
Texas Commission on Environmental Quality Draft Annual Monitoring Network Plan

P.O. Box 13087 Austin, Texas 78711-3087

Texas Commission on Environmental Quality 2024 Annual Monitoring Network Plan

Contents

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY 2024 ANNUAL MONITO NETWORK PLAN	
List of AppendicesList of TablesList of Acronyms and Abbreviations	4 4
INTRODUCTION	7
REGULATORY NETWORK REVIEW	9
General Monitoring Requirements National Core Multipollutant Monitoring Stations (NCore) Requirements	
Monitoring Requirements	10
Photochemical Assessment Monitoring Stations (PAMS) Requirements	10
Monitoring Requirements	11
Nitrogen Dioxide (NO ₂)	12
Monitoring Requirements	12
Previously Recommended Changes	13
Regulatory NO ₂ Monitoring Network Changes	13
Sulfur Dioxide (SO ₂)	13
Monitoring Requirements	14
Previously Recommended Changes	15
Regulatory SO ₂ Monitoring Network Changes	15
Lead (Pb)	15
Monitoring Requirements	15
Previously Recommended Changes	17
Regulatory Pb Monitoring Network Changes	17
Ozone (O ₃)	17
Monitoring Requirements	17
Previously Recommended Changes	18
Regulatory O ₃ Monitoring Network Changes	18
Carbon Monoxide (CO)	18
Monitoring Requirements	18
Proviously Pacommondad Changes	10

19
19
19
20
22
22
22
25
26
27
27
27
27
27
28
28
28
28
28
28
29
29
30

List of Appendices

- Appendix A 2024 Summary of Proposed Network Changes
- Appendix B Ambient Air Monitoring Network Site List
- Appendix C Population and Criteria Pollutant Monitor Requirements and Count Summary by Metropolitan Statistical Area
- Appendix D Nitrogen Dioxide, Nitrogen Oxide, and Total Reactive Nitrogen Monitor Requirements and Count Assessment
- Appendix E Sulfur Dioxide Monitor Requirements and Count Assessment
- Appendix F Sulfur Dioxide Ongoing Data Requirements Annual Report
- Appendix G Total Suspended Particulate Lead Monitor Requirements and Count Assessment
- Appendix H Ozone Monitor Requirements and Count Assessment
- Appendix I Carbon Monoxide Monitor Requirements and Count Assessment
- Appendix J Particulate Matter of 10 Micrometers or Less Monitor Requirements and Count Assessment
- Appendix K Particulate Matter of 2.5 Micrometers or Less Monitor Requirements and Count Assessment
- Appendix L Volatile Organic Compound and Carbonyl Monitor Requirements and Count Assessment

List of Tables

- Table 1: National Core Multipollutant Monitoring Stations and Parameters
- Table 2: Photochemical Assessment Monitoring Stations and Parameters
- Table 3: Data Requirements Rule Required SO₂ Monitoring Sites
- Table 4: 2020-2022 Lead Point-Source Emissions Inventory Data
- Table 5: Ozone SLAMS Minimum Monitoring Requirements
- Table 6: Particulate Matter of 10 Micrometers or Less SLAMS Minimum Monitoring Requirements
- Table 7: Particulate Matter of 10 Micrometers or Less Monitor Upgrade Status
- Table 8: Particulate Matter of 2.5 Micrometers or Less SLAMS Minimum Monitoring Requirements
- Table 9: Method Code 209 Particulate Matter of 2.5 Micrometers or Less FEM Quality Control Collocation Monitor Types and Sites
- Table 10: Method Code 638 Particulate Matter of 2.5 Micrometers or Less FEM Quality Control Collocation Monitor Types and Sites
- Table 11: Previously Approved Particulate Matter of 2.5 Micrometers or Less Summary of Changes
- Table 12: Air Monitoring Site Relocations

List of Acronyms and Abbreviations

- number

% - percent

> - greater than

 \geq - greater than or equal to

< - less than

μg/m³ - micrograms per cubic meter

AADT - annual average traffic count

AMNP - annual monitoring network plan

autoGC - automated gas chromatograph

CBSA - core based statistical area

CFR - Code of Federal Regulations

CO - carbon monoxide

DFW - Dallas-Fort Worth

DRR - Data Requirements Rule

EI - emissions inventory

EPA - United States Environmental Protection Agency

FEM - federal equivalent method

FRM - federal reference method

LBJ - Lyndon B. Johnson

LLC - limited liability company

MSA - metropolitan statistical area

NA - not applicable

NAAQS - National Ambient Air Quality Standards

NCore - National Core Multipollutant Monitoring Stations

NEI - National Emissions Inventory

NO₂ - nitrogen dioxide

NO - nitrogen oxide

NO_x - oxides of nitrogen

NO_y - total reactive nitrogen compounds

O₃ - ozone

OMB - United States Office of Management and Budget

PAMS - Photochemical Assessment Monitoring Stations

Pb - lead

PM₁₀ - particulate matter of 10 micrometers or less in diameter

PM_{2.5} - particulate matter of 2.5 micrometers or less in diameter

PM_{10-2.5} – coarse particulate matter

ppb - parts per billion

PWEI - population weighted emissions index

QC - quality control

RA-40 - Regional Administrator 40

SE - southeast

SETRPC - Southeast Texas Regional Planning Commission

SLAMS - State or Local Air Monitoring Stations

SO₂ - sulfur dioxide

SPM - special purpose monitor

TAD - technical assistance document

TCEQ - Texas Commission on Environmental Quality

TEOM - tapered element oscillating microbalance

tpy - tons per year

TSP - total suspended particulate

U.S. - United States

UTEP - University of Texas at El Paso

VOC - volatile organic compound

Introduction

Title 40 Code of Federal Regulations (CFR) Section 58.10 requires states to submit an annual monitoring network plan (AMNP) to the United States (U.S.) Environmental Protection Agency (EPA) by July 1 of each year. This monitoring plan is required to provide the implementation and maintenance framework for an air quality surveillance system, known commonly as the ambient air quality monitoring network.

The Texas Commission on Environmental Quality (TCEQ) reviews its ambient air quality monitoring network annually and creates the AMNP to demonstrate how Texas is meeting or will meet federal air monitoring requirements specified in 40 CFR Part 58 and its appendices. The AMNP presents the current TCEQ federal monitoring network established for use in evaluations to determine compliance with the National Ambient Air Quality Standards (NAAQS) as well as other monitors that support federal initiatives and provide additional information on air quality and the weather. The monitoring plan includes proposed changes from the previous year and future proposed changes to the monitoring network. Because the AMNP is focused on federally required monitoring, it does not include a review of state-initiated monitoring conducted in addition to federal requirements. This plan is limited to the portion of the TCEQ air monitoring network designed to comply with federal monitoring requirements and supported by federal funding.

The TCEQ posts the AMNP to solicit public comment for at least 30 days prior to submission to the EPA. The TCEQ submits the AMNP to the EPA for final review and approval with comments received during the 30-day inspection period, responses to the comments, and any appropriate changes based on the received comments. This plan includes the recommended federal monitoring network changes from July 1, 2023, through December 31, 2025, summarized in AMNP Appendix A. This plan also includes federal monitoring network changes recommended prior to July 1, 2023, that have been completed since that date or are still pending completion. Historical air monitoring network plans, associated public comments, and TCEQ responses are available on the TCEQ webpage TCEQ Air Monitoring Network Plans - Texas Commission on Environmental Quality - www.tceq.texas.gov.

The TCEQ continues to evaluate requests for ambient air monitoring submitted during previous AMNP public inspection and comment periods. Details regarding additional monitoring under consideration are included in this plan to solicit further public comment. Any future implementation of additional monitoring considerations may be included as part of the TCEQ federal ambient air monitoring network or as state-initiative monitoring. The proposals and implementation of proposals for monitoring under consideration are subject to change.

The TCEQ is federally required to operate between 129 and 156 air monitors. The TCEQ federal monitoring network includes 272 air quality monitors, approximately double the number of monitors required by federal rule. The number, type, and location of monitors within the TCEQ federal monitoring network is sufficient to characterize air quality for all areas required within Texas. The TCEQ and its monitoring partners (city, county, private, and industry) also operate a robust network of non-federal state-initiative monitors that support a variety of purposes, including potential health effects evaluation; however, these monitors are outside the scope of this document and are not included. The latest information regarding the entire Texas air monitoring network of federal and state-initiative monitors, monitoring data, and

air quality forecast conditions for Texas' metropolitan areas is featured on the TCEQ webpage <u>Air Quality and Monitoring - Texas Commission on Environmental Quality - www.tceq.texas.gov</u>.

Title 40 CFR Part 58, Appendix D provides the minimum design requirements for federal air monitoring networks including State or Local Air Monitoring Stations (SLAMS), Photochemical Assessment Monitoring Stations (PAMS), and National Core Multi-Pollutant Monitoring Stations (NCore). AMNP Appendix B lists the existing monitors established to meet federal monitoring requirements and objectives.

The TCEQ uses statistical-based definitions for core based statistical areas (CBSAs) or metropolitan statistical areas (MSAs), as defined and delineated by the U.S. Office of Management and Budget (OMB). The OMB defines a CBSA as a statistical geographic entity consisting of the county or counties associated with at least one urbanized area/urban cluster of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration. MSAs (areas with populations greater than 50,000) and micropolitan statistical areas (areas with populations between 10,000 and 50,000) are the two categories of CBSAs. The OMB delineated CBSAs and MSAs overlap in Texas, and the terms are used in this plan according to their usage in 40 CFR Part 58. The OMB updated the CBSA delineation list in July 2023, and two Texas CBSA titles were updated. The Houston-The Woodlands-Sugar Land CBSA title was updated to Houston-Pasadena-The Woodlands (Houston) and the Austin-Round Rock-Georgetown CBSA title was updated to Austin-Round Rock-San Marcos (Austin). The OMB added one county to the Houston CBSA, San Jacinto County, and made no other changes to the Austin CBSA. The updated titles and counties are used in this AMNP and its appendices.

The AMNP annual air monitoring network evaluation uses the current Texas CBSA (or MSAs) OMB designation with the most recent 2022 U.S. Census Bureau population estimates. Each CBSA (or MSA) and associated population are evaluated by air pollutant based on requirements in 40 CFR Part 58 and 2020-2022 certified air monitoring data, as applicable. The TCEQ uses these data to evaluate the networks and determine the required monitor counts as documented in the AMNP and its appendices. Based on annual assessments performed to date, all monitoring sites supporting federal requirements and monitoring objectives are meeting the requirements defined in 40 CFR Part 58 and its Appendices A, C, D, E and G.

In 2023, the TCEQ noted that the Austin Audubon Society air monitoring site was not meeting siting criteria as required under 40 CFR Part 58, Appendix E due to recent tree growth. The property owner trimmed the trees in 2023, and Austin Audubon Society air monitors currently meet siting criteria. In 2020, the EPA approved the TCEQ request for a waiver under 40 CFR Part 58 Appendix E, Section 10.1.1 for the Austin Webberville air monitoring site. The Austin Webberville monitors are located less than ten meters from the roadway preventing the site from meeting siting criteria, however, air monitoring data are deemed representative of the neighborhood scale area due to the site deployment date, historical data, and low traffic count. The TCEQ will evaluate the Austin Webberville traffic counts and siting criteria with the Five-Year Assessments.

Regulatory Network Review

General Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 1 describes the monitoring objectives and general criteria for the required SLAMS ambient air monitoring stations. Ambient air monitoring networks must be designed to meet the three basic monitoring objectives listed below, though each objective is to be considered independently:

- Provide air pollution data to the public in a timely manner;
- Support compliance with ambient air quality standards and emissions strategy development; and
- Support air pollution research studies (for example NCore network data).

Ambient air monitoring federal reference methods (FRM) and federal equivalent methods (FEM) are designated by the EPA and must be operated in accordance with the requirements of 40 CFR Part 53. FRM and FEM methods are acceptable for use in air quality surveillance systems under 40 CFR Part 58 and are used for comparing an area's air pollution levels against the NAAQS. These methods must be used in strict accordance with associated operation and/or instruction manuals and with applicable quality assurance procedures. The EPA reviews and approves FRM and FEM designated instrumentation. The list of EPA designated reference and equivalent methods is available at Air Monitoring Methods - Criteria Pollutants | US EPA.

<u>National Core Multipollutant Monitoring Stations (NCore)</u> <u>Requirements</u>

NCore multipollutant sites, approved by the EPA Administrator, were selected to measure multiple pollutants utilizing continuous methods as available. NCore sites are intended to be long-term sites useful for a variety of applications including air quality trends analyses, model evaluation, and tracking metropolitan area statistics. NCore guidance suggests monitoring instruments capable of measuring trace levels (high sensitivity), where needed. The TCEQ NCore monitoring network includes the following measurements in compliance with NCore monitoring guidance and federal requirements listed in 40 CFR Part 58, Appendix D, Section 3, as discussed further in this section:

- nitrogen oxide (NO), high sensitivity;
- total reactive nitrogen compounds (NO_v), high sensitivity;
- sulfur dioxide (SO₂), high sensitivity;
- ozone (O₃);
- carbon monoxide (CO), high sensitivity;
- filter-based particulate matter of 2.5 micrometers or less in diameter (PM_{2.5});
- continuous PM_{2.5};
- speciated PM_{2.5};
- coarse particulate matter (PM_{10-2.5}); and
- meteorology (ambient temperature, wind speed, wind direction, and relative humidity).

Monitoring Requirements

Texas is required to operate two to three urban NCore sites, due to multiple air sheds and MSAs, and meets the requirements listed in 40 CFR Part 58, Appendix D, Section 3(b) with three urban NCore sites and associated measurements listed below in AMNP Table 1. Additional air monitoring information for these sites is detailed in AMNP Appendix B.

Table 1: National Core Multipollutant Monitoring Stations and Parameters

Core Based Statistical Area	Site Name	NO _y *	SO ₂ *	O ₃	CO*	PM _{2.5} mass filter-based	PM _{2.5} mass continuous	PM _{2.5} speciation	PM _{10-2.5}	Meteorology
Dallas-Fort Worth- Arlington	Dallas Hinton	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√	$\sqrt{}$	V	$\sqrt{}$
Houston- Pasadena-The Woodlands	Houston Deer Park #2	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
El Paso	El Paso Chamizal		$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	

^{*}instrument capable of measuring trace levels (high sensitivity)

CO - carbon monoxide

NO_y - total reactive nitrogen compounds

NO - nitrogen oxide

SO₂ - sulfur dioxide

O₃ - ozone

 $\mbox{PM}_{\mbox{\tiny 2.5}}$ – particulate matter of 2.5 micrometers or less in diameter

PM_{10-2.5} - coarse particulate matter

Meteorology – includes wind speed, wind direction, ambient temperature, and relative humidity

<u>Photochemical Assessment Monitoring Stations (PAMS)</u> Requirements

The PAMS network is an O_3 precursor monitoring network operated by state and local agencies that measures O_3 , its precursors, and meteorological variables at NCore sites in metropolitan areas with a CBSA population of 1,000,000 or more persons. The main objective of the required PAMS sites is to develop a database of O_3 precursors and meteorological measurements to support O_3 model development and track trends of important O_3 precursor concentrations. The TCEQ PAMS network also includes enhanced O_3 monitoring in currently designated O_3 nonattainment areas and areas with previous O_3 nonattainment designations that have not been formally redesignated to attainment.

The minimum PAMS measurements include the following:

- speciated volatile organic compounds (VOCs);
- carbonyl compounds, three eight-hour samples on a 1-in-3 day schedule during June, July, and August;
- O₃;
- true (direct-read) nitrogen dioxide (NO₂);
- NO and NO_v
- ambient temperature;
- wind direction and wind speed;

^{# -} number

- atmospheric pressure;
- relative humidity;
- precipitation;
- mixing-height;
- solar radiation; and
- ultraviolet radiation.

Monitoring Requirements

State monitoring agencies are required to measure and report PAMS measurements at each required NCore site located in CBSAs with populations greater than 1,000,000, based on the latest available census figures. Two of the three NCore sites in Texas are located in CBSAs with populations meeting this requirement. The El Paso CBSA, according to the most recent census figures, does not meet this requirement. The Texas 2022 U.S. Census Bureau population estimates are listed in AMNP Appendix C. The TCEQ meets PAMS monitoring requirements listed in 40 CFR Part 58, Appendix D, Section 5(b) with the measurements at the two NCore/PAMS sites listed below in AMNP Table 2.

Table 2: Photochemical Assessment Monitoring Stations and Parameters

Core Based Statistical Area	Site Name	VOCs	Carbonyl compounds	\mathbf{O}_3	$\mathbf{True}\;\mathbf{NO}_{2}$	NO _y and NO	Ambient Temperature	Wind Direction and Speed	Atmospheric Pressure	Relative Humidity	Precipitation	Mixing-Height*	Solar Radiation	Ultraviolet Radiation
Dallas-Fort Worth- Arlington	Dallas Hinton	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{}$	\checkmark		$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark
Houston- Pasadena-The Woodlands	Houston Deer Park #2		\checkmark					$\sqrt{}$	√			√	\checkmark	$\sqrt{}$

^{*}Mixing height requirement for the Houston-Pasadena-The Woodlands core based statistical area is met at the La Porte Airport site as approved by the EPA in a letter dated October 19, 2018, approving the 2018 Annual Monitoring Network Plan.

VOCs - volatile organic compounds speciated

O₃ - ozone

NO₂ - nitrogen dioxide

NO_v - total reactive nitrogen compounds

NO - nitrogen oxide

The TCEQ developed an Enhanced Monitoring Plan detailing enhanced O_3 and O_3 precursor monitoring activities in addition to the PAMS requirements. The Enhanced Monitoring Plan was provided as an appendix to the 2019 AMNP and approved by the EPA. The Enhanced Monitoring Plan includes details on additional O_3 , NO_x and/or NO_y , speciated VOC, and meteorology monitoring at locations other than those required. Air monitoring information for these additional Enhanced Monitoring Plan monitors, identified as PAMS in the Network column, is listed in AMNP Appendix B.

^{# -} number sign

Nitrogen Dioxide (NO2)

The TCEQ NO_2 network includes measurements for NO, NO_2 , true NO_2 , and NO_y parameters sited in compliance with federal monitoring requirements, as discussed further in this section. The TCEQ NO_2 network is designed to meet area-wide, Regional Administrator 40 (RA-40), near-road, PAMS, and NCore monitoring requirements, as specified in 40 CFR Part 58. The TCEQ is required to operate a total of 20 monitors that measure NO_2 , true NO_2 , and NO_3 and exceeds the requirements with 58 monitors that measure those parameters. AMNP Appendix D summarizes the monitoring requirements for NO_2 , true NO_2 , and NO_3 in each Texas CBSA. The TCEQ utilizes a variety of instruments to measure these parameters; including an oxides of nitrogen (NO_3) instrument that reports NO_2 , NO_3 , and NO_3 data; an instrument that measures NO_3 directly, and an NO_3 instrument that reports NO_3 and NO_3 and NO_3 data. TCEQ air monitoring instrumentation for these measurements varies by site. The instrumentation measurement method is based on the specific federal monitoring objective. AMNP Appendix B lists the air monitoring sites and instrumentation measurement method where NO_3 , NO_3 , NO_3 , true NO_3 , and NO_3 are measured.

Monitoring Requirements

Area-Wide Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.3 requires one area-wide ambient air quality monitoring site in each CBSA with a population of 1,000,000 or more persons. The requirements stipulate that these sites be located in the areas with the highest expected NO_2 concentration that are also representative of a neighborhood or larger (urban) spatial scale. Title 40 CFR Part 58, Appendix D, Section 4.3.5 (3) and (4), define neighborhood scale monitoring as representative of ambient air concentrations in an area between 0.5 and 4.0 kilometers with relatively uniform land use. Urban scale monitoring is representative of ambient air concentrations over large portions of an urban area with dimensions between 4 and 50 kilometers.

Based on 2022 U.S. Census Bureau population estimates for Texas as noted in AMNP Appendix D, area-wide neighborhood or urban scale NO_2 monitoring is required in four Texas CBSAs. The NO_2 data derived at the sites below meet these area-wide requirements.

- Dallas-Fort Worth-Arlington (DFW) CBSA: Dallas Hinton
- Houston CBSA: Clinton
- San Antonio-New Braunfels (San Antonio) CBSA: San Antonio Northwest
- Austin CBSA: Austin North Hills Drive

Regional Administrator Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.4 states that the EPA Regional Administrators collaborate with the states to designate a minimum of $40~\text{NO}_2$ monitoring stations nationwide that are positioned to protect susceptible and vulnerable populations (referred to as RA-40 monitoring requirements). The TCEQ collaborated with the EPA Regional Administrator to identify the four Texas RA-40 NO₂ monitoring sites (monitoring with NO_x instruments) listed below to meet the portion of this requirement attributed to Texas.

- DFW CBSA: Arlington Municipal Airport
- Houston CBSA: Clinton

- El Paso CBSA: Ascarate Park Southeast (SE)
- Beaumont-Port Arthur (Beaumont) CBSA: Nederland 17th Street

Near-Road Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.2 requires one microscale near-road NO_2 monitor located near a major road with high annual average daily traffic (AADT) counts in each CBSA with a population of 1,000,000 or more persons. An additional near-road monitor is required in each CBSA with a population of 2,500,000 or more persons. The TCEQ near-road monitoring network meets these requirements with the six current sites (monitoring with NO_x instruments) and one pending new site listed below.

- DFW CBSA: 2 sites Dallas LBJ Freeway and Fort Worth California Parkway North
- Houston CBSA: 2 sites Houston Southwest Freeway and Houston North Loop
- San Antonio CBSA: 2 sites San Antonio Interstate 35 and San Antonio Interstate 10 West, (pending; new site detailed information listed in the AMNP NO₂ Previously Recommended Changes section below)
- Austin CBSA: 1 site Austin North Interstate 35

Previously Recommended Changes

The TCEQ 2023 AMNP recommended deploying a second near-road monitoring station, San Antonio Sherwood Drive, in the San Antonio CBSA to meet near-road monitoring requirements. The TCEQ experienced unexpected challenges obtaining power to the recommended site and evaluated alternative near-road site options on the same road segment, ranked with an AADT of 10. The TCEQ identified a suitable location for the San Antonio near-road station on Interstate Highway (IH) 10 West Frontage Road and Scales Street. The EPA approved the revised location for the near-road air monitoring station, named San Antonio Interstate 10 West, in a letter dated November 27, 2023. The TCEQ expects to deploy the site and NO_x monitor shortly after site construction is completed, sometime before December 31, 2024.

Regulatory NO₂ Monitoring Network Changes

The TCEQ evaluated the current NO_2 monitoring network with the changes described above and determined the existing NO_2 network, with the addition of a second pending San Antonio near-road NO_2 monitoring site, meets all federal monitoring requirements; therefore, no changes are recommended.

Sulfur Dioxide (SO₂)

The TCEQ SO₂ network includes monitors sited to meet federal ambient SO₂ and high-sensitivity SO₂ monitoring requirements. The TCEQ SO₂ network is designed to meet the population weighted emissions index (PWEI) by CBSA, 2015 *Data Requirements Rule (DRR) for the 1-Hour Sulfur Dioxide Primary NAAQS*, and NCore monitoring requirements, as discussed above and further in this section. The TCEQ is required to operate a total of 18 SO₂ monitors and exceeds the requirements with 32 monitors. A summary of the CBSA PWEI calculations, associated monitoring requirement evaluations, and current number of SO₂ monitors in each CBSA is shown in AMNP Appendix E. AMNP Appendix B lists the air monitoring sites where SO₂ is measured.

Monitoring Requirements

Population Weighted Emissions Index Requirements

Title 40 CFR Part 58, Appendix D, Section 4.4.2 requires states to establish an SO_2 monitoring network based on the PWEI calculations for Texas CBSAs. These indices are calculated by multiplying the CBSA population by the emissions inventory (EI) data for counties within that CBSA, using an aggregate of the most recent EI data. The National Emissions Inventory (NEI) is released by the EPA every three years and combines emissions inventory estimates for point, nonpoint (area), on-road, non-road, and wildfire and prescribed burn event sources. The TCEQ updates point-source emissions data annually from sources that meet the criteria in 30 Texas Administrative Code §101.10. Data from the most recent NEI with the most recent point-source EI aggregate calculated values are divided by one million to obtain the CBSA PWEI. The PWEI monitoring requirements include the following:

- one monitor in CBSAs with a PWEI equal to or greater than 5,000, but less than 100,000;
- two monitors in CBSAs with a PWEI equal to or greater than 100,000, but less than 1,000,000; and
- three monitors in CBSAs with a PWEI equal to or greater than 1,000,000.

The TCEQ used the most recent quality assured data available – the 2022 U.S. Census Bureau population estimates and 2020 NEI data with 2022 TCEQ point-source EI data to calculate the PWEIs and determine the minimum monitoring requirements for each CBSA. AMNP Appendix E details this assessment by CBSA (with county level EI data) and lists the total number of required and existing SO₂ monitors per CBSA. The TCEQ meets the PWEI requirements with six monitors required in five CBSAs, as shown in AMNP Appendix E.

Data Requirements Rule (DRR) Requirements

Title 40 CFR Part 51, Subpart BB (the DRR) required air agencies to characterize air quality around applicable sources that emitted 2,000 tons per year (tpy) or more of SO_2 in the latest emissions inventory year (2014, at that time, for Texas). The TCEQ identified 24 sources for air quality characterization, including 13 sources identified for evaluation by monitoring. To meet the DRR requirement for characterization of air quality around those sources, $11\ SO_2$ source-oriented monitors, located near these 13 sources, were installed and operational by January 1, 2017. Details for the TCEQ's DRR SO_2 source evaluation, modeling, and monitoring recommendations are in the TCEQ 2017 AMNP.

The Rockdale John D. Harper and San Antonio Gardner Road SO_2 source-oriented monitors were decommissioned based on design values less than 50% of the 2010 one-hour SO_2 NAAQS, as provided by 40 CFR Section 51.1203(c)(3). The TCEQ Rockdale John D. Harper SO_2 monitor (and entire site), was decommissioned in 2020, due to the sale/lease of the property. This monitor was eligible for decommission based on a design value less than 50% of the 2010 one-hour SO_2 NAAQS from data collected during the first three-year period of operation. The source near the Rockdale John D. Harper site that required DRR SO_2 air quality characterization was shut down in 2017. The San Antonio Gardner Road SO_2 monitor (and entire site), was decommissioned in March 2023. This monitor was eligible for decommission based on a design value less than 50% of the 2010 one-hour SO_2 NAAQS. The source near the San Antonio Gardner Road SO_2 site that required DRR SO_2 air quality characterization was shut down in late

2018. The remaining TCEQ SO₂ monitors fulfilling DRR monitoring requirements are listed in AMNP Table 3.

Table 3: Data Requirements Rule Required SO₂ Monitoring Sites

Core Based Statistical Area	County Name	Air Monitoring Site Name
Amarillo	Potter	Amarillo Xcel El Rancho
Beaumont-Port Arthur	Orange	Orange 1 st Street
Beaumont-Port Arthur	Jefferson	Port Arthur West 7th Street Gate 2
Big Spring*	Howard	Big Spring Midway
Borger*	Hutchinson	Borger FM 1559
College Station-Bryan	Robertson	Franklin Oak Grove
Corsicana*	Navarro	Richland Southeast 1220 Road
Longview	Harrison	Hallsville Red Oak Road
Mount Pleasant*	Titus	Cookville FM 4855

^{*} Micropolitan statistical area

Title 40 CFR Section 51.1205(b) requires the TCEQ to submit an annual report for areas where modeling of actual SO_2 emissions served as the basis for designating such area as attainment. The report must document the annual SO_2 emissions of each applicable source, provide an assessment of the cause of any emissions increase from the previous year, and make a recommendation regarding further modeling needs. The DRR-required assessment and recommendation are provided in AMNP Appendix F. Where allowable SO_2 emissions served as the basis for designating the area as attainment, air agencies are not subject to ongoing data requirements, see 40 CFR Section 51.1205(c).

Previously Recommended Changes

The TCEQ 2023 AMNP recommended no changes to the SO₂ monitoring network.

Regulatory SO₂ Monitoring Network Changes

The TCEQ evaluated the current SO₂ monitoring network and determined the existing SO₂ network meets all federal monitoring requirements; therefore, no changes are recommended.

Lead (Pb)

The TCEQ lead (Pb) network includes total suspended particulate (TSP) monitors sited in compliance with federal source-oriented SLAMS requirements, as discussed further in this section. The TCEQ Pb network is required to operate three TSP Pb monitors and meets this requirement. AMNP Appendix G lists the Pb network monitoring requirements and the total number of TSP Pb monitors. AMNP Appendix B lists the air monitoring sites with TSP Pb monitors.

Monitoring Requirements

The TCEQ Pb network meets 40 CFR Part 58, Appendix D, Section 4.5 monitoring requirements for Pb. The TCEQ fulfills Pb monitoring requirements with TSP Pb

FM - farm to market

SO₂ - sulfur dioxide

monitors. This section requires state agencies to conduct ambient air Pb monitoring near Pb sources that have been shown or are expected to contribute to a maximum ambient air Pb concentration in excess of the standard. Title 40 CFR Part 58, Appendix D, Section 4.5(a) requires a minimum of one source-oriented ambient air Pb monitoring site to measure maximum concentrations near each non-airport facility emitting 0.50 tpy or more of Pb annually, based on either the most recent NEI data or annual EI data submitted to meet state reporting requirements.

The TCEQ evaluated the 2020, 2021, and 2022 Pb point-source EI data. All Texas 2022 point-source emissions remain below the 0.50 tpy threshold that would trigger Pb monitoring requirements. AMNP Table 4 below includes information regarding historical data for sources that previously exceeded 0.50 tpy annual Pb point-source emissions, thus requiring source-oriented monitoring or a waiver in the last five years.

Table 4: 2020-2022 Lead Point-Source Emissions Inventory Data

Facility Name	County	2020 Pb Emissions (tpy)	2021 Pb Emissions (tpy)	2022 Pb Emissions (tpy)	TCEQ Comments
Lower Colorado River Authority	Fayette	0.1128	0.1320	0.1423	Pb waiver renewal approved April 29, 2021, see Pb Waivers section below for detail
Conecsus, LLC	Kaufman	0.1779	0.2130	0.0833	Pb is monitored at the Terrell Temtex site, pending relocation to Terrell Jamison Court*

*Site temporarily decommissioned on May 31, 2022, due to the property owner revocation of the lease agreement and is pending relocation. (see AMNP Table 12 for additional information)

LLC - limited liability company

Pb – lead

TCEQ - Texas Commission on Environmental Quality

tpy - tons per year

Pb Waivers

Under 40 CFR Part 58, Appendix D, Section 4.5(a)(ii), the EPA Regional Administrator may waive the requirement in 40 CFR Part 58, Appendix D, 4.5(a) for monitoring near specific Pb sources with sufficient demonstration that the Pb source will not contribute to a maximum concentration in ambient air greater than 50% of the NAAQS based on historical monitoring data, modeling, or other approved means. All approved waivers must be renewed every five years as part of the network assessment required under 40 CFR Part 58.10(d).

The TCEQ submitted a Pb modeling analysis for the Lower Colorado River Authority Fayette Power Plant in the 2020 TCEQ *Texas Five-Year Ambient Monitoring Network Assessment*. The Pb modeling analysis demonstration, necessary to request a waiver from the source-oriented Pb monitoring requirement, indicated the predicted maximum ground level concentration for a rolling three-month average continues to remain below 50% of the NAAQS. The EPA Region 6 approved the TCEQ Pb waiver renewal request in a letter dated April 29, 2021. Based on the Lower Colorado River Authority Fayette Power Plant 2020, 2021 and 2022 Pb point-source emission data shown above in AMNP Table 4, the Pb waiver is no longer required.

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.4.4 requires a primary quality assurance organization to select 15% of the Pb monitoring sites within the network for collocated quality control (QC) monitoring. The first of these monitors should be the one measuring the highest Pb concentrations in the network. Based on the current network of primary Pb monitors, the TCEQ is required to maintain one collocated QC Pb monitor. The TCEQ previously exceeded this requirement with the operation of collocated QC Pb monitors at Frisco Eubanks and Terrell Temtex. Before the revocation of the lease agreement at Terrell Temtex, this monitor measured the highest 2021 network Pb concentrations. This site is currently being relocated and will be reestablished as the Terrell Jamison Court site. The new location will include the collocated QC Pb monitor. Collocated QC Pb monitoring will continue at the Frisco Eubanks site.

Previously Recommended Changes

The TCEQ 2023 AMNP recommended no changes to the Pb monitoring network.

Regulatory Pb Monitoring Network Changes

The TCEQ evaluated the current Pb monitoring network and determined the existing Pb network meets all federal monitoring requirements, with the pending deployment of the Terrell Jamison Court site; therefore, no changes are recommended. AMNP Table 12 provides information on the pending relocation of the Terrell Temtex Pb monitoring site to the Terrell Jamison Court site, expected to be deployed by August 31, 2024.

Ozone (O_3)

The TCEQ O_3 network is designed to meet SLAMS, PAMS, and NCore monitoring requirements, as discussed further in this section. The TCEQ O_3 monitoring network is required to operate a total of 27 O_3 monitors in 14 MSAs and exceeds this requirement with 72 O_3 monitors in 15 MSAs and 2 micropolitan statistical areas. AMNP Appendix H lists the O_3 requirements and number of monitors in each MSA. AMNP Appendix B lists the air monitoring sites where O_3 is measured.

Monitoring Requirements

SLAMS Requirements

Title 40 CFR Part 58, Appendix D, Section 4.1 requires O_3 monitoring in each MSA with a population of 350,000 or more persons. Monitoring is also required in MSAs with lower populations if the design value for that MSA is equal to or greater than 85% of the NAAQS. Specific SLAMS O_3 minimum monitoring requirements are included below in AMNP Table 5, an excerpt of 40 CFR Part 58, Appendix D, Table D-2. The TCEQ evaluated 2022 U.S. Census Bureau population estimates and 2020-2022 eight-hour O_3 design values for each Texas MSA. AMNP Appendix H details this assessment by MSA and lists the total number of required and existing SLAMS and NCore/PAMS O_3 monitors per MSA. The TCEQ must operate a minimum of 24 SLAMS and three NCore/PAMS O_3 monitors in Texas MSAs to meet network requirements and exceeds this requirement by operating 72 total O_3 monitors.

Table 5: Ozone SLAMS Minimum Monitoring Requirements

MSA Population	Monitors required for MSAs with most recent 3-year design value concentrations ≥85% of any O₃ NAAQS¹	Monitors required for MSAs with most recent 3-year design value concentrations <85% of any O ₃ NAAQS ^{2, 3}
>10,000,000	4	2
4,000,000 to 10,000,000	3	1
350,000 to <4,000,000	2	1
50,000 to <350,000	1	0

The ozone (O₃) National Ambient Air Quality Standards (NAAQS) levels are defined in 40 CFR Part 50.

MSA - metropolitan statistical area

SLAMS - State or Local Air Monitoring Stations

Previously Recommended Changes

The TCEQ 2023 AMNP recommended no changes to the O₃ monitoring network.

Regulatory O₃ Monitoring Network Changes

The TCEQ evaluated the current O_3 monitoring network and determined the existing O_3 network meets all federal monitoring requirements; therefore, no changes are recommended.

Carbon Monoxide (CO)

The TCEQ CO network includes ambient CO and high sensitivity CO monitoring to meet federal monitoring requirements, as discussed here and in the NCore section above. The TCEQ CO network is designed to meet NCore and near-road monitoring requirements. The agency is required to operate seven total CO monitors and exceeds the requirements with 12 monitors: eight CO monitors measuring full-scale concentrations and four high sensitivity CO monitors measuring trace-level concentrations. AMNP Appendix I lists the required and current CO monitors in each CBSA. AMNP Appendix B lists the air monitoring sites where CO is measured.

Monitoring Requirements

Near-Road Requirements

Title 40 CFR Part 58, Appendix D, Section 4.2 requires collocating one CO monitor with one required near-road NO₂ monitor in CBSAs with populations of 1,000,000 or more persons. The TCEQ meets this requirement with CO monitors at the near-road sites below.

- DFW CBSA: Fort Worth California Parkway North
- Houston CBSA: Houston North Loop
- San Antonio CBSA: San Antonio Interstate 35
- Austin CBSA: Austin North Interstate 35

²These minimum monitoring requirements apply in the absence of a design value.

³MSA must contain an urbanized area of 50,000 or more population and are designated by the United States Office of Management and Budget.

^{≥ -} greater than or equal to

< - less than

> - greater than

^{% -} percent

Previously Recommended Changes

The TCEQ 2019 AMNP recommended replacing the San Antonio Interstate 35 CO monitor with a high sensitivity CO monitor. Due to equipment resource constraints, the TCEQ removes this recommendation and will evaluate resources in the future to determine if replacement is possible.

Regulatory CO Monitoring Network Changes

The TCEQ evaluated the current CO monitoring network and determined the existing CO network meets all federal monitoring requirements; therefore, no changes are recommended.

Particulate Matter of 10 Micrometers or Less (PM₁₀)

The TCEQ particulate matter of 10 micrometers or less in diameter (PM_{10}) network is designed to meet SLAMS monitoring requirements based on MSA populations and 24-hour concentration data, as discussed further in this section. The TCEQ is required to operate between 17 and 44 PM_{10} monitors, depending on the PM_{10} concentrations observed in each MSA, and meets this requirement with 24 monitors. AMNP Appendix J lists the required and current PM_{10} monitors in each MSA. AMNP Appendix B lists the air monitoring sites where PM_{10} is measured.

Monitoring Requirements

The TCEQ PM_{10} network is designed to meet the SLAMS requirements under 40 CFR Part 58, Appendix D, Section 4.6, which provides the minimum number of PM_{10} monitors required in MSAs based on population and available measured concentrations. Specific PM_{10} monitoring requirements are listed in AMNP Table 6 below, an excerpt of 40 CFR Part 58, Appendix D, Table D-4. Modifications from these PM_{10} monitoring requirements must be approved by the EPA Regional Administrator. Compliance with the PM_{10} standard is based on the number of measured exceedances of the 24-hour 150 micrograms per cubic meter ($\mu g/m^3$) standard averaged over three years. The TCEQ evaluated 2022 U.S. Census Bureau population estimates and 2020-2022 PM_{10} maximum 24-hour concentration data for each Texas MSA. AMNP Appendix J, Table 1, details this evaluation by MSA and lists the range of required and existing SLAMS PM_{10} monitors per MSA.

Table 6: Particulate Matter of 10 Micrometers or Less SLAMS Minimum Monitoring Requirements

Nequilements			
MSA Population	PM ₁₀ monitors required for MSAs with high concentration ¹	PM ₁₀ monitors required for MSAs with medium concentration ²	PM ₁₀ monitors required for MSAs with low concentration ³
>1,000,000	6-10	4-8	2-4
500,000 to 1,000,000	4-8	2-4	1-2
250,000 to 500,000	3-4	1-2	0-1
100,000 to 250,000	1-2	0-1	0

> - greater than

MSA - metropolitan statistical area

 $^{^{1}}$ High Concentration areas are those for which ambient PM $_{10}$ data show ambient concentrations exceeding the PM $_{10}$ National Ambient Air Quality Standards (NAAQS) by 20 percent or more.

 $^{^2}$ Medium Concentration areas are those for which ambient PM_{10} data show ambient concentrations exceeding 80 percent of the PM_{10} NAAQS.

 $^{^{3}}$ Low Concentration areas are those for which ambient PM_{10} data show ambient concentrations less than 80 percent of the PM_{10} NAAQS.

 PM_{10} - particulate matter of 10 micrometers or less in diameter

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.3.4 requires a primary quality assurance organization to select 15% of the PM₁₀ manual filter-based monitors within the network for collocated QC sampling. Collocated QC sampling for PM₁₀ is only required for manual monitors. At least 50% of the selected manual filter-based monitors should have an annual mean particulate matter concentration among the highest in the network. AMNP Appendix J, Table 2 lists the PM₁₀ manual filter-based monitors' maximum 24-hour concentration measurements during the three-year period from 2020-2022 and includes the 2020, 2021, and 2022 annual mean concentrations. The TCEQ evaluates the PM₁₀ manual filter-based concentration data annually to ensure the PM₁₀ collocated QC monitors continue to meet 40 CFR Part 58, Appendix A, Section 3.3.4.2. The Clinton and Socorro Hueco monitors measured 2020 to 2022 PM₁₀ annual mean concentrations among the highest in the TCEQ PM₁₀ manual filter-based network. Based on the current network of 16 PM₁₀ manual monitors, the TCEQ is currently required to operate two manual PM₁₀ collocated QC monitors and exceeds this requirement with the four monitors listed below. As noted below, the number of required manual PM₁₀ collocated QC monitors will change to one due to continuous monitor upgrades.

- Houston CBSA: Clinton PM₁₀ FRM manual filter-based with collocated QC PM₁₀ FRM manual filter-based
- DFW CBSA: Convention Center PM₁₀ FRM manual filter-based with collocated QC PM₁₀ FRM manual filter-based
- El Paso CBSA: Ojo De Agua PM₁₀ FRM manual filter-based with collocated QC PM₁₀ FRM manual filter-based
- El Paso CBSA: Socorro Hueco PM₁₀ FRM manual filter-based with collocated QC PM₁₀ FRM manual filter-based

Previously Recommended Changes

In the 2022 AMNP, the TCEQ recommended replacing the PM_{10} continuous non-NAAQS comparable monitors necessary to report $PM_{10\cdot2.5}$ data at NCore sites (Dallas Hinton, El Paso Chamizal, and Houston Deer Park #2, detailed in AMNP Table 1) with PM_{10} FEM continuous monitors. These monitors were replaced in 2023 and the deployment dates are listed in below in AMNP Table 7. In the 2023 AMNP, the TCEQ recommended replacing the Convention Center PM_{10} FRM manual filter-based monitor with a continuous PM_{10} FEM monitor, and this replacement is expected by December 31, 2024. The TCEQ also recommended to discontinue or relocate the PM_{10} FRM manual collocated QC monitors at Convention Center, Ojo De Agua, and Socorro Hueco when the primary PM_{10} FRM manual monitors were replaced with a continuous PM_{10} FEM monitor. The Convention Center, Ojo De Agua, and Socorro Hueco continuous PM_{10} FEM monitor replacements are pending and expected to be completed by December 31, 2024. PM_{10} FRM manual collocated QC monitors will continue to operate until the primary PM_{10} FRM manual monitors are replaced with continuous PM_{10} FEM monitors.

The TCEQ continues to upgrade the PM_{10} network by replacing PM_{10} FRM manual filter-based monitors with PM_{10} FEM continuous monitors. The upgrade and deployment statuses are listed below in AMNP Table 7.

Table 7: Particulate Matter of 10 Micrometers or Less Monitor Upgrade Status

Metropolitan Statistical Area	Site Name	Existing Monitor	New Monitor	Status
Austin-Round Rock-San Marcos	Austin Webberville Road	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Completed November 9, 2023
Dallas-Fort Worth-Arlington	Convention Center	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2024
Dallas-Fort Worth-Arlington	Dallas Bexar	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2024
Dallas-Fort Worth-Arlington	Dallas Hinton	PM ₁₀ continuous (non-NAAQS comparable)	PM ₁₀ FEM continuous	Completed June 27, 2023
El Paso	El Paso Chamizal	PM ₁₀ continuous (non-NAAQS comparable)	PM ₁₀ FEM continuous	Completed July 12, 2023
El Paso	Ivanhoe	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2024
El Paso	Ojo De Agua	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2024
El Paso	Socorro Hueco	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2024
El Paso	El Paso Mimosa	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2025
El Paso	Van Buren	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2025
Houston- Pasadena-The Woodlands-	Clinton	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2024
Houston- Pasadena-The Woodlands	Texas City Fire Station	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2024
Houston- Pasadena-The Woodlands	New Site: Houston Finnigan Park, pending site deployment	None	PM ₁₀ FEM continuous	Expected by December 31, 2024
McAllen- Edinburg-Mission	Mission	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Completed October 11, 2023
San Antonio-New Braunfels	San Antonio Bulverde Parkway	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Completed November 15, 2023

- number

FEM - federal equivalent method FRM - federal reference method designated for manual filter-based instruments NAAQS - National Ambient Air Quality Standards PM₁₀ - particulate matter of 10 micrometers or less in diameter

Regulatory PM₁₀ Monitoring Network Changes

The TCEQ recommends replacing and upgrading the Clinton, El Paso Mimosa, and the Van Buren PM_{10} FRM manual filter-based monitors with a continuous PM_{10} FEM monitor. All PM_{10} monitor upgrades and statuses are listed above in AMNP Table 7.

There is no federal requirement for continuous PM_{10} FEM method QC collocation and the TCEQ recommends relocating or discontinuing the PM_{10} FRM manual filter-based collocated QC monitors when the primary monitor is replaced with a continuous PM_{10} FEM monitor. The TCEQ will maintain 15% collocation of PM_{10} manual monitors to meet the collocation requirements described above. The TCEQ recommended to add a PM_{10} FRM manual filter-based collocated QC monitor to El Paso Mimosa in the 2023 AMNP. This recommendation will not be implemented due to the new plan to upgrade the El Paso Mimosa primary PM_{10} FRM manual filter-based monitor to PM_{10} FEM continuous. AMNP Table 7 above lists the pending PM_{10} network changes. With the completion of these changes of PM_{10} FRM manual filter-based monitor upgrades to continuous, the TCEQ will have six remaining PM_{10} FRM manual filter-based monitors requiring one manual PM_{10} collocated QC monitor. The PM_{10} FRM method QC collocation recommended changes are listed below.

 Clinton – relocate PM₁₀ manual collocated QC monitor to Houston Monroe by December 31, 2024, (primary PM₁₀ FEM continuous monitor will remain at Clinton).

Particulate Matter of 2.5 Micrometers or Less (PM_{2.5})

The TCEQ $PM_{2.5}$ monitoring network includes a combination of non-continuous FRM, continuous FEM, and non-NAAQS comparable monitors designed to meet SLAMS area, regional background, regional transport, NCore, and near-road network requirements, as discussed further in this section. $PM_{2.5}$ monitor types are detailed in Appendix B and Appendix K, Table 2. The TCEQ is required to operate 37 FRM, FEM, $PM_{10-2.5}$, or speciated $PM_{2.5}$ monitors and exceeds the requirements with 71 monitors. An analysis of $PM_{2.5}$ monitoring requirements in each Texas MSA using the $2024 \ PM_{2.5} \ NAAOS$, 2022 U.S. Census Bureau population estimates, and 2020-2022 $PM_{2.5}$ design values is provided in AMNP Appendix K. AMNP Appendix K, Table 2 details 2020-2022 design values and the total number of existing $PM_{2.5}$ monitors per site per MSA. AMNP Appendix B lists the air monitoring sites where $PM_{2.5}$ is measured.

Monitoring Requirements

General and Continuous Requirements

Title 40 CFR Part 58, Appendix D, Section 4.7 requires SLAMS $PM_{2.5}$ monitoring in MSAs with populations of 500,000 or more persons and in MSAs with lower populations if measured $PM_{2.5}$ design values for an MSA equal or exceed 85% of the NAAQS. Specific $PM_{2.5}$ monitoring requirements are listed in AMNP Table 8 below, with an excerpt of 40 CFR Part 58, Appendix D, Table D-5. Under 40 CFR Part 58, Appendix D, Section 4.7.2, the TCEQ must operate continuous $PM_{2.5}$ monitors equal to at least one-half the required number of SLAMS-required sites in each MSA. The TCEQ meets and/or exceeds this requirement by operating continuous $PM_{2.5}$ monitors in all Texas MSAs, shown in AMNP Appendix K, Table 2. Additionally, 40 CFR Part 58, Appendix D, Section 4.7.3 requires each state to install and operate at least one $PM_{2.5}$ site to monitor for regional background and at least one $PM_{2.5}$ site to monitor regional transport. AMNP

Appendix B lists monitors meeting the regional background and transport requirements. Per 40 CFR Section 58.30, monitors that are not suitable for comparison against the annual or the 24-hour $PM_{2.5}$ NAAQS are noted individually as non-NAAQS comparable in the AMNP Appendix B site list and in AMNP Appendix K, Table 2.

Table 8: Particulate Matter of 2.5 Micrometers or Less SLAMS Minimum Monitoring Requirements

MSA population	PM _{2.5} monitors required for MSAs with most recent 3-year design value ≥85% of any PM _{2.5} NAAQS	PM _{2.5} monitors required for MSAs with most recent 3-year design value <85% of any PM _{2.5} NAAQS
>1,000,000	3	2
500,000 to 1,000,000	2	1
50,000 to <500,000	1	0

- < less than
- > greater than
- ≥ greater than or equal to
- % percent

MSA - metropolitan statistical area

NAAQS - National Ambient Air Quality Standards

PM_{2.5} - particulate matter of 2.5 micrometers or less in diameter

SLAMS - State or Local Air Monitoring Stations

Near-Road PM_{2.5} Requirements

Title 40 CFR Part 58, Appendix D, Section 4.7.1(b)(2) requires collocating one FRM or FEM $PM_{2.5}$ monitor with one required near-road NO_2 monitor in CBSAs with populations of 1,000,000 or more persons. The TCEQ meets this requirement with $PM_{2.5}$ monitors at the near-road sites listed below and listed in AMNP Appendix K, Table 2.

- DFW CBSA: Fort Worth California Parkway North
- Houston CBSA: Houston North Loop
- San Antonio CBSA: San Antonio Interstate 35
- Austin CBSA: Austin North Interstate 35

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.2.3 requires a primary quality assurance organization to select 15% of the $PM_{2.5}$ primary monitors of each method designation (FRM or FEM) for collocated QC sampling. Based on the current network of five $PM_{2.5}$ FRM monitors, the TCEQ is required to operate one collocated QC $PM_{2.5}$ FRM (FRM/FRM collocation) monitor and exceeds this requirement with the two monitors listed below.

- Houston CBSA: Clinton PM_{2.5} FRM with collocated QC PM_{2.5} FRM, method 145
- DFW CBSA: Dallas Hinton PM_{2.5} FRM with collocated OC PM_{2.5} FRM, method 145

For each primary monitor designated as an FEM, 50% of the monitors designated for collocation shall be collocated with an FRM (FRM/FEM) and 50% shall be collocated with a monitor having the same method designation as the FEM primary monitor (FEM/FEM). Fifty percent of the collocated QC monitors must be deployed at sites with annual average or daily concentrations estimated to be within plus or minus 20% of either the annual or 24-hour standard.

Based on the current $PM_{2.5}$ network of 42 FEM monitors designated with method code 209, the TCEQ is required to operate six collocated QC monitors pursuant to 40 CFR Part 58, Appendix A, Section 3.2.3.2(b). AMNP Appendix B and Appendix K, Table 2

identify site placement of BAM-1022 method code 209 monitors. The TCEQ meets the PM_{2.5} method code 209 requirement with three same-method collocated (FEM/FEM collocation) monitors and four different-method collocated (FEM/FRM collocation) monitors at the sites listed below in AMNP Table 9.

Table 9: Method Code 209 Particulate Matter of 2.5 Micrometers or Less FEM Quality

Control Collocation Monitor Types and Sites

PM _{2.5} FEM Primary Monitor Method Code	Collocated QC Monitor Type and Method Code	Site Name
209	PM _{2.5} FRM manual filter-based, method 145	Midlothian North Ward Road (pending site relocation)
209	PM _{2.5} FEM, method 209	Corpus Christi Huisache
209	PM _{2.5} FRM manual filter-based, method 145	San Antonio Northwest
209	PM _{2.5} FEM, method 209	Fort Worth California Parkway North
209	PM _{2.5} FRM manual filter-based, method 145	Houston Aldine
209	PM _{2.5} FEM, method 209	Port Arthur Memorial School
209	PM _{2.5} FRM manual filter-based, method 145	Ascarate Park Southeast (pending deployment)

FEM - federal equivalent method

FRM - federal reference method

PM_{2.5} - particulate matter of 2.5 micrometers in diameter or less

QC - quality control

In 2023, the TCEQ deployed a new $PM_{2.5}$ FEM monitor designated by method code 638 to replace aging equipment. Based on the current $PM_{2.5}$ network of seven $PM_{2.5}$ FEM monitors designated with method code 638, the TCEQ is required to operate one collocated QC monitor. AMNP Appendix B and Appendix K, Table 2 identify site placement of T640x method code 638 monitors. The TCEQ exceeds the $PM_{2.5}$ method code 638 collocated QC requirement with two different-method collocated (FEM/FRM collocation) monitors and one same-method collocated (FEM/FEM collocation) monitor pending deployment at the sites listed below in AMNP Table 10.

Additional information regarding the TCEQ PM_{2.5} collocation QC designations are listed in AMNP Appendix B.

Table 10: Method Code 638 Particulate Matter of 2.5 Micrometers or Less FEM

Quality Control Collocation Monitor Types and Sites

PM _{2.5} FEM Primary Monitor Method Code	Collocated QC Monitor Type and Method Code	Site Name
638	PM _{2.5} FRM manual filter-based, method 145	Dallas Hinton
638	PM _{2.5} FEM, method 638	Socorro Hueco (previously approved at the El Paso UTEP site)
638	PM _{2.5} FRM manual filter-based, method 145	El Paso Chamizal

- number

FEM - federal equivalent method

FRM - federal reference method

PM_{2.5} - particulate matter of 2.5 micrometers in diameter or less

QC - quality control

Previously Recommended Changes

The TCEQ 2022 AMNP recommended PM_{2.5} monitoring at new sites in the Houston Fifth Ward, Houston Pleasantville neighborhood, and in the Gregory-Portland area in San Patricio County. In a letter dated March 3, 2023, the EPA acknowledged the new site additions and noted that the air monitoring sites were not federally required and were thus at the discretion of the TCEQ. The TCEQ utilized input from community groups to evaluate areas for the establishment of new ambient air monitoring sites at Finnigan Park in the Houston Fifth Ward and at Pleasantville Elementary School in the Houston Pleasantville area. Construction permits for the Houston Finnigan Park and Houston Pleasantville Elementary air monitoring sites are pending issuance by the City of Houston. The TCEQ expects to activate the special purpose monitors by December 31, 2024, shortly after the site construction is completed. The TCEQ is evaluating site options for the establishment of a new ambient air monitoring site in the Gregory-Portland area. The TCEQ continues to work with property owners to establish site usage agreements and to deploy the special purpose monitors by August 31, 2025.

The TCEQ recommended changing the $PM_{2.5}$ FEM method code 209 collocated QC monitor from Dona Park to Midlothian North Ward Road to meet federal requirements since the Dona Park primary $PM_{2.5}$ FEM monitor was upgraded to method code 638. The TCEQ also recommended changing the $PM_{2.5}$ FEM method code 209 collocated QC monitor from Austin Webberville to Ascarate Park SE, exceeding federal requirements, since the Austin Webberville primary $PM_{2.5}$ FEM monitor was upgraded to method code 638. The EPA approval of the $PM_{2.5}$ FEM method code 209 QC collocation changes are pending.

The TCEQ continues to complete previously recommended changes including the replacement of $PM_{2.5}$ FRM non-continuous monitors and non-NAAQS comparable $PM_{2.5}$ continuous monitors ($PM_{2.5}$ TEOMs) with $PM_{2.5}$ FEM continuous monitors. The status of previously approved $PM_{2.5}$ recommendations are listed in AMNP Table 11.

Table 11: Previously Approved Particulate Matter of 2.5 Micrometers or Less Summary of Changes

Site Name	Monitor(s) Replaced	New Monitor	Action	Status	
Ascarate Park Southeast	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Expected to be completed by August 31, 2024	
Clinton	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Expected to be completed by August 31, 2024	
Dallas Bexar Street	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Expected to be completed by August 31, 2024	
El Paso UTEP	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Pending site relocation	
Houston Finnigan Park (new site in Fifth Ward)	None - new monitor	PM _{2.5} FEM continuous	Deploy	Expected to be completed by December 31, 2024	

Site Name	Monitor(s) Replaced	New Monitor	Action	Status	
Houston Pleasantville (new site in Pleasantville neighborhood)	None - new monitor	PM _{2.5} FEM continuous	Deploy	Expected to be completed by December 31, 2024	
Midlothian North Ward Road	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Pending site relocation, expected to be completed by August 31, 2024	
New site – Gregory-Portland area	None - new monitor	PM _{2.5} FEM continuous Deploy		Expected to be completed by December 31, 2024	
Old Highway 90	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Deploy	Expected to be completed by August 31, 2024	
San Antonio Bulverde Parkway	PM _{2.5} TEOM (state-initiative)	PM _{2.5} FEM continuous	Add as federal special purpose monitoring for spatial coverage	Completed November 15, 2023	
Skyline Park	None - new monitor	PM _{2.5} FEM continuous	Deploy	Expected to be completed by August 31, 2024	

FEM - federal equivalent method

FRM - federal reference method

PM_{2.5} – particulate matter of 2.5 micrometers or less in diameter

TEOM - tapered element oscillating microbalance

UTEP - University of Texas at El Paso

Regulatory PM_{2.5} Monitoring Network Changes

The TCEQ plans to upgrade the $PM_{2.5}$ non-NAAQS comparable monitor at Clinton to a $PM_{2.5}$ FEM continuous monitor (listed in AMNP Table 11 above). Once the Clinton $PM_{2.5}$ FEM monitor is operational, the TCEQ recommends decreasing the Clinton $PM_{2.5}$ FRM filter-based manual monitor sampling frequency from daily to once every six days.

As noted above, the TCEQ recommends changing two sites where the $PM_{2.5}$ FEM method code 209 collocated QC monitors are fulfilled. Midlothian North Ward Road and Ascarate Park Southeast will be upgraded with $PM_{2.5}$ FEM method code 209 monitors by August 31, 2024. The existing Midlothian North Ward Road $PM_{2.5}$ FRM monitor, sampling every 6^{th} day for special purpose speciation, will support QC collocation for $PM_{2.5}$ method code 209 FEM/FRM. The TCEQ recommends deploying a $PM_{2.5}$ FRM method code 145 collocated QC monitor, sampling every 12^{th} day, to Ascarate Park Southeast by August 31, 2024. The combination of the primary $PM_{2.5}$ FEM method code 209 monitor and the $PM_{2.5}$ FRM method code 145 monitor at both of these sites will support QC collocation for $PM_{2.5}$ method code 209 FEM/FRM, also noted in Table 9.

The TCEQ recommends changing the site location of the previously approved $PM_{2.5}$ FEM method code 638 collocated QC monitor from the El Paso UTEP site to the Socorro Hueco site. This site change will maximize current resources while the El Paso UTEP site relocation is pending redeployment.

Volatile Organic Compounds (VOC)

The TCEQ VOC network is designed to meet PAMS requirements, as discussed further in this section. The TCEQ is required to operate two VOC monitors and exceeds this requirement with 12 monitors. For purposes of meeting federal PAMS requirements, the TCEQ VOC network includes eight automated gas chromatograph (autoGC) continuous monitors and four non-continuous canister monitors. AMNP Appendix L, Table 1 lists the number of required and current VOC monitors in each Texas CBSA. AMNP Appendix B lists the air monitoring sites where VOCs are measured.

Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 5 requires state agencies to collect speciated VOC hourly-averaged measurements at NCore sites located in CBSAs with a population of 1,000,000 or more persons as part of the PAMS network requirements. The TCEQ exceeds PAMS required VOC monitoring requirements with autoGCs at the two PAMS sites listed in AMNP Table 2 and at six other sites as listed in AMNP Appendix B.

Previously Recommended Changes

The TCEQ 2022 and 2023 AMNPs recommended adding non-regulatory, state-initiative VOC monitoring at the new sites in the Houston Fifth Ward, Houston Pleasantville neighborhood, and in the Gregory-Portland area in San Patricio County. The TCEQ utilized input from community groups to evaluate areas for the establishment of a new ambient air monitoring site at Finnigan Park in the Houston Fifth Ward area and at Pleasantville Elementary School in the Houston Pleasantville area. Construction permits for the Houston Finnigan Park and Houston Pleasantville Elementary air monitoring sites are pending issuance by the City of Houston. The TCEQ expects to deploy the non-regulatory, state-initiative VOC monitors by December 31, 2024, shortly after the site construction is completed.

The TCEQ is evaluating site options for the establishment of a new ambient air monitoring site in the Gregory-Portland area. The TCEQ continues to work with the property owners to establish site usage agreements and to deploy the state-initiative, special purpose VOC monitor by August 31, 2025.

Regulatory and Non-Regulatory VOC Monitoring Network Changes

The TCEQ evaluated the current regulatory VOC monitoring network and determined the existing VOC network meets all federal monitoring requirements; therefore, no additional changes are recommended.

Carbonyls

The TCEQ carbonyl monitoring network is designed to meet PAMS requirements, as discussed further in this section. The TCEQ is required to operate two carbonyl monitors and exceeds this requirement with four monitors. AMNP Appendix L, Table 2 lists the number of required and current carbonyl monitors in each Texas CBSA. AMNP Appendix B lists the air monitoring sites where carbonyls are measured.

Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 5 requires state agencies to collect PAMS carbonyl measurements with three eight-hour averaged samples taken every third day at each NCore site located in CBSAs with a population of 1,000,000 or more persons. The TCEQ exceeds carbonyl monitoring requirements with carbonyl monitors at the two required PAMS sites listed in AMNP Table 2 and at two other sites listed in AMNP Appendix B.

Previously Recommended Changes

The TCEQ 2023 AMNP recommended no changes to the carbonyl monitoring network.

Regulatory Carbonyl Monitoring Network Changes

The TCEQ evaluated the current carbonyl monitoring network and determined the existing carbonyl network meets all federal monitoring requirements; therefore, no changes are recommended.

Meteorology

The TCEQ meteorology monitoring network includes surface meteorology parameters (solar radiation, wind speed, wind direction, and temperature), upper air measurements (mixing height), and other meteorological parameters, as discussed further in this section. Surface meteorology is measured at most air monitoring stations and additional meteorology parameters are required at PAMS monitoring stations. All meteorology monitors in the TCEQ network are included in AMNP Appendix B.

Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 5 requires state agencies to collect PAMS surface and upper air meteorology measurements at all NCore sites in CBSAs with a population of 1,000,000 or more persons. Meteorological PAMS measurements at the required PAMS sites (or alternatively approved waiver locations) include measurements of wind speed, wind direction, outdoor temperature, atmospheric pressure, relative humidity, precipitation, hourly averaged mixing-height, solar radiation, and ultraviolet radiation. The TCEQ meets these meteorological monitoring requirements with measurements collected at the Dallas Hinton, Houston Deer Park #2, and La Porte Airport sites.

Previously Recommended Changes

The TCEQ 2019 AMNP recommended several meteorology monitoring changes that were approved by the EPA in a letter dated November 4, 2019. The TCEQ recommended deploying wind speed, wind direction, and outdoor temperature monitors to a new air monitoring site, Dallas Bexar Street, in the Dallas County southern sector. The new Dallas Bexar Street wind speed, wind direction, and outdoor temperature monitors are expected to be operational by December 31, 2024. The TCEQ recommended deploying a ceilometer to the San Antonio Northwest site, but due to equipment resource constraints, the TCEQ removes this recommendation and will evaluate resources in the future.

The TCEQ 2023 AMNP recommended deploying wind speed, wind direction, and outdoor temperature monitors to a second near-road monitoring station in the San

Antonio CBSA at San Antonio Sherwood Drive. The TCEQ experienced unexpected challenges obtaining power to the recommended site and evaluated alternative near-road site options on the same road segment, ranked with an AADT of 10. The TCEQ identified a suitable location for the San Antonio near-road station on Interstate Highway (IH) 10 West Frontage Road and Scales Street. The EPA approved the revised location for the near-road air monitoring station, San Antonio Interstate 10 West, in a letter dated November 27, 2023. The TCEQ expects to deploy the site and wind speed, wind direction, and outdoor temperature monitors shortly after site construction is completed, sometime before December 31, 2024.

The TCEQ recommended deploying wind speed, wind direction, and outdoor temperature monitors to the new air monitoring sites in the Houston Fifth Ward, the Houston Pleasantville neighborhood, and the Gregory-Portland area. The Houston Fifth Ward and the Houston Pleasantville neighborhood monitors are expected to be operational by December 31, 2024. The Gregory-Portland area monitor is expected to be operational by August 31, 2025.

Regulatory Meteorology Monitoring Network Changes

The TCEQ is upgrading older meteorology technology to new all-in-one sonic weather sensors as equipment becomes available. The new sensor provides measurements of wind speed, wind direction, and ambient air temperature with options to report relative humidity and barometric pressure.

The TCEQ recommends redesignating the wind speed, wind direction, and outdoor temperature monitors at the Old Highway 90 site as federal special purpose monitors to support the federal $PM_{2.5}$ special purpose monitor.

Air Monitoring Site Relocations

The TCEQ establishes property site usage agreements as a contractual means to locate and operate a continuous air monitoring station on public or privately owned land. Property owners retain the right to revoke the usage agreement at any time. When possible, the TCEQ works with the existing property owner to identify another suitable air monitoring site location. In some circumstances, a new location must be identified, and a new site usage agreement implemented. The TCEQ is relocating the air monitoring sites listed in AMNP Table 12. The existing site and monitoring equipment remain operational unless noted. Existing site and air monitoring details are provided in Appendix B.

Table 12: Air Monitoring Site Relocations

Site Name	New Site Name	New Site Address	Reason for Relocation	Status	
Baytown Garth	No change	4898 ½ Ashbel Cove Drive, Baytown, Texas	Relocation 0.33 mile northwest due to property owner revocation of usage agreement (sale of property)	Completed September 13, 2023	

Site Name	New Site Name	New Site Address	Reason for Relocation	Status
Earhart	Pending site selection	Pending site selection	Relocation due to property owner revocation of usage agreement	Site remains active, expected by December 2025
El Paso UTEP	Pending site selection	Pending site selection	Relocation pending due to property owner revocation of usage agreement (building expansion over site location)	Site temporarily deactivated November 2021, expected by December 2024
Houston Deer Park #2	Houston Deer Park	4413 Glenwood Avenue, Deer Park, Texas	Relocation less than 0.1 mile west of existing site due to property owner revocation of usage agreement (park expansion), approved by the EPA in a letter dated May 18, 2022	Site remains active, expected by December 2025
Midlothian OFW	Midlothian North Ward Road	891 North Ward Road, Midlothian, Texas	Relocation approximately 0.7 mile southwest on current property due to property owner revocation of site access (new property owners). New location approved by the EPA in a letter dated November 17, 2023, site construction pending.	Site temporarily deactivated April 22, 2022, expected by August 2024
Terrell Temtex	Terrell Jamison Court	8 Jamison Court, Terrell, Texas	Relocation approximately 0.2 mile south due to property owner revocation of usage agreement (building expansion). New location approved by the EPA in a letter dated January 9, 2024, site construction pending.	Site temporarily deactivated May 31, 2022, expected by August 2024
Mission	No change	No change	Relocation 40 feet west due to property owner revocation of site access (parking lot expansion)	Completed October 11, 2023

- number sign

EPA - United States Environmental Protection Agency

OFW - Old Fort Worth

UTEP - University of Texas at El Paso

Conclusion

As discussed in this report, the TCEQ has evaluated all federal requirements for ambient air quality monitoring and reviewed the TCEQ ambient air quality monitoring network. After consideration of the federal regulations, 2022 U.S. Census Bureau population estimate data, EI data, and 2020-2022 design values, the TCEQ has determined that it will meet or exceed all monitoring requirements with the abovementioned recommendations for the next calendar year.

Appendix A

2024 Summary of Proposed Network Changes

Texas Commission on Environmental Quality 2024 Annual Monitoring Network Plan

Appendix A: 2024 Summary of Proposed Network Changes

Metropolitan Statistical Area	Air Monitoring Site Name	Parameter(s)	Proposed Action	Estimated Completion Date		
El Paso	El Paso Mimosa	PM ₁₀ FEM continuous	Replace manual filter- based monitor with continuous FEM monitor	December 31, 2025		
El Paso	Van Buren	PM ₁₀ FEM continuous	Replace manual filter- based monitor with continuous FEM monitor	December 31, 2025		
Houston-Pasadena- The Woodlands	Houston Monroe	PM ₁₀ FEM continuous	Deploy manual filter- based collocated quality control monitor	December 31, 2024		
Houston-Pasadena- The Woodlands	Clinton	PM ₁₀ FRM collocated quality control	Relocate redundant manual filter-based collocated quality control monitor	December 31, 2024		
Houston-Pasadena- The Woodlands	Clinton	PM _{2.5} FRM	Reduce sampling frequency to once every six days	December 31, 2024		
Dallas-Fort Worth- Arlington	Midlothian North Ward Road	PM _{2.5} FRM collocated quality control	Assign existing manual filter-based monitor as collocated quality control	August 31, 2024		
El Paso	Ascarate Park Southeast	PM _{2.5} FRM collocated quality control	Deploy manual filter- based monitor collocated quality control	August 31, 2024		
El Paso	Socorro Hueco	PM _{2.5} FEM collocated quality control	Change site location from the El Paso UTEP site which is temporarily deactivated for relocation	August 31, 2024		
San Antonio-New Braunfels	Old Highway 90	wind speed, wind direction, and outdoor temperature	Add existing monitors data to federal network	December 31, 2024		

FEM – federal equivalent method FRM - federal equivalent method

 $[\]ensuremath{\mathrm{PM}_{10}}$ – particulate matter of 10 micrometers or less in diameter

 $^{{\}rm PM}_{10}$ – particulate matter of 10 micrometers or less in diameter

Appendix B

Ambient Air Monitoring Network Site List

Texas Commission on Environmental Quality 2024 Annual Monitoring Network Plan

Appendix B: Ambient Air Monitoring Network Site List

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Amarillo, TX	Amarillo 24th Avenue	483751025	4205 NE 24th Avenue, Amarillo	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Suburban	35.236734	-101.787377
Amarillo, TX	Amarillo 24th Avenue	483751025	4205 NE 24th Avenue, Amarillo	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood		35.236734	-101.787377
Amarillo, TX	Amarillo 24th Avenue		4205 NE 24th Avenue, Amarillo	Wind	SPM	AIO2 sonic weather sensor		General, Background	Neighborhood			-101.787377
Amarillo, TX	Amarillo A&M		6500 Amarillo Blvd West, Amarillo	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population	Urban Scale	Urban and Center City	35.201597	-101.909263
Amarillo, TX	Amarillo Xcel El Rancho	483751077	Folsom Rd. & El Rancho Rd.,	SO2	SLAMS	Pulsed Fluorescence		Source Oriented	Neighborhood	,		-101.741745
Amarillo, TX	Amarillo Xcel El Rancho	483751077	Folsom Rd. & El Rancho Rd.,	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood		35.316507	-101.741745
Amarillo, TX	Amarillo Xcel El Rancho	483751077	Folsom Rd. & El Rancho Rd.,	Wind	SPM	AIO2 sonic weather sensor		General, Background	Neighborhood			-101.741745
Austin-Round Rock-Georgetown, TX			12200 Lime Creek Rd, Leander	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood		30.483139	-97.872291
Austin-Round Rock-Georgetown, TX	·		12200 Lime Creek Rd, Leander	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days		Neighborhood		30.483139	-97.872291

Appendix B: Ambient Air Monitoring Network Site List

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Austin-Round Rock-Georgetown,			12200 Lime Creek					Population				
TX	Society	484530020	Rd, Leander	Solar Radiation	SPM	Photovoltaic	Continuous	Exposure	Urban Scale	Rural	30.483139	-97.872291
Austin-Round Rock-Georgetown, TX	Austin Audubon Society		12200 Lime Creek Rd, Leander	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Rural	30.483139	-97.872291
Austin-Round Rock-Georgetown, TX	Austin Audubon Society		12200 Lime Creek Rd, Leander	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Rural	30.483139	-97.872291
Austin-Round Rock-Georgetown, TX	Austin North Hills Drive		3824 North Hills Drive, Austin	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure	Urban Scale	Suburban	30.354914	-97.761709
Austin-Round Rock-Georgetown, TX	Austin North Hills Drive		3824 North Hills Drive, Austin	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	30.354914	-97.761709
Austin-Round Rock-Georgetown, TX	Austin North Hills Drive		3824 North Hills Drive, Austin	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	30.354914	-97.761709
Austin-Round Rock-Georgetown, TX	Austin North Hills Drive		3824 North Hills Drive, Austin	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Urban Scale	Suburban	30.354914	-97.761709
Austin-Round Rock-Georgetown, TX	Austin North Hills Drive		3824 North Hills Drive, Austin	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	30.354914	-97.761709
Austin-Round Rock-Georgetown, TX	Austin North Hills Drive		3824 North Hills Drive, Austin	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	30.354914	-97.761709

Appendix B: Ambient Air Monitoring Network Site List

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Austin-Round Rock-Georgetown, TX	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	со	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.353847	-97.691573
Austin-Round Rock-Georgetown, TX	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	NO, NO2, NOx	Near Road, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.353847	-97.691573
Austin-Round Rock-Georgetown, TX	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.353847	-97.691573
Austin-Round Rock-Georgetown, TX	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.353847	-97.691573
Austin-Round Rock-Georgetown, TX	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.353847	-97.691573
Austin-Round Rock-Georgetown, TX	Austin Webberville Rd	484530021	2600B Webberville Rd, Austin	PM10 FEM	SLAMS	Broadband spectrocopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	30.263226	-97.712728
Austin-Round Rock-Georgetown, TX	Austin Webberville Rd		2600B Webberville	PM2.5 FEM	SLAMS	Broadband spectrocopy 638	Continuous	Population	Neighborhood	Urban and	30.263226	-97.712728
Austin-Round	Austin Webberville		2600B Webberville		SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and	30.263226	-97.712728
Austin-Round	Austin Webberville Rd		2600B Webberville	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population	Neighborhood	Urban and	30.263226	-97.712728

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port Arthur, TX	Beaumont Downtown		1086 Vermont Avenue, Beaumont	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Population Exposure	Neighborhood	Suburban	30.036436	-94.071070
Beaumont-Port	Beaumont		1086 Vermont			UV		Max Precursor Emissions Impact, Population				
Arthur, TX	Downtown		Avenue, Beaumont	03	PAMS, SLAMS	Photometric	Continuous	Exposure	Neighborhood	Suburban	30.036436	-94.071070
Beaumont-Port Arthur, TX	Beaumont Downtown		1086 Vermont Avenue, Beaumont	502	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Suburban	30.036436	-94.071070
Beaumont-Port Arthur, TX	Beaumont Downtown		1086 Vermont Avenue, Beaumont		PAMS, SLAMS		Continuous	Max Precursor Emissions Impact	Neighborhood		30.036436	-94.071070
Beaumont-Port	Beaumont		1086 Vermont	Speciated VOC				Max Precursor Emissions Impact, Population				
Arthur, TX	Downtown	482450009	Avenue, Beaumont	(AutoGC)	PAMS, SLAMS	GC	Continuous	Exposure	Neighborhood	Suburban	30.036436	-94.071070
Beaumont-Port Arthur, TX	Beaumont Downtown		1086 Vermont Avenue, Beaumont	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	30.036436	-94.071070
Beaumont-Port	Beaumont		1086 Vermont	TNMOC				Max Precursor Emissions Impact, Population				
Arthur, TX	Downtown	482450009	Avenue, Beaumont	(AutoGC)	PAMS, SLAMS	GC	Continuous	Exposure	Neighborhood	Suburban	30.036436	-94.071070
Beaumont-Port Arthur, TX	Beaumont Downtown		1086 Vermont Avenue, Beaumont	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	30.036436	-94.071070
Beaumont-Port Arthur, TX	Hamshire		12552 Second St, Not In A City	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	General, Background, Regional Transport	Neighborhood, Urban Scale	Suburban	29.863961	-94.317805

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port Arthur, TX	Hamshire	482450022	12552 Second St, Not In A City	03	SLAMS	UV Photometric	Continuous	General, Background, Regional Transport	Urban Scale	Suburban	29.863961	-94.317805
Beaumont-Port Arthur, TX	Hamshire	482450022	12552 Second St, Not In A City	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.863961	-94.317805
Beaumont-Port Arthur, TX	Hamshire	482450022	12552 Second St, Not In A City	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	29.863961	-94.317805
Beaumont-Port Arthur, TX	Hamshire	482450022	12552 Second St, Not In A City	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.863961	-94.317805
Beaumont-Port Arthur, TX	Hamshire	482450022	12552 Second St, Not In A City	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.863961	-94.317805
Beaumont-Port Arthur, TX	Jefferson County Airport	482450018	End of 90th Street @ Jefferson County Airport, Port Arthur	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	General, Background	Neighborhood	Suburban	29.942821	-94.000786
Beaumont-Port	Jefferson County Airport	482450018	End of 90th Street @ Jefferson County Airport, Port Arthur	•	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.942821	-94.000786
Beaumont-Port Arthur, TX	Jefferson County		End of 90th Street @ Jefferson County Airport, Port Arthur	· ·	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood		29.942821	-94.000786
Beaumont-Port Arthur, TX	Nederland 17th Street	482451035	1516 17th Street,	Barometric Pressure	·	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions	Neighborhood		29.979968	-94.004805

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port	Nederland 17th		1516 17th Street,					Population				
Arthur, TX	Street	482451035	Nederland	Dew Point	SPM	Derived at site	Continuous	Exposure	Neighborhood	Suburban	29.979968	-94.004805
Beaumont-Port Arthur, TX	Nederland 17th Street	482451035	1516 17th Street, Nederland	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Suburban	29.979968	-94.004805
Beaumont-Port	Nederland 17th	482451035	1516 17th Street,	03	DAMC CLAMC	UV Dhotomotric	Continuous	Max Precursor Emissions Impact, Population	Neighborhood	Culcumban	20.070069	-94.004805
Beaumont-Port	Nederland 17th		1516 17th Street,	Relative	PAMS, SLAMS	AIO2 sonic weather	Continuous	Max Precursor Emissions	Neighborhood		29.979968	
Arthur, TX Beaumont-Port Arthur, TX	Nederland 17th Street	482451035 482451035	1516 17th Street,	Humidity Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood Neighborhood		29.979968 29.979968	-94.004805
Beaumont-Port Arthur, TX	Nederland 17th Street	482451035	1516 17th Street, Nederland	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Suburban	29.979968	-94.004805
Beaumont-Port Arthur, TX	Nederland 17th Street	482451035	1516 17th Street, Nederland	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.979968	-94.004805
Beaumont-Port Arthur, TX	Nederland 17th Street	482451035	1516 17th Street, Nederland	TNMOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Suburban	29.979968	-94.004805
Beaumont-Port Arthur, TX	Nederland 17th Street	482451035	1516 17th Street, Nederland	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.979968	-94.004805

Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Nederland 17th Street	482451035	1516 17th Street, Nederland	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.979968	-94.004805
Orange 1st Street	483611083	2239 1st Street, Orange	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Urban and Center City	30.153786	-93.725954
Orange 1st Street		2239 1st Street,	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	·	Urban and	30.153786	-93.725954
·		2239 1st Street,	Wind	SPM	AIO2 sonic weather sensor	Continuous	General,	_	Urban and	30.153786	-93.725954
Port Arthur Memorial School	482450021	2200 Jefferson Drive, Port Arthur	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.922923	-93.909000
Port Arthur Memorial		2200 Jefferson	PM2 5 FFM	QA Collocated,	Beta Attenuation,	Continuous	Quality	_		29 922923	-93,909000
		623 Ellias Street,			UV		Population	J	Urban and		-93.991081
		623 Ellias Street,			Pulsed		Source	_	Urban and		
		623 Ellias Street,					Population Exposure, Source	·	Urban and		-93.991081 -93.991081
	Nederland 17th Street Orange 1st Street Orange 1st Street Port Arthur Memorial School	Nederland 17th Street 482451035 Orange 1st Street 483611083 Orange 1st Street 483611083 Orange 1st Street 483611083 Port Arthur Memorial School 482450021 Port Arthur West 482450011 Port Arthur West 482450011	Nederland 17th Street A82451035 Nederland Port Arthur Memorial School A82450021 Drive, Port Arthur A82450021 Drive, Port Arthur	Nederland 17th Street Number 1516 17th Street, 482451035 Nederland Nind 2239 1st Street, Orange 1st Street 483611083 Orange SO2 2239 1st Street, Orange 1st Street 483611083 Orange 2239 1st Street, Orange 1st Street 483611083 Orange Wind Port Arthur Memorial School Port Arthur Memorial School Port Arthur Memorial School 482450021 Drive, Port Arthur PM2.5 FEM 623 Ellias Street, Port Arthur West 482450011 Port Arthur SO2 623 Ellias Street, Port Arthur West 482450011 Port Arthur SO2	Nederland 17th Street 482451035 Nederland Wind PAMS, SLAMS Orange 1st Street 483611083 Orange SO2 SLAMS Orange 1st Street 483611083 Orange SO2 SLAMS Orange 1st Street 483611083 Orange Wind SPM Orange 1st Street 483611083 Orange Wind SPM Orange 1st Street 483611083 Orange Wind SPM Port Arthur Memorial School 482450021 Drive, Port Arthur PM2.5 FEM SPM Port Arthur Memorial School 482450021 Drive, Port Arthur PM2.5 FEM SLAMS Port Arthur West 482450011 Port Arthur O3 SLAMS Port Arthur West 482450011 Port Arthur SO2 SLAMS	Nederland 17th	Nederland 17th Street	Nederland 17th 1516 17th Street, Street 482451035 Nederland Wind PAMS, SLAMS Sensor Continuous Impact Nederland 17th 482451035 Nederland Wind PAMS, SLAMS Sensor Continuous Impact Pulsed Fluorescence Continuous Impact Name Percursor Emissions Impact Name Percursor Emissions Surger Fluorescence Continuous Impact Name Percursor Emissions Source Polised Fluorescence Continuous Impact Name Percursor Emissions Impact National Source Polised Fluorescence Continuous Impact National Source Polised Polised Polised Polised Fluorescence Continuous Percursor Emissions Impact Name Percursor Emissions Impact National Source Polised	Nederland 17th	Nederland 17th 1516 17th Street, Street 483611083 Orange SO2 SLAMS Fluorescence Continuous Oriented Neighborhood Center City Port Arthur Memorial School 482450012 Drive, Port Arthur Port Arthur West 482450011 Drive, Port Arthur Port Arthur West 482450011 Port Arthur School School Port Arthur West 482450011 Port Arthur School School Port Arthur West 482450011 Port Arthur School	Nederland 17th 1516 17th Street, Street 482451035 Nederland 17th 2239 1st Street, Orange 1st Street 483611083 Orange 1st Street, Ora

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port Arthur, TX	Port Arthur West	482450011	623 Ellias Street, Port Arthur	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Urban and Center City	29.897523	-93.991081
Beaumont-Port Arthur, TX	Port Arthur West	482450011	623 Ellias Street, Port Arthur	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure, Source Oriented	Neighborhood	Urban and Center City	29.897523	-93.991081
Beaumont-Port Arthur, TX	Port Arthur West 7th Street Gate 2	482451071	West 7th Street, Valero Port Arthur Gate 2, Port Arthur	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	29.844118	29.844118
Beaumont-Port Arthur, TX	Port Arthur West 7th Street Gate 2	482451071	West 7th Street, Valero Port Arthur Gate 2, Port Arthur	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	29.844118	29.844118
Beaumont-Port Arthur, TX	Port Arthur West 7th Street Gate 2	482451071	West 7th Street, Valero Port Arthur Gate 2, Port Arthur	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	29.844118	29.844118
Beaumont-Port Arthur, TX	SETRPC 40 Sabine	482450101	5200 Mechanic, Not In A City	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood	Rural	29.727940	-93.894088
Beaumont-Port Arthur, TX	SETRPC 42 Mauriceville	483611100	Intersection of TX Hwys 62 & 12, Port Arthur	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport, Upwind Background	Regional Scale	Suburban	30.194292	-93.867136
Beaumont-Port Arthur, TX	SETRPC 43 Jefferson Co Airport		Jefferson County Airport, Port Arthur		SPM	UV Photometric	Continuous	Max Precursor Emissions Impact	Middle Scale	Suburban	29.942748	-94.000691
Beaumont-Port Arthur, TX	West Orange		2700 Austin Ave, West Orange	NO, NO2, NOx	SLAMS	Chemi- luminescence		Population Exposure	Neighborhood	Urban and	30.085274	-93.761359

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port Arthur, TX	West Orange	483611001	2700 Austin Ave, West Orange	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	30.085274	-93.761359
Beaumont-Port	·		2700 Austin Ave,					Source	·	Urban and		
Arthur, TX Beaumont-Port	West Orange		West Orange 2700 Austin Ave,	Temperature	SPM	AIO2 sonic weather	Continuous	Oriented Source	·	Urban and	30.085274	-93.761359
Arthur, TX Beaumont-Port	West Orange	483611001	West Orange 2700 Austin Ave,	(Outdoor)	SPM	AIO2 sonic weather	Continuous	Source	Neighborhood	Urban and	30.085274	-93.761359
Arthur, TX Big Spring, TX	West Orange Big Spring Midway	483611001 482271072	West Orange 1218 N. Midway Rd, Bia Sprina	Wind SO2	SPM	Pulsed Fluorescence	Continuous	Oriented Source Oriented	Neighborhood Neighborhood	Center City Rural	30.085274	-93.761359 -101.407119
Big Spring, TX	Big Spring Midway	482271072	1218 N. Midway Rd,	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood		32.280432	-101.407119
Big Spring, TX	Big Spring Midway	482271072	1218 N. Midway Rd, Big Spring	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	32.280432	-101.407119
Borger, TX	Borger FM 1559	482331073	19440 FM 1559, Borger	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	35.676010	-101.440056
Borger, TX	Borger FM 1559	482331073	19440 FM 1559, Borger	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	35.676010	-101.440056

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Borger, TX	Borger FM 1559	482331073	19440 FM 1559, Borger	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	35.676010	-101.440056
Brownsville- Harlingen, TX	Brownsville East 6th Street	480611098	85 East 6th Street, Brownsville	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Regional Scale	Urban and Center City	25.900963	-97.507793
Brownsville- Harlingen, TX	Brownsville East 6th Street	480611098	85 East 6th Street, Brownsville	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	25.900963	-97.507793
Brownsville- Harlingen, TX	Brownsville East 6th Street	480611098	85 East 6th Street, Brownsville	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Urban and Center City	25.900963	-97.507793
Brownsville- Harlingen, TX	Brownsville East 6th Street	480611098	85 East 6th Street, Brownsville	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	25.900963	-97.507793
Brownsville- Harlingen, TX	Harlingen Teege		1602 W Teege Avenue, Harlingen	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	26.200346	-97.712699
Brownsville- Harlingen, TX	Harlingen Teege	480611023	1602 W Teege Avenue, Harlingen	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	26.200346	-97.712699
Brownsville- Harlingen, TX	Harlingen Teege		1602 W Teege Avenue, Harlingen		SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood		26.200346	-97.712699
Brownsville- Harlingen, TX	Isla Blanca State Park Road		33174 State Park Road 100, South Padre Island	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional	Urban Scale	Rural	26.071103	-97.157724

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Brownsville- Harlingen, TX	Isla Blanca State Park Road	480612004	33174 State Park Road 100, South Padre Island	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Rural	26.071103	-97.157724
Brownsville- Harlingen, TX	Isla Blanca State Park Road	480612004	33174 State Park Road 100, South Padre Island	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Rural	26.071103	-97.157724
College Station- Bryan, TX	Bryan Finfeather Road	480411086	3670 Finfeather Road, Bryan	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure, Regional	Neighborhood	Rural	30.628325	-96.362855
College Station- Bryan, TX	Bryan Finfeather Road		3670 Finfeather Road, Bryan	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood		30.628325	-96.362855
College Station-	Bryan Finfeather		3670 Finfeather	Wind	SPM	AIO2 sonic weather		General,	<u> </u>		30.628325	
Bryan, TX College Station-	Road		Road, Bryan 8127 Oak Grove			Pulsed	Continuous	Background Source	Neighborhood			-96.362855
Bryan, TX College Station-	Franklin Oak Grove	483951076	Road, Franklin 8127 Oak Grove	SO2 Temperature	SLAMS	AIO2 sonic weather	Continuous	Oriented General,	Neighborhood	Rural	31.168956	-96.482001
Bryan, TX College Station-	Franklin Oak Grove	483951076	Road, Franklin 8127 Oak Grove	(Outdoor)	SPM	AIO2 sonic weather	Continuous	Background General,	Neighborhood	Rural	31.168956	-96.482001
Bryan, TX	Franklin Oak Grove Corpus Christi		Road, Franklin 3810 Huisache Street, Corpus	Wind	SPM	Beta Attenuation,	Continuous	Background Population	<u> </u>	Rural Urban and	31.168956	-96.482001
Corpus Christi, TX	TiulSacrie	483550032	Cillisu	PM2.5 FEM	SLAMS	209	Continuous	Lxposure	Neighborhood	Center City	27.804483	-97.431571

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Corpus Christi, 1	Corpus Christi 'X Huisache	483550032	3810 Huisache Street, Corpus Christi	PM2.5 FEM	QA Collocated, SLAMS	Beta Attenuation, 209	Continuous	Quality Assurance	Neighborhood	Urban and Center City	27.804483	-97.431571
Corpus Christi, 1	Corpus Christi "X Huisache	483550032	3810 Huisache Street, Corpus Christi	S02	SLAMS	Pulsed Fluorescence	Continuous	Highest Concentration, Population Exposure	Neighborhood	Urban and Center City	27.804483	-97.431571
Corpus Christi, 1	Corpus Christi "X Huisache	483550032	3810 Huisache Street, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Middle Scale	Urban and Center City	27.804483	-97.431571
Corpus Christi, 1	Corpus Christi X Huisache	483550032	3810 Huisache Street, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Middle Scale	Urban and Center City	27.804483	-97.431571
Corpus Christi, 1	X Corpus Christi Tuloso	483550026	9860 La Branch, Corpus Christi	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	27.832429	-97.555417
	X Corpus Christi Tuloso		9860 La Branch,	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood		27.832429	-97.555417
			9860 La Branch,	Temperature	SPM	AIO2 sonic weather		Highest	·		27.832429	-97.555417
	X Corpus Christi Tuloso		9860 La Branch,	(Outdoor)		AIO2 sonic weather		Concentration	_			
	Corpus Christi TulosoCorpus Christi West		902 Airport Road, Corpus Christi	Wind O3	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood		27.832429 27.765314	-97.555417 -97.434291

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
			902 Airport Road,			Pulsed		Population				
Corpus Christi, TX	Corpus Christi West	483550025	Corpus Christi	S02	SLAMS	Fluorescence	Continuous	Exposure	Neighborhood	Suburban	27.765314	-97.434291
Corpus Christi, TX	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood	Suburban	27.765314	-97.434291
Corpus Christi, TX	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	27.765314	-97.434291
Corpus Christi TV	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	27.765314	-97.434291
Corpus Christi, TX			5707 Up River Rd, Corpus Christi	PM10 FEM	SLAMS	Broadband spectrocopy, 639	Continuous	Population Exposure	J	Urban and Center City	27.811847	-97.465688
			5707 Up River Rd,	PM2.5	SPM	Carbons, Elements, Ions,	24 Hours; 1,	Population Exposure,	_	Urban and		-97.465688
Corpus Christi, TX	Dulla Park	463330034	Corpus Christi 5707 Up River Rd,	(Speciation)	SPIN	Broadband spectrocopy	6 Days	Unknown	Neighborhood	Center City Urban and	27.811847	-97.403000
Corpus Christi, TX	Dona Park	483550034	Corpus Christi	PM2.5 FEM	SLAMS	Sequential FRM	Continuous		Neighborhood	Center City	27.811847	-97.465688
Corpus Christi, TX	Dona Park	483550034	5707 Up River Rd, Corpus Christi	PM2.5 Mass (Speciation)	SPM	Gravimetric, 145	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	27.811847	-97.465688
Corpus Christi, TX	Dona Park	483550034	5707 Up River Rd, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Regional Scale	Urban and Center City	27.811847	-97.465688

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Corpus Christi, TX	C Dona Park	483550034	5707 Up River Rd, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Regional Scale	Urban and Center City	27.811847	-97.465688
Corsicana, TX	Corsicana Airport	483491051	Corsicana Airport, Corsicana	Dew Point	SPM	Derived at site	Continuous	General, Background		Rural	32.031946	-96.399146
Corsicana, TX	Corsicana Airport	483491051	Corsicana Airport, Corsicana	NO, NO2, NOx	SPM	Chemi- luminescence	Continuous	General, Background, Max Precursor Emissions Impact	Urban Scale	Rural	32.031946	-96.399146
Corsicana, TX	Corsicana Airport	483491051	Corsicana Airport,	03	SPM	UV Photometric	Continuous	General, Background, Max Ozone Concentration		Rural	32.031946	-96.399146
Corsicana, TX	Corsicana Airport	483491051	Corsicana Airport,	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Source Oriented	Neighborhood		32.031946	-96.399146
Corsicana, TX	Corsicana Airport	483491051	Corsicana Airport,	Relative Humidity	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	32.031946	-96.399146
·	·		Corsicana Airport,	SO2		Pulsed		Source				
Corsicana, TX	Corsicana Airport Corsicana Airport	483491051 483491051	Corsicana Airport,	Temperature (Outdoor)	SPM	AIO2 sonic weather	Continuous	General, Background	Urban Scale Urban Scale	Rural	32.031946 32.031946	-96.399146 -96.399146
Corsicana, TX	Corsicana Airport	483491051	Corsicana Airport,	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	32.031946	-96.399146

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Corsicana, TX	Richland Southeast 1220 Road	483491081	Southeast 1220 Road, Richland	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	31.904098	-96.351871
Corsicana, TX	Richland Southeast 1220 Road	483491081	Southeast 1220 Road, Richland	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Rural	31.904098	-96.351871
						Potentiometer						
Corsicana, TX	Richland Southeast 1220 Road	483491081	Southeast 1220 Road, Richland	Wind	SPM	Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	31.904098	-96.351871
Dallas-Fort Worth- Arlington, TX	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure	Neighborhood	Suburban	32.656370	-97.088596
Dallas-Fort Worth- Arlington, TX	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	32.656370	-97.088596
Dallas-Fort Worth- Arlington, TX	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Neighborhood	Suburban	32.656370	-97.088596
Dallas-Fort Worth- Arlington, TX	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood	Suburban	32.656370	-97.088596
						Potontiomotor						
Dallas-Fort Worth- Arlington, TX	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood	Suburban	32.656370	-97.088596
Dallas-Fort Worth- Arlington, TX	Cleburne Airport	482510003	1650 Airport Drive, Cleburne	03	PAMS, SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	32.353605	-97.436733

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Cleburne Airport	482510003	1650 Airport Drive, Cleburne	Radar Profiler	SPM	Radar Profiler	Continuous	Regional Transport	Regional Scale	Suburban	32.353605	-97.436733
Dallas-Fort Worth- Arlington, TX	Cleburne Airport	482510003	1650 Airport Drive, Cleburne	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	32.353605	-97.436733
Dallas-Fort Worth- Arlington, TX	Cleburne Airport	482510003	1650 Airport Drive, Cleburne	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	32.353605	-97.436733
Dallas-Fort Worth- Arlington, TX	Cleburne Airport	482510003	1650 Airport Drive, Cleburne	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	32.353605	-97.436733
Dallas-Fort Worth- Arlington, TX	Convention Center	481130050	717 South Akard, Dallas	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	32.774264	-96.797694
Dallas-Fort Worth- Arlington, TX	Convention Center	481130050	717 South Akard, Dallas	PM10 (FRM)	QA Collocated, SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 12 Days	Population Exposure	Neighborhood	Urban and Center City	32.774264	-96.797694
Dallas-Fort Worth- Arlington, TX	Convention Center	481130050	717 South Akard, Dallas	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.774264	-96.797694
Dallas-Fort Worth- Arlington, TX	Convention Center	481130050	717 South Akard, Dallas	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.774264	-96.797694
Dallas-Fort Worth- Arlington, TX	Convention Center	481130050	717 South Akard, Dallas	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.774264	-96.797694

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	PM10 (FRM)	SPM	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	32.742984	-96.753187
Dallas-Fort Worth- Arlington, TX	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	PM2.5 TEOM non-NAAQS comparable	SPM	TEOM Gravimetric, 702	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.742984	-96.753187
Dallas-Fort Worth- Arlington, TX	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Urban and Center City	32.742984	-96.753187
Dallas-Fort Worth- Arlington, TX	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Urban and Center City	32.742984	-96.753187
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Barometric Pressure	PAMS, SLAMS	Barometric pressure transducer	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Carbonyl	PAMS, SLAMS	DNPH Silica HPLC	24 Hours; Seasonal, 8 Hour; Seasonal	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	CO (High Sensitivity)	NCORE, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth-Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood	Urban and	32.820068	-96.860123
Dallas-Fort Worth-Arlington, TX	Dallas Hinton		1415 Hinton Street,	NO2 (Direct)	PAMS, SLAMS	Direct-Read	Continuous	Max Precursor Emissions	Neighborhood	Urban and	32.820068	-96.860123

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	NOy (High Sensitivity)	NCORE, PAMS, SLAMS	Chemi- luminescence	Continuous	Highest Concentration	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth-			1415 Hinton Street,		NCORE, PAMS,			Max Precursor Emissions Impact, Population		Urban and		
Arlington, TX	Dallas Hinton	481130069	Dallas	03	SLAMS	Photometric	Continuous	Exposure	Neighborhood	Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street,	PM10 FEM	NCORE, SLAMS	Broadband spectrocopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.820068	-96.860123
					,							
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM10-2.5	NCORE, SLAMS	Broadband spectrocopy, 640	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street,	PM2.5 (FRM)	NCORE, SLAMS	Sequential FRM Gravimetric,	24 Hours; 1, 3 Days	Population Exposure	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth-	Builds Tilliton	401130003	1415 Hinton Street,	1112.5 (1101)	QA Collocated,	Sequential FRM Gravimetric,	24 Hours; 1,		Neighborhood	Urban and	32.020000	30.000123
Arlington, TX	Dallas Hinton	481130069	Dallas	PM2.5 (FRM)	SLAMS	145	12 Days	Exposure	Neighborhood	Center City	32.820068	-96.860123
Dallas-Fort Worth-			1415 Hinton Street,	PM2.5	Csn Stn,	Carbons, Elements, Ions, SASS,	24 Hours; 1,	Population		Urban and		
Arlington, TX	Dallas Hinton	481130069	Dallas	(Speciation)	NCORE, SLAMS	URG	3 Days	Exposure	Neighborhood	Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM2.5 FEM	NCORE, SLAMS	Broadband spectrocopy 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Relative Humidity	NCORE, PAMS, SLAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	SO2 (High Sensitivity)	NCORE, SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Highest Concentration, Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	TNMOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Highest Concentration, Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Visibility	SPM	Visibility Sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.820068	-96.860123
Dallas-Fort Worth- Arlington, TX	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Wind	PAMS, SLAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.820068	-96.860123

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Dallas LBJ Freeway	481131067	8652 LBJ Freeway, Dallas	NO, NO2, NOx	Near Road, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.921146	-96.753507
Dallas-Fort Worth- Arlington, TX	Dallas LBJ Freeway	481131067	8652 LBJ Freeway, Dallas	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.921146	-96.753507
Dallas-Fort Worth- Arlington, TX	Dallas LBJ Freeway	481131067	8652 LBJ Freeway, Dallas	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.921146	-96.753507
Dallas-Fort Worth- Arlington, TX	Dallas North #2		12532 1/2 Nuestra Drive, Dallas	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Population Exposure	Neighborhood	Suburban	32.919216	-96.808513
Dallas-Fort Worth- Arlington, TX	Dallas North #2	481130075	12532 1/2 Nuestra Drive, Dallas	03	PAMS, SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	32.919216	-96.808513
Dallas-Fort Worth- Arlington, TX	Dallas North #2		12532 1/2 Nuestra Drive, Dallas	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	32.919216	-96.808513
Dallas-Fort Worth- Arlington, TX	Dallas North #2		12532 1/2 Nuestra Drive, Dallas	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	General, Background	Neighborhood	Suburban	32.919216	-96.808513
Dallas-Fort Worth- Arlington, TX	Dallas North #2	481130075	12532 1/2 Nuestra Drive, Dallas	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Suburban	32.919216	-96.808513
Dallas-Fort Worth- Arlington, TX	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure	Neighborhood	Suburban	32.676452	-96.872031

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	32.676452	-96.872031
Dallas-Fort Worth- Arlington, TX	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Suburban	32.676452	-96.872031
						Potentiometer						
Dallas-Fort Worth- Arlington, TX	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	Wind	SPM	Cup Anemometer	Continuous	General, Background	Neighborhood	Suburban	32.676452	-96.872031
Dallac Fowt Wowth	Donton Airmort		Donton Airnort					Donulation				
Dallas-Fort Worth- Arlington, TX	South	481210034	Denton Airport South, Denton	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Ozone Concentration, Population Exposure	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth-Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	NOy (High Sensitivity)	PAMS, SLAMS	Chemi-	Continuous	Max Ozone Concentration, Population Exposure	Urban Scale	Rural	33.219076	-97.196272
		401210034	·	Scholevicy	TAIIS, SEATIS		Continuous	Max Ozone Concentration,	Orban Scale	Rurui	33.213070	37.130272
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	03	PAMS, SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Denton Airport South		Denton Airport South, Denton	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.219076	-97.196272

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	Speciated VOC (Canister)	PAMS, SLAMS	Canister GC- MS	24 Hours; 1, 6 Days	Max Ozone Concentration, Population Exposure	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Denton Airport South	481210034	Denton Airport South, Denton	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.219076	-97.196272
Dallas-Fort Worth- Arlington, TX	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	NO, NO2, NOx	SPM	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Urban Scale	Rural	32.987894	-97.477176
Dallas-Fort Worth- Arlington, TX	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood	Rural	32.987894	-97.477176
Dallas-Fort Worth- Arlington, TX	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale	Rural	32.987894	-97.477176
Dallas-Fort Worth- Arlington, TX	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Middle Scale	Rural	32.987894	-97.477176

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Middle Scale	Rural	32.987894	-97.477176
Dallas-Fort Worth- Arlington, TX	Earhart	481130061	3434 Bickers (Earhart Elem School), Dallas	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	32.785380	-96.876567
Dallas-Fort Worth- Arlington, TX	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	CO	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.664755	-97.337900
Dallas-Fort Worth- Arlington, TX	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	NO, NO2, NOx	Near Road, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.664755	-97.337900
Dallas-Fort Worth- Arlington, TX	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Microscale	Urban and Center City	32.664755	-97.337900
Dallas-Fort Worth-	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	PM2.5 FEM	QA Collocated, SLAMS	Beta Attenuation, 209	Continuous	Quality Assurance	Microscale	Urban and Center City	32.664755	-97.337900
	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.664755	-97.337900
	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort	,	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.664755	-97.337900
Dallas-Fort Worth-Arlington, TX	,	484391002	3317 Ross Ave,	Carbonyl	PAMS, SLAMS	DNPH Silica	24 Hours; Seasonal	Max Precursor Emissions Impact	Neighborhood	Urban and	32.805813	-97.356539

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallag Faut Warth	Forth Worth		2217 Dage Ave					Danulation		Huban and		
Dallas-Fort Worth- Arlington, TX	Northwest	484391002	3317 Ross Ave, Fort Worth	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Middle Scale	Urban and Center City	32.805813	-97.356539
Dallas-Fort Worth-	Fort Worth		3317 Ross Ave,			Chemi-		Max Precursor Emissions Impact, Population		Urban and		
Arlington, TX	Northwest	484391002	Fort Worth	NO, NO2, NOx	PAMS, SLAMS	luminescence	Continuous	Exposure	Neighborhood	Center City	32.805813	-97.356539
Dallas-Fort Worth-			3317 Ross Ave,			UV		Max Precursor Emissions Impact, Population		Urban and		
Arlington, TX	Northwest	484391002	Fort Worth	03	PAMS, SLAMS	Photometric	Continuous	Exposure	Neighborhood	Center City	32.805813	-97.356539
Dallas-Fort Worth-	Fort Worth		3317 Ross Ave,			Beta Attenuation,		Population		Urban and		
Arlington, TX	Northwest	484391002	•	PM2.5 FEM	SLAMS	209	Continuous	Exposure	Neighborhood	Center City	32.805813	-97.356539
Dallas-Fort Worth- Arlington, TX	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.805813	-97.356539
Dallas-Fort Worth- Arlington, TX	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.805813	-97.356539
Dallas-Fort Worth-	Fort Worth		3317 Ross Ave,	Speciated VOC				Max Precursor Emissions Impact, Population		Urban and		
Arlington, TX	Northwest	484391002	•	(AutoGC)	PAMS, SLAMS	GC	Continuous	Exposure	Neighborhood	Center City	32.805813	-97.356539
Dallas-Fort Worth- Arlington, TX	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.805813	-97.356539
Dallas-Fort Worth- Arlington, TX	Fort Worth Northwest	484391002	3317 Ross Ave,	TNMOC (AutoGC)	PAMS, SLAMS	GC.	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and	32.805813	-97.356539
/ I migcon, TX	TTOT CITYTOSC	10-1331002	TOTE WOLLI	(7.0000)	TAMO, SEAMS		Continuous	Exposure	Heighborhood	Conton City	32.003013	57.550555

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.805813	-97.356539
Dallas-Fort Worth- Arlington, TX	Frisco	480850005	6590 Hillcrest Road, Frisco	О3	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	33.132426	-96.786427
Dallas-Fort Worth- Arlington, TX	Frisco	480850005	6590 Hillcrest Road, Frisco	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Urban Scale	Suburban	33.132426	-96.786427
Dallas-Fort Worth- Arlington, TX	Frisco	480850005	6590 Hillcrest Road, Frisco	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Urban Scale	Suburban	33.132426	-96.786427
Dallas-Fort Worth- Arlington, TX	Frisco	480850005	6590 Hillcrest Road, Frisco	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Urban Scale	Suburban	33.132426	-96.786427
Dallas-Fort Worth- Arlington, TX	Frisco Eubanks	480850009	6601 Eubanks, Frisco	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure, Source Oriented	Neighborhood	Suburban	33.144674	-96.828796
Dallas-Fort Worth- Arlington, TX	Frisco Eubanks	480850009	6601 Eubanks, Frisco	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1, 6 Days	Population Exposure, Source Oriented	Neighborhood	Suburban	33.144674	-96.828796
Dallas-Fort Worth- Arlington, TX	Frisco Eubanks	480850009	6601 Eubanks, Frisco	TSP (Pb)	QA Collocated, SLAMS	HiVol ICP-MS	24 Hours; 1, 12 Days	Population Exposure, Source Oriented	Neighborhood	Suburban	33.144674	-96.828796
Dallas-Fort Worth- Arlington, TX	Frisco Eubanks	480850009	6601 Eubanks, Frisco	Wind (3m)	SPM	Potentiometer Cup Anemometer	Continuous	Population	Neighborhood	Suburban	33.144674	-96.828796

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Frisco Stonebrook		7202 Stonebrook Parkway, Frisco	TSP (Pb)	SPM	HiVol ICP-MS	24 Hours; 1, 6 Days	Population Exposure, Source Oriented	Neighborhood	Suburban	33.136054	-96.824481
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Dew Point	SPM	Derived at site	Continuous	Highest Concentration, Max Ozone Concentration	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Speciated VOC (Canister)	PAMS, SLAMS	Canister GC- MS	24 Hours; 1, 6 Days	Max Ozone Concentration, Population Exposure	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984264	-97.063705

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Grapevine Fairway	484393009	4100 Fairway Dr,	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984264	-97.063705
Dallas-Fort Worth-			824 Sayle Street,		·	Chemi-		Population Exposure, Upwind	_			
Arlington, TX Dallas-Fort Worth-	Greenville	482311006	Greenville 824 Sayle Street,	NO, NO2, NOx	SLAMS	luminescence	Continuous	Population Exposure, Upwind	Neighborhood	Suburban	33.153092	-96.115580
Arlington, TX	Greenville	482311006	Greenville	03	SLAMS	Photometric	Continuous	Background	Neighborhood	Suburban	33.153092	-96.115580
Dallas-Fort Worth- Arlington, TX	Greenville	482311006	824 Sayle Street, Greenville	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	33.153092	-96.115580
Dallas-Fort Worth- Arlington, TX	Greenville	482311006	824 Sayle Street, Greenville	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Suburban	33.153092	-96.115580
Dallas-Fort Worth- Arlington, TX	Greenville	482311006	824 Sayle Street, Greenville	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Suburban	33.153092	-96.115580
Dallas-Fort Worth- Arlington, TX	Haws Athletic Center	484391006	600 1/2 Congress St, Fort Worth	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.759189	-97.342292
Dallas-Fort Worth- Arlington, TX	Italy	481391044	900 FM 667 Ellis County, Italy	Dew Point	SPM	Derived at site	Continuous	Upwind Background	Urban Scale	Rural	32.175430	-96.870180
Dallas-Fort Worth- Arlington, TX	Italy	481391044	900 FM 667 Ellis County, Italy	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Upwind Background	Urban Scale	Rural	32.175430	-96.870180

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Italy		900 FM 667 Ellis County, Italy	03	PAMS, SLAMS	UV Photometric	Continuous	Upwind Background	Urban Scale	Rural	32.175430	-96.870180
Dallas-Fort Worth- Arlington, TX	Italy		900 FM 667 Ellis County, Italy	Relative Humidity	PAMS, SLAMS	Humidity Sensor	Continuous	Upwind Background	Urban Scale	Rural	32.175430	-96.870180
Dallas-Fort Worth- Arlington, TX	Italy		900 FM 667 Ellis County, Italy	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Upwind Background	Urban Scale	Rural	32.175430	-96.870180
Dallas-Fort Worth- Arlington, TX	Italy		900 FM 667 Ellis County, Italy	Speciated VOC (Canister)	PAMS, SLAMS	Canister GC- MS	24 Hours; 1, 6 Days	Upwind Background	Urban Scale	Rural	32.175430	-96.870180
Dallas-Fort Worth- Arlington, TX	Italy		900 FM 667 Ellis County, Italy	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	Upwind Background	Urban Scale	Rural	32.175430	-96.870180
Dallas-Fort Worth- Arlington, TX	,		900 FM 667 Ellis County, Italy	UV Radiation	PAMS, SLAMS		Continuous	Upwind	Urban Scale	Rural	32.175430	-96.870180
Dallas Fast West			000 FM CC7 FU:-			Potentiometer		l lavvia d				
Dallas-Fort Worth- Arlington, TX	Italy		900 FM 667 Ellis County, Italy	Wind	PAMS, SLAMS	Cup Anemometer	Continuous	Upwind Background	Urban Scale	Rural	32.175430	-96.870180
Dallas-Fort Worth-	Johnson County		2420 Luisa Ln,	Temperature		Aspirated		Population				
Arlington, TX	Luisa	482511008	Alvarado	(Outdoor)	SPM	Thermister	Continuous	Exposure	Neighborhood	Suburban	32.469688	-97.169264
Dallas-Fort Worth- Arlington, TX	Johnson County Luisa	482511008	2420 Luisa Ln, Alvarado	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood	Suburban	32.469688	-97.169264

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Kaufman	482570005	3790 S Houston St,	Dew Point	SPM	Derived at site	Continuous	Highest Concentration	Neighborhood	Cuburban	32.564966	-96.317690
Armigton, 1X	Kauiiilaii	462370003	Kauiiiiaii	Dew Polit	SFIN	Derived at site	Continuous	Concentration	Neighborhood	Suburban	32.304900	-90.317090
Dallas-Fort Worth-	Va viena v		3790 S Houston St,	NO NOS NOS	DAMC CLAMC	Chemi-	Cantinuaus	Population Exposure, Upwind	Neighborhood,	Cubumban	22 504000	06 217600
Arlington, TX	Kaufman	482570005	Kaurman	NO, NO2, NOx	PAMS, SLAMS	luminescence	Continuous	Background	Urban Scale	Suburban	32.564966	-96.317690
Dallas-Fort Worth-			3790 S Houston St,			UV		Population Exposure, Upwind				
Arlington, TX	Kaufman	482570005	Kaufman	03	PAMS, SLAMS	Photometric	Continuous	Background	Urban Scale	Suburban	32.564966	-96.317690
Dallas-Fort Worth- Arlington, TX	Kaufman	482570005	3790 S Houston St, Kaufman	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Upwind Background	Urban Scale	Suburban	32.564966	-96.317690
Dallas-Fort Worth- Arlington, TX	Kaufman	482570005	3790 S Houston St, Kaufman	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Upwind Background	Urban Scale	Suburban	32.564966	-96.317690
Dallas-Fort Worth- Arlington, TX	Kaufman	482570005	3790 S Houston St, Kaufman	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure, Upwind Background	Neighborhood	Suburban	32.564966	-96.317690
Dallas-Fort Worth-			3790 S Houston St,					Upwind				
Arlington, TX	Kaufman	482570005	Kaufman	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Background	Urban Scale	Suburban	32.564966	-96.317690
Dallas-Fort Worth- Arlington, TX	Kaufman	482570005	3790 S Houston St, Kaufman	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Upwind Background	Urban Scale	Suburban	32.564966	-96.317690
Dallas-Fort Worth- Arlington, TX	Kaufman	482570005	3790 S Houston St, Kaufman	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Upwind Background	Urban Scale	Suburban	32.564966	-96.317690

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Urban Scale	Suburban	32.922493	-97.282089
Dallas-Fort Worth- Arlington, TX	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Suburban	32.922493	-97.282089
Dallas-Fort Worth- Arlington, TX	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Urban Scale	Suburban	32.922493	-97.282089
Dallas-Fort Worth- Arlington, TX	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	General, Background	Urban Scale	Suburban	32.922493	-97.282089
Dallas-Fort Worth- Arlington, TX	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	Wind	PAMS, SLAMS	Potentiometer Cup Anemometer	Continuous	General, Background	Urban Scale	Suburban	32.922493	-97.282089
	Midlothian North Ward Road (pending deployment)	481390016	891 North Ward Road, Midlothian	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Source Oriented	Neighborhood	Suburban	32.482086	-97.026894
	Midlothian North Ward Road (pending deployment)		891 North Ward Road, Midlothian	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	32.482086	-97.026894
	Midlothian North Ward Road (pending deployment)		891 North Ward Road, Midlothian	PM2.5 (Speciation)	SPM	Carbons, Elements, Ions, 2025,URG	24 Hours; 1, 6 Days	Population Exposure,	Neighborhood, Regional Scale		32.482086	-97.026894
Dallas-Fort Worth-Arlington, TX	Midlothian North		891 North Ward Road, Midlothian	PM2.5 Mass (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1, 6 Days	Population Exposure,	Regional Scale		32.482086	-97.026894

Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Midlothian North Ward Road (pending deployment)		891 North Ward Road, Midlothian	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Regional Transport	Regional Scale	Suburban	32.482086	-97.026894
Midlothian North Ward Road (pending deployment)			S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Suburban	32.482086	-97.026894
Midlothian North Ward Road (pending deployment)			Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	32.482086	-97.026894
Midlothian North Ward Road (pending deployment)		891 North Ward Road, Midlothian	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Suburban	32.482086	-97.026894
Midlothian North Ward Road (pending deployment)			Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Suburban	32.482086	-97.026894
Parker County		3033 New Authon	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urhan Scale	Rural		-97.905930
,		3033 New Authon					Source				
,		3033 New Authon	Temperature		Aspirated		Source	<u>-</u>			-97.905930
,		3033 New Authon	,		Potentiometer Cup		Source	·			-97.905930 -97.905930
	Midlothian North Ward Road (pending deployment) Midlothian North Ward Road (pending deployment)	Midlothian North Ward Road (pending deployment) 481390016 Parker County 483670081 Parker County 483670081	Midlothian North Ward Road (pending deployment) Midlothian North Ward Road (pending d	Midlothian North Ward Road (pending deployment) Midlothian North Ward Road, Midlothian Midlothian Midlothian North Ward Road, Midlothian Midlothian North Ward Road (pending deployment) Midlothian North Ward Road (pending	Midlothian North Ward Road (pending deployment) Midlothian North Ward Road (pending d	Midlothian North Ward Road (pending deployment) Midlothian North Ward Road (pending d	Midlothian North Ward Road (pending deployment) Midlothian North Ward Road (pending d	Midothian North Ward Road (pending deployment) Midothian North Ward Road (pen	Midlothian North Ward Road (pending deployment) Midlothian North Ward Road (pending d	Midiothian North Ward Road (pending deployment) Midiothian North Ward Road (pending d	Midiothian North Ward Road (pending deployment) Midiothian North Midiothian North Ward Road (pending deployment) Midiothian North Mi

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Pilot Point	481211032	792 E Northside Dr, Pilot Point	03	SLAMS	UV Photometric	Continuous	Population Exposure	Regional Scale	Suburban	33.410654	-96.944598
Dallas-Fort Worth- Arlington, TX	Pilot Point	481211032	792 E Northside Dr, Pilot Point	Solar Radiation	SPM	Photovoltaic	Continuous	Upwind Background	Regional Scale	Suburban	33.410654	-96.944598
Dallas-Fort Worth- Arlington, TX	Pilot Point	481211032	792 E Northside Dr, Pilot Point	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Upwind Background	Regional Scale	Suburban	33.410654	-96.944598
Dallas-Fort Worth- Arlington, TX	Pilot Point	481211032	792 E Northside Dr, Pilot Point	Wind	SPM	AIO2 sonic weather sensor	Continuous	Upwind Background	Regional Scale	Suburban	33.410654	-96.944598
Dallas-Fort Worth- Arlington, TX	Rockwall Heath	483970001	100 E Heath St, Rockwall	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	32.936521	-96.459214
Dallas-Fort Worth- Arlington, TX	Rockwall Heath	483970001	100 E Heath St, Rockwall	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood	Suburban	32.936521	-96.459214
Dallas-Fort Worth-	Rockwall Heath	483970001	100 E Heath St,	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	32.936521	-96.459214
Dallas-Fort Worth-Arlington, TX	Rockwall Heath	483970001	100 E Heath St,	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood		32.936521	-96.459214
Dallas-Fort Worth-Arlington, TX	Terrell Jamison	482570020	8 Jamison Court,	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood		32.731930	-96.317922

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington, TX	Terrell Jamison Court (pending deployment)	482570020	8 Jamison Court, Terrell	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1, 6 Days	Population Exposure, Source Oriented	Neighborhood	Rural	32.731930	-96.317922
Dallas-Fort Worth- Arlington, TX	Terrell Jamison Court (pending deployment)	482570020	8 Jamison Court, Terrell	TSP (Pb)	QA Collocated, SLAMS	HiVol ICP-MS	24 Hours; 1, 12 Days	Population Exposure, Source Oriented	Neighborhood	Rural	32.731930	-96.317922
Dallas-Fort Worth- Arlington, TX	Terrell Jamison Court (pending deployment)	482570020	8 Jamison Court, Terrell	Wind (3m)	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	32.731930	-96.317922
Eagle Pass, TX	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.704625	-100.451185
Eagle Pass, TX	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.704625	-100.451185
Eagle Pass, TX	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	Visibility	SPM	Visibility Sensor	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.704625	-100.451185
Eagle Pass, TX	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	Wind	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.704625	-100.451185
El Paso, TX	Ascarate Park SE		650 R E Thomason Loop, El Paso	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	·	31.746772	-106.402862
El Paso, TX	Ascarate Park SE		650 R E Thomason Loop, El Paso	Dew Point	SPM	Derived at site		General,	Urban Scale	Suburban		-106.402862

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso, TX	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Highest Concentration, Upwind Background	Neighborhood, Urban Scale	Suburban	31.746772	-106.402862
El Paso, TX	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration, Upwind Background	Neighborhood	Suburban	31.746772	-106.402862
El Paso, TX	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	PM2.5 TEOM non-NAAQS comparable	SPM	TEOM Gravimetric, 702	Continuous	Population Exposure	Neighborhood	Suburban	31.746772	-106.402862
El Paso, TX	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.746772	-106.402862
El Paso, TX	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration, Upwind Background	Neighborhood	Suburban	31.746772	-106.402862
El Paso, TX	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.746772	-106.402862
El Paso, TX	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Visibility	SPM	Visibility Sensor	Continuous	Highest Concentration, Population Exposure	Urban Scale	Suburban	31.746772	-106.402862
			650 R E Thomason	,		AIO2 sonic weather		General, Background, Max Ozone Concentration, Upwind				
El Paso, TX	Ascarate Park SE	481410055	Loop, El Paso	Wind	PAMS, SLAMS	sensor	Continuous	•	Neighborhood	Suburban	31.746772	-106.402862
El Paso, TX	El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	CO (High Sensitivity)	NCORE, SLAMS	Gas Filter Correlation	Continuous	Highest Concentration	Neighborhood	Urban and Center City	31.765682	-106.455241

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso, TX	El Paso Chamizal	491410044	800 S San Marcial Street, El Paso	Dew Point	SPM	Derived at site	Continuous	General, Background	Neighborhood	Urban and	31.765682	-106.455241
Li Pasu, TX	Li Paso Chamizai	401410044	800 S San Marcial	Dew Point	Jriii .	Chemi-	Continuous	Highest Concentration, Max Precursor Emissions	Neighborhood	Urban and	31.703062	-100.433241
El Paso, TX	El Paso Chamizal	481410044	Street, El Paso	NO, NO2, NOx	PAMS, SLAMS	luminescence	Continuous	Impact	Neighborhood	Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	NOy (High Sensitivity)	NCORE, SLAMS	Chemi- luminescence	Continuous	Highest Concentration	Neighborhood	Urban and Center City	31.765682	-106.455241
			800 S San Marcial		NCORE, PAMS,			Max Precursor Emissions Impact, Population		Urban and		
El Paso, TX	El Paso Chamizal	481410044	Street, El Paso	03	SLAMS	Photometric	Continuous	Exposure	Neighborhood	Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	PM10 FEM	NCORE, SLAMS	Broadband spectrocopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	PM10-2.5	NCORE, SLAMS	Broadband spectrocopy, 640	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	PM2.5 (FRM)	NCORE, QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1, 3 Days	Highest Concentration, Population Exposure	Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	PM2.5 (Speciation)	Csn Stn, NCORE, SLAMS	Carbons, Elements, Ions, SASS,	24 Hours; 1, 3 Days		Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	PM2.5 FEM	NCORE, SLAMS	Broadband spectrocopy	Continuous	Population	Neighborhood	Urban and		-106.455241

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	SO2 (High Sensitivity)	NCORE, SLAMS	Pulsed Fluorescence	Continuous	Highest Concentration	Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	Speciated VOC (AutoGC)	PAMS, SLAMS		Continuous	Highest Concentration, Max Precursor Emissions	Neighborhood	Urban and Center City	31.765682	-106.455241
	El Paso Chamizal		800 S San Marcial Street, El Paso	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General,	Neighborhood	Urban and Center City	31.765682	-106.455241
El Paso, TX	El Paso Chamizal		800 S San Marcial Street, El Paso	TNMOC (AutoGC)	PAMS, SLAMS		Continuous	Background Highest Concentration, Max Precursor Emissions	Neighborhood	Urban and		-106.455241
			800 S San Marcial		·	AIO2 sonic weather		General, Background, Max Precursor Emissions	<u>-</u>	Urban and		
El Paso, TX	El Paso Chamizal		7501 Mimosa	Wind (FDM)	PAMS, SLAMS	HiVol Gravimetric,	Continuous 24 Hours; 1,	Population	Neighborhood	,	31.765682	-106.455241
El Paso, TX	El Paso Mimosa		Avenue, El Paso 250 Rim Rd, El Paso	PM10 (FRM)	SLAMS	Gas Filter Correlation	6 Days Continuous	Exposure Highest Concentration	Neighborhood Neighborhood	Urban and		-106.377919 -106.501256

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso, TX	El Paso UTEP	481410037	250 Rim Rd, El Paso	Dew Point	SPM	Derived at site	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Urban and Center City	31.768302	-106.501256
El Paso, TX	El Paso UTEP	481410037	250 Rim Rd, El	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Urban and	31.768302	-106.501256
El Paso, TX	El Paso UTEP		250 Rim Rd, El	03	,	UV Photometric	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Urban and		-106.501256
El Paso, TX	El Paso UTEP		250 Rim Rd, El	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1, 6 Days	General, Background,	_	Urban and Center City	31.768302	-106.501256
El Paso, TX	El Paso UTEP		250 Rim Rd, El	PM2.5 TEOM non-NAAQS comparable	SPM	TEOM Gravimetric, 702	,	Highest	Neighborhood	Urban and		-106.501256
El Paso, TX	El Paso UTEP		250 Rim Rd, El	·	PAMS, SLAMS		Continuous	Max Ozone	_	Urban and Center City	31.768302	-106.501256
·			250 Rim Rd, El	Precipitation Relative	·	Rain Gauge		Max Ozone	·	Urban and		
El Paso, TX	El Paso UTEP		250 Rim Rd, El	Humidity	PAMS, SLAMS			Max Ozone	_	Urban and		-106.501256
El Paso, TX	El Paso UTEP	481410037 481410037	250 Rim Rd, El	Solar Radiation Temperature (Outdoor)	PAMS, SLAMS	Aspirated The project of the state of the st		Max Ozone	Neighborhood	Urban and	31.768302	-106.501256
El Paso, TX	LIT 050 UTLF	401410037	1 030	(Gataooi)	I AND, SLAND	HEIHISTEI	Continuous	Concentration	Neighborhood	Center City	31.700302	100.301230

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso, TX	El Paso UTEP	481410037	250 Rim Rd, El Paso	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood	Urban and Center City	31.768302	-106.501256
El Paso, TX	El Paso UTEP	481410037	250 Rim Rd, El Paso	Wind	PAMS, SLAMS	Potentiometer Cup Anemometer	Continuous	Max Ozone Concentration	Neighborhood	Urban and Center City	31.768302	-106.501256
El Paso, TX	Ivanhoe		10834 Ivanhoe (Ivanhoe Fire Station), El Paso	03	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	31.785771	-106.323599
El Paso, TX	Ivanhoe		10834 Ivanhoe (Ivanhoe Fire Station), El Paso	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days		Neighborhood	Suburban	31.785771	-106.323599
El Paso, TX	Ivanhoe		10834 Ivanhoe (Ivanhoe Fire Station), El Paso	Relative Humidity	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood			-106.323599
El Paso, TX	Ivanhoe		10834 Ivanhoe (Ivanhoe Fire Station), El Paso	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood			-106.323599
El Paso, TX	Ivanhoe		10834 Ivanhoe (Ivanhoe Fire Station), El Paso	Wind	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.785771	-106.323599
El Paso, TX	Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	СО	SLAMS	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood	Suburban	31.862493	-106.547324
El Paso, TX	Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	03	SPM	UV Photometric	Continuous	General, Background	Neighborhood	Suburban	31.862493	-106.547324

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso, TX	Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Suburban	31.862493	-106.547324
El Paso, TX	Ojo De Aqua	481411021	6767 Ojo De Agua, El Paso	PM10 (FRM)	QA Collocated, SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 12 Days	Population Exposure	Neighborhood	Suburban	31.862493	-106.547324
El Paso, TX	Ojo De Agua	481411021	6767 Ojo De Agua,	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population	Neighborhood			-106.547324
El Paso, TX	Skyline Park		5050A Yvette Drive, El Paso	03	Border Grant, SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood		31.893915	-106.425821
El Paso, TX	Skyline Park		5050A Yvette Drive, El Paso	Temperature (Outdoor)	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood			-106.425821
	·		5050A Yvette	,	Border Grant,	AIO2 sonic weather		Population	-			
El Paso, TX	Skyline Park		320 Old Hueco Tanks Road, El	Wind	SLAMS	UV	Continuous	Exposure Population	Neighborhood			-106.425821
El Paso, TX	Socorro Hueco	481410057	320 Old Hueco Tanks Road, El	03	SLAMS Border Grant,	Photometric HiVol Gravimetric,	Continuous 24 Hours; 1,	Exposure Population	Neighborhood	Suburban	31.667548	-106.287970
El Paso, TX	Socorro Hueco	481410057	320 Old Hueco Tanks Road, El	PM10 (FRM)	Border Grant, QA Collocated,	•	6 Days 24 Hours; 1,	Exposure Population	Neighborhood	Suburban	31.667548	-106.287970
El Paso, TX	Socorro Hueco	481410057	Paso	PM10 (FRM)	SLAMS	141	12 Days	Exposure	Neighborhood	Suburban	31.667548	-106.287970

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso, TX	Socorro Hueco		320 Old Hueco Tanks Road, El Paso	PM2.5 TEOM non-NAAQS comparable	SPM	TEOM Gravimetric, 702	Continuous	Population Exposure	Neighborhood	Suburban	31.667548	-106.287970
El Paso, TX	Socorro Hueco		320 Old Hueco Tanks Road, El Paso	Radar Profiler	SPM	Radar Profiler	Continuous	Regional Transport	Regional Scale	Suburban	31.667548	-106.287970
El Paso, TX	Socorro Hueco		320 Old Hueco Tanks Road, El Paso	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	31.667548	-106.287970
El Paso, TX	Socorro Hueco		320 Old Hueco Tanks Road, El Paso	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	31.667548	-106.287970
El Paso, TX	Van Buren		2700 Harrison Avenue, El Paso	PM10 (FRM)	SPM	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	31.813359	-106.464540
El Paso, TX	Van Buren		2700 Harrison Avenue, El Paso	Relative Humidity	SPM	Humidity Sensor	Continuous	Population Exposure	Neighborhood	Urban and	31.813359	-106.464540
El Paso, TX	Van Buren		2700 Harrison Avenue, El Paso	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	-	Urban and Center City	31.813359	-106.464540
			2700 Harrison	·		Potentiometer Cup		Population	J	Urban and		
El Paso, TX Granbury, TX	Van Buren Granbury		Avenue, El Paso 200 N Gordon Street, Granbury	Wind O3	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood Neighborhood	·	31.813359 32.442314	-106.464540 -97.803536

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Granbury, TX	Granbury		200 N Gordon Street, Granbury	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Middle Scale	Suburban	32.442314	-97.803536
Granbury, 1X	Granbury	402210001	Street, Granbary	Solai Radiation	Siri	Tilotovoltaic	Continuous	Dackground	Piladie Scale	Suburban	32.442314	77.003330
Granbury, TX	Granbury		200 N Gordon Street, Granbury	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Middle Scale	Suburban	32.442314	-97.803536
,	, ,		,	,								
						Potentiometer						
Granbury, TX	Granbury		200 N Gordon Street, Granbury	Wind	SPM	Cup Anemometer	Continuous	General, Background	Middle Scale	Suburban	32.442314	-97.803536
Houston-The Woodlands-Sugar			7210 1/2 Bayway			Beta Attenuation,		Population				
Land, TX	Baytown		Drive, Baytown	PM2.5 FEM	SLAMS	209	Continuous	Exposure	Neighborhood	Suburban	29.770689	-95.031226
Houston-The Woodlands-Sugar			7210 1/2 Bayway	Temperature		AIO2 sonic weather		Highest				
Land, TX	Baytown		Drive, Baytown	(Outdoor)	SPM	sensor	Continuous	Concentration	Neighborhood	Suburban	29.770689	-95.031226
Houston-The Woodlands-Sugar			7210 1/2 Bayway			AIO2 sonic weather		Highest				
Land, TX	Baytown	482010058	Drive, Baytown	Wind	SPM	sensor	Continuous	Concentration	Neighborhood	Suburban	29.770689	-95.031226
Haveton The			4000 Ashbal Caus									
Houston-The Woodlands-Sugar			4898 Ashbel Cove Drive, Trailer A,			UV		Max Ozone				
Land, TX	Baytown Garth	482011017	Baytown	03	SLAMS	Photometric	Continuous	Concentration	Neighborhood	Suburban	29.827182	94.988314
Houston-The			4898 Ashbel Cove									
Woodlands-Sugar			Drive, Trailer A,					Population				
Land, TX	Baytown Garth	482011017	Baytown	Solar Radiation	SPM	Photovoltaic	Continuous	Exposure	Neighborhood	Suburban	29.827182	94.988314
Houston-The			4898 Ashbel Cove			AIO2 sonic						
Woodlands-Sugar	Day town C. II		Drive, Trailer A,	Temperature	CDM	weather	Contin	Population	Ni-Salah I	C. h!	20.0274.22	04.00004
Land, TX	Baytown Garth	482011017	Baytown	(Outdoor)	SPM	sensor	Continuous	⊏xposure	Neighborhood	Suburban	29.827182	94.988314

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Baytown Garth		4898 Ashbel Cove Drive, Trailer A, Baytown	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	29.827182	94.988314
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	Dew Point	SPM	Derived at site	Continuous	Highest Concentration	Neighborhood	Suburban	29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Population Exposure	Middle Scale, Neighborhood	Suburban	29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	О3	PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Suburban	29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Population Exposure	Neighborhood	Suburban	29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood		29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	TNMOC	PAMS, SLAMS		Continuous	Population	Neighborhood		29.802723	-95.125489

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Channelview		1405 Sheldon Road, Channelview	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.802723	-95.125489
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Carbonyl	PAMS, SLAMS	DNPH Silica HPLC	24 Hours; Seasonal	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	CO (High Sensitivity)	SPM	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	03	·	UV Photometric	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	PM10 (FRM)	QA Collocated, SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 12 Days	Highest Concentration,	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Highest Concentration,	Neighborhood	Urban and	29.733808	-95.257623

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1, 1 Days	Concentration, Population Exposure, Source Oriented	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	PM2.5 (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1, 12 Days	Highest Concentration, Population Exposure	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	PM2.5 (Speciation)	SPM	Carbons, Elements, Ions, 2025, 2025	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	PM2.5 Mass (Speciation)	SPM	Sequential FRM Gravimetric, 145	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	PM2.5 TEOM non-NAAQS comparable	SPM	TEOM Gravimetric, 702	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Precipitation	SPM	Continuous	Continuous	General, Background	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Relative Humidity	PAMS, SLAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Solar Radiation		Photovoltaic		Max Precursor Emissions Impact	j	Urban and Center City	29.733808	-95.257623

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Clinton	482011035	9525 1/2 Clinton Dr. Houston	Speciated VOC (AutoGC)	PAMS, SLAMS	GC.	Continuous	Concentration, Population Exposure, Source Oriented	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	<u>-</u>	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	TNMOC (AutoGC)	PAMS, SLAMS			Concentration, Population Exposure, Source Oriented	Neighborhood	Urban and	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Clinton		9525 1/2 Clinton Dr, Houston	Wind	PAMS, SLAMS	AIO2 sonic weather		Max Precursor Emissions Impact	Neighborhood	Urban and	29.733808	-95.257623
Houston-The Woodlands-Sugar Land, TX	Conroe Relocated	483390078	9472A Hwy 1484,	NO, NO2, NOx	PAMS, SLAMS	Chemi-	Continuous	General, Background, Population Exposure	Urban Scale	Suburban	30.350331	-95.425127
Houston-The Woodlands-Sugar Land, TX	Conroe Relocated	483390078	9472A Hwy 1484,	03	PAMS, SLAMS	UV	Continuous	General, Background, Population Exposure	Urban Scale	Suburban	30.350331	-95.425127
Houston-The Woodlands-Sugar Land, TX	Conroe Relocated	483390078	9472A Hwy 1484,	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	General, Background	Neighborhood		30.350331	-95.425127
Houston-The Woodlands-Sugar Land, TX	Conroe Relocated	483390078	9472A Hwy 1484,	Solar Radiation				Highest Concentration	Neighborhood		30.350331	-95.425127

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	30.350331	-95.425127
Houston-The Woodlands-Sugar Land, TX	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	30.350331	-95.425127
Houston-The Woodlands-Sugar Land, TX	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	PM2.5 (Speciation)	SPM	Elements	24 Hours; 1, 6 Days	Source Oriented	Middle Scale	Suburban	28.964407	-95.354970
Houston-The Woodlands-Sugar Land, TX	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	PM2.5 Mass (Speciation)	SPM	Sequential FRM Gravimetric, 145	24 Hours; 1, 6 Days	Source Oriented	Middle Scale	Suburban	28.964407	-95.354970
Houston-The Woodlands-Sugar Land, TX	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	SO2	SPM	Pulsed Fluorescence	Continuous	Source Oriented	Middle Scale	Suburban	28.964407	-95.354970
Houston-The Woodlands-Sugar Land, TX	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Middle Scale	Suburban	28.964407	-95.354970
Houston-The Woodlands-Sugar Land, TX	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Middle Scale	Suburban	28.964407	-95.354970
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street		9511 Avenue V 1/2, Galveston	Dew Point	SPM	Derived at site	Continuous	General, Background, Upwind Background	Middle Scale	Suburban	29.254467	-94.861283
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street		9511 Avenue V 1/2, Galveston	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	General, Background, Upwind Background	Middle Scale, Urban Scale	Suburban	29.254467	-94.861283

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration, Upwind Background	Urban Scale	Suburban	29.254467	-94.861283
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport	Regional Scale	Suburban	29.254467	-94.861283
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street		9511 Avenue V 1/2, Galveston	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Suburban	29.254467	-94.861283
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration, Upwind Background	Urban Scale	Suburban	29.254467	-94.861283
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Suburban	29.254467	-94.861283
Houston-The Woodlands-Sugar Land, TX	Galveston 99th Street		9511 Avenue V 1/2, Galveston	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Background, Max Ozone Concentration, Upwind Background	Urban Scale	Suburban	29.254467	-94.861283
Houston-The Woodlands-Sugar Land, TX	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Barometric Pressure	PAMS, SLAMS	Barometric pressure transducer	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Urban Scale	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	NO, NO2, NOx	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Suburban	29.901044	-95.326142

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	NOy (High Sensitivity)	PAMS, SLAMS	Chemi- luminescence	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	О3	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration, Population Exposure	Neighborhood	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	PM2.5 (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1, 12 Days	Population Exposure	Neighborhood	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	Relative Humidity	PAMS, SLAMS	Humidity Sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood		29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Aldine		4510 1/2 Aldine Mail Rd, Houston	Wind	Other, PAMS,	AIO2 sonic weather sensor	Continuous	General, Background, Max Ozone Concentration	Middle Scale, Neighborhood		29.901044	-95.326142
Houston-The Woodlands-Sugar Land, TX	Houston Bayland Park		6400 Bissonnet Street, Houston	NO, NO2, NOx	SLAMS	Chemi-	Continuous	Population Exposure	Middle Scale, Neighborhood		29.695754	-95.499238

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The												
Woodlands-Sugar Land, TX	Houston Bayland Park		6400 Bissonnet Street, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Middle Scale	Suburban	29.695754	-95.499238
Houston-The Woodlands-Sugar Land, TX	Houston Bayland Park		6400 Bissonnet Street, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood		29.695754	-95.499238
Houston-The Woodlands-Sugar Land, TX	Houston Bayland Park		6400 Bissonnet Street, Houston	Solar Radiation	SDM	Photovoltaic		General, Background, Max Precursor Emissions Impact	Middle Scale	Suburban	29.695754	-95.499238
Houston-The Woodlands-Sugar	Houston Bayland		6400 Bissonnet	Temperature		AIO2 sonic weather		General, Background, Max Precursor Emissions				
Houston-The Woodlands-Sugar Land, TX	Park Houston Bayland Park		Street, Houston 6400 Bissonnet Street, Houston	(Outdoor) Wind	SPM	AIO2 sonic weather sensor	Continuous	Impact General, Background, Max Precursor Emissions Impact	Middle Scale Middle Scale	Suburban	29.695754	-95.499238 -95.499238
Houston-The Woodlands-Sugar Land, TX	Houston Croquet		13826 1/2 Croquet,		SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood		29.623963	-95.474337
Houston-The Woodlands-Sugar Land, TX	Houston Croquet	482010051	13826 1/2 Croquet, Houston	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Suburban	29.623963	-95.474337
Houston-The Woodlands-Sugar Land, TX	Houston Croquet	482010051	13826 1/2 Croquet, Houston	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	29.623963	-95.474337
Houston-The Woodlands-Sugar Land, TX	Houston Croquet	482010051	13826 1/2 Croquet, Houston	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood	Suburban	29.623963	-95.474337

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX			4514 1/2 Durant Street, Deer Park	Carbonyl		DNPH Silica HPLC	8 Hour; Seasonal, 24 Hours; Seasonal	Max Precursor Emissions	Neighborhood	Urban and	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	CO (High Sensitivity)	NCORE, SLAMS	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	NO2 (Direct)	PAMS, SLAMS	Direct-Read NO2	Continuous	Population Exposure, Source Oriented	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	NOy (High Sensitivity)	NCORE, PAMS, SLAMS	Chemi- luminescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	03	NCORE, PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	PM10 FEM	NCORE, SLAMS	Broadband spectrocopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	PM10-2.5	NCORE, SLAMS	Broadband spectrocopy, 640	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	PM2.5 (FRM)	NCORE, SLAMS	Sequential FRM Gravimetric,	24 Hours; 1, 3 Days	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	PM2.5 (Speciation)	Csn Stn, Csn Supplemental, SLAMS	Carbons, Elements, Ions, SASS, URG	24 Hours; 1, 3 Days	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	PM2.5 (Speciation)	Csn Stn, QA Collocated, SLAMS	Carbons, Elements, Ions, SASS, URG	24 Hours; 1, 6 Days, 24 Hours; 1, 3 Days	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	PM2.5 FEM	NCORE, SLAMS	Broadband spectrocopy 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	General, Background	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	Relative Humidity	NCORE, PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	SO2 (High Sensitivity)	NCORE, SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The	Houston Deer Park		4514 1/2 Durant Street, Deer Park	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX			4514 1/2 Durant Street, Deer Park	Speciated VOC (AutoGC)	PAMS, SLAMS		Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and	29.670044	-95.128503

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	Temperature (Outdoor)	NCORE, PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	TNMOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Max Precursor Emissions Impact, Population Exposure	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston Deer Park #2		4514 1/2 Durant Street, Deer Park	Wind	NCORE, PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.670044	-95.128503
Houston-The Woodlands-Sugar Land, TX	Houston East	482011034	1262 1/2 Mae Drive, Houston	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Highest Concentration, Population Exposure	Middle Scale, Neighborhood	Suburban	29.768025	-95.220567
Houston-The Woodlands-Sugar Land, TX	Houston East		1262 1/2 Mae Drive, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.768025	-95.220567
Houston-The Woodlands-Sugar Land, TX	Houston East		1262 1/2 Mae Drive, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population	Neighborhood		29.768025	-95.220567
Houston-The Woodlands-Sugar Land, TX	Houston East		1262 1/2 Mae Drive, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor		Population Exposure	Urban Scale	Suburban	29.768025	-95.220567
Houston-The Woodlands-Sugar Land, TX	Houston East		1262 1/2 Mae Drive, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population	Neighborhood		29.768025	-95.220567

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Houston Harvard Street		160 Harvard Street, Houston	NO, NO2, NOx	SPM	Chemi- luminescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.772862	-95.395874
Houston-The Woodlands-Sugar Land, TX	Houston Harvard Street		160 Harvard Street, Houston	03	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.772862	-95.395874
Houston-The Woodlands-Sugar Land, TX	Houston Harvard Street		160 Harvard Street, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	29.772862	-95.395874
Houston-The Woodlands-Sugar Land, TX	Houston Harvard Street		160 Harvard Street, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	29.772862	-95.395874
Houston-The Woodlands-Sugar Land, TX	Houston Monroe	482010062	9726 1/2 Monroe, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.625637	-95.267033
Houston-The Woodlands-Sugar Land, TX	Houston Monroe	482010062	9726 1/2 Monroe, Houston	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Suburban	29.625637	-95.267033
Houston-The Woodlands-Sugar Land, TX	Houston Monroe	482010062	9726 1/2 Monroe, Houston	Precipitation	SPM	Continuous	Continuous	General, Background	Neighborhood	Suburban	29.625637	-95.267033
Houston-The Woodlands-Sugar Land, TX	Houston North Loop	482011052	822 North Loop,	со	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.814392	-95.387818
Houston-The Woodlands-Sugar Land, TX	Houston North Loop	482011052	822 North Loop,	NO, NO2, NOx	Near Road, SLAMS	Chemi- luminescence		Max Precursor Emissions	Microscale	Urban and Center City	29.814392	-95.387818

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Houston North Loop	482011052	822 North Loop, Houston	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.814392	-95.387818
Houston-The Woodlands-Sugar Land, TX	Houston North Loop	482011052	822 North Loop, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.814392	-95.387818
Houston-The Woodlands-Sugar Land, TX	Houston North Loop	482011052	822 North Loop, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.814392	-95.387818
Houston-The Woodlands-Sugar Land, TX	Houston North Wayside		7330 1/2 North Wayside, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.828524	-95.283973
Houston-The Woodlands-Sugar Land, TX	Houston North Wayside		7330 1/2 North Wayside, Houston	PM10 TEOM non- NAAQS comparable	- SPM	TEOM Gravimetric with modification, 879	Continuous	Population Exposure	Neighborhood	Suburban	29.828524	-95.283973
Houston-The Woodlands-Sugar Land, TX	Houston North Wayside		7330 1/2 North Wayside, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood		29.828524	-95.283973
Houston-The Woodlands-Sugar Land, TX	Houston North Wayside		7330 1/2 North Wayside, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.828524	-95.283973
Houston-The Woodlands-Sugar Land, TX	Houston North Wayside		7330 1/2 North Wayside, Houston	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.828524	-95.283973
Houston-The Woodlands-Sugar Land, TX	Houston Southwest Freeway		5617 Westward Avenue, Houston	NO, NO2, NOx	Near Road, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.721607	-95.492668

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Houston Southwest Freeway	482011066	5617 Westward Avenue, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.721607	-95.492668
Houston-The Woodlands-Sugar Land, TX	Houston Southwest Freeway	482011066	5617 Westward Avenue, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.721607	-95.492668
Houston-The Woodlands-Sugar Land, TX	Houston Westhollow	482010066	3333 1/2 Hwy 6 South, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.723360	-95.635890
Houston-The Woodlands-Sugar Land, TX	Houston Westhollow	482010066	3333 1/2 Hwy 6 South, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.723360	-95.635890
Houston-The Woodlands-Sugar Land, TX	Houston Westhollow	482010066	3333 1/2 Hwy 6 South, Houston	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	29.723360	-95.635890
Houston-The Woodlands-Sugar Land, TX	Houston Westhollow		3333 1/2 Hwy 6 South, Houston	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood		29.723360	-95.635890
Houston-The Woodlands-Sugar	La Porte Airport		La Porte Airport, 2434 Buchanan					General,				
Houston-The Woodlands-Sugar	· ·		La Porte Airport, 2434 Buchanan	Precipitation	PAMS, SLAMS	_	Continuous	Regional	Neighborhood		29.672043	-95.064700
Houston-The Woodlands-Sugar Land, TX	C243 La Porte Airport C243		La Porte Airport, 2434 Buchanan Street, La Porte	Radar Profiler Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Regional Scale Neighborhood		29.672043	-95.064700 -95.064700

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The			La Porte Airport,			AIO2 sonic						
Woodlands-Sugar Land, TX	C243	482011043	2434 Buchanan Street, La Porte	Wind	PAMS, SLAMS	weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.672043	-95.064700
Houston-The Woodlands-Sugar Land, TX	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure, Source Oriented	Middle Scale, Neighborhood	Suburban	29.043752	-95.472959
Houston-The Woodlands-Sugar			109B Brazoria Hwy 332 West, Lake			UV		Population Exposure, Source				
Land, TX	Lake Jackson	480391016	Jackson	03	SLAMS	Photometric	Continuous	Oriented	Neighborhood	Suburban	29.043752	-95.472959
Houston-The Woodlands-Sugar Land, TX	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale	Suburban	29.043752	-95.472959
Houston-The Woodlands-Sugar Land, TX	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale	Suburban	29.043752	-95.472959
Houston-The Woodlands-Sugar Land, TX	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale, Regional Scale	Suburban	29.043752	-95.472959
Houston-The Woodlands-Sugar Land, TX	Lang	482010047	4401 1/2 Lang Rd, Houston	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure	Middle Scale, Urban Scale	Suburban	29.834214	-95.489122
Houston-The Woodlands-Sugar Land, TX	Lang	482010047	4401 1/2 Lang Rd, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	29.834214	-95.489122
Houston-The Woodlands-Sugar Land, TX	Lang	482010047	4401 1/2 Lang Rd, Houston	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Suburban	29.834214	-95.489122

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Lynchburg Ferry	482011015	4364 Independence Parkway South,	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Source Oriented	Middle Scale, Neighborhood	Suburban	29.758974	-95.079341
Houston-The Woodlands-Sugar Land, TX	Lynchburg Ferry		4364 Independence Parkway South,	·	SLAMS	UV Photometric	Continuous	Source Oriented	Middle Scale	Suburban	29.758974	-95.079341 -95.079341
Houston-The Woodlands-Sugar Land, TX	Lynchburg Ferry		4364 Independence Parkway South,			Photovoltaic		Highest Concentration	Neighborhood		29.758974	-95.079341
Houston-The Woodlands-Sugar Land, TX	Lynchburg Ferry		4364 Independence Parkway South,		SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood		29.758974	-95.079341
Houston-The Woodlands-Sugar Land, TX	Lynchburg Ferry		4364 Independence Parkway South,	,	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood		29.758974	-95.079341
Houston-The Woodlands-Sugar Land, TX	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure	Urban Scale	Suburban	29.520448	-95.392514
Houston-The Woodlands-Sugar Land, TX	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	29.520448	-95.392514
Houston-The Woodlands-Sugar Land, TX	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	29.520448	-95.392514
Houston-The Woodlands-Sugar Land, TX	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	29.520448	-95.392514

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Northwest Harris County	482010029	16822 Kitzman,	Dew Point	SPM	Derived at site	Continuous	General, Background	Microscale	Rural	30.039542	-95.673956
Houston-The Woodlands-Sugar Land, TX	·		16822 Kitzman,	NO, NO2, NOx	PAMS, SLAMS	Chemi-	Continuous	Extreme Downwind, Population Exposure	Urban Scale	Rural	30.039542	-95.673956
Houston-The Woodlands-Sugar Land, TX	Northwest Harris County	482010029	16822 Kitzman, Tomball	О3	PAMS, SLAMS	UV Photometric	Continuous	Extreme Downwind, Population Exposure	Urban Scale	Rural	30.039542	-95.673956
Houston-The Woodlands-Sugar Land, TX	Northwest Harris County	482010029	16822 Kitzman, Tomball	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	30.039542	-95.673956
Houston-The Woodlands-Sugar Land, TX	Northwest Harris County	482010029	16822 Kitzman, Tomball	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Urban Scale	Rural	30.039542	-95.673956
Houston-The Woodlands-Sugar Land, TX	Northwest Harris County	482010029	16822 Kitzman, Tomball	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	30.039542	-95.673956
Houston-The Woodlands-Sugar Land, TX	Northwest Harris County	482010029	16822 Kitzman, Tomball	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Downwind, General, Background, Upwind Background	Urban Scale	Rural	30.039542	-95.673956
Houston-The Woodlands-Sugar Land, TX	Park Place		7421 Park Place Blvd, Houston	Barometric Pressure	SPM	Barometric pressure transducer	Continuous	General, Background	Neighborhood	Urban and Center City	29.686293	-95.294726
Houston-The Woodlands-Sugar Land, TX	Park Place		7421 Park Place Blvd, Houston	Dew Point	SPM	Derived at site	Continuous	General, Background	Neighborhood	Urban and Center City	29.686293	-95.294726

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The												
Woodlands-Sugar			7421 Park Place			Chemi-		Population		Urban and		
Land, TX	Park Place	482010416	Blvd, Houston	NO, NO2, NOx	SPM	luminescence	Continuous	Exposure	Neighborhood	Center City	29.686293	-95.294726
Houston-The Woodlands-Sugar Land, TX	Park Place	482010416	7421 Park Place Blvd, Houston	03	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.686293	-95.294726
Zarray 174	T di ivi i dece	.02020.20	2.14/1.045.6.1		<u> </u>		55.11.11.000			Guille Gity	23.000230	30.23.7.20
Houston-The Woodlands-Sugar Land, TX	Park Place		7421 Park Place Blvd, Houston	Precipitation	SPM	Continuous	Continuous	General, Background	Neighborhood	Urban and Center City	29.686293	-95.294726
,			.,							,		
Houston-The Woodlands-Sugar			7421 Park Place	Relative		Humidity		General,		Urban and		
Land, TX	Park Place	482010416	Blvd, Houston	Humidity	SPM	Sensor	Continuous	Background	Neighborhood	Center City	29.686293	-95.294726
Houston-The Woodlands-Sugar Land, TX	Park Place		7421 Park Place Blvd, Houston	S02	SPM	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.686293	-95.294726
Houston-The Woodlands-Sugar Land, TX	Park Place	482010416	7421 Park Place Blvd, Houston	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	29.686293	-95.294726
Houston-The Woodlands-Sugar Land, TX	Park Place		7421 Park Place Blvd, Houston	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Urban and Center City	29.686293	-95.294726
Houston-The Woodlands-Sugar Land, TX	Park Place	482010416	7421 Park Place Blvd, Houston	UV Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	29.686293	-95.294726
Houston-The Woodlands-Sugar Land, TX	Park Place	482010416	7421 Park Place Blvd, Houston	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Urban and Center City	29.686293	-95.294726

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure	Middle Scale, Neighborhood	Suburban	29.583056	-95.015572
Houston-The Woodlands-Sugar Land, TX	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.583056	-95.015572
Houston-The Woodlands-Sugar Land, TX	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.583056	-95.015572
Houston-The Woodlands-Sugar Land, TX	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale	Suburban	29.583056	-95.015572
Houston-The Woodlands-Sugar Land, TX	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale	Suburban	29.583056	-95.015572
Houston-The Woodlands-Sugar Land, TX	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale	Suburban	29.583056	-95.015572
Houston-The Woodlands-Sugar Land, TX	Smith Point Hawkins Camp		1850 Hawkins Camp Rd, Anahuac	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Neighborhood	Suburban	29.546252	-94.787000
Houston-The Woodlands-Sugar Land, TX	Smith Point Hawkins Camp		1850 Hawkins Camp Rd, Anahuac	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Neighborhood	Suburban	29.546252	-94.787000
Houston-The Woodlands-Sugar Land, TX	Texas City Ball Park		2516 1/2 Texas Avenue, Texas City	SO2	SPM	Pulsed Fluorescence	Continuous	Highest Concentration	Neighborhood	Urban and Center City	29.385237	-94.931531

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-The Woodlands-Sugar Land, TX	Texas City Fire Station		2516 Texas Avenue, Texas City	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	_	Neighborhood	Urban and Center City	29.384793	-94.931306
Killeen-Temple- Fort Hood, TX	Killeen Skylark Field		1605 Stone Tree Drive, Killeen	NO, NO2, NOx	SPM	Chemi- luminescence	Continuous	General, Background	Urban Scale	Urban and Center City	31.088008	-97.679746
Killeen-Temple- Fort Hood, TX	Killeen Skylark Field		1605 Stone Tree Drive, Killeen	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Urban and Center City	31.088008	-97.679746
Killeen-Temple- Fort Hood, TX	Killeen Skylark Field		1605 Stone Tree Drive, Killeen	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Urban and Center City	31.088008	-97.679746
Killeen-Temple- Fort Hood, TX	Killeen Skylark Field		1605 Stone Tree Drive, Killeen	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Urban and Center City	31.088008	-97.679746
Killeen-Temple- Fort Hood, TX	Temple Georgia		8406 Georgia Avenue, Temple	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	31.122445	-97.431032
Killeen-Temple- Fort Hood, TX	Temple Georgia		8406 Georgia Avenue, Temple	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Suburban	31.122445	-97.431032
Killeen-Temple- Fort Hood, TX	Temple Georgia		8406 Georgia Avenue, Temple	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood		31.122445	-97.431032
Killeen-Temple- Fort Hood, TX	Temple Georgia		8406 Georgia Avenue, Temple	Wind	SPM	AIO2 sonic weather sensor		General, Background	Neighborhood		31.122445	-97.431032

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Kingsville, TX	National Seashore	482730314	20420 Park Road, Corpus Christi	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport	Regional Scale	Rural	27.422435	-97.300857
Kingsville, TX	National Seashore	482730314	20420 Park Road, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Rural	27.422435	-97.300857
Kingsville, TX	National Seashore	482730314	20420 Park Road, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Rural	27.422435	-97.300857
Laredo, TX	Laredo Bridge	484790017	700 Zaragosa St, Laredo	PM10 (FRM)	Border Grant, SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Highest Concentration	Microscale	Urban and Center City	27.501851	-99.502968
Laredo, TX	Laredo Bridge	484790017	700 Zaragosa St, Laredo	Speciated VOC (Canister)	Border Grant, SLAMS	Canister GC- MS	24 Hours; 1, 6 Days	Highest Concentration	Neighborhood	Urban and Center City	27.501851	-99.502968
Laredo, TX	Laredo Bridge	484790017	700 Zaragosa St, Laredo	Temperature (Outdoor)	Border Grant, SLAMS	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.501851	-99.502968
Laredo, TX	Laredo Bridge	484790017	700 Zaragosa St, Laredo	Wind	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.501851	-99.502968
Laredo, TX	Laredo College		West End Washington Street, (corner of Taylor and Crawford Roads), Laredo	СО	Border Grant, SLAMS	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood	Urban and	27.507972	-99.524031
Laredo, TX	Laredo College		West End Washington Street, (corner of Taylor and Crawford Roads), Laredo	03	Border Grant, SLAMS	UV Photometric	Continuous	Population	Neighborhood	Urban and	27.507972	-99.524031

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Laredo, TX	Laredo College	484790016	West End Washington Street, (corner of Taylor and Crawford Roads), Laredo	PM10 (FRM)	Border Grant, SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Neighborhood	Urban and Center City	27.507972	-99.524031
Laredo, TX	Laredo College		West End Washington Street, (corner of Taylor and Crawford Roads), Laredo	Temperature (Outdoor)	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.507972	-99.524031
	·		West End Washington Street, (corner of Taylor and Crawford	· ,	Border Grant,	AIO2 sonic weather		Population	·	Urban and		
Laredo, TX	Laredo College		Roads), Laredo Mines Road 11601	Wind PM2.5 FEM	SLAMS	Beta Attenuation,	Continuous	Source Oriented	Neighborhood	·	27.507972 27.599615	-99.524031 -99.533422
Laredo, TX Longview, TX	World Trade Bridge Longview	481830001	Gregg Co Airport near Longview,	NO, NO2, NOx	SPM	Chemi-	Continuous	Oriented Population Exposure	Microscale Neighborhood	Suburban	32.378678	-94.711814
	Longview	481830001	Gregg Co Airport near Longview,	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood		32.378678	-94.711814
Longview, TX	·		Gregg Co Airport near Longview,		SPM			General,	·		32.378678	-94.711814
Longview, TX	Longview	481830001	Gregg Co Airport near Longview,	Precipitation		Pulsed	Continuous	General, Background, Population	Neighborhood			
Longview, TX	Longview	481830001 481830001	Gregg Co Airport near Longview,	SO2 Solar Radiation	SLAMS	Photovoltaic	Continuous	Exposure General, Background	Neighborhood Neighborhood		32.378678 32.378678	-94.711814 -94.711814

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Longview, TX	Longview	481830001	Gregg Co Airport near Longview, Longview	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.378678	-94.711814
Longview, TX	Longview	481830001	Gregg Co Airport near Longview, Longview	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.378678	-94.711814
Longview, TX	Tatum CR 2181d Martin Creek Lake	484011082	9515 County Road 2181d, Tatum	SO2	SPM	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	32.277908	-94.570866
Longview, TX	Tatum CR 2181d Martin Creek Lake	484011082	9515 County Road 2181d, Tatum	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.277908	-94.570866
Longview, TX	Tatum CR 2181d Martin Creek Lake	484011082	9515 County Road 2181d, Tatum	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.277908	-94.570866
Lubbock, TX	Lubbock 12th Street	483031028	3901 East 12th Street, Lubbock	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Urban and Center City	33.585560	-101.786947
Lubbock, TX	Lubbock 12th Street	483031028	3901 East 12th Street, Lubbock	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Regional Scale	Urban and Center City	33.585560	-101.786947
Lubbock, TX	Lubbock 12th Street		3901 East 12th	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Regional Scale	Urban and	33.585560	-101.786947
Marshall, TX	Hallsville Red Oak Road		9206 Red Oak Road, Hallsville	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	·	32.470217	-94.481608

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Marshall, TX	Hallsville Red Oak Road	482031079	9206 Red Oak Road, Hallsville	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.470217	-94.481608
Marshall, TX	Hallsville Red Oak Road	482031079	9206 Red Oak Road, Hallsville	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.470217	-94.481608
Marshall, TX	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	General, Background	Regional Scale, Urban Scale	Rural	32.668997	-94.167461
Marshall, TX	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	03	SLAMS	UV Photometric	Continuous	General, Background	Regional Scale	Rural	32.668997	-94.167461
Marshall, TX	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	PM2.5 (Speciation)	Csn Supplemental, SLAMS	Carbons, Elements, Ions, 2025, 2025	24 Hours; 1, 6 Days, 24 Hours; 1, 3 Days		Regional Scale	Rural	32.668997	-94.167461
Marshall, TX	Karnack		Hwy 134 & Spur 449, Not In A City	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	General, Background	Regional Scale		32.668997	-94.167461
			Hwy 134 & Spur	Solar Radiation		Photovoltaic		General,	Urban Scale	Rural	32.668997	-94.167461
Marshall, TX	Karnack		Hwy 134 & Spur	Temperature		AIO2 sonic weather	Continuous	General,				
Marshall, TX	Karnack		Hwy 134 & Spur	(Outdoor)	SPM	Visibility	Continuous	General,	Urban Scale	Rural	32.668997	-94.167461
Marshall, TX	Karnack	482030002	449, Not In A City	Visibility	SPM	Sensor	Continuous	Background	Urban Scale	Rural	32.668997	-94.167461

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Marshall, TX	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	32.668997	-94.167461
McAllen-Edinburg- Mission, TX	Edinburg East Freddy Gonzalez Drive	482151046	1491 East Freddy Gonzalez Drive, Edinburg	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Regional Scale	Urban and Center City	26.288492	-98.152059
McAllen-Edinburg- Mission, TX	Edinburg East Freddy Gonzalez Drive	482151046	1491 East Freddy Gonzalez Drive, Edinburg	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Regional Scale	Urban and Center City	26.288492	-98.152059
McAllen-Edinburg- Mission, TX	Edinburg East Freddy Gonzalez Drive	482151046	1491 East Freddy Gonzalez Drive, Edinburg	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Regional Scale	Urban and Center City	26.288492	-98.152059
McAllen-Edinburg- Mission, TX	Mission	482150043	2300 North Glasscock, Mission	O3	SLAMS	UV Photometric	Continuous	General, Background	Neighborhood	Suburban	26.226210	-98.291069
McAllen-Edinburg- Mission, TX	Mission	482150043	2300 North Glasscock, Mission	PM10 FEM	SPM	Broadband spectrocopy, 639	Continuous	Population Exposure	Neighborhood	Suburban	26.226210	-98.291069
McAllen-Edinburg- Mission, TX	Mission	482150043	2300 North Glasscock, Mission	PM2.5 FEM	SPM	Broadband spectrocopy 638	Continuous	Population Exposure	Neighborhood	Suburban	26.226210	-98.291069
McAllen-Edinburg-	Mission		2300 North Glasscock, Mission			Photovoltaic		General, Background	Neighborhood		26.226210	-98.291069
McAllen-Edinburg-	Mission		2300 North Glasscock, Mission	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor		General, Background	Neighborhood		26.226210	-98.291069

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
McAllen-Edinburg- Mission, TX	Mission		2300 North Glasscock, Mission	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	26.226210	-98.291069
Mount Pleasant, TX	Cookville FM 4855	484491078	385 CR 4855, Not In A City	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	33.075132	-94.847301
Mount Pleasant, TX	Cookville FM 4855	484491078	385 CR 4855, Not In A City	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	33.075132	-94.847301
Mount Pleasant, TX	Cookville FM 4855	484491078	385 CR 4855, Not In A City	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	33.075132	-94.847301
Odessa, TX	Odessa Gonzales	481351014	2700 Disney, Odessa	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Highest Concentration	Regional Scale	Suburban	31.870262	-102.334760
Odessa, TX	Odessa Gonzales	481351014	2700 Disney, Odessa	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	31.870262	-102.334760
Odessa, TX	Odessa Gonzales	481351014	2700 Disney,	Wind	SPM	Potentiometer Cup Anemometer		Population	Neighborhood		31 870262	-102.334760
San Antonio-New Braunfels, TX	Calaveras Lake		14620 Laguna Rd, San Antonio	NO, NO2, NOx		Chemi- luminescence			Urban Scale	Rural	29.275387	-98.311694
San Antonio-New Braunfels, TX	Calaveras Lake		14620 Laguna Rd, San Antonio	03	SLAMS	UV Photometric		Source Oriented; Upwind Background	Urban Scale	Rural	29.275387	-98.311694

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
San Antonio-New Braunfels, TX	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure, Source Oriented	Urban Scale	Rural	29.275387	-98.311694
San Antonio-New Braunfels, TX	Calaveras Lake		14620 Laguna Rd, San Antonio	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure, Source Oriented	Neighborhood		29.275387	-98.311694
San Antonio-New Braunfels, TX	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Urban Scale	Rural	29.275387	-98.311694
San Antonio-New Braunfels, TX	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Urban Scale	Rural	29.275387	-98.311694
San Antonio-New Braunfels, TX	Camp Bullis	480290052	F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	NO, NO2, NOx	SPM	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Urban Scale	Rural	29.632083	-98.564942
San Antonio-New Braunfels, TX	Camp Bullis	480290052	F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration, Population Exposure	Urban Scale	Rural	29.632083	-98.564942
San Antonio-New Braunfels, TX	Camp Bullis		F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	Solar Radiation	SPM	Photovoltaic	Continuous	Highest	Urban Scale	Rural	29.632083	-98.564942
San Antonio-New Braunfels, TX	Camp Bullis		F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor		Highest Concentration		Rural	29.632083	-98.564942
San Antonio-New Braunfels, TX	Camp Bullis		F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	Wind	SPM	AIO2 sonic weather sensor		Highest Concentration		Rural	29.632083	-98.564942

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
San Antonio-New Braunfels, TX	Floresville Hospital Boulevard	484931038	1404 Hospital Blvd, Floresville	NO, NO2, NOx	SPM	Chemi- luminescence	Continuous	Max Precursor Emissions Impact, Upwind Background	Urban Scale	Rural	29.130676	-98.148075
San Antonio-New Braunfels, TX	Floresville Hospital Boulevard	484931038	1404 Hospital Blvd, Floresville	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Rural	29.130676	-98.148075
San Antonio-New Braunfels, TX	Floresville Hospital Boulevard	484931038	1404 Hospital Blvd, Floresville	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	29.130676	-98.148075
San Antonio-New Braunfels, TX	Frank Wing Municipal Court	480290060	401 South Frio St, San Antonio	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1, 6 Days	Population Exposure	Middle Scale	Urban and Center City	29.422193	-98.505437
San Antonio-New Braunfels, TX	Old Hwy 90	480290677	911 Old Hwy 90 West, San Antonio	PM2.5 TEOM non-NAAQS comparable	SPM	TEOM Gravimetric, 702	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.423939	-98.580505
San Antonio-New Braunfels, TX	San Antonio Bulverde Parkway	480291087	3843 Bulverde Parkway, San Antonio	PM10 FEM	SLAMS	Broadband spectrocopy, 639	Continuous	Population Exposure	Neighborhood	Suburban	29.635139	-98.417676
San Antonio-New Braunfels, TX	San Antonio Bulverde Parkway	480291087	3843 Bulverde Parkway, San	PM2.5 FEM	SLAMS	Broadband spectrocopy 638		Population Exposure	Neighborhood		29.635139	-98.417676
San Antonio-New Braunfels, TX	San Antonio Bulverde Parkway	480291087	3843 Bulverde Parkway, San	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood		29.635139	-98.417676
San Antonio-New Braunfels, TX	San Antonio Bulverde Parkway	480291087	3843 Bulverde Parkway, San	Wind	SPM	AIO2 sonic weather sensor		General, Background	Neighborhood		29.635139	-98.417676

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
San Antonio-New Braunfels, TX	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	СО	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.529416	-98.391381
San Antonio-New Braunfels, TX	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	NO, NO2, NOx	Near Road, SLAMS	Chemi- luminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.529416	-98.391381
San Antonio-New Braunfels, TX	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.529416	-98.391381
San Antonio-New Braunfels, TX	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.529416	-98.391381
San Antonio-New Braunfels, TX	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.529416	-98.391381
San Antonio-New Braunfels, TX	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	NO, NO2, NOx	SLAMS	Chemi- luminescence	Continuous	Population Exposure	Neighborhood	Suburban	29.515054	-98.620189
San Antonio-New Braunfels, TX	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration, Population Exposure	Urban Scale	Suburban	29.515054	-98.620189
San Antonio-New Braunfels, TX	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	PM2.5 (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1, 12 Days	Population Exposure, Quality Assurance	Urban Scale	Suburban	29.515054	-98.620189
San Antonio-New Braunfels, TX	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Suburban	29.515054	-98.620189

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
San Antonio-New Braunfels, TX	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Urban Scale	Suburban	29.515054	-98.620189
San Antonio-New Braunfels, TX	San Antonio Northwest		6655 Bluebird Lane, San Antonio	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Urban Scale	Suburban	29.515054	-98.620189
San Antonio-New Braunfels, TX	Von Ormy Highway 16		17534 North State Highway 16, Not In A City	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure, Source Oriented	Microscale	Rural	29.162847	-98.589137
San Antonio-New Braunfels, TX	Von Ormy Highway 16	480131090	17534 North State Highway 16, Not In A City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Rural	29.162847	-98.589137
San Antonio-New Braunfels, TX	Von Ormy Highway 16	480131090	17534 North State Highway 16, Not In A City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	29.162847	-98.589137
Texarkana, TX- Texarkana, AR	Texarkana New Boston	480371031	2700 New Boston Rd, Texarkana	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Urban and Center City	33.436233	-94.077738
Texarkana, TX- Texarkana, AR	Texarkana New Boston	480371031	2700 New Boston Rd, Texarkana	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Urban and Center City	33.436233	-94.077738
Texarkana, TX- Texarkana, AR	Texarkana New Boston	480371031	2700 New Boston Rd, Texarkana	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Urban and Center City	33.436233	-94.077738
Tyler, TX	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler		SPM	Chemi- luminescence	Continuous	General, Background	Urban Scale	Rural	32.344033	-95.415757

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Tyler, TX	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler	03	SLAMS	UV Photometric	Continuous	General, Background	Urban Scale	Rural	32.344033	-95.415757
Tyler, TX	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler	Precipitation	SPM	Rain Gauge	Continuous	General, Background	Neighborhood	Rural	32.344033	-95.415757
Tyler, TX	Tyler Airport Relocated		14790 County Road 1145, Tyler	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Rural	32.344033	-95.415757
Tyler, TX	Tyler Airport Relocated		14790 County Road 1145, Tyler		SPM	AIO2 sonic weather sensor	Continuous	General,	Neighborhood		32.344033	-95.415757
Tyler, TX	Tyler Airport Relocated		14790 County Road 1145, Tyler	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood		32.344033	-95.415757
	Victoria		106 Mockingbird	03	SLAMS	UV Photometric	Continuous	Population	·	Urban and	28.836224	-97.005512
Victoria, TX			Lane, Victoria 106 Mockingbird					Highest	Neighborhood	Urban and		
Victoria, TX	Victoria		Lane, Victoria 106 Mockingbird	Solar Radiation Temperature		Photovoltaic AIO2 sonic weather		Highest	Neighborhood	Urban and	28.836224	-97.005512
Victoria, TX	Victoria	484690003	Lane, Victoria 106 Mockingbird	(Outdoor)	SPM	AIO2 sonic weather	Continuous	Concentration Highest	Neighborhood	Center City Urban and	28.836224	-97.005512
Victoria, TX	Victoria	484690003	Lane, Victoria	Wind	SPM	sensor	Continuous	Concentration	Neighborhood	Center City	28.836224	-97.005512

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Waco, TX	Waco Mazanec	483091037	4472 Mazanec Rd, Waco	CO	SLAMS	Gas Filter Correlation	Continuous	Upwind Background	Urban Scale	Rural	31.653086	-97.070694
			4472 Mazanec Rd,			UV		Upwind				
Waco, TX	Waco Mazanec	483091037	•	О3	SLAMS	Photometric	Continuous	Background	Regional Scale	Rural	31.653086	-97.070694
Waco, TX	Waco Mazanec	483091037	4472 Mazanec Rd, Waco	PM2.5 TEOM non-NAAQS comparable	SPM	TEOM Gravimetric, 702	Continuous	Regional Transport	Regional Scale	Rural	31.653086	-97.070694
Waco, TX	Waco Mazanec	483091037	4472 Mazanec Rd, Waco	SO2	SLAMS	Pulsed Fluorescence	Continuous	Upwind Background	Urban Scale	Rural	31.653086	-97.070694
Waco, TX	Waco Mazanec	483091037	4472 Mazanec Rd, Waco	Solar Radiation	SPM	Photovoltaic	Continuous	Regional Transport	Urban Scale	Rural	31.653086	-97.070694
Waco, TX	Waco Mazanec	483091037	4472 Mazanec Rd, Waco	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Urban Scale	Rural	31.653086	-97.070694
Waco, TX	Waco Mazanec	483091037	4472 Mazanec Rd, Waco	Wind	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Urban Scale	Rural	31.653086	-97.070694
	Bravo Big Bend	480430101	Big Bend National Park, Big Bend Nat	PM2.5 FEM	SPM	Beta Attenuation, 209		General, Background	Regional Scale		29.302568	-103.177901
z_ not applicable z_ not applicable	Bravo Big Bend	480430101	Big Bend National Park, Big Bend Nat		SPM	Aspirated Thermister	Continuous	General, Background	Microscale	Rural		-103.177901

	MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
	_ not applicable	Bravo Big Bend	480430101	Big Bend National Park, Big Bend Nat Park	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Regional Scale	Rural	29.302568	-103.177901
2	_ not applicable	Fairfield FM 2570 Ward Ranch	481611084	488 FM 2570, Fairfield	S02	SPM	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	31.797835	-96.103136
;	_ not applicable	Fairfield FM 2570 Ward Ranch	481611084	488 FM 2570, Fairfield	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Rural	31.797835	-96.103136
	_ not applicable	Fairfield FM 2570 Ward Ranch	481611084	488 FM 2570, Fairfield	Wind	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Rural	31.797835	-96.103136
	_ not applicable	Karnes County	482551070	1100B East Main Avenue, Karnes City	NO, NO2, NOx	SPM	Chemi- luminescence	Continuous	Max Precursor Emissions Impact, Upwind Background	Urban Scale	Rural	28.880444	-97.888059
	_ not applicable	Karnes County	482551070	1100B East Main Avenue, Karnes City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Rural	28.880444	-97.888059
	not applicable	Karnes County	482551070	1100B East Main Avenue, Karnes	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood		28.880444	-97.888059

Symbol/Acronym	Description
*	Micropolitan Statistical Area
**	County is not a Metropolitan or Micropolitan Statistical Area
***	Marshall, Texas, is no longer a Micropolitan Statistical Area according to the United States Office of Management and Budget (OMB) and is currently designated as a part of the Longview MSA, AQS is pending updates to match the new OMB designation.
N	Monitor is not suitable for comparison against the NAAQS as described in 40 Code of Federal Regulations Part 58.30
24-Hours; 1, 12 Days	1 24-hour sample, once every twelfth day
24-Hours; 1, 6 Days	1 24-hour sample, once every sixth day
24-Hours; 1, 3 Days	1 24-hour sample, once every third day
24-Hours, 1, 1 Days	1 24-hour sample, daily
24 Hours; Seasonal, 8 Hour; Seasonal	1 24-hour sample every sixth day seasonal, three eight-hour samples seasonal
24-Hour 1, 6 Days Seasonal	1 24-hour sample, once every sixth day seasonal
#	number
AMNP	Annual Monitoring Network Plan
AutoGC	automated gas chromatograph
Ave	avenue
BAM	beta attenuation method
Blvd	boulevard
2.1.0	
Border	The Border network designation is part of the SLAMS network for monitors within 100 kilometers of the United States/Mexico border.
CBSA	core based statistical area
CO	carbon monoxide
CR	county road
CSN STN	Chemical Speciation Network Speciation Trends Network site (includes NCore monitors/requirements, samples analyzed by EPA contracted laboratory)
DNPH	dinitrophenylhydrazine
Dr	drive
E	east
FM	farm-to-market
FEM	federal equivalent method
FRM	federal reference method
GC	gas chromatograph
GC-MS	gas chromatograph mass spectrometry
HiVol	high-volume
Hi-Vol ICP-MS	high-volume with inductively coupled plasma by mass spectrometry
HPLC	high performance liquid chromatography
Hwy(s)	highway(s)
IH .	Interstate Highway
LBJ	Lyndon B Johnson
LC	local conditions
Ln	lane
m	meter
Max	maximum
MSA	metropolitan statistical area/micropolitan statistical area
NCore	National Core Multipollutant Monitoring Stations

Appendix B: Ambient Air Monitoring Network Site List

Symbol/Acronym	Description
NE	northeast
NO_2	nitrogen dioxide
NO/NO ₂ /NO _x	nitrogen oxides
NO _y	total reactive nitrogen
O ₃	ozone
PAMS	Photochemical Assessment Monitoring Stations
Pkwy	parkway
PM_{10}	particulate matter of 10 micrometers or less in diameter
PM _{10-2.5}	coarse particulate matter
PM _{2.5}	particulate matter of 2.5 micrometers or less in diameter
Collocated QC	collocated (duplicate) monitor for quality control
Rd	road
S	south
SASS	Speciation Air Sampling System
SE	southeast
SETRPC	Southeast Texas Regional Planning Commission
SLAMS	State or Local Air Monitoring Stations
SO ₂	sulfur dioxide (one-hour and five-minute maximum monitors)
SPM	special purpose monitor
St	street
SVRD	service road
TCEQ	Texas Commission on Environmental Quality
TEOM	tapered element oscillating microbalance (not NAAQS comparable)
TNMOC	total non-methane organic compound
TSP (Pb)	total suspended particulate (lead)
TX	Texas
URG	Universal Research Group
UTEP	University of Texas at El Paso
UV	ultraviolet
VOC	volatile organic compound
W	west
Wind	All wind sampler types produce data for parameters 61101, 61103, 61104, 61105, and 61106.
Yd	yard

Appendix C

Population and Criteria Pollutant Monitor Requirements and Count Summary by Metropolitan Statistical Area

Appendix C: Population and Criteria Pollutant Monitor Requirements and Count Summary by Metropolitan Statistical Area

Texas Metropolitan Statistical Area	2022 Population Estimate ¹	NO ₂ and NO/NO _y Monitors Required ^{2,3}	NO ₂ and NO/NO _y Monitors Existing ^{2,3}	SO ₂ Monitors Required ²	SO ₂ Monitors Existing ^{2,4}	Pb Monitors Required	Pb Monitors Existing	O ₃ Monitors Required		CO Monitors Required ²	CO Monitors Existing ^{2,4}	PM ₁₀ Monitors Required ⁴	PM ₁₀ Monitors Existing ⁴	PM _{2.5} Monitors Required ⁴	PM _{2.5} Monitors Existing ⁴
Dallas-Fort Worth-Arlington	7,943,685	6	17	2	3	3	3	4	18	2	2	4-8	4	8	13
Houston-Pasadena-The Woodlands	7,340,118	6	20	3	6	0	0	4	21	2	3	4-8	6	8	18
San Antonio-New Braunfels	2,655,342	3	5	1	1	0	0	2	3	1	1	2-4	2	4	6
Austin-Round Rock-San Marcos	2,421,115	2	2	0	1	0	0	2	2	1	1	2-4	2	3	3
McAllen-Edinburg-Mission	888,367	0	0	0	0	0	0	1	1	0	0	1-2	1	2	2
El Paso	872,195	2	4	1	1	0	0	3	7	1	3	4-8	6	5	7
Killeen-Temple	496,228	0	1	0	0	0	0	2	2	0	0	0-1	0	0	1
Brownsville-Harlingen	425,208	0	0	0	0	0	0	1	1	0	0	0-1	0	1	2
Corpus Christi	421,628	0	0	0	3	0	0	2	2	0	0	0-1	1	1	3
Beaumont-Port Arthur	393,575	1	4	3	4	0	0	2	7	0	0	0-1	0	1	3
Lubbock	328,283	0	0	0	0	0	0	0	0	0	0	0-1	0	0	1
Longview (includes Marshall)	291,219	0	2	2	3	0	0	1	2	0	0	0-1	0	1	2
Waco	283,885	0	0	0	1	0	0	1	1	0	1	0-1	0	0	1
College Station-Bryan	277,824	0	0	1	1	0	0	0	0	0	0	0-1	0	1	1
Amarillo	271,171	0	0	1	2	0	0	0	0	0	0	0-1	0	0	1
Laredo	267,780	0	0	0	0	0	0	0	1	0	1	0-1	2	1	1
Tyler	241,922	0	1	0	0	0	0	1	1	0	0	0	0	0	0
Abilene	179,308	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Midland	177,216	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Odessa	160,869	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Wichita Falls	149,299	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Texarkana	146,408	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Sherman-Denison	143,131	0	0	0	0	0	0	0	0	0	0	0	0	0	0
San Angelo	121,839	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Victoria	98,196	0	0	0	0	0	0	1	1	0	0	0	0	0	0
Granbury ⁵	66,373	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Eagle Pass ⁵	57,843	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Corsicana ⁵	54,636	0	1	1	2	0	0	0	1	0	0	0	0	0	1
Mount Pleasant ⁵	43,924	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Big Spring⁵	33,672	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Kingsville ⁵	30,720	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Borger ⁵	20,215	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Karnes County ⁶	NA	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Freestone County ⁶	NA	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Big Bend National Park ⁶	NA	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Totals ³		20	58	18	32	3	3	27	72	7	12	17-44	24	37	71

¹United States Census Bureau population estimates as of July 1, 2022.

Delineation Files (census.gov)

CO - carbon monoxide

NA - not applicable

NO₂ and NO/NO_y - nitrogen dioxide, nitrogen oxide, and total reactive nitrogen compounds

 ${\rm PM}_{10}$ - particulate matter of 10 micrometers or less

PM_{2.5} - particulate matter of 2.5 micrometers or less

O₃ - ozone

 $^{^2}$ Required and existing counts include NO $_{v}$, high-sensitivity SO $_{2}$, and high-sensitivity CO monitors.

³Required monitor pending deployment is discussed in the applicable AMNP section.

⁴Individual monitors may fulfill multiple requirements and are only counted once. Collocated quality control monitors are not included in totals.

⁵Area is classified as a micropolitan statistical area and not subject to SLAMS (State or Local Air Monitoring Stations) requirements.

⁶Area not classified as a metropolitan or micropolitan statistical area; county population data is not applicable.

Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget

Appendix D

Nitrogen Dioxide, Nitrogen Oxide, and Total Reactive Nitrogen Monitor Requirements and Count Assessment

Appendix D: Nitrogen Dioxide, Nitrogen Oxide, and Total Reactive Nitrogen Monitor Requirements and Count Assessment

Core Based Statistical Areas	2022 Population Estimate ¹	Required NO ₂ Area-Wide Monitors	Required NO ₂ RA-40 Monitors	Required NO ₂ Near-Road Monitors	Required True NO ₂ PAMS Monitors	Required NO/NO _y PAMS/NCore Monitors	Total Required NO ₂ and NO/NO _y Monitors	Total Existing NO ₂ and NO/NO _y Monitors ²
Dallas-Fort Worth-Arlington	7,943,685	1	1	2	1	1	6	17
Houston-Pasadena-The Woodlands	7,340,118	1	1	2	1	1	6	20
San Antonio-New Braunfels	2,655,342	1	0	2	0	0	3	5
Austin-Round Rock-San Marcos	2,421,115	1	0	1	0	0	2	2
McAllen-Edinburg-Mission	888,367	0	0	0	0	0	0	0
El Paso	872,195	0	1	0	0	1	2	4
Killeen-Temple	496,228	0	0	0	0	0	0	1
Brownsville-Harlingen	425,208	0	0	0	0	0	0	0
Corpus Christi	421,628	0	0	0	0	0	0	0
Beaumont-Port Arthur	393,575	0	1	0	0	0	1	4
Lubbock	328,283	0	0	0	0	0	0	0
Longview	291,219	0	0	0	0	0	0	2
Waco	283,885	0	0	0	0	0	0	0
College Station-Bryan	277,824	0	0	0	0	0	0	0
Amarillo	271,171	0	0	0	0	0	0	0
Laredo	267,780	0	0	0	0	0	0	0
Tyler	241,922	0	0	0	0	0	0	1
Abilene	179,308	0	0	0	0	0	0	0
Midland	177,216	0	0	0	0	0	0	0
Odessa	160,869	0	0	0	0	0	0	0
Wichita Falls	149,299	0	0	0	0	0	0	0
Texarkana	146,408	0	0	0	0	0	0	0
Sherman-Denison	143,131	0	0	0	0	0	0	0
San Angelo	121,839	0	0	0	0	0	0	0
Victoria	98,196	0	0	0	0	0	0	0
Corsicana ³	54,636	0	0	0	0	0	0	1
Karnes County ⁴	NA	0	0	0	0	0	0	1
Totals 1 Inited States Census Rureau population estimates		4	4	7	2 tical Areas Population	3	20	58

¹United States Census Bureau population estimates as of July 1, 2022.

NCore - National Core Multipollutant Monitoring Stations

NO - nitrogen oxide

NO₂ - nitrogen dioxide

NO_Y - total reactive nitrogen compounds

PAMS - Photochemical Assessment Monitoring Stations

RA-40 - Regional Administrator 40

Core Based Statistical Areas are delineated by the United States Office of Management and Budget

Delineation Files (census.gov)

Metropolitan and Micropolitan Statistical Areas Population Totals: 2020-2022 (census.gov)

²Monitors may fulfill multiple monitoring requirements and are only counted once.

³Area is classified as a micropolitan statistical area and not subject to SLAMS (State or Local Air Monitoring Stations) requirements.

⁴Area not classified as a metropolitan or micropolitan statistical area; county population data is not applicable.

Appendix E

Sulfur Dioxide Monitor Requirements and Count Assessment

Core Based Statistical Area	County	2022 Population Estimates ¹	2022 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2022 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Dallas-Fort Worth-									_		_	
Arlington		7,943,685	_			6,190	49,170	1	0	1	2	3
	Collin		6	153	11	148						
	Dallas		237	1,025	345	916						
	Denton		299	437	342	394						
	Ellis		3,402	2,995	2,931	3,466						
	Hunt		2	48	1	50						
	Johnson		74	103	63	113						
	Kaufman		72	146	89	129						
	Parker		117	178	154	141						
	Rockwall		0	10	0							
	Tarrant		20	793	20	793						
	Wise		13	28	12	30						
Houston-Pasadena-The Woodlands		7,340,118				44,347	325,510	2	0	1	3	6
	Austin		4	14	3	15						
	Brazoria		503	674	547	629						
	Chambers		213	293	252	255						
	Fort Bend		34,150	23,979	23,881	34,248						
	Galveston		1,070	1,272	1,077	1,264						
	Harris		6,280	8,125	6,692	7,713						
	Liberty		9	29	11	27						
	Montgomery		79	121	30	170						
	San Jacinto		0	5	1	4						
	Waller		0	23	2	21						
San Antonio-New												
Braunfels		2,655,342	0.555	10.555	10.7	12,832	34,074	1	0	0	1	1
	Atascosa		9,629	10,920	10,615	9,933						
	Bandera		0	2	0	_						
	Bexar		1,756	1,574	1,267	2,063						
	Comal		246	352	325	274						
	Guadalupe		99	176	128	147						
	Kendall		2	10	2	10						
	Medina		0	10	0	10						
	Wilson		217	397	219	394						

Core Based Statistical Area	County	2022 Population Estimates ¹	2022 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2022 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Austin-Round Rock-San		2 421 115				1 772	4 200	0	0	0	0	4
Marcos	Doctron	2,421,115	81	102	88	1,772 95	4,289	0	0	0	0	1
	Bastrop			22								
	Caldwell		0		0							
	Hays		1,114	1,459	1,428	1,144						
	Travis		118	377	129							
	Williamson		78	70	4	144						
McAllen-Edinburg-Mission		888,367				117	104	0	0	0	0	0
	Hidalgo		32	114	29							
El Paso		872,195				298	260	0	0	1	1	1
	El Paso		168	292	171	290						
	Hudspeth		6	9	6	9						
Killeen-Temple		496,228				172	86	0	0	0	0	0
	Bell		101	75	17	159						
	Coryell		0	8	0	8						
	Lampasas		0	5	0							
Brownsville-Harlingen		425,208				79	34	0	0	0	0	0
	Cameron		3	78	2							
Corpus Christi		421,628				1,095	461	0	0	0	0	3
	Aransas		0	12	0							
	Nueces		639	716	508							
	San Patricio		207	89	60	236						
Beaumont-Port Arthur		393,575				15,994	6,295	1	2	0	3	4
	Hardin		1	8	1	8						
	Jefferson		12,403	11,981	11,762							
	Orange		3,318	3,912	3,866	3,365						
Lubbock		328,283				860	282	0	0	0	0	0
	Cochran		0	609	0	609						
	Crosby		0	3	0	3						
	Garza		0	69	0	69						
	Hockley		56	47	1	102						
	Lubbock		6	74	9	71						
	Lynn		0	6	0							

Core Based Statistical Area	County	2022 Population Estimates ¹	2022 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2022 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Longview		291,219				19,269	5,611	1	1	0	2	3
	Gregg		26	80	20	85						
	Harrison		1,300	1,947	1,913	1,334						
	Rusk		17,828	43,744	43,729	17,842						
	Upshur		0	9	2	7						
Waco		283,885				3,397	964	0	0	0	0	1
	Bosque		1,190	1,316	1,310	1,195						
	Falls		0	7	0	7						
	McLennan		2,096	2,496	2,397	2,195						
College Station-Bryan		277,824				11,155	3,099	0	1	0	1	1
	Brazos		10	51	9	51						
	Burleson		0	7	0	7						
	Robertson		11,093	11,182	11,178	11,097						
Amarillo		271,171				15,851	4,298	0	1	0	1	2
	Armstrong		1	2	1	2						
	Carson		16	3	0							
	Oldham		0	1	0	_						
	Potter		15,632	8,273	8,217	15,688						
	Randall		110	115	83	141						
Laredo		267,780				221	59	0	0	0	0	0
	Webb		179	388	347	221						
Tyler		241,922				675	163	0	0	0	0	0
	Smith		619	481	425	675						
Abilene		179,308				67	12	0	0	0	0	0
	Callahan		0	3	0	3						
	Jones		31	26	22	35						
	Taylor		0	29	0							
Midland		177,216				5,845	1,036	0	0	0	0	0
	Martin	,	67	3,532	39	3,559	,					
	Midland		288	2,121	123	2,286						
Odessa		160,869	200	_,	120	1,758	283	0	0	0	0	0
	Ector	100,000	1,204	959	404	1,758	200	0			J	0

Core Based Statistical Area	County	2022 Population Estimates ¹	2022 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2022 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Wichita Falls		149,299				649	97	0	0	0	0	0
	Archer		0	2	0	2						
	Clay		63	61	59	66						
	Wichita		516	553	489	581						
Texarkana		146,408				47	7	0	0	0	0	0
	Bowie		27	56	35	47						
Sherman-Denison		143,131				60	9	0	0	0	0	0
	Grayson		8	57	6	60						
San Angelo		121,839				64	8	0	0	0	0	0
	Irion		0	34	0	34						
	Tom Green		1	31	1	30						
Victoria		98,196				8,279	813	0	0	0	0	0
	Goliad		8,217	7,959	7,955	8,221						
	Victoria		34	52	29	57						
Corsicana ³		54,636				3,619	198	NA	1	0	1	2
	Navarro		3,596	3,630	3,607	3,619						
Mount Pleasant ³		43,924				10,965	482	NA	1	0	1	1
	Camp		0	48	45	2						
	Morris		0	13	0	13						
	Titus		10,916	8,203	8,169	10,950						
Big Spring ³		33,672				7,018	236	NA	1	0	1	1
	Howard		4,617	6,380	3,979	7,018						
Borger ³		20,215				5,307	107	NA	1	0	1	1
	Hutchinson		5,296	7,827	7,815	5,307						
None		not available					NA	NA	NA	0	0	1
	Freestone ⁴		14	20	15	19						
	Sterling		1	8	1	8						
Total Monitors								6	9	3	18	32

¹United States Census Bureau population estimates as of July 1, 2022.

Core Based Statistical Areas are defined by the United States Office of Management and Budget

DRR - Data Requirements Rule

NA - not applicable

NCore - National Core Multipollutant Monitoring Stations

NEI - National Emissions Inventory

Air Emissions Inventories | US EPA

Delineation Files (census.gov)

Metropolitan and Micropolitan Statistical Areas Population Totals: 2020-2022 (census.gov)

PWEI - population weighted emission index (Core Based Statistical Area Population*[2020 NEI non-point source data and 2022 point source data]/1,000,000)

SO₂ - sulfur dioxide tpy - tons per year

.py - tons per year

^{&#}x27;Monitors may fulfill multiple monitoring requirements and are only counted once.

³Micropolitan statistical area

[&]quot;Area not classified as a metropolitan or micropolitan statistical area.

Appendix F

Sulfur Dioxide Ongoing Data Requirements Annual Report

Appendix F: Sulfur Dioxide Ongoing Data Requirements Annual Report

As required by 40 Code of Federal Regulations (CFR) Section 51.1205(b), this report provides the Texas Commission on Environmental Quality's (TCEQ) annual assessment of sulfur dioxide (SO_2) emissions changes for areas designated attainment/unclassifiable for the 2010 SO_2 National Ambient Air Quality Standard (NAAQS), where the designations were based on characterization of air quality by modeling actual SO_2 emissions.

Out of all Texas counties (or portions of counties) currently designated attainment/unclassifiable for the $2010~SO_2~NAAQS$, only the seven counties shown in Table 1 were designated based on modeled actual SO_2 emissions. The most recent (2022) total estimated SO_2 emissions, based on quality assured data from the relevant sources in each county, are listed in Table 1. The table includes emissions from the previous year (2021) and the change in SO_2 emissions from 2021 to 2022. The relevant source in Wilbarger County was shut down in 2020 resulting in zero emissions for 2021-2022.

The relevant sources in Goliad and Robertson Counties had emission decreases from the previous year. Since the emissions have decreased for these locations from the previous year, the original designation modeling for each county provides reasonable assurance that the areas continue to meet the 2010 one-hour SO₂ primary NAAQS.

The relevant sources in Fort Bend, Lamb, and Limestone Counties had emission increases from the previous year. Table 2 shows the average county SO₂ emissions data used in the 2012-2014 designation modeling. Table 2 also shows the average emissions data for years 2020-2022, which would likely be used for any new modeling initiated to reevaluate compliance with the 2010 SO₂ NAAQS. This comparison shows that the original designation modeling evaluated higher emissions for each area. Since higher emissions were evaluated, the original designation modeling provides reasonable assurance that the areas continue to meet the 2010 one-hour SO₂ primary NAAQS.

The relevant source in Atascosa County had an emission increase from the previous year. The comparison in Table 2 shows that the Atascosa County 2020-2022 average emissions data exceeds the average of the 2012-2014 emissions data used for designation modeling by 218 tons per year. This represents a 2.4 percent (%) increase over the 2012-2014 emissions modeled for the original designation. A conservative assumption to account for the increase in emissions would be to multiply (increase) the previous design value (111.5 micrograms per cubic meter [μ g/m³]), which includes a background concentration, by 2.4%. This results in an increase in the previously modeled design value to 114.2 μ g/m³. This is well below the 2010 SO₂ NAAQS (196.4 μ g/m³), and the increase of SO₂ emissions would not be expected to change the attainment/unclassifiable designation determined from the original modeling.

For any area where SO₂ monitoring was conducted to characterize air quality pursuant to 40 CFR Section 51.1203, the TCEQ continues to operate the monitor(s) used to meet those requirements and reports quality assured data pursuant to existing ambient monitoring regulations, unless the monitor(s) have been approved for shut down by the EPA Regional Administrator pursuant to 40 CFR Section 51.1203(c)(3) or 40 CFR Section 58.14.

The TCEQ recommends that no additional SO₂ air quality modeling is needed to determine compliance with the 2010 SO₂ NAAQS for any of the seven Texas counties listed in Table 1.

Appendix F: Sulfur Dioxide Ongoing Data Requirements Annual Report

Table 1: 2021 to 2022 Emissions Comparisons

County	Relevant Source	2021 SO ₂ (tpy)	2022 SO ₂ (tpy)	Difference 2021 to 2022	Cause for Emission Increase
Atascosa	San Miguel Electric Plant	7,579	9,489	1,910	Higher power production and boiler usage
Fort Bend	W.A. Parish Electric Generating Station	33,870	34,136	266	Turbine generator fire caused outage to one unit which caused other sources to operate more
Goliad	Coleto Creek Power Station	10,402	8,206	-2,196	NA
Lamb	Tolk Station Power Plant	6,913	8,667	1,754	More fuel burned and higher sulfur content in fuel
Limestone	Limestone Electric Generating Station	5,104	6,337	1,233	Increased heat input to both units
Robertson	Twin Oaks Power Station	2,346	2,316	-30	NA
Wilbarger	Oklaunion Power Station (shut down in late 2020)	0	0	0	NA

NA – not applicable SO_2 – sulfur dioxide tpy – tons per year

Table 2: Average Emissions Comparison

County	Relevant Source	2012-2014 SO ₂ Average (tpy)	2020-2022 SO ₂ Average (tpy)	Three Year Average SO₂ Comparison Change
Atascosa	San Miguel Electric Plant	8,942	9,160	218
Fort Bend	W.A. Parish Electric Generating Station	41,520	30,634	-10,886
Lamb	Tolk Station Power Plant	18,457	6,747	-11,710
Limestone	Limestone Electric Generating Station	24,718	5,454	-19,264

SO₂ – sulfur dioxide tpy – tons per year

Appendix G

Total Suspended Particulate Lead Monitor Requirements and Count Assessment

Appendix G: Total Suspended Particulate Lead Monitor Requirements and County Assessment

Metropolitan Statistical Area	County	Pb Source (Facility Name) or Monitoring Requirement	2020 Pb Source Emissions (tpy)	2021 Pb Source Emissions (tpy)	2022 Pb Source Emissions (tpy)	Site Name	Required Monitors ¹	Existing Monitors ¹
Dallas-Fort W	orth-Arlingto	n					3	3
	Collin	Maintenance Area	NA	NA	NA	Frisco Eubanks ^{1,2}	1	1
	Collin	Maintenance Area	NA	NA	NA	Frisco Stonebrook ²	1	1
	Kaufman	Conecsus, LLC	0.1779	0.2130	0.0833	Terrell Temtex, pending relocation to Terrell Jamison Court ¹	1	1
Totals							3	3

¹Collocated quality control monitors are not included in totals.

LLC - Limited Liability Company

NA - not applicable

Pb - lead

tpy - tons per year

 $^{^{2}\}mbox{Monitor}$ required to fulfill State Implementation Plan commitments.

Appendix H

Ozone Monitor Requirements and Count Assessment

Appendix H: Ozone Monitor Requirements and Count Assessment

Metropolitan Statistical Area	2022 Population Estimates ¹	2020-2022 8-Hour Design Value (ppm)	Design Value as Percent of NAAQS ²	Total Required SLAMS Monitors	Total Required NCore/PAMS Monitors	Total Required Monitors ³	Total Existing Monitors ⁴
Dallas-Fort Worth-Arlington	7,943,685	0.077	110%	3	1	4	18
Houston-Pasadena-The Woodlands	7,340,118	0.078	111%	3	1	4	21
San Antonio-New Braunfels	2,655,342	0.075	107%	2	0	2	3
Austin-Round Rock-San Marcos	2,421,115	0.064	91%	2	0	2	2
McAllen-Edinburg-Mission	888,367	0.056	80%	1	0	1	1
El Paso	872,195	0.073	104%	2	1	3	7
Killeen-Temple	496,228	0.067	96%	2	0	2	2
Brownsville-Harlingen	425,208	0.055	79%	1	0	1	1
Corpus Christi	421,628	0.062	89%	2	0	2	2
Beaumont-Port Arthur	393,575	0.063	90%	2	0	2	7
Lubbock	328,283	NA	NA	0	0	0	0
Longview	291,219	0.061	87%	1	0	1	2
Waco	283,885	0.064	91%	1	0	1	1
College Station-Bryan	277,824	NA	NA	0	0	0	0
Amarillo	271,171	NA	NA	0	0	0	0
Laredo	267,780	0.055	79%	0	0	0	1
Tyler	241,922	0.065	93%	1	0	1	1
Abilene	179,308	NA	NA	0	0	0	0
Midland	177,216	NA	NA	0	0	0	0
Odessa	160,869	NA	NA	0	0	0	0
Wichita Falls	149,299	NA	NA	0	0	0	0
Texarkana	146,408	NA	NA	0	0	0	0
Sherman-Denison	143,131	NA	NA	0	0	0	0
San Angelo	121,839	NA	NA	0	0	0	0
Victoria	98,196	0.060	86%	1	0	1	1
Granbury ⁵	66,373	0.069	99%	0	0	0	1
Corsicana ⁵	54,636	0.065	93%	0	0	0	1
Totals 1 United States Consus Ruragu population estimates a				24	3	27	72

¹United States Census Bureau population estimates as of July 1, 2022.

NCore - National Core Multipollutant Monitoring Stations

PAMS - Photochemical Assessment Monitoring Stations

SLAMS - State or Local Air Monitoring Stations

Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget

Delineation Files (census.gov)

Metropolitan and Micropolitan Statistical Areas Population Totals: 2020-2022 (census.gov)

²2015 eight-hour ozone National Ambient Air Quality Standard (NAAQS) is 0.070 parts per million (ppm).

³Total Required Monitors is a sum of requirements for SLAMS, PAMS, and NCore.

⁴Monitors may fulfill multiple monitoring requirements and are only counted once.

⁵Area is classified as a micropolitan statistical area and is not subject to SLAMS requirements.

NA - not applicable

Appendix I

Carbon Monoxide Monitor Requirements and Count Assessment

Appendix I: Carbon Monoxide Monitor Requirements and Count Assessment

Core Based Statistical Area ¹	2022 Population Estimates ²	Site Name	Required CO NCore Monitors	Required CO Near-Road Monitors	Total Required Monitors ³	Total Existing Monitors ⁴
Dallas-Fort Worth-Arlington	7,943,685		1	1	2	2
		Dallas Hinton ⁵	1	0	1	1
		Fort Worth California Parkway North	0	1	1	1
Houston- Pasadena-The Woodlands	7,340,118		1	1	2	3
		Clinton ⁵	0	0	0	1
		Houston Deer Park #2 ⁵	1	0	1	1
		Houston North Loop	0	1	1	1
San Antonio- New Braunfels	2,655,342		0	1	1	1
		San Antonio Interstate 35	0	1	1	1
Austin-Round Rock-San Marcos	2,421,115		0	1	1	1
		Austin North Interstate 35	0	1	1	1
El Paso	872,195		1	0	1	3
		El Paso Chamizal ⁵	1	0	1	1
		El Paso UTEP	0	0	0	1
		Ojo De Agua	0	0	0	1
Waco	283,885		0	0	0	1
		Waco Mazanec	0	0	0	0
Laredo	267,780		0	0	0	1
		Laredo Vidaurri	0	0	0	1
Totals			3	4	7	12

¹This list does not include core based statistical areas with zero requirements and zero monitors.

Metropolitan and Micropolitan Statistical Areas Population Totals: 2020-2022 (census.gov)

- number

CO - carbon monoxide

NCore - National Core Multipollutant Monitoring Stations

UTEP – University of Texas at El Paso

²United States Census Bureau population estimates as of July 1, 2022.

 $^{^{3}}$ Total Required Monitors is a sum of requirements for NCore and Near-Road.

⁴Monitors may fulfill multiple monitoring requirements and are only counted once.

⁵High-Sensitivity CO monitor

Appendix J

Particulate Matter of 10 Micrometers or Less Monitor Requirements and Count Assessment

Table 1: Particulate Matter of 10 Micrometers or Less Monitoring Requirements Assessment and Monitor Locations¹

Metropolitan Statistical Area	2022 Population Estimates ²	Site Name	2020-2022 Maximum Concentration (µg/m³)	Percent of NAAQS ³ (%)	Required Monitors ⁴	Existing Monitors ⁴
Dallas-Fort Worth- Arlington	7,943,685		125	83	4-8	4
		Convention Center (planned PM ₁₀ FEM continuous) (collocated QC manual filter-based pair)	125	83		
		Dallas Bexar Street ⁵ (monitor deployed September 2021) (planned PM ₁₀ FEM continuous)	25.3	16.9		
		Dallas Hinton (NEW! PM ₁₀ FEM continuous monitor activated June 2023)	NA	NA		
		Earhart (planned relocation)	97	65		
Houston-Pasadena-The Woodlands	7,340,118		156	104	4-8	6
		Clinton (collocated QC manual filter-based pair) (planned PM10 FEM continuous)	122	81		
		Houston Deer Park #2 ⁵ (NEW! PM ₁₀ FEM continuous monitor activated February 2023)	NA	NA		
		Houston Monroe	156	104		
		Houston North Wayside ⁵ (monitor deployed September 2021, non-NAAQS comparable)	NA	NA		
		Lang	103	69		
		Texas City Fire Station (planned PM ₁₀ FEM continuous)	149	99		
San Antonio-New Braunfels	2,655,342		117	78	2-4	2
		San Antonio Bulverde Parkway ⁵ (NEW! PM ₁₀ FEM continuous monitor activated November 2023)	101	67		
		Frank Wing Municipal Court	117	78		
Austin-Round Rock-San Marcos	2,421,115		97	65	2-4	2
		Austin Webberville Road (NEW! PM ₁₀ FEM continuous monitor activated November 2023)	97	65		
		Austin Audubon Society	90	60		

Metropolitan Statistical Area	2022 Population Estimates ²	Site Name	2020-2022 Maximum Concentration (µg/m³)	Percent of NAAQS ³ (%)	Required Monitors ⁴	Existing Monitors ⁴
McAllen-Edinburg-Mission	888,367		97	65	1-2	1
		Mission (NEW! PM ₁₀ FEM continuous monitor activated October 2023)	97	65		
El Paso	872,195		153	102	4-8	6
		El Paso Mimosa (previously Riverside) (planned PM_{10} FEM continuous)	153	102		
		El Paso Chamizal (NEW! PM10 FEM continuous monitor activated July 2023)	NA	NA		
		$Ivanhoe \ (planned \ PM_{10} \ FEM \ continuous)$	142	95		
		Ojo De Agua (collocated QC manual filter-based pair) (planned PM ₁₀ FEM continuous)	126	84		
		SOCOTTO HUECO (collocated QC manual filter-based pair) (planned PM ₁₀ FEM continuous)	116	77		
		Van Buren (planned PM ₁₀ FEM continuous)	135	90		
Killeen-Temple	496,228		NA	0	0-1	0
Brownsville-Harlingen	425,208		NA	0	0-1	0
Corpus Christi	421,628		89	59	0-1	1
		Dona Park (NEW! PM ₁₀ FEM continuous monitor activated in January 2024)	89	59		
Beaumont-Port Arthur	393,575		NA	0	0-1	0
Lubbock	328,283		NA	0	0-1	0
Longview	291,219		NA	0	0-1	0
Waco	283,885		NA	0	0-1	0
College Station-Bryan	277,824		NA	0	0-1	0
Amarillo	271,171		NA	0	0-1	0

Metropolitan Statistical Area	2022 Population Estimates ²	Site Name	2020-2022 Maximum Concentration (µg/m³)	Percent of NAAQS ³ (%)	Required Monitors ⁴	Existing Monitors ⁴
Laredo	267,780		111	74	0-1	2
		Laredo College (previously Laredo Vidaurri)	88	59		
		Laredo Bridge	111	74		
Totals	17-44	24				

¹This list doesn't include metropolitan statistical areas with zero requirements and zero monitors.

FEM - federal equivalent method

NAAQS - National Ambient Air Quality Standards

PM₁₀ - particulate matter of 10 micrometers or less in diameter

QC - quality control

ug/m³ - micrograms per cubic meter Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget

Metropolitan and Micropolitan Statistical Areas Population Totals: 2020-2022 (census.gov)

Delineation Files (census.gov)

²United States Census Bureau population estimates as of July 1, 2022.
³Current PM₁₀ NAAQS is 150 micrograms per cubic meter (µg/m³).
⁴Collocated quality control manual filter-based monitors are not counted.

⁵Monitor deployed 2020-2023, incomplete design values are not used for regulatory compliance.

^{% -} percent

Table 2: Particulate Matter of 10 Micrometers or Less Manual Filter-Based Monitor Concentrations¹

Site Name	2020-2022 Maximum Concentration ² (μg/m³)	2022 Annual Mean Concentration (µg/m³)	2021 Annual Mean Concentration (μg/m³)²	2020 Annual Mean Concentration (μg/m³) ³
Socorro Hueco (collocated QC pair) ³ (planned FEM continuous)	116	37	37	39
Clinton (collocated QC pair) ³ (planned FEM continuous)	122	35	35	30
Ivanhoe (planned FEM continuous)	142	31	31	32
El Paso Mimosa (previously Riverside) (planned FEM continuous)	153	49	49	45
Van Buren (planned FEM continuous)	135	30	30	27
Laredo College (previously Laredo Vidaurri)	88	20	20	25
Laredo Bridge	111	35	35	22
Houston Monroe (planned collocated QC pair) ³	156	32	32	22
Convention Center (collocated QC pair) (planned FEM continuous)	125	28	28	22
Ojo De Agua (collocated QC pair) (planned FEM continuous)	126	25	25	22
Frank Wing Municipal Court	98	25	25	23
Lang	103	22	22	22
Earhart (planned relocation)	97	26	21	21
Texas City Fire Station (planned FEM continuous)	149	21	21	21
Austin Audubon Society	89	18	18	17
Dallas Bexar Street ⁴ (monitor deployed September 2021) (planned FEM continuous)	83	25	25	NA

¹Particulate matter of 10 micrometers or less (PM₁₀) continuous methods have no collocated QC requirements and are not evaluated in this table.

²Data associated with pending exceptional event reports are not included.

³Highest annual mean concentrations, confirms at least half of collocated QC monitoring occurs at network sites among the highest.

⁴New monitor deployed in 2020-2022, resulting in incomplete design value. Incomplete design values are not used for regulatory compliance.

QC - quality control

Appendix K

Particulate Matter of 2.5 Micrometers or Less Monitor Requirements and Count Assessment

Table 1: Particulate Matter of 2.5 Micrometers or Less Monitor Requirement and Count Summary

Metropolitan Statistical Area	2022 Population Estimates ¹	2020-2022 DV (μg/m³) Annual (for Area)	2020-2022 DV (μg/m³) 24-Hour (for Area)	Percent of NAAQS Annual ² (for Area)	Percent of NAAQS 24-Hour ³ (for Area)	Required FRM/ FEM Monitors	Required NCore Monitors	Required Near-Road Monitors	Total Required Monitors ⁴	Total Existing Monitors ⁴
Dallas-Fort Worth-Arlington	7,943,685	9.4	24	104	69	3	4	1	8	13
Houston-Pasadena-The Woodlands	7,340,118	11.4	28	127	80	3	4	1	8	18
San Antonio-New Braunfels	2,655,342	8.6	23	96	66	3	0	1	4	6
Austin-Round Rock-San Marcos	2,421,115	9.3	22	103	63	3*	0	1	3	3
McAllen-Edinburg-Mission	888,367	10.1	28	112	80	2	0	0	2	2
El Paso	872,195	9.2	22	102	63	2*	4	0	5	7
Killeen-Temple	496,228	7.4	21	82	60	0	0	0	0	1
Brownsville-Harlingen	425,208	9.1	31	101	89	1	0	0	1	2
Corpus Christi	421,628	8.7	25	97	71	1	0	0	1	3
Beaumont-Port Arthur	393,575	8.3	20	92	57	1	0	0	1	3
Lubbock	328,283	5.8	18	64	51	0	0	0	0	1
Longview ⁵	291,219	9.4	20	104	57	1	0	0	1	2
Waco	283,885	NA	NA	NA	NA	0	0	0	0	1
College Station-Bryan ⁵	277,824	8.0	21	89	60	1	0	0	1	1
Amarillo	271,171	5.9	15	66	43	0	0	0	0	1
Laredo	267,780	10.1	27	112	77	1	0	0	1	1
Odessa	160,869	7.4	19	82	54	0	0	0	0	1
Texarkana	146,408	10.0	21	111	60	1	0	0	1	1
Eagle Pass ⁶	57,843	7.9	23	88	66	0	0	0	0	1
Corsicana ^{5,6}	54,636	NA	NA	NA	NA	0	0	0	0	1
Kingsville ⁶	30,720	10.3	31	114	89	0	0	0	0	1
Big Bend National Park ⁷	NA	5.5	16	61	46	0	0	0	0	1
Totals*			Metropolitan and			23	12	4	37	71

¹United States Census Bureau population estimates as of July 1, 2022.

DV - design value

FEM - federal equivalent method

FRM - federal reference method

NA - not applicable

NAAQS - National Ambient Air Quality Standards 2024 Annual Monitoring Network Plan

²2024 PM_{2.5} Annual NAAQS is 9.0 micrograms per cubic meter (µg/m³).

 $^{^{3}2024 \}text{ PM}_{2.5} 24\text{-hour NAAQS is } 35 \,\mu\text{g/m}^{3}.$

⁴Individual monitors may fulfill multiple requirements and are only counted once. Collocated quality control monitors are not included in totals.

⁵Annual values do not meet completeness criteria; monitors deployed in 2020 to 2023. Incomplete design value information is not used for the purposes of regulatory compliance.

⁶Area is classified as a micropolitan statistical area and is not subject to SLAMS (State or Local Ambient Monitoring Stations) requirements.

⁷Area not classified as a metropolitan or micropolitan statistical area.

^{*}Near-Road or NCore monitors fulfills multiple requirements

This list does not include metropolitan statistical areas with no requirement and no monitors.

Table 2: Particulate Matter of 2.5 Micrometers or Less Monitor Design Value, Location, Monitor Type, and Requirements Assessmen

Metropolitan Statistical Area ¹	2022 Population Estimates ²	Site Name	Monitor Type(s)	2020-2022 Annual DV (μg/m³)	2020-2022 24-Hour DV (μg/m³)	Percent of NAAQS (Annual³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
Dallas-Fort Worth-Arlington	7,943,685			9.4	24	104	69	13
		Convention Center	BAM 1022 (planned T640x)	9.4	22	104	63	1
		Dallas Hinton (collocated QC pair)	Partisol 2025, T640x PM2.5, T640x PM10-2.5, SASS/URG Speciation ⁶ (Partisol 2025 QC)	8.2	19	91	54	4
		Dallas Bexar Street	TEOM ⁷ (planned BAM 1022)	NA	NA	NA	NA	1
		Denton Airport South	BAM 1022	7.5	20	83	57	1
		Fort Worth California Parkway North (collocated QC pair)	BAM 1022 (BAM 1022 QC)	8.5	23	94	66	1
		Fort Worth Northwest	BAM 1022	9.1	23	101	66	1
		Haws Athletic Center	BAM 1022	8.9	24	99	69	1
		Kaufman ⁸	BAM 1022	8.1	25	90	71	1
		Midlothian North Ward Road ⁸ (site temporarily inactive for relocation) (collocated QC pair)	BAM 1022 and (Partisol 2025 QC) (pending deployment), URG/2025 Speciation	8.9	17	99	49	2
Houston-Pasadena-The Woodlands	7,340,118			11.4	28	127	80	18
		Baytown	BAM 1022	10.1	22	112	63	1
		Clinton (collocated QC pair)	Partisol 2025, (Partisol 2025 QC), TEOM ⁷ (planned T640x continuous), Partisol 2025 Speciation	10.4	24	116	69	3
		Conroe Relocated ⁸	BAM 1022	9.8	23	109	66	1

		Assessine	.11(
Metropolitan Statistical Area ¹ Estimates ²		Site Name	Monitor Type(s)	2020-2022 Annual DV (µg/m³)	2020-2022 24-Hour DV (μg/m³)	Percent of NAAQS (Annual³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
		Galveston 99 th Street	BAM 1022	7.9	23	88	66	1
		Freeport South Avenue I ⁸	Partisol 2025 with speciation (NEW in 2023)	NA	NA	NA	NA	1
		Houston Aldine (collocated QC pair)	BAM 1022, (Partisol 2025 QC)	10.0	22	111	63	1
		Houston Bayland Park ⁸	BAM 1022	9.5	27	106	77	1
		Houston Deer Park #2 (speciation collocated QC pair)	Partisol 2025, T640X PM2.5, T640X PM10-2.5, SASS/URG Speciation ⁶ (SASS/URG Speciation QC ⁶)	8.7	23	97	66	4
		Houston East	BAM 1022	10.2	23	113	66	1
		Houston North Loop	BAM 1022	11.4	28	127	80	1
		Houston North Wayside ⁸	BAM 1022	12.2	27	136	77	1
		Houston Westhollow ⁸	BAM 1022	8.1	21	90	60	1
		Seabrook Friendship Park ⁸	BAM 1022	7.6	18	84	51	1
San Antonio-New Braunfels	2,655,342			8.6	23	96	66	6
		Calaveras Lake	BAM 1022	7.1	21	79	60	1
		Old Highway 90	TEOM 1405 ⁷ (planned BAM 1022 continuous)	NA	NA	NA	NA	1
		San Antonio Bulverde Parkway	T640x (NEW in 2023)	NA	NA	NA	NA	1
		San Antonio Interstate 35	BAM 1022	8.5	21	94	60	1
		San Antonio Northwest (collocated QC pair)	BAM 1022, (Partisol 2025 QC)	8.6	23	96	66	1
•		•						

		Assessine	.11(
Metropolitan Statistical Area ¹	2022 Population Estimates ²	Site Name	Monitor Type(s)	2020-2022 Annual DV (µg/m³)	2020-2022 24-Hour DV (μg/m³)	Percent of NAAQS (Annual³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
		Von Ormy Highway 16 (previously Palo Alto) ⁸	BAM 1022	9.1	24	101	69	1
Austin-Round Rock-San Marcos	2,421,115			9.3	22	103	63	3
		Austin North Interstate 35	BAM 1022	9.3	22	103	63	1
		Austin North Hills Drive (previously Austin Northwest) ⁸	BAM 1022	7.4	19	82	54	1
		Austin Webberville Road	T640x	9.2	22	102	63	1
McAllen-Edinburg-Mission	888,367			10.1	28	112	80	2
		Edinburg East Freddy Gonzalez Drive	BAM 1022	10.1	28	112	80	1
		Mission ⁸	T640x	10.1	27	112	77	1
El Paso	872,195			9.2	22	102	63	7
		Ascarate Park SE (collocated QC pair)	TEOM ⁷ (planned BAM 1022 continuous and Partisol 2025 QC)	NA	NA	NA	NA	1
		El Paso Chamizal	Partisol 2025, T640x PM2.5, T640x PM10-2.5, URG/SASS Speciation ⁶	9.2	22	102	63	4
		El Paso UTEP ^o (site temporarily inactive due to relocation)	T640x (pending deployment)	8.1	26	90	74	1
		Socorro Hueco (planned collocated QC pair	TEOM ⁷ (planned T640x continuous and T640x QC)	NA	NA	NA	NA	1
Killeen-Temple	496,228			7.4	21	82	60	1
		Temple Georgia	BAM 1022	7.4	21	82	60	1

ASSESSMENT								
Metropolitan Statistical Area ¹	2022 Population Estimates ²	Site Name	Monitor Type(s)	2020-2022 Annual DV (μg/m³)	2020-2022 24-Hour DV (μg/m³)	Percent of NAAQS (Annual³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
Brownsville-Harlingen	425,208			9.1	31	101	89	2
	•	Brownsville	BAM 1022	9.1	29	101	83	1
		Isla Blanca State Park Road ⁸	BAM 1022	11.0	31	122	89	1
Corpus Christi	421,628			8.7	25	97	71	3
		Corpus Christi Huisache (collocated QC pair)	BAM 1022 (BAM 1022 QC)	8.1	23	90	66	1
		Dona Park	T640x, URG/2025 Speciation	8.7	25	97	71	2
Beaumont-Port Arthur	393,575			8.3	20	92	57	3
		Hamshire ⁸	BAM 1022	7.7	19	86	54	1
		Port Arthur Memorial School (collocated QC pair)	BAM 1022, (BAM 1022 QC)	8.3	20	92	57	1
		SETRPC 42 Mauriceville	BAM 1022	8.2	20	91	57	1
Lubbock	328,283			5.8	18	64	51	1
		Lubbock 12 th Street	BAM 1022	5.8	18	64	51	1
Longview ⁸	291,219			9.4	20	104	57	2
		Karnack ⁸	BAM 1022, URG/SASS Speciation ⁶	9.4	24	104	69	2
Waco	283,885			NA	NA	NA	NA	1
		Waco Mazanec	TEOM 1405 ⁷	NA	NA	NA	NA	1
College Station-Bryan ⁸	277,824			8.0	21	89	60	1

		Assessine						
Metropolitan Statistical Area ¹	2022 Population Estimates ²	Site Name	Monitor Type(s)	2020-2022 Annual DV (µg/m³)	2020-2022 24-Hour DV (μg/m³)	Percent of NAAQS (Annual³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
		Bryan Finfeather Road ⁸	BAM 1022	8.0	21	89	60	1
Amarillo	271,171			5.9	15	66	43	1
		Amarillo A&M	BAM 1022	5.9	15	66	43	1
Laredo	267,780			10.1	27	112	77	1
		World Trade Bridge	BAM 1022	10.1	27	112	77	1
Odessa	160,869			7.4	19	82	54	1
		Odessa Gonzales	BAM 1022	7.4	19	82	54	1
Texarkana	146,408			10.0	21	111	60	1
		Texarkana New Boston	BAM 1022	10.0	23	111	66	1
Eagle Pass ⁹	57,843			7.9	23	88	66	1
		Eagle Pass	BAM 1022	7.9	23	88	66	1
Corsicana ^{8,9}	54,636			8.5	25	94	71	1
		Corsicana Airport ⁸	BAM 1022	8.5	25	94	71	1
Kingsville ⁹	30,720			10.3	31	114	89	1
		National Seashore	BAM 1022	10.3	31	114	89	1
Big Bend National Park ¹⁰	NA			5.5	16	61	46	1
								1
Totals	otals							

¹This list does not include metropolitan statistical areas with no requirements and no monitors.

²United States Census Bureau population estimates as of July 1, 2022.

³2024 PM_{2.5} Annual NAAQS is 9.0 µg/m³. Metropolitan and Micropolitan Statistical Areas Population Totals: 2020-2022 (census.gov)

¹⁰Area not classified as a metropolitan or micropolitan statistical area.

- number

DV - design value

FEM - federal equivalent method

FRM - federal reference method

NA - not applicable

NAAQS - National Ambient Air Quality Standards

NCore - National Core Multipollutant Monitoring Stations require PM_{2.5} FRM mass, PM_{2.5} FEM continuous mass, PM_{10-2.5} and PM_{2.5} CSN speciation

OFW - Old Fort Worth

PM_{2.5} FRM mass method code 145 by Partisol 2025 or 2025i

PM_{2.5} FEM mass method code 209 by beta attenuation method (BAM) 1022

PM_{2.5} FEM mass method code 638 by broadband spectroscopy T640x

PM_{2.5} non-regulatory mass method code 702 by tapered element oscillating microbalance (TEOM)

PM_{2.5} speciation method codes 810, 811, 812, 826, 831, 838, 839, 840, 841, 842, 846, and 849

PM_{10-2.5} method code 640 by broadband spectroscopy T640x

QC - quality control

SASS - second generation speciation sampling system (for Chemical Speciation Network [CSN] only)

SETRPC - Southeast Texas Regional Planning Commission

SE - southeast

SLAMS - State or Local Air Monitoring Stations

URG - University Research Glassware speciation sampler

UTEP - University of Texas at El Paso

μg/m³ - micrograms per cubic meter

Delineation Files (census.gov)

Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget

Monitors marked "NEW!" were recently deployed continuous FEM. If the FEM replaced a FRM, then a design value will still be applicable for regulatory compliance.

 $^{^{4}2024 \}text{ PM}_{2.5} \text{ 24-hour NAAQS is 35 } \mu\text{g/m}^{3}$.

⁵Collocated quality control monitor types are not included in totals.

⁶Speciation monitor for NCore or Chemical Speciation Network (CSN).

⁷PM_{2.5} TEOM monitors are non-FEM/FRM (non-NAAQS comparable).

⁸Annual values do not meet completeness criteria; monitors deployed in 2020 - 2023. Incomplete design value (gray font) information is not used for regulatory compliance.

⁹Area is classified as a micropolitan statistical area and is not subject to SLAMS requirements.

Appendix L

Volatile Organic Compound and Carbonyl Monitor Requirements and Count Assessment

Appendix L: Volatile Organic Compound and Carbonyl Monitor Requirement and Count Summary

Table 1: Volatile Organic Compound Monitor Requirement and Count Assessment

Core Based Statistical Area ¹	Required PAMS VOC AutoGC Monitors	Existing VOC Canister Monitors	Existing VOC AutoGC Monitors	Total Existing VOC Monitors
Dallas-Fort Worth-Arlington	1	3	2	5
Houston-Pasadena-The Woodlands	1	0	3	3
El Paso	0	0	1	1
Beaumont-Port Arthur	0	0	2	2
Laredo	0	1	0	1
Totals	2	4	8	12

¹This list does not include core based statistical areas with zero requirements and zero monitors.

VOC - volatile organic compound

Table 2: Carbonyl Monitor Requirement and Count Summary

Core Based Statistical Area ¹	Required PAMS Carbonyl Samplers	Total Existing Carbonyl Samplers
Dallas-Fort Worth-Arlington	1	2
Houston-Pasadena-The Woodlands	1	2
Totals	2	4

¹This list does not include core based statistical areas with zero requirements and zero monitors. PAMS – Photochemical Assessment Monitoring Stations

AutoGC - automated gas chromatograph

PAMS - Photochemical Assessment Monitoring Stations