Bottom Depth (ft.)
Borehole:	6			0	177
Plug Method: Po	/2020 ur in 3/8 bentonite chi ment top 2 feet	ips wh			nann/Josph Dottavio well is less than 100 feet depth,
Casing Left				Plug	s) Placed in Well:
		Тор	(ft.) Bo	ottom (ft.)	Description (number of sacks & material)
No Dat	a	0		2	Cement 1 Bags/Sacks
		2		177	Bentonite 35 Bags/Sacks
Certification Data: Company Information	driller's direct sup correct. The drille the reports(s) beir	ervisioi er unde ng retui	n) and that rstood that	t each and a t failure to co	well (or the well was plugged under the Il of the statements herein are true and omplete the required items will result in d resubmittal.
	Fredericksburg, T		24		
Driller Name:	Brice Bormann				License Number: 54855
Apprentice Name: Comments:	Joseph Dottavio No Data				Apprentice Number: 59883

	STATE OF TEXAS WELL REP	ORT for Trac	king #276515
Owner:	ERIC KRAENZEL	Owner Well #:	No Data
Address:	158 BEAU LANE KYLE, TX 78640	Grid #:	57-47-6
Well Location:		Latitude:	30° 19' 25" N
	DRIPPING SPRINGS, TX 78620	Longitude:	098° 07' 49" W
Well County:	Hays	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 12/21/2011 Drilling End Date: 12/21/2011

	Diameter (in.,) Top De	pth (ft.)	Bottom Depth (ft.)
Borehole:	9)	50
	6.5	5	0	230
Drilling Method:	Air Rotary			
Borehole Completion:	CASED			
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)
Annular Seal Data:	0	50		4 VOLCLAY
	0	50		5 CEMENT
	RESSURE TRIMMIE EMENT	E Di	stance to Pr	operty Line (ft.): 50+
Sealed By: Dr	iller			c Field or other ntamination (ft.): 1000+
		C	Distance to S	Septic Tank (ft.): No Data
			Metho	d of Verification: OWNER
Surface Completion:	Surface Sleeve Ir	nstalled		
Water Level:	172.6 ft. below la 21	and surface on 2011-	1 2- Meas	urement Method: Unknown
Packers:	4 BURLAP, PVC	50',140',160',170'		
Type of Pump:	Submersible			
Well Tests:	Jetted	Yield: 20-25 GP	Μ	

	Strata Depth (ft.)	Water Type
Water Quality:	60	MIDDLE TRINITY
	00	
		Chemical Analysis Made: No
	Did the driller	^r knowingly penetrate any strata which contained injurious constituents?: No
Certification Data:	driller's direct superv correct. The driller u	hat the driller drilled this well (or the well was drilled under the vision) and that each and all of the statements herein are true and understood that failure to complete the required items will result in eturned for completion and resubmittal.
Company Information:	CENTEX PUMP &	SUPPLY, INC.
	2520 HWY. 290 W DRIPPING SPRING	
Driller Name:	AARON GLASS	License Number: 4227
Comments:	No Data	
Lit DESCRIPTION & COLOF	thology: R OF FORMATION M	Casing: IATERIAL BLANK PIPE & WELL SCREEN DATA
From (ft) To (ft) Desc	cription	Dia. (in.) New/Used Type Setting From/To (ft.)
0-1 TOP SOIL		5" OD N SDR17 PVC +3 TO 230
1-15 CALICHE		5" OD N SDR17 PVC SLOT 180 TO 220 .032
15-18 BLUE LIMESTONE		
18-65 GRAY LIMESTONE	Ξ	
	IESTONE	
65-120 GRAY W/IAN LIN		
120-150 TAN LIMESTON	E	
65-120 GRAY W/TAN LIN 120-150 TAN LIMESTON 150-165 TAN/GRAY LIME CLAY	E	
120-150 TAN LIMESTON 150-165 TAN/GRAY LIME	E ESTONE W/BLUE	
120-150 TAN LIMESTON 150-165 TAN/GRAY LIME CLAY	E ESTONE W/BLUE E	

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL I	REPORT for Trac	king #277875
Owner:	Brian Hill	Owner Well #:	001
Address:	1616 Overland Stage Rd. Dripping Springs, TX 78620	Grid #:	57-47-6
Well Location:	1616 Overland Stage Rd.	Latitude:	30° 19' 06" N
	Dripping Springs, TX 78620	Longitude:	098° 08' 31" W
Well County:	Hays	Elevation:	1007 ft. above sea level
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 1/14/2012 Drilling End Date: 1/15/2012

	Diameter (in.) Top De	pth (ft.)	Bottom Depth (ft.)
Borehole:	6.75)	380
Drilling Method:	Air Rotary			
Borehole Completion:	Straight Wall			
	Top Depth (ft.)	Bottom Depth (ft.)	De	escription (number of sacks & material)
Annular Seal Data:	2	10		1 - Portland
	10	22		2 - Bentonite
Seal Method: Tr	imie	Di	stance to P	roperty Line (ft.): No Data
Sealed By: Bo	obby Wallacer			tic Field or other ntamination (ft.): +100ft.
		[Distance to	Septic Tank (ft.): No Data
			Metho	d of Verification: Measure
Surface Completion:	Pitless Adapter I	Jsed		
Water Level:	330 ft. below lan artesian flow on a	d surface, and 20 GP 2012-01-15	M Meas	surement Method: Unknown
Packers:	Formation pack	ets set at 22', 230', a	nd 240'.	
Type of Pump:	No Data			
Well Tests:	No Test Data Sp	pecified		

	Strata Depth (ft.)	Water Type		
Water Quality:	355	Groundwater		
		Chemical Analysis M	lade: No	
	Did the driller I	knowingly penetrate any strata w contained injurious constituer		
Certification Data:	driller's direct supervi correct. The driller ur	at the driller drilled this well (or th ision) and that each and all of the nderstood that failure to complete turned for completion and resubn	e statements he the required it	erein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all of the nderstood that failure to complete turned for completion and resubn	e statements he the required it	erein are true and
	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all of the nderstood that failure to complete turned for completion and resubn Inc.	e statements he the required it	erein are true and
	driller's direct supervi correct. The driller un the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	ision) and that each and all of the inderstood that failure to complete turned for completion and resubn Inc. TX 78620	e statements he the required it	erein are true and

Top (ft.)	Bottom (ft.)	Description
0	2	Topsoil.
2	40	Caliche.
40	54	Gray limestone.
54	76	Shale.
76	95	Gray limestone.
95	124	Shale.
124	126	Gray limestone Anhydride gypsum.
126	160	Shale.
160	165	Gray limestone shale streaks.
165	180	Tan and brown limestone.
180	285	Gray and tan limestone.
285	346	Tan limestone.
346	380	Tan and brown limestone.

Casing: BLANK PIPE & WELL SCREEN DATA

 Dia. (in.)
 New/Used
 Type
 Setting From/To (ft.)

 4 1/2
 New PVC +1 - 320 SDR 17

 4 1/2
 New PVC 320-380 SDR 17

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL	REPORT for Trac	king #284130
Owner:	Luis & Heather Martinez	Owner Well #:	1
Address:	Lot 001A Replica Rd. Spicewood, TX 78669	Grid #:	57-47-6
Well Location:	• •	Latitude:	30° 19' 09" N
	Spicewood, TX 78669	Longitude:	098° 08' 10" W
Well County:	Hays	Elevation:	782 ft. above sea level
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 2/24/2012 Drilling End Date: 2/25/2012

	Diameter (in.) Top De	pth (ft.)	Bottom Depth (ft.)	
Borehole:	7.875)	280	
Drilling Method:	Air Hammer				
Borehole Completion:	Straight Wall				
	Top Depth (ft.)	Bottom Depth (ft.)	De	escription (number of sacks & material)	
Annular Seal Data:	0	20		Portland 3 bags	
	0	20		Benoite chips	
Seal Method: Tr	immie	Dis	stance to P	roperty Line (ft.): No Data	
Sealed By: Dr	iller			ic Field or other ntamination (ft.): Over 100	
		Γ	Distance to	Septic Tank (ft.): No Data	
			Metho	d of Verification: Measuring tape	
Surface Completion:	Unknown				
Water Level:	No Data				
Packers:	No Data				
Type of Pump:	No Data				
Well Tests:	Estimated	Yield: 3 GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	160'	Groundwater		
		Chemical Analysis I	Made: Yes	
	Did the driller	knowingly penetrate any strata contained injurious constitue		
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this well (or t ision) and that each and all of th nderstood that failure to complet turned for completion and resub	e statements he te the required i	erein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller u the report(s) being re	ision) and that each and all of th nderstood that failure to complet turned for completion and resub	e statements he te the required i	erein are true and
	driller's direct supervi correct. The driller u the report(s) being re	ision) and that each and all of th nderstood that failure to complet turned for completion and resub	e statements he te the required i	erein are true and
	driller's direct supervi correct. The driller un the report(s) being re Bee Cave Drilling 185 Angelfire Dr.	ision) and that each and all of th nderstood that failure to complet turned for completion and resub Inc. TX 78620	e statements he te the required i	erein are true and

Top (ft.)	Bottom (ft.)	Description
0	2	Topsoil.
2	48	White limestone.
48	53	Gray shale.
53	58	Tan limestone.
58	110	Gray shale & limestone.
110	150	Red shale.
150	160	Red/tan sandstone fracture 150
160	176	Red shale fracture 176
176	220	Tan & red sandstone.
220	280	Tan & brown shale.

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.) New/Used	Туре	Setting From/To (ft.)
4 1/2 New PVC SI	DR 17 ·	+2 - 140
4 1/2 New PVC SI	DR 17	Slotted 140 - 160
4 1/2 New PVC SI	DR 17	160 - 240
4 1/2 New PVC SI	DR 17	Slotted 240 - 260
4 1/2 New PVC SI	DR 17 (260 - 280

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #305315					
Owner:	Ralph Combest	Owner Well #:	No Data			
Address:	3500 Fearless Treadway Round Mountain, TX 78663	Grid #:	57-47-3			
Well Location:		Latitude:	30° 20' 16" N			
	Round Mountain, TX 78663	Longitude:	098° 09' 10" W			
Well County:	Hays	Elevation:	No Data			
Type of Work:	New Well	Proposed Use:	Domestic			

Drilling Start Date: 11/8/2012 Drilling End Date: 11/8/2012

	Diameter (in.) Top Dep	oth (ft.)	Bottom Depth (ft.)	
Borehole:	9.5	0		58	
	6.75	58	3	185	
Drilling Method:	Air Hammer				
Borehole Completion:	Straight Wall				
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)	
Annular Seal Data:	2	4		0.5 cement	
	4	65		6 bentonite	
Seal Method: gr	avity grouted	Dis	tance to Pi	roperty Line (ft.): 55	
Sealed By: Dr	iller			ic Field or other ntamination (ft.): n/a	
		D	istance to	Septic Tank (ft.): No Data	
			Metho	d of Verification: estimated	
Surface Completion:	Pitless Adapter U	Jsed			
Water Level:	101 ft. below lan	d surface on 2012-11-	08 Meas	surement Method: Unknown	
Packers:	poor boy 71'				
Type of Pump:	No Data				
Well Tests:	Jetted	Yield: 5 GPM			

		14/ / -		
	Strata Depth (ft.)	Water Type		
Water Quality:	130, 150, 170	500 TDS, 17 grains hardness		
		Chemical Analysis Ma	de: Yes	
	Did the driller	knowingly penetrate any strata wh contained injurious constituent		
	driller's direct superv correct. The driller u	hat the driller drilled this well (or the ision) and that each and all of the s nderstood that failure to complete eturned for completion and resubmi	statements he the required it	rein are true and
Company Information:	L & L Drilling Co.			
	P.O. Box 217 Hye, TX 78635			
Driller Name:	Gregory A. Smith	Licen	se Number:	1595
Comments:	No Data			

Top (ft.)	Bottom (ft.)	Description
0	1	brown topsoil
1	5	brown & red limestone & loam
5	9	red clay
9	19	red limestone & clay
19	54	brown limestone
54	65	yellow limestone
65	66	gray clay
66	86	gray shale with gray limestone
86	120	gray clay
120	130	gray & brown clay
130	140	gray limestone
130	145	water 1 gpm
140	150	red shale
150	151	brown gravel
150	165	water 2 gpm
151	170	brown & red limestone
170	175	brown gravel

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.)	New/Used	Туре	Setting From/To (ft.)	
5 new p	plastic sol	id 0 - 1	30 0.265	
5 new p	plastic slo	tted 13	1 - 141 0.265	
5 new p	plastic sol	id 141	- 151 0.265	
5 new r	plastic slo	tted 15	1 - 185 0.265	

170	175	water 2 gpm
175	185	red limestone

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #372073				
Owner:	Raymond Frank	Owner Well #:	No Data		
Address:	905 Overland Stage Rd. Dripping Springs, TX 78620	Grid #:	57-47-6		
Well Location:	905 Overland Stage Rd.	Latitude:	30° 19' 41" N		
	Dripping Springs, TX 78620	Longitude:	098° 08' 06" W		
Well County:	Hays	Elevation:	971 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 6/20/2014 Drilling End Date: 6/20/2014

	Diameter (in.) Top Depth	n (ft.)	Bottom Depth (ft.)
Borehole: 10		0		10
	8	10		50
	6.75	50		230
Drilling Method:	Air Rotary			
Borehole Completion:	Open Hole			
	Top Depth (ft.)	Bottom Depth (ft.)	Descriptic	on (number of sacks & material)
Annular Seal Data:	0	50		16 cement
Seal Method: sl	urry & pour	Dista	ince to Propert	y Line (ft.): No Data
Sealed By: St	eve Stewart		e to Septic Fie trated contami	ld or other nation (ft.): No Data
		Dis	tance to Septio	c Tank (ft.): No Data
			Method of V	erification: No Data
Surface Completion:	Surface Sleeve I	nstalled		
Water Level:	149 ft. below lan	d surface on 2014-06-2	7 Measurem	ent Method: Unknown
Packers:	neoprene 50, 14	5, 150		
Type of Pump:	Submersible		Pump D	epth (ft.): 210
Well Tests:	Jetted Yield: 7 GPM			

Water Quality:	No Data	No Data		
-				
	Chemical Analysis Made:		le: No	
	Did the driller	knowingly penetrate any strata whic contained injurious constituents		
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this well (or the ision) and that each and all of the st nderstood that failure to complete th turned for completion and resubmit	atements he ne required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller u the report(s) being re	ision) and that each and all of the st nderstood that failure to complete th turned for completion and resubmit	atements he ne required it	rein are true and
	driller's direct supervi correct. The driller u the report(s) being re	ision) and that each and all of the st nderstood that failure to complete th turned for completion and resubmit Inc.	atements he ne required it	rein are true and
	driller's direct supervi correct. The driller u the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	ision) and that each and all of the st nderstood that failure to complete th turned for completion and resubmit Inc. TX 78620	atements he ne required it	rein are true and

Top (ft.)	Bottom (ft.)	Description
0	10	tan limestone
10	20	gray limestone
20	35	tan limestone
35	80	gray limestone
80	90	tan limestone
90	100	tan sandstone
100	115	red shale & sandstone mix
115	130	red clay & trinity mix
130	180	tan sandstone wb 7 gpm 500 tds
180	205	gray & tan sandstone
205	230	gray clay

Casing: BLANK PIPE & WELL SCREEN DATA

	BLANK I	PIPE &	WELL SCREEN DATA	
Dia. (in.)	New/Used	Туре	Setting From/To (ft.)	

4.5 new sdr-17 0 170

4.5 new perf 170 210

4.5 new sdr-17 210 230

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL RE	PORT for Trac	king #379255
Owner:	TONY PARENT	Owner Well #:	No Data
Address:	3616 2ND STREET AUSTIN, TX 78704	Grid #:	57-47-6
Well Location:		Latitude:	30° 18' 59" N
	DRIPPING SPRINGS, TX 78620	Longitude:	098° 07' 59" W
Well County:	Hays	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 7/11/2014 Drilling End Date: 7/11/2014

	Diameter (in.,) Top Dep	oth (ft.)	Bottom Depth (ft.)	
Borehole:	9	0		50	
	6.5	50)	370	
Drilling Method:	Air Rotary				
Borehole Completion:	CASED				
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)	
Annular Seal Data:	0	50	7 CEMENT 3 VOLCLAY		
	0	50			
Seal Method: SI	urry	Dis	tance to Pi	roperty Line (ft.): 50+	
Sealed By: Dr	iller			ic Field or other ntamination (ft.): 100+	
		Distance to Septic Tank (ft.): No Data			
			Metho	d of Verification: OWNER	
Surface Completion:	Surface Sleeve Ir	nstalled			
Water Level:	215 ft. below land	d surface on 2014-07-	11 Meas	surement Method: Unknown	
Packers: 3 BURLAP,PVC 50		50',290',310'			
Type of Pump:	Submersible				
Well Tests:	Jetted	Yield: 25 GPM			

	Strata Depth (ft.)	Water Type	
Water Quality:	60	60 MIDDLE TRINITY	
		Chemical Analysis Mac	e: No
	Did the driller kr	nowingly penetrate any strata whic	
		contained injurious constituents	?: No
Certification Data:	driller's direct supervision correct. The driller und	t the driller drilled this well (or the on) and that each and all of the st derstood that failure to complete th irned for completion and resubmit	atements herein are true and required items will result in
Company Information:	CENTEX PUMP & S	UPPLY, INC.	
	2520 HWY. 290 WES DRIPPING SPRINGS		
Driller Name:	AARON GLASS	Licens	e Number: 4227
Comments:	No Data		
From (ft) To (ft) Des	scription	TERIAL BLANK PIPE	& WELL SCREEN DATA
			& WELE SCREEN DATA
	scription	Dia. (in.) New/Used Type	Setting From/To (ft.)
From (ft) To (ft) Des D-1 TOP SOIL & ROCK 1-18 CALICHE	scription	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	Setting From/To (ft.)
0-1 TOP SOIL & ROCK		Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE	ESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME	ESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
D-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE	ESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON	ESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIM	ESTONE IE NE IESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON	ESTONE IE NE IESTONE NE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIM 280-300 TAN LIMESTON	ESTONE IE NE IESTONE NE ONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIM 280-300 TAN LIMESTON 300-305 GRAY LIMESTON	ESTONE IE NE IESTONE NE ONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
D-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIME 280-300 TAN LIMESTON 300-305 GRAY LIMESTON 305-310 BROWN/GRAY W/BLUE CLAY	ESTONE IE NE IESTONE NE ONE LIMESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
D-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIM 280-300 TAN LIMESTON 300-305 GRAY LIMESTON 305-310 BROWN/GRAY W/BLUE CLAY 310-320 TAN LIMESTON	ESTONE IE NE IESTONE NE DNE LIMESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIM 280-300 TAN LIMESTON 300-305 GRAY LIMESTO 305-310 BROWN/GRAY	ESTONE IE NE IESTONE NE DNE LIMESTONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTON 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIM 280-300 TAN LIMESTON 300-305 GRAY LIMESTON 305-310 BROWN/GRAY W/BLUE CLAY 310-320 TAN LIMESTON 320-345 WHITE LIMEST	ESTONE IE NE IESTONE NE DNE LIMESTONE NE ONE STONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370
0-1 TOP SOIL & ROCK 1-18 CALICHE 18-22 BLUE/GRAY LIME 22-30 GRAY LIMESTON 30-40 TAN LIMESTONE 40-260 GRAY LIMESTON 260-280 GRAY/TAN LIM 280-300 TAN LIMESTON 300-305 GRAY LIMESTON 305-310 BROWN/GRAY W/BLUE CLAY 310-320 TAN LIMESTON 320-345 WHITE LIMEST 345-360 BROWN LIMES	ESTONE IE NE IESTONE VE ONE LIMESTONE VE ONE STONE ONE	Dia. (in.) New/Used Type 5" OD N SDR17 PVC	 Setting From/To (ft.) +3 TO 370

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL	. REPORT for Trac	king #386178
Owner:	Clay Olivier - Tunkan LLC	Owner Well #:	No Data
Address:	3736 Bee Caves Rd. #1144 West Lake Hills, TX 78746	Grid #:	57-47-3
Well Location:	25009 Hamilton Pool Rd.	Latitude:	30° 20' 25" N
	Round Mountain, TX 78663	Longitude:	098° 08' 54" W
Well County:	Travis	Elevation:	835 ft. above sea level
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 12/18/2014 Drilling End Date: 12/18/2014

	Diameter (ín.)	Top Depth (ft.)	Bottom Depth (ft.)	
Borehole:	10		0	10	
	8		10	200	
Drilling Method:	Air Rotary				
Borehole Completion: Filter Packed					
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	80	200	Gr	avel	3/8
	Top Depth (ft.)	Bottom Depth	(ft.) D	Description (number of sacks & materia	
Annular Seal Data:	0	50	50		
Seal Method: slu	urry & pour		Distance to P	Property Line (ft.): No Data	
Sealed By: De	erek Scott			tic Field or other ontamination (ft.): No Data	
			Distance to	Septic Tank (ft.): No Data	
			Metho	od of Verification: No Data	
Surface Completion:	Pitless Adapte	r Used			
Water Level:	94 ft. below lar	nd surface on 201	4-12-31 Mea	surement Method: Unkno	own
Packers:	Packers: No Data				
Type of Pump: Submersible			P	ump Depth (ft.): 180	
Well Tests:	Jetted	Yield: 15-1	I8 GPM		

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	Trinity		
	Chemical Analysis Made: No			
	Did the driller k	nowingly penetrate any strata which contained injurious constituents?:	No	
Certification Data:	driller's direct supervis correct. The driller un	t the driller drilled this well (or the we ion) and that each and all of the stat derstood that failure to complete the urned for completion and resubmittal	ements he required it	erein are true and
Certification Data: Company Information	driller's direct supervis correct. The driller un the report(s) being retu	ion) and that each and all of the state derstood that failure to complete the urned for completion and resubmittal	ements he required it	erein are true and
	driller's direct supervis correct. The driller un the report(s) being retu	ion) and that each and all of the state derstood that failure to complete the urned for completion and resubmittal nc.	ements he required it	erein are true and
	 driller's direct supervis correct. The driller unteresting the report(s) being return: Bee Cave Drilling, I 185 Angel Fire Dr. 	ion) and that each and all of the state derstood that failure to complete the urned for completion and resubmittal nc. X 78620	ements he required it	erein are true and

Top (ft.)	Bottom (ft.)	Description	D
0	1	topsoil	4.
1	10	red sandstone	4
10	30	white limestone	
30	65	gray & tan sandstone wb 4 gpm 400 tds	
65	70	gray sandstone & clay	
70	120	gray clay	
120	200	trinity sandstone & gravel wb 15 gpm 600 tds	

Casing: BLANK PIPE & WELL SCREEN DATA

Dia. (in.) New/Used Type Setting From/To (ft.) 4.5 new sdr-17 0 120

4.5 new perf 120 200

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL RE	PORT for Trac	king #416399
Owner:	Joe Cabela	Owner Well #:	1
Address:	220 Roy Creek Trail Dripping Springs, TX 78620	Grid #:	57-47-6
Well Location:	220 Roy Creek Trail	Latitude:	30° 19' 28.58" N
	Dripping Springs, TX 78620	Longitude:	098° 09' 13.78" W
Well County:	Hays	Elevation:	959 ft. above sea level
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 2/1/2016

Drilling End Date: 2/1/2016

	Diameter (in.,) Top Depth	n (ft.)	Bottom Depth (ft.)		
Borehole:	10	0		9		
	8.5	9		20		
	6.75	20		205		
Drilling Method:	Air Rotary					
Borehole Completion: Open Hole						
	Top Depth (ft.) Bottom Depth (ft.)		Descriptio	n (number of sacks & materia	ı <i>l)</i>	
Annular Seal Data:	0	20	Cer	ment 4 Bags/Sacks		
	20	20 50		Bentonite 3 Bags/Sacks		
Seal Method: Po	oured	Dista	stance to Property Line (ft.): No Data			
Sealed By: D	riller		e to Septic Fiel trated contami	ld or other nation (ft.): No Data		
		Dis	tance to Septic	: Tank (ft.): No Data		
			Method of Verification: No Data			
Surface Completion:	Pitless Adapter U	Jsed	Surface	e Completion by Drille	r	
Water Level:	141 ft. below land	d surface on 2016-02-02	2 Measurem	ent Method: Electric I	Line	
Packers:	Rubber at 50 ft.					
Rubber at 100 ft.						
	Rubber at 140 ft. Rubber at 145 ft.					
Type of Pump:	Submersible		Pump D	epth (ft.): 180		
Well Tests:	Jetted Yield: 25 GPM					

		···· _		
	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Made:	No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?:	Νο	
Certification Data:		nat the driller drilled this well (or the wel		ed under the
	correct. The driller u	rision) and that each and all of the state inderstood that failure to complete the r eturned for completion and resubmittal.		
Company Information:	correct. The driller u the report(s) being re	inderstood that failure to complete the r eturned for completion and resubmittal.		
Company Information:	correct. The driller u the report(s) being re	Inderstood that failure to complete the returned for completion and resubmittal. , Inc.		
Company Information: Driller Name:	correct. The driller u the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	Inderstood that failure to complete the returned for completion and resubmittal. , Inc.	equired it	

Top (ft.)	Bottom (ft.)	Description
0	1	Caliche
1	3	Tan Clay
3	55	Tan Lime, Frac at 20'
55	80	Grey Lime, .5GPM @ 80'
80	95	Grey Sand/Clay Stringers
95	110	Grey/Tan Sand
110	130	Grey Sand/Clay Stringers WB 2GPM
130	195	Tan SS, WB 150-190, 25GPM 400TDS
195	205	Grey Sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR-17	-2	145
4.5	Perforated or Slotted	New Plastic (PVC)	SDR-17	145	205

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Owner: HA	MILTON POOL PRESERVE		Owner Well #:	1		
	VIS COUNTY PA		Grid #:	57-47-3		
) LAVACA STREET, STE 800 STIN, TX 78701		Latitude:	30° 20' 28.5" N	° 20' 28.5" N	
	MILTON POOL PE		Longitude:	098° 07' 41" W	" W	
DRIPPING SPRINGS, TX 78620		Elevation:	813 ft. above sea level	I		
Well County: Tra	vis					
	y Well 2/23/2016 Dril	ling End Date: 3/1	Proposed Use: 0/2017	Plans Approved by TCI		
Drilling Start Date: 1	2/23/2016 Dril	· (in.)	0/2017 Top Depth (ft.)	Plans Approved by TCI PWS# 1 Bottom Depth (ft.)	EQ - YES 12102015	
Type of Work: Nev Drilling Start Date: 1 Borehole:	2/23/2016 Dril	(in.)	0/2017	Plans Approved by TCI PWS# 1		
Drilling Start Date: 1	2/23/2016 Dril Diameter 17.5	(in.)	0/2017 Top Depth (ft.) 0	Plans Approved by TCI PWS# 1 Bottom Depth (ft.) 12		
Drilling Start Date: 1 Borehole: Drilling Method:	2/23/2016 Dril <i>Diameter</i> 17.5 12.2 Air Rotary	(in.)	0/2017 Top Depth (ft.) 0	Plans Approved by TCI PWS# 1 Bottom Depth (ft.) 12		
Drilling Start Date: 1 Borehole: Drilling Method: Borehole Completion	2/23/2016 Dril <i>Diameter</i> 17.5 12.2 Air Rotary	(in.)	0/2017 Top Depth (ft.) 0	Plans Approved by TCI PWS# 1 Bottom Depth (ft.) 12 240	1210201	
Drilling Start Date: 1 Borehole:	2/23/2016 Dril Diameter 17.5 12.2 Air Rotary Filter Packed	5	0/2017 Top Depth (ft.) 0 0	Plans Approved by TCI PWS# 1 Bottom Depth (ft.) 12 240	1210201	
Drilling Start Date: 1 Borehole: Drilling Method: Borehole Completion	2/23/2016 Dril Diameter 17.5 12.25 Air Rotary Filter Packed Top Depth (ft.)	6 (in.) 5 5 Bottom Depth (ft.)	0/2017 Top Depth (ft.) 0 0 1 Filter Mater	Plans Approved by TCI PWS# 1 Bottom Depth (ft.) 12 240	0	

concentrated contamination (ft.): N/A

Distance to Septic Tank (ft.): N/A

Method of Verification: TAPE

Surface Completion: Surface Slab Installed

Surface Completion NOT by Driller

 Water Level:
 21 ft. below land surface on 2017-03-23

 Packers:
 No Data

 Type of Pump:
 No Data

 Well Tests:
 Estimated
 Yield: 5 GPM

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis	s Made: Yes	
	Did the driller kno	owingly penetrate any strata contained injurious constit		
Certification Data:	driller's direct supervisio correct. The driller under	the driller drilled this well (or on) and that each and all of t erstood that failure to compl ned for completion and resu	the statements he ete the required it	rein are true and
Certification Data: Company Information	driller's direct supervisio correct. The driller under the report(s) being return	n) and that each and all of t erstood that failure to compl ned for completion and resu	the statements he ete the required it	rein are true and
	driller's direct supervisio correct. The driller under the report(s) being return	on) and that each and all of t erstood that failure to compl ned for completion and resu d-Continent, Inc.	the statements he ete the required it	rein are true and
	 driller's direct supervisio correct. The driller under the report(s) being returner. Hydro Resources Mid 31866 RR 12 	on) and that each and all of the erstood that failure to completion and resu d-Continent, Inc.	the statements he ete the required it	rein are true and

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
0	8	TOPSOIL & LOOSE ROCK	6.9	Blank	New Plastic	SDR-17	0	20
8	40	YELLOW LIMESTONE (H20)	0.9	Dialik	(PVC)	SDR-17	0	20
40	50	GREY LIMESTONE	14	Blank	New Steel		0	12
50	115	GREY CLAY & LIMESONTE	6.9	Screen	New Plastic (PVC)	0.035	20	60
115	280	REDDISH BROWN	6.9	Blank	New Plastic (PVC)	SDR-17	60	200
280	410	GREY CLAY - SANDSTONE STREAKS	6.9	Screen	New Plastic (PVC)	0.035	200	220

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #467899					
Owner:	Fred Ballard Blue Horse Builders	Owner Well #:	No Data			
Address:	111 Golden Bear Cove Lakeway , TX 78738	Grid #:	57-47-6			
Well Location:	•	Latitude:	30° 19' 00" N			
	Dripping Springs, TX 78620	Longitude:	098° 08' 03" W			
Well County:	Hays	Elevation:	No Data			
Type of Work:	New Well	Proposed Use:	Domestic			

Drilling Start Date: 11/9/2017 Drilling End Date: 11/9/2017

	Diameter (in	n.) Top De	oth (ft.)	Bottom Depth (ft.)	
Borehole:	8		. ,	50	
	6.25	5	0	385	
Drilling Method:	Air Rotary				
Borehole Completion:					
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material	
Annular Seal Data:	0	50	4 Por	tland / 3 Benseal 7 Bags/Sa	
Seal Method: S	lurry	Dis	stance to Pr	operty Line (ft.): 50	
Sealed By: Driller		Distance to Septic Field or other concentrated contamination (ft.): 100			
		C	istance to S	Septic Tank (ft.): 50	
			Metho	d of Verification: Land Owner	
Surface Completion:	Surface Sleeve I	nstalled	S	urface Completion by Driller	
Water Level:	No Data				
Packers:	No Data	No Data			
Type of Pump:	No Data				
Well Tests:	Jetted	Yield: 15 GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	276 - 375	M. Trinity		
		Chemical Ana	lysis Made: No	
	Did the driller k	nowingly penetrate any st contained injurious co		
Certification Data:	driller's direct supervis correct. The driller un	at the driller drilled this we sion) and that each and al iderstood that failure to co urned for completion and	l of the statements mplete the required	herein are true and
Certification Data: Company Information:	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and al derstood that failure to co	l of the statements mplete the required	herein are true and
	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and al iderstood that failure to co urned for completion and	l of the statements mplete the required	herein are true and
	driller's direct supervis correct. The driller un the report(s) being ret Apex Drilling, Inc. P.O. Box 867	sion) and that each and al iderstood that failure to co urned for completion and 8654	l of the statements mplete the required	herein are true and d items will result in

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Top Soil
1	35	Tan LS
35	276	Gray Tan LS
276	315	Tan LS
315	321	Red LS
321	355	Tan LS
355	375	Gray Tan LS
375	385	Gray LS w/ Clay

Casing:
BLANK PIPE & WELL SCREEN DATA

Dia. (in.) New/Used	Туре	Setting From/To (ft.)	
No Data			

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #470985				
Owner:	Mirasol Hills, LLC.	Owner Well #:	2		
Address:	4000 International Pkwy. Carrollton, TX 75007	Grid #:	57-47-6		
Well Location:		Latitude:	30° 18' 13.58" N		
	Dripping Springs, TX 78620	Longitude:	098° 08' 50.06" W		
Well County:	Hays	Elevation:	952 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Test Well		

Drilling Start Date: 1/29/2018 Drilling End Date: 1/30/2018

	Diameter	(in.)	Top Depth (ft.)	Bottom Depti	h (ft.)
Borehole:	11		0 11		
	10		11	225	
Drilling Method:	Air Rotary				
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	130	225	Gra	avel	3/8"
	Top Depth (ft.)	Bottom Dept	h (ft.) De	Description (number of sacks & materia	
Annular Seal Data:	0	130		Cement 52 Bags	s/Sacks
Seal Method: Pr	essure		Distance to P	roperty Line (ft.): N	o Data
Sealed By: Dr	iller		Distance to Septic Field or other concentrated contamination (ft.): No Data		
			Distance to	Septic Tank (ft.): N	o Data
			Metho	od of Verification: N	o Data
Surface Completion:	Surface Completion: Surface Sleeve Installed			urface Completion	n by Driller
Water Level:	102 ft. below la	and surface on 2	2018-02-07		
Packers:	No Data				
Type of Pump:	No Data				
Well Tests:	Pump	Yield: 69	GPM		

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Made	Yes	
	Did the driller I	knowingly penetrate any strata which contained injurious constituents?		
Certification Data:	driller's direct supervi correct. The driller ur	at the driller drilled this well (or the we ision) and that each and all of the stat nderstood that failure to complete the turned for completion and resubmittal	ements he required it	erein are true and
Certification Data: Company Informatior	driller's direct supervi correct. The driller ur the report(s) being re	ision) and that each and all of the stat nderstood that failure to complete the turned for completion and resubmittal	ements he required it	erein are true and
	driller's direct supervi correct. The driller ur the report(s) being re	ision) and that each and all of the stat nderstood that failure to complete the turned for completion and resubmittal Inc.	ements he required it	erein are true and
	 driller's direct supervice correct. The driller under the report(s) being removes Bee Cave Drilling, 185 Angel Fire Dr. 	ision) and that each and all of the stat nderstood that failure to complete the turned for completion and resubmittal Inc. TX 78620	ements he required it	erein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	4	topsoil
4	40	tan limestone
40	45	shale
45	60	tan limestone
60	130	red clay
130	140	white rock
140	205	gray limestone
205	225	gray clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	145
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	145	225

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #470970					
Owner:	Mirasol Hills, LLC	Owner Well #:	1		
Address:	4000 International Pkwy. Carrollton, TX 75007	Grid #:	57-47-6		
Well Location:		Latitude:	30° 18' 53.21" N		
	Dripping Springs, TX 78620	Longitude:	098° 08' 44.7" W		
Well County:	Hays	Elevation:	1000 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Test Well		

Drilling Start Date: 12/20/2017 Drilling End Date: 12/30/2017

	Diameter	(in.)	Top Depth (ft.)	Bottom Dept	th (ft.)
Borehole: 1			0	470	
Drilling Method:	Air Rotary				
Borehole Completion:	Filter Packed				
	Top Depth (ft.)	Bottom Depth (ft.)	Filter	Material	Size
Filter Pack Intervals:	330	470	Gi	ravel	3/8"
	Top Depth (ft.)	Bottom Depth	(ft.) D	escription (number of sa	acks & material)
Annular Seal Data:	0	330		Cement 172 Bags/Sacks	
Seal Method: Pr	essure		Distance to F	Property Line (ft.): N	lo Data
Sealed By: Dr	iller			otic Field or other ontamination (ft.):	No Data
			Distance to	Septic Tank (ft.): N	No Data
			Meth	od of Verification: N	lo Data
Surface Completion:	Surface Sleeve	e Installed	5	Surface Completio	n by Driller
Water Level:	253 ft. below land surface on 2018-01-30				
Packers:	No Data				
Type of Pump:	No Data				
Well Tests:	Pump	Yield: 15			

	Strata Depth (ft.)	Water Type		
Water Quality:	340 - 447	No Data		
		Chemical Analysis Mac	le: Yes	
	Did the driller ki	nowingly penetrate any strata whic contained injurious constituents		
Certification Data:	driller's direct supervis correct. The driller und	t the driller drilled this well (or the ion) and that each and all of the st derstood that failure to complete th urned for completion and resubmit	atements he ne required it	rein are true and
Certification Data: Company Information:	driller's direct supervis correct. The driller und the report(s) being retu	ion) and that each and all of the st derstood that failure to complete th urned for completion and resubmit	atements he ne required it	rein are true and
	driller's direct supervis correct. The driller und the report(s) being retu	ion) and that each and all of the st derstood that failure to complete th urned for completion and resubmit nc.	atements he ne required it	rein are true and
	driller's direct supervis correct. The driller und the report(s) being retu Bee Cave Drilling, In 185 Angel Fire Dr.	ion) and that each and all of the st derstood that failure to complete th urned for completion and resubmit nc. X 78620	atements he ne required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	topsoil & loose rock
2	10	caliche & tan limestone
10	17	tan & gray limestone
17	44	gray shale
44	62	tan limestone & brown clay mix
62	76	gray limestone
76	89	gray & white limestone
89	112	gray sandstone & gravel
112	193	gray limestone
193	265	gray clay
265	300	gray limestone
300	308	red clay
308	346	gray shale
346	370	tan limestone
370	440	conglomerate
440	447	porous gray limestone
447	470	gray limestone & shale

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	330
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	330	470

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #499521						
Owner:	Mirasol Meadows	Owner Well #:	No Data			
Address:	2201 Lakeside Blvd. Richardson, TX 75082	Grid #:	57-47-6			
Well Location:	,	Latitude:	30° 19' 12.29" N			
	Dripping Springs, TX 78620	Longitude:	098° 08' 44.06" W			
Well County:	Hays	Elevation:	867 ft. above sea level			
Type of Work:	New Well	Proposed Use:	Domestic			

Drilling Start Date: 12/18/2018 Drilling End Date: 12/19/2018

	Diameter (in) 7	op Depth (ft.)	Bottom Dep	th (ft.)
Borehole:	10.5		0	8.5	
	8.5		8.5	302	
Drilling Method:	Air Rotary				
Borehole Completion:	Perforated or Slotted				
	Top Depth (ft.)	Bottom Depth (ft	.) De	escription (number of s	acks & material)
Annular Seal Data:	0	50		Cement 12 Bag	s/Sacks
Seal Method: Pr	ressure		Distance to P	roperty Line (ft.): I	No Data
Sealed By: D	riller			tic Field or other ontamination (ft.):	No Data
			Distance to	Septic Tank (ft.): I	No Data
			Metho	od of Verification: I	No Data
Surface Completion:	Surface Sleeve I	nstalled	S	urface Completic	on by Driller
Water Level:	40 ft. below land	surface on 2018	-12-28		
Packers:	Rubber at 50 ft. Rubber at 52 ft.				
Type of Pump:	Submersible Pump Depth (ft.): 90			0	
Well Tests:	Pump	Yield: 42 Gl	РМ		
	Descripti	on (number of sacks a	& material)	Top Depth (ft.)	Bottom Depth (ft.)
Plug Information:		Bentonite		120	302

	Strata Depth (ft.)	Water Type		
Water Quality:	50 - 72	cow creek		
		Chemical Analysis	Made: No	
	Did the driller	knowingly penetrate any strata contained injurious constitu		
	driller's direct supervi correct. The driller u	at the driller drilled this well (or t ision) and that each and all of th nderstood that failure to comple turned for completion and resub	e statements he te the required it	rein are true and
Company Information:	Bee Cave Drilling,	Inc.		
	185 Angel Fire Dr. Dripping Springs,			
Driller Name:	Jim Blair	Lic	ense Number:	54416
Comments:	400 tds Well constructed I supply well later.	ike a public supply well in cas	se they choose	to make it a public

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

Top (ft.)	Bottom (ft.)	Description
0	3	topsoil
3	12	caliche & gravel mix
12	42	tan limestone
42	50	gray limestone
50	72	broken rock & gravel layers wb
72	85	gray limestone w/ shale stringers
85	102	gray limestone w/ clay stringsers
102	142	clay
142	190	white porous rock
190	240	red sandstone
240	278	conglomerate
278	302	clay

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	52
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	52	82
4.5	Blank	New Plastic (PVC)	sdr-17	82	102

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #532209						
Owner:	Mirasol Meadows LLC	Owner Well #:	mobs-2			
Address:	4143 Maple Ave Dallas , TX 78219	Grid #:	57-47-6			
Well Location:		Latitude:	30° 18' 13.42" N			
	Round Mountain, TX 78663	Longitude:	098° 08' 48.36" W			
Well County:	Hays	Elevation:	953 ft. above sea level			
Type of Work:	New Well	Proposed Use:	Domestic			

Drilling Start Date: 12/4/2019 Drilling End Date: 12/4/2019

	Diameter (in.)	Top De	əpth (ft.)	Bottom Depth (ft.)		
Borehole:	10.625		0	10		
	8.5	1	0	50		
	6.75	5	50	185		
Drilling Method:	Air Rotary					
Borehole Completion:	Perforated or Slo	tted				
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)		
Annular Seal Data:	0	40	40 Cement 6			
	40	50		Bentonite 3		
Seal Method: Po	oured	Di	stance to Pr	operty Line (ft.): 1000+		
Sealed By: D	riller	Dista conc	ince to Septi entrated cor	c Field or other htamination (ft.): No Data		
		I	Distance to	Septic Tank (ft.): No Data		
			Metho	d of Verification: No Data		
Surface Completion:	Surface Sleeve In	stalled				
Water Level:	No Data					
Packers:	Rubber at 50 ft. Rubber at 55 ft. Rubber at 105 ft. Rubber at 110 ft.					
Type of Pump:	Submersible					
Well Tests:	Jetted	Yield: 35 GPM				

		-		
	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Mad	le: No	
	Did the driller	knowingly penetrate any strata whic contained injurious constituents		
Certification Data:	driller's direct superv correct. The driller u	hat the driller drilled this well (or the v vision) and that each and all of the st understood that failure to complete th eturned for completion and resubmitt	atements he le required it	rein are true and
Company Information:	Bee Cave Drilling	, Inc.		
	185 Angel Fire Dr. Dripping Springs,			
Driller Name:	jim blair	Licens	e Number:	54416
Comments:	No Data			

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	Topsoil
1	40	tan limestone
40	45	shale
45	70	tan limestone
70	90	gravel wb 5-10 gpm at 380 tds
90	105	red shale
105	180	tan / white limestone wb 35+ gpm at 460 tds
180	185	clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	120
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	120	185

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS	S WELL REPOR	RT for Trac	king #502584
Owner:	BENTREE BUILDERS/K PETREE	(RISTY (Owner Well #:	No Data
Address:	14801 ARROWHEAD D	RIVE	Grid #:	57-47-3
	LEANDER, TX 78641	l	_atitude:	30° 20' 03.36" N
Well Location:	STAGECOACH RD. DRIPPING SPRINGS, T	X 78620	_ongitude:	098° 07' 51.66" W
Well County:	Travis	E	Elevation:	No Data
Type of Work:	TEST WELL		Proposed Use:	Test Well
	ONLY e: 1/4/2019 Drilling	g End Date: 1/4/2019		
	-		pth (ft.)	Bottom Depth (ft.)
Drilling Start Date	e: 1/4/2019 Drilling			Bottom Depth (ft.)
	e: 1/4/2019 Drilling Diameter (in	.) Top De)	,
Drilling Start Date	e: 1/4/2019 Drilling Diameter (in: 9	.) Top De C)	20
Drilling Start Date Borehole: Drilling Method:	e: 1/4/2019 Drilling Diameter (in. 9 6.125 Air Rotary	.) Top De C)	20
Drilling Start Date	e: 1/4/2019 Drilling Diameter (in. 9 6.125 Air Rotary	.) Top De C	D	20

Seal Method: HOLE PLUG Sealed By: Driller

TEST WELL ONLY

Distance to Property Line (ft.): 50+

Distance to Septic Field or other concentrated contamination (ft.): N/A

Distance to Septic Tank (ft.): N/A

Method of Verification: **OWNER**

Surface Completion by Driller

•		•	-
Water Level:	140 ft. below land surface on 2019-02-04	Measurement Method:	Electric Line
Packers:	Burlap at 18 ft.		
Type of Pump:	NO PUMP		
Well Tests:	No Test Data Specified		

Surface Completion:

	Strata Depth (ft.)	Water Type		
Water Quality:	140 - 180	COW CREEK		
		Chemical Analysis N	Made: No	
	Did the driller k	nowingly penetrate any strata w contained injurious constitue		
Certification Data:	driller's direct supervis correct. The driller un	at the driller drilled this well (or the sion) and that each and all of the aderstood that failure to complete surned for completion and resub	e statements he e the required i	erein are true and
Certification Data:	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and all of the iderstood that failure to complet surned for completion and resub	e statements he e the required i	erein are true and
	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and all of the iderstood that failure to complet curned for completion and resub ipply, Inc. st	e statements he e the required i	erein are true and
	driller's direct supervis correct. The driller un the report(s) being ret Centex Pump & Su 2520 Hwy. 290 Wes	sion) and that each and all of the iderstood that failure to complet surned for completion and resub apply, Inc. St TX 78620	e statements he e the required i	erein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Casing: BLANK PIPE & WELL SCREEN DATA

)	Bottom (ft.)	Description	Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	
	45	CALICHE		Blank	New Plastic	SDR17	2	
	50	BLUE LIMESTONE	0.20	Blaint	(PVC)	obititi	-	
	72	GRAY/TAN LIMESTONE						
	90	BROWN LIMESTONE						
)	100	SAND/BROWN/TAN LIMESTONE						
00	120	SAND/BROWN LIMESTONE						
20	130	RED CLAY W/SAND						
30	140	RED CLAY						
40	160	TAN LIMESTONE						
60	170	WHITE LIMESTONE						
70	180	BROWN LIMESTONE						
80	190	GRAY LIMESTONE						
190	200	GRAY CLAY						
200	210	GRAY CLAY						
210	230	GRAY CLAY						
230	250	GRAY & BROWN CLAY						

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #527515				
Owner:	Mirasol Meadows LLC	Owner Well #:	OBS #2		
Address:	4143 Maple Ave. Dallas, TX 78219	Grid #:	57-47-6		
Well Location:	Stagecoach Rd.	Latitude:	30° 19' 48.37" N		
	Dripping Springs, TX 78620	Longitude:	098° 08' 00.36" W		
Well County:	Travis	Elevation:	955 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 10/30/2019 Drilling End Date: 10/30/2019

	Diameter (in.)	Top L	Depth (ft.)	Bottom Depth (ft.)	
Borehole:	10.625		0	10	
	6.75		10	325	
Drilling Method:	Air Rotary				
Borehole Completion:	Perforated or Slo	tted			
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)	
Annular Seal Data:	0	30		Cement 4 Bags/Sacks	
	30	50		Bentonite 4 Bags/Sacks	
Seal Method: Po	oured	C	Distance to Pr	operty Line (ft.): 137	
Sealed By: Dr	iller			c Field or other ntamination (ft.): none	
			Distance to S	Septic Tank (ft.): none	
			Metho	d of Verification: No Data	
Surface Completion:	Surface Sleeve In	stalled	Sı	urface Completion by Driller	
Water Level:	No Data				
Packers:	Rubber at 50 ft. Rubber at 55 ft. Rubber at 105 ft. Rubber at 110 ft.				
Type of Pump:	No Data				
Well Tests:	Jetted	Yield: 8-10 GP	М		

Plug Information:	Description (number of sacks & material)		Top Depth (ft.)	Bottom Depth (ft.)
	Ce	ement	205	325
	Strata Depth (ft.)	Water Type		
Water Quality:	110 - 185	Glenrose		
		Chemical Analy	sis Made: No	
		vingly penetrate any stra contained injurious cons		
Certification Data:	The driller certified that th driller's direct supervision correct. The driller under the report(s) being return) and that each and all o stood that failure to com	of the statements he plete the required it	erein are true and
Certification Data: Company Information:	driller's direct supervision correct. The driller under the report(s) being return) and that each and all o stood that failure to com ed for completion and re	of the statements he plete the required it	erein are true and
	driller's direct supervision correct. The driller under the report(s) being return) and that each and all o stood that failure to com ed for completion and re	of the statements he plete the required it	erein are true and
	driller's direct supervision correct. The driller under the report(s) being return Bee Cave Drilling, Inc. 185 Angel Fire Dr.) and that each and all o stood that failure to com ed for completion and re	of the statements he plete the required it	erein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft)	Pottom (ft)	Description	Dla
Top (ft.)	Bottom (ft.)	Description	(in.)
0	5	topsoil	4.5
5	45	white limestone	7.5
45	90	light gray clay	4.5
90	110	red clay	4.5
110	150	tan limestone wb 2-3 gpm 543 tds	
150	165	gray limestone	
165	185	dark gray limestone wb 8-10 gpm	
185	250	dark gray clay	
250	325	red sandstone wb 25-30 gpm 2380 tds	

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	110
4.5		New Plastic (PVC)	sdr-17	110	185
4.5	Blank	New Plastic (PVC)	sdr-17	185	205

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #527548				
Owner:	Mirasol Meadows LLC	Owner Well #:	PWS1	
Address:	4143 Maple Ave. Dallas, TX 78219	Grid #:	57-47-6	
Well Location:	Stagecoach Ranch Rd.	Latitude:	30° 19' 49.58" N	
	Dripping Springs, TX 78620	Longitude:	098° 08' 01.4" W	
Well County:	Travis	Elevation:	954 ft. above sea level	
Type of Work:	New Well	Proposed Use:	Public Supply	

Drilling Start Date: 10/31/2019 Drilling End Date: 10/31/2019

Plans Approved by TCEQ - NO

	Diameter (in.) Тор	Depth (ft.)	Bottom Depth (ft.)
Borehole:	10.625	10.625 0		10
	8.5		10	205
Drilling Method:	Air Rotary			
Borehole Completion:	Perforated or Slo	otted		
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)
Annular Seal Data:	0	110		Cement 20 Bags/Sacks
	110	115		Bentonite 2 Bags/Sacks
Seal Method: Pr	ressure		Distance to Pr	roperty Line (ft.): 220
Sealed By: Dr	riller			ic Field or other ntamination (ft.): none
			Distance to S	Septic Tank (ft.): none
			Metho	d of Verification: No Data
Surface Completion:	Surface Sleeve I	nstalled	S	urface Completion by Driller
Water Level:	129 ft. below land surface on 20		11-18	
Packers:	Rubber at 115 ft Rubber at 120 ft	-		
Type of Pump:	No Data			
Well Tests:	Pump	Yield: 27 GPI	/I with 5 ft. dra	awdown after 24 hours

	Strata Depth (ft.)	Water Type		
Water Quality:	100 - 160 Cow Creek			
		Chemical Analysis M	ade: Yes	
	Did the driller I	knowingly penetrate any strata wh contained injurious constituer		
Certification Data:	driller's direct supervi correct. The driller un	at the driller drilled this well (or th sion) and that each and all of the nderstood that failure to complete turned for completion and resubm	statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all of the nderstood that failure to complete turned for completion and resubm	statements he the required it	rein are true and
	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all of the nderstood that failure to complete turned for completion and resubn Inc.	statements he the required it	rein are true and
	driller's direct supervi correct. The driller un the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	sion) and that each and all of the nderstood that failure to complete turned for completion and resubn Inc. TX 78620	statements he the required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	35	tan limestone
35	75	gray limestone & clay
75	100	red clay
100	135	tan rock wb 1-2 gpm 670 tds
135	160	tan rock wb 8-10 gpm 510 tds
160	205	dark gray limestone & shale

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
5	Blank	New Plastic (PVC)	sch. 80	0	120
5	Perforated or Slotted	New Plastic (PVC)	sch. 80	120	180
5	Blank	New Plastic (PVC)	sch. 80	180	200

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #531513			
Owner:	JOSH BARNETT	Owner Well #:	No Data
Address:	1721 OVERLAND STAGE RD. DRIPPING SPRINGS, TX 78620	Grid #:	57-47-6
Well Location:		Latitude:	30° 18' 50.76" N
	DRIPPING SPRINGS, TX 78620	Longitude:	098° 08' 00.9" W
Well County:	Hays	Elevation:	No Data
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 12/9/2019 Drilling End Date: 12/9/2019

	Diameter (in.,) Top D	epth (ft.)	Bottom Depth (ft.)
Borehole:	9		0	100
	6.125	1	00	390
Drilling Method:	Air Rotary			
Borehole Completion:	Straight Wall			
	Top Depth (ft.)	Bottom Depth (ft.)	De	escription (number of sacks & material)
Annular Seal Data:	0	100	POR	TLAND CEMENT 12 Bags/Sacks
Seal Method: Pr	essure	D	stance to P	roperty Line (ft.): 25
Sealed By: Dr	iller			tic Field or other ntamination (ft.): 100+
			Distance to	Septic Tank (ft.): 100+
			Metho	d of Verification: OWNER
Surface Completion:	Surface Sleeve Ir	nstalled	S	urface Completion by Driller
Water Level:	No Data		Meas	surement Method: Electric Line
Packers:	Burlap at 100 ft. BURLAP & PLASTIC at 120 ft. BURLAP & PLASTIC at 300 ft. BURLAP & PLASTIC at 330 ft.			
Type of Pump:	Submersible		Ρι	ump Depth (ft.): 380
Well Tests:	Jetted Yield: 20+ GPN		I	

	Strata Depth (ft.)	Water Type		
Water Quality:	330 - 390	MIDDLE TRINITY	LE TRINITY	
		Chemical Analy	vsis Made: No	
	Did the driller k	nowingly penetrate any str contained injurious con		
Certification Data:	driller's direct supervis correct. The driller un	at the driller drilled this well sion) and that each and all inderstood that failure to con curned for completion and re	of the statements h nplete the required	nerein are true and
Certification Data: Company Information:	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and all iderstood that failure to con surned for completion and re	of the statements h nplete the required	nerein are true and
	driller's direct supervis correct. The driller un the report(s) being ret	sion) and that each and all inderstood that failure to con surned for completion and re apply, Inc. st	of the statements h nplete the required	nerein are true and
	driller's direct supervis correct. The driller un the report(s) being ret Centex Pump & Su 2520 Hwy. 290 Wes	sion) and that each and all inderstood that failure to con surned for completion and re apply, Inc. St TX 78620	of the statements h nplete the required	nerein are true and items will result in

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	TOP SOIL/ ROCK
1	30	BROWN LIMESTONE W/CLAY
30	80	GRAY LIMESTONE
80	100	GRAY/TAN LIMESTONE
100	135	GRAY LIMESTONE W/CLAY
135	330	TAN LIMESTONE
330	340	GRAY/TAN LIMESTONE
340	390	TAN LIMESTONE

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	2	330
4.5	Perforated or Slotted	New Plastic (PVC)	SDR17	330	390

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE	OF TEXAS P	LUGGING	REPORT fo	or Tracking #19332	4
Owner:	Miraso	sol Meadows LLC Owner Well		#: No Data		
Address:		Maple Ave s,TX 78219		Grid #:	57-47-6	
Well Locatio		Hamilton Pool Rd		Latitude:	30° 18' 54" N	
		d mountain, TX 78	663	Longitude:	098° 08' 46" W	
Well County	: Hays			Elevation:	994	
Well Type:	Do	mestic				
Drilling Inform	nation					
Company:	Bee Cave	Drilling, Inc.		Date Drille	d: 12/18/2019	
Driller:	Jim Blair			License Nu	mber: 54416	
Well Repor	t Tracking	<u>#531673</u>				
		Diameter (in.)		Top Depth (ft.)	Bottom Depth (ft.)	
Borehole:	_	10.5		0	10	
		8.5		10	470	
Date Plugge Date Plugge Plug Methoo Ca	ed: 12/19/	nmie pipe bentonit	Plugg e from bottom	n to 2 feet from s	urface, cement top 2 feet	
Dla (in.)	Top (ft.)	Bottom (ft.)	Top (ft.)	Bottom (ft.)	Description (number of sacks	s & material)
	0	0	0	470	Bentonite 30	
Certification	n Data:	driller's direct su correct. The dril	pervision) and ler understood	that each and all	ell (or the well was plugged of the statements herein ar nplete the required items w resubmittal.	e true and
Company In	formation:	Bee Cave Drillin				
		185 Angel Fire D Dripping Spring				
Driller Name	e:	jim blair		L	icense Number: 54416	
Comments:		No Data				

	STAT	E OF TEXAS WEL	L REPORT for Trac	king #531673
Owner:	Miraso	I Meadows LLC	Owner Well #:	mobs-1
Address:		laple Ave , TX 78219	Grid #:	57-47-6
Well Location:		Hamilton Pool Rd	Latitude:	30° 18' 54.57" N
		mountain, TX 78663	Longitude:	098° 08' 46.16" W
Well County:	Hays		Elevation:	996 ft. above sea level
			Plugged With	in 48 Hours
This v	vell has	been plugged	Plugging Report Tracking	g #193324
Type of Work:	New W	ell	Proposed Use:	Domestic
Drilling Start Date: 12/17/2019 Drilling End Date: 12/18/2019 Diameter (in.) Top Depth (ft.) Bottom Depth (ft.)				
Borehole:	_	10.5	0	10
		8.5	10	470
Drilling Method:		Air Rotary		
-				

Annular Seal Data: No Data	
Seal Method: Tremie	Distance to Property Line (ft.): No Data
Sealed By: Driller	Distance to Septic Field or other concentrated contamination (ft.): No Data
	Distance to Septic Tank (ft.): No Data
	Method of Verification: No Data
Surface Completion: No Data	

Water Level:	No Data		
Packers:	No Data		
Type of Pump:	No Data		
Well Tests:	Jetted	Yield: 5 GPM	

	Strata Depth (ft.)	Water Type	-	
Water Quality:	No Data	No Data		
		Chemical Analysis Made	e: No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?		
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this well (or the w sion) and that each and all of the sta nderstood that failure to complete the turned for completion and resubmitta	tements he e required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller u the report(s) being re	sion) and that each and all of the stand nderstood that failure to complete the turned for completion and resubmitta	tements he e required it	rein are true and
	driller's direct supervi correct. The driller u the report(s) being re	sion) and that each and all of the standerstood that failure to complete the turned for completion and resubmitta	tements he e required it	rein are true and
	driller's direct supervi correct. The driller u the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	sion) and that each and all of the standerstood that failure to complete the turned for completion and resubmitta	tements he e required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description	
0	2	top soil	
2	15	tan limestone	
15	25	grey limestone	
25	35	grey sandstone	
35	50	tan limestone	
50	110	grey limestone	
110	120	grey sandstone	
120	170	grey sandstone/ red clay	
170	470	sandstone/ gravel mix 5 gpm	

Casing:
BLANK PIPE & WELL SCREEN DATA

Description	Dia. (in.) New/Used Type Setting From/To (ft.)
	No Data
one	
tone	
stone	
ne	
one	

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #532149				
Owner:	Mirasol Meadows LLC	Owner Well #:	mobs-3	
Address:	4143 Maple Ave Dallas, TX 78219	Grid #:	57-47-6	
Well Location:		Latitude:	30° 19' 13.77" N	
	Round Mountain, TX 78663	Longitude:	098° 08' 43.62" W	
Well County:	Hays	Elevation:	870 ft. above sea level	
Type of Work:	New Well	Proposed Use:	Domestic	

Drilling Start Date: 11/27/2019 Drilling End Date: 11/27/2019

	Diameter (in.)	Top Dept	th (ft.)	Bottom Depth (ft.)
Borehole:	10.625	0		10
	8.5	10		50
	6.75	50		100
Drilling Method:	Air Rotary			
Borehole Completion:	Perforated or Slo	tted		
	Top Depth (ft.)	Bottom Depth (ft.)	Descri	otion (number of sacks & material)
Annular Seal Data:	0	40		Cement 6
	40	50		Bentonite 3
Seal Method: SI	urry	Dist	ance to Prop	erty Line (ft.): No Data
Sealed By: D	riller		ce to Septic F ntrated conta	Field or other mination (ft.): No Data
		Dis	stance to Sep	otic Tank (ft.): No Data
			Method o	f Verification: No Data
Surface Completion:	Surface Sleeve In	stalled	Method c	f Verification: No Data
Surface Completion: Water Level:	Surface Sleeve In No Data	stalled	Method c	f Verification: No Data
		stalled	Method c	f Verification: No Data
Water Level:	No Data Rubber at 50 ft.	stalled	Method c	f Verification: No Data

	Strata Depth (ft.)	Water Type		
Water Quality:	50 - 70	No Data		
		Chemical Analysis Ma	ide: No	
	Did the driller	knowingly penetrate any strata wh contained injurious constituen		
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this well (or the sion) and that each and all of the s nderstood that failure to complete turned for completion and resubmi	statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller u the report(s) being re	sion) and that each and all of the s inderstood that failure to complete turned for completion and resubmi	statements he the required it	rein are true and
	driller's direct supervi correct. The driller up the report(s) being re	sion) and that each and all of the s nderstood that failure to complete turned for completion and resubmining Inc.	statements he the required it	rein are true and
	driller's direct supervi correct. The driller up the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	sion) and that each and all of the s nderstood that failure to complete turned for completion and resubmine Inc. TX 78620	statements he the required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	topsoil
1	18	red clay
18	25	red/tan sandstone
25	28	green clay
28	65	tan sandstone
65	70	grey sandstone
70	100	grey sandstone/shale

Casing:
BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	50
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	50	100

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #532216				
Owner:	Mirasol Meadows LLC	Owner Well #:	tw-2	
Address:	4143 Maple Ave Dallas , TX 78219	Grid #:	57-47-6	
Well Location:		Latitude:	30° 19' 46.86" N	
	Round Mountain, TX 78663	Longitude:	098° 09' 02.6" W	
Well County:	Hays	Elevation:	872 ft. above sea level	
Type of Work:	New Well	Proposed Use:	Domestic	

Drilling Start Date: 12/4/2019 Drilling End Date: 12/4/2019

	Diameter (in.) Top De	epth (ft.)	Bottom Depth (ft.)	
Borehole:	10.625)	10	
	8.5	1	0	50	
	6.75	5	0	140	
Drilling Method:	Air Rotary				
Borehole Completion:	Perforated or Slo	otted			
	Top Depth (ft.)	Bottom Depth (ft.)	Des	cription (number of sacks & material)	1
Annular Seal Data:	0	40		Cement 7	
	40	50		Bentonite 3	
Seal Method: Po	oured	Di	stance to Pro	operty Line (ft.): No Data	
Sealed By: D	riller			c Field or other ntamination (ft.): No Data	
		I	Distance to S	Septic Tank (ft.): No Data	
			Method	d of Verification: No Data	
Surface Completion:	Surface Sleeve Ir	nstalled			
Water Level:	No Data				
Packers:	Rubber at 50 ft.				
	Rubber at 55 ft.				
	Rubber at 60 ft.				
	Rubber at 65 ft.				
Type of Pump:	Submersible				
Well Tests:	No Test Data Sp	ecified			

Water Quality:	Strata Depth (ft.) No Data	Water Type No Data		
Water Quality:	No Data	No Data		
		Chemical Analysis Made:	No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?:	No	
Certification Data:	driller's direct superv correct. The driller u	at the driller drilled this well (or the we ision) and that each and all of the state nderstood that failure to complete the sturned for completion and resubmittal.	ements her required ite	rein are true and
Company Information	Bee Cave Drilling,	Inc.		
	185 Angel Fire Dr. Dripping Springs,			
Driller Name:	jim blair	License I	lumber:	54416
Comments:	No Data			

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	topsoil
2	15	tan sandstone
15	22	tan/red sandstone
22	40	gravel/sandstone
40	55	red clay
55	90	sandstone
90	110	sand/sandstone 5 gpm
110	140	clay / sand

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	80
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	80	110

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL	REPORT for Trac	king #534546
Owner:	Mirasol Meadows LLc	Owner Well #:	No Data
Address:	4143 Maple Ave Dallas, TX 78219	Grid #:	57-47-6
Well Location:		Latitude:	30° 18' 50.72" N
	Round Mountain, TX 78663	Longitude:	098° 08' 35.83" W
Well County:	Hays	Elevation:	901 ft. above sea level
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 12/12/2019 Drilling End Date: 12/12/2019

	Diameter (in.)	Top De	pth (ft.)	Bottom Depth (ft.)	
Borehole:	10.625	C)	10	
	8.5	1	0	50	
	6.75	5	0	120	
Drilling Method:	Air Rotary				
Borehole Completion:	Perforated or Slot	tted			
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)	
Annular Seal Data:	0	40		Cement 6	
	40	50		Bentonite 3	
Seal Method: Pc	oured	Dis	stance to Pr	operty Line (ft.): 1000+	
Sealed By: Dr	iller			ic Field or other ntamination (ft.): No Data	
		C	Distance to	Septic Tank (ft.): No Data	
			Metho	d of Verification: No Data	
Surface Completion:	Surface Sleeve In	stalled			
Water Level:	No Data				
Packers:	Rubber at 50 ft. Rubber at 55 ft. Rubber at 60 ft. Rubber at 65 ft.				
Type of Pump:	No Data				
Well Tests:	Jetted	Yield: 10 GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Ma	de: No	
	Did the driller	knowingly penetrate any strata whi contained injurious constituent		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the rision) and that each and all of the s inderstood that failure to complete t eturned for completion and resubmi	tatements he he required it	rein are true and
Company Information:	Bee Cave Drilling	, Inc.		
	185 Angel Fire Dr. Dripping Springs,			
Driller Name:	jim blair	Licen	se Number:	54416
Comments:	No Data			

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	topsoil
2	10	caliche
10	25	sandstone/clay
25	35	sandstone
35	65	red clay
65	105	sandstone wb 10 gpm at 664 tds
105	120	clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	80
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	80	120

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL R	EPORT for Trac	king #534550
Owner:	Mirasol Meadows LLC	Owner Well #:	tw-3
Address:	4143 Maple Ave Dallas, TX 78219	Grid #:	57-47-6
Well Location:		Latitude:	30° 18' 49.5" N
	Round Mountain, TX 78663	Longitude:	098° 08' 35.97" W
Well County:	Hays	Elevation:	905 ft. above sea level
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 12/11/2019 Drilling End Date: 12/11/2019

	Diameter (in.)	Top Dep	th (ft.)	Bottom Depth (ft.)
Borehole:	10.625	0		10
	8.5	10		50
	6.75	50		120
Drilling Method:	Air Rotary			
Borehole Completion:	Perforated or Slo	tted		
	Top Depth (ft.)	Bottom Depth (ft.)	Des	scription (number of sacks & material)
Annular Seal Data:	0	40		Cement 7
	40	50		Bentonite 3
Seal Method: Po	oured	Dist	ance to Pr	operty Line (ft.): No Data
Sealed By: D	riller			c Field or other ntamination (ft.): 200+
		Di	stance to S	Septic Tank (ft.): 200+
			Method	d of Verification: No Data
Surface Completion:	Surface Sleeve In	stalled		
Water Level:	No Data			
Packers:	Rubber at 50 ft. Rubber at 55 ft. Rubber at 60 ft. Rubber at 65 ft.			
Type of Pump:	No Data			
Well Tests:	Jetted	Yield: 10 GPM		

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Mad	e: No	
	Did the driller	knowingly penetrate any strata whic contained injurious constituents		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or the v rision) and that each and all of the sta inderstood that failure to complete th eturned for completion and resubmitt	atements he e required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the sta inderstood that failure to complete th eturned for completion and resubmitt	atements he e required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the sta inderstood that failure to complete th eturned for completion and resubmitt , Inc.	atements he e required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	rision) and that each and all of the sta inderstood that failure to complete th eturned for completion and resubmitt , Inc.	atements he e required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description		
0	2	topsoil		
2	10	caliche		
10	25	sandstone/clay		
25	35	grey/tan sandstone		
35	65	red clay		
65	105	sandstone wb 10 gpm at 665 tds		
105	120	clay		

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	80
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	80	120

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #534551					
Owner:	Mirasol Meadows LLC	Owner Well #:	obs-2		
Address:	4143 Maple Ave Dallas, TX 78219	Grid #:	57-47-6		
Well Location:	24643 Hamilton pool Rd	Latitude:	30° 19' 45.23" N		
	Round Mountain, TX 78663	Longitude:	098° 09' 01.87" W		
Well County:	Hays	Elevation:	875 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 12/3/2019 Drilling End Date: 12/3/2019

	Diameter (in.)		Top Dep	oth (ft.)	Bottom Depth (ft.)	
Borehole:	10.635		0		10	
	8.5 6.75		10		50	
			50)	145	
Drilling Method:	Air Rotary					
Borehole Completion:	Perforated or Slo	tted				
	Top Depth (ft.)	Bottom	Depth (ft.)	De	escription (number of sacks & material)	
Annular Seal Data:	0		40		Cement 8	
	40	:	50		Bentonite 3	
Seal Method: Pc	bured		Dis	tance to P	roperty Line (ft.): No Data	
Sealed By: Dr	iller			stance to Septic Field or other ncentrated contamination (ft.): No Data		
			D	istance to	Septic Tank (ft.): No Data	
				Metho	d of Verification: No Data	
Surface Completion:	Surface Sleeve In	stalled				
Water Level:	No Data					
Packers:	Rubber at 50 ft. Rubber at 60 ft. Rubber at 65 ft.					
Type of Pump:	No Data					
Well Tests:	Jetted	Yield	1: 15 GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Made:	No	
	Did the driller	knowingly penetrate any strata which contained injurious constituents?:	No	
Certification Data:	driller's direct supervi correct. The driller u	at the driller drilled this well (or the we sion) and that each and all of the state nderstood that failure to complete the turned for completion and resubmittal.	ements he required it	rein are true and
Certification Data: Company Information	driller's direct supervi correct. The driller up the report(s) being re	sion) and that each and all of the state nderstood that failure to complete the turned for completion and resubmittal.	ements he required it	rein are true and
	driller's direct supervi correct. The driller up the report(s) being re	sion) and that each and all of the state nderstood that failure to complete the turned for completion and resubmittal.	ements he required it	rein are true and
	driller's direct supervi correct. The driller un the report(s) being re Bee Cave Drilling, 185 Angel Fire Dr.	sion) and that each and all of the state nderstood that failure to complete the turned for completion and resubmittal.	ements he required it	rein are true and

Report Amended on 3/18/2020 by Request #31094

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	10	tan caliche
10	30	tan sandstone
30	50	red shale
50	80	tan limestone
80	120	tan limestone wb 15 gpm at 460 tds
120	145	grey clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	75
4.5	Perforated or Slotted	New Plastic (PVC)	sdr-17	75	145

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF	TEXAS WEL	L REPOF	RT for Trac	cking #535035	
Owner:	BENTREE BU	LDERS	C	Owner Well #:	No Data	
Address:	14801 ARROW		C	Grid #:	57-47-3	
Well Location:		LEANDER, TX 78641 101 STAGECOACH RANCH RD. DRIPPING SPRINGS, TX 78620		atitude:	30° 20' 03.36" N	
				ongitude:	098° 07' 51.6" W	
Well County:	Travis		E	levation:	No Data	
Type of Work:	New Well		F	Proposed Use:	Public Supply	
Drilling Start Da	te: 11/20/2019	Drilling End Da	ite: 11/20/201	9	Plans Approved by PW	TCEQ - YES /S# 2270419
		Diamator (in)	Top Dor	41- (54)	Pottom Donth (ft)	

	Diameter (in.)		Top Depth (ft.)		Bottom Depth	n (ft.)
Borehole:	14.75		0		18	
	10		18		210	
Drilling Method:	Air Rotary					
Borehole Completion:	Straight Wall					
	Top Depth (ft.)	Bottom	n Depth (ft.)	Des	cription (number of sad	cks & material)
Annular Seal Data:	0		18		Cement 15 Bags	/Sacks
	0		140		Cement 52 Bags	/Sacks
Seal Method: Po	sitive Displaceme	nt	Dis	istance to Property Line (ft.): 500+		
Sealed By: Dr	iller				c Field or other tamination (ft.): N	/Α
			D	istance to S	eptic Tank (ft.): N	/Α
				Method	of Verification: O	WNER
Surface Completion:	Surface Slab Inst	talled		Su	rface Completion	n by Driller
Water Level:	32 ft. below land surface on 2020-01-14			4 Measu	urement Method:	Electric Line
Packers:	BURLAP & PLASTIC at 140 ft. BURLAP & PLASTIC at 140.6 ft. BURLAP & PLASTIC at 141 ft.					
Type of Pump:	Submersible					
Well Tests:	Jetted	Yiel	d: 55 GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	60	Middle Trinity		
		Chemical Analysis	Made: Yes	
	Did the driller I	knowingly penetrate any strata contained injurious constitu		
Certification Data:	driller's direct supervision correct. The driller un	at the driller drilled this well (or t sion) and that each and all of th nderstood that failure to comple turned for completion and result	e statements he te the required it	erein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all of th nderstood that failure to comple turned for completion and resub	e statements he te the required it	erein are true and
	driller's direct supervision correct. The driller un the report(s) being rest	sion) and that each and all of th nderstood that failure to comple turned for completion and result upply, Inc. st	e statements he te the required it	erein are true and
	driller's direct supervic correct. The driller un the report(s) being ref Centex Pump & Su 2520 Hwy. 290 Wes	sion) and that each and all of th nderstood that failure to comple turned for completion and result upply, Inc. st TX 78620	e statements he te the required it	erein are true and

Report Amended on 2/13/2020 by Request #30924

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	45	TOP SOIL
45	50	BLUE LIMESTONE
50	72	GRAY/TAN LIMESTONE
72	90	BROWN LIMESTONE
90	125	TAN./BROWN SAND
125	140	RED CLAY W/SAND
140	160	TAN LIMESTONE
160	170	WHITE LIMESTONE
170	200	BROWN LIMESTONE
200	210	GRAY LIMESTONE W/CLAY

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
10	Blank	New Plastic (PVC)	SCH. 40	0	18
5	Blank	New Plastic (PVC)	SDR17	2	140
5	Perforated or Slotted	New Plastic (PVC)	SDR17 0.032	140	200
5	Blank	New Plastic (PVC)	SDR17	200	210

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #545767						
Owner:	Travis County	Owner Well #:	MW-1			
Address:	P.O. Box 1748 Austin, TX 78767	Grid #:	57-47-3			
Well Location:	Hamilton Pool Road at Stagecoach	Latitude:	30° 20' 14.75" N			
	Road Dripping Springs, TX 78620	Longitude:	098° 07' 55.94" W			
Well County:	Travis	Elevation:	No Data			
Type of Work:	New Well	Proposed Use:	Monitor			

Drilling Start Date: 5/15/2020 Drilling End Date: 5/20/2020

	Diameter	(in.)	Top Depth (ft.)	Bottom Dep	th (ft.)	
Borehole:	8		0	219		
Drilling Method:	Air Rotary					
Borehole Completion:	Filter Packed; Screened; Straight Wall					
	Top Depth (ft.)	Bottom Depth (ft.)	Filte	er Material	Size	
Filter Pack Intervals:	159	219		Sand	8/16	
	Top Depth (ft.)	Bottom Depth	(ft.)	Description (number of sa	acks & material)	
Annular Seal Data:	0	157		Cement 27 Bag	s/Sacks	
	157	159		Bentonite 1 Bag	gs/Sacks	
Seal Method: Tr	emie		Distance to	Property Line (ft.): 5	50+ feet	
Sealed By: Dr	iller			eptic Field or other contamination (ft.):	No Data	
			Distance	to Septic Tank (ft.): I	No Data	
			Met	hod of Verification: N	No Data	
Surface Completion:	Surface Slab Ir	nstalled		Surface Completio	on by Driller	
Water Level:	157 ft. below l	and surface on 2 0	0 20-05-19 Me	easurement Method:	Electric Line	
Packers:	No Data					
Type of Pump:	Solar			Pump Depth (ft.): 2	10	
Well Tests:	Jetted	Yield: 1-3	GPM			

	Strata Depth (ft.)	Water Type		
Water Quality:	174 - 214	Cow Creek		
		Chemical Analysis M	lade: No	
		vingly penetrate any strata w contained injurious constitue		
Certification Data:	driller's direct supervision) correct. The driller unders	e driller drilled this well (or th) and that each and all of the stood that failure to complete ed for completion and resubn	statements he the required it	rein are true and
Certification Data: Company Information:	driller's direct supervision) correct. The driller unders the report(s) being returne) and that each and all of the stood that failure to complete ed for completion and resubn	statements he the required it	rein are true and
	driller's direct supervision; correct. The driller unders the report(s) being returne) and that each and all of the stood that failure to complete ed for completion and resubn	statements he the required it	rein are true and
	driller's direct supervision) correct. The driller unders the report(s) being returne Geoprojects Internation 8834 Circle Dr) and that each and all of the stood that failure to complete ed for completion and resubn onal, Inc.	statements he the required it	rein are true and
Company Information:	driller's direct supervision) correct. The driller unders the report(s) being returne Geoprojects Internatio 8834 Circle Dr Austin, TX 78736) and that each and all of the stood that failure to complete ed for completion and resubn onal, Inc. Lice	e statements he e the required it nittal.	rein are true and ems will result in 58772

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	2	Top soil and white Limestone
2	15	Yellow weathered Limestone
15	83	Gray Limestone with yellow and gray Clay
83	110	Light tan fractured Limestone
110	120	Sand and gravel mixed
120	125	Red Clay
125	160	Yellow Sandstone
160	198	White fractured Sandstone
198	213	Gray Sandstone and Shale
213	219	Green Shale

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	0	74
4.5	Screen	New Plastic (PVC)	SDR17 0.035	174	214

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

STATE OF TEXAS WELL REPORT for Tracking #556939 Owner Well #: Owner: Johannsen 2 **Travis County** Address: P.O. Box 1748 Grid #: 57-47-3 Austin, TX 78767 Latitude: 30° 20' 06.01" N Well Location: Hamilton Pool Road at Stagecoach **Ranch Road** Longitude: 098° 07' 56.89" W Dripping Springs, TX 78620 Elevation: 968 ft. above sea level Well County: Travis Type of Work: New Well Proposed Use: Monitor

Drilling Start Date: 10/2/2020 Drilling End Date: 10/8/2020 Bottom Depth (ft.) Diameter (in.) Top Depth (ft.) Borehole: 8 0 215 **Drilling Method:** Air Rotary Filter Packed; Screened; Straight Wall **Borehole Completion:** Top Depth (ft.) Bottom Depth (ft.) Filter Material Size Filter Pack Intervals: 165 210 Sand 8/16 Top Depth (ft.) Bottom Depth (ft.) Description (number of sacks & material) Annular Seal Data: 0 148 **Cement 18 Bags/Sacks** 148 165 Grout 1 Bags/Sacks Seal Method: Tremie Distance to Property Line (ft.): 100+ Sealed By: Driller Distance to Septic Field or other concentrated contamination (ft.): N/A Distance to Septic Tank (ft.): N/A Method of Verification: Owner Knowledge **Surface Slab Installed** Surface Completion: Surface Completion by Driller Water Level: 153 ft. below land surface on 2020-10-06 Measurement Method: Electric Line Packers: No Data Type of Pump: No Data Yield: 5 GPM Well Tests: Estimated

	Strata Depth (ft.)	Water Type		
Nater Quality:	170 - 207	Middle Trinity, Cow Creek		
		Chemical Analysis M	Made: No	
	Did the driller I	knowingly penetrate any strata w contained injurious constitue		
Certification Data:	driller's direct supervision correct. The driller un	at the driller drilled this well (or the sion) and that each and all of the nderstood that failure to complet turned for completion and resub	e statements he e the required it	rein are true and
Certification Data: Company Information:	driller's direct supervi correct. The driller ur the report(s) being re	sion) and that each and all of the nderstood that failure to complet turned for completion and resub	e statements he e the required it	rein are true and
	driller's direct supervic correct. The driller un the report(s) being re	sion) and that each and all of the nderstood that failure to complet turned for completion and resub	e statements he e the required it	rein are true and
	driller's direct supervic correct. The driller un the report(s) being ref Geoprojects Intern 8834 Circle Dr	sion) and that each and all of the nderstood that failure to complet turned for completion and resub national, Inc.	e statements he e the required it	rein are true and
Company Information:	driller's direct supervi- correct. The driller un the report(s) being ref Geoprojects Intern 8834 Circle Dr Austin, TX 78736	sion) and that each and all of the nderstood that failure to complet turned for completion and resub national, Inc.	e statements he e the required it mittal.	rein are true and ems will result in 58772

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	6	Yellow weathered Limestone
6	25	Grey Limestone
25	50	Tan to Yellow Limestone
50	82	Dark grey Limestone with grey Clay
82	110	Tan Limestone with tan Clay lenses
110	132	Red Clay with Sand and Gravel
132	142	Grey Clay and grey Limestone
142	175	Fractured white Limestone (Water encountered at 170 feet)
175	185	Light tan Limestone
185	207	Grey fractured Limestone
207	215	Grey Shale with green Clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	0	170
4.5	Scroon	New Plastic (PVC)	SDR17 0.032	170	210

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #604035				
Owner:	Laurel & Patrick Massey	Owner Well #:	No Data		
Address:	24201 Fossil Trail Spicewood , TX 78669	Grid #:	57-47-6		
Well Location:	1800 stagecoach ranch lp	Latitude:	30° 18' 56.6" N		
	Dripping Springs, TX 78620	Longitude:	098° 07' 47" W		
Well County:	Hays	Elevation:	1050 ft. above sea level		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 2/28/2022 Drilling End Date: 3/4/2022

	Diameter (in.)) Top De	epth (ft.)	Bottom Depth (ft.)	
Borehole:	10.625)	10	
	8.5	1	0	50	
	6.75	5	0	320	
Drilling Method:	Air Rotary				
Borehole Completion:	Perforated or Slo	otted			
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)	
Annular Seal Data:	0	45		Cement 8	
	45	50		Bentonite 2	
Seal Method: Po	oured	Di	stance to Pr	operty Line (ft.): 58	
Sealed By: D	riller			ic Field or other ntamination (ft.): not installed	
		I	Distance to Septic Tank (ft.): not installed		
			Metho	d of Verification: No Data	
Surface Completion:	Pitless Adapter U	lsed			
Water Level:	No Data				
Packers:	Rubber at 50 ft.				
	Rubber at 55 ft. Rubber at 238 ft. Rubber at 240 ft.				
Type of Pump:	Rubber at 238 ft.				

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Mad	de: No	
	Did the driller	knowingly penetrate any strata whic contained injurious constituents		
Certification Data:	driller's direct superv correct. The driller u	hat the driller drilled this well (or the rision) and that each and all of the s inderstood that failure to complete the eturned for completion and resubmit	tatements he ne required it	rein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the s inderstood that failure to complete the eturned for completion and resubmit	tatements he ne required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re	vision) and that each and all of the s inderstood that failure to complete th eturned for completion and resubmit , Inc. I.	tatements he ne required it	rein are true and
	driller's direct superv correct. The driller u the report(s) being re Bee Cave Drilling 185 Angel Fire Rd	vision) and that each and all of the s inderstood that failure to complete th eturned for completion and resubmit , Inc. I. , TX 78620	tatements he ne required it	rein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	1	topsoil
1	11	caliche
11	25	tan limestone
25	200	grey limestone
200	220	grey shale
220	235	grey clay
235	300	grey sandstone wb 15 gpm at 467 tds
300	320	grey clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	sdr-17	0	240
4.5		New Plastic (PVC)	sdr-17	240	300
4.5	Blank	New Plastic (PVC)	sdr-17	300	320

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WELL REPORT for Tracking #610368				
Owner:	Scott Hemphill	Owner Well #:	No Data		
Address:	3850 Fearless Treadway Round Mountain, TX 78663	Grid #:	57-47-3		
Well Location:	3850 Fearless Treadway	Latitude:	30° 20' 16" N		
	Round Mountain, TX 78663	Longitude:	098° 08' 58" W		
Well County:	Hays	Elevation:	No Data		
Type of Work:	New Well	Proposed Use:	Domestic		

Drilling Start Date: 6/30/2022 Drilling End Date: 6/30/2022

	Diameter (in.,) Top De	oth (ft.)	Bottom Depth (ft.)
Borehole:	8	C		270
Drilling Method:	Air Rotary			
Borehole Completion:	Screened; Straig	ht Wall		
	Top Depth (ft.)	Bottom Depth (ft.)	De	scription (number of sacks & material)
Annular Seal Data:	0	147		Cement 26 Bags/Sacks
	147	151		Bentonite 2 Bags/Sacks
Seal Method: Tr	emie	Dis	stance to Pr	operty Line (ft.): 15
Sealed By: D	riller			c Field or other ntamination (ft.): 200+
		C	istance to S	Septic Tank (ft.): 200+
			Metho	d of Verification: Tape Measure
Surface Completion:	Surface Sleeve Ir	nstalled	Si	urface Completion by Driller
Water Level:	106.5 ft. below la 15	and surface on 2022-0	7- Meas	urement Method: Electric Line
Packers:	Plastic at 149 ft. Rubber at 151 ft.			
Type of Pump:	No Data			
Well Tests:	No Test Data Sp	ecified		

	Strata Depth (ft.)	Water Type		
Water Quality:	150 - 265	Lower Trinity		
		Chemical Analysis	Made: No	
	Did the driller	knowingly penetrate any strata contained injurious constitue		
Certification Data:	driller's direct superv correct. The driller u	nat the driller drilled this well (or t rision) and that each and all of th inderstood that failure to complet eturned for completion and resub	e statements he te the required it	erein are true and
Certification Data: Company Information:	driller's direct superv correct. The driller u the report(s) being re	ision) and that each and all of th inderstood that failure to complet eturned for completion and resub	e statements he te the required it	erein are true and
	driller's direct superv correct. The driller u the report(s) being re	rision) and that each and all of the inderstood that failure to complete turned for completion and resubtion and resubtion and light for completion and resubtion and light for a strain and light for a strai	e statements he te the required it	erein are true and
	driller's direct superv correct. The driller u the report(s) being re Geoprojects Inter 8834 Circle Dr	rision) and that each and all of the inderstood that failure to complet eturned for completion and resub national, Inc.	e statements he te the required it	erein are true and

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	14	Red Silty Clay
14	22	Yellow weathered Limestone
22	48	White Limestone
48	65	Tan Limestone
65	82	Grey Limestone
82	130	Green Shale and Clay
130	150	Red Clay with Grey and Red Mudstone
150	265	Red Sandstone with Red Clay and gravel lenses;
265	270	Yellow Clay

Casing: BLANK PIPE & WELL SCREEN DATA

Dla (in.)	Туре	Material	Sch./Gage	Top (ft.)	Bottom (ft.)
4.5	Blank	New Plastic (PVC)	SDR17	0	210
4.5	Screen	New Plastic (PVC)	SDR17 0.032	210	270

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

	STATE OF TEXAS WEL	L REPORT for Trac	cking #610371
Owner:	Scott Hemphill	Owner Well #:	Dry Hole
Address:	3850 Fearless Treadway Round Mountain, TX 78663	Grid #:	57-47-3
Well Location:	3850 Fearless Treadway	Latitude:	30° 20' 09" N
	Round Mountain, TX 78663	Longitude:	098° 09' 00" W
Well County:	Hays	Elevation:	No Data
		Plugged With	nin 48 Hours
This v	vell has been plugged	Plugging Report Trackin	g <u>#220361</u>
Type of Work:	New Well	Proposed Use:	Domestic

Drilling Start Date: 6/29/2022 Drilling End Date: 6/30/2022

	Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)
Borehole:	8	0	370
Drilling Method:	Air Rotary		
Borehole Completion:	Plugged		
Annular Seal Data:	No Data		
Seal Method: Ti	remie	Distance to Pro	perty Line (ft.): No Data
Sealed By: D	riller	Distance to Septic concentrated cont	Field or other amination (ft.): No Data
		Distance to Se	eptic Tank (ft.): No Data
		Method	of Verification: No Data
Surface Completion:	No Data	Su	face Completion NOT by Drille
Water Level:	No Data		
Packers:	No Data		
Type of Pump:	No Data		
Well Tests:	No Test Data Specified		

	Strata Depth (ft.)	Water Type		
Water Quality:	No Data	No Data		
		Chemical Analysis Mad	e: No	
	Did the driller k	nowingly penetrate any strata whic contained injurious constituents		
Certification Data:	driller's direct supervis	at the driller drilled this well (or the v sion) and that each and all of the sta derstood that failure to complete th	atements he e required it	rein are true and
	the report(s) being ret	urned for completion and resubmitt	al.	
Company Information:		-	al.	
Company Information:		-	al.	
Company Information: Driller Name:	Geoprojects Intern 8834 Circle Dr	ational, Inc.	al. e Number:	58772

Lithology: DESCRIPTION & COLOR OF FORMATION MATERIAL

Top (ft.)	Bottom (ft.)	Description
0	10	Red Silt and Clay
10	45	White hard Limestone
45	65	Grey Limestone
65	110	Green Clay
110	125	Grey Limestone with grey Clay lenses
125	250	Red Clay with Sandstone and Gravel lenses
250	270	Yellow Clay
270	370	Dark grey Clay and Mudstone

Casing:

BLANK PIPE & WELL SCREEN DATA

Dia. (in.) New/Used Туре Setting From/To (ft.)

No Data

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

ST	ATE	OF TEXAS PLU	JGGIN		for Tracking	#220361
Owner:	Scott H	lemphill		Owner W	ell #: Dry Hole)
Address:		earless Treadway	•	Grid #:	57-47-3	
Well Location:		Mountain, TX 78663 earless Treadway	5	Latitude:	30°20	' 09" N
		Mountain, TX 78663	3	Longitude	e: 098° 09	' 00" W
Well County:	Hays			Elevation	: No Data	
Well Type:	Do	nestic				
Drilling Informatio	on					
Company: Ge	oprojec	ts International, Inc.		Date Dril	lled: 6/30/2	2022
Driller: Ev	an Scha	efer		License I	Number: 58772	2
<u>Well Report Tr</u>	racking	<u>#610371</u>				
		Diameter (in.)		Top Depth (ft.)	Bottom De	epth (ft.)
Borehole:		8		0	37	0
Plugging Informat	tion					
Date Plugged:	6/30/20)22	Plu	ugger: Evan K So	chaefer	
Plug Method:	Trem	mie pipe cement fror	n bottor	n to top		
Casing	g Left in	Well:		Plug	g(s) Placed in Well	:
			Top (ft.)	Bottom (ft.)	Description (num	ber of sacks & material)
N	o Data		0	370	Cement 8	80 Bags/Sacks
Certification Da	ata:	driller's direct super	vision) a understo	nd that each and a ood that failure to c	all of the statemen complete the requi	vas plugged under the ts herein are true and red items will result in
Company Inforr	mation:	Geoprojects Intern	ational,	Inc.		
		8834 Circle Dr Austin, TX 78736				
Driller Name:		Evan K Schaefer			License Number	: 58772
Comments:		No Data				

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-301

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747301
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.338889
Latitude (degrees minutes seconds)	30° 20' 20" N
Longitude (decimal degrees)	-98.128889
Longitude (degrees minutes seconds)	098° 07' 44" W
Coordinate Source	+/- 1 Minute
Aquifer Code	NOT-APPL - Aquifer Code Is Not Applicable to this Well
Aquifer	Unassigned
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	800
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	1134
Well Depth Source	Another Government Agency
Drilling Start Date	
Drilling End Date	0/0/1926
Drilling Method	
Borehole Completion	

Well Type	Oil or Gas
Well Use	Unused
Water Level Observation	None
Water Quality Available	No
Pump	
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	H. Reimers
Driller	E.D. Summerow
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	
Created Date	
Last Update Date	3/4/2020

Remarks Oil test. Well B-37 in 1957 Travis County report.

Casing - No Data		
Well Tests - No Data		
Lithology - No Data		
Annular Seal Range - No Data		
Borehole - No Data	Plugged E	Back - No Data
Filter Pack - No Data		Packers - No Data

Water Level Measurements

No Data Available

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov. CROSS REFERENCE SHEET

CR-GWTD TRAVIS

镰

had

Subject

Located Well Data YD 57-47-301 Date

Electric Log

GW-SC ELECTRIC LOG FILE

Q-50

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-304

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747304	Well Type
County	Travis	Well Use
River Basin	Colorado	Water Level Obs
Groundwater Management Area	9	Water Quality A
Regional Water Planning Area	K - Lower Colorado	Pump
Groundwater Conservation District	Southwestern Travis County GCD	Pump Depth (fee
Latitude (decimal degrees)	30.340834	Power Type
Latitude (degrees minutes seconds)	30° 20' 27" N	Annular Seal Me
Longitude (decimal degrees)	-98.143334	Surface Comple
Longitude (degrees minutes seconds)	098° 08' 36" W	Owner
Coordinate Source	+/- 5 Seconds	Driller
Aquifer Code	218GLRSL - Glen Rose Limestone, Lower Member	Other Data Avai Well Report Tra
Aquifer	Trinity	Plugging Repor
Aquifer Pick Method		U.S. Geological Number
Land Surface Elevation (feet above sea level)	809	Texas Commiss
Land Surface Elevation Method	Digital Elevation Model -DEM	Environmental (
Well Depth (feet below land surface)		Groundwater Co District Well Nu
Well Depth Source		Owner Well Nur
Drilling Start Date		Other Well Num
Drilling End Date		Previous State
Drilling Method		Reporting Agen
Borehole Completion		Created Date
		Loot Undete Det

Well Type	Spring
Well Use	Stock
Water Level Observation	None
Water Quality Available	Yes
Pump	None
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	C.F. Lay Hammett's Spring
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	9/3/1972
Last Update Date	3/4/2020

Remarks Hammett's Spring. Flowed 3 gal/min on Mar.5,1955, and 10 gal/min on Sept. 3,1972. Well B-38 in 1957 Travis County report.

Casing - No Data		
Well Tests - No Data		
Lithology - No Data		
Annular Seal Range - No Data		
Borehole - No Data	Plugged B	ack - No Data
Filter Pack - No Data		Packers - No Data

Water Level Measurements

No Data Available

Water Quality Analysis

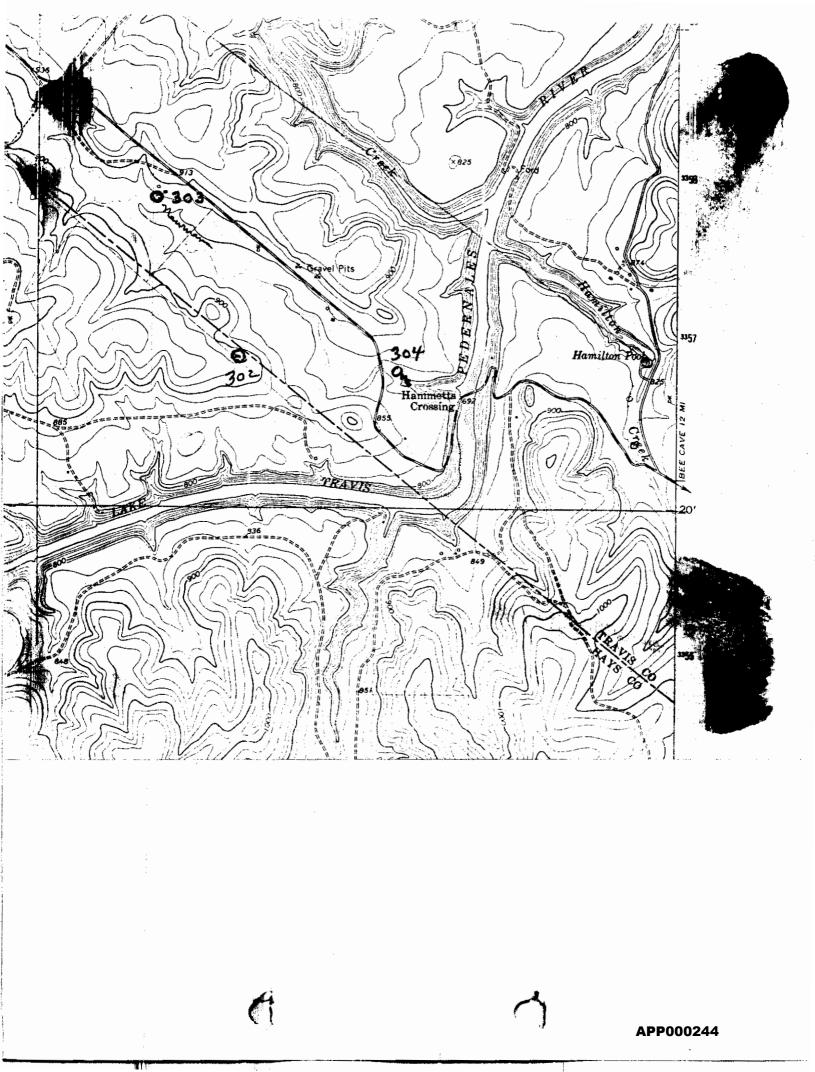
 Sample Date:
 4/10/1950
 Sample Time:
 0000
 Sample Number:
 1
 Collection Entity:
 U.S. Geological Survey

 Sampled Aquifer:
 Glen Rose Limestone, Lower Member

Analyzed Lab:U.S. Geological Survey LabReliability:Reliability:

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		272.13	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		332	mg/L	
00910	CALCIUM (MG/L)		60	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		42	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		330	mg/L	
00920	MAGNESIUM (MG/L)		44	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		6.3	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.9	SU	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
00955	SILICA, DISSOLVED (MG/L AS SI02)		18	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.33		
00932	SODIUM, CALCULATED, PERCENT		8	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		14	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		696	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		23	mg/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		370	mg/L	


* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData @twdb.texas.gov.

 6. Completion: Open Nole, Straight Wall, Underreamed, Gravel Pecked		1			
Multice	۵. ۹.	•			
Autter	TEXAS WATER DEVELOPMENT BO	ARD			
Dumer's Wall No. County	WRLL, SCHEDULE				
Dumer's Wall No. County			_		
1. Location:	Aquiter Field No. B-38	State Well	No. 57_47	- 304	
1. Location:	Owner's Well No.	County	Travia		
2. Omerr: C.F. L. Address: Tenent: Address: Tenent: C.F. L. S.D. is 805 f. show mal, determined by Z.F. brilled:					
2. Omerr: C.F. L. Address: Tenent: Address: Tenent: C.F. L. S.D. is 805 f. show mal, determined by Z.F. brilled:]. Location:]/h.]/h Sec. Block Survey				
Teanni: Address: Driller: Address: Driller: Address: Starting of 10 I. Prilled: 10 Starting of 10 I. Prilled: 10 Starting of 10 No. Starge 10. Addressed No. Starge 10. Inderferamed, Gravel Feeled Static form 11. Indef Teilpipe Static form 11. Indef Teilpipe Static form 11. Neck & Rodal Static form 11. Neck & Rodal Static form 12. Production grave 13. Static form Notor: Puel 10. Production grave 10. Production				╵┝╺╶┼┈	∔
Teanni: Address: Driller: Address: Driller: Address: Starting of 10 I. Prilled: 10 Starting of 10 I. Prilled: 10 Starting of 10 No. Starge 10. Addressed No. Starge 10. Inderferamed, Gravel Feeled Static form 11. Indef Teilpipe Static form 11. Indef Teilpipe Static form 11. Neck & Rodal Static form 11. Neck & Rodal Static form 12. Production grave 13. Static form Notor: Puel 10. Production grave 10. Production	$h = c \in \mathcal{F}$				
Driller: Address: 3. Elevation of L-5D is 805 A. abore sel, determined by Loper b. Drilled 10 in 805 A. abore sel, determined by Loper b. Drilled 10 in 805 A. abore sel, determined by Loper c. Completion: Open Role, Streight Wall, Underreamed, Oracl Packed Otal R H JMR PTPE C. Completion: Open Role, Streight Wall, Underreamed, Oracl Packed Type No. Stages , Boris Dime, in., Setting ft. C. Stages , Boris Dime, in., Setting ft. C. Stages , Boris Dime, Setting ft. Static Flow /// Setting ft. Performance Test: Bate Nake & Rocal, espt. (Esp.) ft. Production				┝╼┼─	<u>+</u> +
3. Slavetim of L-5D is 805 ft. shows mal, determined by Type h. Drilledi					
h. Drilled: 19 ; Dug, Ceble Tool, Retary, CASIRO & MANK FITE 5. Depth: Rept. ft. Ness. ft. 6. Completion: Open Hole, Streight Wall, Underreamed, Oraval Packed 7. Difference 7. 7. Pump: Hgr. Type Type 10. Strenge 10. 8. Motor: Puel	Driller:				$\frac{1}{1}$
5. <u>Depth</u> : Reptft. Neesft. 6. <u>Completion</u> : Open Hole, Streight Well, Underreemed, Gravel Packed 7. <u>Punp</u> : H [grft. Completion: Open Hole, Streight Well, Underreemed, Gravel Packed 7. <u>Punp</u> : H [grft., Settingft. 6. <u>Metor</u> : Puelft. Length Tellpipeft. 8. <u>Metor</u> : Puelft. Make 6 Model 9. <u>Yield Flow / Ograw, Nees.</u> , Rept., (Set)f3. 72. 10. <u>Performance Test</u> : Dataft. Drewdownft. Froductionft. Testft. 10. <u>Performance Test</u> : Dataft. Drewdownft. Froductionft. Testft. 11. <u>Mater Lavel</u> :ft. Drewdownft. 12. <u>Mest</u> : Dom., Stock, Pupl, Ind., Irr., Waterflooding, Observation, Not Used, 13. <u>Caelity:</u> (Remarks on taste, door, calor, etc.)f7. Q ga TespT, Date sempled for enalysisLeborstory TespT, Date sempled for enalysis 14. <u>Menore date eveliable so circled</u> Driller's Log, Redicactirity Log, Electric Log,					
7. Joseph apply Type 7. Jung: Marresmed, Gravel Packed (in.) 7. Jung: Marresmed, Gravel Packed (in.) 7. Jung: Marresmed, Gravel Packed (in.) 8. Ottor: Pael					
6. <u>Completion</u> : Open Hole, Streight Wall, Underreamed, Gravel Packed (in.) Type No. Stages	5. Depth: Reptft. Messft.		the second se		
No. Stages, Bovis Diasin., Settingft. Column Diasin., Langth Tailpipe ft. 8. Mator: Fuel	6. Completion: Open Hole, Straight Wall, Underreamed, Gravel Packed		-37-		12/A 160."
Column Disein., length Tellpipeft. 8. Motor: PuelNake & NodelHPRetRetRetP_3_72	7. Pump: MfgrType				
6. Motor: Puel	No. Stages, Bowls Diamin., Settingft.				
9. <u>Tield</u> Ploy <u>10</u> gpa, Punp gpa, Mees., Rept., <u>Ret.</u> <u>9-3-72</u> 10. <u>Performance Test:</u> <u>Data</u> <u>Length of Test</u> <u>Nade by</u> <u>Static Level</u> <u>ft</u> . Punping Level <u>ft</u> . <u>Drewdown</u> <u>ft</u> . <u>Production</u> gpa Specific Ospacity <u>gpa/ft</u> . 11. <u>Water Lavel:</u> <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>which is</u> <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>which is</u> <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>which is</u> <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>which is</u> <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>which is</u> <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>which is</u> <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>which is</u> <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>surface</u> . <u>ft</u> . <u>rept.</u> <u>19</u> <u>shove</u> <u>surface</u> . <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>shore</u> <u>surface</u> . <u>ft</u> . <u>shore</u> <u>store</u> <u>shore</u> <u>store</u> <u>stor</u>	Column Diamin., Length Tailpipeft.				PPY 1
<pre>10. Performance Test: Dataft. Drewdownft. Static Levelft. Pumping Levelft. Drewdownft. Productionggw Specific Cepacityggw/ft. 11. Water Lavel:ft. reptblowwhich isft. ebove surface.</pre>	8. Motor: Fuel Make & Model HP.				
<pre>10. Performance Test: Dataft. Drewdownft. Static Levelft. Pumping Levelft. Drewdownft. Productionggw Specific Cepacityggw/ft. 11. Water Lavel:ft. reptblowwhich isft. ebove surface.</pre>	9. Yield: Flow 10 gpm, Pump gpm, Meas., Rept., (Est.) 9-3-72				
Static Levelft. Pumping Levelft. Drewdownft. Productiongra Specific Cepacitygra/ft. 11. <u>Water Level:</u> ft. rept. 19 ebove ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. rept. 19 ebove which is ft. showe murface. ft. mass. 19 ebove which is ft. showe murface.					
Production gpm Specific Capacity gpm/ft. 11. Mater Lavel: ft. ropt. 19 above which is ft. sbove surface.					
11. <u>Water Level:</u> ft. rept. 19 shove which is ft. shove surface. ft. rept. 19 shove which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove surface. ft. rept. 19 shove below which is ft. shove to below ft. rept. 19 shove to below ft. rept. 19 shove to below ft. rept. 19 below				1	
ft. rept. 19 above which is ft. above rept. 19 above which is ft. below mass. 19 above which is ft. below mass. 19 above which is ft. below mass. 19 above which is ft. below rept. 19 above below which is ft. below store rept. 19 above below which is ft. below 12. Use: Dom., Stock, Public Supply, Ind., Irr., Waterflooding, Observation, Not Used, 13. Guality: (Remarks on taste, odor, color, etc.) 5798 Temp. "F, Date sampled for analysis Laboratory WELL SCREPN Temp. "F, Date sampled for analysis Laboratory NEL SCREPN Temp. "F, Date sampled for analysis Laboratory Dise. Type Ib. Other data available as circled: Driller's Log, Redioactivity Log, Electric Log, Pormation Samples, Pumping Test, 19. 2 15. Record by: Scource of Date 5708 Scource 19. 72 Source of Date 5708 Scour			which is	ft. ^{sl}	bove surface.
ft. rept. 19 above which is ft. above below rept. 19 above which is ft. above sufface. 12. Use: Dom., Stock, Public Supply, Ind., Irr., Waterflooding, Observation, Not Used, is ft. above sufface. 13. Quality: (Remarks on taste, odor, color, etc.) 5798 store store sufface. Temp. "F, Date sampled for analysis Laboratory Screen Openings Screen Openings Temp. "F, Date sampled for analysis Laboratory Screen Openings Screen to openings 14. Other data available as circled: Driller's Log, Radioactivity Log, Electric Log, From to 15. Record by: Source of Date 5708 offenn 19.72	meas, below rept. 10 shows		which is	Ты ең ай	ove surface
ft. repr. 19 above which is ft. above below below below below 12. Use: Dom., Stock, Public Supply, Ind., Irr., Waterflooding, Observation, Not Used,	rept, lo above			n − − − − bi A ai	low
 12. <u>Ilse</u>: Dom., Stock, Public Supply, Ind., Irr., Waterflooding, Observation, Not Used, 13. <u>Quelity</u>: (Remarks on taste, odor, color, etc.) <u>5798</u> Temp. <u>°F</u>, Date sampled for analysis <u>Laboratory</u> <u>Screen Openings</u> Temp. <u>°F</u>, Date sampled for analysis <u>Laboratory</u> <u>Screen Openings</u> <u>Dism.</u> <u>Type</u> <u>Setting, At.</u> (in.) <u>1058</u>, <u>7798</u> 14. <u>Other data available as circled</u>: Driller's Log, Radioactivity Log, Electric Log, Formation Samples, Pumping Test, <u>Date 9-3</u> 1972; <u>Source of Data</u> <u>5708</u> and ofcome, 16. <u>Remarke</u>: <u>Harmatte</u> <u>Harmatte</u> <u>Harmatte</u> <u>Harmatte</u> <u>Harmatte</u> <u>Harmatte</u> <u>1058</u> 	below rept.			î be	elow
13. <u>Quality</u> : (Remarks on taste, odor, color, etc.) <u>5798</u> Temp. °F, Date sampled for analysis Laboratory 14. Other data available as circled: Driller's Log, Redioactivity Log, Electric Log, Formation Samples, Pumping Test, Date 9-3 1972 15. Record by: 5708 and observ. 16. Remarke: Haymotte Hyrig	Delow				
Temp°F, Date sampled for analysis Laboratory WELL SCREEN Temp°F, Date sampled for analysis Laboratory Diss. Type Temp°F, Date sampled for analysis Laboratory Diss. Type Temp°F, Date sampled for analysis Laboratory Diss. Type 14. Other data available as circled: Driller's Log, Radioactivity Log, Electric Log, Formation Samples, Pumping Test, 15. Record by:					
Temp*F, Date sampled for analysisLaboratory Screen Openings Temp*F, Date sampled for analysisLaboratory Diss. Type 14. Other data available as circled: Driller's Log, Radioactivity Log, Electric Log, Formation Samples, Pumping Test, Interfectory					
Temp°F, Date sampled for analysisLaboratory Diss. Type Setting, ft. 14. Other data available as circled: Driller's Log, Radioactivity Log, Electric Log, (in.) from to 15. Record by: Date 9-3 1972 Source of Date 5708 ad observet 16. Remarke:				3134N	
Temp°F, Date sampled for analysis Laboratory				Settin	g, ft.
Parmation Samples, Purpoing Test, 15. <u>Record by:</u> Date 9-3 1972 Source of Date 5708 and observ. 16. <u>Remarke:</u> <u>Naurotté Iprig</u>	Temp°F, Date sampled for analysisLaboratory	(in.)		from	to
15. <u>Record by:</u> Sa Brune Date 9-3 1972 Source of Date 5708 and observer.	14. Other data available as circled: Driller's Log, Radioactivity Log, Electric Log,				
Source of Dete5708 and observer, 16. Remarke: Nametté Iprig					
16. Remarke: Haymette fpring					
Namette Spring	Source of Data 5708 and observe,				
	16. Remarke:				
	Nammette April				
Public Percentinal Grea	v				
Public Prontinal Que.	Flowed 3 gpm 3-5-55	<u>.</u>	<u> </u>	<u> </u>	<u> </u>
	Public Recreational area				
				11	
				•	÷
					स
				сĝ.	
				ġ.	1 3 19(AA) 83

-

57-47 APP000243

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-305

GWDB Reports and Downloads

Well Basic Details

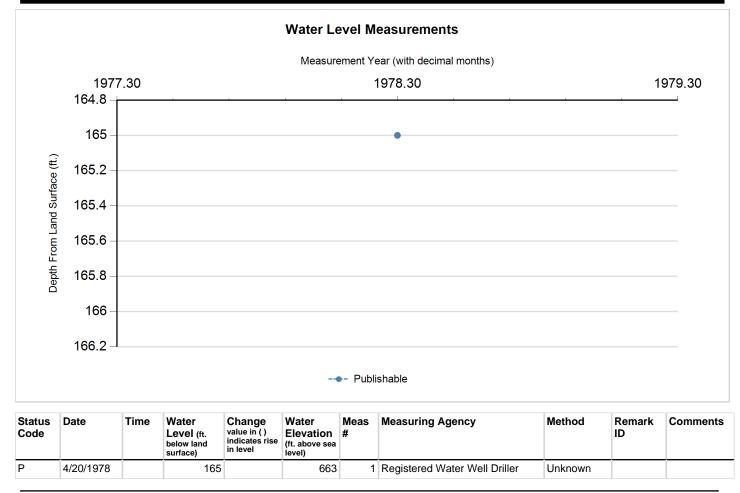
Scanned Documents

State Well Number	5747305
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.3373444
Latitude (degrees minutes seconds)	30° 20' 14.44" N
Longitude (decimal degrees)	-98.1411306
Longitude (degrees minutes seconds)	098° 08' 28.07" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218SCMR - Sycamore Sand Member of Travis Peak Formation
Aquifer	Trinity
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	828
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	280
Well Depth Source	Driller's Log
Drilling Start Date	
Drilling End Date	
Drilling Method	Air Rotary
Borehole Completion	Open Hole

Well Type	Withdrawal of Water
Well Use	Domestic
Water Level Observation	Miscellaneous Measurements
Water Quality Available	Yes
Pump	Submersible
Pump Depth (feet below land surface)	220
Power Type	Electric Motor
Annular Seal Method	Gravity
Surface Completion	
Owner	West Cave Preserve
Driller	James B. Tucker
Other Data Available	Drillers Log
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	
Created Date	12/20/1996
Last Update Date	3/4/2020

Remarks Drilled 4/1978 2/14/2018: Could not insert steel tape into well- no WL measurement. Well plumbing has been reworked since last visit in 1986.

Casing										
Diameter (in.)	Casing Type	Casing	Material	Schedule)	Gauge		Top Depth (f	ít.)	Bottom Depth (ft.
4.5	Blank	Plastic (PVC)						1	2
Well Tests										
Test Date	Test Type		Yield (gallons	per minute)	Drawdo	wn (ft.)	Test He	ours		
4/0/1978	Jetted		0.5							


Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-305

Гор Depth (ft.)	Bottom Depth (ft.)	Description		
		Decemption		
0)	Surface topsoil		
1	Ę	6 Red Gran?		
5	5 30	Hard brown		
30) 31	Grey shale		
31	35	5 Brown		
35	5 50) Grey lime shaly		
50) 53	Blue shale		
53	62	2 Med.		
62	2 70	Blue shale		
70) 74	Brown shale		
74	80	Blue shale		
80) 95	Blue and red clay		
95	5 110) Lt. brown		
110) 120	Red sandstone		
120) 130	Hard broken red & gree	n	
130) 155	Red & green clay		
155	5 165	Hard broken seep 1/2 g	pm	
165	5 220	Hard pink and white		
220	225	Blue clay		
225	5 235	Red clay		
235	5 245	Brown clay		
245		Blue clay		
270		Brown clay		
273	280	Blue clay		
Annular Seal F	Range - No Data			
Borehole			Plugged Back	- No Data
Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)		
6.25	0	280		

Code Descriptions

Status Code	Status Description
Р	Publishable

Water Quality Analysis

 Sample Date:
 6/10/1986
 Sample Time:
 0000
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

 Sampled Aquifer:
 Sycamore Sand Member of Travis Peak Formation

 Analyzed Lab:
 Texas Department of Health
 Reliability:
 Collected from pumped well, but not filtered or preserved

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		343	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		418.58	mg/L	
00910	CALCIUM (MG/L)		29	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		182	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		1.3	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		121	mg/L	
00920	MAGNESIUM (MG/L)		12	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		3.46	mg/L	
00400	PH (STANDARD UNITS), FIELD		6.8	SU	
00937	POTASSIUM, TOTAL (MG/L AS K)		8	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		4.43		
00955	SILICA, DISSOLVED (MG/L AS SI02)		11	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		10.09		
00932	SODIUM, CALCULATED, PERCENT		82	РСТ	
00929	SODIUM, TOTAL (MG/L AS NA)		256	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		1474	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		93	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		23	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		801	mg/L	

Water Quality Analysis

Sample Date: 2/14/2018 Sample Time: 1027 Sample Number: 1 Collection Entity: Texas Water Development Board

Sampled Aquifer: Sycamore Sand Member of Travis Peak Formation

Analyzed Lab: LCRA - Lower Colorado River Authority Reliability: Sampled using TWDB protocols

Collection Remarks: Sample collected from faucet after first large storage tank. If sampled again, ask owner to cut off power to well and install a faucet by removing pressure relief valve from top of well.

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		331	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		331	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		0.44	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		55.3	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		403.935	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		2190	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.728	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		31.2	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		123	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.44	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)		2.74	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		1.15	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		142.604	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		121	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		15.4	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	1	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)		1.28	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		2.515	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.568	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.77	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		8.49	mg/L	

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-305

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		3.796		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		10.2	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		7.138		
00932	SODIUM, CALCULATED, PERCENT		75.022	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		195	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		1121	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		1100	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		71.3	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		10.4	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		657.969	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)	<	1	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)	<	1	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)		234	ug/L	

Water Quality Analysis

 Sample Date:
 10/30/2018
 Sample Time:
 1225
 Sample Number:
 1
 Collection Entity:
 Barton Springs/Edwards Aquifer CD

Sampled Aquifer: Sycamore Sand Member of Travis Peak Formation

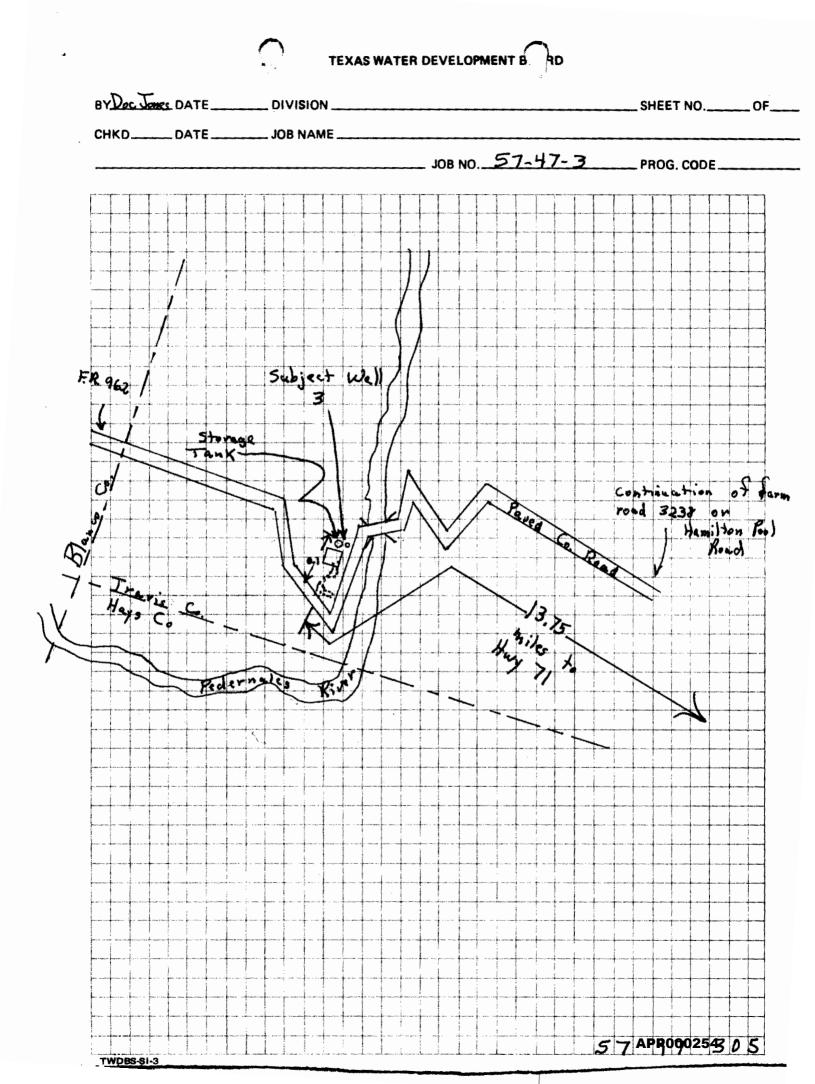
Analyzed Lab: LCRA - Lower Colorado River Authority

Reliability: Sampled using TWDB protocols

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		361	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		361	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		0.39	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		58.4	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		440.545	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		827	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.175	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		78.8	mg/L	
28004	CARBON-14 DISS APPARENT AGE (YEARS BP)		4600	Y-BP	
82172	CARBON-14 FRACTION MODERN		0.5641		0.002
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		31.5	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.78	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1	ug/L	
82081	DELTA CARBON 13 C13/C12 PER MIL		-10.3	0/00	
50791	DEUTERIUM, EXPRESSED AS PERMIL VSMOW		-26.6	0/00	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.532	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		265.057	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		49	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		16.3	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	1	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	<	1	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		3.289	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.743	mg/L	

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-305



Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		5.5	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		1.947		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		11.3	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		2.135		
00932	SODIUM, CALCULATED, PERCENT		39.666	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		79.7	mg/L	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		982	ug/L	
48297	STRONTIUM, ISOTOPE OF MASS 86 AND 87 RATIO		0.7078515	N/A	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		40	mg/L	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		484.519	mg/L	
07012	TRITIUM IN WATER (TRITIUM UNITS)		0.8	TU	0.09
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)	<	1	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)	<	1	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	5	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

TEXAS WATER DEVELOPMENT BO				
WELL SCHEDULE				
Aquifer(s) Succamere Such (442) Project No.	State Ve	11 No. 57	.47	205
Field No./Owner's Well No	6	TPS	1216	
Location:t,t, Section, Block, Survey	, Let _20	- <u></u>	_, Long.	- <u>98-26 u</u>
Owner: West Cave Address: St. Rt. A	1_Box	BO-C_I	ripping	_Secim
Tenant (other): Jehn Ahrns (Mar.) Address:		J		
Owner: West Cave Preserve Address: St. Rt. A Tenant (other): Jehn Abrns (Mgr.) Address: Driller: Glass & Tacker (James B. Josker, Ja Address: Rt. LA E	Sel 52	A_Drie	eine Se	nin 7
Land Surface Elevation: 810 _ft. above ms1 determined by _] opo				0
Drilled: 04 30 19 78 ; Dug, Cable Tool, Rotary, Air,				
Depth: Rept. 3.90 ft. Measft.	CA	SING, BLANK	PIPE & WEL	L SCREEN
Borehole Completion: Open Hole, traight Wall Underreamed, Gravel Packed		ted From		20_ft.
Pump: Hfr. Type Subm.	Diam. (in.)	Туре	Setting from	(feet)
No. Stages, Bowis Diamin., Setting 2,200ft.	4%	P.U.C.	+1.0	234
Column Diam			<u> </u>	
Hotor: HfrFuelEJecHP	1		{	<u> </u>
Yield: Flowgpm, Pumpgpm, Meas., Rept., EstDate			{	
Performance Test: DateLength of TestMade by	_	<u> </u>	 	
Static Levelft. Pumping Levelft. Drawdownft.			[
Productiongpm Specific Capacitygpm/ft.				Ì
Quality: (Remarks on taste, odor, color, etc.)				{
Analyses				
Date 6 10 86 Laboratory TSDHTDSSp Cond				t
DateLaboratoryTDSSp Cond				<u> </u>
Other data available (as circled): Pumping Test, Power & Yield Test Drillers Log,				<u> </u>
Formation Samples, Geophysical Log(s)	L		<u> </u>	<u> </u>
(type) 1650 to (rept) at 120 10 (Prabave 1. S.D.			above	
Water Level (s); 165.0 ft (rept) 04/20 19 6 above L.S.D.	which	sft	· below Land	Surface
			above Land	d Surface
Use: Dom.) Stock, Public Supply, Ind., Irr., Observation, Other (Test Hole, Oi				1
Recorded by D. R. Janes Source of deta: John Anna	₹£°r	g_Date:	of the)a6
Remarks:				

			-(ق ا	AUG	31 1978	/		
end original copy by entified mail to the		State o	f Te	x85	100	21 13/8	For TD₩ ₩eli No.	R use only	
exas Department of Water Resources O. Box 13087	,	WATER WE	LL I	REP	DRT DE	PT OF	Cocated of the second secon	n map ye	
ustin, Texas 78711 JUNN ANTIN			-R	-11	WEATER	PT. OF ippin RSOURCESS Austin	E Heceived:	78620	
1 OWNER West Cave PI		Address P.							
(NA	nue)			et or F		(City)	(State		
County_TRAVIS		miles in_		<u>^</u>	•	_direction from <u>Dri</u>	pping	Springs	ð ,
					, 84, 1		(1044		
riller must complete the legal descript with distance and direction from two in		Section No			Black N	0Townsh	NID		
on or survey lines, or he must locate a will on an official Quarter- or Half-Scale	nd identify the				Surve	ry Name	ar lines		
ieneral Highway Map and attach the m									_
	r	See stuched		071	58.4	1-51			
3) TYPE OF WORK (Check):	4) PROPOSED USE (Check):			5) DRILLI	NG METHOD (Check)	:		
S New Well Deepening	Domestic 🗆 Indu				`	nary D Air Hammer			
C Reconditioning C Plugging	Irrightion I Test	Well D Daner				ary 🗅 Cable Tool	C) Jetted	0 Other	
8) WELL LOG:	DIAMETER OF		,) BO	ENOLE COM	PLETION:			
	Dia. (in.) From (it.			0 Ope	n Hole	Straight Well	C	Undernamed	
Data drilled 478	1014 000000	aou		🗆 Gra	vel Packed	D Other	ASES		
				11 0	iravel Packed g	ive interval from	ft.	to	. ft.
From To (h.) (ft.)	Description and color of f material	ormation	8) CAS	ING, BLANK	PIPE, AND WELL SCI	REEN DATA	\ :	
0 1	Surface		Dia.	New		c, etc.	Ser	ting (ft.)	Ģ
<u> </u>	Red Gran		(in,)	or Used	Perf., Slotte Screen Mgf.	d, etc. , if commencial	From	To	-6
5 30	Hard Brown		43	Acr	PVA	DELICASING	11	234	+
				<u>re</u>	r c	DEIICASIFE	<u>+</u>	1	╋
	Grey Clay					· · · · · · · · · ·	<u> </u>	<u> </u>	╉
<u>31 35</u> 35 50	Brown Grey Lime Sh				···-		<u> </u>		╋
		aly	$\mid - \mid$				<u> </u>		+-
50	Blue Shale		\vdash				{	<u> </u>	╀
62	Med.		ļ				<u> </u>		1
<u>62 70</u>	Blue Shale	<u></u>				CEMENTING OA		-	
70 74	Brown Shale		,		ed from		ro	0	ft.
74 80	Blue Shale		(RAVITY	7		
80 95	Blue & Red C	lay		emeni	red by	Company or	Individual)	REIZ_	
95 110	It. Brown								
110 120	Red Sandston) WA' Stat	TER LEVEL: ic invel 16.5	ft. below land sur	face Date	APR RO -	. 7
120 130	Hard Broken		ľ		sian flow		Date		
130 155	Red & Green	Clay							
155 165	Hard Broken		r <u>10</u>) PAC	KERS:	Түре	Depth		
165 220	Hard Pink 3	white	<u> </u>						
220 225	Blue Clay					<u> </u>			
225 235	Red Clay		<u> </u>						
235 245	Brown Clay		11) TY	PE PUMP:				
245 270	Blue Clay		+	C Tur		i Jet 🖌 Submen	sible	C Cylinder	
lUse reverse	side if necessary)			⊡ Ot⊧ Deoth		s, cylinder, jet, etc., _	220		
13) WATER QUALITY:			}			-, «,	a a U	IL	
Did you knowingly penetrate any water? □ Yes	strata which contained ur	desitable	12) WE	LL TESTS:		~ ~ ~ ~		-
If yes, submit "REPORT OF UNI		1	{	а Тур	x Tent;_ □	Pump 🗆 Bailer	Setted	🗆 Estima	
Type of water? <u>Class Ross</u> Was a chemical analysis made?		65 1		Yie	ld:2	_ gpm with _2,35	ft, drawdow	n after	hr
	1 handhu andifu shas shi	المعالية معدية العبد	<u> </u>			falls all a habita			
	I hereby certify that this each and all of the statem	ents herein ere tr	UP to 1	he be	it of my knowl	edge and belief.			
NAME James 3. Tucker	. Jr.	Water Well	Driller	Real	tration No.	1488			
T	ype or Print)			-				·	
ADDRESS Rt. 1A Box 5	2A Dri	pping Sr	rin	<u>7</u> 8.		<u>Tx •</u> (State)	75	3620 191	
(Signed) Sames	B Jucker	h.	~1	<u>a.s.s</u>	A Tuolo				
(Water	r Well Oriller)					<u>r nrilling</u> (Company Name)		
Please attach electric log, chemical ana	lysis, and other pertinent	information, if av	ailable						
Additional instructions on reverse si	de.					67	11.7	305	-
¥R-0392									2

٩

. . .

The sketch showing the well location must be as accurate as possible, showing landmarks, in sufficient detail so that the well may be plotted on a General Highway Map of the county in which the well is located.

Reference points from which distances are measured and directions given should be of a permanent nature (e.g. highway intersections, canter of towns, river and creek bridges, railroad crostings). The distance and direction from the nearest town should always be indicated.

When giving a legal description include a sketch showing location of the well within the described area, e.g. survey abstract.

Information furnished in Section 2 of the TDWR-0392 is very important. Unless the well can be accurately located on a map the value of the other data contained in the Report is greatly reduced.

170 173 273 Brown Clay Blue Clay

Central Records Texas Dept. of Water Resources

:

8701 7030 2 VI20

Do not use ball point pen Texas Department of Health Laborator 1100 West 49th Street Austin, Texas 78756	ies			Organization No. 9 Vork No. 6042		
	C	HEMICAL WATE	R ANALYSIS REPO	RT		
Send Reply To:				Count	v KKKIL-	Jrevis
Water Availability Data and Studi	ies Section			State	Well No. 57	47-30
Texas Water Development Board Stephen F. Austin Building					Well	No
1700 Congress Ave.						
Austin, Texas 78711 Attn: D.R. Jones	-	129		Date C	collected 06	10 86
Attn: U.K. Jones	Rm	421	/			
Owner Westcave Prese	rve Z	John F. Ah	rns J Send cop	y to owner Sample No	$[]_{By} D. R. C$	Jones # 2
Address St. Rt. 4 Box 3	_	-				
			•			S.L.
Date Drilled Depth	~~~			* -	iource (type of wel	
Producing intervals	Water le	····	ft. Sample dep	oth ليلما ft.		
Sampled after pumping5 M	1.in	hrs. Yield		_ GPM meas, Temp	perature 01713	₽₽Ŀ
Point of collection End of	dischar			_ Appearance D clea	r O turbid Dia	clored O
Use Domestic Remarks						
FOR LABORATORY USE ONLY)		CHEMIC	AL ANALYSIS	9		
FOR LABORATORY USE ONLY) Laboratory No.			AL ANALYSIS JUN 11 '86	CHANNA Date	Reported	25 '86
		Date Received	JUN 11 '86	Date	e Reported	25 '86
Laboratory No.		Date Received	JUN 11 '86	a T		
Laboratory No.	MG /I	Date Received WATER ANA Date:0615	JUN 11 '86		No : EB6-8	91
Laboratory No.	MG/L	Date Received	JUN 1 1 '86	Sample		
Laboratory No.	11	Date Received WATER ANA Date:0615 ME/L	JUN 11 '86 LYSIS '86 Carbona	Sample te:00445:	No : EB6-8' MG/L	91 ME/L
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910:	11 29	Date Received WATER ANA Date:0617 ME/L 1,46	JUN 11 '86 LYSIS '86 Carbona Bicarbona	Sample te:00445: ate:00440:	No : EB6-8' MG/L 0	91 ME/L 0
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920:	11 29 12	Date Received WATER ANA Date:0615 ME/L 1,46 .98	JUN 11 '86 VSIS 286 Carbona Bicarbona Sulfa	Sample te:00445:	No:EB6-8 MG/L 0 418	91 ME/L 0 6.86
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929:	11 29	Date Received WATER ANA Date:0615 ME/L 1,46 ,98 11,13	JUN 11 '86 Carbona Bicarbona Sulfa Chlori	Sample te:00445: ate:00440: te:00945;	No:EB6-8 MG/L 0 418 93	91 ME/L 0 6.86 1.94
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929: Potassium:00937:	11 29 12 256	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori	Sample te:00445: ate:00440: te:00945: ide:00940: de:00951:	No:EB6-8 MG/L 0 418 93 182	91 ME/L 0 6.86 1.94 5.13
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929:	11 29 12 256	Date Received WATER ANA Date:0615 ME/L 1,46 ,98 11,13 ,20 13,78	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as	Sample te:00445: ate:00440: te:00945: ide:00940: de:00951:	No:EB6-8 MG/L 0 418 93 182 1,3	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929: Potassium:00937: T.Cations	11 29 12 256	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20 13.78 %Na	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as	Sample te:00445: ate:00440: te:00945: ide:00940: de:00951: ND3:71850: T. Anions pH:00403:	No:EB6-8 MG/L 0 418 93 182 1,3	91 ME/L 0 6.86 1.94 5.13 .07
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929: Potassium:00937: T.Cations	11 29 12 256	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20 13,78 %Na	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as	Sample te:00445: ate:00440: te:00945: ide:00940: de:00951: ND3:71850: T. Anions pH:00403:	No:EB6-8 MG/L 9 418 93 182 1.3 3.46 6.8	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929: Potassium:00927: T.Cations Manganese:01055: Boron:01022:	11 29 12 256	Date Received WATER ANA Date:0615 ME/L 1.46 .98 11.13 .20 13.78 %Na SAR	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as	Sample te:00445: te:00440: te:00945: ide:00940: de:00951: NO3:71850: T. Anions pH:00403: DS:70300:	No:EB6-8 MG/L 0 418 93 182 1.3 3.46 6.8 792	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929: Potassium:00937: T.Cations Manganese:01055:	11 29 12 256	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20 13,78 %Na	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as 180 deg T P. A	Sample te:00445: ate:00440: te:00945; ide:00940; de:00951: ND3:71850; T. Anions pH:00403; DS:70300; Lk.:00415;	No:EB6-8 MG/L 9 418 93 182 1.3 3.46 6.8 792 0	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. ate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00929: Potassium:00937: T.Cations Manganese:01055: Boron:01022: Total Iron:01045: her	11 29 12 256 8	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20 13.78 %Na SAR RSC	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as 180 deg T P, A T, A3	Sample te:00445: ate:00440: te:00945: ide:00951: de:00951: ND3:71850: T. Anions pH:00403: DS:70300: [k.:00415: k.:00410:	No:EB6-8 MG/L 0 418 93 182 1.3 3.46 6.8 792 0 343	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. Sate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00927: Potassium:00937: T.Cations Manganese:01055: Boron:01022: Total Iron:01045: Sher (Specific Cond.:000	11 29 12 256 8	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20 13.78 %Na SAR RSC 1135	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as 180 deg T P, A T, A3	Sample te:00445: ate:00440: te:00945; ide:00940; de:00951: ND3:71850; T. Anions pH:00403; DS:70300; Lk.:00415;	No:EB6-8 MG/L 9 418 93 182 1.3 3.46 6.8 792 0	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. Sate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00927: Potassium:00937: T.Cations Manganese:01055: Boron:01022: Total Iron:01045: ther (Specific Cond.:000 luted Conductance (A)	11 29 12 256 8 95; micromh	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20 13.78 %Na SAR RSC 1135	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as 180 deg T P. A T. Al T. Hardne	Sample te:00445: ate:00440: te:00945: de:00951: NO3:71850: T. Anions pH:00403: DS:70300; Lk.:00415: k.:00410; ess:00900;	No:EB6-8 MG/L 0 418 93 182 1.3 3.46 6.8 792 0 343	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. sate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00927: Potassium:00937: T.Cations Manganese:01055: Boron:01022: Total Iron:01045: ther (Specific Cond.:000 iluted Conductance (a 11 x134 =	11 29 12 256 8	Date Received WATER ANA Date:0615 ME/L 1,46 ,98 11,13 ,20 13,78 %Na SAR RSC 1135 05/cm3)	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as 180 deg T P. A T. Al T. Hardne	Sample te:00445: ate:00440: te:00945: de:00940: de:00951: NO3:71850: T. Anions pH:00403: DS:70300: Lk.:00415: k.:00415: k.:0040: ess:00900:	No:EB6-8 MG/L 0 418 93 182 1.3 3.46 6.8 792 0 343	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. Sate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00927: Potassium:00937: T.Cations Manganese:01055: Boron:01022: Total Iron:01045: ther (Specific Cond.:000) Huted Conductance (A	11 29 12 256 8	Date Received WATER ANA Date:0615 ME/L 1,46 ,98 11,13 ,20 13,78 %Na SAR RSC 1135 05/cm3)	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as 180 deg T P. A T. Al T. Hardne Ammonia Nitrite	Sample te:00445: ate:00440: te:00945: de:00940: de:00951: NO3:71850: T. Anions pH:00403: DS:70300: Lk.:00415: k.:00410: ess:00900: a-N:00610: -N:00610:	No:EB6-8 MG/L 0 418 93 182 1.3 3.46 6.8 792 0 343	91 ME/L 0 6.86 1.94 5.13 .07 .06
Laboratory No. sate Well No:57-47-3 Silica:00955: Calcium:00910: Magnesium:00920: Sodium:00927: Potassium:00937: T.Cations Manganese:01055: Boron:01022: Total Iron:01045: ther (Specific Cond.:000 iluted Conductance (a 11 x134 =	11 29 12 256 8	Date Received WATER ANA Date:0615 ME/L 1,46 .98 11,13 .20 13.78 XNa SAR RSC 1135 os/cm3) checked.	JUN 11 '86 Carbona Bicarbona Sulfa Chlori Fluori Nitrate as 180 deg T P. A T. Al T. Hardne Ammonia Nitrite	Sample te:00445: ate:00440: te:00945: ide:00940: de:00951: ND3:71850: T. Anions pH:00403: DS:70300: Lk.:00415: k.:00410: ess:00900: a-N:00610: a-N:00620:	No:EB6-8 MG/L 0 418 93 182 1.3 3.46 6.8 792 0 343	91 ME/L 0 6.86 1.94 5.13 .07 .06

	WQ FY 20	018			<u>T</u> W	/DB Wat	er Qualit	y Field [Data She	et		Newly Inventori	ed Well N
	SWN	57-47-305			Name:	Amber Ahrns	Gosselin					ID Number:	202
	County:						ton Pool Road					Date:	2/14/2018
	County Code:						tain, TX 78663					Sampler(s):	Muller/Bjornson
	• •				· · ·								
	Aquifer Code: Aquifer Id:				Attention:								
	Aquiler lu.	20		w	ell Name or #:							Calibration Ve	rification Readings
	(1)	(2)	(3)	4	5	6	7	8	9	10	11	рН	SLOPE = <u>97.2</u>
	250 ml filtered	500 ml filtered	250 ml filtered	1 Liter filtered	40 ml unfiltered								7 = 6.9-3
	Cation	Anions/T. Alk.	Nitrate	Gross	Atrazine								4 or 10 = 3,999
···· 4	RED		YELLOW	Alpha								Conductivity	500 = <u>4-88</u>
	HNO3	ICE	ICE + H2SO4	HNO ₃ by lab	ICE								1000 = <u>956</u>
ب هت م ب	Water Level: Pumping time: Well Use: Lift:	<u>9.4-3</u> <u>н</u> Е	-	M.P. =		W.L. remark ampling Point FIELD G.I Latitude	: : <u>FAW & He</u> P.S. readings ::	zr Storag					Alkalinity Titration Start pH End pH mL Sample Size mL Acid Phenol (> 8.3) mL Acid Total (to pH 4.5) = Alkalinity
	Casing Type: Sample Time:		-		-	-	e:		sampler		Phen	ol Alkalinity (82244):	mg/L
	Sample Time:	-1 -1 -1 -1 -1 -1 -1 -1	-					<u> </u>			Tot	al Alkalinity (39086):	mg/L
		Water Qualit	y Stabilizatior	Parameters 1	Table (At least 3	readings @ 5	i min. intervals)			Note	s: Sycam	ORE SD
	Time pH Celsius Temp Conductivity	10:15										{	

LCRA Environmental Laboratory Services 3505 Montopolis Drive Austin, TX 78744 Phone: (512)356-6022 Fax: (512)356-6021

ANALYTICAL RESULTS

Workorder: Q1806116

Lab ID: Sample ID: Project ID:	Q1806116001 5747305 (202) Collected for TWDB						2/14/2018 11:31 2/14/2018 10:27		trix: Aqueo nple Type: SAMF		
Parameters		Results Units	LOQ	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qual
INORGANIC	:S										
Analysis Des Elements	sc: E200.7 Metals, Trace		ration Metho			Trace	Elements				
Boron Dissol	lved	2190 ug/L	50.0	20.0	0.010	1	02/19/18 15:48	BS	02/22/18 20:39	FO	
Calcium Diss		31.2 mg/L	0.200	0.0700		1	02/19/18 15:48	BS	02/22/18 20:39	FO	
Strontium Di	ssolved	1100 ug/L	10.0	4.00		1	02/19/18 15:48	BS	02/22/18 20:39	FO	
Iron Dissolve	ed	<50.0 ug/L	50.0	20.0		1	02/19/18 15:48	BS	02/22/18 20:39	FO	
Magnesium I	Dissolved	15.4 mg/L	0.200	0.0700		1	02/19/18 15:48	BS	02/22/18 20:39	FO	
Potassium D	issolved	8.49 mg/L	0.200	0.0700		1	02/19/18 15:48	BS	02/22/18 20:39	FO	
Sodium Diss	olved	195 mg/L	0.200	0.0700		1	02/19/18 15:48	BS	02/22/18 20:39	FO	
Analysis Des	sc: E200.8, ICP-MS	Prepa	ration Metho	d: E200.8,	ICP-N	IS Pre	q				
		Analy	tical Method:	E200.8, 10	CP-MS	5					
Aluminum Di	issolved	<5.00 ug/L	5.00	1.50		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Antimony Dis	ssolved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Arsenic Diss	olved	<1.00 ug/L	1.00	0.700		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Barium Disso	olved	55.3 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Beryllium Dis	ssolved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Cadmium Di	ssolved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Chromium D	issolved	1.44 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Cobalt Disso	lved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Copper Diss	olved	2.74 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Lithium Disso	olved	121 ug/L	2.00	0.700		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	N
Lead Dissolv	ved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Manganese	Dissolved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Molybdenum	Dissolved	1.28 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Selenium Dis	ssolved	<5.00 ug/L	5.00	1.50		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Silver Dissol	ved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Thallium Dis	solved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Uranium Dis	solved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	N
Vanadium Di	issolved	<1.00 ug/L	1.00	0.400		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	
Zinc Dissolve	ed	234 ug/L	5.00	1.50		1	02/19/18 15:53	BS	02/21/18 11:50	SLW	

Report ID: 315682 - 5274366

Page 3 of 18

This report may not be reproduced, except in full, and with written approval from LCRA Environmental Laboratory Services.

APP000259

3004.7.0.0

LCRA Environmental Laboratory Services 3505 Montopolis Drive Austin, TX 78744

Phone: (512)356-6022 Fax: (512)356-6021

ANALYTICAL RESULTS

Workorder: Q1806116

Report ID: 315682 - 5274366

Lab ID: Sample ID: Project ID:	Q1806116001 5747305 (202) Collected for TWDB						2/14/2018 11:31 2/14/2018 10:27		trix: Aque mple Type: SAM		
Parameters 8 1		Results Units	LOQ	LOD	ML	DF	Prepared	Ву	Analyzed	By	Qual
Analysis Desc	c: E300.0, Anions	- F	Preparation Metho	d: E300.0,	Anion	S					
		ŀ	Analytical Method:	E300.0, A	nions						
Chloride DIss	olved	123 mg/L	5.00	2.00		5	02/15/18 02:00	FO	02/15/18 02:00	FO	
Bromide Diss	olved	0.728 mg/L	0.100	0.0400		5	02/15/18 02:00	FO	02/15/18 02:00	FO	
Fluoride Disso	olved	1.15 mg/L	0.0500	0.0200		5	02/15/18 02:00	FO	02/15/18 02:00	FO	
Sulfate Dissol	lved	71.3 mg/L	5.00	2.00		5	02/15/18 02:00	FO	02/15/18 02:00	FO	
TOTAL PHOS	SPHATE AS P										
	: E365.4 Phosphorus,	F	Preparation Metho	d: E365.4	/ E351	.2 Wa	iter Prep				
Total		F	Analytical Method:	E365.4 PI	hospho	orus, 1	lotal				
Phosphorus, I	Dissolved (As P)	<0.0200 mg/L	0.0200	0.00800		1	02/21/18 12:24	BS	02/23/18	MO	
ALKALINITY											
Analysis Desc	: SM2320B, Alkalinity	F	Preparation Metho	d: SM2320	B, Alk	alinity	R				
		A	Analytical Method:	SM2320B	, Alkal	inity					
Phenolphthale	ein Alkalinity	0.00 mg/L	0.00	0.00		1	02/23/18	ММ	02/23/18	MM	N
Hydroxide Alk	alinity	0.00 mg/L	0.00	0.00		1	02/23/18	MM	02/23/18	MM	N
Bicarbonate A	Ikalinity	331 mg/L	0.00	0.00		1	02/23/18	ММ	02/23/18	MM	N
Carbonate All	kalinity	0.00 mg/L	0.00	0.00		1	02/23/18	MM	02/23/18	MM	N
Total Alkalinity	(CaCO3)	331 mg/L	20.0	20.0		1	02/23/18	MM	02/23/18	MM	
NITRATE AN											
	c: SM4500-NO3-H,	F	Preparation Metho	d: SM4500)-NO3	-H, Ni	trate/Nitrite				
Nitrate/Nitrite		F	Analytical Method:	SM4500-	NO3-H	, Nitra	te/Nitrite				
Nitrate/Nitrite	Dissolved	0.568 mg/L	0.0200	0.00800		1	02/22/18	мо	02/22/18	мо	
SILICA											
Analysis Desc	: SM4500-SiO2-C, Silic	a F	Preparation Metho	d: SM4500)-SiO2	-C, Si	lica				
		A	Analytical Method:	SM4500-	SiO2-C	C, Silic	a				
Silica, Dissolv	ved	10.2 mg/L	0.500	0.200		1	02/23/18	мо	02/23/18	мо	
HEAVY META	ALS										
	: E245.1 Mercury Wate	r F	Preparation Metho	d: E245.1	Mercu	ry Wa	ter				
		F	Analytical Method:	E245.1 M	ercury	Wate	r				
Mercury Disso	olved	<0.200 ugʻL	0.200	0.0700		1	02/15/18 09:32	FM	02/19/18 09:23	FM	

Page 4 of 18

This report may not be reproduced, except in full, and with written approval from LCRA Environmental Laboratory Services.

ANALYTICAL RESULTS

Workorder: Q1806116

Lab ID: Sample ID: Project ID:	Q1806116001 5747305 (202) Collected for TWDB						2/14/2018 11:31 2/14/2018 10:27	Mat Sar	trix: nple Type:	Aqueous SAMPLE	
Parameters		Results Units	LOQ	LOD	ML I	DF	Prepared	By	Analyzed	By	Qual
INORGANIC	s										
Analysis Des Balance	sc: SM1030B Cation/Anio		eparation Methonalytical Method								
Cation/Anior	Balance	0.4400 %				1	02/27/18 09:08	CW	02/27/18 0	9:08 CW	

Report ID: 315682 - 5274366

Page 5 of 18

This report may not be reproduced, except in full, and with written approval from LCRA Environmental Laboratory Services.

APP000261

3004.7.0.0

					TWDB Wat	ter Quality F	ield Data S	Sheet				
SWN:	57-47	-305		Site Name:	WESTCA	VE WELL					Project TWDB Sam	pling
County:		(Tavis (453);) Hays (209)	Addres	s or Location:	WESTCAL	re prese	RVE				Newly Inventoried Well	No
County Code:			•	-	Concernant and the second	HAMILTON		0.			ID Number: 1024	
Aquifer Code:	2185CM	IR	•	St		mount	and the second se		8		Date: 10/30	
Aquifer Id:		Edwards (11); Trinity (28))	-					•		Sampler(s): LC, B/+,	N BSEACD
Standard DWDB suite	0	5	Isotopes (unfil	tered, no ice)							Calibration Verification F	Readings
(1)	(2)	(3)	((4)	(5)	6	(7)						Post Sample
10	(0	10								PH		
250 ml filtered	500ml filtered	250 ml fittered	250 ml	250 ml	1 L	1L					4 40	3.79
Cation	Anion	Nitrate	Sr 87/86	Deut. / O18	Tritium	C14						-
	Total Alk.							1.2.1		Cond	0 (air) <u>0</u>	0
ice + HNO3 All acidified samples pH	Ice	Ice + H2SO4	unpreserved	unpreserved	unpreserved	unpreserved		and and			4.49 4.49	4.40
An acidined semples pri		aturar pri 13 <7			Ween / and o.	n natural pri is :		iquireu.	ο.		4.49 9.79	1.10
Time In:	12:00				Time Out:	12:40	-					
Water Level:	-		M.P. =	ft	W.L. remark:	NUT ACC	CESSIBLE					
Pumping time:	20 MINNI	FS		S	ampling Point:	PIPE IN	FLOW FR	OM WELL				
						INTO STOI	ence that	VIL				
Well Use:					FIELD G.P.	S. readings						
Lift:	Sub 🛛				Latitude:	30 337	342	SAMAG				
Power:	EUEC	•			Longitude:	-98.141	097	_>6006LEU				
Casing Type:	PVC				Casing Size:	,	inches	_			Items Below Calculated Later From I Dissolved Solids (mg/L)	<u>81</u>
Sample Time:	12.25				Filtered:	Yes / No					Hardness (as CaCO3) Balanced	
· _				F		hand pump //	ine / Gravity			1		
N	later Quality	y Stabilizatio	n Parameters '							Notes:	ESTIMATED 50	FPM YLEM
	12:10	1216	12 20								S	
	7-40		7.35									
	22.59	22.50	22.52									
Turbidity	D	0	Ð								Field Data entered into TWDB	GWDB: yes/nc
uS/Cm Conductivity	910	901	904		-				=			
Comments									·			
Ľ											ACD 1124 Regal Row Austin Ty	78749

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-306

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747306
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.340556
Latitude (degrees minutes seconds)	30° 20' 26" N
Longitude (decimal degrees)	-98.143056
Longitude (degrees minutes seconds)	098° 08' 35" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218HNSL - Hensell Sand Member of Travis Peak Formation
Aquifer	Trinity
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	841
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	
Well Depth Source	
Drilling Start Date	
Drilling End Date	
Drilling Method	
Borehole Completion	

Well Type	Spring
Well Use	Other
Water Level Observation	None
Water Quality Available	Yes
Pump	
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	West Cave Preserve
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	5/5/2005
Last Update Date	3/4/2020

Remarks

Casing - No Data			
Well Tests - No Data			
Lithology - No Data			
Annular Seal Range - No Data			
Borehole - No Data	Plugg	ged Back - No Data	
Filter Pack - No Data		Packers - No Data	

Water Level Measurements

No Data Available

Water Quality Analysis

Sample Date: 10/25/1988 Sample Time: 0915 Sample Number: 1 Collection Entity: Other State Agencies

Sampled Aquifer: Hensell Sand Member of Travis Peak Formation

Analyzed Lab: Misc. Commerical Lab

Reliability: Collected from pumped well, but not filtered or preserved

Collection Remarks: LCRA MONIT. PROGRAM

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		390	mg/L	
01503	ALPHA, DISSOLVED (PC/L)	<	10	PC/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	10	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		130	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		475.93	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)	<	10	ug/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	10	ug/L	
00910	CALCIUM (MG/L)		101.2	mg/L	
00690	CARBON, TOTAL (MG/L AS C)	<	10	mg/L	
00685	CARBON, TOTAL INORGANIC (MG/L AS C)	<	10	mg/L	
00680	CARBON, TOTAL ORGANIC (MG/L AS C)		0.9	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		23	mg/L	
46560	CHROMIUM, FIELD ACIDIFIED W/HNO3, FILTERED, UG/L	<	10	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	10	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
78115	HALOGEN, TOTAL ORGANIC, UG/L	<	10	ug/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		375	mg/L	
01045	IRON, TOTAL (UG/L AS FE)	<	10	ug/L	
46564	LEAD, FIELD FILTERED, ACIDIFIED W/HNO3, UG/L	<	10	ug/L	
00920	MAGNESIUM (MG/L)		30	mg/L	
01055	MANGANESE, TOTAL (UG/L AS MN)	<	10	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	2	ug/L	
00618	NITRATE NITROGEN, DISSOLVED (MG/L AS N)		1.33	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		5.89	mg/L	
00613	NITRITE NITROGEN, DISSOLVED (MG/L AS N)	<	0.01	mg/L	
00608	NITROGEN, AMMONIA, DISSOLVED (MG/L AS N)	<	0.01	mg/L	
00623	NITROGEN, KJELDAHL, DISSOLVED (MG/L AS N)	<	0.01	mg/L	
00090	OXIDATION REDUCTION POTENTIAL (ORP), MILLIVOLTS		0.16	MV	
00299	OXYGEN, DISSOLVED, ANALYSIS BY PROBE (MG/L)		2.39	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.6	SU	
00671	PHOSPHORUS, DISSOLVED ORTHOPHOSPHATE (MG/L AS P)	<	0.01	mg/L	
00665	PHOSPHORUS, TOTAL (MG/L AS P)	<	0.01	mg/L	
00937	POTASSIUM, TOTAL (MG/L AS K)		1.6	mg/L	

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-306

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0.28		
70300	RESIDUE, TOTAL FILTERABLE (DRIED AT 180C), MG/L		430	mg/L	
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	10	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		7	mg/L	
46566	SILVER, FIELD FILTERED, ACIDIFIED W/HNO3, UG/L	<	10	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.47		
00932	SODIUM, CALCULATED, PERCENT		8	PCT	
00929	SODIUM, TOTAL (MG/L AS NA)		17	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		756	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		17	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		22	С	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		437	mg/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	10	ug/L	

Water Quality Analysis

Sample Date: 5/10/1989 Sample Time: 1345 Sample Number: 1 Collection Entity: Other State Agencies

Sampled Aquifer: Hensell Sand Member of Travis Peak Formation

Analyzed Lab: Misc. Industrial Lab

Reliability: Sampled using TWDB protocols

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		362	mg/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		90	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		441.77	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)	<	10	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		103.6	mg/L	
00680	CARBON, TOTAL ORGANIC (MG/L AS C)		1.23	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		18	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.3	mg/L	
78115	HALOGEN, TOTAL ORGANIC, UG/L		14	ug/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		396	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	10	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		33.6	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		5.31	mg/L	
00613	NITRITE NITROGEN, DISSOLVED (MG/L AS N)	<	0.01	mg/L	
00608	NITROGEN, AMMONIA, DISSOLVED (MG/L AS N)		0.01	mg/L	
00623	NITROGEN, KJELDAHL, DISSOLVED (MG/L AS N)		0.13	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.57	SU	
00671	PHOSPHORUS, DISSOLVED ORTHOPHOSPHATE (MG/L AS P)	<	0.01	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.5	mg/L	
81277	PURGEABLE ORGANIC CARBON, UG/L		0.2	ug/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
70300	RESIDUE, TOTAL FILTERABLE (DRIED AT 180C), MG/L		384	mg/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		5.88	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.29		
00932	SODIUM, CALCULATED, PERCENT		6	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		13.2	mg/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		12	mg/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		410	mg/L	

Water Quality Analysis

 Sample Date:
 5/5/2005
 Sample Time:
 1414
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

Sampled Aquifer: Hensell Sand Member of Travis Peak Formation

Analyzed Lab: LCRA - Lower Colorado River Authority

Reliability: Sampled using TWDB protocols

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
39086	ALKALINITY FIELD DISSOLVED AS CACO3		382	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		379	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	4.08	ug/L	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1.02	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	2.04	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		72.6	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1.02	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		462.51	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		84.5	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.105	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1.02	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		97.5	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		13.6	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		2.23	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1.02	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)		1.11	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.4	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		388	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	51	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1.02	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		4.4	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		35	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	1.02	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	<	1.02	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		2.32	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.5233	mg/L	
00400	PH (STANDARD UNITS), FIELD		6.96	SU	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		0.83	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	4.08	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		16.9	mg/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.24		
00932	SODIUM, CALCULATED, PERCENT		6	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		11.2	mg/L	

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-306

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		782	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		347	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		14.8	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		19.1	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1.02	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		420	mg/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		3.62	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)		10	ug/L	

Water Quality Analysis

 Sample Date:
 4/28/2017
 Sample Time:
 1110
 Sample Number:
 1
 Collection Entity:
 Barton Springs/Edwards Aquifer CD

Sampled Aquifer: Hensell Sand Member of Travis Peak Formation

Analyzed Lab: LCRA - Lower Colorado River Authority

Reliability: Sampled using TWDB protocols

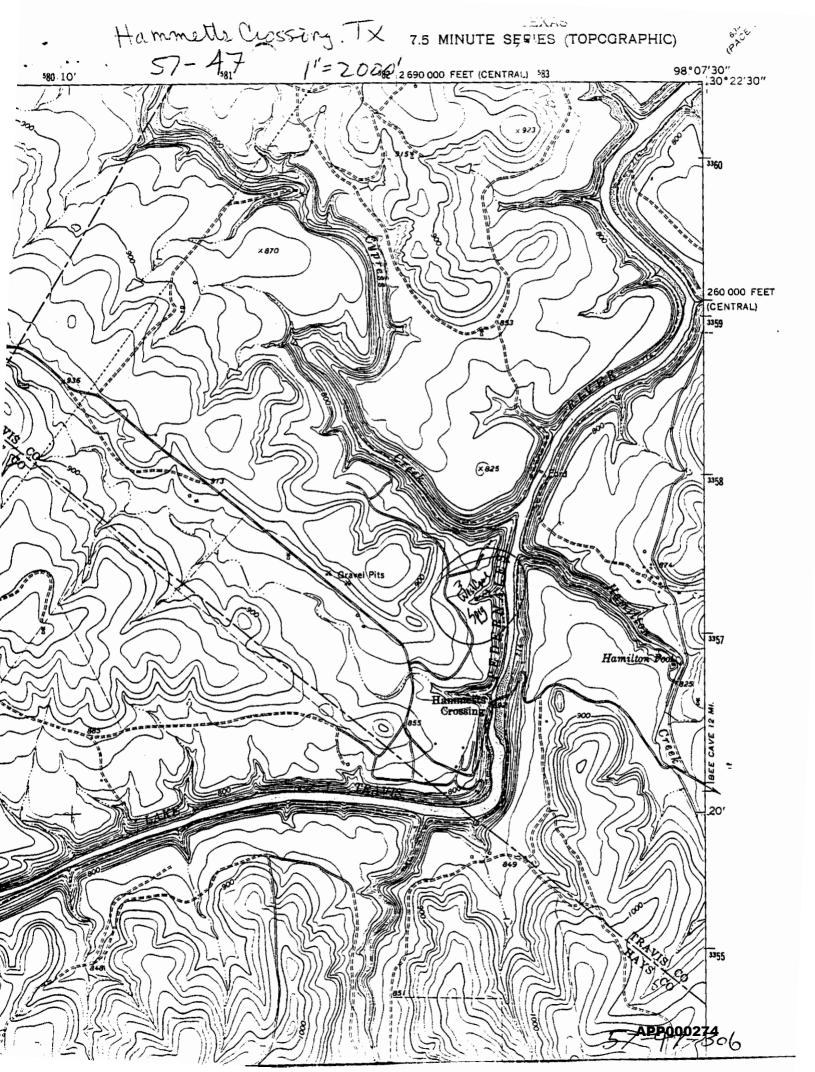
Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		354	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		354	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		-1.41	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		67.3	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		432.002	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		59.9	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)	<	0.02	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		97.8	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		19.2	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		2.27	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.301	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		385.874	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		4.25	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		34.3	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)		2.1	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	<	1	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		0.961	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.217	mg/L	
00400	PH (STANDARD UNITS), FIELD		6.95	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.14	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-306

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		13.3	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.248		
00932	SODIUM, CALCULATED, PERCENT		5.949	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		11.2	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		763	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		307	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		16.9	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		25.72	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		407.824	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)		1.11	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		3.89	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	5	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..


GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

$\begin{array}{c} \text{State Well No.} \\ \hline 5 \\ \hline 10 \\ \hline 17 \\ \hline 17 \\ \hline 17 \\ \hline 19 \\ \hline 26 \\ \hline 28 \\ \hline 30 \\ \hline 30$
32 33 35 37 42 44 50 52 Owner's Well No. Location 1/4, 1/4, Section
Owner West Cave Rvescrve Driller Address Rt. 4, Box 30-C, Dipping (prings, Ta Address
Address Address Tenant John Ahrns 78620 Address Date Drilled Image: Source of 10 Image: Source of 10 Altitude Image: Source of Alt. Datum 3 Aquifer Image: Source of 10 Image: Source of 10 Image: Source of 10 Altitude Image: Source of Alt. Datum 3 Aquifer Image: Source of 10 Image: Source of 10 Image: Source of 10 Image: Source of 10 Image: Source of 27 Source of Alt. Datum 3 Aquifer Image: Source of 34 Image: Source of 45
Const. Casing Casing or Blank Pipe (C) Well Construction Method 55 57 Casing or Blank Pipe (C) Screan 57 Open Hole (O) Cemented from 57 Material 59 Completion 61 From To
Lift Data Pump Mfr. Type 0 10 2 Bowls Diam. in. Setting ft. Column Diam. in. Length Tailpipe ft. Motor Mfr. Power 65 Horsepower 67 73 58
Yield Flow GPM Pump GPM Meas., Rept., Est Date 26 10 26 33 Performance Test Date GPM 42 5 5 Static Level ft. Pumping Level ft. Drawdowri ft. Sp. Cap GPM/ft. 58 Quality (Remarks on Taste, Odor, Color, Etc.) 10 22 26 33
Water Use Primary Use 10 10 10 10 Other Data Water Water 10 10 10 10 Other Data Level 16 Logs 20 25 21 31 10
Water Date
Recorded By Augustu Uchu Curza Date Record Collected or Updated O S I G

LCRA - WATER QUALITY MONITORING WELL INVENTORY

County TRAUS Aquifer_____State Well No 57-47-306 USGS 7.5" quad. Hummeth Crossing Field Located?_____ Date_____ John alhing Field No 57-47-3 W.S. Well owner Mailing address Rt. A. Box 30-C Phone No 1-875-3442 Dipping Sping Tx 78620 Driller West Case Preserve-Spring____ Date drilled_ Reason for sampling suspect DDT contam, regorded coverage Well Type: dug, cable, rotary, other_____ Pump Test: pumped_____gpm with_____ft drawdown after____hours Yield_____gpm Date_____measured, reported, estimated Use_____Land surface_elevation_____Depth_____ Well diameter_____in. Completion: open-hole, screened, gravel pked Casing. Type: steel, tin, iron, PVC, concrete, other____ Cased from_____ft to_____ft Completion interval_____ft to_____ft Pump setting _____ft Type pump_____ Historic water levels or samples? Conditions around well: Does casing extend above ground? Is well properly grouted to prevent land surface contam.? Does cement pad surround top of casing? Is well in a well house? Potential contaminants stored in well house? Is well covered or wrapped in material, if so, what? Access to bore for water levels? Access to unstored water from pump? Is water treated to kill bacteria?

10

PORT NO. 01 LCRA ENVIRONMENTAL MONITORING REPORT 01/30/89 PAGE

2PL055A ENVIRONMENTAL LABORATORY ANALYSIS GROUND WATER MONITORING PROG

LAB ID: 6 ACILITY: W L			YPE: GWMP 7 NO:		DATE REPORTED: DATE RECEIVED: SAMPLE DATE:	10/25/88 10/25/88
LOCATION	ID: 6429C	NAME :	WEST CAVE	PRESERVE	SAMPLE TIME:	C1:40
ABAMEIER	** ***		BESULIS	UNIIS	MEIHOD COMMENIS	

ALKALINITY, BICARBONATE (F)	390	MG/L	SM403	
$\lambda I V \lambda I T X T T Y = C A C D D D X A T C - Z C X$	0	MG/L	E310.2	
ALPHA, GROSS (UF)	(10	PCI/L	E9310	
ARSENIC, DISS (F)	<0.01	MG/L	E206.2	
BARIUM, DISS (F)	0.13	MG/L	E200.7	
ALRALINITY, CHRBONATE (F) ALPHA, GROSS (UF) ARSENIC, DISS (F) BARIUM, DISS (F) BORON, DISS (F) CADMIUM, DISS (F)	0.13 <0.01 <0.01 101.2	MG/L	E200.7	
CADMIUM, DISS (F)	(0.01	MG/L	E200.7	
CHECION, DISS (F)	1 V I + 4	1167 L	E200.7	
CARBON, PURGEABLE ORGANIC (UF)	0.1	MG/L	E415.2	
CARBON, TOTAL (UF)	>10	MG/L	E415.2	
CARBON, TOTAL INORGANIC (UF)	>1⊙	MG/L	E415.2	
CARBON, TOTAL ORGANIC (UF)	0.9	MG/L	E415.2	
CHLORIDE (F)	23	MG / I	E325.2	
CHROMIUM, DISS (F)	(0.01		E200.7	
CHLORIDE (F) CHROMIUM, DISS (F) COLIFORM, FECAL (UF)	1	/100ML	2WA0AC	NUMBER OF COLONIES
•				BELOW IDEAL PLATE
		-		COUNT
COPPER, DISS (F) FLOURIDE (F)	<0.01	MG/L	E200.7	
FLOURIDE (F)	0.4	MG/L MG/L	E340.2	
HALDGENS, TOTAL ORGANIC (HE)	<0.01	MG/L	E9020	
IRON, DISS (F) LEAD, DISS (F)	<0.01	MG/L	E200.7	
LEAD, DISS (F)	(0.01	MG/L	E239.2	
MAGNESIUM, DISS (F)	(0.01	MG/L		
MANGANESE, DISS (F)	(0.01	MG/L	E200.7	
MERCURY, DISS (F)	<0.002	MG/L	E245.1	
NITROGEN, AMMONIA (F)	(0.01	MG/L	E350.1	
MERCURY, DISS (F) NITROGEN, AMMONIA (F) NITROGEN, KJELDAHL (F)	(0.01	MG/L	E351.2	
NITROGEN, NITRATE (F)	1.55	MG/L	E353.2	
NITROGEN, NITRITE (F)	<0.01	MG/L	E353.2	
PHOSPHORUS, ORTHO (F)	<0.0i	MG/L	E365.1	
PHOSPHORUS, TOTAL (F)	(0.01	MG/L	E365.4	
POTASSIUM, DISS (F) RESIDUE, FILTERABLE (F)	1.6 430	MG/L	E200.7	
RESIDUE, FILTERABLE (F)	430	MG/L	E160.1	
SELENIUM, DISS (F)	<0.01	MG/L	E270.2	
SILICUN, DISS (F)		MG/L	E200.7	
SILVER, DISS (F) Sodium, diss	<0.01	MG/L	E200.7	
		MG/L	E200.7	
STREPTOCOCCUS, FECAL (UF)	58	/100ML	SM910B	
SULFATE (F)	17	MG/L	E375.2	
ZINC, DISS (F)	<0.01	MG/L	E200.7	

EPORT NO. 01 LCRA ENVIRONMENTAL MONITORING REPORT 01/30/89 PAGE 11

JQPL055A ENVIRONMENTAL LABORATORY ANALYSIS GROUND WATER MONITORING PROG

,

LAB ID: 6429C SAMPLE TYPE: GWMP DATE REPORTED: 01/27/89 FACILITY: WOMP ACCT NO: DATE RECEIVED: 10/25/88 LCRA SAMPLE DATE: 10/25/88 SAMPLE TIME: 09:15 LOCATION ID: 6429C NAME: WEST CAVE PRESERVE

POBOMEIEB

BEZULIZ ZIIMU MEIHOD COMMENIZ

ik Henduran

BUCK HENDERSON LABORATORY SUPERVISOR

TEXPS WATER DEVELOPMENT BOABD

Ci.cMICAL WATER ANALYSIS REPORT DW3900 FORM 2/DG#6

Send Reply To Water Availability Data				TWDB ONLY						
and Studies Section				Organization No.						
Texas Water Development Eourd Stephen F. Austin Building				Work No. 64290						
1700 Congress Avenue Austin, Texas 78711				L						
Attn		Room:		Laboratory Code 1918						
County		State Well No.	157	4.7 3.96						
	125	171818 Sar	nple No.	$ I \text{Time} \ (0, 9) : 1 \ (1, 5) \ (33, 34) : 36 \ (37) \ (37$						
By FIELD TES	<u>ST-S</u>	Code fe	or Sample	Collecting Agency 10151						
Temperature 21.74 If Different From Completed Well										
Analysis Reliability Remark		Aquiter		Producing Interval						
Chemical Constituent Remark	48 49 51	<u>i)</u> jj	j j	60 Top Bottom						
Remarks	1 iii			<u></u>						
10 Owner				+-						
Address										
Date Drilled 1	Depth ft. \	WBF Point of	collection							
Sampled after pumping	hrs. N	rield	GPM 🚆	egs. Use						
		antan	es							
CHEMICAL ANALYSIS										
CHEMICAL ANALYSIS Laboratory No Date Received Date Received										
Laboratory No 1	Date Received			te Reported						
Laboratory No I	Date Received		Da	te ReportedVALUE						
·			Da							
DESCRIPTION		UNITS	FLAG	VALUE						
DESCRIPTION (optional)			Da FLAG 							
DESCRIPTION (optional) Iron (01045)	STORET CODE $ \begin{array}{c} \\ \\ \hline \\ 10 \\ \hline \\ 37 \\ \hline \\ \hline \\ \hline \\ 10 \\ \hline \\ 14 \\ 14$	UNITS $\downarrow \qquad \downarrow_{16} \qquad \downarrow_{20} \qquad \downarrow_{43} \qquad \downarrow_{47} \qquad$	Da FLAG 							
DESCRIPTION {optional} Iron (01045) Manganese (01055)		UNITS UNITS 16 16 16 20 43 47 47 16 16 20	Da FLAG 49 22							
DESCRIPTION (optional) Iron (01045) Manganese (01055) Boron (01020)	STORET CODE $ \begin{array}{c} $	UNITS UNITS 16 16 16 16 16 10 16 100 100 100 100 100 100 100 1	Da FLAG 							
DESCRIPTION (optional) Iron (01045) Manganese (01055) Boron (01020) Carbonate	STORET CODE 10 14 14 14 10 14 14 15 37 41	UNITS UNITS 16 2016 2016 2016 2016 2016 2016 201716 16 201716 16 1716 16 1716 16 1716 16 17 16 171716 16 17 16 171716 16 17 16 171716 16 17 16 17171716 16 17 16 1717171716 16 17 16 17	$ \begin{array}{c} & Da \\ FLAG \\ \hline \\ 22 \\ \hline \\ 49 \\ \hline \\ 22 \\ \hline \\ 22 \\ \hline \\ 22 \\ \hline \\ 22 \\ \hline \end{array} $							
DESCRIPTION {optional} Iron (01045) Manganese (01055) Boron (01020) Carbonate Bicarbonate	STORET CODE 10 14 10 14 14 15 10 14 10 14 10 14 14 15 14 10 14 10 14 15 14 10 14 10	UNITS UNITS 16 2016 2016 2016 2016 2016 2016 201716 16 201716 16 1716 16 1716 16 1716 16 17 16 171716 16 17 16 171716 16 17 16 171716 16 17 16 17171716 16 17 16 1717171716 16 17 16 17	Da $FLAG$ U_{22} U_{49} U_{22} U_{49} U_{22} U_{49} U_{22} U_{49} U_{22} U_{49} U_{22} U_{49}							
DESCRIPTION (optional) Iron (01045) Manganese (01055) Boron (01020) Carbonate Bicarbonate Phenol_Alk	STORET CODE 10 14 14 14 14 14 14 14 14	UNITS UNITS 16 2043 4716 2043 4716 2016 16 4716 16 16 16 1710 16 17 16 1710 10 10 10 10 10 10 10	Da $FLAG$ U_{22} U_{49} U_{22} U_{49} U_{22} U_{49} U_{22} U_{49} U_{22} U_{49} U_{22} U_{49} U_{22}							
DESCRIPTION (optional) Iron (01045) Manganese (01055) Boron (01020) Carbonate Bicarbonate Phenol_Alk. Total_Alk.	STORET CODE $ \begin{array}{c} & & & \\ $	UNITS UNITS 16 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 16 $1/1$ $1/116$ $1/1$ $1/1$ $1/116$ $1/1$ $1/1$ $1/110$ $1/1$ $1/1$ $1/110$ $1/1$ $1/1$ $1/110$ $1/1$ $1/1$ $1/110$ $1/1$ $1/1$ $1/110$ $1/1$ $1/1$ $1/110$ $1/1$ $1/$	Da FLAG C_{22} C_{49}							
DESCRIPTION (optional) Iron (01045) Manganese (01055) Boron (01020) Carbonate Bicarbonate Phenol_Alk. Total_Alk. Specific_Conductance	STORET CODE $ \begin{array}{c} & & & & \\ & & & & & \\ & & & & & \\ & & & &$	UNITS UNITS 16 20 16 20 14_3 47 16 2016 16 14 14716 16 14 14716 16 14 14716 16 14 14716 16 14 14716 16 14 14716 16 14 14716 16 14 14716 16 14 14716 16 14 14716 14716 14716 14716 14716 14716 14716 14716 14716 14716 14716 14716 14716 14716 14716 14716 14714716 14714716 14714716 147	Da $FLAG$ U_{22} U_{49} U_{22} U_{22} U_{23}							
DESCRIPTION (optional) Iron (01045) Manganese (01055) Boron (01020) Carbonate Bicarbonate Phenol_Alk Total_Alk. Specific_Conductance Redox pH	STORET CODE $ \begin{array}{c} & & & & \\ & & & & & \\ & & & & & \\ & & & &$	UNITS UNITS 16 20 143 47 16 20 143 47 16 20 16 20 17 20 16 20 16 20 17 20 16 20 17 20 17 20 16 20 17 20 17 20 17 20 16 20 17	Da FLAG $\begin{array}{c} & & \\ &$	VALUE 1_{24} 1_{35} 1_{51} $1_{$						
DESCRIPTION (optional) Iron (01045) Manganese (01055) Boron (01020) Carbonate Bicarbonate Phenol Alk. Total Alk. Specific Conductance Redox	STORET CODE $ \begin{array}{c} & & & & \\ & & & & & \\ & & & & & \\ & & & &$	UNITS UNITS 16 20 16 2	Da $FLAG$ U_{22} U_{49} U_{22} U_{22} U_{23}	VALUE 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} 1_{25} 1_{24} 1_{25} $1_{$						

N. 100 .

TWDB-0449

este, as

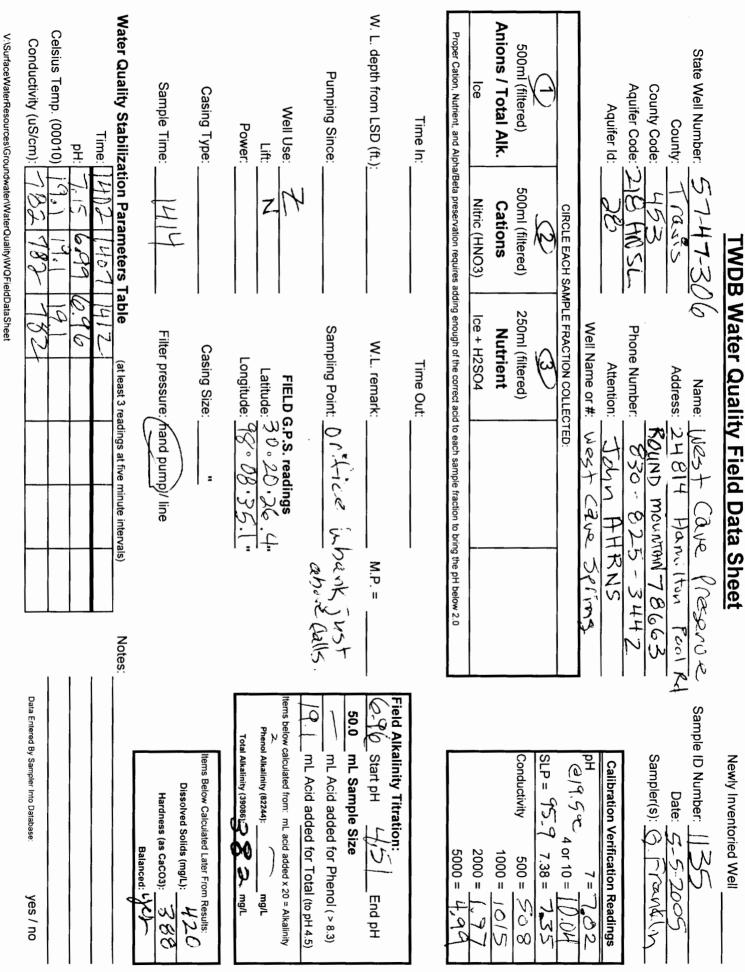
APP000277

1980 - 1994 -

Lower Colorado River Authority

ENVIRONMENTAL LABORATORY

3600 Lake Austin Blvd. Austin, Texas 78703 • (512) 473-3374


LAB ID: 8900951 FACILITY: WQMP ACCT NO: 15825000000 LCRA		PLE TYPE: GROUNDWA	GWMP	DATE REPORTED: 07/31/89 DATE RECEIVED: 05/10/89
LOCATION ID: WESTCAVE	- TRAVIS			SAMPLE DATE: 05/10/89 SAMPLE TIME: 1345 DEPTH:
PARAMETER	RESULTS	UNITS	METHOD #	COMMENTS
Alkalinity, bicarb.	362	mg/L	SM403	
Alkalinity, Carbonate		ng/L	310.2	
Barium, Dissolved	0.09	mg/L	E200.7	
Boron, Dissolved	<0.01	mg/L	E200.7	
Calcium, Dissolved			E200.7	
Carbon, Purgeable	0.20		E415.2	
Carbon, Tot. Organic			E415.2	
Chloride	18		E325.2	
Coliform, Fecal	38	/100 ml		#colonies below
				ideal plate count
Fluoride	0.3	mg/L	E340.2	
Iron, Dissolved	<0.01	mg/L	E200.7	
Magnesium, Dissolved	33.60	mg/L	E200.7	
Nitrogen, Kjeldahl	0.13	mg/L	E351.2	
Nitrogen, ammonia	0.01	mg/L	E350.1	
Nitrogen, nitrate	1.20	mg/L	E353.2	
Nitrogen, nitrite	<0.01	mg/L	E353.2	
Phosphorus, ortho	<0.01	mg/L	E365.1	
Potassium, Dissolved	1.50	mg/L	E200.7	
Residue, Filt TDS	384	mg/L	E160.1	
Silicon, Dissolved	5.88	mg/L	E200.7	
Sodium, Dissolved	13.20	mg/L	E200.7	
Sulfate	12	mg/L	E375.2	
TOX Halogens, Tot.Org	14	ug/L	E9020	KEY PUNCHED
pH, Laboratory	7.57	S.U.	E150.1	1

Lusa

BUCK HENDERSON LABORATORY SUPERVISOR

2

Spring Data Sheet Spring Name Westcave Spring Date 5/5/05 _ Time_ 10:30 AM GPS: Lat. N 30° 20' 26.4" Long. V 780835.1 GPS Name WAAS enabled (N) 30 GPJ 48.45 8486 Accuracy:___ Elevation___ Personnel Nowis, Helson, Freuklin, Lervie County_ Travis Tributary to: Pedenales River Basin_ Colorado Kick-net Invert sample ID Fish Sample ID ~ 70 Weather Conditions , clardy Setting Springs bureath rock ledges M internet kut enorge tim beds, - Draminger separated by stream aistertia lave baldas en covered ledge \$ 50-60 ft. into lane pool. Permite Aport E Condhemen Penn. Pool shaded by Bald cypriss, Sylamore, nardenhan spanish oak walnut et Covend w evoded into head of headwater and lage raks that slowled of deep grotto Shin oak - Crewdul fans & Amblystegium, Other springs ison from rive with on pool other Collapsed Botto Emicting Notes * water more son in pool ~ 3 ft. buy Jaw · Rmerges On Creek L.S. them Salamander Survey (indicate length of reach surveyed, cover type, time surveyed, and # observed): 111, 15:00, 10:21, 11:21 -7 & Jaknauder 12:21, 15:00 * spring run habitat below pool and side springs surveyed - abundant lent little = sitt · 3 ferns Collected Water Quality Spring ON West side I Location falls 3 in. Depth 19.06 Temp (°C) 6.86 PH 5.01 D.O. (mg/L)5 ÷. 54,4% s. 1875 . D.O. Sat. (%) 753.4 SpCond (µmhos) 0.4822 TDS 306

826

Norn

APP000280

Date:

Final Analysis Report

CLIENT:	Texas Water Dev	elopment Board	ent Board Client Sample ID: 57-47-306							
Lab Order:	0505155	File No: 37784								
Project:	TWDB FY05			Col	lection Date:	5	/5/2005 2.	14·00 PM		
Lab ID:	0505155-001						ROUNDV			
	0505155-001									
Analyses		Storet Resi	ılt Qual	PQL	Units	DF	Batch ID	Date A	nalyzed	
ICP METALS	DISSOLVED		E200	0.7				Analyst:	тн	
Calcium		97.	5	0.204	mg/L	1	33479	5/9/2005 5:58	:19 PM	
Magnesium		35.	0	0.204	mg/L	1	33479	5/9/2005 5:58	:19 PM	
Potassium		0.83	0	0.204	mg/L	1	33479	5/9/2005 5:58	:19 PM	
Sodium		11.	2	0.714	mg/L	1	33479	5/9/2005 5:58	:19 PM	
ICP METALS	DISSOLVED		E200	0.7				Analyst:	тн	
Boron		8	5	51	µg/L	1	33480	5/9/2005 5:58	:19 PM	
Iron		N	C	51	µg/L	1	33480	5/9/2005 5:58	:19 PM	
Strontium		34	7	20	µg/L	1	33480	5/9/2005 5:58	:19 PM	
CPMS DISS	OLVED METALS		E20	0.8				Analyst:	sw	
Aluminum		N	C	4.08	µg/L	1	33572	5/13/2005		
Antimony		N	D	1.02	µg/L	1	33572	5/13/2005		
Arsenic		N	D	2.04	µg/L	1	33572	5/13/2005		
Barium		72.	6	1.02	μg/L	1	33572	5/13/2005		
Beryllium		N	D	1.02	µg/L	1	33572	5/13/2005		
Cadmium		N	D	1.02	µg/L	1	33572	5/13/2005		
Chromium		2.2	3	1.02	µg/L	1	33572	5/13/2005		
Cobalt		N	D	1.02	µg/L	1	33572	5/13/2005		
Copper		1.1	1	1.02	µg/L	1	33572	5/13/2005		
Lead		N	D	1.02	μg/L	1	33572	5/13/2005		
Lithium		4.4	0	2.04	μg/L	1	33572	5/13/2005		
Manganese		N	D	1.02	μg/L	1	33572	5/13/2005		
Molybderium		N	D	1.02	μg/L	1	33572	5/13/2005		
Selenium		N		4.08	µg/L	1	33572	5/13/2005		
Thallium		N		1.02	µg/L	1	33572	5/13/2005		
Vanadium		3.6		1.02	µg/L	1	33572	5/13/2005		
Zinc		10		4.08	μg/L	1	33572	5/13/2005		
CATION/ANI	ON BALANCES		CALCUL	ATION				Analyst:	AMJ	
Cation/Anion	Balance	Balarice	d	0	Date	1	33685	5/19/2005		
ANIONS BY	ION CHROMATOGRA	PHY, DISSOLVE	E30	00				Analyst:	WR	
Bromide Dise	solved	0.1	0	0.10	mg/L	5	33673	5/18/2005 10	14:00 PM	
Chloride Dise	solved	13	.6	5.00	mg/L.	5	33673	5/18/2005 10:	14:00 PM	
Fluoride Diss	solved	0.4	0	0.05	mg/L.	5	33673	5/18/2005 10:	:14:00 PN	
Sulfate Disso	olved	14	.8	5.00	mg/L	5	33673	5/18/2005 10	:14:00 PN	
ALKALINITY			M232					Analyst:	WR	
	nenolphthalein	N	D	0	mg/L CaCO3		33664	5/18/2005		
Alkalinity, To	otal (As CaCO3)	37	'9	2	mg/L CaCO3	1	33664	5/18/2005		
Qualifiers:	* Value exceeds Max	imum Contaminant Level		В	Analyte detecte	xd in	the associate	ed Method Blan	<	
	E Value above quanti	tation range		н	Holding times t	for p	reparation of	analysis exceed	led	
	J Analyte detected be	low quantitation limits		ND	Not Detected a	t the	Reporting L	imit		

S Spike Recovery outside accepted recovery limits

Page 1 of 2

LCRA Environmental Laboratory Services

Date: 20-May-05

CLIENT:	bard	Client Sample ID: 57-47-306								
Lab Order:	0505155	File No:	37784							
Project: TWDB FY05				Collection Date: 5/5/2005 2:14:00 PM						
Lab ID:	0505155-001		Matrix: GROUNDWATER							
Analyses		Storet	Result Qual	PQL	Units	DF	Batch ID	Date A	nalyzed	
NITRATE AND			E353					Analyst	LL	
Nitrogen, Nitrat	e & Nitrite		0.5233	0.0200	mg/L	1	33518	5/11/2005		
SILICA			E37().1				Analyst	LL	
Silica, Dissolved (as SiO2)			16.9	0.50	mg/L	1	33558	5/13/2005		

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Ε	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		b

Page 2 of 2

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-307

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747307
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.344167
Latitude (degrees minutes seconds)	30° 20' 39" N
Longitude (decimal degrees)	-98.147778
Longitude (degrees minutes seconds)	098° 08' 52" W
Coordinate Source	+/- 1 Second
Aquifer Code	218HNSL - Hensell Sand Member of Travis Peak Formation
Aquifer	Trinity
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	860
Land Surface Elevation Method	Interpolated From Topo Map
Well Depth (feet below land surface)	83
Well Depth Source	Memory of Owner
Drilling Start Date	
Drilling End Date	0/0/1950
Drilling Method	
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	Domestic
Water Level Observation	None
Water Quality Available	Yes
Pump	Piston
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	
Surface Completion	
Owner	Peter W. Agnell
Driller	
Other Data Available	Microlog
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	
Last Update Date	3/4/2020

Remarks

Casing - No Data			
Well Tests - No Data			
Lithology - No Data			
Annular Seal Range - No Data			
Borehole - No Data	Plugged	l Back - No Data	
Filter Pack - No Data		Packers - No Data	

Water Level Measurements

No Data Available

Water Quality Analysis

2000['] lab

Sample Date:	8/20/1991	Sample Time:	1400	Sample Number:	1	Collection Entity:	Texas Water Development Board
Sampled Aquif	er: Hensell	Sand Member of Tr	avis Pea	k Formation			
Analyzed Lab:	TWDB Field	Analysis		R	eliability	: Sampled using T	WDB protocols but through Hach DR-

Collection Remarks: No Data


Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
39086	ALKALINITY FIELD DISSOLVED AS CACO3		352	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		352	mg/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		429.56	mg/L	
00910	CALCIUM (MG/L)		90.18	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00940	CHLORIDE, TOTAL (MG/L AS CL)		29.6	mg/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.2	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		369	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)		25	ug/L	
00920	MAGNESIUM (MG/L)		35.07	mg/L	
00618	NITRATE NITROGEN, DISSOLVED (MG/L AS N)		0.38	mg/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		1.68	mg/L	
00090	OXIDATION REDUCTION POTENTIAL (ORP), MILLIVOLTS		117	MV	
00400	PH (STANDARD UNITS), FIELD		6.73	SU	
00671	PHOSPHORUS, DISSOLVED ORTHOPHOSPHATE (MG/L AS P)	<	0.007	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
00955	SILICA, DISSOLVED (MG/L AS SI02)		11.92	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		717	MICR	
00945	SULFATE, TOTAL (MG/L AS SO4)		14.89	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		23	С	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

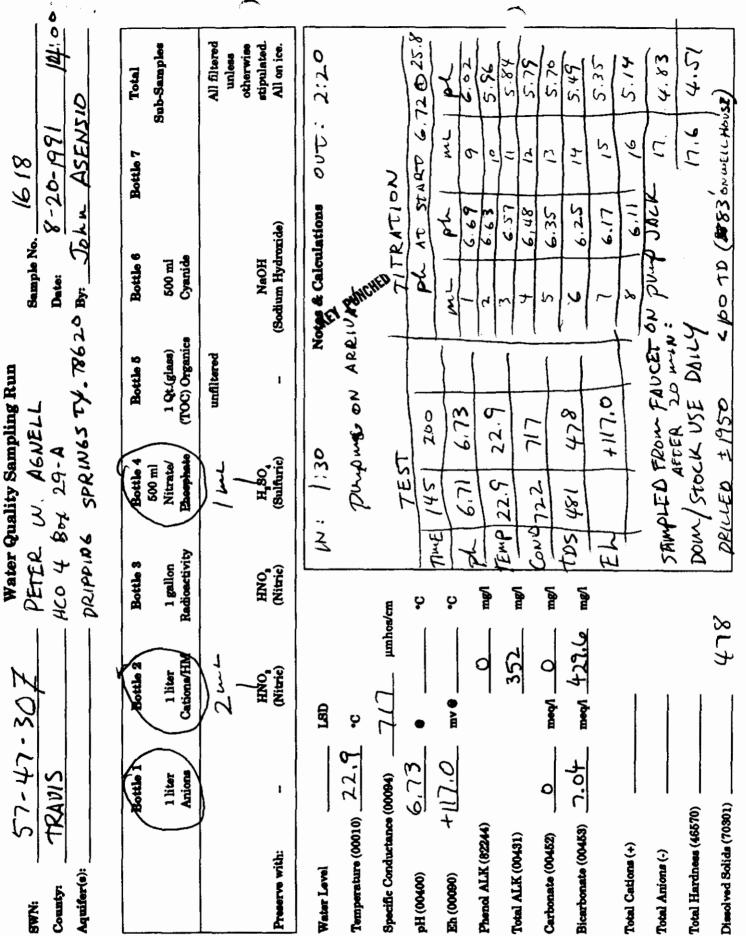
GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData @twdb.texas.gov.

NEW WELL	
Texas Water Development Board Well Schedule	
State Well No. 57 47 307 Previous Well No.	y TRAVIS 453
River Basin COLORADO [4] Zone 3 Region [2] Lat. 3020 38 Long.	
Owner's Well No Location 1/4, 1.4, Section, Bloc	ek, Survey
Owner PETER W AGNELL Driller	
Address HCO 4 Boy 29 - A DRIPPING SPRINGS TX Tenant/Oper Source of	
Date Drilled 1950 Depth B3 Depth Datum Altitude	
Aquifer Type	Jeer
Well Construction Method Casing Construction Method	
Completion Screen STEEL S	Casing or Blank Pipe (C) Well Screen or Slotted Zone (S)
Lift Data Pump Mfr Type prof JACK P No. Stages	Open Hole (O) Cemented from to
Bowls Diamin. Setting77ft.Column Diamin.	Diam. Setting (feet) (in.) From To
Motor MfrFuel or ELEC E Horsepower 33 2	6
Yield Flow GPM Pump GPM Meas., Rept., Est Date 3 Performance Test Date Length of Test Production GPM 4	
Static Levelft. Pumping Levelft. Drawdownft. Sp.CapGPM/ft.	
Quality (Remarks Graphing Lever R. Brawdown R. Sp.Cap Graphing Graphing Lever 6	╾╊┽╼╊╌┾╌┽╼╊╌┤
Water Use Primary DOM H Secondary STOCK S Tertiary	╺╼┶┼╼┲╼┾┼┼╋╍┾┼╍┽╸┥
6	╾╋┽╼╋┾┾┽╉┾┼┿┥
Other Data Available Water Level Water Quality Y Logs Other Data Other Data	┝╋┽╉╍┶┾┽╉╶┽┽┽┥
Date	┝╌╂╼╉╼╊╾┾╌┼╾┩
Water Levels Date 12 Meas. 12	
Date Meas • 13	
14	┝╋┿┲╌┾┼┿╋┿╍┾┥
16	┝╋┽╋┾┾┾╋┽┼┿┥
Recorded By John ASENSID Date Record Collected 08 20 1991 (20	mex) Benoming Agency
	max) Reporting Agency O
3	
▲	
5	Aquifer
6	Well No. 57.47 307
11/21/89	APP000287

-

TEXAS WATER DEVELOPMENT BOARD

.


.

Sample Numb	per /e	518		
Well Number <u>57-47-</u>	307	Date/Time	8-20-1991 1	4:00
County TRAVIS	•		•	
Owner's Name PETER V	V. AGN	VELL		
Address HCO 4 Box 29			eings tx 786	20
Date Drilled	Depth	83	_ Yield	
Use Dom / STOCK	Send c	opy to own	er: _/_ Yes	No
Collection point <u>FAUCET</u>	ON PUMP	After pum	ping $\frac{1}{2}$ h	ours
pH 6.73 Eh +117.0 spec	. cond. <u>7</u>	17_ TDS 4	478 Temp. 22.	<u>l</u> ·c
Field Alkalinity: Pheno	ol _O	mg/l	Total <u>352</u>	mg/l
Date Analyzed <u>8/28/91</u>		_ Analyst	B.E. Beynon	
Calcium	90,18	mcr/1		
Chloride	29.6			
Fluoride	0.20		KEY PUNCHED	
Iron (01046)				
Magnesium	35.07			
Nitrate $(q; N)$	0.38	mg/1		
Orthophosphate (00671)	<0.02	mg/l		
(qs f0q) silica	11.92	mg/l		
Sulfate	14.89	_ mg/1		

Results from the Ground Water Monitoring Unit, Texas Water Development Board, P.O. Box 13231, Austin, TX 78711.

and the second second

~

APP000290

8-10008

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747308
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.34
Latitude (degrees minutes seconds)	30° 20' 24" N
Longitude (decimal degrees)	-98.137778
Longitude (degrees minutes seconds)	098° 08' 16" W
Coordinate Source	+/- 1 Second
Aquifer Code	
Aquifer	Unassigned
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	695
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	
Well Depth Source	
Drilling Start Date	
Drilling End Date	
Drilling Method	
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	
Water Level Observation	None
Water Quality Available	No
Pump	
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Hammetts Crossing Spring 2
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	U.S. Geological Survey
Created Date	11/6/2003
Last Update Date	3/4/2020

Remarks		
Casing - No Data		
Well Tests - No Data		
Lithology - No Data		
Annular Seal Range - No Data		
Borehole - No Data	Plugged Back - No Data	
Filter Pack - No Data	Packers - No Data	

Water Level Measurements

No Data Available

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

Scanned Documents do not exist for this well

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747309
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.341389
Latitude (degrees minutes seconds)	30° 20' 29" N
Longitude (decimal degrees)	-98.1375
Longitude (degrees minutes seconds)	098° 08' 15" W
Coordinate Source	+/- 1 Second
Aquifer Code	
Aquifer	Unassigned
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	697
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	
Well Depth Source	
Drilling Start Date	
Drilling End Date	
Drilling Method	
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	
Water Level Observation	None
Water Quality Available	No
Pump	
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Hammetts Crossing Spring 1
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	U.S. Geological Survey
Created Date	11/6/2003
Last Update Date	3/4/2020

Remarks			
Casing - No Data			
Well Tests - No Data			
Lithology - No Data			
Annular Seal Range - No Data			
Borehole - No Data	Plugged I	Back - No Data	
Filter Pack - No Data		Packers - No Data	

Water Level Measurements

No Data Available

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

Scanned Documents do not exist for this well

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747310
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Barton Springs/Edwards Aquifer CD
Latitude (decimal degrees)	30.3413611
Latitude (degrees minutes seconds)	30° 20' 28.9" N
Longitude (decimal degrees)	-98.1281111
Longitude (degrees minutes seconds)	098° 07' 41.2" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	Assigned by Professional Geoscientist using all available documentation
Land Surface Elevation (feet above sea level)	831
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	240
Well Depth Source	Driller's Log
Drilling Start Date	12/23/2016
Drilling End Date	3/10/2017
Drilling Method	Air Rotary
Borehole Completion	Filter Packed

Well Type	Withdrawal of Water
Well Use	Public Supply
Water Level Observation	Other Cooperator Recorder Well
Water Quality Available	Yes
Pump	Submersible
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	Positive Displacement
Surface Completion	Surface Slab Installed
Owner	Hamilton Pool Preserve
Driller	Hydro Resources Mid-Continent Inc.
Other Data Available	Drillers Log; Other
Well Report Tracking Number	446767
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	1
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	3/27/2017
Last Update Date	7/22/2019

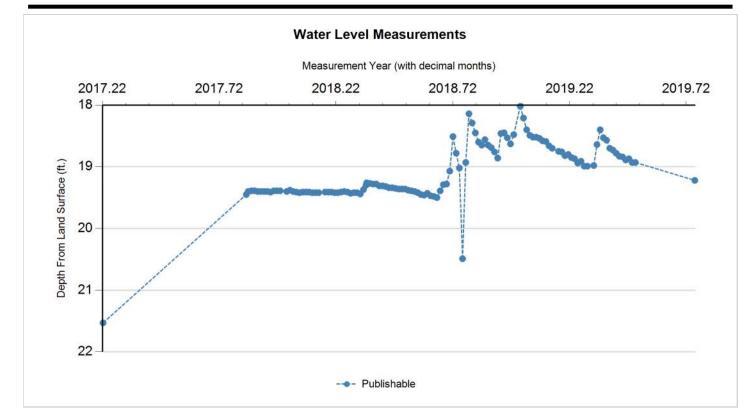
Remarks This well is equipped with a pump which may turn on during data collection. Be advised that some water level measurements for this well may be influenced by pumping. Yield/Specific Capacity: 3/23/2017 1200-1415 Start 4-5 gpm 1230 drawdown 92.5 feet; 3.25 gpm; SC= 0.05 1300 drawdown 101 feet SC = 0.03 1320 2 gpm Cementing report

Casing											
Diameter (in.)	Casing Type	Casing I	Material	Schedule	•	Gauge		Top Depth (ft.)		Bottom Depth (ft.)	
14	Blank	Steel							0	12	
6.9	Blank	Plastic (F	PVC)	SDR-17					0	20	
6.9	6.9 Screen Plastic		Plastic (PVC)				0.035		20	60	
6.9	Blank	Plastic (F	PVC)	SDR-17					60	200	
6.9	Screen	Plastic (F	PVC)				0.035		200	220	
Well Tests											
Test Date	Test Type		Yield (gallon	s per minute)	Drawdow	/n (ft.)	Test Ho	ours			

5

Estimated

2017-03-10



Lithology					
Top Depth (ft.)	Bottom Depth (ft.)	Description			
C)	8 Topsoil & loose rock	(
8	3 4	0 Yellow limestone (H	20)		
40	5	0 Grey Limestone			
50	11	5 Grey Clay & Limeste	one		
115	5 28	0 Reddish Brown ?			
280) 41	0 Grey Clay - Sandsto	one Str	aks ?	
Annular Seal F	Range - No Data				
Borehole				Plugged	l Back - No Data
Diameter (in.)	Top Depth (ft.)	Bottom Depth (ft.)	1		
17.5	0	12]		
12.25	0	240]		
Filter Pack					Packers - No Data
	Top Depth (ft.)	Bottom Depth (ft.)	Size		
Filter Material					
Filter Material Sand	20	60	12x20		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Р	3/23/2017	1100	21.53		809.47	1	Groundwater Conservation District	Electric Line	1	
Р	11/7/2017	1430	19.45	(2.08)	811.55	1	Texas Water Development Board	Electric Line		
Ρ	11/10/2017	0300	19.4	(0.05)	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/15/2017	0000	19.39	(0.01)	811.61	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/20/2017	1200	19.39	0.00	811.61	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/25/2017	0200	19.4	0.01	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/30/2017	1300	19.4	0.00	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/5/2017	1400	19.4	0.00	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/10/2017	1400	19.4	0.00	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/15/2017	1200	19.41	0.01	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	12/20/2017	1400	19.39	(0.02)	811.61	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/25/2017	1100	19.39	0.00	811.61	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/30/2017	0300	19.39	0.00	811.61	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/5/2018	1400	19.4	0.01	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/10/2018	1400	19.38	(0.02)	811.62	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/15/2018	1300	19.4	0.02	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/20/2018	0000	19.41	0.01	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/25/2018	0100	19.42	0.01	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/30/2018	1400	19.41	(0.01)	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/5/2018	1300	19.41	0.00	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/10/2018	0000	19.41	0.00	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/15/2018	0000	19.42	0.01	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/20/2018	1300	19.42	0.00	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/25/2018	1400	19.42	0.00	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/5/2018	0200	19.41	(0.01)	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/10/2018	0000	19.41	0.00	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/15/2018	1300	19.41	0.00	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/20/2018	1200	19.42	0.01	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/25/2018	0300	19.42	0.00	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	3/30/2018	0100	19.41	(0.01)	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/5/2018	0300	19.4	(0.01)	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/10/2018	1500	19.41	0.01	811.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/15/2018	0500	19.43	0.02	811.57	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/20/2018	1500	19.42	(0.01)	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/25/2018	1800	19.42	0.00	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/30/2018	0300	19.44	0.02	811.56	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/5/2018	0000	19.37	(0.07)	811.63	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	5/9/2018		19.3	(0.07)	811.7	1	Texas Water Development Board	Electric Line		
Ρ	5/10/2018	1100	19.26	(0.04)	811.74	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/15/2018	1700	19.27	0.01	811.73	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/20/2018	0200	19.28	0.01	811.72	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/25/2018	2200	19.28	0.00	811.72	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/30/2018	0200	19.31	0.03	811.69	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/5/2018	0000	19.31	0.00	811.69	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/10/2018	0000	19.32	0.01	811.68	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/15/2018	0000	19.34	0.02	811.66	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/20/2018	0000	19.34	0.00	811.66	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/25/2018	0000	19.35	0.01	811.65	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/30/2018	0000	19.36	0.01	811.64	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	7/5/2018	0000	19.36	0.00	811.64	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/10/2018	0000	19.36	0.00	811.64	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/15/2018	0000	19.38	0.02	811.62	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/20/2018	0000	19.39	0.01	811.61	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/25/2018	0000	19.4	0.01	811.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/30/2018	0000	19.42	0.02	811.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/5/2018	0000	19.45	0.03	811.55	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/10/2018	0000	19.46	0.01	811.54	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/15/2018	0000	19.43	(0.03)	811.57	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/20/2018	0000	19.47	0.04	811.53	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/25/2018	0000	19.48	0.01	811.52	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/30/2018	0000	19.5	0.02	811.5	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/5/2018	0000	19.39	(0.11)	811.61	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/10/2018	0000	19.29	(0.10)	811.71	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/15/2018	0000	19.28	(0.01)	811.72	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/20/2018	0000	19.07	(0.21)	811.93	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/25/2018	0000	18.51	(0.56)	812.49	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/30/2018	0000	18.78	0.27	812.22	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/5/2018	0000	19.02	0.24	811.98	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	10/10/2018	1146	20.49	1.47	810.51	1	Texas Water Development Board	Electric Line		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	10/15/2018	0000	18.93	(1.56)	812.07	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/20/2018	0000	18.14	(0.79)	812.86	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/25/2018	0000	18.29	0.15	812.71	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/30/2018	0000	18.45	0.16	812.55	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/5/2018	0000	18.6	0.15	812.4	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/10/2018	0000	18.65	0.05	812.35	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/15/2018	0000	18.56	(0.09)	812.44	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/20/2018	0000	18.65	0.09	812.35	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/25/2018	0000	18.69	0.04	812.31	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/30/2018	0000	18.76	0.07	812.24	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/5/2018	0000	18.86	0.10	812.14	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/10/2018	0000	18.46	(0.40)	812.54	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/15/2018	0000	18.45	(0.01)	812.55	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/20/2018	0000	18.53	0.08	812.47	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/25/2018	0000	18.63	0.10	812.37	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/30/2018	0000	18.48	(0.15)	812.52	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/5/2019	0000	18.02	(0.46)	812.98	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/10/2019	0000	18.21	0.19	812.79	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/15/2019	0000	18.4	0.19	812.6	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	1/20/2019	0000	18.49	0.09	812.51	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/25/2019	0000	18.52	0.03	812.48	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/30/2019	0000	18.52	0.00	812.48	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/5/2019	0000	18.54	0.02	812.46	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/10/2019	0000	18.58	0.04	812.42	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/15/2019	0000	18.59	0.01	812.41	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/20/2019	0000	18.66	0.07	812.34	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/25/2019	0000	18.7	0.04	812.3	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/5/2019	0000	18.75	0.05	812.25	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/10/2019	0000	18.76	0.01	812.24	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/15/2019	0000	18.82	0.06	812.18	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/20/2019	0000	18.8	(0.02)	812.2	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/25/2019	0000	18.85	0.05	812.15	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/30/2019	0000	18.87	0.02	812.13	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/5/2019	0000	18.94	0.07	812.06	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/10/2019	0000	18.91	(0.03)	812.09	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/15/2019	0000	18.99	0.08	812.01	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/20/2019	0000	18.99	0.00	812.01	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/30/2019	0000	18.98	(0.01)	812.02	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	5/5/2019	0000	18.64	(0.34)	812.36	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/10/2019	0000	18.4	(0.24)	812.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/15/2019	0000	18.53	0.13	812.47	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/20/2019	0000	18.57	0.04	812.43	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/25/2019	0000	18.7	0.13	812.3	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/30/2019	0000	18.73	0.03	812.27	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/5/2019	0000	18.78	0.05	812.22	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/10/2019	0000	18.83	0.05	812.17	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/15/2019	0000	18.84	0.01	812.16	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/20/2019	0000	18.89	0.05	812.11	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/25/2019	0000	18.87	(0.02)	812.13	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/30/2019	0000	18.93	0.06	812.07	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/5/2019	0000	18.93	0.00	812.07	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	10/8/2019	1018	19.22	0.29	811.78	1	Texas Water Development Board	Electric Line		

Code Descriptions

Status Code	Status Description	Ren	mark ID	Remark Description
Ρ	Publishable	1		Accurately reflect water-level conditions

Water Quality Analysis

Sample Date:	3/23/2017	Sample Time:	1415	Sample Number:	1	Collection Entity:	Barton Springs/Edwards Aquifer CD
Sampled Aquif	er: Cow Cre	ek Limestone					
Analyzed Lab:	LCRA - Lowe	er Colorado River A	uthority	Re	liability	: Sampled using T	WDB protocols
Collection Rem	narks: No Da	ata					

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		324	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB	<	20	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB	<	20	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)	<	20	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		324	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		-2.66	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		57.1	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		395.392	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)	<	50	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)	<	0.02	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		91.5	mg/L	
28004	CARBON-14 DISS APPARENT AGE (YEARS BP)		40	Y-BP	
82172	CARBON-14 FRACTION MODERN		0.9949		0.0036
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		9.5	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		4.75	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1	ug/L	
82081	DELTA CARBON 13 C13/C12 PER MIL		-10.4	0/00	
50791	DEUTERIUM, EXPRESSED AS PERMIL VSMOW		-26.2	0/00	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.261	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		349.455	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		4.87	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		29.2	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)		18.4	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)		1.57	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		2.072	mg/L	

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.468	mg/L	
50790	OXYGEN-18, EXPRESSED AS PERMIL VSMOW		-4.59	0/00	
00400	PH (STANDARD UNITS), FIELD		7.8	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.75	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		16.6	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.227		
00932	SODIUM, CALCULATED, PERCENT		5.726	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		9.73	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		666	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		588	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		14	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		23.08	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		369.615	mg/L	
07012	TRITIUM IN WATER (TRITIUM UNITS)		1.73	TU	0.09
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)		1.73	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		4.14	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)		75.9	ug/L	

Water Quality Analysis

 Sample Date:
 7/16/2019
 Sample Time:
 1341
 Sample Number:
 1
 Collection Entity:
 Texas Water Development Board

 Sampled Aquifer:
 Cow Creek Limestone
 Reliability:
 Sampled using TWDB protocols

Collection Remarks: No Data

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		309	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		309	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)		7.59	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		-2.97	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		57.7	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		377.087	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		66	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.0586	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		90.3	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		6.92	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		2.83	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)		1.49	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.354	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		335.631	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		4.28	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		26.6	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	1	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	<	1	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		3.493	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.789	mg/L	
00400	PH (STANDARD UNITS), FIELD		6.94	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.52	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		15.4	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.183		
00932	SODIUM, CALCULATED, PERCENT		4.765	РСТ	
00930	SODIUM, DISSOLVED (MG/L AS NA)		7.7	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		528	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		484	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		12.9	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		21.9	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		351.085	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)		1.13	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		4.17	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)		17	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

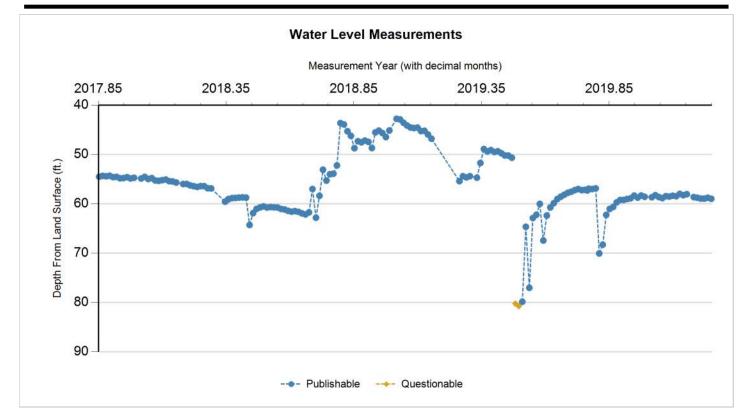
Scanned Documents do not exist for this well

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747312
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.3396556
Latitude (degrees minutes seconds)	30° 20' 22.76" N
Longitude (decimal degrees)	-98.1282333
Longitude (degrees minutes seconds)	098° 07' 41.64" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	
Land Surface Elevation (feet above sea level)	833
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	244
Well Depth Source	Another Government Agency
Drilling Start Date	
Drilling End Date	
Drilling Method	
Borehole Completion	


Well Type	Withdrawal of Water
Well Use	Public Supply
Water Level Observation	Other Cooperator Recorder Well
Water Quality Available	No
Pump	Submersible
Pump Depth (feet below land surface)	
Power Type	Electric Motor
Annular Seal Method	
Surface Completion	
Owner	Travis County
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Texas Water Development Board
Created Date	2/2/2018
Last Update Date	3/4/2020

Remarks This well is equipped with a pump which may turn on during data collection. Be advised that some water level measurements for this well may be influenced by pumping.

Casing - No Data		
Well Tests - No Data		
Lithology - No Data		
Annular Seal Range - No Data		
Borehole - No Data	Plugged	Back - No Data
Filter Pack - No Data		Packers - No Data

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	11/10/2017	1700	54.52		778.48	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/15/2017	0700	54.34	(0.18)	778.66	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/20/2017	2000	54.42	0.08	778.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/25/2017	0000	54.32	(0.10)	778.68	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/30/2017	0500	54.6	0.28	778.4	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/5/2017	0000	54.55	(0.05)	778.45	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/10/2017	0000	54.83	0.28	778.17	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/15/2017	0000	54.78	(0.05)	778.22	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/20/2017	1900	54.61	(0.17)	778.39	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/25/2017	2300	54.86	0.25	778.14	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	12/30/2017	0600	54.73	(0.13)	778.27	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/5/2018	2000	54.87	0.14	778.13	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/10/2018	1800	54.55	(0.32)	778.45	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/15/2018	1800	54.98	0.43	778.02	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/20/2018	1800	54.79	(0.19)	778.21	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/25/2018	1600	55.27	0.48	777.73	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/30/2018	2000	55.35	0.08	777.65	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/5/2018	2200	55.21	(0.14)	777.79	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/10/2018	0700	55.08	(0.13)	777.92	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/15/2018	1900	55.42	0.34	777.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/20/2018	0000	55.48	0.06	777.52	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/25/2018	0400	55.69	0.21	777.31	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/5/2018	0000	55.99	0.30	777.01	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/10/2018	1800	55.98	(0.01)	777.02	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/15/2018	2000	56.27	0.29	776.73	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/20/2018	0000	56.43	0.16	776.57	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/25/2018	1800	56.58	0.15	776.42	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/30/2018	0000	56.42	(0.16)	776.58	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/5/2018	2300	56.43	0.01	776.57	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	4/10/2018	0000	56.84	0.41	776.16	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/15/2018	0000	56.88	0.04	776.12	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/5/2018	2100	59.57	2.69	773.43	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	5/9/2018		59.15	(0.42)	773.85	1	Texas Water Development Board	Electric Line		
Ρ	5/10/2018	1900	59.03	(0.12)	773.97	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/15/2018	2100	58.84	(0.19)	774.16	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/20/2018	0300	58.81	(0.03)	774.19	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/25/2018	1800	58.75	(0.06)	774.25	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/30/2018	2000	58.7	(0.05)	774.3	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/5/2018	0000	58.75	0.05	774.25	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/10/2018	0000	64.29	5.54	768.71	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/15/2018	0000	61.89	(2.40)	771.11	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/20/2018	0000	61.03	(0.86)	771.97	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/25/2018	0000	60.73	(0.30)	772.27	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/30/2018	0000	60.53	(0.20)	772.47	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/5/2018	0000	60.75	0.22	772.25	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/10/2018	0000	60.66	(0.09)	772.34	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/15/2018	0000	60.71	0.05	772.29	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/20/2018	0000	60.75	0.04	772.25	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/25/2018	0000	61.04	0.29	771.96	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	7/30/2018	0000	61.15	0.11	771.85	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/5/2018	0000	61.43	0.28	771.57	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/10/2018	0000	61.59	0.16	771.41	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/15/2018	0000	61.49	(0.10)	771.51	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/20/2018	0000	61.63	0.14	771.37	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/25/2018	0000	61.95	0.32	771.05	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/30/2018	0000	62.15	0.20	770.85	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/5/2018	0000	61.74	(0.41)	771.26	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/10/2018	0000	57.01	(4.73)	775.99	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/15/2018	0000	62.82	5.81	770.18	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/20/2018	0000	58.38	(4.44)	774.62	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/25/2018	0000	53.09	(5.29)	779.91	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/30/2018	0000	55.3	2.21	777.7	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/5/2018	0000	54.01	(1.29)	778.99	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	10/10/2018	1200	53.9	(0.11)	779.1	1	Texas Water Development Board	Steel Tape		
Ρ	10/15/2018	0000	52.23	(1.67)	780.77	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/20/2018	0000	43.65	(8.58)	789.35	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/25/2018	0000	43.92	0.27	789.08	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/30/2018	0000	45.3	1.38	787.7	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/5/2018	0000	46.24	0.94	786.76	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	11/10/2018	0000	48.74	2.50	784.26	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/15/2018	0000	47.32	(1.42)	785.68	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/20/2018	0000	47.54	0.22	785.46	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/25/2018	0000	47.19	(0.35)	785.81	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/30/2018	0000	47.46	0.27	785.54	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/5/2018	0000	48.7	1.24	784.3	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/10/2018	0000	45.53	(3.17)	787.47	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/15/2018	0000	45.18	(0.35)	787.82	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/20/2018	0000	45.67	0.49	787.33	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/25/2018	0000	46.48	0.81	786.52	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/30/2018	0000	45.15	(1.33)	787.85	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/5/2019	0000	42.78	(2.37)	790.22	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/10/2019	0000	42.91	0.13	790.09	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/15/2019	0000	43.58	0.67	789.42	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/20/2019	0000	44.14	0.56	788.86	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/25/2019	0000	44.54	0.40	788.46	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/30/2019	0000	44.65	0.11	788.35	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/5/2019	0000	44.56	(0.09)	788.44	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/10/2019	0000	45.27	0.71	787.73	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	2/15/2019	0000	45.21	(0.06)	787.79	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/20/2019	0000	45.97	0.76	787.03	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/25/2019	0000	46.81	0.84	786.19	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/5/2019	0000	55.41	8.60	777.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/10/2019	0000	54.41	(1.00)	778.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/15/2019	0000	54.65	0.24	778.35	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/20/2019	0000	54.41	(0.24)	778.59	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	4/30/2019	0000	54.71	0.30	778.29	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/5/2019	0000	51.74	(2.97)	781.26	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/10/2019	0000	48.91	(2.83)	784.09	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/15/2019	0000	49.4	0.49	783.6	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/20/2019	0000	49.11	(0.29)	783.89	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/25/2019	0000	49.5	0.39	783.5	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	5/30/2019	0000	49.37	(0.13)	783.63	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/5/2019	0000	49.76	0.39	783.24	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/10/2019	0000	50.2	0.44	782.8	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/15/2019	0000	50.23	0.03	782.77	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	6/20/2019	0000	50.66	0.43	782.34	1	Texas Water Development Board	Recorder (Float or Transducer)		
Q	6/25/2019		80.21	29.55	752.79	1	Texas Water Development Board	Recorder (Float or Transducer)	2	Possibly a pumping level measuremen t.

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Q	6/30/2019		80.74	0.53	752.26	1	Texas Water Development Board	Recorder (Float or Transducer)	2	Possibly a pumping level measuremen t.
Ρ	7/5/2019	0000	79.84	(0.90)	753.16	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/10/2019	0000	64.66	(15.18)	768.34	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/15/2019	0000	77.02	12.36	755.98	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/20/2019	0000	62.89	(14.13)	770.11	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/25/2019	0000	62.24	(0.65)	770.76	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	7/30/2019	0000	60.02	(2.22)	772.98	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	8/5/2019	0000	67.44	7.42	765.56	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/10/2019	0000	62.38	(5.06)	770.62	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/15/2019	0000	60.74	(1.64)	772.26	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/20/2019	0000	59.88	(0.86)	773.12	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/25/2019	0000	59.04	(0.84)	773.96	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	8/30/2019	0000	58.56	(0.48)	774.44	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/5/2019	0000	58.16	(0.40)	774.84	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/10/2019	0000	57.78	(0.38)	775.22	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/15/2019	0000	57.55	(0.23)	775.45	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/20/2019	0000	57.23	(0.32)	775.77	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/25/2019	0000	57.01	(0.22)	775.99	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	9/30/2019	0000	57.24	0.23	775.76	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	10/5/2019	0000	57.17	(0.07)	775.83	1	Texas Water Development Board	Recorder (Float or Transducer)		
Р	10/8/2019	1227	57.3	0.13	775.7	1	Texas Water Development Board	Steel Tape		
Ρ	10/10/2019	0000	56.94	(0.36)	776.06	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/15/2019	0000	57.01	0.07	775.99	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/20/2019	0000	56.88	(0.13)	776.12	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/25/2019	0000	70.06	13.18	762.94	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	10/30/2019	0000	68.29	(1.77)	764.71	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/5/2019	0000	62.25	(6.04)	770.75	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/10/2019	0000	61.04	(1.21)	771.96	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/15/2019	0000	60.64	(0.40)	772.36	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/20/2019	0000	59.71	(0.93)	773.29	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/25/2019	0000	59.23	(0.48)	773.77	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	11/30/2019	0000	59.22	(0.01)	773.78	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/5/2019	0000	59.03	(0.19)	773.97	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/10/2019	0000	58.88	(0.15)	774.12	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/15/2019	0000	58.33	(0.55)	774.67	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/20/2019	0000	58.75	0.42	774.25	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/25/2019	0000	58.32	(0.43)	774.68	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	12/30/2019	0000	58.58	0.26	774.42	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/5/2020	0000	58.67	0.09	774.33	1	Texas Water Development Board	Recorder (Float or Transducer)		

Status Code	Date	Time	Water Level (ft. below land surface)	Change value in () indicates rise in level	Water Elevation (ft. above sea level)	Meas #	Measuring Agency	Method	Remark ID	Comments
Ρ	1/10/2020	0000	58.26	(0.41)	774.74	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/15/2020	0000	58.63	0.37	774.37	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/20/2020	0000	58.85	0.22	774.15	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/25/2020	0000	58.45	(0.40)	774.55	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	1/30/2020	0000	58.53	0.08	774.47	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/5/2020	0000	58.36	(0.17)	774.64	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/10/2020	0000	58.47	0.11	774.53	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/15/2020	0000	57.99	(0.48)	775.01	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/20/2020	0000	58.26	0.27	774.74	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	2/25/2020	0000	58.05	(0.21)	774.95	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/5/2020	0000	58.65	0.60	774.35	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/10/2020	0000	58.77	0.12	774.23	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/15/2020	0000	58.94	0.17	774.06	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/20/2020	0000	58.95	0.01	774.05	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/25/2020	0000	58.78	(0.17)	774.22	1	Texas Water Development Board	Recorder (Float or Transducer)		
Ρ	3/30/2020	0000	58.98	0.20	774.02	1	Texas Water Development Board	Recorder (Float or Transducer)		

Code Descriptions

Status Code	Status Description	R	emark ID	Remark Description
Р	Publishable	2		Pumping-level measurement
Q	Questionable			

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

County Trace S M.P. =	G.P.S Coordinates: <u>30 30 みっ</u> ち <u>98 0</u> State Well Number: <u>57-47-3</u>	
Reconstant Revenues	1 ¹⁰ , 1 0,7 0,7 1 0,7 2 1 0,7 2 1 0,7 2 1 0,7 2 1 0,7 2 1 0,7 2 1 0,7 2 1 0,7 2 1 0 1 2 10 10 10 10 10 10 10 10 10 10 10 10 10	S. O II II O BO HAM HOD CIREK

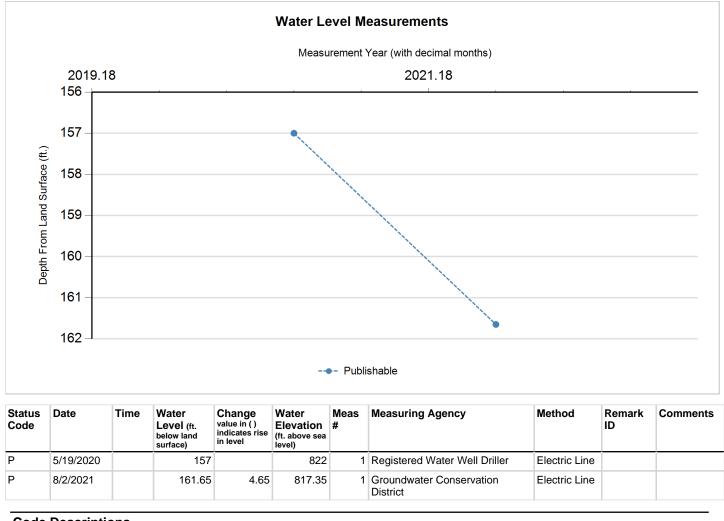
)

)

GWDB Reports and Downloads

Well Basic Details

Scanned Documents


State Well Number	5747313
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.3374139
Latitude (degrees minutes seconds)	30° 20' 14.69" N
Longitude (decimal degrees)	-98.1322722
Longitude (degrees minutes seconds)	098° 07' 56.18" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	Provided by Groundwater Conservation District
Land Surface Elevation (feet above sea level)	979
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	219
Well Depth Source	Driller's Log
Drilling Start Date	5/15/2020
Drilling End Date	5/20/2020
Drilling Method	
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	Monitor
Water Level Observation	None
Water Quality Available	Yes
Pump	Submersible
Pump Depth (feet below land surface)	210
Power Type	Solar
Annular Seal Method	
Surface Completion	
Owner	Travis County Johnson #1
Driller	Geoprojects International, Inc.
Other Data Available	Drillers Log
Well Report Tracking Number	545767
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	Johanson #1
Owner Well Number	MW-1
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	7/30/2021
Last Update Date	8/11/2021

<u> </u>							
Remarks							
Casing - No Data							
Well Tests - No Data							
Lithology - No Data							
Annular Seal Range - No Data							
Borehole - No Data	rehole - No Data Plugged Back - No Data						
Filter Pack - No Data	Pac	kers - No Data					

Code Descriptions

Status Code	Status Description
Р	Publishable

Water Quality Analysis

Sample Date:	8/2/2021	Sample Time:	1330	Sample Number:	1	Collection Entity:	Barton Springs/Edwards Aquifer CD
Sampled Aquif	er: Cow Cre	ek Limestone					
Analyzed Lab:	LCRA - Lowe	er Colorado River A	uthority	Re	liability	: Sampled using T	WDB protocols
Collection Rem	arks: No Da	ata					

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		322	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		322	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)		7.02	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		2.79	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)		1.1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		48.2	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		392.951	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		187	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.083	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		77.2	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		10.9	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.9	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.342	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		321.338	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)		398	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		9.06	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		30.9	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)		19.2	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)		2.51	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		2.036	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.46	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.79	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)		0.231	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.9	mg/L	

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0.045		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		11.6	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.589		
00932	SODIUM, CALCULATED, PERCENT		14.134	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		24.2	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		613	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		1110	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		15.7	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		21.92	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		369.103	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)		1.13	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		2.73	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)		16.6	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

WQ FY 2	021 Bart	on Sprin	gs GCD	TWDB	Nater Qu	ality Fiel	Newly Inventoried Well		
SWN:	57-47	-313		Name	John	Son F	1		
County:	Have		-	Name: John Son #1					Date: 8/2/21
County Code:	- Hays	201	-						Sampler(s): JC, BH
Aquifer Code:		AK			<u> </u>				
Aquifer Id:	28			Attention	:			<u></u>	
		- 22	<u>ः</u> ।	Vell Name or #					Calibration Verification Readings
	2	3	4	5	6	7	8		pH SLOPE =
500 ml filtered	250 mi filtered	250 ml fittered							7 =
Anions/T. Alk.	Cation	Nitrate							4 or 10 = 4.01
									Conductivity 500 =
ICE	HNO3	ICE + H2SO4							4.49 -1000 = 4.49
ation and Nitra	ate bottles are j	ore- acidified.							2000 =
						10 m			5000 =
Time In:	3:20				Time Out:	13:35	_		
	161.65					red of	-		Field Alkalinity Titration
Water Level:	101-03	•	M.P. =	3.0	W.L. remark:	150 43	<u> </u>		
Pumping time:	15mins				empling Point	Well h	e.d		Start pH
					amping rom.	wann	Carr		End pH
Well Use:	Fire SUDAY.	esston			FIELD G.F	P.S. readings			50 mL Shappie Size
Lift:	505				Latitude:	30 20 4	IY'N		mL Acid Primal (> 8.3)
	Solar	•					56 03" W		
	100	-				AND CONTRACTOR			mL Acid Total (to pH + 5 mL acid added x 20 = Alkalinity
Casing Type:	PVC				Casing Size:	4.5"	_		
							3		Phenol Alkalinity (82244): mgA_
Sample Time:	3:30	0		I	Filter pressure:	hand pump /	ing / spring		
									Total Alkalinity (39086): mg/L
	and the second s	the second se	P	able (At least 3	readings @ 5 n	nin. intervals)	1		Notes:
	13:20	13:25	13:30						·
	7.89	7.79	7.79						
Celsius Temp.		21.96	2192		-				· · · · · · · · · · · · · · · · · · ·
Conductivity	605	613	613				· · · ·		2

Texas Water Development Board Well Schedule
State Well Number 5717313 Prev. Well No. County Trents County 45
Basin Columnate 14 GMAO9 RWPA K GCD Sport West Aquifer Con Creek 218CCRK
Latitude 302014.61 Longitude 0980756 18 coord Accuracy 0 Aquifer ID1 Aquifer ID2 Aquifer ID3
Owner/ Travis County Driller Geofrojects
Well No. Johnson #1
Address Tenant/Oper
Well Depth 219 Source of Depth D Altitude 979 Source of Alt. Datum Z Casing Records:
Date Drilled 05 2-0 2-0 2-0 Well Type 0 User Code Well Screen or Slotted Zone (S) Open Hole (O)
Lift Pump Type of Jub 5 Pump Depth 210 ft. Cemented from 2 to 157 Data Mfr. Lift Jub 5 Setting (ft) 210 ft. (in.) From To
Motor Type of Suler Z Horsepower 324.507
Water
Other Data Water Well Other 4
Outree Outree Value Value Value Available Level Logs D Owner Bata 5 5
Construction Method Hr Katzry A Material PVC P 6
Completion Streached P Screen Rul P 7
Date 05192020 Meas. 157 Remarks M.P 30
12
Date Meas. Remarks 13
Water Quality (Remarks. Tw DB Switt Collected 8/2/21 14 Yield Flow Pump Code how rate was determined 15
Rate GPM Meas Rept Est Date of Test 16
Test of test hr Rate GPM Meas Rept Est Date of Test 17
Static Pumping Amount of Specific 18 Levelft. Levelft. Drawdownft. Capacity
Date Record Collected or Information Updated 000000000000000000000000000000000000
Other Remarks 1 Salar Powered
3 See Well Report Trucking # 545767 Aquifer
4
6 Well Number

V:/SurfaceWaterResources/Groundwater/WaterQuality/WellSchedule

Analytical Results

Client ID:TWDBLab ID:Q2120544006Sample ID:5747313 JOHANSON 1Project ID:TWDB CAN		Date	Date Collected: Date Received: Location: Facility: Sample Point:		08/02/2021 13:30 08/05/2021 09:05		Matrix: Aqueous Sample Type: SAMPLE			
ALKALINITY (SM2320B	Alkalinity)									
Parameter	Results	Units MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Phenolphthalein Alkalinity	0.00 n	ng/L 0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Hydroxide Alkalinity	0.00 n	ng/L 0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Bicarbonate Alkalinity	322 m	ng/L 0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Carbonate Alkalinity	0.00 m	ng/L 0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Total Alkalinity (CaCO3)	322 n	ng/L 20.0	20.0		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	
HEAVY METALS (E245.	1 Mercury Wa	ter)								
Parameter	Results	Units MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Mercury Dissolved	<0.200 u	ıg/L 0.200	0.0700		1	08/17/2021 16:55	FM	08/19/2021 11:09	FM	
INORGANICS (E200.7 P	rep/E200.7 Me	etals, Trace Elem	ents)							
Parameter	Results	Units MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Dissolved	187 u	ıg/L 50.0	20.0		1	08/10/2021 14:00	ERR	08/18/2021 16:23	FM	
Calcium Dissolved	77.2 m	ng/L 0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 16:23	FM	
Strontium Dissolved	1110 u	ıg/L 10.0	4.00		1	08/10/2021 14:00	ERR	08/18/2021 16:23	FM	
Iron Dissolved	398 u	ıg/L 50.0	20.0		1	08/10/2021 14:00	ERR	08/18/2021 16:23	FM	
Magnesium Dissolved	30.9 m	ng/L 0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 16:23	FM	
Potassium Dissolved	1.90 m	ng/L 0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 16:23	FM	
Sodium Dissolved	24.2 m	ng/L 0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 16:23	FM	

Analytical Results

Client ID: TWDB Lab ID: Q2120544 Sample ID: 5747313 J Project ID: TWDB CA	OHANSON	1	Date	Collected: Received: Location: Facility: ple Point:	08/02/2021 13:30 08/05/2021 09:05				Matrix: Aqueous e Type: SAMPLE		
INORGANICS (E200.8, IC	CP-MS Prep	/E200.8, I	CP-MS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Aluminum Dissolved	7.02	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Antimony Dissolved	1.10	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Arsenic Dissolved	<1.00	ug/L	1.00	0.700		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Barium Dissolved	48.2	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Beryllium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Cadmium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Chromium Dissolved	1.90	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Cobalt Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Copper Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Lithium Dissolved	9.06	ug/L	2.00	0.700		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	Ν
Lead Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Manganese Dissolved	19.2	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Molybdenum Dissolved	2.51	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Selenium Dissolved	<5.00	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Silver Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Thallium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Uranium Dissolved	1.13	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	N
Vanadium Dissolved	2.73	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
Zinc Dissolved	16.6	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 23:18	FO	
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride DIssolved	10.9	mg/L	1.00	0.400		1	08/06/2021 07:21	FO	08/06/2021 07:21	FO	
Bromide Dissolved	0.0830	mg/L	0.0200	0.00800		1	08/06/2021 07:21	FO	08/06/2021 07:21	FO	
Fluoride Dissolved	0.342	mg/L	0.0100	0.00400		1	08/06/2021 07:21	FO	08/06/2021 07:21	FO	
Sulfate Dissolved	15.7	mg/L	1.00	0.400		1	08/06/2021 07:21	FO	08/06/2021 07:21	FO	
INORGANICS (SM1030B	Cation/Ani	on Balan	ce)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Cation/Anion Balance	2.790	%				1	08/19/2021 11:31	CW	08/19/2021 11:31	CW	
NITRATE AND NITRITE	(SM4500-NC	D3-H, Nitr	ate/Nitrite)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Nitrate/Nitrite as N Dissolved	0.460	mg/L	0.0200	0.00800		1	08/09/2021 00:00	ME	08/09/2021 00:00	ME	

Page 22 of 50

Friday, August 20, 2021 11:47:12 AM

This report shall not be reproduced, except in full, and with written approval from LCRA Environmental Laboratory Services.

Analytical Results Client ID: TWDB Date Collected: 08/02/2021 13:30 Matrix: Aqueous Sample Type: Lab ID: Q2120544006 Date Received: 08/05/2021 09:05 SAMPLE Sample ID: 5747313 JOHANSON 1 Location: Project ID: TWDB CAN Facility: Sample Point: SILICA (SM4500-SiO2-C, Silica) Units MRL LOD Parameter Results ML DF Prepared By Analyzed By Qualifier 0.500 Silica as SiO2, Dissolved 11.6 mg/L 0.200 1 08/11/2021 00:00 ME 08/11/2021 00:00 ME TOTAL PHOSPHATE AS P (E365.4 / E351.2 Water Prep/E365.4 Phosphorus, Total) Parameter Results Units MRL LOD ML DF Prepared Ву Analyzed Ву Qualifier 0.231 mg/L ERR Phosphorus, Dissolved (As P) 0.0200 0.00800 1 08/17/2021 12:39 08/18/2021 00:00 ME

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747314
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.3350028
Latitude (degrees minutes seconds)	30° 20' 06.01" N
Longitude (decimal degrees)	-98.1324694
Longitude (degrees minutes seconds)	098° 07' 56.89" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	Provided by Groundwater Conservation District
Land Surface Elevation (feet above sea level)	968
Land Surface Elevation Method	Global Positioning System-GPS
Well Depth (feet below land surface)	215
Well Depth Source	Driller's Log
Drilling Start Date	10/2/2020
Drilling End Date	10/8/2020
Drilling Method	
Borehole Completion	

Well Туре	Withdrawal of Water
Well Use	Monitor
Water Level Observation	None
Water Quality Available	Yes
Pump	Submersible
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Travis County
Driller	Geoprojects International, Inc.
Other Data Available	Drillers Log
Well Report Tracking Number	556939
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	Johanson #2
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	7/30/2021
Last Update Date	7/30/2021

Remarks			
Casing - No Data			
Well Tests - No Data			
Lithology - No Data			
Annular Seal Range - No Data			
Borehole - No Data	Plugged Back	- No Data	
Filter Pack - No Data		Packers - No Data	

Water Level Measurements

No Data Available

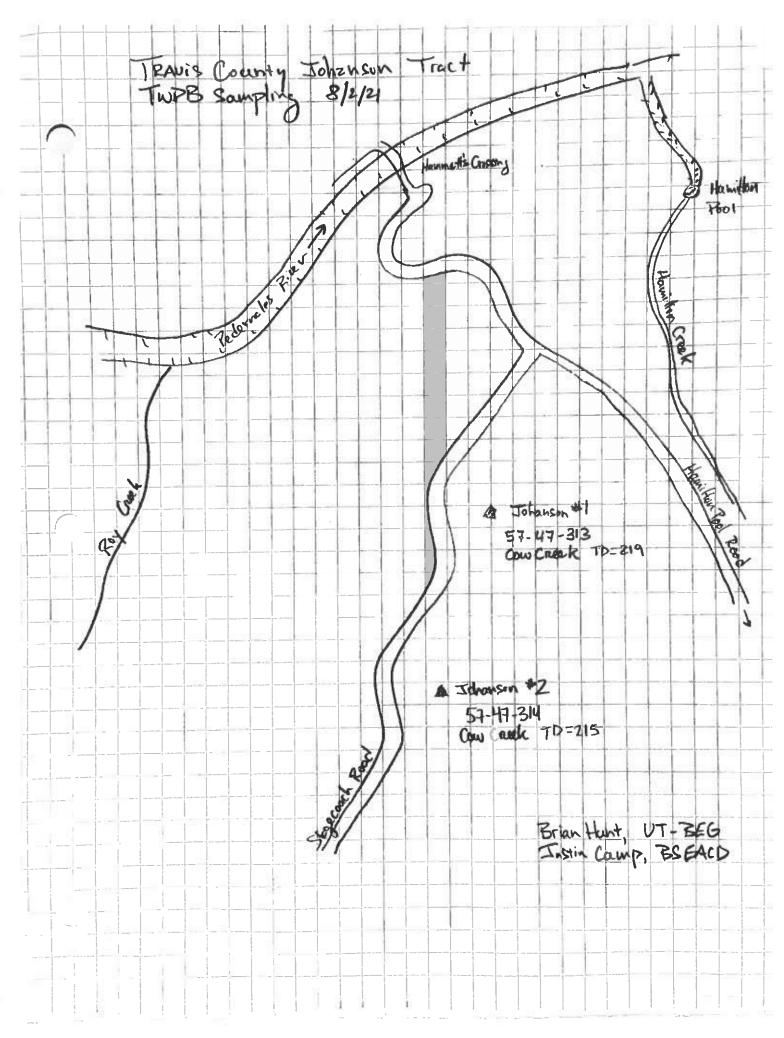
Water Quality Analysis

Sample Date:	8/2/2021	Sample Time:	1255	Sample Number:	1	Collection Entity:	Other State Agencies
Sampled Aquif	er: Cow Cre	ek Limestone					
Analyzed Lab:	LCRA - Lowe	er Colorado River A	I	Reliability:	Sampled using T	WDB protocols	
Collection Rem	arks: Weste	ern Travis Co. Stud	ly-BEG E	Brian Hunt			

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		320	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		320	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		-0.34	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)		1.57	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		39.5	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		390.511	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		127	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.0709	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		63.5	mg/L	
28004	CARBON-14 DISS APPARENT AGE (YEARS BP)		8420	Y-BP	
82172	CARBON-14 FRACTION MODERN		0.3506		0.0013
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		13.5	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.48	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1	ug/L	
82081	DELTA CARBON 13 C13/C12 PER MIL		-7.2	0/00	
50791	DEUTERIUM, EXPRESSED AS PERMIL VSMOW		-30.29	0/00	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.553	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		361.989	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		18.8	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		45.7	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	1	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)		17.5	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		0.854	mg/L	

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.193	mg/L	
50790	OXYGEN-18, EXPRESSED AS PERMIL VSMOW		-4.24	0/00	
00400	PH (STANDARD UNITS), FIELD		7.89	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		4.37	mg/L	
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		18.5	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.174		
00932	SODIUM, CALCULATED, PERCENT		4.462	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		7.44	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		672	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		13300	ug/L	
48297	STRONTIUM, ISOTOPE OF MASS 86 AND 87 RATIO		0.707773	N/A	0.00073
00946	SULFATE, DISSOLVED (MG/L AS SO4)		43	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		21.71	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		402.732	mg/L	
07012	TRITIUM IN WATER (TRITIUM UNITS)		-0.04	TU	0.09
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)		2.5	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		4.8	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)		11.1	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..


GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

WQ FY 2	021 Bart	on Sprin	gs GCD	TWDB W	later Qu	ality Fiel	<mark>d Data S</mark> h	leet		Newly Inventoried Well
SWN:	57-4	7-314		Name:	John	son \$	\$2			ID Number:
County:	Hay			Address:						Date: 8/2/21
County Code:	209		50 			9	· - ·			Sampler(s): JC, BH
Aquifer Code:	2180	CRK								
Aquifer Id:	28	0		Attention:						
			W	ell Name or #:						Calibration Verification Readings
	2	3	4	5	6	7	8			pH SLOPE =
500 ml filtered	250 mi filtered	250 ml filtered	Tritium	CIY	5- 84/87	Det/018				7 =
Anions/T. Alk.	Cation	Nitrate			~ 3/	10				4 or 10 = 4 01
. 3										Conductivity 500 =
ICE	HNO3	ICE + H2SO4								4.49 - 4000 = 4.49
Cation and Nitra	te bottles are p	re-acidified.		Isotopes	konne a	-				2000 =
Water Level: Pumping time: Well Use: Lift: Power: Casing Type:	Fire Supp Sub Sular PVC	vession	M.P. =	Sa	W.L. remark: mpling Point: FIELD G.F Latitude:	Well here S. readings <u>30° 20' (</u> 98° 07' <u>9</u> 8007'	<u>56.89" N</u>			Field Alkalinity Titration Start pH End pH 50 mL Sample Size mL Acid Phenol > 8.3) mL Acid Total (to pH 5) mL acid added x 20 = Alkalinity Phenol Alkalinity (82244): mgL
Sample Time:		÷				hand pump /	/ spring			Total Alkaiinity (39088):mg/L
			Parameters Ta	able (At least 3 n	adinga @ 5 n	nin. intervals)				Notes:
	12:45	12:50	12:55							
	7.89	7.88	7.89						-	<u> </u>
Celsius Temp.			21.71		11.					<u> </u>
Conductivity	669	673	672							

APP000338

Texas Water Development Board	
Well Schedule	County
State Well Number 57 47 31 4 Prev. Well No. County Tree	
Basin Corado 14 GMA 09 RWPA K GCD South West Aquifer Con Cree	K 218 CCRK
Latitude 302006.01 Longitude 0480756.89 Coord Accuracy () Aquifer ID1_	Aquifer ID2 Aquifer ID3
Owner/ Travis County Driller GeoProjects	
Well No. 20 hanson #2	
Address Tenant/Oper.	
Well Depth 215 Source of Depth D Altitude 968 Source of Alt. Datum	Casing Records: Casing or Blank Pipe (C)
Date Drilled 1008200 Well Type O User Code	Well Screen or Slotted Zone (S) Open Hole (O)
Lift Pump Type of 515 5 Pump Depth Data Mfr. Lift 515 5 Setting (ft) ft.	Cemented from O to 148 Diam. Interval of C.S. or O. (in.) From To
	(45 0 170
Water I F	(4.5 170 210
Other Data Water Water Wett Other 4 Available Level L Quality Logs D Data 5	
Construction Method Air Durtury A Casing PUL 2 6	
Completion <u>Screened</u> <u>P</u> Screen <u>Material</u> <u>PVC</u> <u>P</u> 7	
Date 1006 2020 Meas. 1530 Remarks M.P 9	
Water 10	
Date Meas. 11	
Date Meas. Remarks 13	
Quality (Remarks: TWDB Supe + iso topes collected 8/2/21 14	
Yield Flow Pump Cride how rate was determined 15 Rate Rate GPM Meas Rept Est Date of Test	
Performance Length Production Cride how rate was determined Test of test hr Rate GPM Meas Rept Est Date of Test 17	
Static Pumping Amount of Specific 18 Levelft. Levelft. Drawdownft. Capacity GP	
Date Record Collected or Information Updated 08132021 Reporting Agency U5 Recorded by John Camp - B5FActs	<u>.</u>
Other Remarks 1 Solar Dewercd	
2	
3 See Well Report Tracking # 556939	Aquifer
4	-
	Well Number

V:/SurfaceWaterResources/Groundwater/WaterQuality/WellSchedule

APP000340

MIT Isotope Laboratory

Massachusetts Institute of Technology

Date: 10/11/2021

-

Analysts: Jahan Ramezani

Sample #	le # Sample Type ⁸⁷ Sr/ ⁸⁶ Sr % std err (1)	% std err	2σ std err		
		(1)	(2)		
Q2120563001	water	0.707773	0.00073	1.03E-05	57-47-314

(1) Corrected for mass-dependant fractionation.

(2) Within-run internal precision of measured ratio.

Long term reproducibility of NBS-987 Sr standard at MIT: 0.7102379 ± 0.0000109 (2σ s.e.).

ISO/IEC 17025:2017-Accredited Testing Laboratory

Dale Jurecka

Report Date:10/4/2021

Material Received:8/18/2021

LCRA-Environmental Laboratory Services (EL-101)

Laboratory Number	рМС	F¹⁴C	d13C o/oo	d18O o/oo	dD o/oo
eta - 600696	35.06 +/- 0.13 pMC	0.3506 +/- 0.0013	-7.20	-4.24	-30.29
2120562001				57	47-314
MS-Standard delivery				57-	47-314
MATERIAL/PRETREATMENT: (W	vater DIC) acidify-gas strip				
COMMENTS: The equivalent "An	narent" radiocarbon age to t	he reported pMC/fMDN valu	les is ~ 8420 BP (I	not adjusted for a	nv

COMMENTS: The equivalent "Apparent" radiocarbon age to the reported pMC/fMDN values is ~ 8420 BP (not adjusted for any hydro-geochemical effects on meteoric water 14CO2). Given the complex nature of groundwater DIC14 chemistry, duplicate measurements within 1-2 pMC are reasonable for a single water sample. For very low DIC concentration waters (< 20 mg/L HCO3) DIC14 and waters with complex organic chemistry, results can vary significantly outside of this expectation.

Dates are reported as RCYBP (radiocarbon years before present, "present" = AD 1950). By international convention, the modern reference standard was 95% the 14C activity of the National Insitute of Standards and Technology (NIST) Oxalic Acid (SRM 4990C) and calculated using the Libby 14C half-life (5568 years). Quoted errors represent 1 relative standard deviation statistics (68% probability) counting errors based on the combined measurements of the sample, background, and modern reference standards. Measured 13C/12 ratios (delta 13C) were calculated relative to the PDB-1 standard. The Conventional Radiocarbon Age represents the Measured Radiocarbon Age corrected for isotopic fractionation, calculated using the delta 13C. On rare occasion where the Conventional Radiocarbon Age was calculated using an assumed delta 13C, the ratio and the Conventional Radiocarbon Age will be followed by "*". The Conventional Radiocarbon Age is not calendar calibrated. When available, the Calendar Calibrated result is calculated from the Conventional Radiocarbon Age and is listed as the "Two Sigma Calibrated Result" for each sample.

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747315
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.3405833
Latitude (degrees minutes seconds)	30° 20' 26.1" N
Longitude (decimal degrees)	-98.1260806
Longitude (degrees minutes seconds)	098° 07' 33.89" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218HNSL - Hensell Sand Member of Travis Peak Formation
Aquifer	Trinity
Aquifer Pick Method	Provided by Groundwater Conservation District
Land Surface Elevation (feet above sea level)	857
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	
Well Depth Source	
Drilling Start Date	
Drilling End Date	
Drilling Method	Dug
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	Unused
Water Level Observation	None
Water Quality Available	No
Pump	None
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Travis County
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	Hamilton Pool Handug
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	7/30/2021
Last Update Date	7/30/2021

Remarks

Casing						
Diameter (in.)	Casing Type	Casing Material	Schedule	Gauge	Top Depth (ft.)	Bottom Depth (ft.)
	Blank	Rock or Stone				
Well Tests	- No Data					
Lithology -	No Data					
Annular Se	al Range - No D	Data				
Borehole -	No Data		Plugg	ed Back - No D	Data	
Filter Pack - No Data				Dook	ers - No Data	

Water Level Measurements

No Data Available

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

Scanned Documents do not exist for this well

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747316
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.3342833
Latitude (degrees minutes seconds)	30° 20' 03.42" N
Longitude (decimal degrees)	-98.1311583
Longitude (degrees minutes seconds)	098° 07' 52.17" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	Provided by Groundwater Conservation District
Land Surface Elevation (feet above sea level)	971
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	210
Well Depth Source	Driller's Log
Drilling Start Date	11/20/2019
Drilling End Date	11/20/2019
Drilling Method	
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	Public Supply
Water Level Observation	GCD Current Observation Well
Water Quality Available	Yes
Pump	Submersible
Pump Depth (feet below land surface)	190
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Buddy's Backyard RV Resort
Driller	Centex Pump & Supply, Inc.
Other Data Available	Drillers Log
Well Report Tracking Number	535035
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	G2270419A
Groundwater Conservation District Well Number	
Owner Well Number	1
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	8/15/2022
Last Update Date	8/15/2022

Remarks			
Casing - No Data			
Well Tests - No Data			
Lithology - No Data			
Lilliology - No Dala			
Annular Seal Range - No Data			
Borehole - No Data	Plugged Ba	ack - No Data	
Filter Pack - No Data		Packers - No Data	

Water Level Measurements

No Data Available

Water Quality Analysis

Sample Date:	8/18/2022	Sample Time:	1315	Sample Number:	1	Collection Entity:	Barton Springs/Edwards Aquifer CD
Sampled Aquif	er: Cow Cre	ek Limestone					
Analyzed Lab:	LCRA - Lowe	er Colorado River A	uthority	Re	eliability	: Sampled using T	WDB protocols
Collection Rem	narks: No Da	ata					

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		297	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		297	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		-2.73	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		48.5	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		362.443	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		61.6	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.0884	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		84.2	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		10.7	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.24	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.258	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		317.903	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		5.15	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		25.9	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	1	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)		1.23	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		1.567	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.354	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.06	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		0.712	mg/L	

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		11	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.158		
00932	SODIUM, CALCULATED, PERCENT		4.242	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		6.45	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		633.7	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		825	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		35.2	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		21.49	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		355.025	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)		1.43	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		2.26	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	5	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

Texas Water Development Board	Texas Water Develop Well Schedu			gro	oundwater division
State Well Number: 57-47-316	Previous Well Number:		County:	Travis	
Latitude (dms): 30° 20' 03.42" N Lo	ongitude (dms): 098° 07' 52.17"	W Coordina	ate Accuracy:	Global Pos System - G	
River Basin: Colorado	GMA: 9 RWPA: P	GCD: SOL	uthwesterr	n Travis Cou	nty GCD
Owner: Buddy's Backyard RV Resort	Driller: Centex Pump & Su Inc.	appiy,	er ID: Trinit er Code: Cc	y ow Creek Lim	nestone
Depth (ft): 210	Elevation (ft): 971				
Source of Depth: Driller's Log		gital Elevation odel -DEM			
Date Drilled: 11/20/2019	V	Vell Type: Withd	rawal of W	/ater	
Type of Lift: Submersible Pump	Depth: 190 P	'ower:			
Construction:	с	completion:			
Water Use: Public Supply	R	5 5 5	Groundwa District	ater Conserv	ation
Other Data: Drillers Log	D	ate Created: 8/15/2	2022	Created By:	Amy De Luna
Water Quality: Yes					
REMARKS:					

WELL NUMBERS:	Well Report Tracking	Plug Report Tracking	USGS Site Number	TCEQ Source ID	GCD Number	Owner Number
	535035			G2270419A		1

	WQ FY	2024 1	IT	DEC		
	SWN: 57-47-516 County: TRAULE					
	County: <u>TRAUIF</u> County Code:					
	Aquifer Code	Contraction of the second	C	cnk		
	Aquifer Id	and the second se				
	(1)	(2)		3		
	500 ml filtered	250 ml filte	ered	250 ml filte	red	
	Anions/T. Alk.	Cation		Nitrate		
			and the second			
H		HNO3		ICE + H2S		
Ľ	Cation and Nitra	te bottles a	ire pi	re- acidified	I.	
	Time In:	1:03				
	Water Level:	162.2				
-						
Pi	Imping time:					
	Well Use:	PSW				
	Lift:	sub				
	Power:	ELECTIPIC	_			
		S. Same and a straight				
Ca	asing Type:	Por	_			
0	11	15				
San	nple Time: _/	• •	-			
	Wat	ter Quality	/ Sta	bilization	Pa	
	Time	1:03		: 10		
	рН	7.1	7	1.12		

21.62

632.5

1.49

633.6

WQ

ount

quife

Aqı

00 m

nions

IC on

Celsius Temp.

Conductivity

		alei Qu	any rie
	Name:	BENT	nee
	Address:	2101 5	THEECON
			NG SPRIK
	Attention:/ell Name or #:		
4	5	6	7

	Time Out: 13:30
M.P. =	W.L. remark: Phanel
	Sampling Point: Spigot
	FIELD G.P.S. readings
	Latitude: 30,339
	Longitude: - 91. 130
	Casing Size: 6"
	Filter pressure: hand pump /

arameters rable (At least 3 readings @ 5 min. intervals)					
1:15					
7.06					
21.49					
633.7					

rameters Table (At least 3 readings @ 5 min intervale)

TWDB Water Quality Field Data Sheet JACH RANKH NO NOS TH 78620 8 Eat wellhead, no treatment before storage 12359 0 9966 Filter pressure: hand pump / line / spring qvovity No

ID Numl	ber: /0/3	
D	ate: 8/18/22	
Sample	r(s): DUL CAR	
alibrati	on Verification Reading	5
н	SLOPE = AID	
	7= 7.0	
	4 or(10) = (0.0)	,
Conduct	tivity 0 500'= 0	
	1413 1000 = 1414	Notes and
1	2000 = NP	
	5000 = ND	
F	ield Alkalinity Titration	2
	Start pH	
	End pH	
50	0 mL Sample Size	
/	mL Acid Phenol (>	8.3)
/	mL Acid Total (to p	H 4.5)
mL acid a	added x 20 = Alkalinity	
Alkalinity	(82244):mg/L	
A 11- 17 14		
Alkalinity	/ (39086):mg/L	

State Well Number

Analytical Results

By

MO

MO

MO

MO

MO

Ву

By

FΜ

FM

Qualifier

Ν

Ν

Ν

Ν

Qualifier

Ν

Qualifier

Client ID: TWDB Date Collected: 08/18/2022 13:15 Matrix: Aqueous Lab ID: Q2224460003 Date Received: 08/18/2022 14:33 Sample Type: SAMPLE Sample ID: 1013-BUDDYS Location: Project ID: TWDB CAN Facility: Sample Point: ALKALINITY (SM2320B, Alkalinity) Units DF Parameter Results MRL LOD ML Prepared By Analyzed 08/22/2022 00:00 Phenolphthalein Alkalinity 0.00 mg/L 0.00 0.00 1 МО 08/22/2022 00:00 Hydroxide Alkalinity 0.00 mg/L 0.00 0.00 1 08/22/2022 00:00 MO 08/22/2022 00:00 **Bicarbonate Alkalinity** 297 mg/L 0.00 0.00 1 08/22/2022 00:00 MO 08/22/2022 00:00 Carbonate Alkalinity 0.00 mg/L 0.00 0.00 1 08/22/2022 00:00 MO 08/22/2022 00:00 Total Alkalinity (CaCO3) 08/22/2022 00:00 08/22/2022 00:00 297 mg/L 20.0 20.0 1 MO HEAVY METALS (245.1Hg) Prepared Parameter Results Units MRL LOD ML DF By Analyzed 0.20 1 09/01/2022 23:00 Mercury Dissolved <0.20 ug/L 0.070 FΜ 09/01/2022 23:00 INORGANICS (E200.7 Prep/E200.7 Metals, Trace Elements) DF MRL LOD ML Parameter Results Units Prepared By Analyzed Boron Dissolved 61.6 ug/L 50.0 20.0 1 08/25/2022 12:43 FO 09/15/2022 19:04 Calcium Dissolved 84.2 mg/L 0.200 0.0700 08/25/2022 12:43 FO 09/15/2022 19:04 1

Calcium Dissolved	84.2 mg/L	0.200	0.0700	1	08/25/2022 12:43	FO	09/15/2022 19:04	FM
Strontium Dissolved	825 ug/L	10.0	4.00	1	08/25/2022 12:43	FO	09/15/2022 19:04	FM
Iron Dissolved	<50.0 ug/L	50.0	20.0	1	08/25/2022 12:43	FO	09/15/2022 19:04	FM
Magnesium Dissolved	25.9 mg/L	0.200	0.0700	1	08/25/2022 12:43	FO	09/15/2022 19:04	FM
Potassium Dissolved	0.712 mg/L	0.200	0.0700	1	08/25/2022 12:43	FO	09/15/2022 19:04	FM
Sodium Dissolved	6.45 mg/L	0.200	0.0700	1	08/25/2022 12:43	FO	09/15/2022 19:04	FM

Analytical Results

Client ID: TWDB Lab ID: Q2224460 Sample ID: 1013-BUD Project ID: TWDB CA	DYS		Date	Collected: Received: Location: Facility: ple Point:		8/2022 8/2022		l Sample	Matrix: Aqueous • Type: SAMPLE		
INORGANICS (E200.8, IC	CP-MS Prep	/E200.8, I	ICP-MS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Aluminum Dissolved	<5.00	ug/L	5.00	1.50		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Antimony Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Arsenic Dissolved	<1.00	ug/L	1.00	0.700		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Barium Dissolved	48.5	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Beryllium Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Cadmium Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Chromium Dissolved	1.24	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Cobalt Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Copper Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Lithium Dissolved	5.15	ug/L	2.00	0.700		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	Ν
Lead Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Manganese Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Molybdenum Dissolved	1.23	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Selenium Dissolved	<5.00	ug/L	5.00	1.50		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Silver Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Thallium Dissolved	<1.00	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Uranium Dissolved	1.43	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	Ν
Vanadium Dissolved	2.26	ug/L	1.00	0.400		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
Zinc Dissolved	<5.00	ug/L	5.00	1.50		1	08/25/2022 12:41	FO	08/25/2022 14:04	FO	
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride DIssolved	10.7	mg/L	2.00	0.800		2	08/18/2022 17:54	BC	08/18/2022 17:54	BC	
Bromide Dissolved	0.0884	mg/L	0.0400	0.0160		2	08/18/2022 17:54	BC	08/18/2022 17:54	BC	
Fluoride Dissolved	0.258	mg/L	0.0200	0.00800		2	08/18/2022 17:54	BC	08/18/2022 17:54	BC	
Sulfate Dissolved	35.2	mg/L	2.00	0.800		2	08/18/2022 17:54	BC	08/18/2022 17:54	BC	
INORGANICS (SM1030B	Cation/Ani	on Balan	ice)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Cation/Anion Balance	-2.730	%				1	09/19/2022 09:17	CW	09/19/2022 09:17	CW	
NITRATE AND NITRITE	(SM4500-NC	03-H, Nitı	rate/Nitrite)	1							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Nitrate/Nitrite as N Dissolved	0.354	mg/L	0.0200	0.00800		1	08/25/2022 00:00	ML	08/25/2022 00:00	ML	

Page 12 of 27

Friday, September 23, 2022 12:13:31 PM

This report shall not be reproduced, except in full, and with written approval from LCRA Environmental Laboratory Services.

Analytical Resul	ts										
Client ID: TWDB			Date	Collected:	08/1	8/2022	13:15	r	Matrix: Aqueous		
Lab ID: Q2224460	003		Date	Received:	08/1	8/2022	14:33	Sample	Type: SAMPLE		
Sample ID: 1013-BUD	DYS			Location:							
Project ID: TWDB CA	N			Facility:							
-			San	nple Point:							
SILICA (SM4500-SiO2-C	Silica)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Silica as SiO2, Dissolved	11.0	mg/L	1.00	0.400		2	08/26/2022 00:00	ML	08/26/2022 00:00	ML	
TOTAL PHOSPHATE AS	P (E365.4 /	E351.2 V	Vater Prep	/E365.4 Ph	ospho	rus, To	tal)				
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Phosphorus, Dissolved (As P)	<0.0200	mg/L	0.0200	0.00800		1	08/24/2022 17:03	MAB	08/25/2022 00:00	ML	

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747604
County	Hays
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Hays Trinity GCD
Latitude (decimal degrees)	30.3267917
Latitude (degrees minutes seconds)	30° 19' 36.45" N
Longitude (decimal degrees)	-98.1456167
Longitude (degrees minutes seconds)	098° 08' 44.22" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	Provided by Groundwater Conservation District
Land Surface Elevation (feet above sea level)	816
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	
Well Depth Source	
Drilling Start Date	
Drilling End Date	
Drilling Method	
Borehole Completion	

Well Type	Spring
Well Use	Unused
Water Level Observation	None
Water Quality Available	Yes
Pump	
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Lew Adams
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	Big Spring
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	7/30/2021
Last Update Date	8/11/2021

Remarks
Reported by BSEACD.

Casing - No Data

Well Tests - No Data

Lithology - No Data

Annular Seal Range - No Data

Borehole - No Data

Filter Pack - No Data

Water Level Measurements

No Data Available

Water Quality Analysis

Sample Date:	8/2/2021	Sample Time:	0910	Sample Number:	1	Collection Entity:	Barton Springs/Edwards Aquifer CD
Sampled Aquif	er: Cow Cre	ek Limestone					
Analyzed Lab:	LCRA - Lowe	er Colorado River A	uthority	Re	liability	: Sampled using T	WDB protocols
Collection Rem	arks: No Da	ata					

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		305	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		305	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		4.06	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		44.2	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		372.206	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)		57.8	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.0657	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		97.8	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		10.2	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)		1.25	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)		1.92	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.219	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		350.652	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		4.6	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		25.6	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)		1.66	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)		1.77	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)	<	0.02	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)	<	0.02	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.19	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		1.65	mg/L	

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		11.2	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.139		
00932	SODIUM, CALCULATED, PERCENT		3.584	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		5.97	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		600	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		842	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		15.8	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		23.2	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		352.294	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)	<	1	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		2.47	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	5	ug/L	

* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

WQ FY 2	021 Bart	on Sprin	gs GCD	TWDB W	ater Qu	ality Field	<u>l Data Sheet</u>		Newly Inventoried Well Yes
SWN:	57-47	- 604		Name:	Bia	Spring			ID Number: 1005
County:	HAVE	and the second second	•>	Address:					Date: 8/2/21
County Code:	HAYS	9		-	· · · · · · · · · · · · · · · · · · ·		· _ · · _ · · · · · · · · · · · · · · ·		Sampler(s): JC, BH
Aquifer Code:	21860	RK		-					
Aquifer Id:			-	Attention:					
			W	/ell Name or #:					Calibration Verification Readings
1	2	3	4	5	6	7	8		pH SLOPE =
500 mi filtered	250 ml filtered	250 mi filtered							X.=
Anions/T. Alk.	Cation	Nitrate							4 or 10 = 4.01
									Conductivity 500 =
ICE	HNO3	ICE + H2SO4							4.49 -1000 = 4.49
Cation and Nitra	te bottles are p	ore- acidified.							2000 =
Water Level: Pumping time: Well Use: Lift: Power:	1 1		M.P. =		W.L. remark mpling Point FIELD G.I Latitude Longitude	$\frac{5p_{1}m_{2}}{30^{\circ}i9'3}$ $\frac{30^{\circ}i9'3}{78^{\circ}8'4}$	3ml 6_45"N		Field Alkalinity Titration Start pH End pH 50 mL Sample Size mL Acid Phenel (> 8.3) mL Acid Total (to pH + 5) mL acid added x 20 = Alkalinity
Casing Type:		-			Casing Size:				
Sample Time:	9110	-		Fil	ter pressure	hand pump /	pring		tal Alkalinity (82244): mg/L.
	Water Quality	y Stabilization	Parameters T	able (At least 3 re	adings @ 5 r	nin. intervals)		Note	
Time	9:15	9:20	925						
pН	7.18	719	7.19						
Celsius Temp.	23.08	23.15	23.20						
Conductivity		518	600						

ï

	Texas Water Dev	•		
	Well Sch			County
State Well Number 574760		Co	ounty <u>Hays</u>	Code9
Basin/ burado 14 GMA 09	RWPA K GCD 19	1909KL Aquifer	Con beeck	218 CCRK
Latitude 301936 Long	gitude 0980844	Coord Accuracy 🕖 Aq	uifer ID1 Aquif	er ID2Aquifer ID3
Owner Lew Adams		Driller		
Well No.				
Address		Tenant/Oper.		
Well Depth Sou	rce of Depth Altitude	Source of Alt. I		ig Records:
Date Drilled	Well Type <u></u> User Code		Well S Open H	or Blank Pipe (C) creen or Slotted Zone (S) lole (O)
Lift Pump Data Mfr.	Type of Lift	Pump Depth Setting (ft)	ft. (i	n. Interval of C,S, or O.
Motor Mfg	Type of Power	Horsepower	1	
Water Use Primary	Secondary	Tertiary	3	
Other Data Water Water Available Level Quality	Well Logs	Other Data	4	
Well Const Construction Method	Casing Material		5 6	
Completion Method	Screen Material		7	
		· · · ·	8	
Date	Meas.	Remarks M.P	10	
Date	Meas.	Remarks	11	
Date	Meas.	Remarks	12	
Water Quality (Remarks: Tw DB 5.	To Collected	8/2/21	13	
Yield Flow Pump	Cricle how rate was deten GPM Meas Rept E	whed	15	
Performance Length Productio Test of test hr Rate	n Crole how mile was deter GPM Meas Rept E		16	
Static Pum Levelft. Le		Specific ft. Capacity	18	
Date Record Collected or Information Updated	Agency 05 Reco	orded by Justin C	<u>GPM</u> ft. mp-BSEA	Ð
Other Remarks 1 <u>Spring Name</u>	e : Big Spring			
3				Aquifer
4				-
5				
6				Well Number

V: Surface Water Resources/Groundwater/Water Quality/Well Schedule

Analytical Results

Client ID: TWDB Lab ID: Q21205 Sample ID: 5747604 Project ID: TWDB (0)	BIG SPRING	Date Collected: Date Received: G Location: Facility: Sample Point:)2/2021)5/2021		Matrix: Aqueous Sample Type: SAMPLE			
ALKALINITY (SM2320	B, Alkalinity)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifie
Phenolphthalein Alkalinity	0.00	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Hydroxide Alkalinity	0.00	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Bicarbonate Alkalinity	305	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Carbonate Alkalinity	0.00	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Total Alkalinity (CaCO3)	305	mg/L	20.0	20.0		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	
HEAVY METALS (E24	5.1 Mercury V	/ater)									
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifie
Mercury Dissolved	<0.200	ug/L	0.200	0.0700		1	08/17/2021 16:55	FM	08/19/2021 10:52	FM	
INORGANICS (E200.7	Prep/E200.7 I	Metals, T	race Elem	ents)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifie
Boron Dissolved	57.8	ug/L	50.0	20.0		1	08/10/2021 14:00	ERR	08/18/2021 15:41	FM	
Calcium Dissolved	97.8	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:41	FM	
Strontium Dissolved	842	ug/L	10.0	4.00		1	08/10/2021 14:00	ERR	08/18/2021 15:41	FM	
Iron Dissolved	<50.0	ug/L	50.0	20.0		1	08/10/2021 14:00	ERR	08/18/2021 15:41	FM	
Magnesium Dissolved	25.6	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:41	FM	
Potassium Dissolved	1.65	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:41	FM	
Sodium Dissolved	5.97	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:41	FM	

Analytical Results

Client ID: TWDB Lab ID: Q2120544 Sample ID: 5747604 B Project ID: TWDB CA	IG SPRING		Date	Collected: Received: Location: Facility: nple Point:	08/02/2021 09:10 08/05/2021 09:05		Matrix: Aqueous Sample Type: SAMPLE				
INORGANICS (E200.8, IC	CP-MS Prep	/E200.8, I	CP-MS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Aluminum Dissolved	<5.00	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Antimony Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Arsenic Dissolved	<1.00	ug/L	1.00	0.700		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Barium Dissolved	44.2	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Beryllium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Cadmium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Chromium Dissolved	1.25	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Cobalt Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Copper Dissolved	1.92	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Lithium Dissolved	4.60	ug/L	2.00	0.700		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	Ν
Lead Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Manganese Dissolved	1.66	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Molybdenum Dissolved	1.77	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Selenium Dissolved	<5.00	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Silver Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Thallium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Uranium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	N
Vanadium Dissolved	2.47	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
Zinc Dissolved	<5.00	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 22:51	FO	
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride DIssolved	10.2	mg/L	1.00	0.400		1	08/06/2021 03:52	FO	08/06/2021 03:52	FO	
Bromide Dissolved	0.0657	mg/L	0.0200	0.00800		1	08/06/2021 03:52	FO	08/06/2021 03:52	FO	
Fluoride Dissolved	0.219	mg/L	0.0100	0.00400		1	08/06/2021 03:52	FO	08/06/2021 03:52	FO	
Sulfate Dissolved	15.8	mg/L	1.00	0.400		1	08/06/2021 03:52	FO	08/06/2021 03:52	FO	
INORGANICS (SM1030B	Cation/Ani	on Balan	ce)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Cation/Anion Balance	4.060	%				1	08/19/2021 11:29	CW	08/19/2021 11:29	CW	
NITRATE AND NITRITE	(SM4500-NC	03-H, Nitr	ate/Nitrite))							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Nitrate/Nitrite as N Dissolved	<0.0200	mg/L	0.0200	0.00800		1	08/09/2021 00:00	ME	08/09/2021 00:00	ME	

Page 7 of 50

Friday, August 20, 2021 11:47:12 AM

This report shall not be reproduced, except in full, and with written approval from LCRA Environmental Laboratory Services.

Analytical	Result	S											
Client ID: T	WDB			Date	Collected:	08/0	2/2021	09:10	Matrix: Aqueous				
Lab ID: Q	Q2120544001		Date	Date Received:		5/2021	09:05	Sample	Type: SAMPLE				
Sample ID: 5	ID: 5747604 BIG SPRING			Location:	Location:								
Project ID: T	ect ID: TWDB CAN				Facility:	y:							
				San	ple Point:								
SILICA (SM4500	0-SiO2-C, \$	Silica)											
Parameter		Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier	
Silica as SiO2, Diss	olved	11.2	mg/L	0.500	0.200		1	08/11/2021 00:00	ME	08/11/2021 00:00	ME		
TOTAL PHOSPI	TOTAL PHOSPHATE AS P (E365.4 / E351.2 Water Prep/E365.4 Phosphorus, Total)												
Parameter		Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier	
Phosphorus, Dissolv	ved (As P)	<0.0200	mg/L	0.0200	0.00800		1	08/11/2021 15:24	ERR	08/12/2021 00:00	ME		

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-605

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5747605
County	Hays
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Hays Trinity GCD
Latitude (decimal degrees)	30.3311472
Latitude (degrees minutes seconds)	30° 19' 52.13" N
Longitude (decimal degrees)	-98.14425
Longitude (degrees minutes seconds)	098° 08' 39.3" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	Provided by Groundwater Conservation District
Land Surface Elevation (feet above sea level)	753
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	
Well Depth Source	
Drilling Start Date	
Drilling End Date	
Drilling Method	
Borehole Completion	

Well Type	Spring
Well Use	Domestic
Water Level Observation	None
Water Quality Available	Yes
Pump	
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Lew Adams
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	Red Spring
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	7/30/2021
Last Update Date	8/11/2021

Remarks	Reported by BSEACD.		
Casing -	No Data		
Well Tes	sts - No Data		
Litholog	y - No Data		
Annular	Seal Range - No Data		
Borehol	e - No Data	Plugged Back - No Data	
Filter Pa	ck - No Data	Packers - No Data	

Water Level Measurements

No Data Available

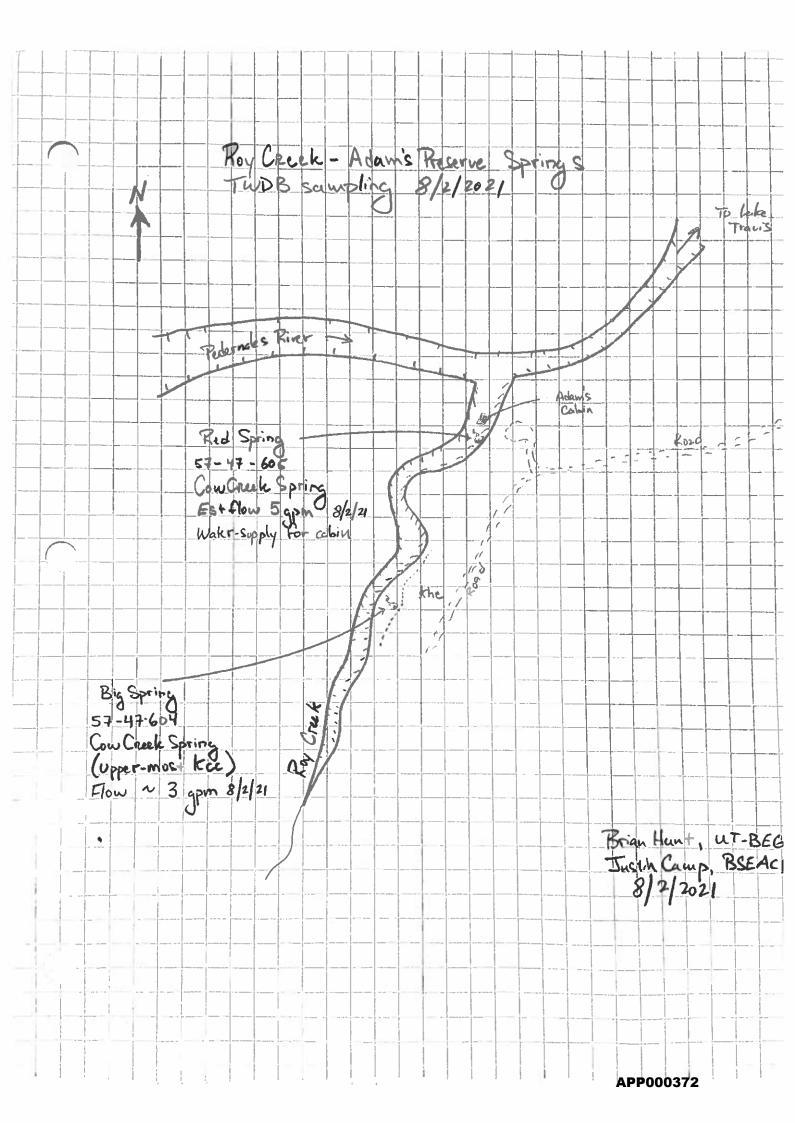
Water Quality Analysis

Sample Date:	8/2/2021	Sample Time:	0940	Sample Number:	1	Collection Entity:	Barton Springs/Edwards Aquifer CD
Sampled Aquif	er: Cow Cre	ek Limestone					
Analyzed Lab:	LCRA - Lowe	er Colorado River A	uthority	Re	eliability	: Sampled using T	WDB protocols
Collection Rem	narks: No Da	ata					

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
00425	ALKALINITY, BICARBONATE DISSOLVED (MG/L), LAB		325	mg/L	
00430	ALKALINITY, CARBONATE DISSOLVED (MG/L), LAB		0	mg/L	
00420	ALKALINITY, HYDROXIDE DISSOLVED (MG/L), LAB		0	mg/L	
00415	ALKALINITY, PHENOLPHTHALEIN (MG/L)		0	mg/L	
00410	ALKALINITY, TOTAL (MG/L AS CACO3)		325	mg/L	
01106	ALUMINUM, DISSOLVED (UG/L AS AL)	<	5	ug/L	
50938	ANION/CATION CHG BAL, PERCENT		2.12	PCT	
01095	ANTIMONY, DISSOLVED (UG/L AS SB)	<	1	ug/L	
01000	ARSENIC, DISSOLVED (UG/L AS AS)	<	1	ug/L	
01005	BARIUM, DISSOLVED (UG/L AS BA)		46.4	ug/L	
01010	BERYLLIUM, DISSOLVED (UG/L AS BE)	<	1	ug/L	
00440	BICARBONATE ION, CALCULATED (MG/L AS HCO3)		396.612	mg/L	
01020	BORON, DISSOLVED (UG/L AS B)	<	50	ug/L	
71870	BROMIDE, DISSOLVED, (MG/L AS BR)		0.0668	mg/L	
01025	CADMIUM, DISSOLVED (UG/L AS CD)	<	1	ug/L	
00915	CALCIUM, DISSOLVED (MG/L AS CA)		97.6	mg/L	
00445	CARBONATE ION, CALCULATED (MG/L AS CO3)		0	mg/L	
00941	CHLORIDE, DISSOLVED (MG/L AS CL)		10.1	mg/L	
01030	CHROMIUM, DISSOLVED (UG/L AS CR)	<	1	ug/L	
01035	COBALT, DISSOLVED (UG/L AS CO)	<	1	ug/L	
01040	COPPER, DISSOLVED (UG/L AS CU)	<	1	ug/L	
00950	FLUORIDE, DISSOLVED (MG/L AS F)		0.205	mg/L	
00900	HARDNESS, TOTAL, CALCULATED (MG/L AS CACO3)		354.635	mg/L	
01046	IRON, DISSOLVED (UG/L AS FE)	<	50	ug/L	
01049	LEAD, DISSOLVED (UG/L AS PB)	<	1	ug/L	
01130	LITHIUM, DISSOLVED (UG/L AS LI)		3.78	ug/L	
00925	MAGNESIUM, DISSOLVED (MG/L AS MG)		26.8	mg/L	
01056	MANGANESE, DISSOLVED (UG/L AS MN)	<	1	ug/L	
71890	MERCURY, DISSOLVED (UG/L AS HG)	<	0.2	ug/L	
01060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	<	1	ug/L	
71851	NITRATE NITROGEN, DISSOLVED, CALCULATED (MG/L AS NO3)		0.293	mg/L	
00631	NITRITE PLUS NITRATE, DISSOLVED (MG/L AS N)		0.0661	mg/L	
00400	PH (STANDARD UNITS), FIELD		7.28	SU	
00666	PHOSPHORUS, DISSOLVED (MG/L AS P)	<	0.02	mg/L	
00935	POTASSIUM, DISSOLVED (MG/L AS K)		0.628	mg/L	

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-47-605

Parameter Code	Parameter Description	Flag	Value*	Units	Plus/Minus
71860	RESIDUAL SODIUM CARBONATE, CALCULATED		0		
01145	SELENIUM, DISSOLVED (UG/L AS SE)	<	5	ug/L	
00955	SILICA, DISSOLVED (MG/L AS SI02)		11.4	mg/L	
01075	SILVER, DISSOLVED (UG/L AS AG)	<	1	ug/L	
00931	SODIUM ADSORPTION RATIO, CALCULATED (SAR)		0.132		
00932	SODIUM, CALCULATED, PERCENT		3.386	PCT	
00930	SODIUM, DISSOLVED (MG/L AS NA)		5.7	mg/L	
00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM AT 25C)		604	MICR	
01080	STRONTIUM, DISSOLVED (UG/L AS SR)		439	ug/L	
00946	SULFATE, DISSOLVED (MG/L AS SO4)		11.6	mg/L	
00010	TEMPERATURE, WATER (CELSIUS)		21.14	С	
01057	THALLIUM, DISSOLVED (UG/L AS TL)	<	1	ug/L	
70301	TOTAL DISSOLVED SOLIDS , SUM OF CONSTITUENTS (MG/L)		359.779	mg/L	
22703	URANIUM, NATURAL, DISSOLVED (UG/L AS U)	<	1	ug/L	
01085	VANADIUM, DISSOLVED (UG/L AS V)		2.63	ug/L	
01090	ZINC, DISSOLVED (UG/L AS ZN)	<	5	ug/L	


* Value may not display all significant digits for parameter in results, check Scanned Documents for laboratory paperwork..

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information it contains. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

WQ FY 2	021 Bart	on Sprin	gs GCD	TWDB W	ater Qu	ality Fiel	Newly Inventoried Well 425		
SWN:	57-47	105	2	Name:	Re	d Spri	ng	N N 12-15	ID Number: 1006
County:	Hays		-	Address:		12.0	/	<u></u>	Date: 8/2/21
County Code:	2	29							Sampler(s): <u>JC</u> , BH
Aquifer Code:	21860	AK							1946 BANK BORT - 187 BARANO - 197
Aquifer Id:	28			Attention:					
:		9-2- 6 -8-8	N	Vell Name or #:					Calibration Verification Readings
	2	3	4	5	6	7	8		pH SLOPE =
500 ml filtered	250 ml filtered	250 ml filtered		1 1					7 =
Anions/T. Aik.	Cation	Nitrate							4 or 10 = 4.01
									Conductivity 500 =
ICE	HNO3	ICE + H2SO4							4.44 1000 - 4.49
Cation and Nitra	te bottles are g	ore- acidified.					•		2000 =
Water Level: Pumping time: Well Use: Lift: Power:	9:30 Spring - - -	•	M.P. =	0	W.L. remark mpling Point: FIELD G.I Latitude:	Sprby P.S. readings <u>30° 19'5</u> <u>78° 8' 3</u>	- ovil	52 •	Field Alkalinity Titration Start pH Start pH 50 mL Sample Size mL Acid Phenol > 8.3) mL Acid Total (to pH + 5) mL acid added x 20 = Alkalinity Phenol Alkalinity (82244):
Sample Time:						: hand pump /	/ soring		Total Alkelinity (39086):mg/L
			1	able (At least 3 re	adings @ 5 r	nin. intervals)			Notes:
	1:30	935	1:40						
pН	2.25	7.28	7.28						
Celsius Temp.	21.43	21.18	21.14		- a-a				- 4
Conductivity	602	604	604						

		velopment Board	
	Well Scł	nedule	O
State Well Number 57476	0 5 Prev. Well No.	County Hay 9909KL Aquifer Com Cys	15 County Code 709
Basin alored 14 GMA U	9 RWPA K GCD 19	9909KL Aquifer Con Cys	er 218 CCRK
Latitude 301952.13 Lor	ngitude 0980839.30	Coord Accuracy <u>0</u> Aquifer ID1	Aquifer ID2 Aquifer ID3
Owner/ Lew Adams		Drifler	
Well No.		Topost/Oper	
	. http://www.	Tenant/Oper.	7
Well Depth Sou	arce of Depth Altitude	753 Source of Alt. Datum Z	Casing Records: Casing or Blank Pipe (C)
Date Drilled	Well Type <u>5</u> User Code		Well Screen or Slotted Zone (S) Open Hole (O) Cemented from to
Lift Pump Data Mír.	Type of Lift	Pump Depth Setting (ft)ft.	Diam. Interval of C,S, or O. (in.) From To
Motor Mfg	Type of Power	Horsepower	
Water Use Primary	Secondary	Tertiary	3
Other Data Water Water Available Level Quality	Well Logs	Other Data	
Well Const Construction Method	Casing Material		5
Completion Method	Screen Material		7
			8
Date	Meas.	Remarks M.P	9
Date	Meas.	Remarks	11
Date	Meas.	Remarks	12
Water Quality (Remarks: TwDB 5	To Collected 2	8/2/21	14
Yield Flow Pump Rate Rate	Crols how rule was det GPM Meas Rept		15
Performance Length Producti Test of test hr Rate	on Creds how rate was det GPM Meas Rept		16 17
	nping Arnount of evelft. Drawdown	Specific ft. Capacity	18
Date Record Collected	Reporting	0	<u>GРМ</u> е.
or Information Updated 0813200	T Agency UJ Re	corded by Jussin Camp BSEM	
Remarks 1 Dr. Marm	e: Pred Spring		
3			Aquifer
4			
5			
6			Well Number

V:/SurfaceWaterResources/Groundwater/WaterQuality/WellSchedule

Analytical Results

Client ID: TWDB Lab ID: Q2120544 Sample ID: 5747605 F Project ID: TWDB CA	RED SPRING	3	Date	Collected: Received: Location: Facility: nple Point:		2/2021 5/2021			Matrix: Aqueous e Type: SAMPLE		
ALKALINITY (SM2320B,	Alkalinity)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Phenolphthalein Alkalinity	0.00	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Hydroxide Alkalinity	0.00	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Bicarbonate Alkalinity	325	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Carbonate Alkalinity	0.00	mg/L	0.00	0.00		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	Ν
Total Alkalinity (CaCO3)	325	mg/L	20.0	20.0		1	08/06/2021 00:00	ME	08/06/2021 00:00	ME	
HEAVY METALS (E245.	1 Mercury W	/ater)									
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Mercury Dissolved	<0.200	ug/L	0.200	0.0700		1	08/17/2021 16:55	FM	08/19/2021 10:54	FM	
INORGANICS (E200.7 P	rep/E200.7 N	letals, Ti	race Eleme	ents)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Dissolved	<50.0	ug/L	50.0	20.0		1	08/10/2021 14:00	ERR	08/18/2021 15:45	FM	
Calcium Dissolved	97.6	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:45	FM	
Strontium Dissolved	439	ug/L	10.0	4.00		1	08/10/2021 14:00	ERR	08/18/2021 15:45	FM	
Iron Dissolved	<50.0	ug/L	50.0	20.0		1	08/10/2021 14:00	ERR	08/18/2021 15:45	FM	
Magnesium Dissolved	26.8	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:45	FM	
Potassium Dissolved	0.628	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:45	FM	
Sodium Dissolved	5.70	mg/L	0.200	0.0700		1	08/10/2021 14:00	ERR	08/18/2021 15:45	FM	

Analytical Results

Client ID: TWDB Lab ID: Q2120544 Sample ID: 5747605 R Project ID: TWDB CA	ED SPRING	6	Date	Collected: Received: Location: Facility: nple Point:		2/2021 5/2021		Sample	Matrix: Aqueous e Type: SAMPLE		
INORGANICS (E200.8, IC	CP-MS Prep	/E200.8, I	CP-MS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Aluminum Dissolved	<5.00	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Antimony Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Arsenic Dissolved	<1.00	ug/L	1.00	0.700		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Barium Dissolved	46.4	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Beryllium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Cadmium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Chromium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Cobalt Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Copper Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Lithium Dissolved	3.78	ug/L	2.00	0.700		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	Ν
Lead Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Manganese Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Molybdenum Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Selenium Dissolved	<5.00	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Silver Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Thallium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Uranium Dissolved	<1.00	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	Ν
Vanadium Dissolved	2.63	ug/L	1.00	0.400		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
Zinc Dissolved	<5.00	ug/L	5.00	1.50		1	08/10/2021 13:59	ERR	08/11/2021 22:54	FO	
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride DIssolved	10.1	mg/L	1.00	0.400		1	08/06/2021 05:58	FO	08/06/2021 05:58	FO	
Bromide Dissolved	0.0668	mg/L	0.0200	0.00800		1	08/06/2021 05:58	FO	08/06/2021 05:58	FO	
Fluoride Dissolved	0.205	mg/L	0.0100	0.00400		1	08/06/2021 05:58	FO	08/06/2021 05:58	FO	
Sulfate Dissolved	11.6	mg/L	1.00	0.400		1	08/06/2021 05:58	FO	08/06/2021 05:58	FO	
INORGANICS (SM1030B	Cation/Ani	on Balan	ce)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Cation/Anion Balance	2.120	%				1	08/19/2021 11:29	CW	08/19/2021 11:29	CW	
NITRATE AND NITRITE	(SM4500-NC	03-H, Nitr	ate/Nitrite))							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Nitrate/Nitrite as N Dissolved	0.0661	mg/L	0.0200	0.00800		1	08/09/2021 00:00	ME	08/09/2021 00:00	ME	

Page 10 of 50

Friday, August 20, 2021 11:47:12 AM

This report shall not be reproduced, except in full, and with written approval from LCRA Environmental Laboratory Services.

Analytical Resu	ilts										
Client ID: TWDB			Date	Collected:	08/0	2/2021	09:40		Matrix: Aqueous	;	
Lab ID: Q212054	4002		Date	Received:	08/0	5/2021	09:05	Sample	e Type: SAMPLE	-	
Sample ID: 5747605	605 RED SPRING Location:										
Project ID: TWDB C	AN			Facility:							
			San	nple Point:							
SILICA (SM4500-SiO2-	C, Silica)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Silica as SiO2, Dissolved	11.4	mg/L	0.500	0.200		1	08/11/2021 00:00	ME	08/11/2021 00:00	ME	
TOTAL PHOSPHATE AS P (E365.4 / E351.2 Water Prep/E365.4 Phosphorus, Total)											
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Phosphorus, Dissolved (As F) <0.0200	mg/L	0.0200	0.00800		1	08/11/2021 15:24	ERR	08/12/2021 00:00	ME	

By: \underline{CC} Date: $\underline{11/13/17}$	G.P.S Coordinates: <u>30 20 2</u>	276 98°07'4165
County $\underline{170.05}$ M.P. =	State Well Number:	57-47-312
Herenaules River	tumilion 2015 Alikace B2015 Alikace Tamilion B2015 Alikace Tamilion B2015 Alikace Tamilion B2015 Alikace	Hum. Hum Pool 310 11 10 10 10 10 10 10 10 10 10 10 10 1

)

Texas Water Development Board (TWDB) Groundwater Database (GWDB) Well Information Report for State Well Number 57-48-119

GWDB Reports and Downloads

Well Basic Details

Scanned Documents

State Well Number	5748119
County	Travis
River Basin	Colorado
Groundwater Management Area	9
Regional Water Planning Area	K - Lower Colorado
Groundwater Conservation District	Southwestern Travis County GCD
Latitude (decimal degrees)	30.3335667
Latitude (degrees minutes seconds)	30° 20' 00.84" N
Longitude (decimal degrees)	-98.12355
Longitude (degrees minutes seconds)	098° 07' 24.78" W
Coordinate Source	Global Positioning System - GPS
Aquifer Code	218CCRK - Cow Creek Limestone
Aquifer	Trinity
Aquifer Pick Method	Provided by Groundwater Conservation District
Land Surface Elevation (feet above sea level)	893
Land Surface Elevation Method	Digital Elevation Model -DEM
Well Depth (feet below land surface)	200
Well Depth Source	Other (see remarks)
Drilling Start Date	
Drilling End Date	
Drilling Method	
Borehole Completion	

Well Type	Withdrawal of Water
Well Use	Stock
Water Level Observation	GCD Current Observation Well
Water Quality Available	No
Pump	Submersible
Pump Depth (feet below land surface)	
Power Type	
Annular Seal Method	
Surface Completion	
Owner	Marvin Myers
Driller	
Other Data Available	
Well Report Tracking Number	
Plugging Report Tracking Number	
U.S. Geological Survey Site Number	
Texas Commission on Environmental Quality Source Id	
Groundwater Conservation District Well Number	
Owner Well Number	
Other Well Number	
Previous State Well Number	
Reporting Agency	Groundwater Conservation District
Created Date	8/15/2022
Last Update Date	8/15/2022

Remarks Well depth estimated. Casing **Casing Type Casing Material** Top Depth (ft.) Bottom Depth (ft.) Diameter (in.) Schedule Gauge 6 Blank Plastic (PVC) Well Tests - No Data Lithology - No Data Annular Seal Range - No Data Borehole - No Data Plugged Back - No Data Filter Pack - No Data Packers - No Data

Water Level Measurements

No Data Available

Water Quality Analysis - No Data Available

GWDB DISCLAIMER: Except where noted, all of the information provided in the Texas Water Development Board (TWDB) Groundwater Database (https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp) is believed to be accurate and reliable; however, the TWDB assumes no responsibility for any errors appearing in rules or otherwise. Further, TWDB assumes no responsibility for the use of the information provided. PLEASE NOTE that users of these data are responsible for checking the accuracy, completeness, currency and/or suitability of all information themselves. TWDB makes no guarantees or warranties as to the accuracy, completeness, currency, or suitability of the information provided via the Groundwater Database (GWDB). TWDB specifically disclaims any and all liability for any claims or damages that may result from providing GWDB data or the information. For additional information or answers to questions concerning the TWDB GWDB, contact the Groundwater Data Team at GroundwaterData@twdb.texas.gov.

Scanned Documents do not exist for this well

<u>Attachment 16 – Groundwater Quality Technical</u> <u>Report</u>

APP000381

Groundwater Quality Technical Report

The Trinity Aquifer is a major aquifer that extends across much of the central and northeastern part of the state. It is composed of several smaller aquifers contained within the Trinity Group. Although referred to differently in different parts of the state, they include the Antlers, Glen Rose, Paluxy, Twin Mountains, Travis Peak, Hensell, and Hosston aquifers. These aquifers consist of limestones, sands, clays, gravels, and conglomerates. Their combined freshwater saturated thickness averages about 600 feet in North Texas and about 1,900 feet in Central Texas. The Hickory Aquifer stretches across 19 counties in the Llano Uplift region of Central Texas. Hickory Sandstone outcrops are non-continuous and may overlie or run along Precambrian rocks that form the uplift core. In general, groundwater is fresh but very hard in the outcrop of the aquifer. Total dissolved solids increase from less than 1,000 milligrams per liter in the east and southeast to between 1,000 and 5,000 milligrams per liter, or slightly too moderately saline, as the depth to the aquifer increases. Sulfate and chloride concentrations also tend to increase with depth. The aquifer is one of the most extensive and highly used groundwater resources in Texas. Although its primary use is for municipalities, it is also used for irrigation, livestock, and other domestic purposes. Some of the state's largest water level declines, ranging from 350 to more than 1,000 feet, have occurred in counties along the IH-35 corridor from McLennan County to Grayson County. These declines are primarily attributed to municipal pumping, but they have slowed over the past decade as a result of increasing reliance on surface water.

According to the Geologic Atlas of Texas, the site is located in the Trinity Group. Sand, silt, clay, and conglomerate: conglomerate, cemented, composed chiefly of pebbles and cobbles of Paleozoic rocks: forms shoreward fades of Glen Rose Limestone. Occupies essentially same position as the Antlers Sand north of the high area of Paleozoic rocks south of Brady on the Brownwood sheet. South of this area of Paleozoic rocks on the Brownwood Sheet, for consistency, the rocks mapped as Antlers should have been shown as Hensell. The wells closest to the site show a groundwater depth between 32 and 420 feet. Wells at this depth, with data available on the Texas Water Development Board's database, have an average total dissolved solids of about 1,500 mg/L; that value varies greatly both between individual wells and over time in the same well. The proposed subsurface area drip dispersal system (SADDS) is to be designed as per the Texas Administrative Code Title 30, Part 1, Chapter 222 Subsurface Area Drip Dispersal Systems Subchapter D: Design Criteria; which states the dispersal lines with emitters are to be placed between six and 48 inches below the surface of the soil. Additionally, the hydraulic application rate shall not exceed 0.1 gallons per square foot per day as per the requirements in Subchapter C: Siting Requirements and Effluent Limitations. Given this information, and the shallowest depth of the closest wells being 32 feet; the effluent will not be discharged into the groundwater table. A comparison of water quality constituents between the effluent and the native aquifer water will show that the effluent will be of higher quality.

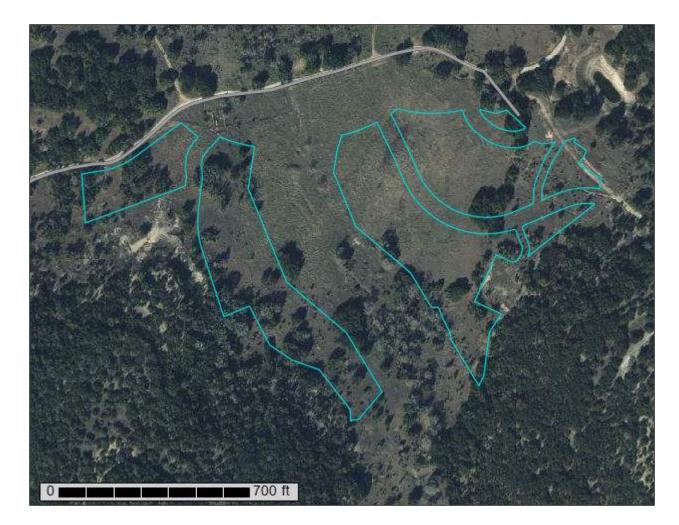
Vegetation in the irrigation area consists primarily of native grasses, cedar trees, and scattered oak trees, all vegetation in the proposed irrigation area will be removed and replaced with a mix of native and non-native grasses, including pearl millet, and be over-seeded with cereal rye grain for the winter growing season. The native and non-native grass mix will be similar to Coastal Bermuda, which actively

TLAP

grows when base temperatures are above 55°F, in both water needs and nutrient uptake. The cereal rye grain, a cool season grass, will provide year-round vegetative growth within the irrigation area. These grasses are highly salt tolerant and are assumed to have minimum electrical conductivities of 8 milliohms/cm. In addition to these grasses, native vegetation will be allowed to grow in the disposal area. The list of plants is attached to this report and these plants were selected by the landscape architect for their high nitrogen holding capacity and tolerance of soil saturation, as well as similarity to Bermuda grasses in terms of water uptake. All water and nutrient requirements of the crops will be supplied by precipitation and effluent irrigation. The effluent application rate will not exceed 0.1 gallons per square foot per day and the nitrogen loading rate will not exceed 0.91 pounds of total nitrogen per acre per day, to allow for the vegetation to take up as much water and nutrients as possible. Although the effluent is not to be discharged into the groundwater table, the effluent dispersed through the SADDS that has been treated by the vegetation will show a higher quality than that of a sample collected from the local groundwater.

There are fifteen wells within the property boundary. Well #531673 was a domestic well but was plugged and abandon on December 19th, 2019. There are four wells within ¼ of a mile of the effluent drip fields. Within a mile of the drip fields, there are over 50 wells, including 5 plugged wells. The State of Texas well records for all wells within 1 mile radius of the proposed effluent disposal fields and wastewater treatment plant are attached to the Domestic Technical Report, as Attachment 15, along with a map showing the well locations, as Attachment 13. A USDA soil map is also attached to the Domestic Technical Report, as part of Attachment 17.

Attachment 17 – USDA Soil Survey Map


United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Comal and Hays Counties, Texas

Mirasol Proposed TLAP Areas

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Comal and Hays Counties, Texas	13
BtG—Brackett-Rock outcrop-Real complex, 8 to 30 percent slopes	13
KrC—Krum clay, 3 to 5 percent slopes	15
References	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic classes has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

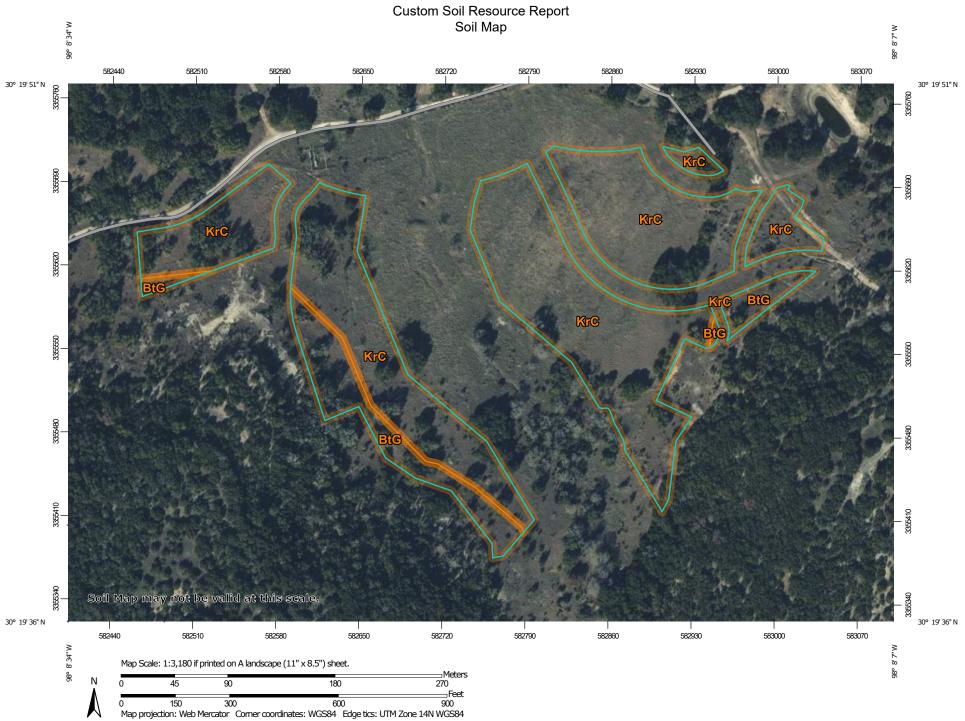
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND	1	MAP INFORMATION
Area of In	terest (AOI)	300	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	۵	Stony Spot	1:20,000.
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Lines	\$	Wet Spot	
~	Soil Map Unit Points	\triangle	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
E Special	Point Features		Special Line Features	line placement. The maps do not show the small areas of
opeciai (0)	Blowout	Water Fea	itures	contrasting soils that could have been shown at a more detailed scale.
×	Borrow Pit	\sim	Streams and Canals	
*	Clay Spot	Transport		Please rely on the bar scale on each map sheet for map
ô	Closed Depression	+++	Rails	measurements.
×	Gravel Pit	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Mana from the Web Call Survey are based on the Web Maraster
Ă.	Lava Flow	~		Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
<u>بل</u> د	Marsh or swamp	Backgrou	nd Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
~	Mine or Quarry		5 1 5	accurate calculations of distance or area are required.
Ô	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
õ	Perennial Water			of the version date(s) listed below.
Š	Rock Outcrop			Call Control Annal Control and Llove Counting Taylor
÷	Saline Spot			Soil Survey Area: Comal and Hays Counties, Texas Survey Area Data: Version 19, Aug 24, 2022
т 	Sandy Spot			
	Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
0	Sinkhole			
}	Slide or Slip			Date(s) aerial images were photographed: Dec 15, 2019—Dec 19, 2019
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BtG	Brackett-Rock outcrop-Real complex, 8 to 30 percent slopes	2.2	13.5%
KrC	Krum clay, 3 to 5 percent slopes	14.0	86.5%
Totals for Area of Interest		16.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Comal and Hays Counties, Texas

BtG—Brackett-Rock outcrop-Real complex, 8 to 30 percent slopes

Map Unit Setting

National map unit symbol: 2t2m3 Elevation: 470 to 1,900 feet Mean annual precipitation: 32 to 37 inches Mean annual air temperature: 66 to 68 degrees F Frost-free period: 230 to 265 days Farmland classification: Not prime farmland

Map Unit Composition

Brackett and similar soils: 38 percent Rock outcrop: 25 percent Real and similar soils: 22 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brackett

Setting

Landform: Ridges Landform position (two-dimensional): Backslope, footslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

A - 0 to 6 inches: gravelly clay loam *Bk - 6 to 14 inches:* gravelly clay loam *Cr - 14 to 60 inches:* bedrock

Properties and qualities

Slope: 8 to 30 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 10 to 20 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 90 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R081CY362TX - Steep Adobe 29-35 PZ Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Ridges Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope, base slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Limestone

Typical profile

R - 0 to 80 inches: bedrock

Properties and qualities

Slope: 8 to 30 percent
Depth to restrictive feature: 0 to 2 inches to lithic bedrock
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: No

Description of Real

Setting

Landform: Ridges Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope, base slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

A - 0 to 4 inches: gravelly loam Ak - 4 to 14 inches: extremely gravelly loam Cr - 14 to 40 inches: bedrock

Properties and qualities

Slope: 8 to 30 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 8 to 19 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 70 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R081CY362TX - Steep Adobe 29-35 PZ Hydric soil rating: No

Minor Components

Eckrant

Percent of map unit: 10 percent Landform: Ridges Landform position (two-dimensional): Backslope, footslope, summit, shoulder Landform position (three-dimensional): Crest Down-slope shape: Linear Across-slope shape: Convex Ecological site: R081BY350TX - Steep Rocky 23-31 PZ Hydric soil rating: No

Volente

Percent of map unit: 5 percent Landform: Drainageways Landform position (two-dimensional): Backslope, footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

KrC—Krum clay, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2t2j6 Elevation: 620 to 1,820 feet Mean annual precipitation: 31 to 37 inches Mean annual air temperature: 65 to 69 degrees F Frost-free period: 230 to 250 days Farmland classification: All areas are prime farmland

Map Unit Composition

Krum and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Krum

Setting

Landform: Stream terraces Landform position (three-dimensional): Riser Down-slope shape: Concave Across-slope shape: Linear Parent material: Calcareous silty and clayey alluvium derived from limestone

Typical profile

A - 0 to 13 inches: clay Bk1 - 13 to 27 inches: clay Bk2 - 27 to 40 inches: clay Ck - 40 to 80 inches: clay

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 50 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 3.0
Available water supply, 0 to 60 inches: Moderate (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

Minor Components

Bolar

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Convex Across-slope shape: Linear Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

Doss

Percent of map unit: 3 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Convex Across-slope shape: Convex *Ecological site:* R081CY574TX - Shallow 29-35 PZ *Hydric soil rating:* No

Lewisville

Percent of map unit: 2 percent Landform: Stream terraces Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

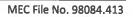
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

RECHARGE FEATURE PLAN for the MIRASOL SPRINGS WATER RECLAMATION FACILITY TLAP


Prepared for:

Mirasol Springs Ranch c/o Clancy Utility Holdings, LLC 4143 Maple Avenue Street, Suite 400 Dallas, TX 75219

Prepared by:

Murfee Engineering Company, Inc. Texas Registered Firm No. F-353 1101 Capital of Texas Highway South Building D, Suite 110 Austin, Texas 78746 (512) 327-9204

July 2023

Murfee Engineering Company

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND GEOLOGY	1
GROUNDWATER	3
PREVENTATIVE MEASURES	4
REFERENCES	4

INTRODUCTION

This Recharge Feature Plan (RFP) and attachments have been prepared to incorporate information required by the Texas Commission on Environmental Quality (TCEQ) in support of permitting Subsurface Area Drip Dispersal System (SADDS) for Mirasol.

In preparing this plan, the following databases/resources were researched for geology, soil, well, and groundwater information:

- Landowner(s), existing and previous (where possible);
- Submitted Driller's Report Database;
- TCEQ Water Well Database;
- Texas Water Development Board Groundwater Database;
- Water Utility Database;
- Railroad Commission of Texas;
- Natural Resources Conservation Service;
- Southwestern Travis County Groundwater Conservation District;
- Hays Trinity Groundwater Conservation District note: no response was received to our inquiry; and
- Westcave Outdoor Discovery Center note: no response was received to our inquiry.

SITE DESCRIPTION AND GEOLOGY

The site is located on the border of both Travis County and Hays County on the south of the Hamilton Pool Road (RR 3238) – Stagecoach Ranch Road intersection. The proposed SADDS sites are currently undeveloped. The SADDS sites are located within the Trinity Group and in the Hickory aquifer (minor). The Trinity Aquifer is a major aquifer that extends across much of the central and northeastern part of the state. It is composed of several smaller aquifers contained within the Trinity Group. Although referred to differently in different parts of the state, they include the Antlers, Glen Rose, Paluxy, Twin Mountains, Travis Peak, Hensell, and Hosston aquifers. These aquifers consist of limestones, sands, clays, gravels, and conglomerates. Their combined freshwater saturated thickness averages about 600 feet in North Texas and about 1,900 feet in Central Texas. The Hickory Aquifer stretches across 19 counties in the Llano Uplift region of Central Texas. Hickory Sandstone outcrops are non-continuous and may overlie or run along Precambrian rocks that form the uplift core.

According to the Geologic Atlas of Texas, the site is located in the Trinity Group in the Hensel Sand rock unit which is composed of sand, silt, clay, and conglomerate: conglomerate, cemented, composed chiefly of pebbles and cobbles of Paleozoic rocks: forms shoreward fades of Glen Rose Limestone. Occupies essentially same position as the Antlers Sand north of the high area of Paleozoic rocks south of Brady on the Brownwood sheet. South of this area of Paleozoic rocks on the Brownwood Sheet, for consistency, the rocks mapped as Antlers should have been shown as Hensell. The Hydrogeologic Atlas of the Hill Country shows no recorded Karst features within 500 feet of the proposed SADDS field locations (Weirman, Broun, & Hunt, 2010).

The drainage from the site and surrounding areas will either flow into the Pedernales River or a tributary that flows into the Pedernales River. The groundwater in the area also flows toward the Pedernales River (Kuniansky & Ardis, 2004).

There is an unnamed tributary to the Pedernales River that has intermittent flow. This feature has not been carrying water during any of the site investigations made by the engineer or consultants and no data could be located on historical flows or floods. A buffer zone of at least 100 feet has been included in the design of the drip fields to protect the tributary.

The SADDS sites and surrounding areas were visited to evaluate whether any recharge feature such as caves, sinkholes, faults, fractures, or other permeable features that could potentially serve as recharge features were present. No such features were observed. Several wells were located within the site vicinity; however, all of the area wells are not public water supply wells and a 150' buffer is maintained from the proposed SADDS sites. A spring is also near the site; a 500ft buffer is maintained from the SADDS site. All appropriate setbacks will be maintained between surface waters and the SADDS area. If any features are encountered during future field investigations or during construction, we will ensure that the appropriate setbacks are maintained per TAC §222.81.

GROUNDWATER

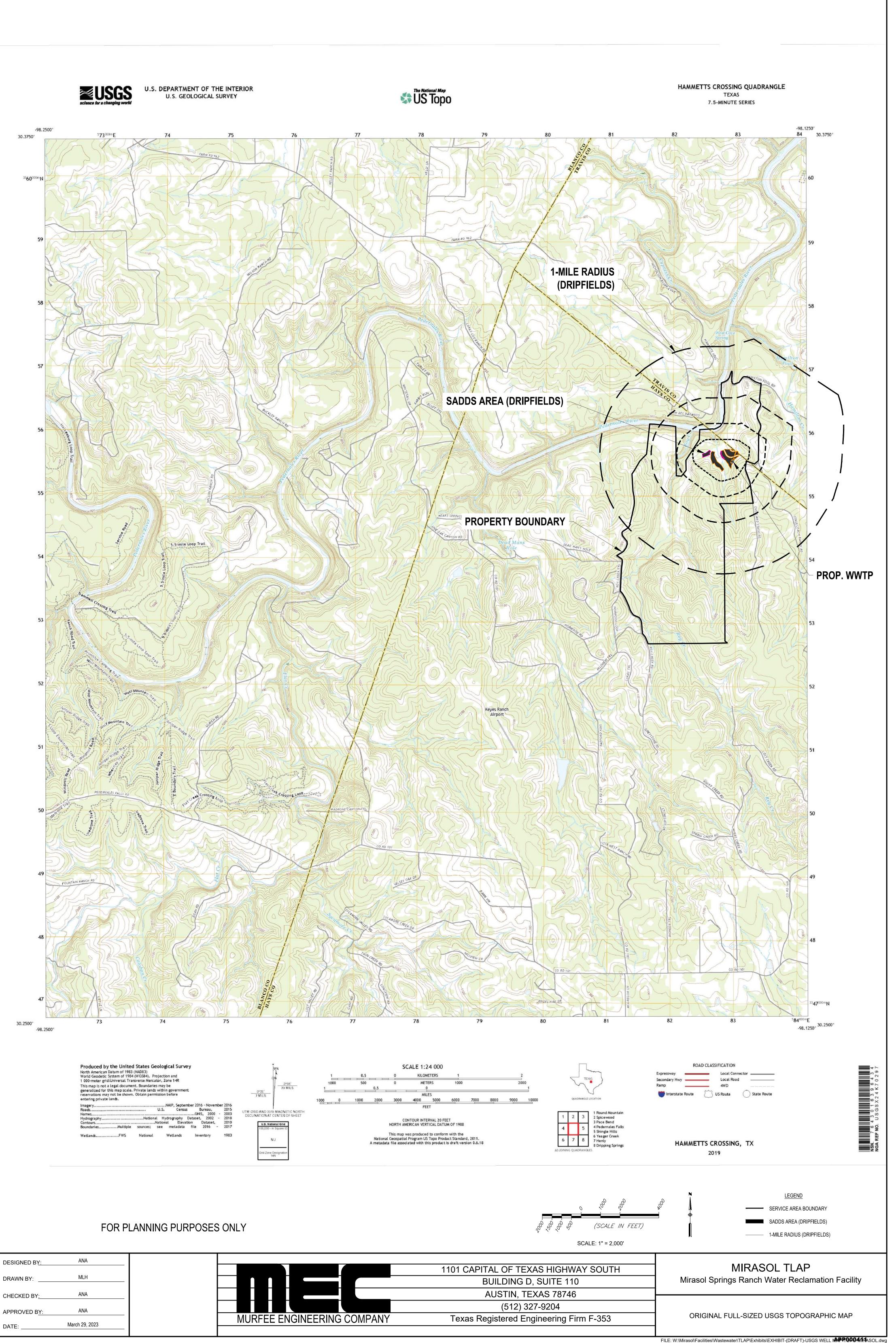
The site is located along the Trinity Aquifer. The aquifer is one of the most extensive and highly used groundwater resources in Texas. Although its primary use is for municipalities, it is also used for irrigation, livestock, and other domestic purposes. There are fifteen wells within the property boundary. Well #531673 was a domestic well but was plugged and abandon on December 19th, 2019. There are four wells within ¼ of a mile of the effluent drip fields. Within a mile of the drip fields, there more than 50 wells ranging 0 feet – 1,134 feet in depth including two springs and five plugged wells. The State of Texas well records for all wells within 1 mile radius of the drip fields are attached to the Domestic Technical Report as Attachment 15. A USDA soil map as well as a map displaying the locations of the wells are also attached to the Domestic Technical Report, as Attachments 17 and 13, respectively. Table 1 lists the wells within one-half mile of the drip fields and the Pedernales River.

Table 1: Wells Within 1/2-mile of Proposed Drip Field				
Well #	Water Level	Land Surface		
5188	No Data	815 ft MSL*		
372073	No Data	971 ft MSL		
502584	140 ft	970 ft MSL*		
527515	110 - 185 ft	955 ft MSL		
527548	129 ft	954 ft MSL		
534551	145 ft	875 ft MSL		
535035 (5747316)	32 ft	971 ft MSL		
556939 (5747314)	153 ft	968 ft MSL		
5747305	165 ft	828 ft MSL		
5747604	Spring	816 ft MSL		
5747605	Spring	753 ft MSL		
Note: Land surface elevations marked * were not available in the				

well report data were obtain using the provided coordinates and available topo.

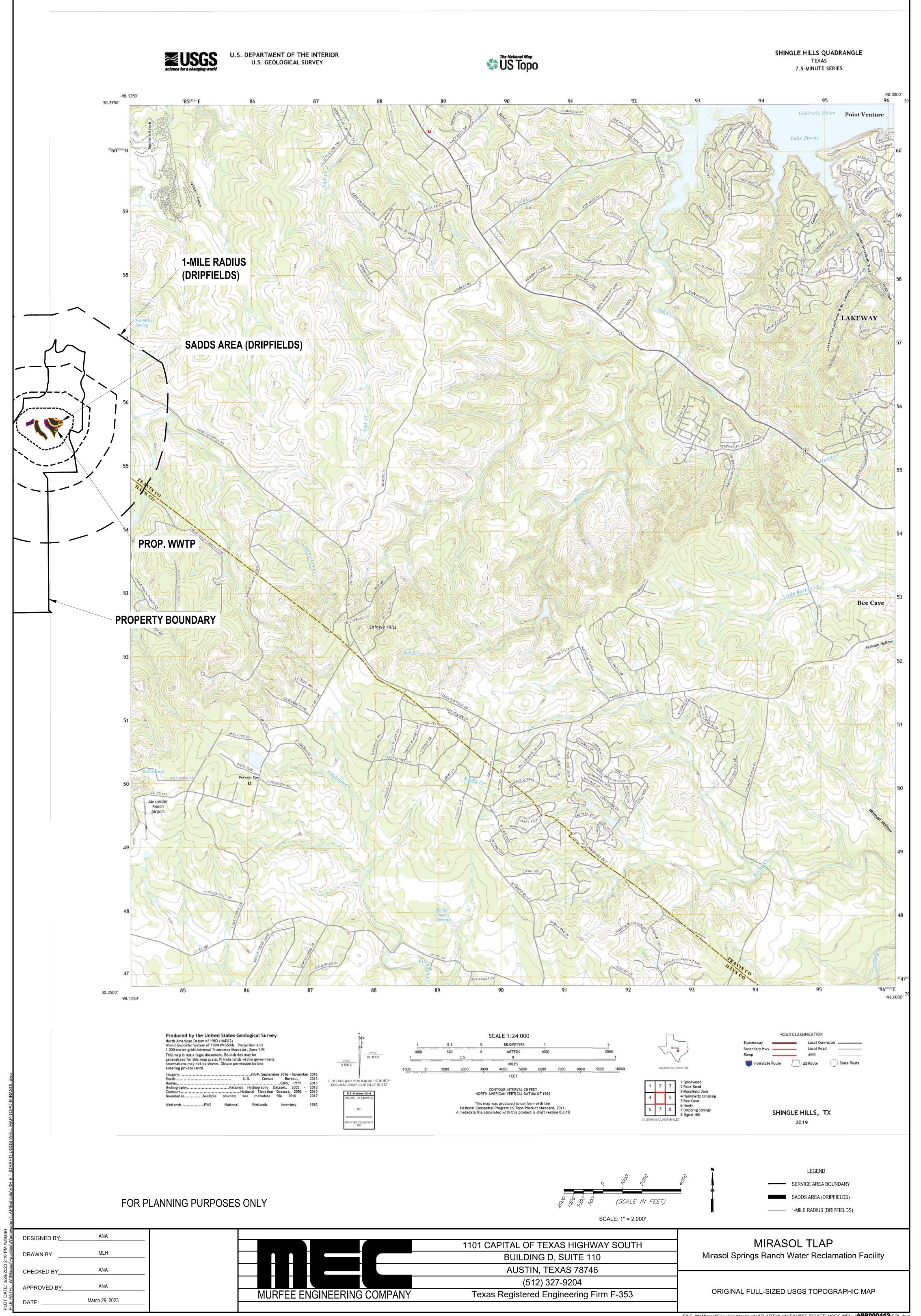
Based on the information available for the nearby wells, and the elevation at the proposed site, the groundwater is anticipated to be approximately 50 to 100 ft below ground.

PREVENTATIVE MEASURES

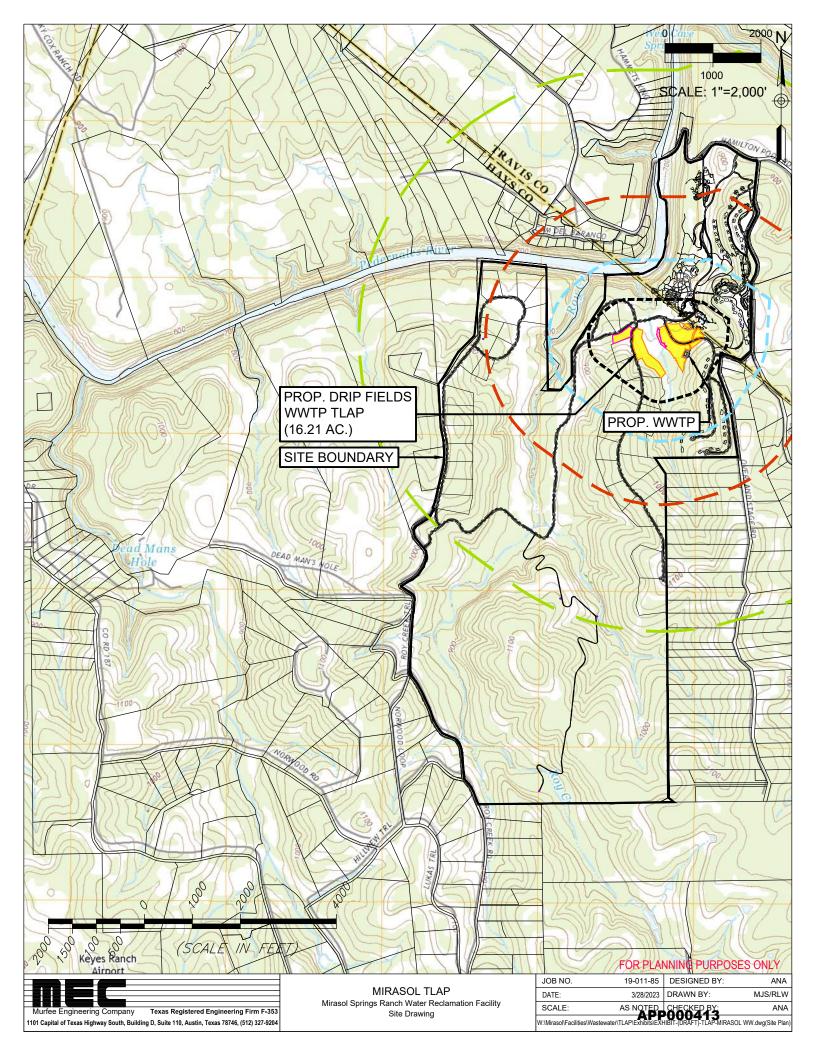

Buffer zones from the SADDS and WWTP will be maintained to prevent impacts to recharge features, which only include the unnamed tributary. Appropriate buffer zones (i.e. setbacks) as defined in TAC §222.81(a) are met under the existing site conditions, including the proposed SADDS. These setbacks include a minimum 150 feet to existing on-site and off-site private water wells. The setback will be a minimum of 500 feet to existing on-site and off-site public water supply wells. These buffer zones are shown on the exhibit in Appendix A. There are also setbacks from creeks as prescribed in Chapter 222. The appropriate setback from surface waters will be maintained.

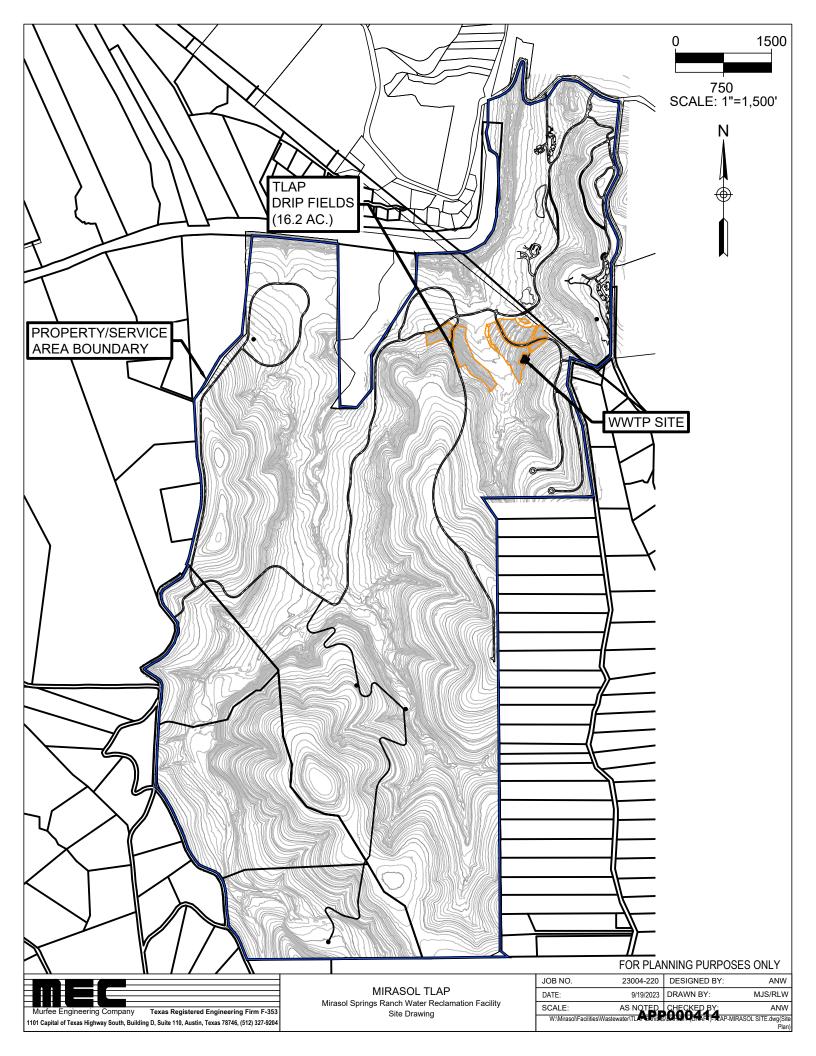
REFERENCES

Kuniansky, E. L., & Ardis, A. F. (2004). Hydrogeology and Ground-Water Flow in the Edwards-Trinity Aquifer System, West-Central Texas. Reston, Virginia: U.S. Geological Survey. Weirman, D. A., Broun, B. B., & Hunt, B. B. (2010). Hydrogeologic Atlas of the Hill Country Trinity Aquifer, Blanco, Hays, and Travis Counties, Central Texas.

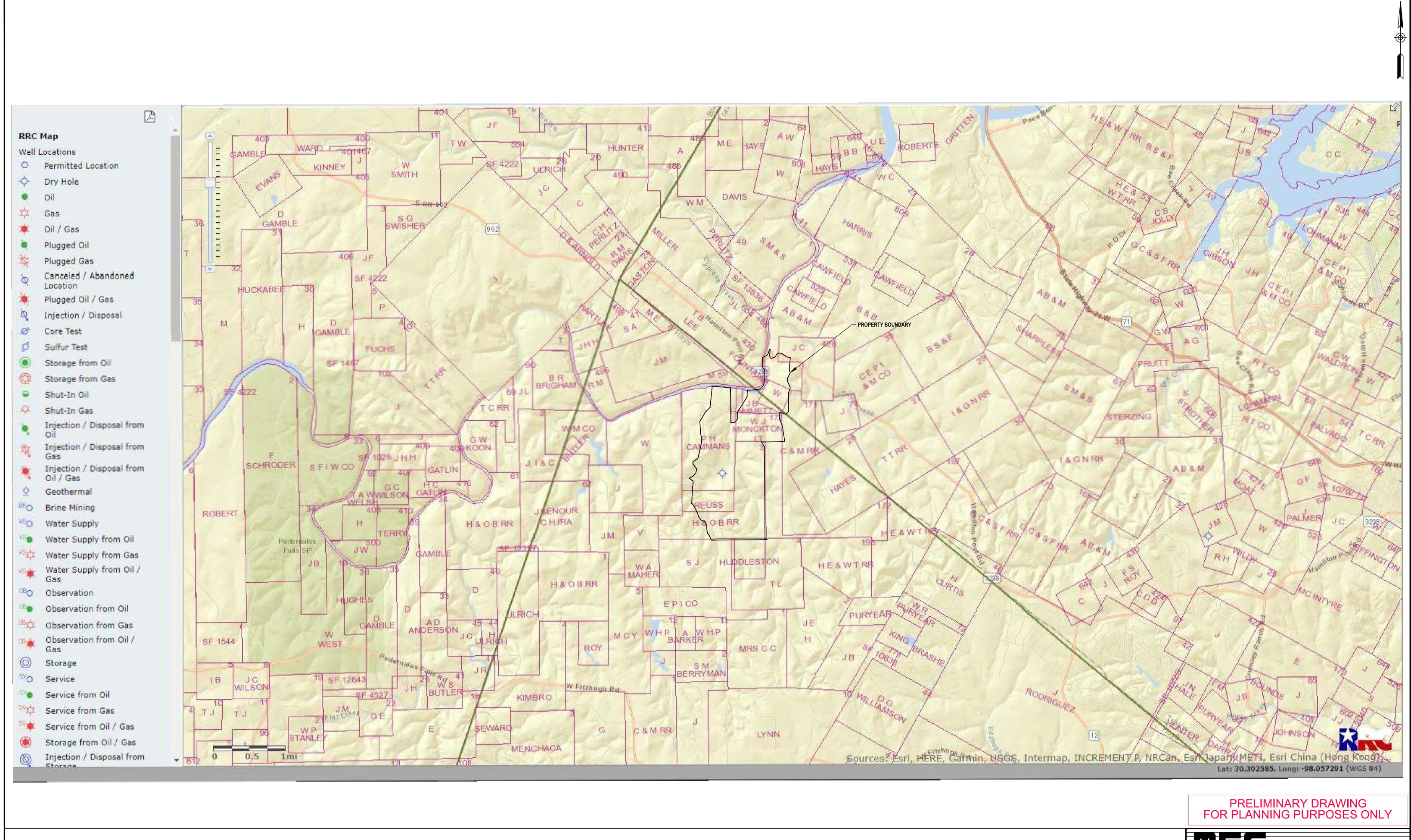

Appendix A

Project Location – Proposed SADDS Fields and WWTP




3/29/2023 2:16 PM W:\Mirasol\Facilitie

PLOT DATE: FILE PATH:


FILE: W:\Mirasol\Facilities\Wastewater\TLAP\Exhibits\EXHIBIT-(DRAFT)-USGS WELL

Appendix B

Railroad Commission Map

	Murfee Engineering Company Texas Registered Engineering Firm F-353				
	1101 Capital of Texas Highway South, Building D, Suite 110, Austin, Texas 78746, (512) 327-9204				
	MIRASOL SPRINGS RANCH TLAP RECHARGE FEATURE PLAN RAILROAD COMMISSION MAP				
	DATE: 4/30/2021	JOB NO. 19011.85	SCALE: NTS		
	DESIGNED BY: ANW	DRAWN BY: MJS	CHECKED BY: EP		
FILE: V	FILE: W:\Mirasol\Facilities\Wastewater\TLAP\Exhibits\EXHIBIT-(DRAFT)-RRC MAP-TLAPROQG419 0430.dwg				

<u>Attachment 19 – Soil Evaluation Plan and Soil</u> <u>Sampling and Testing</u>

ATTACHMENT 3.3-3b

MIRASOL

SOILS EVALUATION

Prepared for:

Murfee Engineering Company, Inc. 1101 Capital of Texas Hwy South Building D, Suite 110 Austin, TX 78746 Texas Registered Firm No. F-353

Prepared by: WWD Engineering *FIRM F-12009* 9217 W. Hwy 290, Suite 110 Austin Texas 78736 (512) 288-2111

April 3, 2023

TABLE OF CONTENTS

Introduction Management Options Geology Soil Survey Climate Vegetation Test Hole Selection On-site Soils Descriptions Appendix I – Site Map Appendix II – USDA Soil Survey Map and Report Appendix III – Profile Hole Information Sheets Appendix IV – Geologic Atlas of Texas Appendix IV – Edwards Aquifer Map Appendix V – Edwards Aquifer Map

Soils Site Investigation for Mirasol Development Hays and Travis Counties, Texas

INTRODUCTION

WWD Engineering is providing technical services to support Murfee Engineering in preparing a Texas Land Application Permit (TLAP) wastewater permit application. This system is to include subsurface area drip disposal systems (SADDS) on the proposed future development known as the Mirasol (the "Site"). The site is located on Hamilton Pool Road, just east of the Pedernales Riveralong the Hays Travis County line.

The site is not located in the Edwards Aquifer Recharge or Contributing Zone. We are proposing to utilize a SADDS disposal method at this site. The treated effluent irrigation system will utilize a drip irrigation management system to allow for accurate control of the proposed surface drip treated effluent irrigation system. The subsurface drip irrigation system will utilize drip tubing that is embedded with compensating drip emitters to ensure accurate and uniform dosing of the irrigation sites. The site will retain all of the trees that are present now. The tubing will be buried $6^{\circ} - 8^{\circ}$ below the surface of the ground.

A site investigation was performed to obtain information to evaluate the soils and assist in the design of the drip irrigation system. This report summarizes the findings of this investigation.

Management Plan

The proposal for the treated effluent application areas is to utilize Bermuda grass and Winter Rye for establishing a cover crop. Herbaceous vegetation will be used to vegetate the areas where soils will be imported and areas where clearing will occur.

In developing the irrigation areas, upslope surface drainage will be diverted to prevent run-on onto the treated effluent application areas. Areas where drainage appears to be concentrated, and active, should be buffered from application of treated effluent.

Where soils are not sufficient, a suitable material will need to be imported to ensure that there is at least one foot of rootable material beneath the dripper lines. This will ensure that there is sufficient rooting depth to allow for the growth of herbaceous vegetation that will utilize the treated effluent.

All areas will be seeded with high performance turf grass vegetation and will include warm season and cool season vegetation. This will help ensure that there is a viable cover crop growing at all times to uptake the water and nutrients associated with the treated effluent. Most species can and will utilize N levels much greater than 100-150 lbs of N/acre/yr. These areas will be mowed to ensure that the vegetation continues to exhibit vigorous growth habits and to maximize the uptake potentials and to ensure that a standing crop does not interfere with the establishment of the following seasons' vegetation emergence.

Site Details

Geology

According to the Geologic Atlas of Texas, Llano Sheet, this site is located on the Upper Glen Rose (Kgr(u)) and the Hensell Sand (Kh) formations. The official description of the Glen Rose is:

"Glen Rose Limestone, Kgr, limestone, dolomite, and marl subdivided into two units by a Corbula bed; alternating resistant and recessive beds forming stairstep topography; limestone, aphanitic to fine-grained, hard to soft and marly, light-gray to yellowish-gray; dolomite, fine-grained, porous, yellowish-brown; marine megafossils include molluscan steinkerns, rudistids, oysters, and echinoids; upper part relatively thinner bedded, more dolomitic and less fossiliferous than lower part, thickness about 220 feet; lower part more massive and about 160 feet thick, includes at top Corbula Bed, C, with abundant steinkerns of Corbula harveyi (Hill) in an interval up to 5 feet thick; thickness of Glen Rose 380+/- feet¹."

The Hensell Sand formation is described as" sand, silt, clay and conglomerate; composed chiefly of pebbles and cobbles of Paleozoic and Precambrian rocks"

USDA-Soil Survey

A soils map is located in the Appendix of this document. According to the results of the site investigation and visual observations, the soils at this site consists of clay loam, gravelly clay loam, cobbly clay and alluvium.

Climate

According to the USDA-SCS Soil Survey for Hays and Travis County, Texas, the climate in Hays and Travis County is humid subtropical and is characterized by hot summers and relatively mild winters. Temperature and rainfall are the climatic factors that have the greatest influence on the formation of soils in these areas. The pattern of rainfall consists of interspersed wet and dry periods.

Vegetation

Vegetation within the areas to be utilized for the initial phases of the project will be planted to improved turf grasses. These areas will be mowed and managed to ensure that the vegetation is actively growing at all times.

Soils

According to the Soil Survey, soils of the treated effluent application site consist of the following soils:

- BID Brackett-Rock outcrop Real complex, 8 to 30 percent slopes;
- KrC Krum clay, 3 to 5 percent slopes;

¹ Bureau of Economic Geology, 1974, Austin Sheet, Geologic Atlas of Texas, University of Texas

Details regarding these soils are presented in the soils report in the Appendix.

Test Hole Selection

Erin Banks, P.E. selected four representative sites within the areas proposed for the wastewater treatment and disposal areas and representing the soils in the SADDS areas.

It is virtually impossible to try and establish a sampling regime that will sufficiently allow for coverage of inclusional features within the application areas. However, if any of these features are discovered at the time of construction, these areas will be noted and sufficiently evaluated to determine their relevance to the construction and ultimate performance of the treated effluent application sites. The soil descriptions will be followed by pictures for each hole.

Test Hole #3

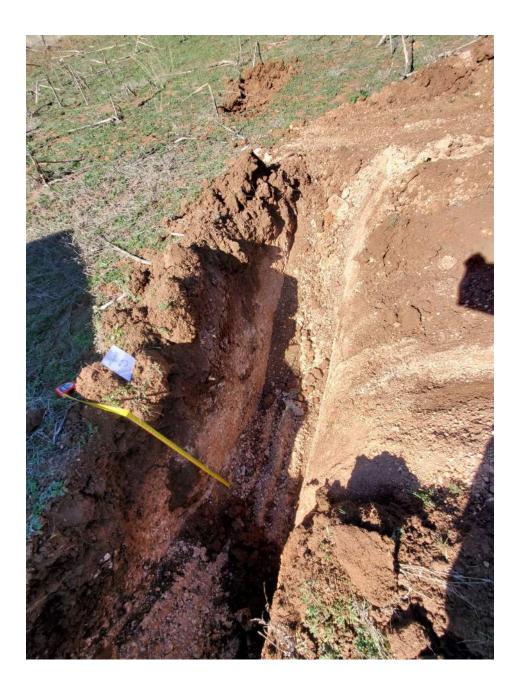
Vegetation Characteristics

The woody vegetation of this site consisted of large oak with 5% canopy cover. There was 95% herbaceous plant growth in the immediate area of this hole. Surficial stoniness was estimated at 0%. The litter layer coverage was estimated at 0%. Slope of this area was 2-4%.

Soil Characteristics

Total soil depth was 42 inches where refusal was achieved. The profile consisted of two horizons. The primary rooting depth in the hole was 3 inches with no secondary rooting.

Depth of the 1st horizon was 3 inches. The 1st horizon consisted of a silty clay loam material. The 1st horizon consisted of a material that was course in texture and structure. The material in the 1st horizon was a red brown color. There was no mottling evident in the 1st horizon. The 1st horizon consisted of <10% limestone fragments.


Depth of the 2nd horizon was 42 inches. The 2nd horizon consisted of a caliche material. The 2nd horizon consisted of a material that was blocky in texture and structure. The material in the 2nd horizon was tan/red in color. There was no mottling evident in the 2nd horizon. The 2nd horizon consisted of 10% limestone fragments. The boundary between the 1st horizon and the 2nd horizon was level. The boundary between the 2nd horizon was level. In this hole no potential water bearing zones were encountered. In this hole no active water bearing zones were encountered.

Test Hole 3

Test Hole #4

Vegetation Characteristics

The woody vegetation of this site consisted of large oak with 5% canopy cover. There was 95% herbaceous plant growth in the immediate area of this hole. Surficial stoniness was estimated at 0%. The litter layer coverage was estimated at 0%. Slope of this area was 2-5%.

Soil Characteristics

Total soil depth was 49 inches where refusal was achieved. The profile consisted of one horizon. The primary rooting depth in the hole was 2 inches with no secondary rooting.

Depth of the 1st horizon was 49 inches. The 1st horizon consisted of a silty clay loam material. The 1st horizon consisted of a material that was coarse in texture and structure. The material in the 1st horizon was a red brown color. There was no mottling evident in the 1st horizon. The 1st horizon consisted of <10% limestone fragments.

Test Hole 4

Test Hole 4

Test Hole #5

Vegetation Characteristics

The woody vegetation of this site consisted of large oak, small oak and juniper with 25% canopy cover. There was 75% herbaceous plant growth in the immediate area of this hole. Surficial stoniness was estimated at 0%. The litter layer coverage was estimated at 0%. Slope of this area was 2-4%.

Soil Characteristics

Total soil depth was 34 inches where refusal was achieved. The profile consisted of two horizons. The primary rooting depth in the hole was 6 inches with no secondary rooting.

Depth of the 1st horizon was 6 inches. The 1st horizon consisted of a sandy loam material. The 1st horizon consisted of a material that was course in texture and structure. The material in the 1st horizon was a red brown color. There was no mottling evident in the 1st horizon. The 1st horizon consisted of <10% limestone fragments.

Depth of the 2nd horizon was 34 inches. The 2nd horizon consisted of a silty clay loam material. The 2nd horizon consisted of a material that was coarse in texture and structure. The material in the 2nd horizon was brown/red in color. There was no mottling evident in the 2nd horizon. The 2nd horizon consisted of 10% limestone fragments. The boundary between the 1st horizon and the 2nd horizon was level. The boundary between the 2nd horizon was level. In this hole no potential water bearing zones were encountered.

Test Hole 5

Test Hole 5

Test Hole #6

Vegetation Characteristics

The woody vegetation of this site consisted of large oak, small oak and juniper with 30% canopy cover. There was 70% herbaceous plant growth in the immediate area of this hole. Surficial stoniness was estimated at 0%. The litter layer coverage was estimated at 0%. Slope of this area was 4-6%.

Soil Characteristics

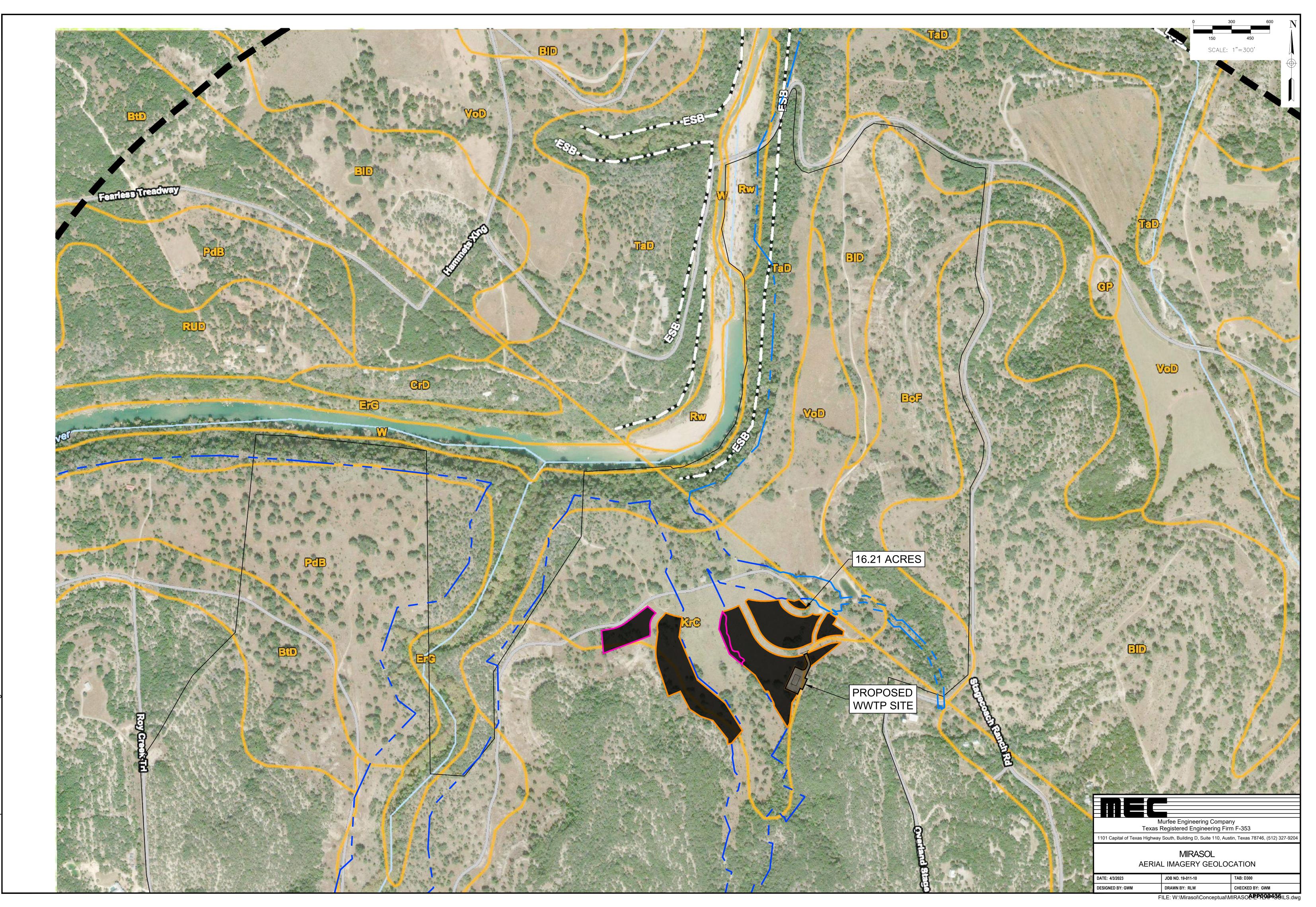
Total soil depth was 34 inches where refusal was achieved. The profile consisted of two horizons. The primary rooting depth in the hole was 6 inches with no secondary rooting.

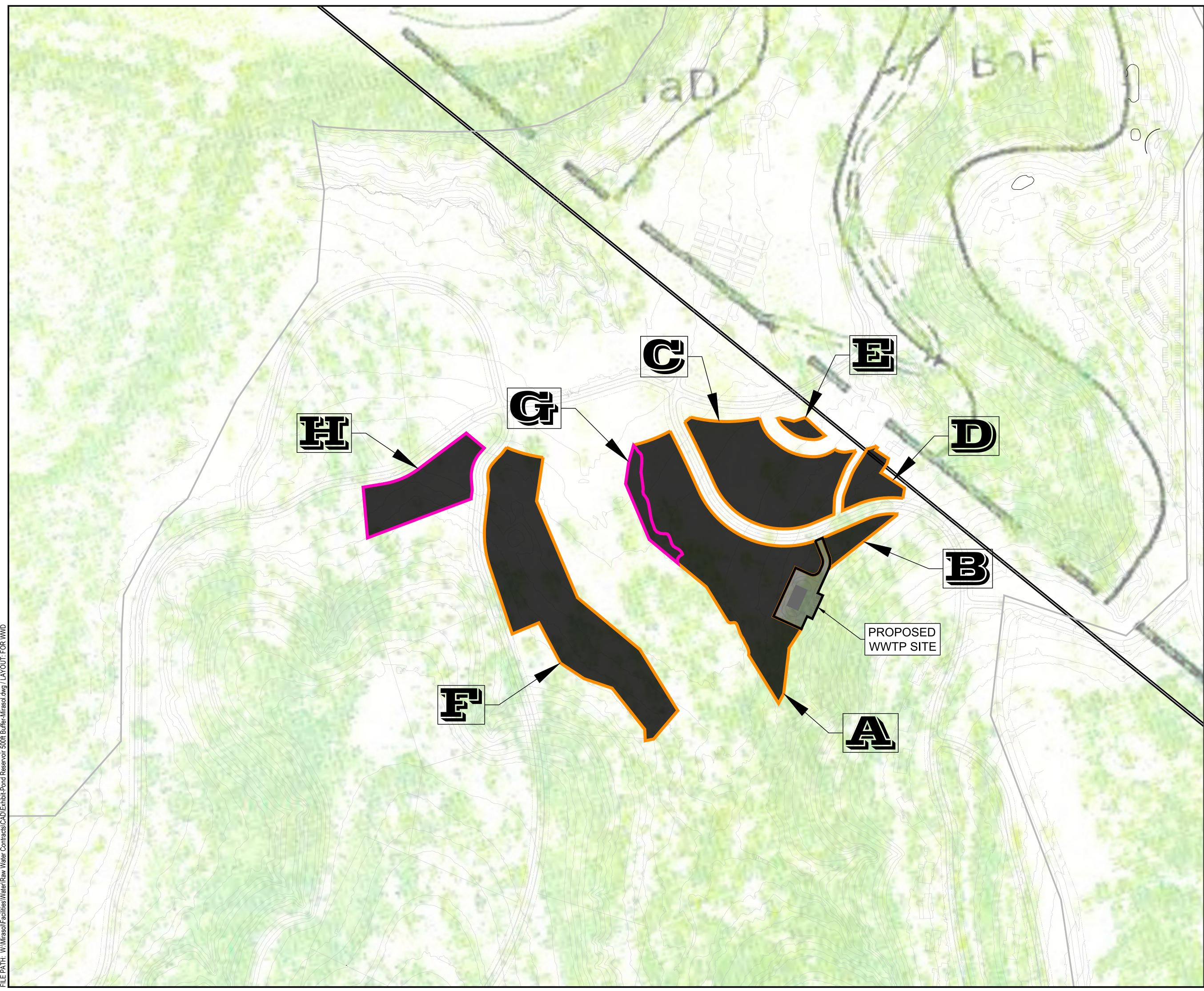
Depth of the 1st horizon was 10 inches. The 1st horizon consisted of a sandy loam material. The 1st horizon consisted of a material that was course in texture and structure. The material in the 1st horizon was a red brown color. There was no mottling evident in the 1st horizon. The 1st horizon consisted of <10% limestone fragments.

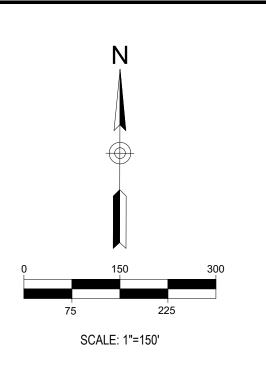
Depth of the 2nd horizon was 34 inches. The 2nd horizon consisted of a silty clay loam material. The 2nd horizon consisted of a material that was coarse in texture and structure. The material in the 2nd horizon was brown/red in color. There was no mottling evident in the 2nd horizon. The 2nd horizon consisted of 10% limestone fragments. The boundary between the 1st horizon and the 2nd horizon was level. The boundary between the 2nd horizon was level. In this hole no potential water bearing zones were encountered.

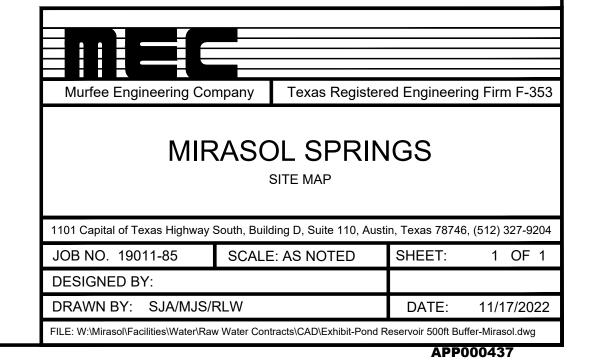
Test Hole 6

Test Hole 6




Appendix I


Site Map


E: W:\Mirasol\Conceptual\MIRASOL-E-TLAP-SOILS.dwg

TLAP AREAS

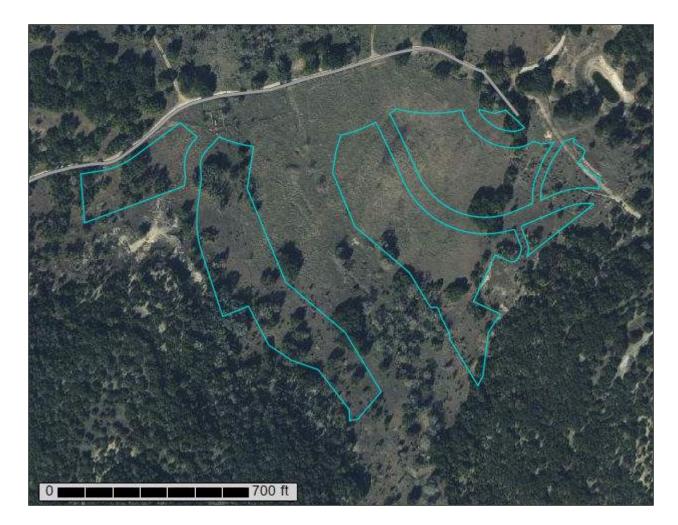
AREA	ACREAGE
A	4.60
B	0.40
C	3.16
D	0.57
E	0.17
F	5.21
G	0.43
H	1.67
TOTAL	16.21

Appendix II

USDA Soil Survey Map and Report

Attachment 17 – USDA Soil Survey Map

APP000439


United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Comal and Hays Counties, Texas

Mirasol Proposed TLAP Areas

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Comal and Hays Counties, Texas	13
BtG—Brackett-Rock outcrop-Real complex, 8 to 30 percent slopes	13
KrC—Krum clay, 3 to 5 percent slopes	15
References	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

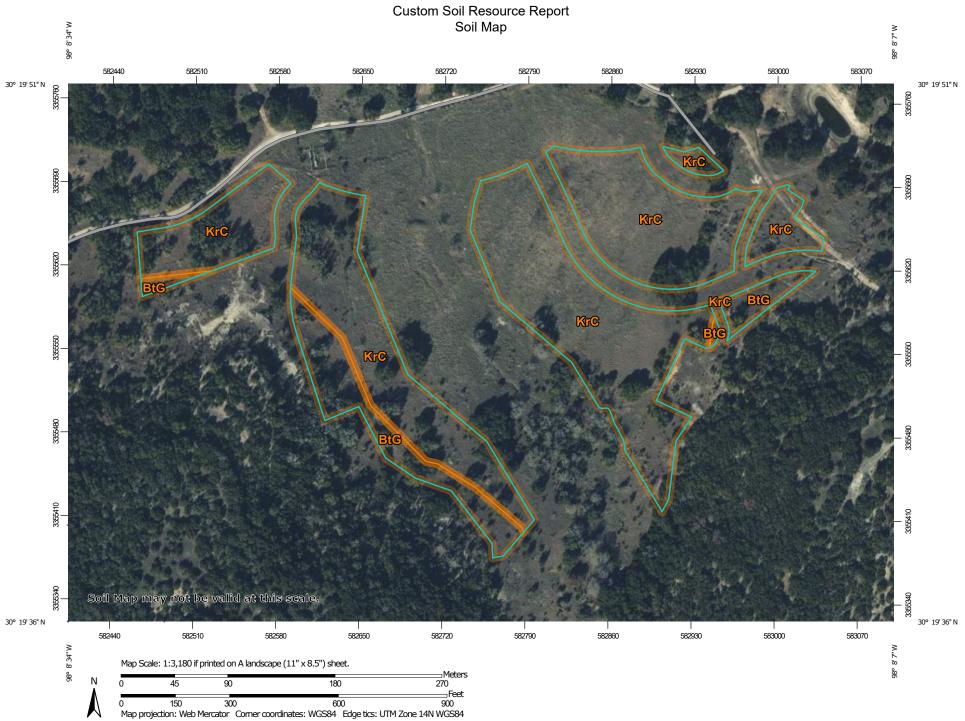
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND			MAP INFORMATION			
Area of Interest (AOI) Area of Interest (AOI)		000	Spoil Area	The soil surveys that comprise your AOI were mapped at			
		۵	Stony Spot	1:20,000.			
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.			
	Soil Map Unit Lines	Ŷ	Wet Spot				
~	Soil Map Unit Points	\triangle	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil			
Crossial	·		Special Line Features	line placement. The maps do not show the small areas of			
Special Point Features Blowout	Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.			
×	Borrow Pit	\sim	Streams and Canals				
Clay Spot	Transport		Please rely on the bar scale on each map sheet for map				
Ô	Closed Depression	+++	Rails	measurements.			
×	Gravel Pit	~	Interstate Highways	Source of Map: Natural Resources Conservation Service			
°°	Gravelly Spot	~	US Routes	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)			
0	Landfill	\sim	Major Roads				
-	Lava Flow	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts			
Λ.	Marsh or swamp	Backgrou	nd Aerial Photography	distance and area. A projection that preserves area, such as the			
*	Mine or Quarry	and the second s	Aenal Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.			
~	,						
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.			
0	Perennial Water						
\sim	Rock Outcrop			Soil Survey Area: Comal and Hays Counties, Texas Survey Area Data: Version 19, Aug 24, 2022			
+	Saline Spot			Sulvey Alea Data. Version 13, Aug 24, 2022			
° °	Sandy Spot			Soil map units are labeled (as space allows) for map scales			
0	Severely Eroded Spot			1:50,000 or larger.			
\diamond	Sinkhole			Date(s) aerial images were photographed: Dec 15, 2019—Dec			
≫	Slide or Slip			19, 2019			
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BtG	Brackett-Rock outcrop-Real complex, 8 to 30 percent slopes	2.2	13.5%
KrC	Krum clay, 3 to 5 percent slopes	14.0	86.5%
Totals for Area of Interest		16.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Comal and Hays Counties, Texas

BtG—Brackett-Rock outcrop-Real complex, 8 to 30 percent slopes

Map Unit Setting

National map unit symbol: 2t2m3 Elevation: 470 to 1,900 feet Mean annual precipitation: 32 to 37 inches Mean annual air temperature: 66 to 68 degrees F Frost-free period: 230 to 265 days Farmland classification: Not prime farmland

Map Unit Composition

Brackett and similar soils: 38 percent Rock outcrop: 25 percent Real and similar soils: 22 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brackett

Setting

Landform: Ridges Landform position (two-dimensional): Backslope, footslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

A - 0 to 6 inches: gravelly clay loam Bk - 6 to 14 inches: gravelly clay loam Cr - 14 to 60 inches: bedrock

Properties and qualities

Slope: 8 to 30 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 10 to 20 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 90 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R081CY362TX - Steep Adobe 29-35 PZ Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Ridges Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope, base slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Limestone

Typical profile

R - 0 to 80 inches: bedrock

Properties and qualities

Slope: 8 to 30 percent
Depth to restrictive feature: 0 to 2 inches to lithic bedrock
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: No

Description of Real

Setting

Landform: Ridges Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope, base slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from limestone

Typical profile

A - 0 to 4 inches: gravelly loam Ak - 4 to 14 inches: extremely gravelly loam Cr - 14 to 40 inches: bedrock

Properties and qualities

Slope: 8 to 30 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 8 to 19 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 70 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R081CY362TX - Steep Adobe 29-35 PZ Hydric soil rating: No

Minor Components

Eckrant

Percent of map unit: 10 percent Landform: Ridges Landform position (two-dimensional): Backslope, footslope, summit, shoulder Landform position (three-dimensional): Crest Down-slope shape: Linear Across-slope shape: Convex Ecological site: R081BY350TX - Steep Rocky 23-31 PZ Hydric soil rating: No

Volente

Percent of map unit: 5 percent Landform: Drainageways Landform position (two-dimensional): Backslope, footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

KrC—Krum clay, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2t2j6 Elevation: 620 to 1,820 feet Mean annual precipitation: 31 to 37 inches Mean annual air temperature: 65 to 69 degrees F Frost-free period: 230 to 250 days Farmland classification: All areas are prime farmland

Map Unit Composition

Krum and similar soils: 90 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Krum

Setting

Landform: Stream terraces Landform position (three-dimensional): Riser Down-slope shape: Concave Across-slope shape: Linear Parent material: Calcareous silty and clayey alluvium derived from limestone

Typical profile

A - 0 to 13 inches: clay Bk1 - 13 to 27 inches: clay Bk2 - 27 to 40 inches: clay Ck - 40 to 80 inches: clay

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 50 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 3.0
Available water supply, 0 to 60 inches: Moderate (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

Minor Components

Bolar

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Convex Across-slope shape: Linear Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

Doss

Percent of map unit: 3 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Convex Across-slope shape: Convex *Ecological site:* R081CY574TX - Shallow 29-35 PZ *Hydric soil rating:* No

Lewisville

Percent of map unit: 2 percent Landform: Stream terraces Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Ecological site: R081CY357TX - Clay Loam 29-35 PZ Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix III

Profile Hole Information Sheets

Project	Mirasol		Profile Hole # 3	County	Travis/Hays Date	3/4/2021
	1 Total Depth of Profile hole 2 Primary Rooting Depth	,	<u>42</u> 3			
	3 Secondary Rooting Depth	I	NA			
	4 Horizons Descriptions Shall Incl	ude				
	A Depth of Horizon	0" - 16"	A Depth of Horizon	16"-42"	A Depth of Horizon	
	B Soil Texture	SCL	B Soil Texture	CALICHE	B Soil Texture	
	C Soil Structure	COARSE	C Soil Structure	BLOCKY	C Soil Structure	
	D Soil Color	RED BROWN	D Soil Color	RED TAN	D Soil Color	
	E Mottling	NA	E Mottling	NA	E Mottling	
	F Percent Coarse Fragments	<10%	F Percent Coarse Fragments	10%	F Percent Coarse Fragments	
	5 Boundary Descriptions (Soil Ho	rizons)	LEVEL			
	6 Restrictive Horizons	1201137	0			

0

0

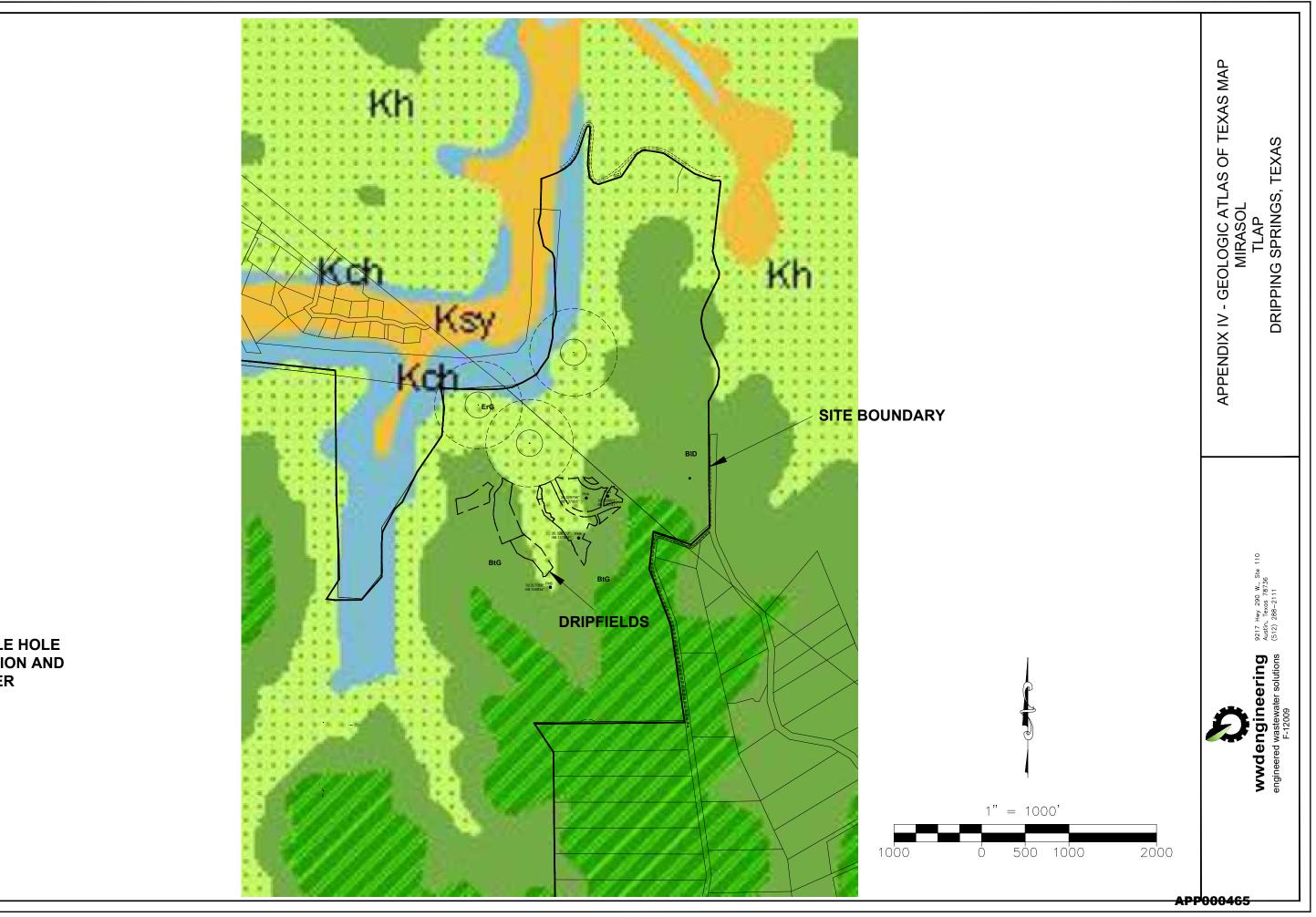
7 Potential Water Bearing Zones

8 Active Water Bearing Zones

Site Characteristics

Veget	ation			Surface Fragments	Litter		<u>Slope Ty</u>	pe
Large Oak	<5	5 % Woody	95 % Herbaceous	0 % Visible	0 %		2 % -	4 %
Juniper	0	5 % Canopy Cover	95 % Cover					
Small Oak	0							
Comments	Pictures	R	efusal at: N/A	Stopped Digging	at:	42 inches		

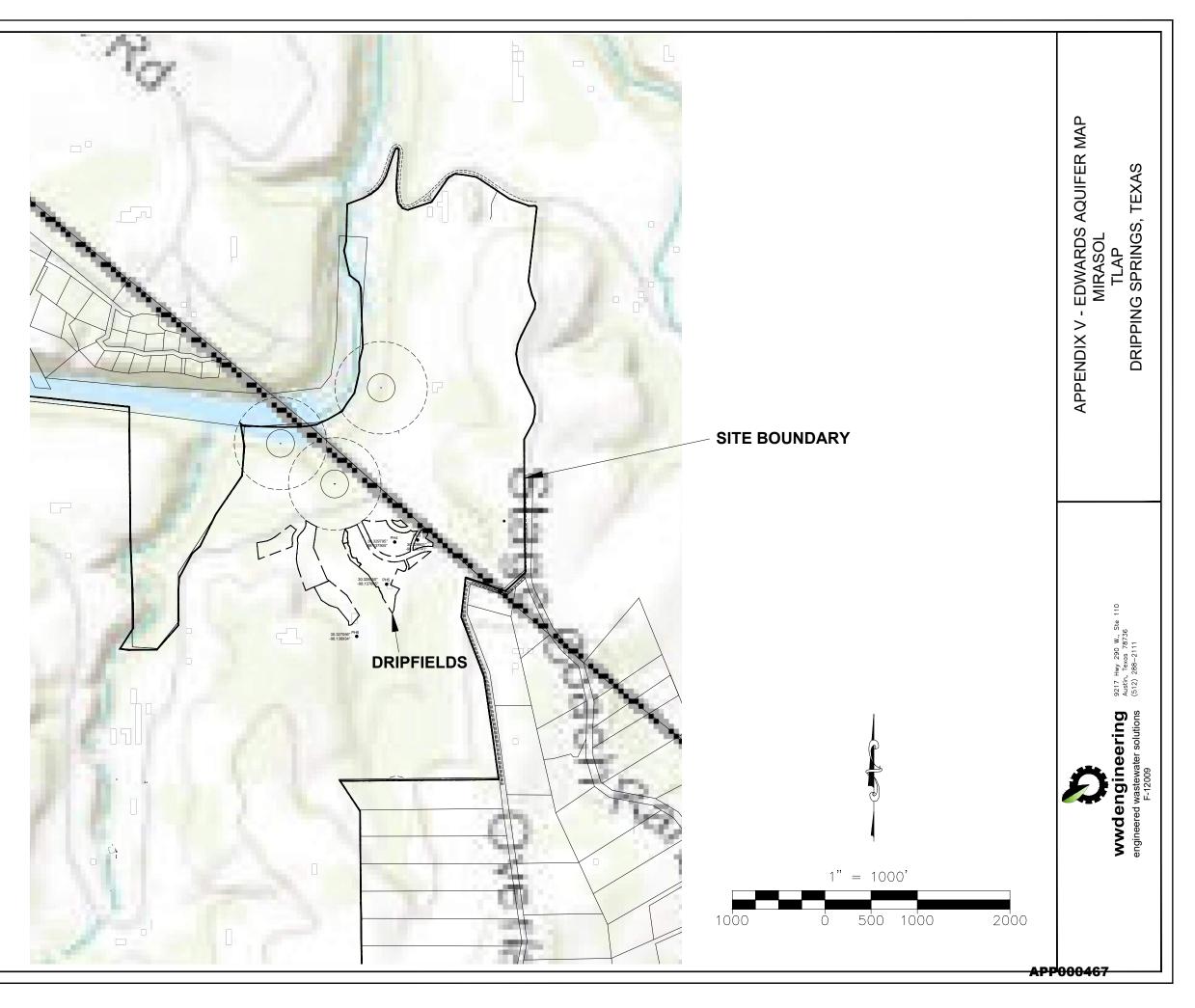
Project	Mirasol		Profile Hole	wwdengineer	ing County	Travis/Hays	Date	3/4/2021	_
	 Total Depth of Profile hole Primary Rooting Depth Secondary Rooting Depth Horizons Descriptions Shall Inclu 	1	49 2 NA						
	 A Depth of Horizon B Soil Texture C Soil Structure D Soil Color E Mottling F Percent Coarse Fragments 5 Boundary Descriptions (Soil Hor 6 Restrictive Horizons 7 Potential Water Bearing Zones 	0"-49" SCL COARSE RED BROWN NA <10%	A Depth of He B Soil Texture C Soil Structu D Soil Color E Mottling F Percent Cos	- -		A Depth of Horizon B Soil Texture C Soil Structure D Soil Color E Mottling F Percent Coarse F			
	8 Active Water Bearing Zones		0	Site Characteristics	5				
<u>Veş</u> Large Oak Juniper Small Oak	0 <5	% Woody % Canopy Cover			Gurface Fragments 0 % Visible	Litter 0 %		<u>Slope Type</u> 2 % -	<u>5</u> %
Comment	ts Pictures		_ Refusal at: <u>N</u>	Ά	Stopped Digg	ging at:	49 inches		


	wwdengineering							
Project	Mirasol		Profile Hole # 5	County	Travis/Hays	Date	6/30/2021	_
	 Total Depth of Profile hole Primary Rooting Depth Secondary Rooting Depth Horizons Descriptions Shall Inclu A Depth of Horizon 	6	4" 5" IA A Depth of Horizon	10-34"	A Depth of Horizon			
	B Soil Texture	SANDY LOAM	B Soil Texture	SILTY CLAY LOAM	B Soil Texture			_
	C Soil Structure	COARSE	C Soil Structure	COARSE	C Soil Structure			-
	D Soil Color	RED BROWN	D Soil Color	RED/BROWN	D Soil Color			-
	E Mottling	NA	E Mottling	NA	E Mottling			-
	F Percent Coarse Fragments	<10%	F Percent Coarse Fragments	<10%	F Percent Coarse F	ragments		-
	 5 Boundary Descriptions (Soil Hor 6 Restrictive Horizons 7 Potential Water Bearing Zones 8 Active Water Bearing Zones 	izons)	2 0 0 0					
			Site Characte	<u>eristics</u>				
<u>Veg</u> Large Oak Juniper Small Oak	5% 25	% Woody % Canopy Cover	75 % Herbaceous 75 % Cover	Surface Fragments <5 % Visible	Litter 0 %		<u>Slope Түре</u> 2 %- 4	<u></u> %
Comments	s Pictures		Refusal at: <u>N/A</u>	Stopped Dig	ging at:	34 inches		

	wwdengineering							
Project	Mirasol		Profile Hole # 6	County	Travis/Hays	Date	6/30/2021	
	2 Primary Rooting Depth 6		4" 5" IA					
	A Depth of Horizon	0-6"	A Depth of Horizon	6-34"	A Depth of Horizon			
	B Soil Texture C Soil Structure	SANDY LOAM COARSE	B Soil Texture C Soil Structure	SILTY CLAY LOAM COARSE	B Soil Texture C Soil Structure			
	D Soil Color	RED/BROWN	D Soil Color	RED/GRAY	D Soil Color			
	E Mottling	NA	E Mottling	NA	E Mottling			
	F Percent Coarse Fragments	<10%	F Percent Coarse Fragments	<10%	F Percent Coarse Fr	ragments	·	
	5 Boundary Descriptions (Soil Hor6 Restrictive Horizons7 Potential Water Bearing Zones8 Active Water Bearing Zones	rizons)	2 0 0 0					
			Site Charact	<u>eristics</u>				
<u>Veş</u> Large Oak Juniper Small Oak	5% 30	% Woody % Canopy Cover	70 % Herbaceous 70 % Cover	<u>Surface Fragments</u> <u>0</u> % Visible	Litter 0 %		<u>Slope Type</u> <u>4</u> % - <u>6</u> %	
Comment	s Pictures		Refusal at: <u>N/A</u>	Stopped Dig	ging at:	34 inches		

Appendix IV

Geologic Atlas of Texas



•1- PROFILE HOLE LOCATION AND NUMBER Appendix V

Edwards Aquifer Map

NOTE: PROPERTY IS OUT OF EDWARDS AQUIFER CONTRIBUTING ZONE

Appendix VI

Soil Sampling Results

- Mirasol Comp1 is a composite sample obtained in the 0"-6" Range from test pits 3-4
- Mirasol Comp2 is a composite sample obtained in the 6"-18" Range from test pits 3-4
- Mirasol Comp3 is a composite sample obtained in the 18"-30" Range from test pits 3-4
- Mirasol Samp 2 is from test pit #3 @ 20"
- Mirasol Comp4 is a composite sample obtained in the 0"-6" Range from test pits 5-6
- Mirasol Comp5 is a composite sample obtained in the 6"-18" Range from test pits 5-6
- Mirasol Comp6 is a composite sample obtained in the 18"-30" Range from test pits 5-6
- Mirasol Samp A is from test pit #5 @ 12"
- Mirasol Samp B is from test pit #6 @ 20"

Travis County

Laboratory Number: 576329

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
рН	7.8	(5.8)	-	Mod. All	kaline						
Conductivity	372	(-)	umho/cm	None			CL			Fertilizer	Recommended
Nitrate-N	0	(-)	ppm**							95 lt	os N/acre
Phosphorus	0	(50)	ppm				1			120 lt	os P2O5/acre
Potassium	183	(150)	ppm					1		O Ik	os K20/acre
Calcium	11,933	(180)	ppm						I	O Ik	os Ca/acre
Magnesium	100	(50)	ppm					I		O Ik	os Mg/acre
Sulfur	4	(13)	ppm				1			15 lt	os S/acre
Sodium	10	(-)	ppm	II							
Iron							1				
Zinc											
Manganese							i				
Copper											
Boron											
Limestone Requirement										0.00 to	ons 100ECCE/acre
				Detail	ed Sali	inity Te	est (Sat	urated	Paste	Extract)	
				pł	4				7.5		
				Co	onduct	tivity			0.24	mmhos/cm	
				Sc	odium				16	ppm	0.676 meq/L
				Po	otassiu	ım			2	ppm	0.038 meq/L
				Ca	alcium					ppm	1.256 meq/L
				M	agnesi	ium			2	ppm	0.137 meq/L
Total N	511	F	opm	S	AR				0.81		
				S	SP				32.09		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 100 lbs/A of nitrogen for each subsequent hay cuttings.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 576329 Customer Sample ID: Comp 1

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Crop Grown: R											
Analysis	Results	CL*	Units	ExLow	VLow	/ Low	Mod	High	VHigh	Excess.	
рН	7.8	(6)	-	Mod. Al	kaline						
Conductivity	372	(-)	umho/cm	None			CL	*		Fertilizer Recommende	d
Nitrate-N	0	(-)	ppm**							125 lbs N/acre	
Phosphorus	0	(50)	ppm							55 lbs P2O5/acre	
Potassium	183	(125)	ppm					11		0 lbs K20/acre	
Calcium	11,933	(180)	ppm						I	0 lbs Ca/acre	
Magnesium	100	(50)	ppm				ļ	11		0 lbs Mg/acre	
Sulfur	4	(13)	ppm							15 lbs S/acre	
Sodium	10	(-)	ppm	11							
Iron											
Zinc											
Manganese											
Copper							i i				
Boron											
Limestone Requirement					-					0.00 tons 100ECCE/ac	re
				Detail	ed Sal	inity T	est (Sa	turated	Paste I	Extract)	
				pł	1				7.5		
				C	onduc	tivity			0.24	mmhos/cm	
				Se	odium				16	ppm 0.676 n	neq/L
				Po	otassiu	um			2	ppm 0.038 n	neq/L
				Ca	alcium				25	ppm 1.256 n	neq/L
				М	agnes	ium			2	ppm 0.137 n	neq/L
Total N	511	k	opm	S	AR				0.81		
				S	SP				32.09		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply 1/2 of nitrogen at preplant and topdress remainder of nitrogen after 4 to 6 weeks of grazing.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 576330

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
рН	7.9	(5.8)	-	Mod. All	kaline						
Conductivity	240	(-)	umho/cm	None			CL			Fertilizer	Recommended
Nitrate-N	0	(-)	ppm**							95 II	bs N/acre
Phosphorus	0	(50)	ppm				1			120	bs P2O5/acre
Potassium	167	(150)	ppm							0	bs K20/acre
Calcium	15,637	(180)	ppm						I	0	bs Ca/acre
Magnesium	128	(50)	ppm					11		0	bs Mg/acre
Sulfur	4	(13)	ppm			I	1			15 I	bs S/acre
Sodium	10	(-)	ppm	II							
Iron							1				
Zinc											
Manganese							i				
Copper											
Boron											
Limestone Requirement										0.00 t	ons 100ECCE/acre
				Detaile	ed Sali	inity Te	est (Sat	urated	Paste	Extract)	
				pŀ	4				7.5		
				Co	onduct	tivity			0.38	mmhos/cm	
				Sc	odium				12	ppm	0.501 meq/L
				Po	otassiu	ım			1	ppm	0.038 meq/L
				Ca	alcium				28	ppm	1.390 meq/L
				Ma	agnesi	ium			2	ppm	0.145 meq/L
Total N	965	F	opm		٩R				0.57		
				SS	SP				24.17		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 100 lbs/A of nitrogen for each subsequent hay cuttings.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 576330 Customer Sample ID: Comp 2

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Crop Grown: R Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
pH	7.9	(6)	-	Mod. All		LOW	Mod	ingi	Viligii	LACESS.	
Conductivity	240	(-)	umho/cm	None			CL			Fertilizer	Recommended
Nitrate-N	0	(-)	ppm**							125 lb	s N/acre
Phosphorus	0	(50)	ppm								s P2O5/acre
Potassium	167	(125)	ppm					11		0 lb:	s K20/acre
Calcium	15,637	(180)	ppm						I	0 lb:	s Ca/acre
Magnesium	128	(50)	ppm					11		0 lb:	s Mg/acre
Sulfur	4	(13)	ppm			I				15 lb:	s S/acre
Sodium	10	(-)	ppm	II							
Iron											
Zinc											
Manganese											
Copper											
Boron											
Limestone Requirement										0.00 to	ns 100ECCE/acre
				Detail	ed Sali	inity T	est (Sa	turated	Paste I	Extract)	
				pł	4				7.5		
				Co	onduct	tivity			0.38	mmhos/cm	
				So	odium				12	ppm	0.501 meq/L
				Po	otassiu	um			1	ppm	0.038 meq/L
				Ca	alcium				28	ppm	1.390 meq/L
				M	agnesi	ium			2	ppm	0.145 meq/L
Total N	965	F	pm	S	٩R				0.57		
				SS	SP				24.17		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply 1/2 of nitrogen at preplant and topdress remainder of nitrogen after 4 to 6 weeks of grazing.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 576331

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
рН	7.8	(5.8)	-	Mod. All	kaline						
Conductivity	146	(-)	umho/cm	None			CL	*		Fertilize	Recommended
Nitrate-N	0	(-)	ppm**							95 I	bs N/acre
Phosphorus	0	(50)	ppm				1			120	bs P2O5/acre
Potassium	164	(150)	ppm							0 I	bs K20/acre
Calcium	13,877	(180)	ppm					111111111	I	0	bs Ca/acre
Magnesium	136	(50)	ppm					11		0 I	bs Mg/acre
Sulfur	4	(13)	ppm			I				15	bs S/acre
Sodium	12	(-)	ppm	II							
Iron							1				
Zinc							1				
Manganese							i				
Copper							i i				
Boron							1				
Limestone Requirement										0.00 t	ons 100ECCE/acre
				Detaile	ed Sali	nity Te	est (Sat	urated	Paste	Extract)	
				pł	1				7.7		
				Co	onduct	ivity			0.20	mmhos/cm	
				Sc	odium				9	ppm	0.377 meq/L
				Po	otassiu	ım			2	ppm	0.038 meq/L
				Ca	alcium				24	ppm	1.173 meq/L
				Ma	agnesi	um			1	ppm	0.111 meq/L
Total N	977	ł	opm	SA	٩R				0.47		
				SS	SP				22.16		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 100 lbs/A of nitrogen for each subsequent hay cuttings.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 576331 Customer Sample ID: Comp 3

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Crop Grown: R				AZING							
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
рН	7.8	(6)	-	Mod. All	kaline						
Conductivity	146	(-)	umho/cm	None	-		CI	<u>.</u>		Fertilizer Recommended	
Nitrate-N	0	(-)	ppm**							125 lbs N/acre	
Phosphorus	0	(50)	ppm							55 lbs P2O5/acre	
Potassium	164	(125)	ppm					11		0 lbs K20/acre	
Calcium	13,877	(180)	ppm					000000	I	0 lbs Ca/acre	
Magnesium	136	(50)	ppm					111		0 lbs Mg/acre	
Sulfur	4	(13)	ppm			I				15 lbs S/acre	
Sodium	12	(-)	ppm	II							
Iron											
Zinc											
Manganese											
Copper											
Boron											
Limestone Requirement										0.00 tons 100ECCE/acre	
				Detail	ed Sali	inity T	est (Sa	turated	Paste	Extract)	
				pł	4				7.7		
				Co	onduct	tivity			0.20	mmhos/cm	
				Sc	odium				9	ppm 0.377 me	:q/L
				Po	otassiu	ım			2	ppm 0.038 me	q/L
				Ca	alcium				24	ppm 1.173 me	q/L
				M	agnesi	ium			1	ppm 0.111 me	q/L
Total N	977	F	pm		AR				0.47		
				SS	SP				22.16		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply 1/2 of nitrogen at preplant and topdress remainder of nitrogen after 4 to 6 weeks of grazing.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 576333

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(5.8)	-	Mod. All	kaline					
Conductivity	127	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							95 lbs N/acre
Phosphorus	0	(50)	ppm							120 lbs P2O5/acre
Potassium	107	(150)	ppm				11111			70 lbs K20/acre
Calcium	33,534	(180)	ppm						I	0 lbs Ca/acre
Magnesium	232	(50)	ppm							0 lbs Mg/acre
Sulfur	6	(13)	ppm							10 lbs S/acre
Sodium	7	(-)	ppm	I I						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 tons 100ECCE/acre
Textural Analysis Test (hy	/drometer)								
Sand	42	9	6							
Silt	26	9	6							
Clay	32	9	6							
Textural Class:	С	lay Loai	m							
		-								

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 100 lbs/A of nitrogen for each subsequent hay cuttings.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 576333 Customer Sample ID: Samp 2

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 3/9/2021 Printed on: 3/25/2021 Area Represented: 6 acres

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6)	-	Mod. All	aline			-	-	
Conductivity	127	(-)	umho/cm	None			C	<u>.</u>		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							125 lbs N/acre
Phosphorus	0	(50)	ppm							55 lbs P2O5/acre
Potassium	107	(125)	ppm				111111			15 lbs K20/acre
Calcium	33,534	(180)	ppm	: :			:		l i	0 lbs Ca/acre
Magnesium	232	(50)	ppm							0 lbs Mg/acre
Sulfur	6	(13)	ppm							10 lbs S/acre
Sodium	7	(-)	ppm	I I						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 tons 100ECCE/acre
Textural Analysis Test (hy	drometer									
Sand	42	9	6							
Silt	26	9	6							
Clay	32	9	6							
Textural Class:	С	lay Loai	n							

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply 1/2 of nitrogen at preplant and topdress remainder of nitrogen after 4 to 6 weeks of grazing.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 586541 Customer Sample ID: Comp 4

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 7/7/2021 Printed on: 7/16/2021 Area Represented: not provided

Crop Grown: N	O CROP C	SIVEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
рН	8.4	(5.8)	-	Mod. Al	kaline						
Conductivity	177	(-)	umho/cm	None			C	<u>*</u>		Fertilizer	Recommended
Nitrate-N	1	(-)	ppm**								
Phosphorus	1	(0)	ppm	I							
Potassium	115	(0)	ppm				111111				
Calcium	12,412	(180)	ppm					())))))))	I		
Magnesium	402	(50)	ppm								
Sulfur	59	(13)	ppm						I		
Sodium	11	(-)	ppm	11							
Iron											
Zinc											
Manganese											
Copper											
Boron											
Limestone Requirement											
				Detail	ed Sali	nity To	est (Sa	turated	Paste	Extract)	
				pł	4				6.7		
				C	onduct	ivity			0.61	mmhos/cm	
				Se	odium				21	ppm	0.914 meq/L
				Po	otassiu	ım			7	ppm	0.184 meq/L
				Ca	alcium				101	ppm	5.056 meq/L
				M	agnesi	um			16	ppm	1.352 meq/L
Total N	827	F	opm	S	٩R				0.51		
				S	SP				12.18		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Travis County

Laboratory Number: 586542 Customer Sample ID: Comp 5

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 7/7/2021 Printed on: 7/16/2021 Area Represented: not provided

Crop Grown: N	O CROP (SIVEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
рН	8.6	(5.8)	-	Mod. Al	kaline						
Conductivity	214	(-)	umho/cm	None			C	*		Fertilizer Reco	mmended
Nitrate-N	0	(-)	ppm**								
Phosphorus	0	(0)	ppm								
Potassium	124	(0)	ppm								
Calcium	31,779	(180)	ppm	:			:	000000			
Magnesium	840	(50)	ppm						I I		
Sulfur	29	(13)	ppm								
Sodium	13	(-)	ppm	II							
Iron											
Zinc											
Manganese											
Copper											
Boron											
Limestone Requirement											
				Detail	ed Sali	inity T	est (Sa	turated	Paste	Extract)	
				pł	4				7.2		
				C	onduct	tivity				mmhos/cm	
				So	odium				18	ppm	0.772 meq/L
				Po	otassiu	ım				ppm	0.045 meq/L
				Ca	alcium				31	ppm	1.565 meq/L
				M	agnesi	ium			11	ppm	0.909 meq/L
Total N	459	F	opm	-	AR				0.69		
				S	SP				23.47		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Travis County

Laboratory Number: 586543 Customer Sample ID: Comp 6

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 7/7/2021 Printed on: 7/16/2021 Area Represented: not provided

Crop Grown: N	O CROP C	SIVEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.	
рН	8.7	(5.8)	-	Strongly	/ Alkalin	е					
Conductivity	177	(-)	umho/cm	None			. CI	<u>.</u>		Fertilizer R	ecommended
Nitrate-N	0	(-)	ppm**								
Phosphorus	0	(0)	ppm								
Potassium	122	(0)	ppm				финнин				
Calcium	14,853	(180)	ppm	:							
Magnesium	931	(50)	ppm						I I		
Sulfur	5	(13)	ppm								
Sodium	13	(-)	ppm	II							
Iron											
Zinc											
Manganese											
Copper											
Boron											
Limestone Requirement											
						nity I	est (Sa	turated		Extract)	
				pł					7.4		
					onduct	ivity				mmhos/cm	
				-	odium					ppm	0.768 meq/L
					otassiu					ppm	0.049 meq/L
					alcium					ppm	1.103 meq/L
					agnesi	um				ppm	0.761 meq/L
Total N	325	k	opm	-	AR				0.80		
				S	SP				28.64		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Travis County

Laboratory Number: 586544 Customer Sample ID: Samp A

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 7/7/2021 Printed on: 7/16/2021 Area Represented: not provided

Crop Grown: N	IO CROP O	SIVEN								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.5	(5.8)	-	Mod. All	kaline					
Conductivity	238	(-)	umho/cm	None			C	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							
Phosphorus	0	(0)	ppm							
Potassium	198	(0)	ppm					111		
Calcium	8,384	(180)	ppm							
Magnesium	761	(50)	ppm						I	
Sulfur	2	(13)	ppm		I					
Sodium	12	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										
Textural Analysis Test (hy	ydrometer									
Sand	48	c	%							
Silt	16		%							
Clay	36	c	%							
Textural Class:	Sa	andy Cla	ay							

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

New online fertilizer calculators have been placed on the laboratory's website to determine appropriate fertilizers to purchase and determine their application rates. http://soiltesting.tamu.edu/webpages/calculator.html

Methods: pH and conductivity/ 2:1; nitrate-N/Cd-red.; P, K, Ca, Mg, Na, and S/Mehlich 3 by ICP; Fe, Zn, Mn, and Cu/DTPA by ICP; and B/hot water by ICP.

Travis County

Laboratory Number: 586545 Customer Sample ID: Samp B

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX) Visit our website: http://soiltesting.tamu.edu

Sample received on: 7/7/2021 Printed on: 7/16/2021 Area Represented: not provided

Crop Grown: N	O CROP (SIVEN								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.7	(5.8)	-	Strongly	y Alkalin	e				
Conductivity	155	(-)	umho/cm	None			_ c	L*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							
Phosphorus	0	(0)	ppm					1		
Potassium	107	(0)	ppm					1		
Calcium	23,116	(180)	ppm							
Magnesium	907	(50)	ppm						I I	
Sulfur	3	(13)	ppm					1		
Sodium	12	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										
Textural Analysis Test (hy	drometer)								
Sand	20	(%							
Silt	50	(%							
Clay	30		%							
Textural Class:	Silty	/ Clay L	oam							

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Attachment 20 – Site Preparation Plan

SITE PREPARATION PLAN for the MIRASOL SPRINGS WATER RECLAMATION FACILITY TLAP

Prepared for:

Mirasol Springs Ranch c/o Clancy Utility Holdings, LLC 4143 Maple Avenue, Suite 400 Dallas, TX 75219

Prepared by:

Murfee Engineering Company, Inc. Texas Registered Firm No. F-353 1101 Capital of Texas Highway South Building D, Suite 110 Austin, Texas 78746 (512) 327-9204

April 2023

The following information is provided to meet the requirements of 30 TAC 222.75 with regards to a site preparation plan for the subsurface area drip irrigation system (SADDS).

Stormwater Run-on and Runoff Controls

In order to minimize run-on and maximize runoff from the dispersal zones, berms or swales will be constructed upstream of the SADDS fields in order to divert rainfall run-on away from the dispersal areas. The SADDS areas will be graded to minimize stormwater run-on from upstream areas and be evenly graded to promote efficient runoff. During construction, SADDS lines will not be constructed in areas that show evidence of rainfall channeling and any grading changes necessary to prevent SADDS areas from receiving and retaining stormwater runoff will be made.

Restrictive Horizons in Soil Column

During the field investigation, four profile holes were excavated to evaluate the soil column. The minimum depth to refusal encountered was 36 inches. If, during construction, areas with restrictive horizons shallower than 30 inches are discovered, suitable soils will be imported to maintain appropriate, required soil column depth.

Soil Importation

Soil importation may be required in some areas of the site. If it is required, sandy loam soils will be imported to meet the required soil column depth for the selected vegetation to thrive and allow for optimum nutrient uptake.

Existing Vegetation

There are some plants within the proposed SADDS areas that will need to be removed in order to install the SADDS and plant the necessary grasses to establish groundcover within the SADDS areas. All areas of the SADDS, including where plants are removed and where they are not, will be overseeded with the selected mix of grasses. Any areas where there is tree canopy cover will not be counted in the final irrigated acreage. Excess acreage has been included in order to allow for these types of exclusions.

Attachment 21 – Deed Recorded Easement

AFTER RECORDING, RETURN TO: Armbrust & Brown, PLLC Attn: David Armbrust 100 Congress Avenue, Suite 1300 Austin, Texas 78701

NOTICE OF CONFIDENTIALITY RIGHTS: IF YOU ARE A NATURAL PERSON, YOU MAY REMOVE OR STRIKE ANY OR ALL OF THE FOLLOWING INFORMATION FROM ANY INSTRUMENT THAT TRANSFERS AN INTEREST IN REAL PROPERTY BEFORE IT IS FILED FOR RECORD IN THE PUBLIC RECORDS: YOUR SOCIAL SECURITY NUMBER OR YOUR DRIVER'S LICENSE NUMBER.

WASTEWATER TREATMENT PLANT AND TREATED EFFLUENT DISPOSAL EASEMENT

THE STATE OF TEXAS	§	
COUNTIES OF TRAVIS AND HAYS	8 § §	KNOW ALL BY THESE PRESENTS:

THAT **MIRASOL SPRINGS**, **LLC**, a Texas limited liability company ("<u>Grantor</u>"), for and in consideration of the sum of TEN DOLLARS (\$10.00) and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, and for which no lien, express or implied, is retained, has this day **GRANTED**, **SOLD**, and **CONVEYED**, and, by these presents, does hereby **GRANT**, **SELL**, and **CONVEY**, unto **CLANCY UTILITY HOLDINGS**, **LLC**, a Texas limited liability company ("<u>Grantee</u>"), whose address is 4143 Maple Avenue, Suite 400, Dallas, Texas 75219, a permanent easement (the "<u>Easement</u>") in, under, upon, over, across, and through the following real property:

All that certain land more particularly described by metes and bounds on **Exhibit "A"** attached hereto and incorporated herein by reference (collectively, the "*Easement Property*");

TO HAVE AND TO HOLD the Easement together with the right and privilege at any and all times to enter the Easement Property or any part thereof, unto Grantee and its successors and assigns forever, but subject to the terms and conditions set forth herein. Grantor does itself, and for its successors and assigns, covenant unto Grantee and Grantee's successors and assigns that Grantor (i) owns good and indefeasible fee simple title to the Easement Property, (ii) is lawfully seized and possessed of the Easement Property, and (iii) has the full right and authority to grant, sell, and convey the Easement as provided herein; and Grantor, on behalf of itself and its successors and assigns, does hereby covenant and agree to **WARRANT** and **FOREVER DEFEND** title to the Easement unto Grantee, its successors and assigns, against every person whomsoever lawfully claiming or to claim the same or any part thereof, by, through, or under Grantor, but not otherwise, subject to the terms and provisions hereof and all matters of record or visible and apparent on the ground, to the extent that the same are valid, subsisting, and affect the Easement Property.

The Easement may be used for the purposes of:

(a) the construction, installation, placement, operation, inspection, maintenance, use, repair, upgrade, modification, expansion, extension, replacement, relocation, decommissioning, and removal of:

(i) a wastewater treatment plant facility (including, without limitation, influent, effluent, and process lines; tanks; basins; lift stations; sludge handling facilities; wastewater reuse facilities; storage, laboratory and administration buildings; electric, telephone, water, gas, and other utility lines and facilities; and access roads and parking and turn-around areas);

(ii) wastewater effluent storage, delivery, and disposal facilities, lines, pipes, reservoirs, outfalls, and drip field irrigation systems; and

(iii) any related structures, improvements, equipment, fixtures, facilities, and appurtenances necessary or incidental to the treatment, storage, delivery, and disposal of wastewater effluent and/or the safety and security of the Easement Property, including gates and fencing, in compliance with all applicable statutes, rules, and regulations of all governmental agencies with jurisdiction (collectively, the "*Facilities*");

(b) accessing and making connections to the Facilities;

(c) treating wastewater and storing, delivering, and disposing of treated wastewater effluent within the Easement Property; and

(d) maintaining the Easement Property by, among other things, clearing and removing vegetation and debris;

subject to, in each case, applicable law and the terms and conditions hereof.

In addition, in order to provide Grantee, and Grantee's employees, agents, and contractors, access to and from the Easement Property, Grantor also hereby grants to Grantee free and uninterrupted ingress and egress in, upon, and over any private roadways located on Grantor's adjacent/surrounding property.

The Easement will be non-exclusive; however, (a) no permanent structure may be constructed on the surface of the Easement Property by Grantor, or anyone acting by, through, or under Grantor, without Grantee's consent; and (b) Grantor will not use the Easement Property in any manner or grant any easement or other right in, under, upon, over, across, or through the Easement Property that interferes with, conflicts with, is inconsistent with, or prevents the use of the Easement by Grantee as contemplated herein or the Permit (defined below). Grantee will have the right to review in advance any proposed use of the Easement Property, or grant of additional easements or other rights affecting the Easement Property, to determine the effect, if any, on the Easement and the Facilities, and Grantee may require reasonable safeguards to protect the use, safety, and integrity thereof.

Grantee may contract with third parties to perform any or all activities related to the Facilities or activities located or to be located within the Easement Property and may assign this Easement and Grantee's rights hereunder, in whole or in part, exclusively or non-exclusively, so long as the assignee utilizes the Easement solely as contemplated herein. Any such assignment must include an express assumption by the assignee of the obligations set forth herein and will release the assignor of its rights and obligations hereunder to the extent assumed.

Grantor and Grantee agree that, if after the Texas Commission of Environmental Quality (the "<u>TCEQ</u>") issues a permit authorizing the treatment and disposal of wastewater effluent within the Easement Property (the "<u>Permit</u>"), the Easement Property differs from the area(s) authorized for treatment and disposal of effluent in the Permit, Grantor and Grantee will, prior

to commence of treatment and disposal of effluent by Grantee, execute an amendment to this instrument in order to adjust the boundaries of the Easement Property to correspond to the area(s) authorized for treatment and disposal of effluent by the Permit. Any amendments or modifications to the Easement Property pursuant to this paragraph will be recorded in the Official Public Records of Travis and Hays Counties, Texas.

Similarly, as development of Grantor's property surrounding the Easement Property progresses, the boundaries of the Easement Property may require adjustment from time to time. If adjustments to the boundaries of the Easement Property are necessary, Grantor and Grantee will use good faith efforts to amend this instrument to accommodate such adjustments provided that Grantee retains sufficient area for the treatment and disposal of wastewater effluent as provided herein, with the caveat that any adjustment to the boundaries of the Easement Property may require and be subject to an amendment to the Permit and will be at Grantor's cost and expense. Any amendments or modifications to the Easement Property pursuant to this paragraph will be recorded in the Official Public Records of Travis and Hays Counties, Texas.

This instrument does not in any manner create or grant any rights to the public generally or to any person or entity other than Grantee and its successors and assigns. Grantee may restrict or prohibit public access to the Easement Property.

* * *

[Signature Pages Follow]

EXECUTED to be effective as of the 13^{4n} day of April, 2023.

<u>GRANTOR</u>:

MIRASOL SPRINGS, LLC, a Texas limited liability company

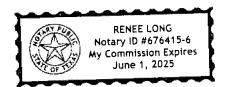
1/1/10 By: Printed Name: Title: fressi

STATE OF TEXAS § § COUNTY OF

This instrument was acknowledged before me, on the 13th day of April ..., 2023, by Shan Miller , $\pm co. co. f$ of Mirasol Springs, LLC, a Texas limited liability company, on behalf of said limited liability company.

Notary Public, State of Texas

Accepted and Agreed to by:


<u>GRANTEE</u>:

CLANCY UTILITY HOLDINGS, LLC, a Texas limited liability company

By: Printed Name: Title: resd

STATE OF TEXAS § COUNTY OF Las §

This instrument was acknowledged before me, on the 13th day of ADA 2023, by Shaun Miller, <u>Hesdert</u> of Clancy Utility Holdings, LLC, a Texas limited liability company, on behalf of said limited liability company.

enel Notary Public, State of Texa

EXHIBIT "A" EASEMENT PROPERTY

0.2616 Acres

Page 1 of 3

W. Hammet Survey, Abst. No. 2406 November 30, 2022 21505.71

STATE OF TEXAS COUNTY OF HAYS

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 0.2616 acres situated in the W. Hammet Survey, Abstract No. 2406, Abstract No. 782, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 0.2616 acre tract is more particularly described by metes and bounds as follows:

§ § §

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northcast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N19°30'15"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,902.29 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the east corner and POINT OF BEGINNG of the herein described tract;

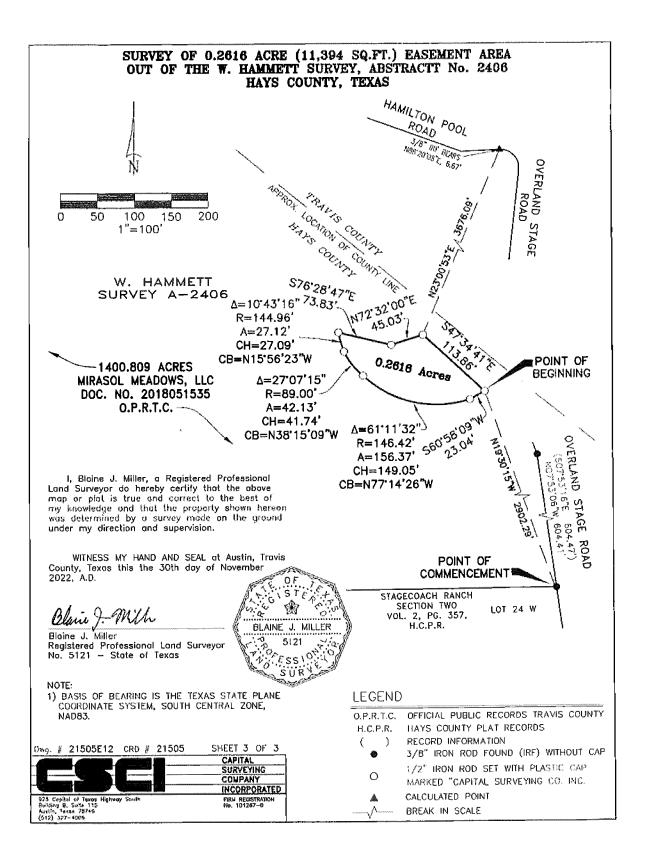
THENCE, continuing across the said 1400.809 acre tract for the following seven (7) courses:

- 1) \$60°58'09"W, 23.04 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the right;
- 2) With the said non-tangent curve to the right, having a central angle of 61°11'32", a radius of 146.42 feet, a chord distance of 149.05 feet (chord bears N77°14'26"W), for an arc distance of 156.37 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the right;
- 3) With the said compound non-tangent curve to the right, having a central angle of 27°07'15", a radius of 89.00 feet, a chord distance of 41.74 feet (chord bears N38°15'09"W), for an arc distance of 42.13 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the right;
- 4) With the said compound non-tangent curve to the right, having a central angle of 10°43'16", a radius of 144.96 feet, a chord distance of 27.09 feet (chord bears N15°56'09"W), for an arc distance of 27.12 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 5) S76°28'47"E, 73.83 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

0.2616 Acres	W. Hammet Survey, Abst. No. 2406
	November 30, 2022
Page 2 of 3	21505.71

- 6) N72°32'00"E, 45.03 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the north corner of the herein described tract, from which a 3.8" iron rod found bears N23°00'53"E, 3.676.09 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;
- 7) S47°34'41"E, 113.86 feet to the POINT OF BEGINNING. CONTAINING within these metes and bounds 0.2616 acres of land area

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System. South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.

WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 30th day of November, 2022.

Blan g. Milly

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

1.9660 Acres

Page 1 of 3

J.B . Hammett Survey, Abst. No. 636 November 30, 2022 21505.72

STATE OF TEXAS	ş
COUNTY OF HAYS	ş

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 1.9660 acres situated in the J. B. Hammett Survey, Abstract No. 636, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 1.9660 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northeast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N47°44'54"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 3,516.78 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the southwest corner and POINT OF BEGINNG of the herein described tract;

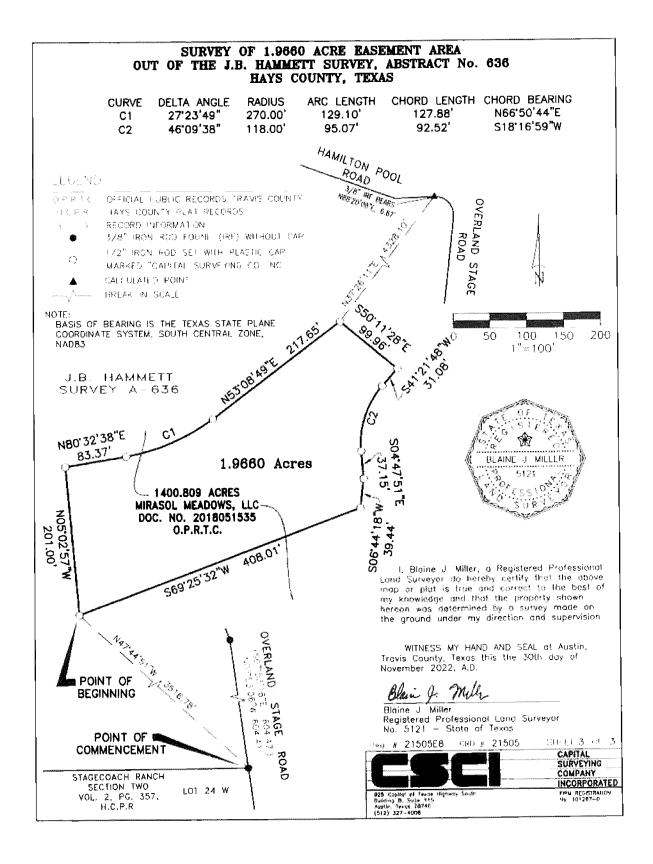
THENCE, continuing across the said 1400.809 acre tract for the following ten (10) courses:

- 1) N05°02'57"W, 201.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 2) N80°32'38"E, 83.37feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the left;
- 3) With the said curve to the left, having a central angle of 27°23'49", a radius of 270.00 feet, a chord distance of 127.88 feet (chord N66°50'44"E), for an arc distance of 129.10 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 4) N53°08'49"E. 217.65 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the north corner of the herein described tract, from which a 3/8" iron rod found bears N37°26'11"E, 4328.10 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;;
- 5) S50°11'28"E, 99.96 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 6) S41°21'48"W, 31.08 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for a point of curvature for a curve to the left;

1.9660 Acres	J.B., Hammett Survey, Abst. No. 636 November 30, 2022
Page 2 of 3	21505.72

- 7) With the said non-tangent curve to the left, having a central angle of 46°49'38", a radius of 118,00 feet, a chord distance of 92.52 feet (chord bears \$18°16'59"W), for an arc distance of 95.07 feet to a 1/2" from rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 8) S04°47'51"E. 37.15 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company. Inc." set for corner;
- 9) \$06°44'18"W, 39.44 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner:
- \$69°25'32"W, 408.01 feet to the POINT OF BEGINNING. CONTAINING within these metes and bounds 1.9660 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System, South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.

WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 30th day of November, 2022.

Blaine J. Muth

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

4.3745 Acres

Page 1 of 5

W. Hammet Survey, Abst. No. 2406 April 3, 2023 21505.71

STATE OF TEXAS	ş
	ş
COUNTIES OF HAYS AND TRAVIS	ş

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 4.3745 acres situated in the W. Hammet Survey, Abstract No. 2406, Hays County and Travis County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 4.3745 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northcast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N15°42'18"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,603.48 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature of a curve to the left and the southcast corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following twenty-one (21) courses:

- With said curve to the left, having a central angle of 31°45'12", a radius of 315.00 feet, a cord distance of 172.35 feet (cord bears S82°37'33"W), for an are distance of 174.57 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- S66°44'57"W, 156.39 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 3) With the said curve to the right, having a central angle of 89°35'08", a radius of 280.00 feet, a chord distance of 394.55 feet (chord bears N68°27'29"W), for an arc distance of 437.80 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a curve to the left;
- 4) With the said curve to the left, having a central angle of 03°42'13", a radius of 3,449.97 feet, a chord distance of 222.96 feet (chord bears N25°31'01"W), for an arc distance of 223.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a non-tangent curve to the right;
- 5) With the said reverse non-tangent curve to the right, having a central angle of 07°23'04", a radius of 180.00 feet, a cord distance of 23.18 feet (chord bears N23°40'35"W), for an are distance of 23.20 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;

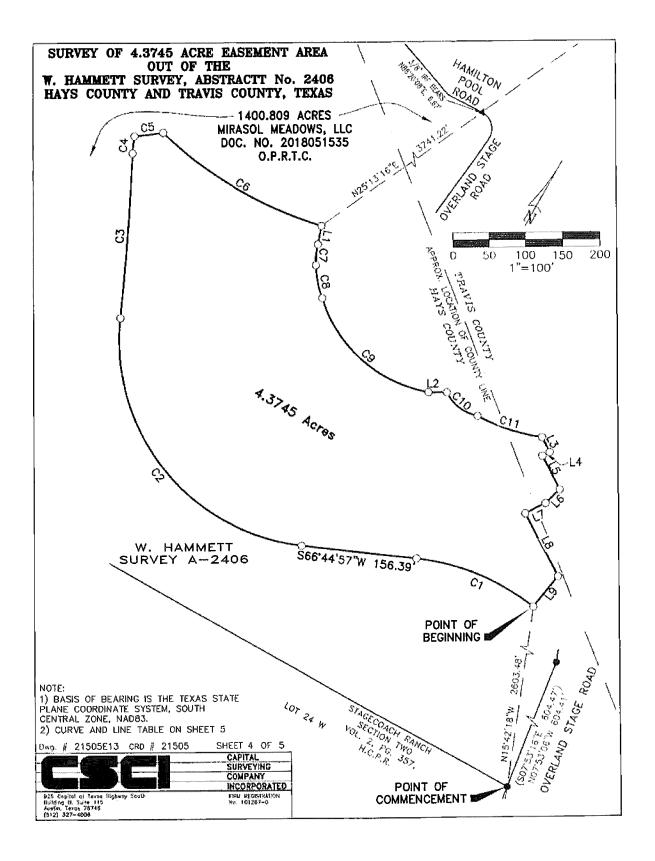
4.3745 Acres	W. Hammet Survey, Abst. No. 2406
	April 3, 2023
Page 2 of 5	21505.71
5	

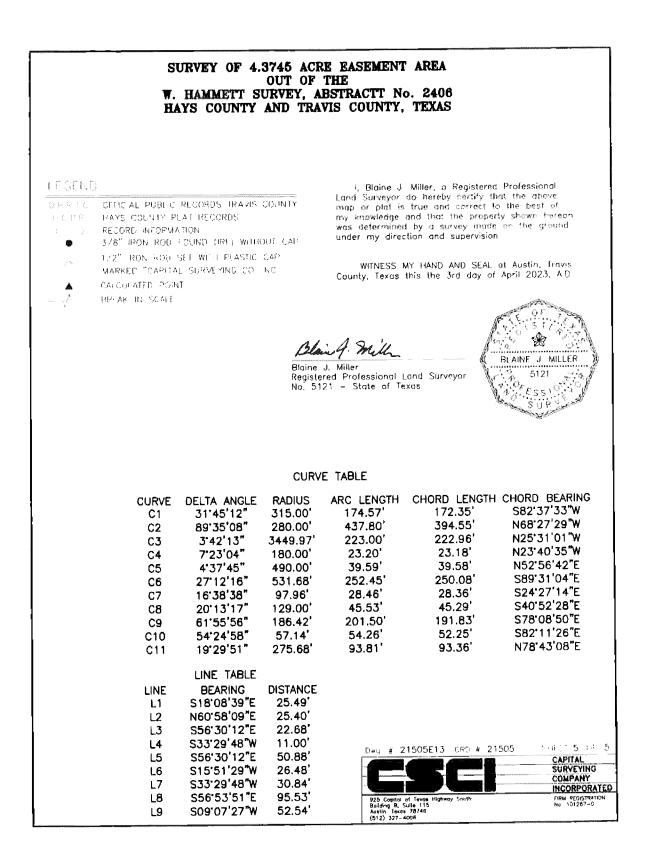
- 6) With the said compound non-tangent curve to the left, having a central angle of 04°37'45", a radius of 490.00 feet, a chord distance of 39.58 feet (chord bears N52°56'42"E), for an arc distance of 39.59 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 7) With the said compound non-tangent curve to the left, having a central angle of 27°12'16", a radius of 531.68 feet, a chord distance of 250.08 feet (chord bears S89°31'04"E), for an arc distance of 252.45 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set the north corner of the herein described tract, from which a 3/8" iron rod found bears N25°13'16"E, 3,741.22 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;
- \$18°08'39"E, 25.49 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left;
- 9) With the said non-tangent curve to the left, having a central angle of 16°38'38", a radius of 97.96 feet, a chord distance of 28.36 feet (chord bears \$24°27'14"E), for an are distance of 28.46 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 10) With the said compound non-tangent curve to the left, having a central angle of 20°13'17", a radius of 129.00 feet, a chord distance of 45.29 feet (chord bears S40°52'28"E), for an arc distance of 45.53 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left;
- 11) With the said compound non-tangent curve to the left, having a central angle of 61°55'56", a radius of 186.42 feet, a chord distance of 191.83 feet (chord bears \$78°08'50"E), for an arc distance of 201.50 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 12) N60°58'09"E, 25.40 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left;
- 13) With the said non-tangent curve to the left, having a central angle of 54°24'58", a radius of 57.14 feet, a chord distance of 52.25 feet (chord bears S82°11'26"E), for an are distance of 54.26 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 14) With the said compound non-tangent curve to the left, having a central angle of 19°29'51", a radius of 275.68 feet, a chord distance of 93.36 feet (chord bears N78°43'08"E), for an arc distance of 93.81 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 15) S56°30'12"E, 22.68 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 16) \$33°29'48"W, 11.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

4.3745 Acres	W. Hammet Survey, Abst. No. 2406
	April 3, 2023
Page 3 of 5	21505.71

- 17) \$56°30'12"E, 50.88 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 18) S15°51'29"W, 26.48 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 19) \$33°29'48"W, 30.84 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 20) S56°53'51"E, 95.53 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company. Inc." set for corner;
- 21) S09°07'27"W, 52.54 feet to the POINT OF BEGINNING, CONTAINING within these metes and bounds 4.3745 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System. South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.


WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 3rd day of April, 2023.

Blain of milin

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

5.8467 Acres

W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monckton Survey, Abst. No.782 November 30, 2022 21505.71

Page 1 of 6

STATE OF TEXAS	§
	§
COUNTY OF HAYS	§

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 5.8467 acres situated in the W. Hammet Survey, Abstract No. 2406, J. B. Hammett Survey, Abstract No. 636 and W. & J. Monckton Survey, Abstract No. 782, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 5.8467 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northeast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N40°06'58"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,314.84 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the southwest corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following twenty-one (21) courses:

- 1) S40°21'11"W, 142.03 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 2) \$78°47'38"W, 45.07 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 3) N02°54'45"W, 48.46 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- N38°22'33"W, 178.19 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 5) N71°12'10"W, 102.97 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 6) N56°29'51"W, 103.31 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 7) N28°05'17"W, 153.65 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

5.8467 Acres

Page 2 of 6

W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monckton Survey, Abst. No.782 November 30, 2022 21505.71

- 8) S67°20'44"W, 103.21 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 9) N18°32'57"W, 257.93 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 10) With the said curve to the right, having a central angle of 25°17'15", a radius of 380.00 feet, a chord distance of 166.36 feet (chord N05°54'19"W), for an arc distance of 167.71 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 11) N06°44'18"E, 109.99 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 12) N04°47'51"W, 40.99 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 13) With the said curve to the right, having a central angle of 46°09'38", a radius of 80.00 feet, a chord distance of 62.72 feet (chord bears N18°16'59"E), for an arc distance of 64.45 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 14) N41°21'48"E, 23.04 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the left;
- 15) With the said curve to the left, having a central angle of 15°24'49", a radius of 150.93 feet, a chord distance of 40.48 feet (chord bears N41°20'16"E), for an arc distance of 40.60 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 16) With the said non-tangent compound curve to the left, having a central angle of 09°27'27", a radius of 108.13 feet, a chord distance of 17.83 feet (chord bears N38°23'47"E), for an arc distance of 17.85 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 17) With the said non-tangent compound curve to the left, having a central angle of 17°22'50", a radius of 490.00 feet, a chord distance of 148.07 feet (chord bears S74°48'08"E), for an arc distance of 148.64 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the northeast corner of the herein described tract, from which a 3/8" iron rod found bears N33°41'02"E, 4237.69 feet to a calculated point for the uortheast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;
- 18) S08°28'11"W, 162.28 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 19) S22°55'53"E, 363.47 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for a point of curvature for a curve to the left;

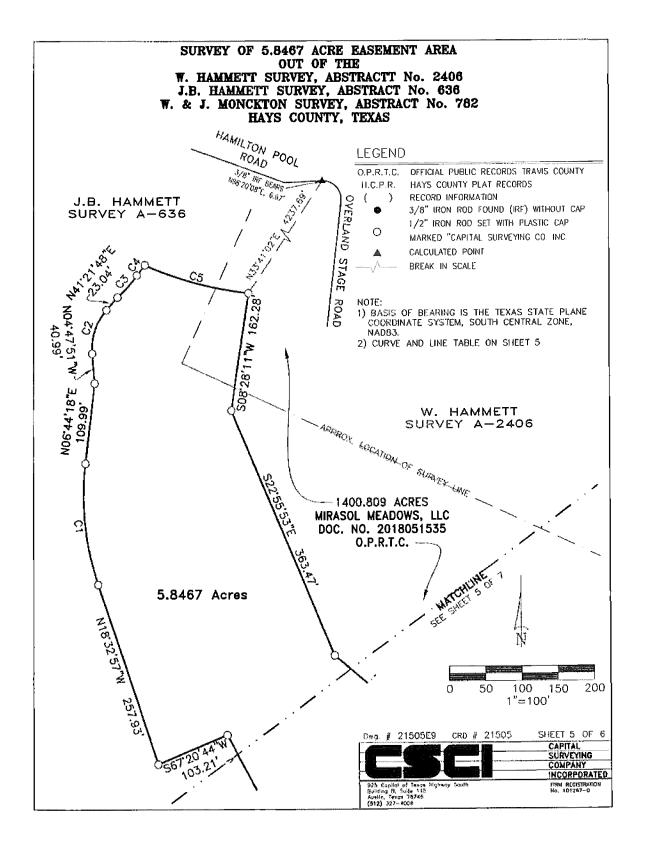
5.8467 Acres

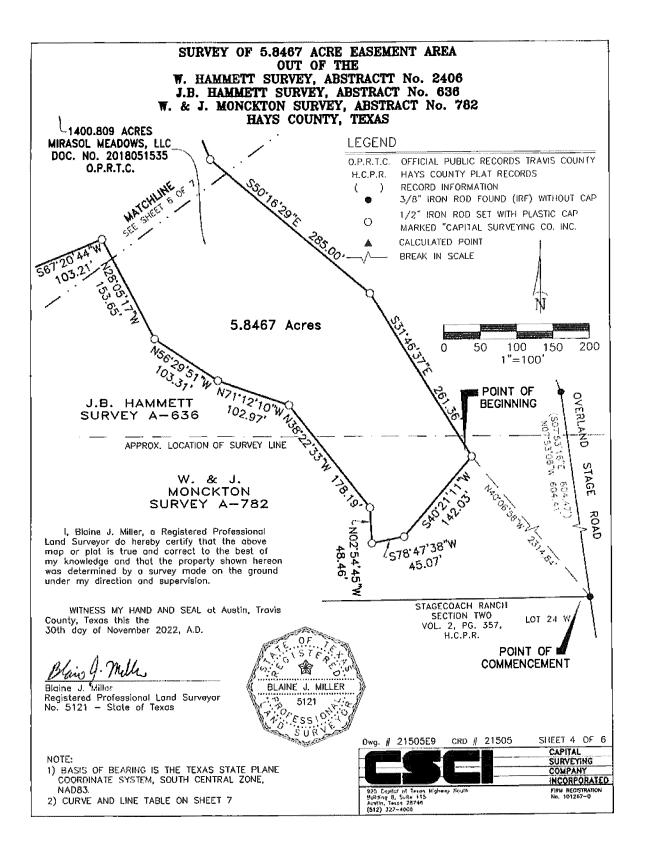
Page 3 of 6

W. Hammet Survey, Abst. No. 2406
J.B. Hammett Survey, Abst. No. 636
W. & J. Monekton Survey, Abst. No.782 November 30, 2022
21505.71

- 20) \$50°16'29"E, 285.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc," set for corner;
- 21) S31°46'37"E, 261.36 feet to the POINT OF BEGINNING, CONTAINING within these metes and bounds 5.8467 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System, South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.


WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 30th day of November, 2022

Plain & Mille

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monekton Survey, Abst. No.782 November 30, 2022 21505.71

Page 1 of 6

STATE OF TEXAS	ş
	ş
COUNTY OF HAYS	ş

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 6.8309 acres situated in the W. Hammet Survey, Abstract No. 2406, J. B. Hammett Survey, Abstract No. 636 and W. & J. Monckton Survey, Abstract No. 782, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 6.8309 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northeast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common casterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N32°53'56"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,115.71 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the south corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following twenty-four (24) courses:

- 1) N31°46'37"W, 497.26 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 2) N50°16'28"W, 262.49 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 3) N22°55'53"W, 217.56 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- N08°08'02"E, 80.87 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 5) N16°16'09"E, 78.32 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 6) N71°48'31"E, 145.46 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left and the northeast corner of the herein described tract, from which a 3/8" iron rod found bears N29°07'42"E, 3,924.45 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;

Page 2 of 6

W. Hammet Survey, Abst. No. 2406
J.B. Hammett Survey, Abst. No. 636
W. & J. Monckton Survey, Abst. No.782
November 30, 2022
21505.71

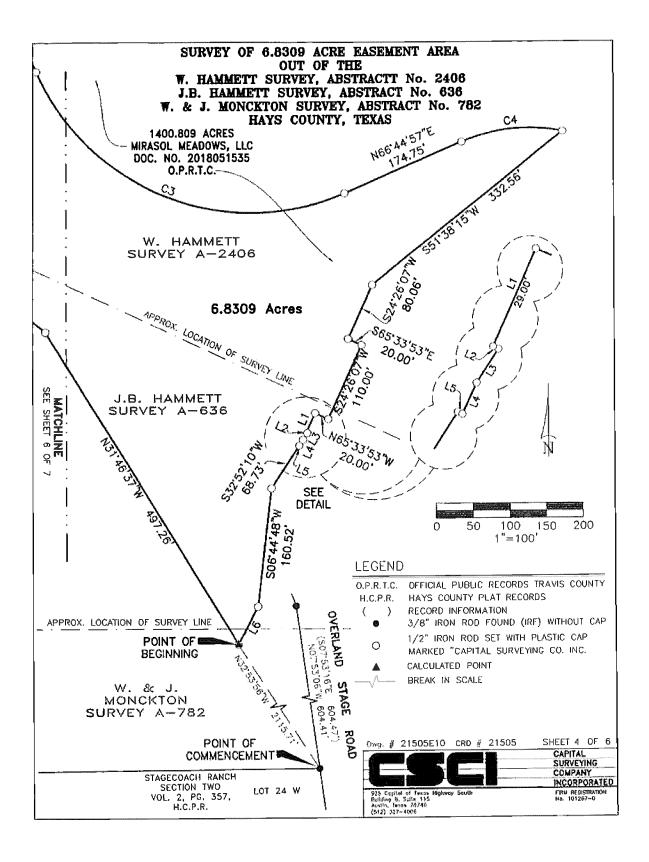
- 7) With the said non-tangent curve to the left, having a central angle of 05°05'55", a radius of 220.00 feet, a chord distance of 19.57 feet (chord bears S24°48'33"E), for an arc distance of 19.58 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a curve to the right;
- 8) With the said reverse curve to the right, having a central angle of 03°43'12", a radius of 3410.00 feet, a chord distance of 220.36 feet (chord bears S25°30'25"E), for an arc distance of 220.40 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a curve to the left;
- 9) With the said reverse curve to the left, having a central angle of 89°35'51", a radius of 320.00 feet, a chord distance of 450.96 feet (chord bears S68°27'14"E), for an arc distance of 500.41 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 10) N66°44'57"E, 174.75 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 11) With the said curve to the right, having a central angle of 35°02'33", a radius of 230.00 feet, a chord distance of 138.49 feet (chord bears N84°16'13"E), for an arc distance of 140.67 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 12) S51°38'15"W, 332.56 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 13) S24°26'07"W, 80.06 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- S65°33'53"E, 20.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 15) S24°26'07"W, 110.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 16) N65°33'53"W, 20.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 17) S24°26'07"W, 29.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- S65°33'53"E, 1.59 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 19) S32°52'10"W, 10.85 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 20) S24°26'07"W, 9.26 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

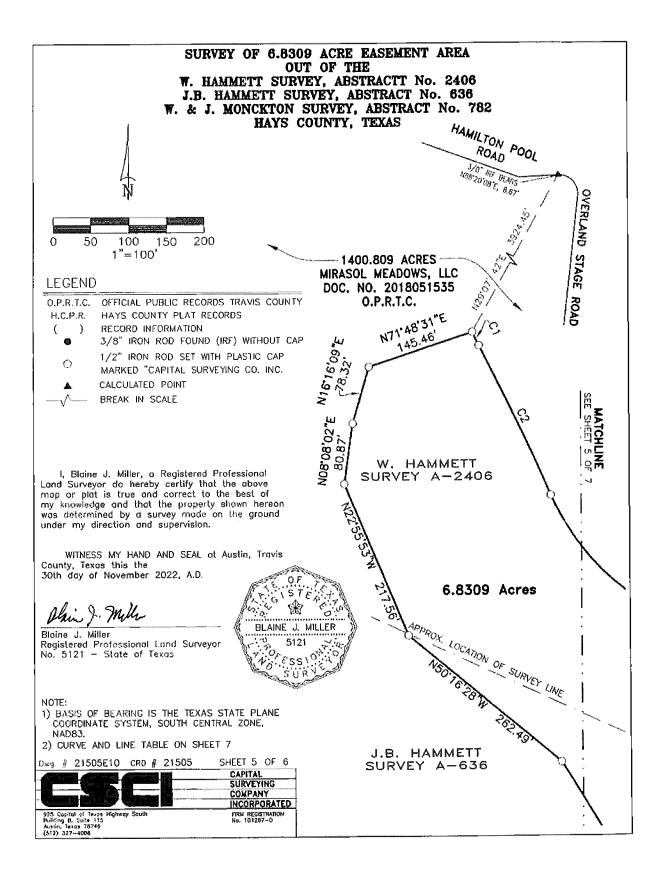
W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monekton Survey, Abst. No.782 November 30, 2022 21505,71

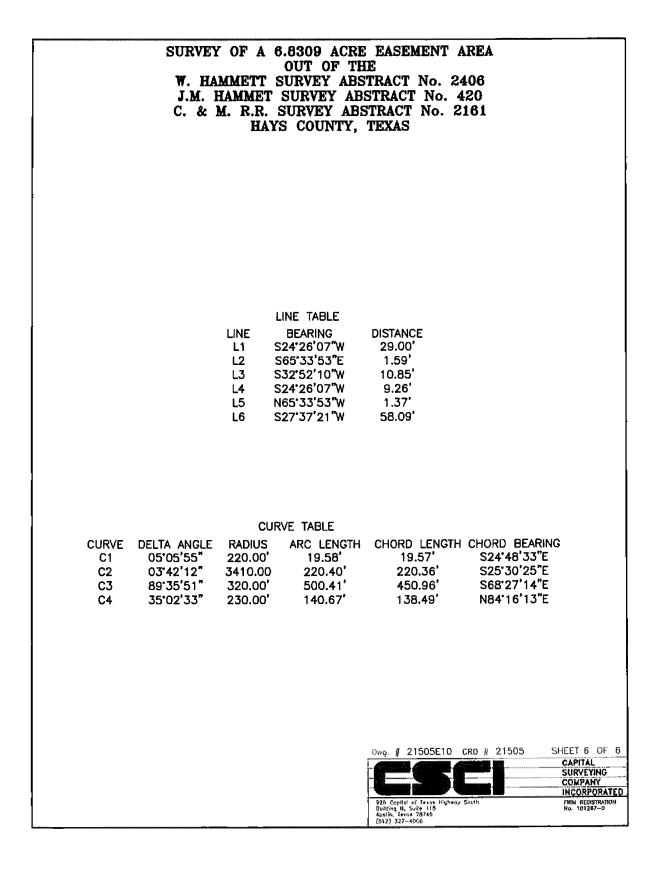
Page 3 of 6

- 21) N65°33'53''W, 1.37 feet to a 1/2'' iron rod with plastic cap marked "Capital Surveying Company. Inc." set for corner;
- 22) \$32°52'10"W, 68.73 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 23) S06°44'48"W, 160.52 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 24) S27°37'21"W, 58.09 feet to the POINT OF BEGINNING, CONTAINING within these metes and bounds 6.8309 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System, South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional I and Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.


WITNESS MY HAND AND SEAL at Austin. Travis County, Texas, this the 30th day of November, 2022.



Dlair J. Melle

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

THE STATE OF TEXAS COUNTY OF HAYS

I hereby certify that this instrument was FILED on the date and the time stamped hereon by me and was duly RECORDED in the Records of Hays County, Texas.

23012963 EASEMENT 04/17/2023 10:55:20 AM Total Fees: \$134.00

Elaine H. Cárdenas, MBA, PhD,County Clerk Hays County, Texas

Clain & Cardenas

OFFICIAL PUBLIC RECORDS Depra dimon- Mercado

Dyana Limon-Mercado, County Clerk Travis County, Texas Apr 17, 2023 12:55 PM Fee: \$134.00 2023040037 *Electronically Recorded*

AFTER RECORDING, RETURN TO: Armbrust & Brown, PLLC Attn: David Armbrust 100 Congress Avenue, Suite 1300 Austin, Texas 78701

NOTICE OF CONFIDENTIALITY RIGHTS: IF YOU ARE A NATURAL PERSON, YOU MAY REMOVE OR STRIKE ANY OR ALL OF THE FOLLOWING INFORMATION FROM ANY INSTRUMENT THAT TRANSFERS AN INTEREST IN **REAL PROPERTY BEFORE IT IS FILED FOR RECORD IN THE PUBLIC RECORDS:** YOUR SOCIAL SECURITY NUMBER OR YOUR DRIVER'S LICENSE NUMBER.

WASTEWATER TREATMENT PLANT AND TREATED EFFLUENT DISPOSAL EASEMENT

THE STATE OF TEXAS COUNTIES OF TRAVIS AND HAYS

KNOW ALL BY THESE PRESENTS:

THAT MIRASOL SPRINGS, LLC, a Texas limited liability company ("Grantor"), for and in consideration of the sum of TEN DOLLARS (\$10.00) and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, and for which no lien, express or implied, is retained, has this day GRANTED, SOLD, and CONVEYED, and, by these presents, does hereby GRANT, SELL, and CONVEY, unto CLANCY UTILITY HOLDINGS, LLC, a Texas limited liability company ("Grantee"), whose address is 4143 Maple Avenue, Suite 400, Dallas, Texas 75219, a permanent easement (the "Easement") in, under, upon, over, across, and through the following real property:

All that certain land more particularly described by metes and bounds on Exhibit "A" attached hereto and incorporated herein by reference (collectively, the "*Easement Property*");

TO HAVE AND TO HOLD the Easement together with the right and privilege at any and all times to enter the Easement Property or any part thereof, unto Grantee and its successors and assigns forever, but subject to the terms and conditions set forth herein. Grantor does itself, and for its successors and assigns, covenant unto Grantee and Grantee's successors and assigns that Grantor (i) owns good and indefeasible fee simple title to the Easement Property, (ii) is lawfully seized and possessed of the Easement Property, and (iii) has the full right and authority to grant, sell, and convey the Easement as provided herein; and Grantor, on behalf of itself and its successors and assigns, does hereby covenant and agree to WARRANT and FOREVER DEFEND title to the Easement unto Grantee, its successors and assigns, against every person whomsoever lawfully claiming or to claim the same or any part thereof, by, through, or under Grantor, but not otherwise, subject to the terms and provisions hereof and all matters of record or visible and apparent on the ground, to the extent that the same are valid, subsisting, and affect the Easement Property.

The Easement may be used for the purposes of:

§ § §

ŝ

the construction, installation, placement, operation, inspection, (a) maintenance, use, repair, upgrade, modification, expansion, extension, replacement, relocation, decommissioning, and removal of:

(i) a wastewater treatment plant facility (including, without limitation, influent, effluent, and process lines; tanks; basins; lift stations; sludge handling facilities; wastewater reuse facilities; storage, laboratory and administration buildings; electric, telephone, water, gas, and other utility lines and facilities; and access roads and parking and turn-around areas);

(ii) wastewater effluent storage, delivery, and disposal facilities, lines, pipes, reservoirs, outfalls, and drip field irrigation systems; and

(iii) any related structures, improvements, equipment, fixtures, facilities, and appurtenances necessary or incidental to the treatment, storage, delivery, and disposal of wastewater effluent and/or the safety and security of the Easement Property, including gates and fencing, in compliance with all applicable statutes, rules, and regulations of all governmental agencies with jurisdiction (collectively, the "*Facilities*");

(b) accessing and making connections to the Facilities;

(c) treating wastewater and storing, delivering, and disposing of treated wastewater effluent within the Easement Property; and

(d) maintaining the Easement Property by, among other things, clearing and removing vegetation and debris;

subject to, in each case, applicable law and the terms and conditions hereof.

In addition, in order to provide Grantee, and Grantee's employees, agents, and contractors, access to and from the Easement Property, Grantor also hereby grants to Grantee free and uninterrupted ingress and egress in, upon, and over any private roadways located on Grantor's adjacent/surrounding property.

The Easement will be non-exclusive; however, (a) no permanent structure may be constructed on the surface of the Easement Property by Grantor, or anyone acting by, through, or under Grantor, without Grantee's consent; and (b) Grantor will not use the Easement Property in any manner or grant any easement or other right in, under, upon, over, across, or through the Easement Property that interferes with, conflicts with, is inconsistent with, or prevents the use of the Easement by Grantee as contemplated herein or the Permit (defined below). Grantee will have the right to review in advance any proposed use of the Easement Property, or grant of additional easements or other rights affecting the Easement Property, to determine the effect, if any, on the Easement and the Facilities, and Grantee may require reasonable safeguards to protect the use, safety, and integrity thereof.

Grantee may contract with third parties to perform any or all activities related to the Facilities or activities located or to be located within the Easement Property and may assign this Easement and Grantee's rights hereunder, in whole or in part, exclusively or non-exclusively, so long as the assignee utilizes the Easement solely as contemplated herein. Any such assignment must include an express assumption by the assignee of the obligations set forth herein and will release the assignor of its rights and obligations hereunder to the extent assumed.

Grantor and Grantee agree that, if after the Texas Commission of Environmental Quality (the "*TCEQ*") issues a permit authorizing the treatment and disposal of wastewater effluent within the Easement Property (the "*Permit*"), the Easement Property differs from the area(s) authorized for treatment and disposal of effluent in the Permit, Grantor and Grantee will, prior

to commence of treatment and disposal of effluent by Grantee, execute an amendment to this instrument in order to adjust the boundaries of the Easement Property to correspond to the area(s) authorized for treatment and disposal of effluent by the Permit. Any amendments or modifications to the Easement Property pursuant to this paragraph will be recorded in the Official Public Records of Travis and Hays Counties, Texas.

Similarly, as development of Grantor's property surrounding the Easement Property progresses, the boundaries of the Easement Property may require adjustment from time to time. If adjustments to the boundaries of the Easement Property are necessary, Grantor and Grantee will use good faith efforts to amend this instrument to accommodate such adjustments provided that Grantee retains sufficient area for the treatment and disposal of wastewater effluent as provided herein, with the caveat that any adjustment to the boundaries of the Easement Property may require and be subject to an amendment to the Permit and will be at Grantor's cost and expense. Any amendments or modifications to the Easement Property pursuant to this paragraph will be recorded in the Official Public Records of Travis and Hays Counties, Texas.

This instrument does not in any manner create or grant any rights to the public generally or to any person or entity other than Grantee and its successors and assigns. Grantee may restrict or prohibit public access to the Easement Property.

* * *

[Signature Pages Follow]

EXECUTED to be effective as of the 13^{4n} day of April, 2023.

<u>GRANTOR</u>:

MIRASOL SPRINGS, LLC, a Texas limited liability company

Xhan By: Printed Name: Title: fressile

STATE OF TEXAS § § COUNTY OF

This instrument was acknowledged before me, on the 13th day of April ..., 2023, by Shan Miller , $\pm co.co.f$ of Mirasol Springs, LLC, a Texas limited liability company, on behalf of said limited liability company.

Notary Public, State of Texas

2023040037 Page 5 of 28

Accepted and Agreed to by:

<u>GRANTEE</u>:

CLANCY UTILITY HOLDINGS, LLC, a Texas limited liability company

By:_ Printed Name: Title: resid

STATE OF TEXAS § COUNTY OF Dellas §

This instrument was acknowledged before me, on the 13th day of ADA day of ADA by Shaun hi her, tresdent of Clancy Utility Holdings, LLC, a Texas limited liability company, on behalf of said limited liability company.

RENEE LONG Notary ID #676415-6 My Commission Expires June 1, 2025

enel Notary Public, State of Texa

EXHIBIT "A" EASEMENT PROPERTY

0.2616 Acres

W. Hammet Survey, Abst. No. 2406 November 30, 2022 21505.71

Page 1 of 3

STATE OF TEXAS	
COUNTY OF HAYS	

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 0.2616 acres situated in the W. Hammet Survey, Abstract No. 2406, Abstract No. 782, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 0.2616 acre tract is more particularly described by metes and bounds as follows:

§ § §

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northcast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N19°30'15"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,902.29 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the east corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following seven (7) courses:

- 1) \$60°58'09"W, 23.04 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the right;
- 2) With the said non-tangent curve to the right, having a central angle of 61°11'32", a radius of 146.42 feet, a chord distance of 149.05 feet (chord bears N77°14'26"W), for an arc distance of 156.37 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the right;
- 3) With the said compound non-tangent curve to the right, having a central angle of 27°07'15", a radius of 89.00 feet, a chord distance of 41.74 feet (chord bears N38°15'09"W), for an arc distance of 42.13 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the right;
- 4) With the said compound non-tangent curve to the right, having a central angle of 10°43'16", a radius of 144.96 feet, a chord distance of 27.09 feet (chord bears N15°56'09"W), for an arc distance of 27.12 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 5) S76°28'47"E, 73.83 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

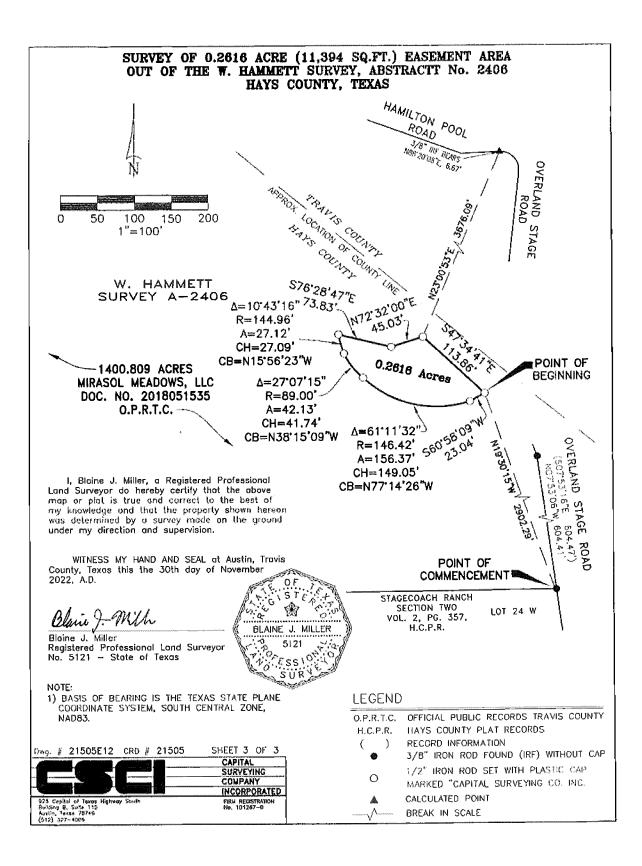
0.2616 Acres

Page 2 of 3

W. Hammet Survey, Abst. No. 2406 November 30, 2022 21505.71

- 6) N72°32'00"E, 45.03 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the north corner of the herein described tract, from which a 3.8" iron rod found bears N23°00'53"E, 3.676.09 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;
- 7) S47°34'41"E, 113.86 feet to the POINT OF BEGINNING. CONTAINING within these metes and bounds 0.2616 acres of land area

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System. South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.

WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 30th day of November, 2022.

Blan g. Milly

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

1.9660 Acres

Page 1 of 3

J.B . Hammett Survey, Abst. No. 636 November 30, 2022 21505.72

STATE OF TEXAS	Ş
	ş
COUNTY OF HAYS	ş

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 1.9660 acres situated in the J. B. Hammett Survey, Abstract No. 636, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 1.9660 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northeast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N47°44'54"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 3,516.78 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the southwest corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following ten (10) courses:

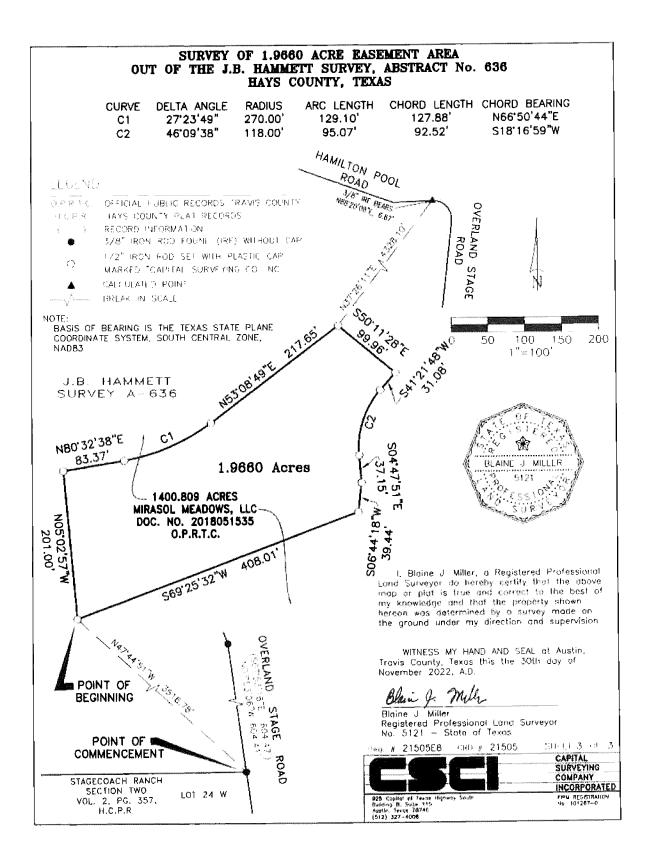
- 1) N05°02'57"W, 201.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 2) N80°32'38"E, 83.37feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the left;
- 3) With the said curve to the left, having a central angle of 27°23'49", a radius of 270.00 feet, a chord distance of 127.88 feet (chord N66°50'44"E), for an arc distance of 129.10 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 4) N53°08'49"E. 217.65 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the north corner of the herein described tract, from which a 3/8" iron rod found bears N37°26'11"E, 4328.10 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;;
- 5) S50°11'28"E, 99.96 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 6) S41°21'48"W, 31.08 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for a point of curvature for a curve to the left;

2023040037 Page 10 of 28

1.9660 Acres J.B. Hammett Survey, Abst. No. 636 November 30, 2022 21505.72
7) With the said non-tangent curve to the left, having a central angle of 46°49'38", a radius of 118,00 fect, a chord distance of 92.52 feet (chord bears \$18°16'59"W), for an arc distance of 95.07 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company. Inc." set for the point of tangency;

- 8) S04°47'51"E. 37.15 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company. Inc." set for corner:
- 9) \$06°44'18"W, 39.44 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner:
- \$69°25'32"W, 408.01 feet to the POINT OF BEGINNING. CONTAINING within these metes and bounds 1.9660 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System, South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.

WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 30th day of November, 2022.

Blaine J. Muth

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

2023040037 Page 12 of 28

4.3745 Acres

Page 1 of 5

W. Hammet Survey, Abst. No. 2406 April 3, 2023 21505.71

STATE OF TEXAS \$ COUNTIES OF HAYS AND TRAVIS \$

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 4.3745 acres situated in the W. Hammet Survey, Abstract No. 2406, Hays County and Travis County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 4.3745 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northcast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N15°42'18"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,603.48 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature of a curve to the left and the southeast corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following twenty-one (21) courses:

- With said curve to the left, having a central angle of 31°45'12", a radius of 315.00 feet, a cord distance of 172.35 feet (cord bears S82°37'33"W), for an are distance of 174.57 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- S66°44'57"W, 156.39 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 3) With the said curve to the right, having a central angle of 89°35'08", a radius of 280.00 feet, a chord distance of 394.55 feet (chord bears N68°27'29"W), for an arc distance of 437.80 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a curve to the left;
- 4) With the said curve to the left, having a central angle of 03°42'13", a radius of 3,449.97 feet, a chord distance of 222.96 feet (chord bears N25°31'01"W), for an arc distance of 223.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a non-tangent curve to the right;
- 5) With the said reverse non-tangent curve to the right, having a central angle of 07°23'04", a radius of 180.00 feet, a cord distance of 23.18 feet (chord bears N23°40'35"W), for an are distance of 23.20 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;

2023040037 Page 13 of 28

 4.3745 Acres
 W. Hammet Survey, Abst. No. 2406

 April 3, 2023
 April 3, 2023

 Page 2 of 5
 21505.71

- 6) With the said compound non-tangent curve to the left, having a central angle of 04°37'45", a radius of 490.00 feet, a chord distance of 39.58 feet (chord bears N52°56'42"E), for an arc distance of 39.59 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 7) With the said compound non-tangent curve to the left, having a central angle of 27°12'16", a radius of 531.68 feet, a chord distance of 250.08 feet (chord bears S89°31'04"E), for an are distance of 252.45 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set the north corner of the herein described tract, from which a 3/8" iron rod found bears N25°13'16"E, 3,741.22 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;
- 8) S18°08'39"E, 25.49 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left;
- 9) With the said non-tangent curve to the left, having a central angle of 16°38'38", a radius of 97.96 feet, a chord distance of 28.36 feet (chord bears \$24°27'14"E), for an are distance of 28.46 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 10) With the said compound non-tangent curve to the left, having a central angle of 20°13'17", a radius of 129.00 feet, a chord distance of 45.29 feet (chord bears S40°52'28"E), for an arc distance of 45.53 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left;
- 11) With the said compound non-tangent curve to the left, having a central angle of 61°55'56", a radius of 186.42 feet, a chord distance of 191.83 feet (chord bears \$78°08'50"E), for an arc distance of 201.50 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 12) N60°58'09"E, 25.40 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left;
- 13) With the said non-tangent curve to the left, having a central angle of 54°24'58", a radius of 57.14 feet, a chord distance of 52.25 feet (chord bears S82°11'26"E), for an arc distance of 54.26 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 14) With the said compound non-tangent curve to the left, having a central angle of 19°29'51", a radius of 275.68 feet, a chord distance of 93.36 feet (chord bears N78°43'08"E), for an arc distance of 93.81 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 15) S56°30'12"E, 22.68 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 16) \$33°29'48"W, 11.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

2023040037 Page 14 of 28

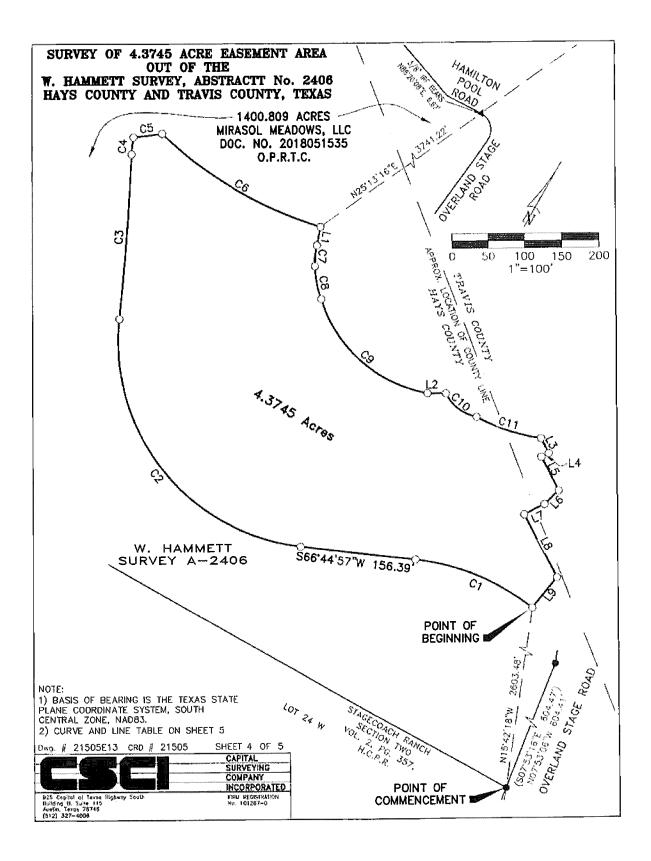
 4.3745 Acres
 W. Hammet Survey, Abst. No. 2406

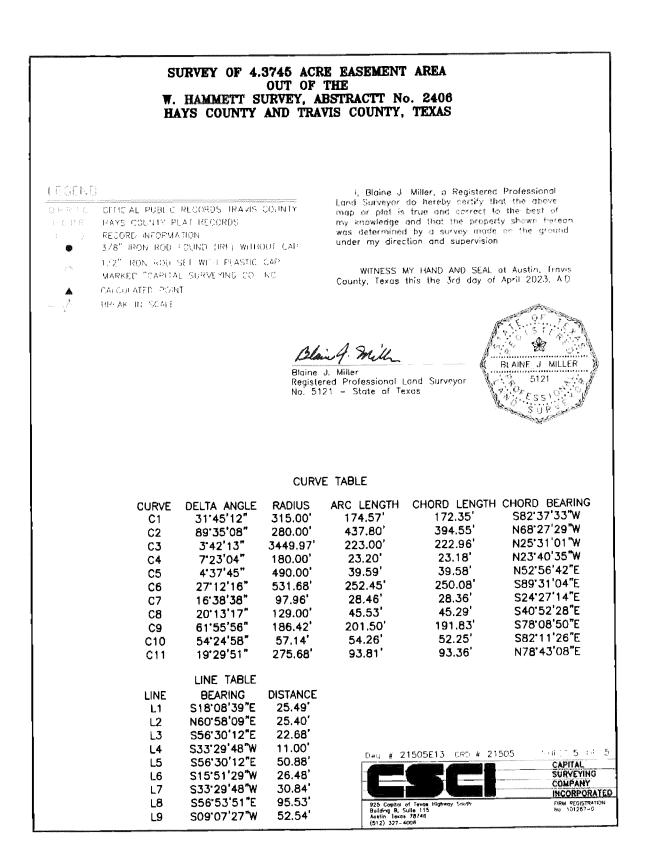
 April 3, 2023
 April 3, 2023

 Page 3 of 5
 21505.71

- 17) \$56°30'12"E, 50.88 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 18) S15°51'29"W, 26.48 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 19) \$33°29'48"W, 30.84 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 20) S56°53`51"E, 95.53 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company. Inc," set for corner;
- 21) S09°07'27"W, 52.54 feet to the POINT OF BEGINNING, CONTAINING within these metes and bounds 4,3745 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System. South Central Zone, NAD83 (HARN), derived by GPS observation.


I, Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.


WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 3rd day of April, 2023.

Blain of milin

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

5.8467 Acres

W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monckton Survey, Abst. No.782 November 30, 2022 21505.71

Page 1 of 6

STATE OF TEXAS	§
	ş
COUNTY OF HAYS	§

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 5.8467 acres situated in the W. Hammet Survey, Abstract No. 2406, J. B. Hammett Survey, Abstract No. 636 and W. & J. Monckton Survey, Abstract No. 782, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 5.8467 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northeast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common easterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N40°06'58"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,314.84 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the southwest corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following twenty-one (21) courses:

- 1) S40°21'11"W, 142.03 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 2) \$78°47'38"W, 45.07 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 3) N02°54'45"W, 48.46 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- N38°22'33"W, 178.19 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 5) N71°12'10"W, 102.97 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 6) N56°29'51"W, 103.31 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 7) N28°05'17"W, 153.65 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

5.8467 Acres

Page 2 of 6

W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monekton Survey, Abst. No.782 November 30, 2022 21505.71

8) S67°20'44"W, 103.21 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

- 9) N18°32'57"W, 257.93 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 10) With the said curve to the right, having a central angle of 25°17'15", a radius of 380.00 feet, a chord distance of 166.36 feet (chord N05°54'19"W), for an arc distance of 167.71 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 11) N06°44'18"E, 109.99 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 12) N04°47'51"W, 40.99 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 13) With the said curve to the right, having a contral angle of 46°09'38", a radius of 80.00 feet, a chord distance of 62.72 feet (chord bears N18°16'59"E), for an arc distance of 64.45 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 14) N41°21'48"E, 23.04 fect to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the left;
- 15) With the said curve to the left, having a central angle of 15°24'49", a radius of 150.93 feet, a chord distance of 40.48 feet (chord bears N41°20'16"E), for an arc distance of 40.60 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 16) With the said non-tangent compound curve to the left, having a central angle of 09°27'27", a radius of 108.13 feet, a chord distance of 17.83 feet (chord bears N38°23'47"E), for an arc distance of 17.85 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of compound curvature for a non-tangent curve to the left;
- 17) With the said non-tangent compound curve to the left, having a central angle of 17°22'50", a radius of 490.00 feet, a chord distance of 148.07 feet (chord bears S74°48'08"E), for an arc distance of 148.64 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the northeast corner of the herein described tract, from which a 3/8" iron rod found bears N33°41'02"E, 4237.69 feet to a calculated point for the uortheast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;
- 18) S08°28'11"W, 162.28 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 19) S22°55'53"E, 363.47 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for a point of curvature for a curve to the left;

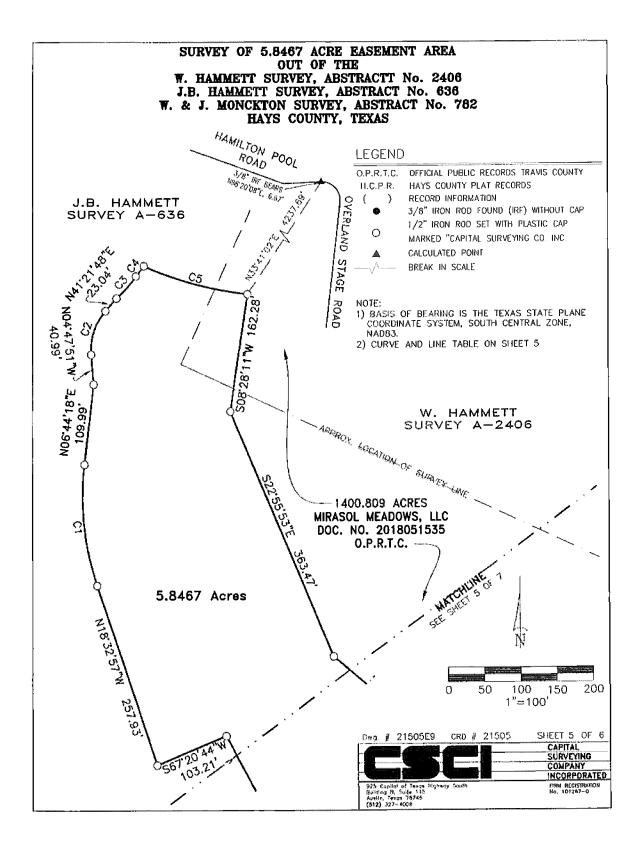
5.8467 Acres

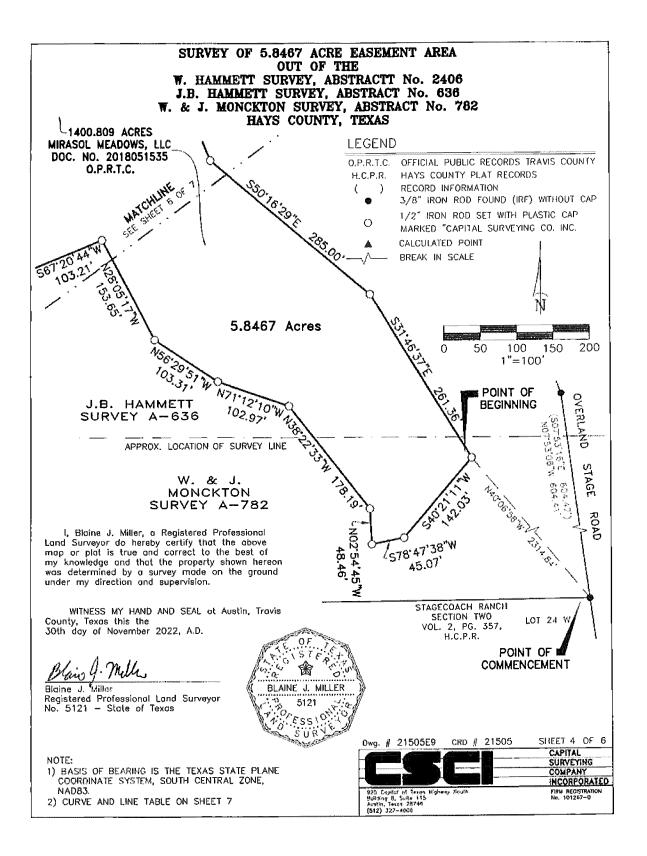
Page 3 of 6

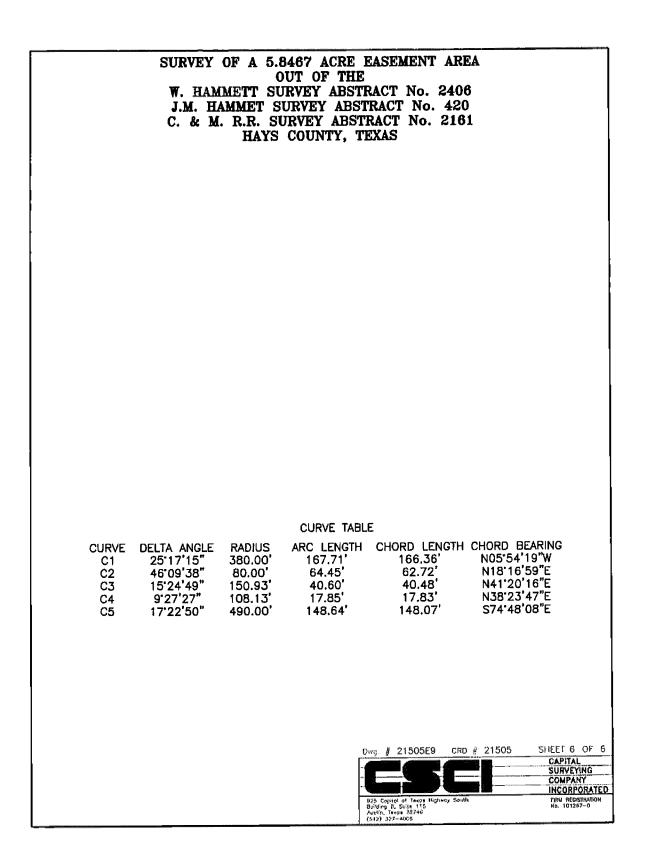
W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monckton Survey, Abst. No.782 November 30, 2022 21505.71

- 20) \$50°16'29"E, 285.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc," set for corner;
- 21) S31°46'37"E, 261.36 feet to the POINT OF BEGINNING, CONTAINING within these metes and bounds 5.8467 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System, South Central Zone, NAD83 (HARN), derived by GPS observation.


I. Blaine J. Miller, a Registered Professional Land Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.


WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 30th day of November, 2022



Plain & Mille

Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monekton Survey, Abst. No.782 November 30, 2022 21505.71

Page 1 of 6

STATE OF TEXAS	ş
	ş
COUNTY OF HAYS	Ş

FIELDNOTE DESCRIPTION, of a tract or parcel of land containing 6.8309 acres situated in the W. Hammet Survey, Abstract No. 2406, J. B. Hammett Survey, Abstract No. 636 and W. & J. Monekton Survey, Abstract No. 782, Hays County, Texas, being a portion of that 1400.809 acre tract conveyed to Mirasol Meadows, LLC, by warranty deed recorded in Document No. 2018051535 of the Official Public Records of Travis County, Texas, the said 6.8309 acre tract is more particularly described by metes and bounds as follows:

COMMENCING at a 3/8" iron rod, without cap, found for a southeast corner of the said 1400.809 acre tract, same being the northeast corner of Lot 24 W, Stagecoach Ranch, Section Two, a subdivision recorded in Book 2, Page 357 of the Plat Records of Hays County, Texas, and being on the existing westerly right-of-way line of Overland Stage Road as shown on said plat of Stagecoach Ranch, Section Two, from which a 3/8" iron rod, without cap, found on the common casterly line of the said 1400.809 acre tract and westerly right-of-way line of Overland Stage Road, bears N07°53'06"W, 604.41 feet;

THENCE, N32°53'56"W, leaving the northerly line of said Lot 24 W, across the said 1400.809 acre tract, for a distance of 2,115.71 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the south corner and POINT OF BEGINNG of the herein described tract;

THENCE, continuing across the said 1400.809 acre tract for the following twenty-four (24) courses:

- 1) N31°46'37"W, 497.26 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 2) N50°16'28"W, 262.49 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 3) N22°55'53"W, 217.56 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 4) N08°08'02"E, 80.87 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 5) N16°16'09"E, 78.32 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 6) N71°48'31"E, 145.46 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a non-tangent curve to the left and the northeast corner of the herein described tract, from which a 3/8" iron rod found bears N29°07'42"E, 3,924.45 feet to a calculated point for the northeast corner of the aforesaid 1400.809 acre tract, same being a point on the southerly right-of-way line of Hamilton Pool Road, and N88°20'08"E, 6.67 feet;

Page 2 of 6

W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monckton Survey, Abst. No.782 November 30, 2022 21505.71

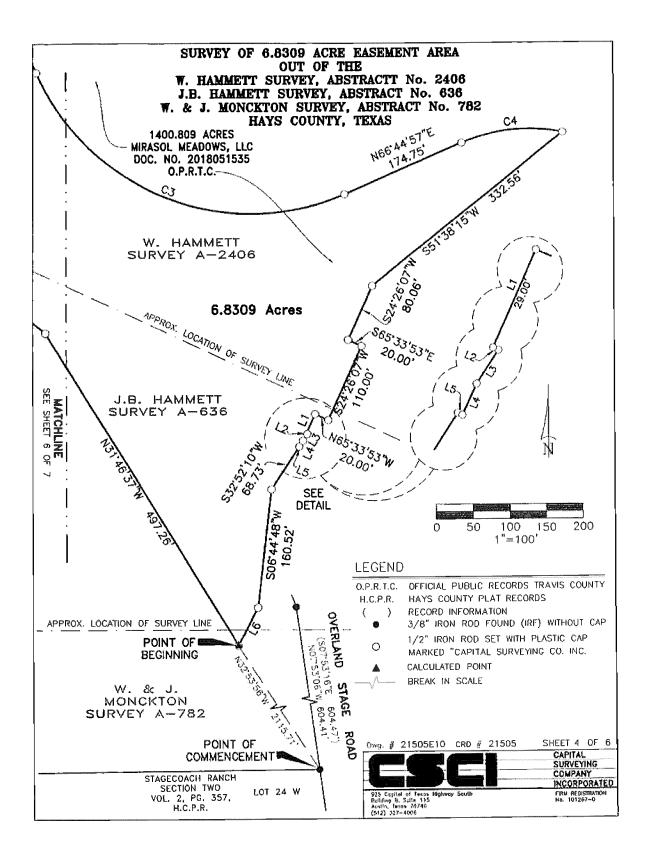
- 7) With the said non-tangent curve to the left, having a central angle of 05°05'55", a radius of 220.00 feet, a chord distance of 19.57 feet (chord bears S24°48'33"E), for an arc distance of 19.58 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a curve to the right;
- 8) With the said reverse curve to the right, having a central angle of 03°43'12", a radius of 3410.00 feet, a chord distance of 220.36 feet (chord bears S25°30'25"E), for an arc distance of 220.40 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of reverse curvature for a curve to the left;
- 9) With the said reverse curve to the left, having a central angle of 89°35'51", a radius of 320.00 feet, a chord distance of 450.96 feet (chord bears S68°27'14"E), for an arc distance of 500.41 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of tangency;
- 10) N66°44'57"E, 174.75 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for the point of curvature for a curve to the right;
- 11) With the said curve to the right, having a central angle of 35°02'33", a radius of 230.00 feet, a chord distance of 138.49 feet (chord bears N84°16'13"E), for an arc distance of 140.67 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 12) S51°38'15"W, 332.56 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 13) S24°26'07"W, 80.06 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- S65°33'53"E, 20.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 15) S24°26'07"W, 110.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 16) N65°33'53"W, 20.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 17) S24°26'07"W, 29.00 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- S65°33'53"E, 1.59 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 19) S32°52'10"W, 10.85 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 20) S24°26'07"W, 9.26 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;

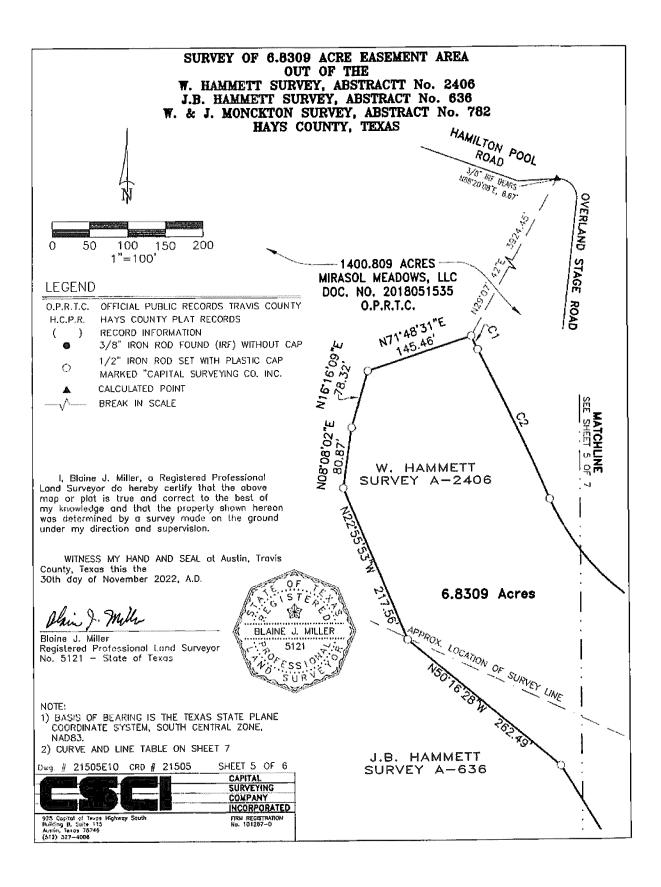
W. Hammet Survey, Abst. No. 2406 J.B. Hammett Survey, Abst. No. 636 W. & J. Monekton Survey, Abst. No.782 November 30, 2022 21505.71

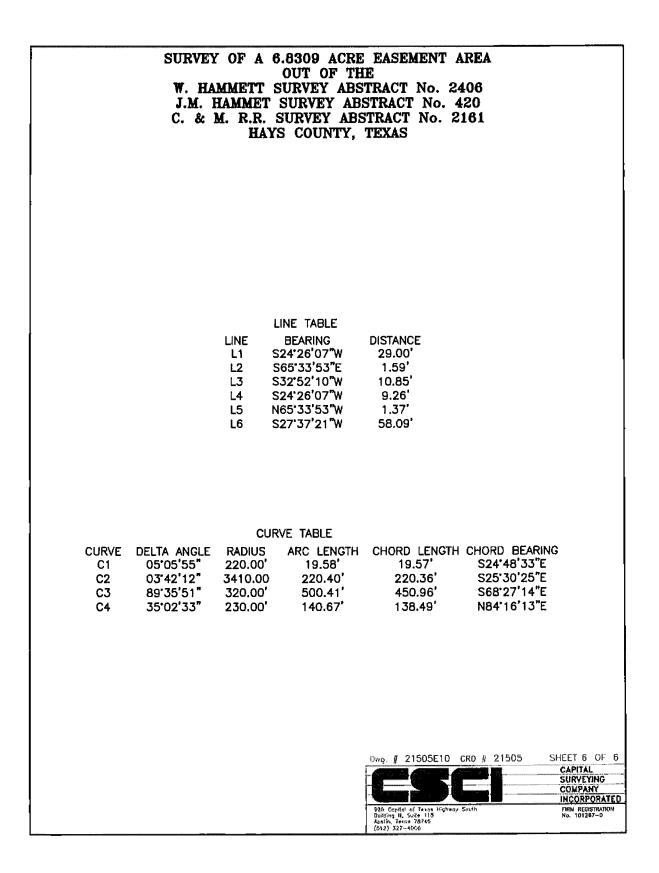
Page 3 of 6

- 21) N65°33'53"W, 1.37 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company. Inc." set for corner;
- 22) \$32°52'10"W, 68.73 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 23) S06°44'48"W, 160.52 feet to a 1/2" iron rod with plastic cap marked "Capital Surveying Company, Inc." set for corner;
- 24) S27°37°21"W, 58.09 left to the POINT OF BEGINNING, CONTAINING within these metes and bounds 6.8309 acres of land area.

The Bearings shown hereon are grid bearings base on the Texas State Plane Coordinate System. South Central Zone, NAD83 (HARN), derived by GPS observation.

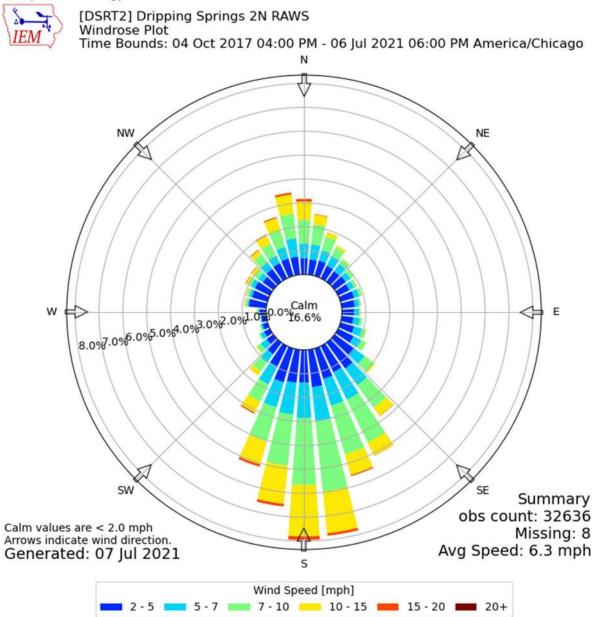

I. Blaine J. Miller, a Registered Professional I and Surveyor, do hereby certify that the above description is true and correct to the best of my knowledge and that the property described herein was determined by a survey made on the ground under my direction and supervision.


WITNESS MY HAND AND SEAL at Austin, Travis County, Texas, this the 30th day of November, 2022.



Dlain J. Mille

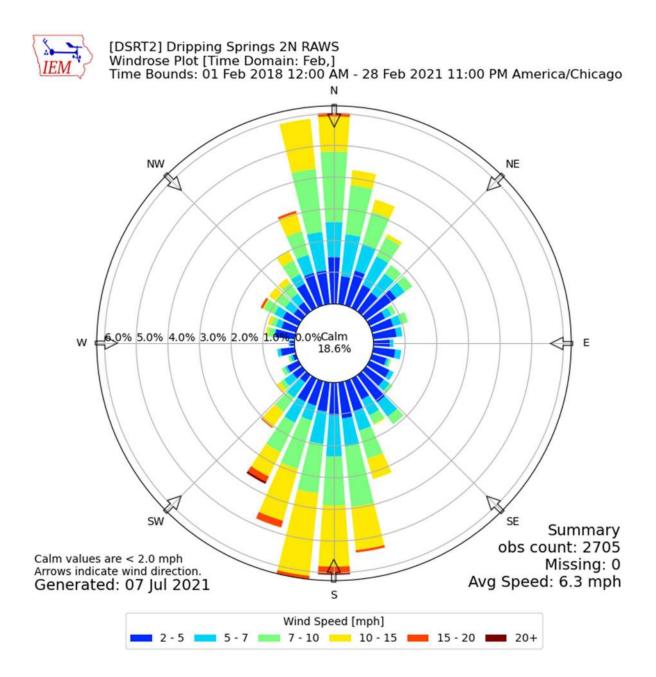
Blaine J. Miller Registered Professional Land Surveyor No. 5121 - State of Texas

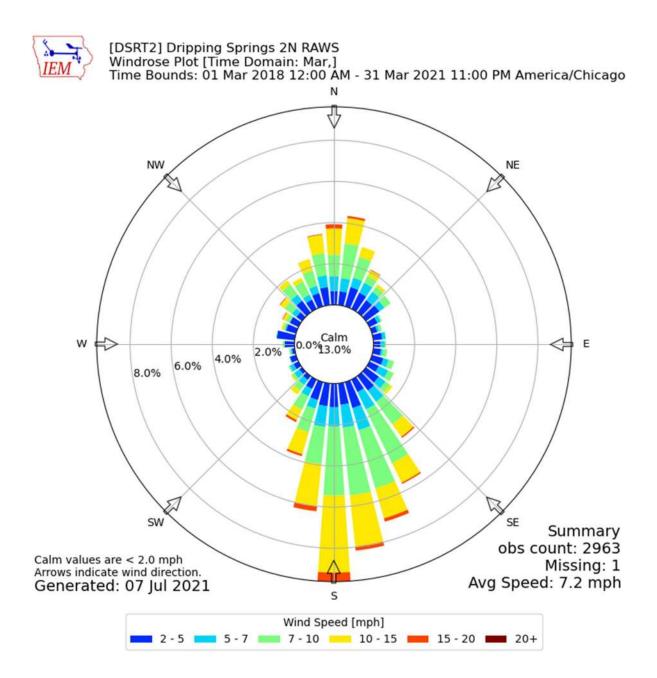

Attachment 22 – Wind Rose

Wind Roses

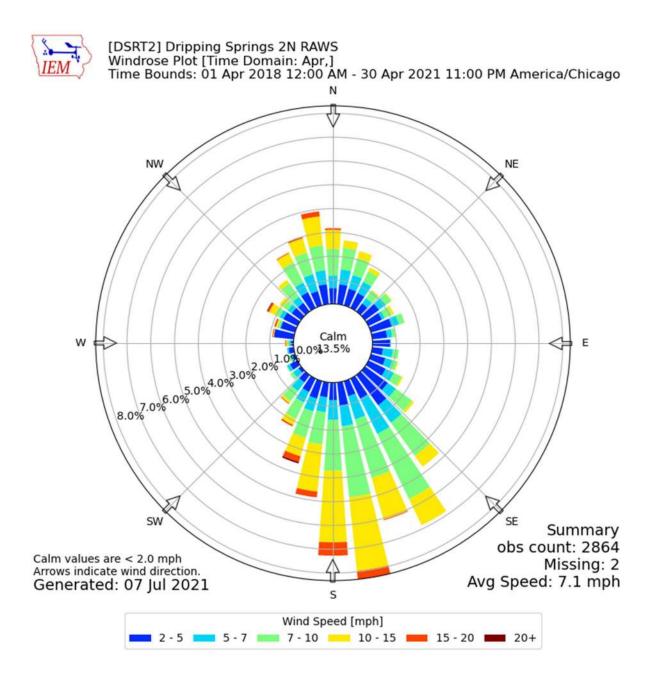
Scroll down this page for monthly climatologies!

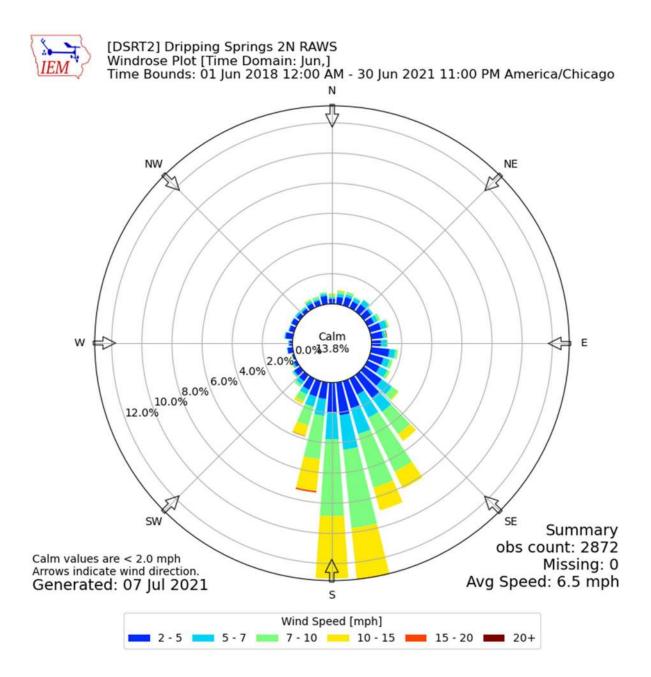
Wind roses are an information packed plot providing frequencies of wind direction and wind speed. A wind rose can quickly indicate the dominant wind directions and the direction of strongest wind speeds. The IEM has generated these wind roses based on our archive. The archive does contain errors and non representative data, so please use care when using these plots. In general, data from the airports is of good quality and representative of the local surrounding area. These images and data are in the public domain, the <u>disclaimer page</u> contains more details.

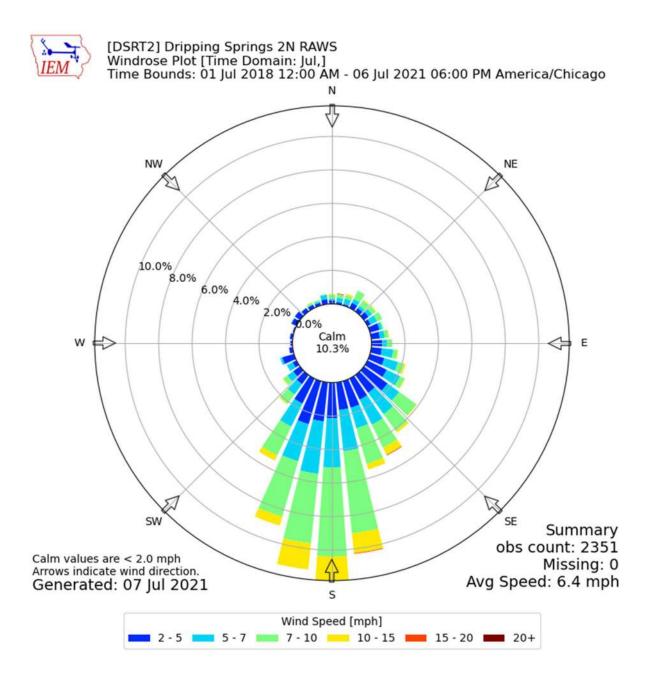

Yearly Climatology:

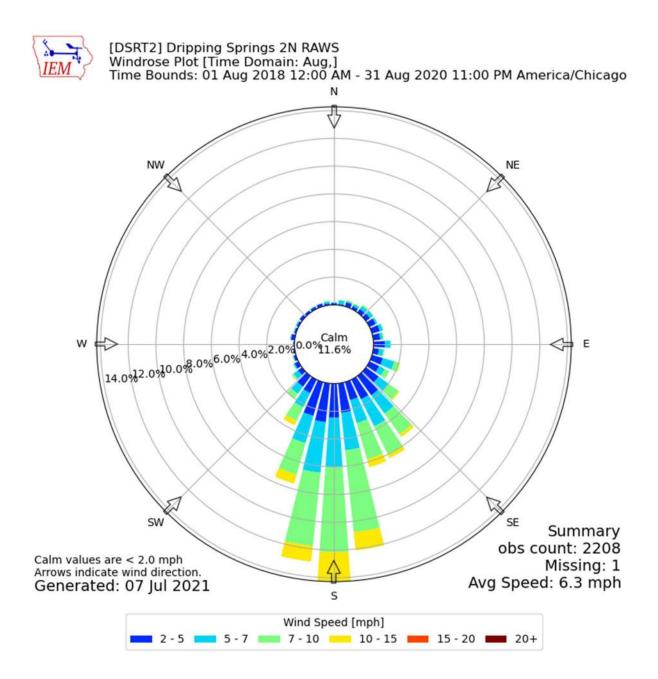


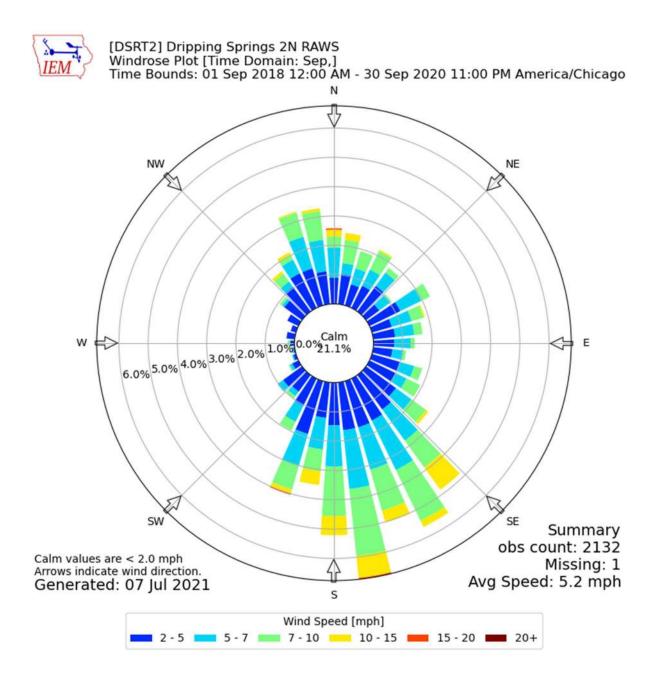
Monthly Climatology: (click thumbnail)

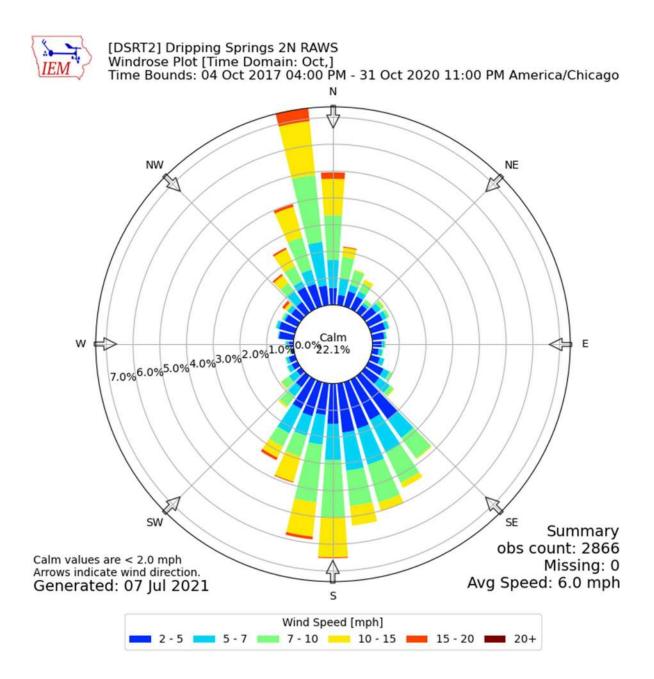

January

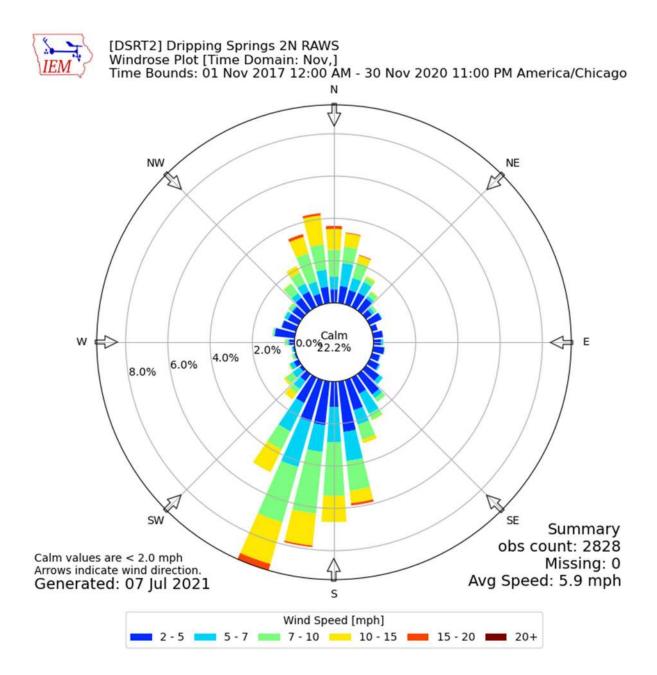

April

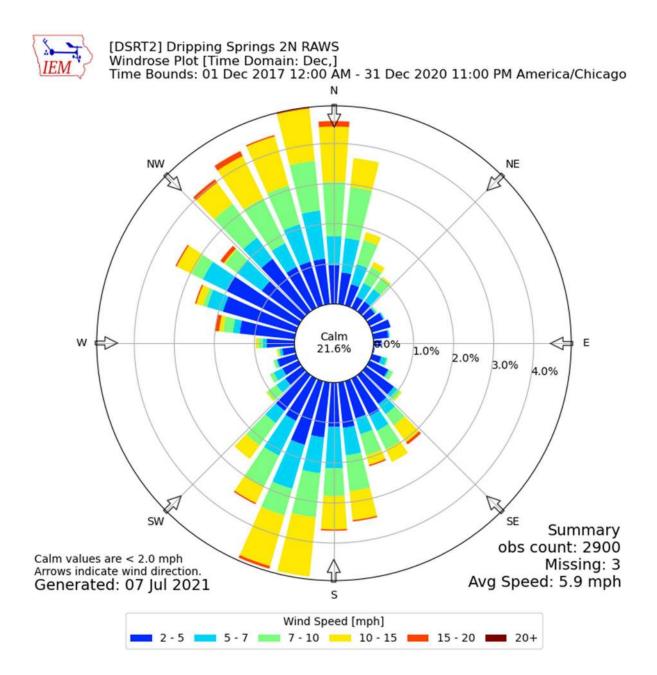

May

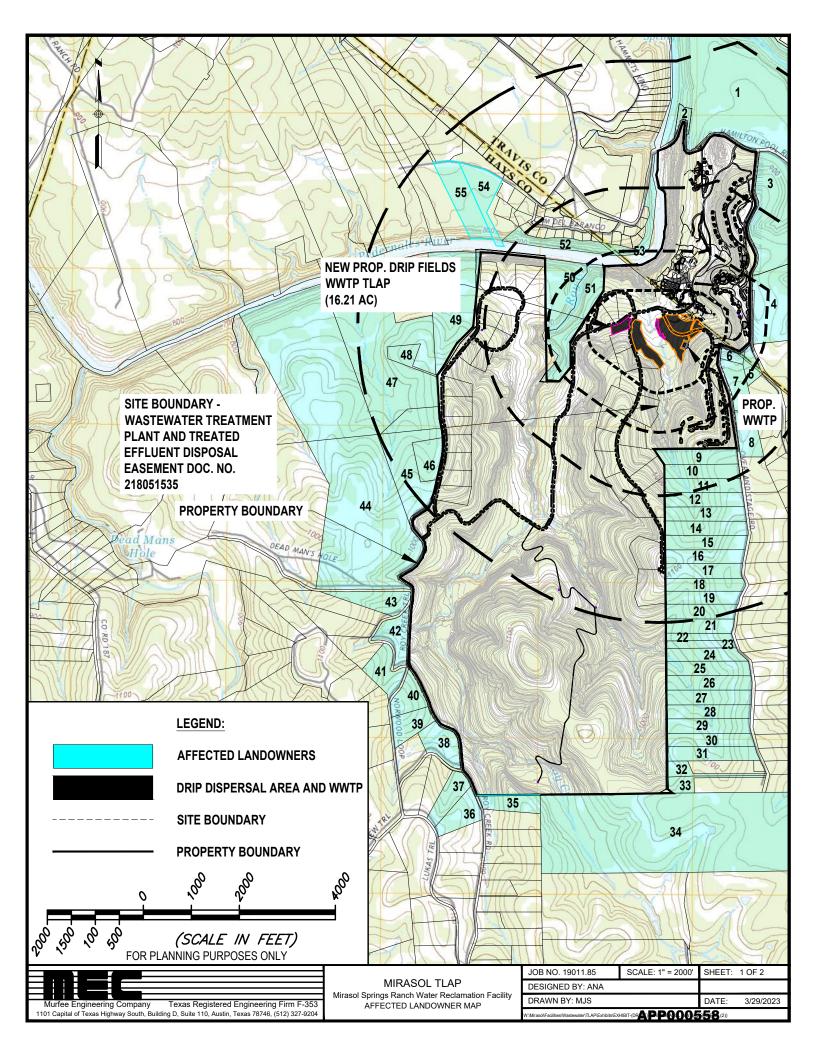


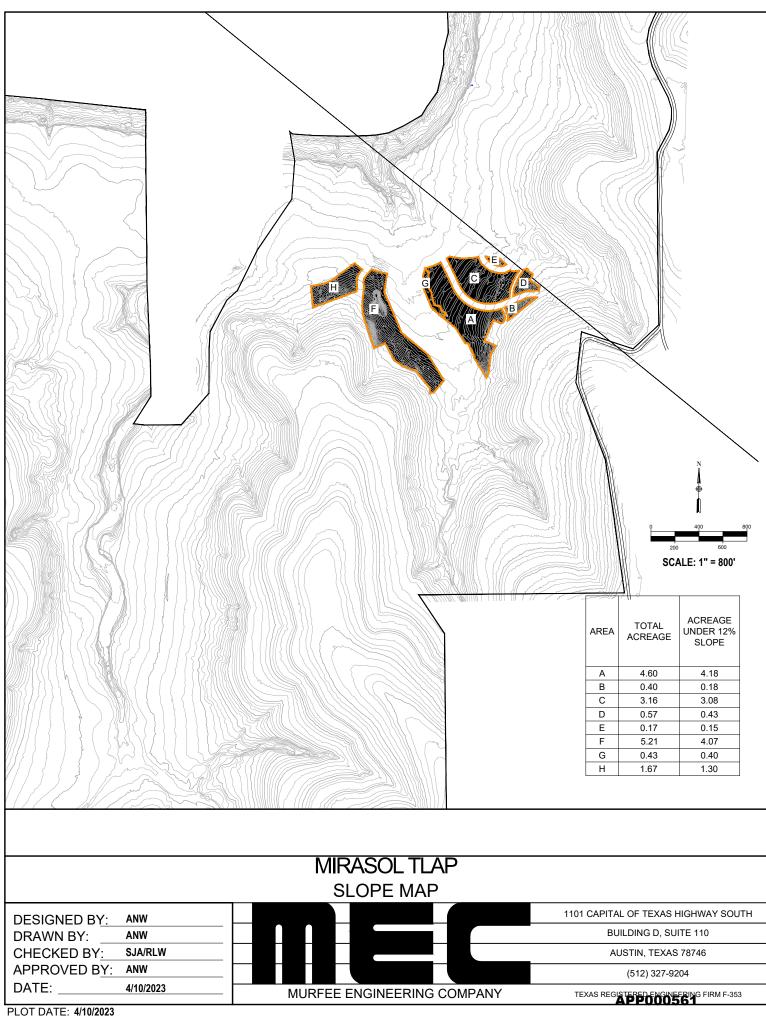

June




July






Attachment 23 – AFFECTED LANDOWNERS' MAP

APP000557

		PRPERTY LIST			
NO.	LANDOWNER	ADDRESS 1	CITY	STATE	POSTAL CODE
1	TRAVIS COUNTY TRUSTEE - RYAN POPE	517 MARCIA PL	NEW BRAUNFELS	тх	78130
2	TRAVIS COUNTY	110 CEDAR ST	LA PORTE	тх	77571-6412
3	TRAVIS COUNTY	PO BOX 1748	AUSTIN	тх	78767-1748
4	BENTREE RV RESORTS LLC (1803249)	401 STAGECOACH RANCH RD	DRIPPING SPRINGS	ΤХ	78620
5	JOHNSEN, DAVID	900 STAGECOACH RANCH RD	DRIPPING SPRINGS	тх	78620-2313
6	FRANK, RAYMOND E & DANA S	905 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620-2332
7	REESE, ELIAS & LISA A	6211 STONEHILL DR	DALLAS	тх	75254
8	GILES, DARYL & DURYONNA	1115 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620-2303
9	DEVORE, ROBERT L	7301 BROKEN ARROW LN	AUSTIN	тх	78745-6473
	ENDRES, TERRY L & SANGUILY, BETTY				
0	ANN	521 WHEDBEE	FORT COLLINS	CO	80524
11	WEBKING, CATHERINE J & SHANNON K MCLENDON	1302 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620
_	WEBKING, CATHERINE J & SHANNON K				
12	MCLENDON	1302 OVERLAND STAGE RD	DRIPPING SPRINGS	ТХ	78620
3	WILLIAMS, BLAINE T	1316 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620
	ALLEN, JEFFREY & KELLIE	1416 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620-2328
;	MEEKS, TWILA J (LIFE ESTATE) % MEEKS,	1502 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620-2317
16	JOHN L WRIGHT, TERRI L & BALLARD, FRED	1516 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620-2317
16	HILL, BRIAN & SHELLEY L	1516 OVERLAND STAGE RD	DRIPPING SPRINGS	ТХ	78620-2317
7 8	HILL, BRIAN & SHELLEY L	1616 OVERLAND STAGE RD		ТХ	78620
	TYLER, WILLIAM C		DRIPPING SPRINGS	ТХ	78620
9 20	TYLER, WILLIAM C	1716 OVERLAND STAGE RD	DRIPPING SPRINGS		
:0 :1	TINNER, THOMAS W	1716 OVERLAND STAGE RD	DRIPPING SPRINGS	TX TY	78620-2331
		1815 OVERLAND STAGE RD	DRIPPING SPRINGS	TX	78620-2318
22	STRAUCH, CHARLES B III	12400 HIGHWAY 71 W STE 350-111		TX	78738
23	STEWART, CHRIS & SARAH	1820 OVERLAND STAGE RD	DRIPPING SPRINGS	TX	78620-2318
24	HOLMES, BARBARA G	400 BRADY LN	AUSTIN	TX	78746
25 26	MILLWEE, SAMUEL & MARY	4504 TRAIL CREST CIR	AUSTIN	TX	78735-6324
26	BEST SISTERS REAL ESTATE LLC	2718 WOOLRIDGE DR	AUSTIN	TX	78703-1954
27	BEST SISTERS REAL ESTATE LLC	2718 WOOLRIDGE DR	AUSTIN	TX	78703-1954
28	BEST SISTERS REAL ESTATE LLC	2718 WOOLRIDGE DR	AUSTIN	TX	78703-1954
29	DONOVAN, WILLIAM & SHERI K	2316 OVERLAND STAGE RD	DRIPPING SPRINGS	TX	78620-2314
30	KELLY, SAM KINNARD & BRITTANY	5708 PAINTED VALLEY DR	AUSTIN	TX	78759-5501
31	FOSTER, DAVID W & PATRICIA A	2516 OVERLAND STAGE RD	DRIPPING SPRINGS	ТХ	78620-2338
32	BENNETT, DAVID FITZPATRICK & KAREN MARIE	2616 OVERLAND STAGE RD	DRIPPING SPRINGS	ΤХ	78620
33	GOWAN, RAYMOND LEONARD	2716 OVERLAND STAGE RD	DRIPPING SPRINGS	тх	78620
24					
34	EAGLE EYE RANCH LP	5924 KRAUSE LN	AUSTIN	ТХ	78738
35	NICOLAS KENNETH & DEBORAH	611 ROY CREEK TRL	DRIPPING SPRINGS	тх	78620-3300
36	BROUGHTON, BEN M & LORI C	275 LUKAS TRL	DRIPPING SPRINGS	ΤХ	78620
37	MATTHYS, GLENN & BARBARA	2205 TROON DR	LEAGUE CITY	ΤХ	77573-4463
88	SIERRAS, MORIO & TIFFANY	525 HILLVIEW TRL	DRIPPING SPRINGS	ΤХ	78620
39	HALE DAVID & HENRIETTA	5301 ELM ST	COLLEYVILLE	ΤХ	76034
40	SEIFERT STEVEN JAY & MELINDA W	150 NORWOOD LOOP	DRIPPING SPRINGS	ΤХ	78620
41	GRIGSBY, WILL R	7122 VALLECITO DR	AUSTIN	тх	78759-4663
42	CARLISLE JIMMY L & LAURA L	400 ROY CREEK TRL	DRIPPING SPRINGS	ΤХ	78620-2470
3	JANDLE, LEIGH ERIN	310 ROY CREEK TRL	DRIPPING SPRINGS	ΤХ	78620-3316
4	MIRASOL LODGE LLC	4143 MAPLE AVE STE 400	DALLAS	тх	75219-3289
5	CABELA, JOSEPH A & JENNIFER L	220 ROY CREEK TRL	DRIPPING SPRINGS	тх	78620-4197
46	DROP OAK RANCH LLC	220 ROY CREEK TRL	DRIPPING SPRINGS	тх	78620
47	CABELA, JOSEPH A & JENNIFER L	220 ROY CREEK TRL	DRIPPING SPRINGS	тх	78620-4197
48	JJJ ESCAPES LLC	200 ROY CREEK TRL	DRIPPING SPRINGS	тх	78620
49	MURPHREE, DENNIS & JEAN LIVING TRUST	11618 ELM RIDGE RD	SAN ANTONIO	тх	78230-2613
4 5 50	ASKINS, JO ELLEN & ETAL	PO BOX 211	SALADO	тх	76571
	ADAMS, LEW VALENTINE & ADAMS, ZILLA				
51	KATHERINE	118 DEERFIELD CV	LAKEWAY	тх	78734-4135
52	LA FAMILIA DE LA TIERRA OWNERS ASSN	24815 HAMILTON POOL RD	ROUND MOUNTAIN	ΤХ	78663-8570
53	LA FAMILIA DE LA TIERRA	24815 HAMILTON POOL RD	ROUND MOUNTAIN	тх	78663-8570
54	ORLANDO DEAN & ROWE BERYL F	3800 FEARLESS TREADWAY	ROUND MOUNTAIN	тх	78663
J#	SALANDO DEAN & NOWE BERTE F			17	,0005
55	COMBEST, RALPH	3500 FEARLESS TREADWAY	ROUND MOUNTAIN	тх	78663-8529
	1	1	1		1
			10/-104	recol/Equilities	Wastewater\TLAP\Exh

<u>Attachment 24 – Slope Exhibit</u>

FILE PATH: W:\MIRASOL\FACILITIES\WASTEWATER\TLAP\CAD\E-TLAP INDIV AREAS.DWG

<u>Attachment 25 – Public Involvement Form</u>

APP000562

⁶ Texas Commission on Environmental Quality

Public Involvement Plan Form for Permit and Registration Applications

The Public Involvement Plan is intended to provide applicants and the agency with information about how public outreach will be accomplished for certain types of applications in certain geographical areas of the state. It is intended to apply to new activities; major changes at existing plants, facilities, and processes; and to activities which are likely to have significant interest from the public. This preliminary screening is designed to identify applications that will benefit from an initial assessment of the need for enhanced public outreach.

All applicable sections of this form should be completed and submitted with the permit or registration application. For instructions on how to complete this form, see TCEQ-20960-inst.

Section 1. Preliminary Screening

New Permit or Registration Application
 New Activity – modification, registration, amendment, facility, etc. (see instructions)

If neither of the above boxes are checked, a Public Involvement Plan is not necessary. Completion of the remaining sections not required.

Section 2. Secondary Screening I Requires public notice, Considered to have significant public interest, and I Located within any of the following geographical locations: • Austin • San Antonio • Dallas West Texas • Fort Worth • Texas Panhandle • Houston • Along the Texas/Mexico Border Other geographical locations should be decided on a case-by-case basis If all of the above boxes are not checked, a Public Involvement Plan is not necessary. Stop after Section 2. □ Public Involvement Plan not applicable to this application. Provide **brief** explanation. Section 2 Application Information

Secuo	in 5. Application information				
Type of	Type of Application (check all that apply):				
Air	\Box Initial \Box Federal \Box Amendment	\Box Standard Permit \Box Title V			
Waste	 Municipal Solid Waste Radioactive Materials Licensing 	 Industrial and Hazardous Waste Underground Injection Controls 			

Water Quality

□ Texas Pollutant Discharge Elimination System (TPDES)

- ☑ Texas Land Application Permit (TLAP)
- □ State Only Concentrated Animal Feeding Operation (CAFO)
- □ Water Treatment Plant Residuals Disposal Permit
 - □ Class B Biosolids Land Application Permit
 - □ Domestic Septage Land Application Registration

Water Rights New Permit

 \Box New Appropriation of Water

 \Box New or existing reservoir

Amendment to an Existing Water Right

 \Box Add a New Appropriation of Water

□ Add a New or Existing Reservoir

□ Major Amendment that could affect other water rights or the environment

Section 4. Plain Language Summary

Provide a brief description of planned activities.

The proposed project will construct water recovery facilities (WRF) and disposal facilities for a proposed development including both residential and commercial facilities. The proposed WRF will treat 39,000 gallons per day using a conventional process that is designed to produce Type I effluent sufficient for using to irrigate common areas. Effluent will initially be discharge to a subsurface drip disposal system with an approximate area of 16.2 acres. Once the effluent quality is proven to meet Section 210 Type I requirements, the effluent will be used to irrigate common areas and other applicable landscape/plantings.

Section 5. Community and Demographic Information

Community information can be found using EPA's EJ Screen, U.S. Census Bureau information, or generally available demographic tools.

Information gathered in this section can assist with the determination of whether alternative language notice is necessary. Please provide the following information.

None

(City)

Travis and Hays Counties

(County)

108.08 and 17.68

(Census Tract)

Please indicate which of these three is the level used for gathering the following information. \Box City

 \Box County

🗷 Census Tract

(a) Percent of people over 25 years of age who at least graduated from high school See table on last page.

(b) Per capita income for population near the specified location See table on last page.

(c) Percent of minority population and percent of population by race within the specified location

See table on last page.

(d) Percent of Linguistically Isolated Households by language within the specified location See table on last page.

(e) Languages commonly spoken in area by percentage

See table on last page.

(f) Community and/or Stakeholder Groups

Save Our Springs;

(g) Historic public interest or involvement

None known

Section 6. Planned Public Outreach Activities

(a) Is this application subject to the public participation requirements of Title 30 Texas Administrative Code (30 TAC) Chapter 39?

🗆 Yes 🗷 No

(b) If yes, do you intend at this time to provide public outreach other than what is required by rule?

 \Box Yes \Box No

If Yes, please describe.

If you answered "yes" that this application is subject to 30 TAC Chapter 39, answering the remaining questions in Section 6 is not required.

(c) Will you provide notice of this application in alternative languages?

 \Box Yes 🗷 No

Please refer to Section 5. If more than 5% of the population potentially affected by your application is Limited English Proficient, then you are required to provide notice in the alternative language.

If yes, how will you provide notice in alternative languages?

 \Box Publish in alternative language newspaper

□ Posted on Commissioner's Integrated Database Website

□ Mailed by TCEQ's Office of the Chief Clerk

 \Box Other (specify)

(d) Is there an opportunity for some type of public meeting, including after notice?

🗆 Yes 🗷 No

(e) If a public meeting is held, will a translator be provided if requested?

🗆 Yes 🗷 No

(f) Hard copies of the application will be available at the following (check all that apply):

 \Box TCEQ Regional Office

 \Box TCEQ Central Office

I Public Place (specify) Bee Cave Public Library and Dripping Springs Community Library

Section 7. Voluntary Submittal

For applicants voluntarily providing this Public Involvement Plan, who are not subject to formal public participation requirements.

Will you provide notice of this application, including notice in alternative languages?

 \Box Yes \Box No

What types of notice will be provided?

 \Box Publish in alternative language newspaper

 \square Posted on Commissioner's Integrated Database Website

□ Mailed by TCEQ's Office of the Chief Clerk

 \Box Other (specify)

Census Information

Characteristic	Hays 108.08	Travis 17.68
(a) % of People over 25 who at least graduated from high school	92.3	98.1
(b) Per capita income for population near the specified location	\$98,135	\$128,990
(c) Percent of minority population and percent of population by race within the specified location	White - 81.7; Black/African American - 0.1; Hispanic/Latino - 16.8; two or more - 2.3	White - 77.7; Black/African American - 0.04; American Indian/Alaskan Native - 0.1; Asian - 7.9; Hispanic/Latino - 12.1; two or more - 2.2
(d) Percent of Linguistically isolated Households by language within the specified location	No Data	c
(e) Languages commonly spoken in area by percentage	English - 88.8; Spanish - 10.2; Indo- European - 1.1	English - 84.2; Spanish - 9; Indo-European 3.9; Asian/Pacific Island - 2.2; Other - 0.7

RESPONSE 1

May 24, 2023

Murfee Engineering Company

May 24th, 2023

VIA HAND DELIVERY

Leah Whallon Texas Commission on Environmental Quality Application Review and Processing Team MC-148 12015 Park 35 Cir Austin, TX 78753

Re: Application for a New Permit No. WQ0016335001 To Be Issued to Clancy Utility Holdings LLC for Mirasol Springs Ranch Water Reclamation Facility CN605924489, RN111731972

Ms. Leah Whallon,

The purpose of this letter is to provide a response to the Notice of Deficiency letter sent to Mrs. Andrea Wyatt, P.E. on May 12th, 2023, regarding the administrative completeness review of the Mirasol Springs Ranch Water Reclamation Facility Application for a New Permit. The items requiring additional information or clarification have been addressed and are ready for your review. An updated Administrative Report accompanies this letter and will be submitted to you via hand delivery. If you have any questions regarding this response letter, please do not hesitate to contact me.

1. An older version of the Administrative Report form was used (rev. date 06/25/2018). Please complete and resubmit the administrative report on the most recent version of the form (rev. date 10/31/2022).

Response: An updated version of the Administrative Report (rev. date 10/31/2022) is attached to this letter for your review.

2. Administrative Report 1.0, Section 14 A copy of the signature page was provided. Please send the original wet-ink signature page.

Response: A copy of the original wet-ink signature page is included in the attached Administrative Report on page 13.

3. The following is a portion of the Notice of Receipt of Application and Intent to Obtain a Water Quality Permit (NORI) which contains information relevant to your application. Please read it carefully and indicate if it contains any errors or omissions. The complete notice will be sent to you once the application is declared administratively complete. APPLICATION. Clancy Utility Holdings LLC, 4143 Maple Avenue, Suite 400, Dallas, Texas 75219, has applied to the Texas Commission on Environmental Quality (TCEQ) for proposed Texas Land Application Permit (TLAP) No. WQ0016335001 to authorize the disposal of treated wastewater at a volume not to exceed a daily average flow of 39,000 gallons per day via subsurface area drip dispersal system on approximately 16.2 acres. The domestic wastewater treatment facility and disposal area will be located approximately 0.8 miles southwest of the intersection of Hamilton Pool Road and Stagecoach Ranch Road, in Hays and Travis Counties, Texas 78620. TCEQ received this application on May 1, 2023. The permit application will be available for viewing and copying at Dripping Springs Community Library, 501 Sportsplex Drive, Dripping Springs, Texas in Hays County and at Bee Cave Public Library, 4000 Galleria Parkway, Bee Cave, Texas in Travis County prior to the date this notice is published in the newspaper. This link to an electronic map of the site or facility's general location is provided as a public courtesy and not part of the application or notice. For the exact location, refer to the application.

https://gisweb.tceg.texas.gov/LocationMapper/?marker=-98.1375,30.328888&level=18

Further information may also be obtained from Clancy Utility Holdings LLC at the address stated above or by calling Mrs. Andrea Wyatt, P.E., Murfee Engineering Company, Inc., at 512-327-9204.

Response: The portion of the NORI stated above is accurate and does not appear to contain any errors.

New rule requirements under Title 30 Texas Administrative Code (TAC) Chapter 39 relating to public notices have been implemented. The deficiencies listed below are new items that need to be provided to meet the alternative language requirements.

4. Administrative Report 1.0, Section 15 The plain language summary (PLS) is not provided. Please use the attached template to provide a completed PLS.

Response: The PLS page is included in the attached Administrative Report on page 14.

- Public Involvement Plan (TCEQ-20960)
 Public notice in any alternative language spoken by over 5% of the population as identified in Section 5, Item E is required. Please use the attached templates to provide the NORI and PLS in Spanish.
 - Response:According to the Instructions for Completing the Domestic Wastewater
Permit Application (TCEQ-10053ins (October 31, 2022)) for Section 8,
Item E Bilingual notice requirements, an alternative language is
triggered if:
 - the nearest elementary or middle school, as a part of a larger school district, is required to make a bilingual education program available to qualifying students and
 - the school either has students enrolled at such a program onsite, or has students who attend such a program at another

location in satisfaction of the school's obligation to provide such a program.

In the case of this permit application, the closest elementary or middle school is West Cypress Hills Elementary School, and the faculty spoken to has confirmed that this institution does not have a bilingual/ESL coordinator nor a bilingual education program. Therefore, a public notice in an alternative language will not be necessary.

Thank you, Ms. Whallon, for your time and consideration in assisting Mirasol Springs Ranch with this permit application review. Should you have any questions, please feel free to contact me at your convenience at 512-327-9204 below or via e-mail at <u>eparker@murfee.com</u>.

Sincerely,

Evan Parker, E.I.T.

Attachments:

Administrative Report (rev. date 10/31/2022)

CC: George Murfee, P.E. – MEC Andrea Wyatt, P.E. – MEC Bryce Canady, P.E. – MEC MEC File: 19011.85

W:\Mirasol\Facilities\Wastewater\TLAP\TCEQ Comments and Responses\230501

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT: Clancy Utility Holdings, LLC

PERMIT NUMBER: WQ0016335001

Indicate if each of the following items is included in your application.

ът

- 7

	Y	Ν
Administrative Report 1.0	\boxtimes	
Administrative Report 1.1	\boxtimes	
SPIF		
Core Data Form	\boxtimes	
Public Involvement Plan Form	\boxtimes	
Technical Report 1.0	\boxtimes	
Technical Report 1.1	\boxtimes	
Worksheet 2.0		\boxtimes
Worksheet 2.1		\boxtimes
Worksheet 3.0	\boxtimes	
Worksheet 3.1		\boxtimes
Worksheet 3.2		\boxtimes
Worksheet 3.3	\boxtimes	
Worksheet 4.0		\boxtimes
Worksheet 5.0		\boxtimes
Worksheet 6.0	\boxtimes	
Worksheet 7.0	\boxtimes	

Original USGS Map	\boxtimes	
Affected Landowners Map	\boxtimes	
Landowner Disk or Labels	\boxtimes	
Buffer Zone Map	\boxtimes	
Flow Diagram	\boxtimes	
Site Drawing	\boxtimes	
Original Photographs	\boxtimes	
Design Calculations	\boxtimes	
Solids Management Plan	\boxtimes	
Water Balance		\boxtimes

Y

Ν

For TCEQ Use Only

Segment Number	County
Expiration Date	Region
Permit Number	

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR A DOMESTIC WASTEWATER PERMIT ADMINISTRATIVE REPORT 1.0

If you have questions about completing this form please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 29)

Indicate the amount submitted for the application fee (check only one).

Flow <0.05 MGD ≥0.05 but <0.10 MGD ≥0.10 but <0.25 MGD ≥0.25 but <0.50 MGD ≥0.50 but <1.0 MGD ≥1.0 MGD	New/Major Amend \$350.00 ⊠ \$550.00 □ \$850.00 □ \$1,250.00 □ \$1,650.00 □ \$2,050.00 □	ment Renewal \$315.00 \$515.00 \$815.00 \$1,215.00 \$1,615.00 \$2,015.00
Minor Amendment (for any flow)	\$150.00	
Payment Information:		
Check/Mone	ey Order Number: <u>565</u> ey Order Amount: <u>\$35</u> d on Check: <u>TCEQ Fir</u>	
EPAY Voucher Nu	nber: Click here to e	Her lexi.
Copy of Payment Voucher	enclosed?	Yes 🗆
Section 2. Type of Applic	cation (Instruction	ons Page 29)
□ New TPDES		New TLAP
Major Amendment <u>with</u> Ren	ewal 🗆	Minor Amendment <u>with</u> Renewal
Major Amendment <u>without</u> I	Renewal 🗆	Minor Amendment <u>without</u> Renewal
Renewal without changes		Minor Modification of permit
For amendments or modification	is, describe the prop	osed changes:
For existing permits:		
Permit Number: WQ00	to enter text.	
EPA I.D. (TPDES only): TX	re to enter text.	
Expiration Date:	nter text.	

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 29)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

Clancy Utility Holdings, LLC

(*The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.*)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>605924489</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: Shaun Miller

Credential (P.E, P.G., Ph.D., etc.):

Title: President

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

(*The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.*)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: <u>http://www15.tceq.texas.gov/crpub/</u>

CN:

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss):
First and Last Name:
Credential (P.E, P.G., Ph.D., etc.):
Title: Click here to enter text
varida a brief description of the need for a construction

Provide a brief description of the need for a co-permittee:

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0.

Attachment: <u>Attachment 1: Core Data Form</u>

Section 4. Application Contact Information (Instructions Page 30)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A.	Prefix (Mr., Ms., Miss): <u>Mrs.</u>
	First and Last Name: <u>Andrea Wyatt</u>
	Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>
	Title: <u>Project Engineer</u>
	Organization Name: Murfee Engineering Company, Inc.
	Mailing Address: <u>1101 S. Capital of Texas Hwy, Bldg D.</u>
	City, State, Zip Code: <u>Austin, TX 78746</u>
	Phone No.: <u>512-327-9204</u> Ext.: Fax No.: <u>512-327-2947</u>
	E-mail Address: <u>awyatt@murfee.com</u>
	Check one or both: 🛛 Administrative Contact 🖾 Technical Contact
B.	Prefix (Mr., Ms., Miss): <u>Mr.</u>
	First and Last Name: <u>George Murfee</u>
	Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>
	Title: <u>President</u>
	Organization Name: Murfee Engineering Company, Inc.
	Mailing Address: <u>1101 S. Capital of Texas Hwy, Bldg D.</u>
	City, State, Zip Code: <u>Austin, TX 78746</u>
	Phone No.: <u>512-327-9204</u> Ext.: Fax No.: <u>512-327-2947</u>
	E-mail Address: <u>gmurfee@murfee.com</u>
	Check one or both: 🛛 Administrative Contact 🗆 Technical Contact

Section 5. Permit Contact Information (Instructions Page 30)

Provide two names of individuals that can be contacted throughout the permit term.

A. Prefix (Mr., Ms., Miss): <u>Mr.</u>

	First and Last Name: <u>Shaun Miller</u>
	Credential (P.E, P.G., Ph.D., etc.):
	Title: <u>President</u>
	Organization Name: <u>Clancy Utility Holdings, LLC</u>
	Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
	City, State, Zip Code: <u>Dallas, TX 75219</u>
	Phone No.: <u>214-301-4255</u> Ext.: Fax No.: <u>Not available</u>
	E-mail Address: <u>smiller@winnfamily.org</u>
B.	Prefix (Mr., Ms., Miss): <u>Mr.</u>
	First and Last Name: <u>Jim Truitt</u>
	Credential (P.E, P.G., Ph.D., etc.):
	Title: <u>Vice President</u>
	Organization Name: <u>Clancy Utility Holdings, LLC</u>
	Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
	City, State, Zip Code: <u>Dallas, TX 75219</u>
	Phone No.: (214) 301-4277 Ext.: Fax No.: Not available
	F-mail Address: itruitt@mirasolcanital.com

Section 6. Billing Information (Instructions Page 30)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix (Mr., Ms., Miss): <u>Mr.</u>
First and Last Name: <u>Jim Truitt</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>Vice President</u>
Organization Name: <u>Clancy Utility Holdings, LLC</u>
Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
City, State, Zip Code: <u>Dallas, TX 75219</u>
Phone No.: (214) 301-4277 Ext.: Fax No.: Not available
E-mail Address: <u>jtruitt@mirasolcapital.com</u>

Section 7. DMR/MER Contact Information (Instructions Page 31)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (EPA 3320-1) or maintain Monthly Effluent Reports.

Prefix (Mr., Ms., Miss): <u>Mr.</u>
First and Last Name: <u>Shaun Miller</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>President</u>
Organization Name: <u>Clancy Utility Holdings, LLC</u>
Mailing Address: <u>4143 Maple Avenue, Suite 400</u>
City, State, Zip Code: <u>Dallas, TX 75219</u>
Phone No.: (214) 301-4277 Ext.: Fax No.: Not available
E-mail Address: <u>smiller@winnfamily.org</u>

DMR data is required to be submitted electronically. Create an account at:

https://www.tceq.texas.gov/permitting/netdmr/netdmr.html.

Section 8. Public Notice Information (Instructions Page 31)

A. Individual Publishing the Notices

Prefix (Mr., Ms., Miss): <u>Mrs.</u> First and Last Name: <u>Andrea Wyatt</u> Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u> Title: <u>Project Engineer</u> Organization Name: <u>Murfee Engineering Company</u> Mailing Address: <u>1101 S. Capital of Texas Highway, Building D</u> City, State, Zip Code: <u>Austin, TX, 78746</u> Phone No.: <u>512-327-9204</u> Ext.: <u>310</u> Fax No.: <u>512-327-2947</u> E-mail Address: <u>awyatt@murfee.com</u>

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- ⊠ E-mail Address
- □ Fax
- Regular Mail

C. Contact person to be listed in the Notices

Prefix (Mr., Ms., Miss): <u>Mrs.</u>

First and Last Name: Andrea Wyatt

Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>

Title: Project Engineer

Organization Name: <u>Murfee Engineering Company, Inc.</u>

Phone No.: <u>512-327-9204</u> Ext.: <u>310</u>

E-mail: <u>awyatt@murfee.com</u>

D. Public Viewing Information

If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.

Public building name: Bee Cave Public Library; Dripping Springs Community Library

Location within the building: Public Access Section/ Front Desk

Physical Address of Building: <u>4000 Galleria Pkwy, Bee Cave, TX 78738; 501 Sportsplex Dr.</u> <u>Dripping Springs, TX 78620</u>

City: <u>Bee Cave, TX; Dripping Springs, TX</u> County: <u>Travis; Hays</u>

Contact Name:

Phone No.: <u>512-757-6620; 512-858-7825</u> Ext.:

E. Bilingual Notice Requirements:

This information **is required** for **new**, **major amendment**, **minor amendment or minor modification**, **and renewal applications**.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

🗆 Yes 🖾 No

If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

□ Yes □ No

3. Do the students at these schools attend a bilingual education program at another location?

🗆 Yes 🗆 No

4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)?

□ Yes □ No

5. If the answer is yes to question 1, 2, 3, or 4, public notices in an alternative language are required. Which language is required by the bilingual program?

F. Public Involvement Plan Form

Complete the Public Involvement Plan Form (TCEQ Form 20960) for each application for a **new permit or major amendment to a permit** and include as an attachment.

Attachment: Attachment 25 - Public Involvement Plan Form

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 33)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN**

Search the TCEQ's Central Registry at <u>http://www15.tceq.texas.gov/crpub/</u> to determine if the site is currently regulated by TCEQ.

B. Name of project or site (the name known by the community where located):

Mirasol Springs Ranch Water Reclamation Facility

C. Owner of treatment facility: <u>Clancy Utility Holdings, LLC</u>

Ownership of Facility:		Public	\boxtimes	Private		Both		Federal
------------------------	--	--------	-------------	---------	--	------	--	---------

D. Owner of land where treatment facility is or will be:

Prefix (Mr., Ms., Miss):

First and Last Name: <u>Mirasol Springs, LLC</u>

Mailing Address: <u>4143 Maple Avenue, Suite 400</u>

City, State, Zip Code: Dallas, TX 75219

Phone No.: <u>214-301-4255</u> E-mail Address: <u>smiller@winnfamily.org</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>Attachment 21: Deed Recorded Easement</u>

E. Owner of effluent disposal site:

Prefix (Mr., Ms., Miss):

First and Last Name: Mirasol Springs, LLC

Mailing Address: <u>4143 Maple Avenue, Suite 400</u>

City, State, Zip Code: Dallas, TX 75219

Phone No.: <u>214-301-4255</u> E-mail Address: <u>smiller@winnfamily.org</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: Attachment 21: Deed Recorded Easement

F. Owner of sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant):

Prefix (Mr., Ms., Miss):
First and Last Name:
Mailing Address:
City, State, Zip Code:
Phone No.: Click here to enter level E-mail Address: Click here to enter level
If the landowner is not the same person as the facility owner or co-applicant, attach a

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment:

Section 10. TPDES Discharge Information (Instructions Page 34)

A. Is the wastewater treatment facility location in the existing permit accurate?

🗆 Yes 🗆 No

If **no**, **or a new permit application**, please give an accurate description:

- **B.** Are the point(s) of discharge and the discharge route(s) in the existing permit correct?
 - 🗆 Yes 🗆 No

If **no**, **or a new or amendment permit application**, provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in 30 TAC Chapter 307:

<u>N/A</u>

N/A

City nearest the outfall(s):	ext.
County in which the outfalls(s) is/are located:	

Outfall Latitude: Longitude: Longitude:

C. Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?

□ Yes □ No

If **yes**, indicate by a check mark if:

□ Authorization granted □ Authorization pending

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment:

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge.

<u>N/A</u>

Section 11. TLAP Disposal Information (Instructions Page 36)

A. For TLAPs, is the location of the effluent disposal site in the existing permit accurate?

If **no, or a new or amendment permit application**, provide an accurate description of the disposal site location:

<u>0.8 mile southwest of the intersection of Hamilton Pool Road and Stagecoach Ranch</u> <u>Road.</u>

- B. City nearest the disposal site: Bee Cave, TX
- **C.** County in which the disposal site is located: <u>Travis and Hays</u>
- **D.** Disposal Site Latitude: <u>N30°19'46"</u>; <u>N30°19'47"</u> Longitude: <u>W98°08'18"</u>; <u>W98°08'18"</u>
- E. For TLAPs, describe the routing of effluent from the treatment facility to the disposal site:

<u>Effluent will discharge from plant into an effluent holding tank. It will be pumped into</u> <u>drip irrigation fields from the effluent lift station at various on-site locations.</u>

F. For **TLAPs**, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained:

Unnamed tributary to Pedernales River.

Section 12. Miscellaneous Information (Instructions Page 37)

- A. Is the facility located on or does the treated effluent cross American Indian Land?
 - 🗆 Yes 🖾 No
- **B.** If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
 - □ Yes □ No ⊠ Not Applicable

If No, or if a new onsite sludge disposal authorization is being requested in this permit application, provide an accurate location description of the sewage sludge disposal site.

C. Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?

🗆 Yes 🖾 No

If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application:

D. Do you owe any fees to the TCEQ?

□ Yes	\boxtimes	No
-------	-------------	----

If **yes**, provide the following information:

Account number:

E. Do you owe any penalties to the TCEQ?

🗆 Yes 🖾 No

If **yes**, please provide the following information:

Enforcement order number:

Amount past due:

Amount past due:

Section 13. Attachments (Instructions Page 38)

Indicate which attachments are included with the Administrative Report. Check all that apply:

Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.

- Original full-size USGS Topographic Map with the following information:
 - Applicant's property boundary
 - Treatment facility boundary
 - Labeled point of discharge for each discharge point (TPDES only)
 - Highlighted discharge route for each discharge point (TPDES only)
 - Onsite sewage sludge disposal site (if applicable)
 - Effluent disposal site boundaries (TLAP only)
 - New and future construction (if applicable)
 - 1 mile radius information
 - 3 miles downstream information (TPDES only)
 - All ponds.

Attachment 1 for Individuals as co-applicants

Other Attachments. Please specify: <u>Attachment 21 – Deed Recorded Easement;</u> <u>Attachment 2 – Original Full-Sized USGS Topographic Map; Attachment 25 – Public</u> <u>Involvement Plan Form</u>

Section 14. Signature Page (Instructions Page 39)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: New Permit Application

Applicant: Clancy Utility Holdings, LLC

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): Shaun Miller

Signatory title: President

Signature:	Man	m	Date: April	25,2023
	(Use blue ink)			
on this	and Sworn to before 25^{th} sion expires on the statement of the statem	ore me by the said day ofA eJ	Shown Mill- Sune	20 <u>23</u> . 20 <u>25</u> .
Notary Publi	e Long			[SEAL]
County, Tex	los as	ų,	Notary ID My Commis	LONG #676415-6 sion Expires , 2025

Section 15. Plain Language Summary (Instructions Page 40)

If you are subject to the alternative language notice requirements in <u>30 Texas Administrative Code</u> <u>\$39.426</u>, you must provide a translated copy of the completed plain language summary in the appropriate alternative language as part of your application package</u>. For your convenience, a Spanish template has been provided below.

ENGLISH TEMPLATE FOR TPDES or TLAP NEW/RENEWAL/AMENDMENT APPLICATIONS

DOMESTIC WASTEWATER

The following summary is provided for this pending water quality permit application being reviewed by the Texas Commission on Environmental Quality as required by 30 Texas Administrative Code Chapter 39. The information provided in this summary may change during the technical review of the application and are not federal enforceable representations of the permit application. Clancy Utility Holdings, LLC (CN605924489) proposes to operate Mirasol Springs Ranch Water Reclamation Facility and disposal facilities (RN111731972). an activated sludge treatment system operated as single stage nitrification with tertiary filtration. The facility will be located 0.8 miles southwest of the intersection of Hamilton Pool Road and Stagecoach Ranch Road , in Bee Cave, Travis/Hays County, Texas 78738.

This application is for a new application to discharge at a daily average flow of 39,000 gallons per day of treated domestic wastewater. This permit will not authorize a discharge of pollutants into water in the state.

Discharges from the facility are expected to contain low levels of Biochemical Oxygen Demand (5-day), Total Suspended Solids (TSS), and Ammonia Nitrogen (NH₃-N). Domestic wastewater will be treated by an activated sludge treatment system operated as single stage nitrification with tertiary filtration. Treatment units include an influent screen, anoxic basin, aeration basin, clarifier, cloth filter, and chlorine contact chamber and the process produces Type I effluent.

DOMESTIC ADMINISTRATIVE REPORT 1.1

The following information is required for new and amendment applications.

Section 1. Affected Landowner Information (Instructions Page 41)

- **A.** Indicate by a check mark that the landowners map or drawing, with scale, includes the following information, as applicable:
 - The applicant's property boundaries
 - The facility site boundaries within the applicant's property boundaries
 - □ The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone
 - The property boundaries of all landowners surrounding the applicant's property (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
 - □ The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream
 - □ The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge
 - The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides
 - The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property
 - The property boundaries of all landowners surrounding the effluent disposal site
 - □ The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is located
 - □ The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (for example, sludge surface disposal site or sludge monofill) is located
- **B.** Indicate by a check mark that a separate list with the landowners' names and mailing addresses cross-referenced to the landowner's map has been provided.
- C. Indicate by a check mark in which format the landowners list is submitted:
 - \boxtimes USB Drive \square Four sets of labels
- **D.** Provide the source of the landowners' names and mailing addresses: <u>Travis and Hays County</u> <u>Central Appraisal District Websites</u>
- **E.** As required by *Texas Water Code § 5.115*, is any permanent school fund land affected by this application?
 - 🗆 Yes 🖾 No

If **yes**, provide the location and foreseeable impacts and effects this application has on the land(s):

Section 2. Original Photographs (Instructions Page 44)

Provide original ground level photographs. Indicate with checkmarks that the following information is provided.

- At least one original photograph of the new or expanded treatment unit location
- At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
- At least one photograph of the existing/proposed effluent disposal site
- A plot plan or map showing the location and direction of each photograph

Section 3. Buffer Zone Map (Instructions Page 44)

- **A.** Buffer zone map. Provide a buffer zone map on 8.5 x 11-inch paper with all of the following information. The applicant's property line and the buffer zone line may be distinguished by using dashes or symbols and appropriate labels.
 - The applicant's property boundary;
 - The required buffer zone; and
 - Each treatment unit; and
 - The distance from each treatment unit to the property boundaries.
- **B.** Buffer zone compliance method. Indicate how the buffer zone requirements will be met. Check all that apply.
 - ⊠ Ownership
 - □ Restrictive easement
 - □ Nuisance odor control
 - □ Variance
- **C.** Unsuitable site characteristics. Does the facility comply with the requirements regarding unsuitable site characteristic found in 30 TAC § 309.13(a) through (d)?

THIS PAGE INTENTIONALLY LEFT BLANK

CHECKLIST OF COMMON DEFICIENCIES

Below is a list of common deficiencies found during the administrative review of domestic wastewater permit applications. To ensure the timely processing of this application, please review the items below and indicate by checking Yes that each item is complete and in accordance applicable rules at 30 TAC Chapters 21, 281, and 305. If an item is not required this application, indicate by checking N/A where appropriate. Please do not submit the application until the items below have been addressed.

Core Data Form (TCEQ Form No. 10400) (Required for all applications types. Must be completed in its entirety and si Note: Form may be signed by applicant representative.)	gned.		\boxtimes	Yes
Correct and Current Industrial Wastewater Permit Application Forms (TCEQ Form Nos. 10053 and 10054. Version dated 6/25/2018 or later.)			\boxtimes	Yes
Water Quality Permit Payment Submittal Form (Page 19) (Original payment sent to TCEQ Revenue Section. See instructions for maili	ng ad	ldress.)		Yes
7.5 Minute USGS Quadrangle Topographic Map Attached (Full-size map if seeking "New" permit. 8 ½ x 11 acceptable for Renewals and Amendments)			\boxtimes	Yes
Current/Non-Expired, Executed Lease Agreement or Easement Attached		N/A	\boxtimes	Yes
Landowners Map (See instructions for landowner requirements)		N/A	\boxtimes	Yes

Things to Know:

- All the items shown on the map must be labeled.
- The applicant's complete property boundaries must be delineated which includes boundaries of contiguous property owned by the applicant.
- The applicant cannot be its own adjacent landowner. You must identify the landowners immediately adjacent to their property, regardless of how far they are from the actual facility.
- If the applicant's property is adjacent to a road, creek, or stream, the landowners on the opposite side must be identified. Although the properties are not adjacent to applicant's property boundary, they are considered potentially affected landowners. If the adjacent road is a divided highway as identified on the USGS topographic map, the applicant does not have to identify the landowners on the opposite side of the highway.

Landowners Cross Reference List (See instructions for landowner requirements)		N/A	\boxtimes	Yes
Landowners Labels or USB Drive attached (See instructions for landowner requirements)		N/A	\boxtimes	Yes
Original signature per 30 TAC § 305.44 – Blue Ink Preferred (If signature page is not signed by an elected official or principle executive of a copy of signature authority/delegation letter must be attached)	fficer,		\boxtimes	Yes

RESPONSE 2

September 20, 2023

APP000589

RE: Notice of Deficiency_WQ0016335001_Clancy Property

Andrea Wyatt <awyatt@murfee.com>

Wed 9/20/2023 8:50 AM

To:Deba Dutta <Deba.Dutta@tceq.texas.gov>

2 attachments (2 MB)

Site Exhibit-TLAP-Mirasol-230920.pdf; Sheet from Domestic Worksheet 3.0-TLAP-Mirasol-230915.pdf;

Deba,

Attached are the requested exhibit and updated page from the application. I've uploaded the complete, updated application packet to the FTP and added your email using the share function.

I've outlined the drip fields in orange and site boundary in blue to try to make them clearly defined and removed most of the development related detail to simplify the drawing.

Please let me know if you have further questions.

Regards,

Andrea Wyatt

From: Deba Dutta <Deba.Dutta@tceq.texas.gov>
Sent: Tuesday, September 19, 2023 10:26 AM
To: Andrea Wyatt <awyatt@murfee.com>
Cc: Deba Dutta <Deba.Dutta@tceq.texas.gov>
Subject: RE: Notice of Deficiency_WQ0016335001_Clancy Property

Andrea,

- The site drawing is too busy. What are the 4 dotted lines for? Remove them if they are not required for site drawing.
- Service area boundary is not very clear.
- What are the two other black areas with orange boundary lines?
- What are the two black areas with magenta boundaries?
- Remove the word "Proposed" from the drawing.

I will need Domestic Worksheet 3.0 Section 2 – Revised Table 3.0(1), showing the final irrigation area as 16.2 acres (remove min, and planned).

I will also need an electronic copy (PDF/Word) of the revised permit application with all attachments.

Thanks.

From: Andrea Wyatt <<u>awyatt@murfee.com</u>> Sent: Monday, September 18, 2023 9:41 AM To: Deba Dutta <<u>Deba.Dutta@tceq.texas.gov</u>> Subject: RE: Notice of Deficiency WQ0016335001 Clancy Property Could you look at the attached exhibit and confirm that it fulfills what you've requested in item2? I want to make sure I have the right information shown.

Thanks!

Andrea Wyatt

From: Deba Dutta <<u>Deba.Dutta@tceq.texas.gov</u>> Sent: Thursday, September 14, 2023 3:34 PM To: Andrea Wyatt <<u>awyatt@murfee.com</u>> Cc: George Murfee <<u>gmurfee@murfee.com</u>>; <u>smiller@winnfamily.org</u>; Deba Dutta <<u>Deba.Dutta@tceq.texas.gov</u>> Subject: Notice of Deficiency_WQ0016335001_Clancy Property Importance: High

Good afternoon Andrea.

It was nice to talk to you this afternoon. As was discussed, the subject application is currently under technical review, and the following items must be addressed before the application is considered technically complete. Please send me the below information (preferably via email) as soon as possible, but no later than **COB Thursday; September 21, 2023,** to complete the technical review in a timely manner.

- 1. There are discrepancies in the irrigation area in the application. During our discussion, you confirmed the irrigation area as 16.2 acres. Provide me Domestic Worksheet 3.0 Section 2 Revised Table 3.0(1), showing the final irrigation area as 16.2 acres (remove min, and planned).
- 2. The site map will be part of the permit. Provide me a site map on a 8.5"X11" page zooming in to the boundaries of the treatment plant, disposal area, and applicant's property (the submitted map is not zoomed in, and showing the irrigation area as 16.21 acres).
- 3. Email me an electronic copy (PDF/Word) of the revised permit application with all attachments for our records. Alternatively, you can share the application via TCEQ FTPS at: <u>https://ftps.tceq.texas.gov/</u>.

Note that the TCEQ may request additional information as necessary to aid in drafting an accurate and representative permit. Feel free to contact me if you have any question.

Thanks.

Deba Dutta

Deba P. Dutta, P.E. Municipal Permits Team, MC-148 Wastewater Permitting Section Water Quality Division, TCEQ 12100 Park 35 Circle, Austin, Texas 78753 Phone: 512-239-4608 Email: <u>Deba.Dutta@tceq.texas.gov</u>

How is our Customer Service? Fill out our online customer satisfactory survey at <u>https://www.tceq.texas.gov/customersurvey</u>

DOMESTIC WORKSHEET 3.0

LAND DISPOSAL OF EFFLUENT

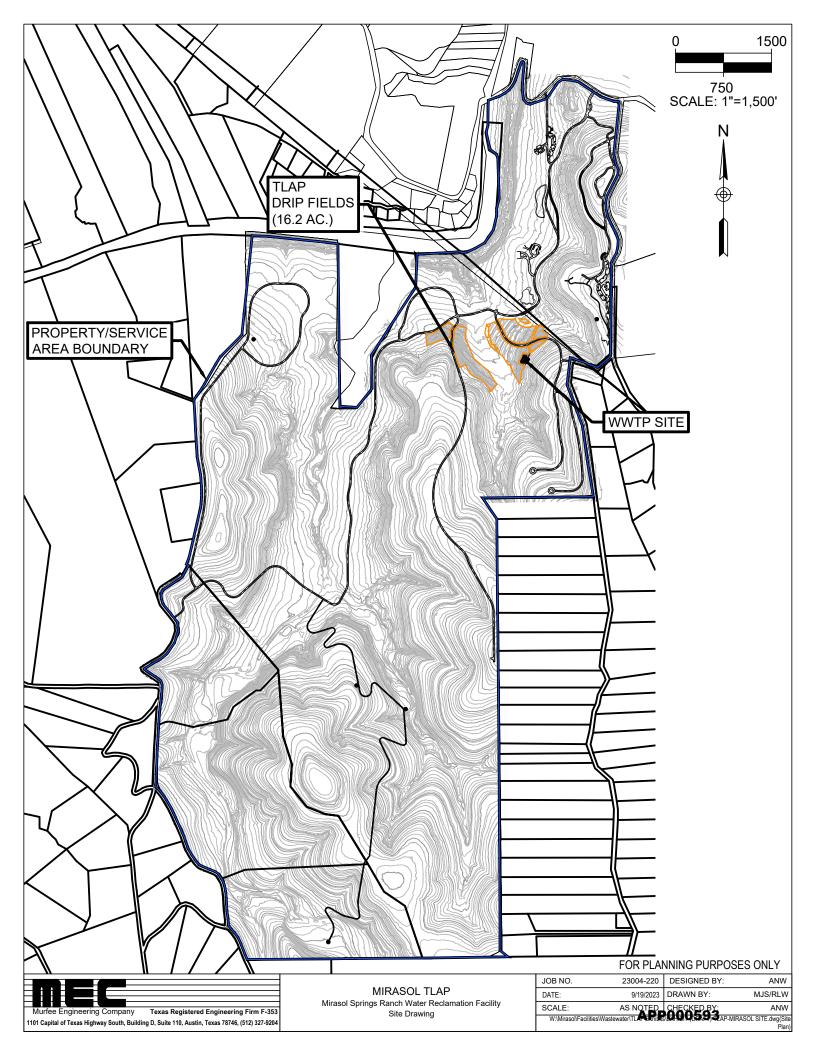
The following is required for all permit applications

Renewal, New, and Amendments

Section 1. Type of Disposal System (Instructions Page 77)

Identify the method of land disposal:

Surface application		Subsurface application			
Irrigation		Subsurface soils absorption			
Drip irrigation system	\boxtimes	Subsurface area drip dispersal system			
Evaporation					
Evapotranspiration beds					
Other (describe in detail):		ere to enter text.			
NOTE: All applicants without authorization or proposing new/amended subsurface disposal MUST complete and submit Worksheet 7.0.					


For existing authorizations, provide Registration Number:

Section 2. Land Application Site(s) (Instructions Page 77)

In table 3.0(1), provide the requested information for the land application sites. Include the agricultural or cover crop type (wheat, cotton, alfalfa, bermuda grass, native grasses, etc.), land use (golf course, hayland, pastureland, park, row crop, etc.), irrigation area, amount of effluent applied, and whether or not the public has access to the area. Specify the amount of land area and the amount of effluent that will be allotted to each agricultural or cover crop, if more than one crop will be used.

Crop Type & Land Use	Irrigation	Effluent	Public
	Area	Application	Access?
	(acres)	(GPD)	Y/N
Common Area, Pearl Millet and Mixed Native Species	16.2	39,000	Y

Table 3.0(1) - Land Application Site Crops

