Texas Commission on Environmental Quality Draft Annual Monitoring Network Plan

P.O. Box 13087 Austin, Texas 7871<u>1-3087</u>

April 15, 2025

Texas Commission on Environmental Quality Draft 2025 Annual Monitoring Network Plan

Table of Contents

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY DRAFT 2025 ANNUAL MONITORING NETWORK PLAN	2
List of Appendices List of Tables List of Figures List of Acronyms and Abbreviations	4 4 5
INTRODUCTION	7
Public Comment Solicitation Statistical Areas and Population Waiver Requests New & Relocated Air Quality Monitoring Site Deployment Timeline	
REGULATORY NETWORK REVIEW	10
General Monitoring Requirements National Core Multipollutant Monitoring Stations (NCore) Requirements	
Monitoring Requirements	11
Photochemical Assessment Monitoring Stations (PAMS) Requirements	11
Monitoring Requirements	12
Nitrogen Dioxide (NO ₂)	13
Monitoring Requirements	13
Previously Recommended Changes	14
Regulatory NO ₂ Monitoring Network Changes	14
Sulfur Dioxide (SO ₂)	14
Monitoring Requirements	15
Previously Recommended Changes	16
Regulatory SO ₂ Monitoring Network Changes	16
Lead (Pb)	17
Monitoring Requirements	17
Previously Recommended Changes	18
Regulatory Pb Monitoring Network Changes	18
$Ozone (O_3)$	
Monitoring Requirements	19
Previously Recommended Changes	19

Regulatory O ₃ Monitoring Network Changes	19
Carbon Monoxide (CO)	19
Monitoring Requirements	20
Previously Recommended Changes	20
Regulatory CO Monitoring Network Changes	20
Particulate Matter of 10 Micrometers or Less (PM ₁₀)	20
Monitoring Requirements	20
Previously Recommended Changes	22
Regulatory PM ₁₀ Monitoring Network Changes	23
Particulate Matter of 2.5 Micrometers or Less (PM _{2.5})	23
Monitoring Requirements	24
Previously Recommended Changes	27
Reclassification of PM _{2.5} Micro-scale Near-Road Monitors	
Regulatory PM _{2.5} Monitoring Network Changes	
Volatile Organic Compounds (VOC)	40
Monitoring Requirements	
Previously Recommended Changes	
Regulatory and Non-Regulatory VOC Monitoring Network Changes	
Regulatory and Non-Regulatory voe Monitoring Retwork Changes	
Carbonyls	41
Carbonyls	41
<i>Carbonyls</i> Monitoring Requirements	41 41
Carbonyls Monitoring Requirements Previously Recommended Changes	41 41 41
<i>Carbonyls</i> Monitoring Requirements Previously Recommended Changes Regulatory Carbonyl Monitoring Network Changes	41 41 41 41
Carbonyls Monitoring Requirements Previously Recommended Changes Regulatory Carbonyl Monitoring Network Changes Meteorology	41 41 41 41 41
Carbonyls Monitoring Requirements Previously Recommended Changes Regulatory Carbonyl Monitoring Network Changes Meteorology Monitoring Requirements	41 41 41 41 41 41 42
Carbonyls Monitoring Requirements Previously Recommended Changes Regulatory Carbonyl Monitoring Network Changes Meteorology Monitoring Requirements Previously Recommended Changes	41 41 41 41 41 42 42

List of Appendices

- Appendix A 2025 Summary of Proposed Network Changes
- Appendix B Ambient Air Monitoring Network Site List
- Appendix C Population and Criteria Pollutant Monitor Requirements and Count Summary by Metropolitan Statistical Area
- Appendix D Nitrogen Dioxide, Nitrogen Oxide, and Total Reactive Nitrogen Compounds Monitor Requirements and Count Assessment
- Appendix E Sulfur Dioxide Monitor Requirements and Count Assessment
- Appendix F Sulfur Dioxide Ongoing Data Requirements Annual Report
- Appendix G Total Suspended Particulate Lead Monitor Requirements and Count Assessment
- Appendix H Ozone Monitor Requirements and Count Assessment
- Appendix I Carbon Monoxide Monitor Requirements and Count Assessment
- Appendix J Particulate Matter of 10 Micrometers or Less Monitor Requirements and Count Assessment
- Appendix K Particulate Matter of 2.5 Micrometers or Less Monitor Requirements and Count Assessment
- Appendix L Volatile Organic Compound and Carbonyl Monitor Requirements and Count Assessment

List of Tables

- Table 1: National Core Multipollutant Monitoring Stations and Parameters
- Table 2: Photochemical Assessment Monitoring Stations and Parameters
- Table 3: Data Requirements Rule Required SO₂ Monitoring Sites
- Table 4: 2021-2023 Lead Point-Source Emissions Inventory Data
- Table 5: Ozone SLAMS Minimum Monitoring Requirements
- Table 6: Particulate Matter of 10 Micrometers or Less SLAMS Minimum Monitoring Requirements
- Table 7: Particulate Matter of 10 Micrometers or Less Monitor Upgrade Status
- Table 8: Particulate Matter of 2.5 Micrometers or Less SLAMS Minimum Monitoring Requirements
- Table 9: Method Code 209 Particulate Matter of 2.5 Micrometers or Less FEM Collocated Quality Control Monitor Types and Sites
- Table 10: Method Code 638 Particulate Matter of 2.5 Micrometers or Less FEM Collocated Quality Control Monitor Types and Sites
- Table 11: Previously Approved Particulate Matter of 2.5 Micrometers or Less Summary of Changes
- Table 12: TCEQ PM_{2.5} Micro-Scale Near-Road Monitor Details
- Table 13: Air Monitoring Site Relocations

List of Figures

Figure 1: Austin North Interstate 35 Overview Figure 2: Austin North Interstate 35 - North and South Street Views Figure 3: Austin North Interstate 35 - East and West Street Views Figure 4: Austin North Interstate 35 and Surrounding Area With Annual and Five-Year **Traffic Counts** Figure 5: Fort Worth California Parkway North Overview Figure 6: Fort Worth California Parkway North - North and South Street Views Figure 7: Fort Worth California Parkway North - East and West Street Views Figure 8: Fort Worth California Parkway North and Surrounding Area Annual and **Five-Year Traffic Counts** Figure 9: Houston North Loop Overview Figure 10: Houston North Loop - North and South Street Views Figure 11: Houston North Loop - East and West Street Views Figure 12: Houston North Loop and Surrounding Area Annual and Five-Year Traffic Counts Figure 13: San Antonio Interstate 35 Overview Figure 14: San Antonio Interstate 35 – North and South Street Views Figure 15: San Antonio Interstate 35 - East and West Street Views Figure 16: San Antonio Interstate 35 and Surrounding Area Annual and Five-Year Traffic Counts

List of Acronyms and Abbreviations

- # number
- % percent
- > greater than
- \geq greater than or equal to
- < less than
- $\mu g/m^3$ micrograms per cubic meter
- AADT annual average daily traffic
- AQS air quality system
- AMNP annual monitoring network plan
- autoGC automated gas chromatograph
- CBSA core based statistical area
- CFR Code of Federal Regulations
- CO carbon monoxide
- DFW Dallas-Fort Worth
- DRR Data Requirements Rule
- EI emissions inventory
- EPA United States Environmental Protection Agency

FEM – federal equivalent method

FRM – federal reference method

LBJ – Lyndon B. Johnson

LLC – limited liability company

MSA – metropolitan statistical area

NA – not applicable

NAAQS – National Ambient Air Quality Standard

NCore - National Core Multipollutant Monitoring Stations

NEI – National Emissions Inventory

NO₂ - nitrogen dioxide

NO – nitrogen oxide

NO_x – oxides of nitrogen

NO_y – total reactive nitrogen compounds

O₃ – ozone

OMB - United States Office of Management and Budget

PAMS – Photochemical Assessment Monitoring Stations

Pb - lead

 PM_{10} – particulate matter of 10 micrometers or less in diameter

PM_{2.5} - particulate matter of 2.5 micrometers or less in diameter

PM_{10-2.5} – coarse particulate matter

ppb – parts per billion

PWEI – population weighted emissions index

QC – quality control

RA-40 – Regional Administrator 40

SE - southeast

SETRPC – Southeast Texas Regional Planning Commission

SLAMS – State or Local Air Monitoring Stations

SO₂ - sulfur dioxide

SPM – special purpose monitor

TAD – technical assistance document

TCEQ – Texas Commission on Environmental Quality

TxDOT - Texas Department of Transportation

TEOM – tapered element oscillating microbalance

tpy – tons per year

TSP – total suspended particulate

U.S. - United States

UTEP – University of Texas at El Paso

VOC – volatile organic compound

Introduction

Title 40 Code of Federal Regulations (CFR) Section (§) 58.10 requires states to submit an annual monitoring network plan (AMNP) to the United States (U.S.) Environmental Protection Agency (EPA) by July 1 of each year. This monitoring plan is required to provide the implementation and maintenance framework for an air quality surveillance system, known commonly as the ambient air quality monitoring network.

Texas Commission on Environmental Quality (TCEQ) reviews its ambient air quality monitoring network annually and creates the AMNP to demonstrate how Texas is meeting or will meet federal air monitoring requirements specified in 40 CFR Part 58 and its appendices. The AMNP presents the current TCEQ federal monitoring network established for use in evaluations to determine compliance with the National Ambient Air Quality Standards (NAAQS) as well as other monitors that support federal initiatives and provide additional information on air quality and the weather. The monitoring plan includes proposed changes from the previous year and future proposed changes to the air quality monitoring network. Because the AMNP is focused on federally required monitoring, it does not include a review of state-initiated monitoring conducted in addition to federal requirements. This plan is limited to the portion of TCEQ's air monitoring network designed to comply with federal monitoring requirements and supported by federal funding.

TCEQ is federally required to operate between 133 and 160 air quality monitors. TCEQ's federal monitoring network includes 265 air quality monitors, approximately double the number of monitors required by federal rule. AMNP Appendix C summarizes the number of federally required and existing air quality monitors by MSA and criteria pollutant. The number, type, and location of monitors within TCEQ's federal monitoring network is sufficient to characterize air quality for all areas required within Texas.

TCEQ and its monitoring partners (city, county, private, and industry) operate an additional robust network of non-federal state-initiative monitors that support a variety of purposes, including potential health effects evaluation; however, these monitors are outside the scope of this document and are not included. The latest information regarding the entire Texas air monitoring network of federal and state-initiative monitors, monitoring data, and air quality forecast conditions for Texas' metropolitan areas is featured on TCEQ's webpage <u>Air Quality and Monitoring - www.tceq.texas.gov</u>.

Title 40 CFR Part 58, Appendix D provides the minimum design requirements for federal air monitoring networks including State or Local Air Monitoring Stations (SLAMS), Photochemical Assessment Monitoring Stations (PAMS), and National Core Multi-Pollutant Monitoring Stations (NCore). AMNP Appendix B lists the existing monitors established to meet federal monitoring requirements and objectives.

Public Comment Solicitation

TCEQ posts the draft AMNP to solicit public comment for at least 30 days prior to submission to the EPA. TCEQ submits the AMNP to the EPA for final review and approval with comments received during the 30-day inspection period, responses to the comments, and any appropriate changes based on the received comments. This plan includes the recommended federal monitoring network changes from July 1,

2024, through December 31, 2026, summarized in AMNP Appendix A. This plan also includes federal monitoring network changes recommended prior to July 1, 2024, that have been completed since that date or are still pending completion. Historical air monitoring network plans, associated public comments, and TCEQ responses are available on TCEQ's webpage <u>TCEQ Air Monitoring Network Plans - www.tceq.texas.gov.</u>

TCEQ continues to evaluate requests for ambient air monitoring submitted during previous AMNP public inspection and comment periods. Details regarding additional monitoring under consideration are included in this plan to solicit further public comment. Any future implementation of additional monitoring considerations may be included as part of TCEQ's federal ambient air monitoring network or as state-initiative monitoring. The proposals and implementation of proposals for monitoring under consideration are subject to change.

Statistical Areas and Population

TCEQ uses statistical-based definitions for core based statistical areas (CBSAs) or metropolitan statistical areas (MSAs), as defined and delineated by the U.S. Office of Management and Budget (OMB). The OMB defines a CBSA as a statistical geographic entity consisting of the county or counties associated with at least one urbanized area/urban cluster of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration. MSAs (areas with populations greater than 50,000) and micropolitan statistical areas (areas with populations between 10,000 and 50,000) are the two categories of CBSAs.

The <u>OMB delineated CBSAs and MSAs</u> overlap in Texas, and the terms are used in this plan according to their usage in 40 CFR Part 58. The OMB updated the CBSA delineation list in July 2023 with several changes affecting Texas. The Houston-The Woodlands-Sugar Land CBSA title was updated to Houston-Pasadena-The Woodlands (Houston), and San Jacinto County was added to the CBSA. The Austin-Round Rock-Georgetown CBSA title was updated to Austin-Round Rock-San Marcos (Austin). The OMB added three counties to the Lubbock CBSA: Cochran, Garza, and Hockley Counties. The OMB upgraded Eagle Pass from a micropolitan statistical area to an MSA, containing Maverick County. The OMB added Bosque County to the Waco CBSA. The OMB removed Somervell County from the Dallas-Fort Worth-Arlington CBSA. The OMB created a new micropolitan statistical area, Granbury, for Hood County, previously in the Dallas-Fort Worth-Arlington MSA. The Marshall micropolitan statistical area was removed, and Harrison County was added to the Longview CBSA. The OMB removed Sterling County from the San Angelo CBSA. The updated titles and counties are used in this AMNP and its appendices.

The AMNP annual air monitoring network evaluation uses the current Texas CBSA (or MSAs) OMB designation with the most recently available population data at the time of AMNP draft development. The Census Bureau updates population estimates around mid-March, after the TCEQ drafts the AMNP. The most recent population estimates, including those used in the AMNP, are available at the <u>U.S. Census Bureau population</u> totals webpage. Each CBSA (or MSA) and associated population are evaluated by air pollutant based on requirements in 40 CFR Part 58 and 2021-2023 certified air monitoring data, as applicable. TCEQ uses these data to evaluate the networks and determine the required monitor counts as documented in the AMNP and its appendices. Based on annual assessments performed to date, all monitoring sites

supporting federal requirements and monitoring objectives are meeting the requirements defined in 40 CFR Part 58 and its Appendices A, C, D, E and G.

Waiver Requests

In 2020, the EPA approved TCEQ's request for a waiver under 40 CFR Part 58 Appendix E, Section 10.1.1 for the Austin Webberville air monitoring site. The Austin Webberville monitors are located less than ten meters from the roadway preventing the site from meeting siting criteria; however, air monitoring data are deemed representative of the neighborhood scale area due to the site deployment date, historical data, and low traffic count. TCEQ evaluated the Austin Webberville traffic counts and siting criteria as part of the 2025 Five-Year Assessment and determined that the waiver is still necessary unless the site is relocated.

TCEQ submitted a lead (Pb) modeling analysis for the Lower Colorado River Authority Fayette Power Plant in the 2020 TCEQ *Texas Five-Year Ambient Monitoring Network Assessment.* The EPA Region 6 approved TCEQ Pb waiver renewal request in a letter dated April 29, 2021. Based on the Lower Colorado River Authority Fayette Power Plant's most recent Pb point-source emission data shown in AMNP Table 4, the Pb waiver is no longer required.

<u>New & Relocated Air Quality Monitoring Site Deployment</u> <u>Timeline</u>

Deploying a new air quality monitoring site requires multiple steps that can require two to four years to complete due to the complexity of each step and reliance on partnerships with external parties such as property owners, permitting authorities, and utility providers. TCEQ air monitoring sites are generally located on private property, and TCEQ must find willing property owners who are amenable to allowing TCEQ to place an air monitoring site on their property. Additionally, the length of time needed to obtain construction permits and/or power connections has significantly increased and can take six to 12 months, or more, for each step.

A general overview of the steps required to deploy a new or relocated site is listed below. While some steps can occur concurrently, others are dependent on completion of the previous step and may rely heavily on external parties in order to make progress. However, TCEQ is committed to deploying and relocating sites as soon as practicable.

- Reconnaissance to identify potential sites (2-4 months)
- Confirmation of power availability with the electrical provider (2-6 months)
- Site access and property usage negotiation (4-12 months)
- Air monitoring equipment purchase (6-10 months)
- Site preparation/construction vendor solicitation (4-6 months)
- Site preparation permit approval and construction (6-12+ months)
- Power connection by electrical provider (1-6 months)
- Site deployment and equipment activation, weather dependent (1-2 months)

Regulatory Network Review

General Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 1 describes the monitoring objectives and general criteria for the required SLAMS ambient air monitoring stations. Ambient air monitoring networks must be designed to meet the three basic monitoring objectives listed below, though each objective is to be considered independently:

- Provide air pollution data to the public in a timely manner;
- Support compliance with ambient air quality standards and emissions strategy development; and
- Support air pollution research studies (for example NCore network data).

Ambient air monitoring federal reference methods (FRM) and federal equivalent methods (FEM) are designated by the EPA and must be operated in accordance with the requirements of 40 CFR Part 53. FRM and FEM methods are acceptable for use in air quality surveillance systems under 40 CFR Part 58 and are used for comparing an area's air pollution levels against the NAAQS. These methods must be used in strict accordance with associated operation and/or instruction manuals and with applicable quality assurance procedures. The EPA reviews and approves FRM and FEM designated instrumentation. The list of EPA designated reference and equivalent methods is available at <u>Air Monitoring Methods - Criteria Pollutants | US EPA</u>.

National Core Multipollutant Monitoring Stations (NCore) <u>Requirements</u>

NCore multipollutant sites, approved by the EPA Administrator, were selected to measure multiple pollutants utilizing continuous methods as available. NCore sites are intended to be long-term sites useful for a variety of applications including air quality trends analyses, model evaluation, and tracking metropolitan area statistics. NCore guidance suggests monitoring instruments capable of measuring trace levels (high sensitivity), where needed. TCEQ's NCore monitoring network includes the following measurements in compliance with NCore monitoring guidance and federal requirements listed in 40 CFR Part 58, Appendix D, Section 3, as discussed further in this section:

- nitrogen oxide (NO), high sensitivity;
- total reactive nitrogen compounds (NO_y), high sensitivity;
- sulfur dioxide (SO₂), high sensitivity;
- ozone (O_3) ;
- carbon monoxide (CO), high sensitivity;
- filter-based particulate matter of 2.5 micrometers or less in diameter (PM_{2.5});
- continuous PM_{2.5};
- speciated PM_{2.5};
- coarse particulate matter (PM_{10-2.5}); and
- meteorology (ambient temperature, wind speed, wind direction, and relative humidity).

Monitoring Requirements

Texas is required to operate two to three urban NCore sites, due to multiple air sheds and MSAs, and meets the requirements listed in 40 CFR Part 58, Appendix D, Section 3(b) with three urban NCore sites. NCore required air quality monitoring measurements are listed below in AMNP Table 1. Additional air monitoring information for these sites is detailed in AMNP Appendix B.

Table 1. National Core Multipoliticant Monitoring Stations and Farameters										
Core Based Statistical Area	Site Name	NO _v * and NO*	SO ₂ *	O_3	CO*	PM _{2.5} mass filter-based	PM _{2.5} mass continuous	PM _{2.5} speciation	PM _{10-2.5}	Meteorology
Dallas-Fort Worth- Arlington	Dallas Hinton					\checkmark	\checkmark			\checkmark
Houston- Pasadena-The Woodlands	Houston Deer Park #2	\checkmark		\checkmark		\checkmark				
El Paso	El Paso Chamizal									\checkmark

Table 1: National Core Multipollutant Monitoring Stations and Parameters

*instrument capable of measuring trace levels (high sensitivity) # - number

CO – carbon monoxide

NO_y - total reactive nitrogen compounds

NO – nitrogen oxide SO₂ – sulfur dioxide O₃ - ozone

 $\ensuremath{\text{PM}_{\text{2.5}}}$ – particulate matter of 2.5 micrometers or less in diameter

 $PM_{10\cdot 2.5}$ – coarse particulate matter

Meteorology – includes wind speed, wind direction, ambient temperature, and relative humidity

<u>Photochemical Assessment Monitoring Stations (PAMS)</u> <u>Requirements</u>

The PAMS network is an O_3 precursor monitoring network operated by state and local agencies that measures O_3 , its precursors, and meteorological variables at NCore sites in metropolitan areas with a CBSA population of 1,000,000 or more persons. The main objective of the required PAMS sites is to develop a database of O_3 precursors and meteorological measurements to support O_3 model development and track trends of important O_3 precursor concentrations. TCEQ's PAMS network also includes enhanced O_3 monitoring in currently designated O_3 nonattainment areas, and areas with previous O_3 nonattainment designations that have not been formally redesignated to attainment.

The minimum PAMS measurements include the following:

- speciated volatile organic compounds (VOCs);
- carbonyl compounds, three eight-hour samples on a 1-in-3 day schedule during June, July, and August;
- O₃;
- true (direct-read) nitrogen dioxide (NO₂);
- NO and NO_y;
- ambient temperature;
- wind direction and wind speed;

- atmospheric pressure;
- relative humidity;
- precipitation;
- mixing-height;
- solar radiation; and
- ultraviolet radiation.

Monitoring Requirements

State monitoring agencies are required to measure and report PAMS measurements at each required NCore site located in CBSAs with populations greater than 1,000,000, based on the latest available census figures. Two of the three NCore sites in Texas are located in CBSAs with populations meeting this requirement. The El Paso CBSA, according to the most recent census figures, does not meet this requirement. The Texas 2023 U.S. Census Bureau population estimates are listed in AMNP Appendix C. TCEQ meets PAMS monitoring requirements listed in 40 CFR Part 58, Appendix D, Section 5(b) with the measurements at the two NCore/PAMS sites listed below in AMNP Table 2.

Core Based Statistical Area	Site Name	VOCs	Carbonyl compounds	O ₃	True NO ₂	NO _v and NO	Ambient Temperature	Wind Direction and Speed	Atmospheric Pressure	Relative Humidity	Precipitation	Mixing-Height*	Solar Radiation	Ultraviolet Radiation
Dallas-Fort Worth- Arlington	Dallas Hinton	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pasadena-The Woodlands	Houston Deer Park #2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

*Mixing height requirement for the Houston-Pasadena-The Woodlands core based statistical area is met at the La Porte Airport site as approved by the Environmental Protection Agency in a letter dated October 19, 2018, approving the 2018 Annual Monitoring Network Plan.

- number sign

VOCs - volatile organic compounds speciated

O₃ - ozone

NO₂ – nitrogen dioxide

NO_y – total reactive nitrogen compounds

NO – nitrogen oxide

TCEQ developed an Enhanced Monitoring Plan detailing enhanced O₃ and O₃ precursor monitoring activities in addition to the PAMS requirements. The Enhanced Monitoring Plan was provided as an appendix to the 2019 AMNP and approved by the EPA. The Enhanced Monitoring Plan includes details on additional O₃, NO_x and/or NO_y, speciated VOC, and meteorology monitoring at locations other than those required. Air monitoring information for these additional Enhanced Monitoring Plan monitors, identified as PAMS in the Network column, is listed in AMNP Appendix B.

Nitrogen Dioxide (NO2)

TCEQ's NO₂ network includes measurements for NO, NO₂, true NO₂, and NO_y parameters sited in compliance with federal monitoring requirements, as discussed further in this section. TCEQ's NO₂ network is designed to meet area-wide, Regional Administrator 40 (RA-40), near-road, PAMS, and NCore monitoring requirements, as specified in 40 CFR Part 58. TCEQ is required to operate a total of 20 monitors that measure NO, NO₂, true NO₂, and NO_y and exceeds the requirements with 57 monitors that measure those parameters. AMNP Appendix D summarizes the monitoring requirements for NO, NO₂, true NO₂, and NO_y in each Texas CBSA. TCEQ utilizes a variety of instruments to measure these parameters; including an oxides of nitrogen (NO_x) instrument that reports NO₂, NO, and NO_x data; an instrument that measures NO₂ directly, and an NO_y instrument that reports NO_y and NO data. TCEQ air monitoring instrumentation for these measurements varies by site. The instrumentation measurement method is based on the specific federal monitoring objective. AMNP Appendix B lists the air monitoring sites and instrumentation measurement methods where NO_x, NO, NO₂, true NO₂, and NO_y are measured.

Monitoring Requirements

Area-Wide Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.3 requires one area-wide ambient air quality monitoring site in each CBSA with a population of 1,000,000 or more persons. The requirements stipulate that these sites be located in areas with the highest expected NO₂ concentration that are also representative of a neighborhood or larger (urban) spatial scale. Title 40 CFR Part 58, Appendix D, Section 4.3.5 (3) and (4), define neighborhood scale monitoring as representative of ambient air concentrations in an area between 0.5 and 4.0 kilometers with relatively uniform land use. Urban scale monitoring is representative of ambient air concentrations over large portions of an urban area with dimensions between 4 and 50 kilometers.

Based on 2023 U.S. Census Bureau population estimates for Texas as noted in AMNP Appendix D, area-wide neighborhood or urban scale NO₂ monitoring is required in four Texas CBSAs. The EPA approved the sites listed below to meet these NO₂ area-wide requirements in the 2013 AMNP response letter dated May 28, 2014.

- Austin CBSA: Austin North Hills Drive
- Dallas-Fort Worth-Arlington (DFW) CBSA: Dallas Hinton
- Houston CBSA: Clinton
- San Antonio-New Braunfels (San Antonio) CBSA: San Antonio Northwest

Regional Administrator Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.4 states that the EPA Regional Administrators collaborate with the states to designate a minimum of 40 NO₂ monitoring stations nationwide that are positioned to protect susceptible and vulnerable populations (referred to as RA-40 monitoring requirements). TCEQ collaborated with the EPA Regional Administrator to identify the four Texas RA-40 NO₂ monitoring sites (monitoring with NO_x instruments) listed below to meet the portion of this requirement attributed to Texas, approved by the EPA in the 2013 AMNP response letter dated May 28, 2014.

- Beaumont-Port Arthur (Beaumont) CBSA: Nederland 17th Street
- DFW CBSA: Arlington Municipal Airport
- El Paso CBSA: Ascarate Park Southeast (SE)
- Houston CBSA: Clinton

Near-Road Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.2 requires one microscale near-road NO₂ monitor located near a major road with high annual average daily traffic (AADT) counts in each CBSA with a population of 1,000,000 or more persons. An additional near-road monitor is required in each CBSA with a population of 2,500,000 or more persons. TCEQ's near-road monitoring network meets these requirements with the seven current sites (monitoring with NO_x instruments) listed below.

- Austin CBSA: 1 site Austin North Interstate 35
- DFW CBSA: 2 sites Dallas LBJ Freeway and Fort Worth California Parkway North
- Houston CBSA: 2 sites Houston Southwest Freeway and Houston North Loop
- San Antonio CBSA: 2 sites San Antonio Interstate 35 and San Antonio Interstate 10 West (new site detailed in the section below)

Previously Recommended Changes

To meet near-road monitoring requirements in the San Antonio CBSA, the EPA approved a revised location for a second near-road site named San Antonio Interstate 10 West in a letter dated November 27, 2023. TCEQ experienced unexpected challenges in securing power to the site, including lengthy power provider delays and theft of electrical infrastructure. TCEQ deployed the San Antonio Interstate 10 West site and NO_x monitor on March 31, 2025.

Regulatory NO₂ Monitoring Network Changes

TCEQ evaluated the current NO₂ monitoring network with the changes described above and determined the existing NO₂ network, with the activation of the second San Antonio near-road NO₂ monitoring site, meets all federal monitoring requirements; therefore, no changes are recommended.

Sulfur Dioxide (SO₂)

TCEQ's SO₂ network includes monitors sited to meet federal SO₂ and high-sensitivity SO₂ monitoring requirements. TCEQ's SO₂ network is designed to meet the monitoring requirements based on the population weighted emissions index (PWEI) by CBSA, 2015 *Data Requirements Rule (DRR) for the 1-Hour Sulfur Dioxide Primary NAAQS*, and NCore monitoring requirements, as discussed above and further in this section. TCEQ is required to operate a total of 17 SO₂ monitors and exceeds the requirements with 31 monitors. A summary of the CBSA PWEI calculations, associated monitoring requirement evaluations, and current number of SO₂ monitors in each CBSA is shown in AMNP Appendix E. AMNP Appendix B lists the air monitoring sites where SO₂ is measured.

Monitoring Requirements

Population Weighted Emissions Index Requirements

Title 40 CFR Part 58, Appendix D, Section 4.4.2 requires states to establish an SO_2 monitoring network based on the PWEI calculations for Texas CBSAs. These indices are calculated by multiplying the CBSA population by the emissions inventory (EI) data for counties within that CBSA, using an aggregate of the most recent EI data. The National Emissions Inventory (NEI) is released by the EPA every three years and combines emissions inventory estimates for point, nonpoint (area), on-road, non-road, and wildfire and prescribed burn event sources. TCEQ updates point-source emissions data annually from sources that meet the criteria in <u>30 Texas Administrative Code §101.10</u>. Data from the most recent NEI with the most recent point-source EI aggregate calculated values are divided by one million to obtain the CBSA PWEI. The PWEI monitoring requirements include the following:

- one monitor in CBSAs with a PWEI equal to or greater than 5,000, but less than 100,000;
- two monitors in CBSAs with a PWEI equal to or greater than 100,000, but less than 1,000,000; and
- three monitors in CBSAs with a PWEI equal to or greater than 1,000,000.

TCEQ used the most recent quality assured data available – the 2023 U.S. Census Bureau population estimates and 2020 NEI data with 2023 TCEQ point-source EI data to calculate the PWEIs and determine the minimum monitoring requirements for each CBSA. AMNP Appendix E details this assessment by CBSA (with county level EI data) and lists the total number of required and existing SO₂ monitors per CBSA. Five SO₂ monitors are required based on the PWEI in four CBSAs. TCEQ exceeds this requirement as shown in AMNP Appendix E.

Data Requirements Rule (DRR) Requirements

Title 40 CFR § 51.1202 (the DRR) required air agencies to characterize air quality around applicable sources that emitted 2,000 tons per year (tpy) or more of SO₂ in the latest emissions inventory year. TCEQ evaluated the required 2014 emission inventory data to meet the July 1, 2016, notification deadline. TCEQ identified 24 sources for air quality characterization based on 2014 emissions inventory data, including 13 sources that were selected for air quality characterization by ambient air monitoring. To meet the DRR requirement for air quality characterization around those sources, 11 SO₂ source-oriented monitors, located near these 13 sources, were installed and operational by January 1, 2017. Details for TCEQ's DRR SO₂ source evaluation, modeling, and monitoring recommendations are in TCEQ 2017 AMNP, available upon request.

The Rockdale John D. Harper and San Antonio Gardner Road SO₂ source-oriented monitors were decommissioned based on design values less than 50% of the 2010 one-hour SO₂ NAAQS, as provided by 40 CFR § 51.1203(c)(3). TCEQ's Rockdale John D. Harper SO₂ monitor (and entire site), was decommissioned in 2020, partially due to the sale/lease of the property. This monitor was eligible for decommission based on a design value less than 50% of the 2010 one-hour SO₂ NAAQS from data collected during the first three-year period of operation. The source near the Rockdale John D. Harper site that required DRR SO₂ air quality characterization was shut down in 2017. The San Antonio Gardner Road SO₂ monitor (and entire site), was decommissioned in

March 2023. This monitor was eligible for decommission based on a design value less than 50% of the 2010 one-hour SO₂ NAAQS. The source near the San Antonio Gardner Road SO₂ site that required DRR SO₂ air quality characterization was shut down in late 2018. The remaining TCEQ SO₂ monitors fulfilling DRR monitoring requirements are listed in AMNP Table 3.

Core Based Statistical Area	County Name	Air Monitoring Site Name
Amarillo	Potter	Amarillo Xcel El Rancho
Beaumont-Port Arthur	Orange	Orange 1 st Street
Beaumont-Port Arthur	Jefferson	Port Arthur West 7 th Street Gate 2
Big Spring*	Howard	Big Spring Midway
Borger*	Hutchinson	Borger FM 1559
College Station-Bryan	Robertson	Franklin Oak Grove
Corsicana*	Navarro	Richland Southeast 1220 Road
Longview	Harrison	Hallsville Red Oak Road
Mount Pleasant*	Titus	Cookville FM 4855

 Table 3: Data Requirements Rule Required SO₂ Monitoring Sites

* Micropolitan statistical area

FM - farm to market

SO₂ - sulfur dioxide

Title 40 CFR § 51.1205(b) requires TCEQ to submit an annual report for areas where modeling of actual SO₂ emissions served as the basis for designating such area as attainment. The report must document the annual SO₂ emissions of each applicable source, provide an assessment of the cause of any emissions increase from the previous year, and make a recommendation regarding further modeling needs. The DRR-required assessment and recommendation are provided in AMNP Appendix F. Where allowable SO₂ emissions served as the basis for designating the area as attainment, air agencies are not subject to ongoing data requirements, see 40 CFR § 51.1205(c).

Previously Recommended Changes

TCEQ 2024 AMNP recommended no changes to the SO₂ monitoring network.

Regulatory SO₂ Monitoring Network Changes

TCEQ recommends updating SO₂ monitor types from SLAMS to special purpose monitor (SPM) for monitors that are not used to show compliance with the minimum requirements under 40 CFR Part 58 or 40 CFR § 51.1202, as summarized in the AMNP SO₂ Monitoring Requirements section above. The following SO₂ monitors are not required to meet minimum requirements:

- Austin North Hills Drive change SO₂ monitor from SLAMS to SPM;
- Corpus Christi Huisache change SO₂ monitor from SLAMS to SPM;
- Corpus Christi Tuloso change SO₂ monitor from SLAMS to SPM; and
- Waco Mazanec change SO₂ monitor from SLAMS to SPM.

TCEQ recommends deactivating the Corpus Christi West and the Park Place SO₂ monitors designated as SPM by December 31, 2025. These SO₂ monitor data were evaluated during the TCEQ 2020 and 2025 Five-Year Assessments as providing low value air quality information in their respective areas. These SO₂ monitors are not required to meet federal minimum requirements and are eligible for deactivation with design values trending less than 17% of the 2010 one-hour SO₂ NAAQS. These operational resources will be reallocated to support the new air quality monitoring sites in these respective areas.

Lead (Pb)

TCEQ's Pb network includes total suspended particulate (TSP) monitors sited in compliance with federal source-oriented SLAMS requirements, as discussed further in this section. TCEQ is required to operate three TSP Pb monitors and meets this requirement. AMNP Appendix G lists the Pb network monitoring requirements and the total number of TSP Pb monitors. AMNP Appendix B lists the air monitoring sites with TSP Pb monitors.

Monitoring Requirements

TCEQ's Pb network meets 40 CFR Part 58, Appendix D, Section 4.5 monitoring requirements for Pb. TCEQ fulfills Pb monitoring requirements with TSP Pb monitors. This section requires state agencies to conduct ambient air Pb monitoring near Pb sources that have been shown or are expected to contribute to a maximum ambient air Pb concentration in excess of the standard. Title 40 CFR Part 58, Appendix D, Section 4.5(a) requires a minimum of one source-oriented ambient air Pb monitoring site to measure maximum concentrations near each non-airport facility emitting 0.50 tpy or more of Pb annually, based on either the most recent NEI data or annual EI data submitted to meet state reporting requirements.

TCEQ evaluated the 2021, 2022, and 2023 Pb point-source EI data. All Texas 2023 point-source emissions remain below the 0.50 tpy threshold that would trigger Pb monitoring requirements. AMNP Table 4 below includes information regarding historical data for sources that previously exceeded 0.50 tpy annual Pb point-source emissions, thus requiring source-oriented monitoring or a waiver in the last five years.

Facility Name	County	2021 Pb Emissions (tpy)	2022 Pb Emissions (tpy)	2023 Pb Emissions (tpy)	TCEQ Comments
Lower Colorado River Authority	Fayette	0.1320	0.1423	0.1006	Pb waiver renewal approved April 29, 2021, see Pb Waivers section below for detail
Conecsus, LLC	Kaufman	0.2130	0.0833	0.097	Pb is monitored at Terrell Jamison Court*

Table 4: 2021-2023 Lead Point-Source Emissions Inventory Data

*TCEQ Terrell Temtex site temporarily decommissioned on May 31, 2022, due to the property owner revocation of the lease agreement and was reactivated at Terrell Jamison Court on October 17, 2024. (see AMNP Table 12 for additional information)

LLC – limited liability company

Pb - lead

TCEQ – Texas Commission on Environmental Quality

tpy – tons per year

Pb Waivers

Under 40 CFR Part 58, Appendix D, Section 4.5(a)(ii), the EPA Regional Administrator may waive the requirement in 40 CFR Part 58, Appendix D, 4.5(a) for monitoring near specific Pb sources with sufficient demonstration that the Pb source will not contribute to a maximum concentration in ambient air greater than 50% of the NAAQS based on historical monitoring data, modeling, or other approved means. All approved waivers must be renewed every five years as part of the network assessment required under 40 CFR Part 58.10(d).

TCEQ submitted a Pb modeling analysis for the Lower Colorado River Authority Fayette Power Plant in the 2020 TCEQ *Texas Five-Year Ambient Monitoring Network Assessment.* The Pb modeling analysis demonstration, necessary to request a waiver from the source-oriented Pb monitoring requirement, indicated the predicted maximum ground level concentration for a rolling three-month average would be below 50% of the NAAQS. The EPA Region 6 approved TCEQ's Pb waiver renewal request in a letter dated April 29, 2021. Based on the Lower Colorado River Authority Fayette Power Plant 2021, 2022, and 2023 Pb point-source emission data shown above in AMNP Table 4, the Pb waiver is no longer required.

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.4.4 requires a primary quality assurance organization to select 15% of the Pb monitoring sites within the network for collocated quality control (QC) monitoring. The first of these monitors should be the one measuring the highest Pb concentrations in the network. Based on the current network of primary Pb monitors, TCEQ is required to maintain one collocated QC Pb monitor. TCEQ exceeds this requirement with the operation of collocated QC Pb monitors at Frisco Eubanks and Terrell Jamison Court.

Previously Recommended Changes

TCEQ relocated the Terrell Temtex Pb monitor 0.2 mile south to Terrell Jamison Court on October 17, 2024, due to property owner revocation of the Terrell Temtex site usage agreement. EPA approved the site relocation in a letter dated January 9, 2024.

Regulatory Pb Monitoring Network Changes

TCEQ evaluated the current Pb monitoring network and determined the existing Pb network meets all federal monitoring requirements; therefore, no changes are recommended.

Ozone (O₃)

TCEQ'S O_3 network is designed to meet SLAMS, PAMS, and NCore monitoring requirements, as discussed further in this section. TCEQ'S O_3 monitoring network is required to operate a total of 28 O_3 monitors and will meet and exceed this requirement with 70 O_3 monitors in 15 MSAs and 2 micropolitan statistical areas and the addition of the Lubbock MSA recommendation discussed below. AMNP Appendix H lists the O_3 requirements and number of monitors in each MSA. AMNP Appendix B lists the air monitoring sites where O_3 is measured.

Monitoring Requirements

SLAMS Requirements

Title 40 CFR Part 58, Appendix D, Section 4.1 requires O₃ monitoring in each MSA with a population of 350,000 or more persons. Monitoring is also required in MSAs with lower populations if the design value for that MSA is equal to or greater than 85% of the NAAQS. Specific SLAMS O₃ minimum monitoring requirements are included below in AMNP Table 5, an excerpt of 40 CFR Part 58, Appendix D, Table D-2. TCEQ evaluated 2023 U.S. Census Bureau population estimates and 2021-2023 eight-hour O₃ design values for each Texas MSA. AMNP Appendix H details this assessment by MSA and lists the total number of required and existing SLAMS and NCore/PAMS O₃ monitors per MSA. TCEQ must operate a minimum of 25 SLAMS and three NCore/PAMS O₃ monitors in Texas MSAs to meet network requirements and will meet and exceed this requirement by operating 70 total O₃ monitors and the addition of one recommended Lubbock MSA O₃ monitor to meet new population level requirements described below.

Table 5: Ozone	SLAMS Minin	um Monitoring	Requirements

MSA Population	Monitors required for MSAs with most recent 3-year design value concentrations ≥85% of any O ₃ NAAQS ¹	Monitors required for MSAs with most recent 3-year design value concentrations <85% of any O ₃ NAAQS ^{2,3}
>10,000,000	4	2
4,000,000 to 10,000,000	3	1
350,000 to <4,000,000	2	1
50,000 to <350,000		0

¹The ozone (O₃) National Ambient Air Quality Standards (NAAQS) levels are defined in 40 CFR Part 50.

²These minimum monitoring requirements apply in the absence of a design value.

³MSA must contain an urbanized area of 50,000 or more population and are designated by the United States Office of Management and Budget.

 \geq - greater than or equal to

- > greater than
- < less than

% - percent

MSA – metropolitan statistical area

SLAMS - State or Local Air Monitoring Stations

Previously Recommended Changes

TCEQ 2024 AMNP recommended no changes to the O₃ monitoring network.

Regulatory O₃ Monitoring Network Changes

The OMB added three counties to the Lubbock MSA, subsequently increasing the 2023 U.S. Census Bureau population estimate to over 350,000. The 2023 Lubbock MSA estimated population requires the addition of an O_3 monitor. TCEQ is evaluating Lubbock MSA O_3 monitor placement options, including utilization of the existing Lubbock 12th Street air monitoring site. The Lubbock MSA O_3 monitor is expected to be deployed by December 31, 2026.

Carbon Monoxide (CO)

TCEQ's CO network includes CO and high sensitivity CO monitoring to meet federal monitoring requirements, as discussed here and in the NCore section above. TCEQ's

CO network is designed to meet NCore and near-road monitoring requirements. The agency is required to operate seven total CO monitors and exceeds the requirements with 11 monitors: seven CO monitors and four high sensitivity CO monitors measuring trace-level concentrations. AMNP Appendix I lists the required and current CO monitors in each CBSA. AMNP Appendix B lists the air monitoring sites where CO is measured.

Monitoring Requirements

Near-Road Requirements

Title 40 CFR Part 58, Appendix D, Section 4.2 requires collocating one CO monitor with one required near-road NO₂ monitor in CBSAs with populations of 1,000,000 or more persons. TCEQ meets this requirement with CO monitors at the near-road sites below.

- DFW CBSA: Fort Worth California Parkway North
- Houston CBSA: Houston North Loop
- San Antonio CBSA: San Antonio Interstate 35
- Austin CBSA: Austin North Interstate 35

Previously Recommended Changes

TCEQ 2024 AMNP recommended no changes to CO monitoring network.

Regulatory CO Monitoring Network Changes

TCEQ evaluated the current CO monitoring network and determined the existing CO network meets all federal monitoring requirements; therefore, no changes are recommended.

Particulate Matter of 10 Micrometers or Less (PM₁₀)

TCEQ's particulate matter of 10 micrometers or less in diameter (PM_{10}) network is designed to meet SLAMS monitoring requirements based on MSA populations and 24hour concentration data, as discussed further in this section. TCEQ is required to operate between 18 and 45 PM_{10} monitors, depending on the PM_{10} concentrations observed in each MSA, and will meet this requirement with 24 monitors and the Killeen-Temple MSA recommendation listed below. AMNP Appendix J lists the required and current PM_{10} monitors in each MSA. AMNP Appendix B lists the air monitoring sites where PM_{10} is measured.

Monitoring Requirements

TCEQ's PM_{10} network is designed to meet the SLAMS requirements under 40 CFR Part 58, Appendix D, Section 4.6, which provides the minimum number of PM_{10} monitors required in MSAs based on population and available 24-hour average concentrations. Specific PM_{10} monitoring requirements are listed in AMNP Table 6 below, an excerpt of 40 CFR Part 58, Appendix D, Table D-4. Modifications from these PM_{10} monitoring requirements must be approved by the EPA Regional Administrator. Compliance with the PM_{10} standard is based on the number of measured exceedances of the 24-hour 150 micrograms per cubic meter ($\mu g/m^3$) standard averaged over three years. TCEQ

evaluated 2023 U.S. Census Bureau population estimates and 2021-2023 PM_{10} available maximum 24-hour concentration data for each Texas MSA. AMNP Appendix J, Table 1, details this evaluation by MSA and lists the range of required and existing SLAMS PM_{10} monitors per MSA.

Table 6: Particulate Matter of 10 Micrometers or Less SLAMS Minimum Monitoring Requirements

MSA Population	PM ₁₀ monitors required for MSAs with high concentration ¹	PM ₁₀ monitors required for MSAs with medium concentration ²	PM ₁₀ monitors required for MSAs with low concentration ³
>1,000,000	6-10	4-8	2-4
500,000 to 1,000,000	4-8	2-4	1-2
250,000 to 500,000	3-4	1-2	0-1
100,000 to 250,000	1-2	0-1	0

> – greater than

¹High Concentration areas are those for which ambient PM_{10} data show ambient concentrations exceeding the PM_{10} National Ambient Air Quality Standards (NAAQS) by 20 percent or more.

²Medium Concentration areas are those for which ambient PM_{10} data show ambient concentrations exceeding 80 percent of the PM_{10} NAAQS.

 3 Low Concentration areas are those for which ambient PM₁₀ data show ambient concentrations less than 80 percent of the PM₁₀ NAAQS.

MSA – metropolitan statistical area

PM₁₀ – particulate matter of 10 micrometers or less in diameter

SLAMS - State or Local Air Monitoring Stations

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.3.4 requires a primary quality assurance organization to select 15% of the PM₁₀ manual filter-based monitors within the network for collocated QC sampling. Collocated QC sampling for PM₁₀ is only required for manual monitors. At least 50% of the selected manual filter-based monitors should have an annual mean particulate matter concentration among the highest in the network. AMNP Appendix J, Table 2 lists the PM₁₀ manual filter-based monitors' maximum 24-hour concentration measurements during the three-year period from 2021-2023 and includes the 2021, 2022, and 2023 annual mean concentrations. TCEQ evaluates the PM_{10} manual filter-based concentration data annually to ensure the PM_{10} collocated OC monitors continue to meet 40 CFR Part 58, Appendix A, Section 3.3.4.2. The Houston Monroe monitor measured PM₁₀ annual mean concentrations among the highest in TCEQ's PM₁₀ manual filter-based network from 2021 to 2023. Based on the current network of 14 PM₁₀ manual monitors, TCEQ is currently required to operate two manual PM₁₀ collocated QC monitors and exceeds this requirement with the three monitors listed below. As noted below, the number of required manual PM₁₀ collocated QC monitors will change to one in the future with planned continuous monitor upgrades.

- Houston CBSA: Houston Monroe PM₁₀ FRM manual filter-based with collocated QC PM₁₀ FRM manual filter-based
- DFW CBSA: Convention Center PM₁₀ FRM manual filter-based with collocated QC PM₁₀ FRM manual filter-based
- El Paso CBSA: Ojo De Agua PM₁₀ FRM manual filter-based with collocated QC PM₁₀ FRM manual filter-based

Previously Recommended Changes

As approved in the 2023 AMNP, TCEQ recommended replacing the Convention Center and Ojo De Agua PM_{10} FRM manual filter-based monitors with continuous PM_{10} FEM monitors. The Convention Center site is located on a building rooftop and may be temporarily deactivated during extensive roof replacement. The Convention Center continuous PM_{10} FEM replacement is expected after roof replacement by December 31, 2026. The Ojo De Agua upgrade to continuous PM_{10} FEM is pending and expected by December 31, 2025. TCEQ also recommended to discontinue the PM_{10} FRM manual collocated QC monitors at Convention Center and Ojo De Agua when the primary PM_{10} FRM manual monitors were replaced with a continuous PM_{10} FEM monitor. The Ojo De Agua and Convention Center PM_{10} FRM manual collocated QC monitors will continue to operate until the primary PM_{10} FRM manual monitors are replaced with continuous PM_{10} FEM monitors.

As approved in the 2024 AMNP, TCEQ recommended replacing and upgrading the Clinton, El Paso Mimosa, and Van Buren PM_{10} FRM manual filter-based monitors with continuous PM_{10} FEM monitors. A continuous PM_{10} FEM monitor was activated at Clinton on October 16, 2024. The Clinton primary and collocated QC manual PM_{10} monitors were deactivated on February 25, 2025, and the collocated QC PM_{10} FRM manual monitor was relocated to Houston Monroe on March 2, 2025. TCEQ continues to upgrade the PM_{10} network by replacing PM_{10} FRM manual filter-based monitors with PM_{10} FEM continuous monitors. The upgrade and deployment statuses are listed below in AMNP Table 7.

Metropolitan Statistical Area	Site Name	Existing Monitor	New Monitor	Status
Dallas-Fort Worth-Arlington	Convention Center (roof replacement pending)	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected after roof replacement by December 31, 2026
Dallas-Fort Worth-Arlington	Dallas Bexar	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2025
El Paso	Ivanhoe	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2025
El Paso	Ojo De Agua	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2025
El Paso	El Paso Mimosa	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2026
El Paso	Van Buren	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2026
Houston- Pasadena-The Woodlands-	Clinton	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Completed October 16, 2024

 Table 7: Particulate Matter of 10 Micrometers or Less Monitor Upgrade Status

Metropolitan Statistical Area	Site Name	Existing Monitor	New Monitor	Status
Houston- Pasadena-The Woodlands	Texas City Fire Station	PM ₁₀ FRM manual filter-based	PM ₁₀ FEM continuous	Expected by December 31, 2025
Houston- Pasadena-The Woodlands	New Site: Houston Finnigan Park, pending site deployment	None	PM ₁₀ FEM continuous	Expected by December 31, 2025

FEM – federal equivalent method

FRM – federal reference method designated for manual filter-based instruments

PM₁₀ – particulate matter of 10 micrometers or less in diameter

Regulatory PM₁₀ Monitoring Network Changes

TCEQ continues to evaluate PM₁₀ FEM monitor technology and recommends replacing and upgrading the Austin Audubon Society, Earhart, Laredo Bridge, and Laredo College PM₁₀ FRM manual filter-based monitors with continuous PM₁₀ FEM monitors after the evaluation is completed. TCEQ also recommends relocating the Frank Wing Municipal Building PM₁₀ FRM manual filter-based monitor approximately 4.5 miles west to the Old Highway 90 site, due to safety concerns, and upgrading to a continuous PM₁₀ FEM monitor by December 31, 2025. The Frank Wing Municipal Building air monitoring site is located on a building roof and a relocation to the Old Highway 90 site would improve staff accessibility and safety. Frank Wing Municipal Building 2021-2023 PM₁₀ data show ambient concentrations less than 65% percent of the PM₁₀ NAAQS.

There is no federal requirement for continuous PM_{10} FEM method QC collocation and TCEQ recommends relocating or discontinuing the PM_{10} FRM manual filter-based collocated QC monitors when the primary monitor is replaced with a continuous PM_{10} FEM monitor. TCEQ will maintain 15% collocation of PM_{10} manual monitors to meet the collocation requirements described above. With the completion of these changes from PM_{10} FRM manual filter-based monitor upgrades to continuous, TCEQ will have two remaining PM_{10} FRM manual filter-based monitors requiring one manual PM_{10} collocated QC monitor.

Based on the most recent 2023 U.S. Census Bureau population estimates, TCEQ recommends activating a PM_{10} FEM continuous monitor at Temple Georgia in the Killeen-Temple MSA to meet federal monitoring requirements for MSAs with populations greater than 500,000 by December 31, 2026. TCEQ recommends adding the PM_{10} monitor to an existing site to maximize resources and expand the existing particulate monitoring at that site.

Particulate Matter of 2.5 Micrometers or Less (PM_{2.5})

TCEQ's $PM_{2.5}$ monitoring network includes a combination of non-continuous FRM, continuous FEM, and non-NAAQS comparable monitors designed to meet SLAMS area, regional background, regional transport, NCore, and near-road network requirements, as discussed further in this section. $PM_{2.5}$ monitor types are detailed in Appendix B and Appendix K, Table 1 and Table 2. TCEQ is required to operate 40 FRM, FEM, $PM_{10-2.5}$, or speciated $PM_{2.5}$ monitors and exceeds the requirements with 69 monitors. An analysis of $PM_{2.5}$ monitoring requirements in each Texas MSA using the <u>2024 $PM_{2.5}$ NAAQS</u>, 2023

U.S. Census Bureau population estimates, and 2021-2023 PM_{2.5} design values is provided in AMNP Appendix K. Table 2 of this appendix details 2021-2023 design values and the total number of existing PM_{2.5} monitors by site and MSA. AMNP Appendix B lists the air monitoring sites where PM_{2.5} is measured.

Monitoring Requirements

General and Continuous Requirements

Title 40 CFR Part 58, Appendix D, Section 4.7 requires SLAMS PM₂₅ monitoring in MSAs with populations of 500,000 or more persons and in MSAs with lower populations if measured PM_{2.5} design values for an MSA equal or exceed 85% of the NAAQS. Specific $PM_{2.5}$ monitoring requirements are listed in AMNP Table 8 below, with an excerpt of 40 CFR Part 58, Appendix D, Table D-5. Under 40 CFR Part 58, Appendix D, Section 4.7.2, TCEQ must operate continuous PM_{2.5} monitors equal to at least one-half the required number of SLAMS-required sites in each MSA. TCEO meets and/or exceeds this requirement by operating continuous PM_{25} monitors in all Texas MSAs, shown in AMNP Appendix K, Table 2. Additionally, 40 CFR Part 58, Appendix D, Section 4.7.3 requires each state to install and operate at least one PM_{2.5} site to monitor for regional background and at least one PM_{2.5} site to monitor regional transport. AMNP Appendix B lists monitors meeting the regional background and transport requirements, with a monitoring objective of Upwind Background or Regional Transport, as prescribed by Air Quality System (AQS) transaction formats. Individual PM_{2.5} monitors that are non-FEM/FRM and non-NAAQS comparable but considered acceptable for Air Quality Index use are noted in the AMNP Appendix B site list and in AMNP Appendix K. Table 2. Design criteria, under 40 CFR Part 58, Appendix D, Section 4.7.1(b) requires these PM₂₅ monitors to be sited to represent area-wide air quality. These monitoring sites are typically found in large, urban homogeneous areas, supporting neighborhood scale.

Table 8: Particulate Matter of 2.5 Micrometers or Less SLAMS Minimum Monitoring Requirements

MSA population	PM _{2.5} monitors required for MSAs with most recent 3-year design value ≥85% of any PM _{2.5} NAAQS	PM _{2.5} monitors required for MSAs with most recent 3-year design value <85% of any PM _{2.5} NAAQS	
>1,000,000	3	2	
500,000 to 1,000,000	2	1	
50,000 to <500,000	1	0	

> - greater than

 \geq - greater than or equal to

MSA – metropolitan statistical area

NAAQS - National Ambient Air Quality Standards

PM_{2.5} – particulate matter of 2.5 micrometers or less in diameter SLAMS – State or Local Air Monitoring Stations

SLAMS - State or Local Air Monitoring Stations

Near-Road PM_{2.5} Requirements

Title 40 CFR Part 58, Appendix D, Section 4.7.1(b)(2) requires collocating one FRM or FEM $PM_{2.5}$ monitor with one required near-road NO_2 monitor in CBSAs with populations of 1,000,000 or more persons. TCEQ meets this requirement with $PM_{2.5}$ monitors at the near-road sites listed below, discussed further in this section, and listed in AMNP

< - less than

^{% -} percent

Appendix K, Table 2. These sites are for high traffic corridors where the general public could be exposed to maximum concentrations from mobile sources, creating localized hot spots. The measurements are representative of the air quality in the area immediately around the sites as the traffic counts outside of those high traffic corridors drop off drastically on the surrounding streets. As such, these sites are appropriately designated as micro-scale as they are representative of air quality in a small area from several meters up to 100 meters around the sites.

- DFW CBSA: Fort Worth California Parkway North
- Houston CBSA: Houston North Loop
- San Antonio CBSA: San Antonio Interstate 35
- Austin CBSA: Austin North Interstate 35

Special Considerations for NAAQS Data Comparisons

 $PM_{2.5}$ measurement data from all eligible monitors are comparable to the 24-hour $PM_{2.5}$ NAAQS. $PM_{2.5}$ measurement data from all eligible monitors that are representative of area-wide air quality are comparable to the annual $PM_{2.5}$ NAAQS. When $PM_{2.5}$ monitoring sites collectively identify a larger region of localized high ambient $PM_{2.5}$ concentrations, such sites would be considered representative of an area-wide location and, therefore, eligible for comparison to the annual $PM_{2.5}$ NAAQS. However, according to 40 CFR § 58.30, $PM_{2.5}$ measurement data from monitors that are not representative of area-wide air quality but rather of relatively unique micro-scale, localized hot spot, or unique middle-scale impact sites are not eligible for comparison to the annual $PM_{2.5}$ NAAQS but would remain eligible for comparison to the 24-hour $PM_{2.5}$ NAAQS. For example, if a micro- or middle-scale $PM_{2.5}$ measurement data from such a site would only be eligible for comparison to the 24-hour $PM_{2.5}$ NAAQS.

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.2.3 requires a primary quality assurance organization to select 15% of the $PM_{2.5}$ primary monitors of each method designation (FRM or FEM) for collocated QC sampling. Based on the current network of five primary $PM_{2.5}$ FRM monitors, TCEQ is required to operate one collocated QC $PM_{2.5}$ FRM (FRM/FRM collocation) monitor and exceeds this requirement with the two monitors listed below.

- Houston CBSA: Clinton PM_{2.5} FRM with collocated QC PM_{2.5} FRM, method 145
- DFW CBSA: Dallas Hinton PM_{2.5} FRM with collocated QC PM_{2.5} FRM, method 145

For each primary monitor designated as an FEM, 50% of the monitors designated for collocation shall be collocated with an FRM (FRM/FEM) and 50% shall be collocated with a monitor having the same method designation as the FEM primary monitor (FEM/FEM). Fifty percent of the collocated QC monitors must be deployed at sites with annual average or daily concentrations estimated to be within plus or minus 20% of either the annual or 24-hour standard.

Based on the current PM_{2.5} network of 43 FEM monitors designated with method code 209, TCEQ is required to operate six collocated QC monitors pursuant to 40 CFR Part 58, Appendix A, Section 3.2.3.2(b). AMNP Appendix B and Appendix K, Table 2 identify site placement of BAM-1022 method code 209 monitors. TCEQ meets the PM_{2.5} method code 209 requirement with three same-method collocated (FEM/FEM collocation)

monitors and four different-method collocated (FEM/FRM collocation) monitors at the sites listed below in AMNP Table 9.

Table 9: Method Code 209 Particulate Matter of 2.5 Micrometers or Less FEM
Collocated Quality Control Monitor Types and Sites

PM _{2.5} FEM Primary Monitor Method Code	Collocated QC Monitor Type and Method Code	Site Name
209	PM _{2.5} FRM manual filter-based, method 145	Midlothian North Ward Road (pending site relocation)
209	PM _{2.5} FEM, method 209	Corpus Christi Huisache
209	PM _{2.5} FRM manual filter-based, method 145	San Antonio Northwest
209	PM _{2.5} FEM, method 209	Fort Worth California Parkway North
209	PM _{2.5} FRM manual filter-based, method 145	Houston Aldine
209	PM _{2.5} FEM, method 209	Port Arthur Memorial School
209	PM _{2.5} FRM manual filter-based, method 145	Ascarate Park Southeast (Deployed May 9, 2024)

FEM – federal equivalent method

FRM – federal reference method

 $PM_{2.5}$ – particulate matter of 2.5 micrometers in diameter or less

QC - quality control

In 2023, TCEQ deployed a new PM_{2.5} FEM monitor designated by method code 638 to replace aging equipment. Based on the current PM_{2.5} network of nine PM_{2.5} FEM monitors designated with method code 638, TCEQ is required to operate one collocated QC monitor. AMNP Appendix B and Appendix K, Table 2 identify site placement of T640x method code 638 monitors. TCEQ exceeds the PM_{2.5} method code 638 collocated QC requirement with two different-method collocated QC (FEM/FRM collocation) monitors and one same-method collocated QC (FEM/FEM collocation) monitor at the sites listed below in AMNP Table 10.

Additional information regarding TCEQ PM_{2.5} collocation QC designations are listed in AMNP Appendix B.

Table 10: Method Code 638 Particulate Matter of 2.5 Micrometers or Less FEMCollocated Quality Control Monitor Types and Sites

PM _{2.5} FEM Primary Monitor Method Code	Collocated QC Monitor Type and Method Code	Site Name	
638	PM _{2.5} FRM manual filter-based, method 145	Dallas Hinton	
638	PM _{2.5} FEM, method 638	Socorro Hueco	

PM _{2.5} FEM Primary Monitor Method Code	Collocated QC Monitor Type and Method Code	Site Name	
638	PM _{2.5} FRM manual filter-based, method 145	El Paso Chamizal	

FEM – federal equivalent method

FRM – federal reference method

 $PM_{2.5}$ – particulate matter of 2.5 micrometers in diameter or less

QC – quality control

Previously Recommended Changes

TCEQ 2022 AMNP recommended PM_{2.5} monitoring at new sites in the Houston Fifth Ward, Houston Pleasantville neighborhood, and in the Gregory-Portland area in San Patricio County. In a letter dated March 3, 2023, the EPA acknowledged the new site additions and noted that the air monitoring sites were not federally required and were thus at the discretion of TCEQ. TCEQ utilized input from community groups to evaluate areas for the establishment of new ambient air monitoring sites at Finnigan Park in the Houston Fifth Ward and at Pleasantville Elementary School in the Houston Pleasantville area. Construction permits for the Houston Finnigan Park site are pending issuance by the City of Houston. Site construction is ongoing for the Houston Pleasantville Elementary site. TCEQ expects to activate these special purpose monitors by December 31, 2025, shortly after the site construction is completed. TCEQ is evaluating site options for the establishment of a new ambient air monitoring site in the Gregory-Portland area. TCEQ continues to work with property owners to establish site usage agreements and to deploy these special purpose monitors by December 31, 2026.

As approved in the 2024 AMNP, TCEQ upgraded the $PM_{2.5}$ non-NAAQS comparable monitor at Clinton to a $PM_{2.5}$ FEM continuous monitor on October 16, 2024 (listed in AMNP Table 11 above). As approved in an EPA letter dated February 13, 2025, TCEQ decreased the Clinton $PM_{2.5}$ FRM filter-based manual monitor sampling frequency from daily to once every six days, effective March 8, 2025.

TCEQ continues to complete previously recommended changes including the replacement of $PM_{2.5}$ FRM non-continuous monitors and non-NAAQS comparable $PM_{2.5}$ continuous monitors ($PM_{2.5}$ TEOMs) with $PM_{2.5}$ FEM continuous monitors. The status of previously approved $PM_{2.5}$ recommendations are listed in AMNP Table 11.

Site Name	Monitor(s) Replaced	New Monitor	Action	Status
Clinton	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Completed October 16, 2024
Dallas Bexar Street	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Expected to be completed by December 31, 2025

Table 11: Previously Approved Particulate Matter of 2.5 Micrometers or LessSummary of Changes

Site Name	Monitor(s) Replaced	New Monitor	Action	Status
El Paso UTEP	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Pending site relocation
Houston Finnigan Park (new site in Fifth Ward)	None – new monitor	PM _{2.5} FEM continuous	Deploy	Expected to be completed by December 31, 2025
Houston Pleasantville Elementary (new site in Pleasantville neighborhood)	None – new monitor	PM _{2.5} FEM continuous	Deploy	Expected to be completed by December 31, 2025
Midlothian North Ward Road	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Method code change	Pending site relocation, expected to be completed by December 31, 2026
New site – Gregory-Portland area	None – new monitor	PM _{2.5} FEM continuous	Deploy	Expected to be completed by December 31, 2026
Old Highway 90	PM _{2.5} TEOM	PM _{2.5} FEM continuous	Deploy	Completed July 10, 2024
Skyline Park	None – new monitor	PM _{2.5} FEM continuous	Deploy	Expected to be completed by August 31, 2025

FEM – federal equivalent method

PM_{2.5} - particulate matter of 2.5 micrometers or less in diameter

TEOM – tapered element oscillating microbalance

UTEP – University of Texas at El Paso

Reclassification of PM_{2.5} Micro-scale Near-Road Monitors

TCEQ established near-road monitoring sites in accordance with 40 CFR Part 58, Appendices D and E and the <u>Near-Road NO₂ Technical Assistance Document</u> guidelines. The major roadways in each applicable CBSA were ranked by the highest AADT counts available at the time of the assessment. Space that met logistical and siting criteria for each required near-road site was identified within 50 meters of the highest ranked road segments. TCEQ's near-road site selection process is detailed in the TCEQ 2014 AMNP. TCEQ collocated a PM_{2.5} monitor with the required near-road NO₂ monitor in all CBSAs with populations of 1,000,000 or more, including the CBSAs of Austin, DFW, Houston, and San Antonio, as required under 40 CFR Part 58, Appendix D, Section 4.7.1(b)(2). Table 12 details the TCEQ PM_{2.5} near-road monitors and activation dates.

Area	Site Name	Activation	AADT Ranking*	Distance to Nearest Traffic Lane (meters)	2023 AADT Count and Ranking
Austin CBSA	Austin North Interstate 35	January 7, 2017	7	27 to frontage road (45 to interstate)	145,079 (25 th highest)
DFW CBSA	Fort Worth California Parkway North	March 12, 2015	36	15 to frontage road (35 to interstate)	157,398 (39 th highest)
Houston CBSA	Houston North Loop	April 13, 2015	46	15 to interstate	196,933 (52 nd highest)
San Antonio CBSA	San Antonio Interstate 35	January 1, 2017	21	20 to frontage road (48 to interstate)	201,612 (10 th highest)

 Table 12: TCEQ PM2.5 Micro-Scale Near-Road Monitor Details

*at the time of the original assessment

AADT - annual average daily traffic

CBSA - core based statistical area

 $PM_{2.5}$ - particulate matter of 2.5 micrometers or less

The traffic counts at the near-road monitoring sites are not representative across a CBSA as the counts on the roadway being monitored is generally 10 to 30 times greater than the surrounding area roadways. The $PM_{2.5}$ concentrations measured at the near-road sites are impacted by particulate matter from the nearby localized traffic and are not representative of area-wide air quality. $PM_{2.5}$ measurement data from all eligible monitors that are representative of area-wide air quality are comparable to the annual and 24-hour $PM_{2.5}$ NAAQS. However, according to 40 CFR § 58.30, $PM_{2.5}$ measurement data from monitors that are not representative of area-wide air quality but rather of relatively unique micro-scale, localized hot spot, or unique middle-scale impact sites are not eligible for comparison to the annual $PM_{2.5}$ NAAQS but would remain eligible for comparison to the annual $PM_{2.5}$ NAAQS.

The following micro-scale near-road PM_{2.5} monitoring site data are adjacent to a unique dominating local PM_{2.5} source, and as such, the micro-scale PM_{2.5} measurement data from these sites should only be eligible for comparison to the 24-hour PM_{2.5} NAAQS. PM_{2.5} monitors deployed to meet near-road monitoring requirements provide measurements of localized microenvironments near highly trafficked roadways that are not representative of a broader airshed. EPA noted in the response letter to the TCEQ's 2024 AMNP, dated January 15, 2025, that information on monitors that are not suitable for comparison against the annual PM_{2.5} NAAQS, as described in 40 CFR § 58.30, should be identified in the AMNP. TCEQ requests approval to designate the micro-scale near-road site PM_{2.5} monitor data as not suitable for comparison with the annual PM_{2.5} NAAQS.

Austin North Interstate 35 Site Description

The Austin North Interstate 35 near-road site was approved north of the Interstate-35 frontage lane between Rundberg Lane and Barwood Park by the EPA in the 2013 AMNP approval letter dated May 28, 2014. Overview and street view cardinal direction images of the Austin North Interstate 35 site (shown with a green pin) are shown in Figure 1, Figure 2, and Figure 3. At the time of the 2013 AMNP assessment, the Austin North Interstate 35 near-road site was ranked as the seventh highest AADT in the Austin

CBSA. Figure 4 shows the most recent publicly available annual 2023 Texas Department of Transportation (TxDOT) traffic counts in yellow and the available fiveyear traffic counts in orange around the Austin North Interstate 35 site (shown with a green pin). TxDOT provided information that road construction along this Interstate 35 corridor has been ongoing since 2022. The ongoing road construction project includes adding additional north and southbound lanes, reconstructing ramps, and adding frontage road and mainline auxiliary lanes and has significantly increased the amount of localized particulate matter.

Other Austin CBSA $PM_{2.5}$ monitors have 2021-2023 annual $PM_{2.5}$ design values ranging between 8.7 to 9.3 µg/m³. The Austin North Interstate 35 $PM_{2.5}$ annual design value is between 0.3 to 0.9 µg/m³ higher than all other $PM_{2.5}$ monitors in the Austin CBSA during this time period, which is indicative of the amount of increased particulate matter due to the vehicle daily traffic count and ongoing construction. The Austin North Interstate 35 site is not representative of most other interstate areas since that location was selected near one of the highest Austin CBSA AADTs, making it adjacent to a unique dominating local $PM_{2.5}$ source. It is clear that micro-scale near-road air monitoring site data is not representative of area-wide air quality in the Austin CBSA; therefore, it should not be eligible for comparison to the annual $PM_{2.5}$ NAAQS.

The TCEQ recommends designating the Austin North Interstate 35 micro-scale $PM_{2.5}$ data as not comparable to the annual $PM_{2.5}$ NAAQS, effective from the date of activation, January 7, 2017. The Austin North Interstate 35 micro-scale $PM_{2.5}$ data will continue to be comparable to the 24-hour $PM_{2.5}$ NAAQS. The annual and 24-hour data will continue to be measured and reported to the EPA's AQS database and certified annually by the TCEQ. The Austin North Interstate 35 micro-scale $PM_{2.5}$ data is also reported publicly in near real-time on TCEQ's <u>TAMIS</u>, on the TCEQ's <u>Air Quality Index Report webpage</u>, and on EPA's <u>AirNow website</u>.

Title 40 CFR Part 58, Appendix D, Section 4.7 requires three PM_{2.5} monitors in the Austin MSA based on the population and most recent design value. The TCEQ has two neighborhood Scale PM_{2.5} monitors at the Austin Northwest Hills Drive and Austin Webberville Road sites and one micro-scale monitor at Austin Interstate 35 North. The TCEQ activated a state-initiative PM_{2.5}monitor at Austin Audubon Society on January 7, 2025. The TCEQ recommends adding the Austin Audubon Society PM_{2.5}monitor to the federal network discussed in this AMNP if the request to exclude the Austin North Interstate 35 micro-scale PM_{2.5} data as not comparable to the annual PM_{2.5} NAAQS is approved.

Figure 1: Austin North Interstate 35 Overview

Figure 2: Austin North Interstate 35 - North and South Street Views

Figure 3: Austin North Interstate 35 - East and West Street Views

Figure 4: Austin North Interstate 35 and Surrounding Area With Annual and Five-Year Traffic Counts

Fort Worth California Parkway North Site Description

The Fort Worth California Parkway North near-road site was approved north of the Interstate-20 frontage lane between Crowley Road and Interstate 35 West by the EPA in an email dated December 3, 2014. Overview and roadway street view cardinal direction images of the Fort Worth California Parkway North site (shown with a green pin) are shown in Figure 5, Figure 6, and Figure 7. At the time of the assessment, the Fort Worth California Parkway North near-road site was ranked as the 36th highest AADT in the DFW CBSA. Figure 8 shows the most recently available annual 2023 TxDOT traffic counts in yellow and the available five-year traffic counts in orange around the Fort Worth California Parkway North site (shown with a green pin). TxDOT confirmed road construction along the Interstate 20 corridor has been ongoing since 2023. The ongoing road construction project includes texturing pavement, barrier upgrades, and concrete repairs and has increased the amount of localized particulate matter.

DFW CBSA $PM_{2.5}$ monitors have 2021-2023 annual $PM_{2.5}$ design values ranging between 7.7 to 9.9 µg/m³. While the Fort Worth California Parkway North $PM_{2.5}$ annual design value is 8.7 µg/m³, the monitor is exposed to higher amounts of particulate matter due to the vehicle daily traffic count and ongoing construction. The Fort Worth California Parkway North site is not representative of most other interstate areas since that location was chosen near one of the highest AADTs, making it adjacent to a unique

dominating local PM_{2.5} source. It is clear that micro-scale near-road air monitoring site data is not representative of area-wide air quality in the DFW CBSA; therefore, it should not be eligible for comparison to the annual PM_{2.5} NAAQS. The TCEQ recommends designating the Fort Worth California Parkway North micro-scale PM_{2.5} data as not comparable to the annual PM_{2.5} NAAQS, effective from the date of activation, March 12, 2015. The Fort Worth California Parkway North micro-scale PM_{2.5} data will continue to be comparable to the 24-hour PM_{2.5} NAAQS. The annual and 24-hour data will continue to be measured and reported to the EPA's AQS database and certified annually by the TCEQ. The Fort Worth California Parkway North micro-scale PM_{2.5} data is also reported publicly in near real-time on TCEQ's TAMIS, on the TCEQ's <u>Air Ouality Index Report</u> webpage, and on EPA's <u>AirNow website</u>.

Figure 5: Fort Worth California Parkway North Overview

Figure 6: Fort Worth California Parkway North - North and South Street Views

Texas Commission on Environmental Quality

Figure 7: Fort Worth California Parkway North – East and West Street Views

Figure 8: Fort Worth California Parkway North and Surrounding Area Annual and Five-Year Traffic Counts

Houston North Loop Site Description

The Houston North Loop near-road site was approved north of Interstate-610 between North Main Street and Interstate 45 by the EPA in an email dated December 3, 2014. Overview and street view cardinal direction images of the Houston North Loop site (shown with a green pin) are shown in Figure 9, Figure 10, and Figure 11. At the time of the assessment, the Houston North Loop near-road site was ranked as the 46th highest AADT in the Houston CBSA. Figure 12 shows the most recently available annual 2023 TxDOT traffic counts in yellow and the available five-year traffic counts in orange around the Houston North Loop site (shown with a green pin).

Houston CBSA PM_{2.5} monitors have 2021-2023 annual PM_{2.5} design values ranging between 8.3 to 12.5 μ g/m³. The Houston North Loop PM₂₅ annual design value is the second highest PM_{2.5} monitor in the Houston CBSA during this time period which is indicative of the amount of increased particulate matter due to the vehicle daily traffic count. The Houston North Loop site is not representative of most other interstate areas since that location was chosen near one of the highest AADTs, making it adjacent to a unique dominating local PM₂₅ source. It is clear that micro-scale near-road air monitoring site data is not representative of area-wide air quality in the Houston CBSA; therefore, it should not be eligible for comparison to the annual PM_{2.5} NAAQS. The TCEQ recommends designating the Houston North Loop micro-scale PM₂₅ data as not comparable to the annual PM_{2.5} NAAQS, effective from the date of activation, April 13, 2015. The Houston North Loop micro-scale PM₂₅ data will continue to be comparable to the 24-hour PM_{2.5} NAAQS. The annual and 24-hour data will continue to be measured and reported to the EPA's AQS database and certified annually by the TCEQ. The Houston North Loop micro-scale PM₂₅ data is also reported publicly in near real-time on TCEO's TAMIS, on the TCEO's Air Quality Index Report webpage, and on EPA's AirNow website.

Figure 9: Houston North Loop Overview

Figure 10: Houston North Loop – North and South Street Views

Figure 11: Houston North Loop – East and West Street Views

Figure 12: Houston North Loop and Surrounding Area Annual and Five-Year Traffic Counts
San Antonio Interstate 35 Site Description

The San Antonio Interstate 35 near-road site was approved east of the Interstate-35 frontage lane between Thousand Oaks Drive and Crestway Drive by the EPA during separate discussions and acknowledged in the approval letter of the TCEQ's 2014 AMNP received January 14, 2015. Overview and street view cardinal direction images of the San Antonio Interstate 35 site (shown with a green pin) are shown in Figure 13, Figure 14, and Figure 15. At the time of the assessment, the San Antonio Interstate 35 near-road site was ranked as the 21st highest AADT in the San Antonio CBSA and is ranked the 10th highest according to 2023 AADT. Figure 16 shows the most recently available annual 2023 TxDOT traffic counts in yellow and the available five-year traffic counts in orange around the San Antonio Interstate 35 site (shown with a green pin). Additionally, TxDOT confirmed road construction along this Interstate 35 corridor has been ongoing since 2021. The ongoing road construction project includes converting the existing eight main lanes to 14 main lanes and has significantly increased the amount of localized particulate matter.

Other San Antonio CBSA PM_{2.5} monitors have 2021-2023 annual PM_{2.5} design values ranging between 7.1 to 9.0 μ g/m³. The San Antonio Interstate 35 is the second highest PM_{2.5} monitor in the San Antonio CBSA during this time period which is indicative of the amount of increased particulate matter due to the vehicle daily traffic count and ongoing construction. The San Antonio Interstate 35 site is not representative of most other interstate areas since that location was chosen near one of the highest AADTs, making it adjacent to a unique dominating local PM₂₅ source. It is clear that micro-scale near-road air monitoring site data is not representative of area-wide air quality in the San Antonio CBSA; therefore, it should not be eligible for comparison to the annual PM_{2.5} NAAQS. The TCEQ recommends designating the San Antonio Interstate 35 microscale PM_{2.5} data as not comparable to the annual PM_{2.5} NAAQS, effective from the date of activation, January 1, 2017. The San Antonio Interstate 35 -scale PM_{2.5} data will continue to be comparable to the 24-hour PM₂₅ NAAQS. The annual and 24-hour data will continue to be measured and reported to the EPA's AQS database and certified annually by the TCEQ. The San Antonio Interstate 35 micro-scale PM₂₅ data is also reported publicly in near real-time on TCEQ's TAMIS, on the TCEQ's Air Quality Index Report webpage, and on EPA's AirNow website.

Figure 13: San Antonio Interstate 35 Overview

Figure 14: San Antonio Interstate 35 - North and South Street Views

Figure 15: San Antonio Interstate 35 – East and West Street Views

Figure 16: San Antonio Interstate 35 and Surrounding Area Annual and Five-Year Traffic Counts

Regulatory PM_{2.5} Monitoring Network Changes

TCEQ activated a state-initiative PM_{2.5} FEM monitor at Austin Audubon Society on January 7, 2025, and recommends adding this monitor to the TCEQ federal air monitoring network if EPA Region 6 approves the reclassification of PM_{2.5} microscale near-road monitors as non-NAAQS comparable to the annual PM_{2.5} NAAQS.

TCEQ's Amarillo A&M PM_{2.5} monitor was activated in 2005 at 6500 Amarillo Boulevard West, Amarillo, Texas, in Potter County. TCEQ was notified of the pending property sale and recommended to relocate the PM_{2.5} FEM continuous monitor and air monitoring site to the existing Amarillo 24th Avenue air monitoring site to the EPA in a letter dated August 7, 2024. The Amarillo 24th Avenue site is located approximately 7.25 miles north-northeast from the Amarillo A&M air monitoring site and meets the same monitoring objective and spatial scale as the Amarillo A&M site. The Amarillo A&M PM_{2.5} annual and 24-hour 2020-2022 design values were 5.9 micrograms per cubic meter (ug/m³) and 15 ug/m³, respectively. Since the Amarillo A&M PM_{2.5} monitor data were less than 67% of both the annual and 24-hour PM_{2.5} standards, the monitor was eligible for relocation. Relocating the Amarillo A&M PM_{2.5} monitor to an existing TCEQ air monitoring without data interruptions that may impact design value calculations. Also, relocating the Amarillo A&M PM_{2.5} continuous monitor to the Amarillo 24th Avenue site

benefits data users, since the Amarillo 24th Avenue site measures meteorological parameters of wind and outdoor temperature not measured at the Amarillo A&M site. The EPA approved the Amarillo A&M PM_{2.5} monitor relocation in a letter dated October 10, 2024. The Amarillo A&M PM_{2.5} monitor was relocated to the Amarillo 24th Street air monitoring site and activated on December 10, 2014.

Volatile Organic Compounds (VOC)

TCEQ's VOC network is designed to meet PAMS requirements, as discussed further in this section. TCEQ is required to operate two VOC monitors and exceeds this requirement with 12 monitors. For purposes of meeting federal PAMS requirements, TCEQ's VOC network includes eight automated gas chromatograph (autoGC) continuous monitors and four non-continuous canister monitors. AMNP Appendix L, Table 1 lists the number of required and current VOC monitors in each Texas CBSA. AMNP Appendix B lists the air monitoring sites where VOCs are measured.

Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 5 requires state agencies to collect speciated VOC hourly-averaged measurements at NCore sites located in CBSAs with a population of 1,000,000 or more persons as part of the PAMS network requirements. TCEQ exceeds PAMS required VOC monitoring requirements with autoGCs at the two PAMS sites listed in AMNP Table 2 and at six other sites as listed in AMNP Appendix B.

Previously Recommended Changes

TCEQ's 2022 and 2023 AMNPs recommended adding non-regulatory, state-initiative VOC monitoring at the new sites in the Houston Fifth Ward, Houston Pleasantville neighborhood, and in the Gregory-Portland area in San Patricio County. TCEQ utilized input from community groups to evaluate areas for the establishment of a new ambient air monitoring site at Finnigan Park in the Houston Fifth Ward area and at Pleasantville Elementary School in the Houston Pleasantville area. The Houston Finnigan Park construction permit is pending issuance by the City of Houston, and the Houston Pleasantville Elementary site is pending construction completion. TCEQ expects to deploy the non-regulatory, state-initiative VOC monitors by December 31, 2025, shortly after the site construction is completed.

TCEQ is evaluating site options for the establishment of a new ambient air monitoring site in the Gregory-Portland area. TCEQ continues to work with the property owners to establish site usage agreements and to deploy the state-initiative, special purpose VOC monitor by December 31, 2026.

Regulatory and Non-Regulatory VOC Monitoring Network Changes

TCEQ evaluated the current regulatory VOC monitoring network and determined the existing VOC network meets all federal monitoring requirements; therefore, no additional changes are recommended.

<u>Carbonyls</u>

TCEQ's carbonyl monitoring network is designed to meet PAMS requirements, as discussed further in this section. TCEQ is required to operate two carbonyl monitors and exceeds this requirement with four monitors. AMNP Appendix L, Table 2 lists the number of required and current carbonyl monitors in each Texas CBSA. AMNP Appendix B lists the air monitoring sites where carbonyls are measured.

Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 5 requires state agencies to collect PAMS carbonyl measurements with three eight-hour averaged samples taken every third day at each NCore site located in CBSAs with a population of 1,000,000 or more persons. TCEQ exceeds carbonyl monitoring requirements with carbonyl monitors at the two required PAMS sites listed in AMNP Table 2 and at two other sites listed in AMNP Appendix B.

Previously Recommended Changes

TCEQ's 2024 AMNP recommended no changes to the carbonyl monitoring network.

Regulatory Carbonyl Monitoring Network Changes

TCEQ evaluated the current carbonyl monitoring network and determined the existing carbonyl network meets all federal monitoring requirements; therefore, no changes are recommended.

<u>Meteorology</u>

TCEQ's meteorology monitoring network includes surface meteorology parameters (solar radiation, wind speed, wind direction, and temperature), upper air measurements (mixing height), and other meteorological parameters, as discussed further in this section. Surface meteorology is measured at most air monitoring stations and additional meteorology parameters are required at PAMS monitoring stations. All meteorology monitors in TCEQ's network are included in AMNP Appendix B.

Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 5 requires state agencies to collect PAMS surface and upper air meteorology measurements at all NCore sites in CBSAs with a population of 1,000,000 or more persons. Meteorological PAMS measurements at the required PAMS sites (or alternatively approved waiver locations) include measurements of wind speed, wind direction, outdoor temperature, atmospheric pressure, relative humidity, precipitation, hourly averaged mixing-height, solar radiation, and ultraviolet radiation. TCEQ meets these meteorological monitoring requirements with measurements collected at the Dallas Hinton, Houston Deer Park #2, and La Porte Airport sites.

Previously Recommended Changes

To meet near-road monitoring requirements in the San Antonio CBSA, the EPA approved a revised location for a second near-road site named San Antonio Interstate 10 West in a letter dated November 27, 2023. TCEQ experienced ongoing unexpected challenges in securing power to the site, including delays from the power provider and theft of electrical infrastructure. TCEQ deployed the San Antonio Interstate 10 West site and wind speed, wind direction, and outdoor temperature on March 31, 2025.

TCEQ redesignated the wind speed, wind direction, and outdoor temperature monitors at the Old Highway 90 site as federal special purpose monitors to support the federal $PM_{2.5}$ special purpose monitor at the site on January 1, 2025.

TCEQ recommended deploying wind speed, wind direction, and outdoor temperature monitors to the new air monitoring sites in the Houston Fifth Ward, the Houston Pleasantville neighborhood, and the Gregory-Portland area. The Houston Finnigan Park construction permit is pending issuance by the City of Houston, and the Houston Pleasantville Elementary site is pending construction completion The Houston Fifth Ward and the Houston Pleasantville neighborhood monitors are expected to be operational by December 31, 2025. The Gregory-Portland area monitor is expected to be operational by August 31, 2026.

Regulatory Meteorology Monitoring Network Changes

TCEQ is upgrading older meteorology technology to new all-in-one sonic weather sensors as equipment becomes available. The new sensor provides measurements of wind speed, wind direction, and ambient air temperature, with options to report relative humidity and barometric pressure.

TCEQ recommends adding wind speed, wind direction, and outdoor temperature monitors at the Earhart site as federal special purpose monitors to support the proposed federal PM_{10} FEM continuous monitor by December 31, 2026.

Air Monitoring Site Relocations

TCEQ establishes property site usage agreements as a contractual means to locate and operate air quality monitoring stations on public or privately owned land. Property owners retain the right to revoke the usage agreement at any time. When possible, TCEQ works with the existing property owner to identify another suitable air monitoring site location. In some circumstances, a new location must be identified, and a new site usage agreement implemented. TCEQ is relocating the air monitoring sites listed in AMNP Table 13. The existing site and monitoring equipment remain operational unless noted. Existing site and air monitoring details are provided in Appendix B.

Site Name	New Site Name	New Site Address	Reason for Relocation	Status
Dallas Hinton	Dallas Hinton	1505 Record Crossing Road, Dallas Texas	Relocation less than 0.15 mile south-southeast of existing site due to property owner revocation of lease agreement, approved by the EPA in a letter dated December 20, 2024	Site temporarily deactivated February 24, 2025, relocation expected by August 2025
Earhart	Pending site selection	Pending site selection	Relocation due to property owner revocation of usage agreement	Site remains active, relocation expected by December 2025
El Paso UTEP	Pending site selection	Pending site selection	Relocation pending due to property owner revocation of usage agreement (building expansion over site location)	Site temporarily deactivated November 2021, relocation expected by December 2026
Houston Deer Park #2	Houston Deer Park	4413 Glenwood Avenue, Deer Park, Texas	Relocation less than 0.1 mile west of existing site due to property owner revocation of usage agreement (park expansion), approved by the EPA in a letter dated May 18, 2022	Site remains active, relocation expected by May 2025
Midlothian OFW	Midlothian North Ward Road	891 North Ward Road, Midlothian, Texas (pending permit approval by the City of Midlothian Development Review Committee)	Relocation approximately 0.7 mile southwest on current property due to property owner revocation of site access (new property owners), approved by the EPA in a letter dated November 17, 2023.Site construction permit denied, site logistical updates to meet city Development Review Committee requirements and local ordinances under continued negotiation with City of Midlothian.	Site temporarily deactivated April 22, 2022, relocation expected by December 2026
Terrell Temtex	Terrell Jamison Court	8 Jamison Court, Terrell, Texas	Relocation approximately 0.2 mile south due to property owner revocation of usage agreement, approved by the EPA in a letter dated January 9, 2024	Relocation completed October 17, 2024

Table 13: Air Monitoring Site Relocations

- number sign

EPA – United States Environmental Protection Agency OFW – Old Fort Worth

UTEP - University of Texas at El Paso

Conclusion

As discussed in this report, TCEQ has evaluated the ambient air quality monitoring network against all related federal air monitoring requirements. After consideration of the federal regulations, 2023 U.S. Census Bureau population estimate data, EI data, and 2021-2023 design values, TCEQ has determined that it will meet or exceed all monitoring requirements with the above-mentioned recommendations for the next calendar year.

Appendix A

2025 Summary of Proposed Network Changes

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

Appendix A: 2025 Summary of Proposed Network Changes

Metropolitan Statistical Area	Air Monitoring Site Name	Parameter(s)	Proposed Action	Estimated Completion Date
Austin-Round Rock- San Marcos	Austin North Hills Drive	sulfur dioxide	Change monitor type from SLAMS to SPM	December 31, 2025
Corpus Christi	Corpus Christi Huisache	sulfur dioxide	Change monitor type from SLAMS to SPM	December 31, 2025
Corpus Christi	Corpus Christi Tuloso	sulfur dioxide	Change monitor type from SLAMS to SPM	December 31, 2025
Corpus Christi	Corpus Christi West	sulfur dioxide	Deactivate SPM monitor, TCEQ 2020 and 2025 Five Year Assessment evaluated monitor as low value	December 31, 2025
Houston-Pasadena- The Woodlands	Park Place	sulfur dioxide	Deactivate SPM monitor, TCEQ 2020 and 2025 Five Year Assessment evaluated monitor as low value	December 31, 2025
Waco	Waco Mazanec	sulfur dioxide	Change monitor type from SLAMS to SPM	December 31, 2025
Lubbock	Lubbock 12th Street	ozone	Add monitor to meet federal requirements due to increased population estimates from addition of three counties to the MSA	December 31, 2026
San Antonio-New Braunfels	Frank Wing Municipal Building (rooftop)	site and PM10	Deactivate site and relocate 4.5 miles west to Old Highway 90, improving staff accessibility and safety	December 31, 2025
San Antonio-New Braunfels	Old Highway 90	PM10	Add continuous FEM monitor (relocated from Frank Wing Municipal Building)	December 31, 2025
Killeen-Temple	Temple Georgia	PM10	Add to meet federal requirements due to increased population estimates	December 31, 2026
Austin-Round Rock- San Marcos	Austin Audubon Society	PM10	Replace manual filter-based monitor with continuous FEM monitor	December 31, 2026

Appendix A: 2025 Summary of Proposed Network Changes

Metropolitan Statistical Area	Air Monitoring Site Name	Parameter(s)	Proposed Action	Estimated Completion Date
Dallas-Fort Worth- Arlington	Earhart	PM10	Replace manual filter-based monitor with continuous FEM monitor	December 31, 2026
Laredo	Laredo Bridge	PM10	Replace manual filter-based monitor with continuous FEM monitor	December 31, 2026
Laredo	Laredo College	PM10	Replace manual filter-based monitor with continuous FEM monitor	December 31, 2026
Austin-Round Rock- San Marcos	Austin North Interstate 35	PM2.5	Micro-scale near-road monitoring data ineligible for comparison to the annual PM2.5 NAAQS	January 1, 2025
Dallas-Fort Worth- Arlington	Fort Worth California Parkway North	PM2.5	Micro-scale near-road monitoring data ineligible for comparison to the annual PM2.5 NAAQS	January 1, 2025
Houston-Pasadena- The Woodlands	Houston North Loop	PM2.5	Micro-scale near-road monitoring data ineligible for comparison to the annual PM2.5 NAAQS	January 1, 2025
San Antonio-New Braunfels	San Antonio Interstate 35	PM2.5	Micro-scale near-road monitoring data ineligible for comparison to the annual PM2.5 NAAQS	January 1, 2025
Austin-Round Rock- San Marcos	Austin Audubon Society	PM2.5	Add state-initiative monitor to federal network if PM2.5 data exclusion request is approved.	January 1, 2025

FEM - federal equivalent method

NAAQS - National Ambient Air Quality Standard

PM10 - particulate matter of 10 micrometers or less in diameter

PM2.5 - particulate matter of 2.5 micrometers or less in diameter

SLAMS - State or Local Air Monitoring Station

SPM - Special Purpose Monitor

TCEQ - Texas Commission on Environmental Quality

Appendix B

Ambient Air Monitoring Network Site List

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Amarillo	Amarillo 24th Avenue	483751025	4205 NE 24th Avenue, Amarillo	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Urban and Center City	35.2015954	-101.909266
Amarillo	Amarillo 24th Avenue	483751025	4205 NE 24th Avenue, Amarillo	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Suburban	35.2367458	-101.787396
Amarillo	Amarillo 24th Avenue	483751025	4205 NE 24th Avenue, Amarillo	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	35.2367458	-101.787396
Amarillo	Amarillo 24th Avenue	483751025	4205 NE 24th Avenue, Amarillo	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	35.2367458	-101.787396
	Amarillo Xcel El	483751077	Folsom Rd. & El Rancho Rd.,	SO2	SLAMS	Pulsed Fluorescence		· · ·				-101.741754
Amarillo	Rancho Amarillo Xcel El Rancho	483751077	Amarillo Folsom Rd. & El Rancho Rd., Amarillo	Temperature	SPM	AIO2 sonic weather	Continuous	Source Oriented	Neighborhood	Rural	35.3164801	-101.741754
Amarillo	Amarillo Xcel El Rancho	483751077	Folsom Rd. & El Rancho Rd., Amarillo	(Outdoor) Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background General, Background		Rural	35.3164801	-101.741754
Austin-Round Rock- San Marcos	Austin Audubon Society	484530020	12200 Lime Creek Rd, Leander	03	SLAMS	UV Photometric	Continuous	Population Exposure		Rural	30.4831602	-97.8723279
Austin-Round Rock- San Marcos	Austin Audubon Society	484530020	12200 Lime Creek Rd, Leander	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6	Population Exposure		Rural	30.4831602	-97.8723279
Austin-Round Rock-	Austin Audubon		12200 Lime Creek									
San Marcos Austin-Round Rock-	Society Austin Audubon	484530020	Rd, Leander 12200 Lime Creek	Solar Radiation		Photovoltaic AIO2 sonic weather	Continuous	Population Exposure	Urban Scale	Rural	30.4831602	-97.8723279
San Marcos Austin-Round Rock-	Society Austin Audubon	484530020	Rd, Leander 12200 Lime Creek	(Outdoor)	SPM	sensor AIO2 sonic weather	Continuous	Population Exposure	Urban Scale	Rural	30.4831602	-97.8723279
San Marcos Austin-Round Rock-	Society Austin North Hills	484530020	Rd, Leander 3824 North Hills	Wind	SPM	sensor	Continuous	Population Exposure	Urban Scale	Rural	30.4831602	-97.8723279
San Marcos	Drive	484530014	Drive, Austin	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Urban Scale	Suburban	30.3549187	-97.7617452
Austin-Round Rock- San Marcos	Austin North Hills Drive	484530014	3824 North Hills Drive, Austin	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	30.3549187	-97.7617452
Austin-Round Rock- San Marcos	Austin North Hills Drive	484530014	3824 North Hills Drive, Austin	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	30.3549187	-97.7617452

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Austin-Round Rock- San Marcos	Austin North Hills Drive	484530014	3824 North Hills Drive, Austin	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Urban Scale	Suburban	30.3549187	-97.7617452
Austin-Round Rock- San Marcos	Austin North Hills Drive	484530014	3824 North Hills Drive, Austin	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	30.3549187	-97.7617452
Austin-Round Rock- San Marcos	Austin North Hills Drive	484530014	3824 North Hills Drive, Austin	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	30.3549187	-97.7617452
Austin-Round Rock- San Marcos	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	СО	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.3538473	-97.6915732
Austin-Round Rock- San Marcos	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	NO/NO2/NOx	Near Road, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.3538473	-97.6915732
Austin-Round Rock- San Marcos	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.3538473	-97.6915732
Austin-Round Rock- San Marcos	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.3538473	-97.6915732
Austin-Round Rock- San Marcos	Austin North Interstate 35	484531068	8912 N IH 35 SVRD SB, Austin	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	30.3538473	-97.6915732
Austin-Round Rock- San Marcos	Austin Webberville Rd	484530021	2600B Webberville Rd, Austin	PM10 FEM	SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	30.2632109	-97.7128865
Austin-Round Rock- San Marcos	Austin Webberville Rd	484530021	2600B Webberville Rd, Austin	PM2.5	SLAMS	Broadband spectroscopy, 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	30.2632109	-97.7128865
Austin-Round Rock- San Marcos	Austin Webberville Rd	484530021	2600B Webberville Rd, Austin	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure		Urban and Center City	30.2632109	-97.7128865
Austin-Round Rock- San Marcos	Austin Webberville Rd	484530021	2600B Webberville Rd, Austin	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure		Urban and Center City	30.2632109	-97.7128865
Beaumont-Port Arthur	Beaumont	482450009	1086 Vermont	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Population Exposure		Suburban	30.0364453	-94.0710918
	Beaumont		1086 Vermont					Max Precursor Emissions Impact;				
Beaumont-Port Arthur	Beaumont	482450009	Avenue, Beaumont		PAMS, SLAMS	UV Photometric	Continuous	Population Exposure		Suburban	30.0364453	-94.0710918
Beaumont-Port Arthur	Downtown	482450009	Avenue, Beaumont	502	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Suburban	30.0364453	-94.0710918

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port Arthur	Beaumont Downtown	482450009	1086 Vermont Avenue, Beaumont	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	30.0364453	-94.0710918
Beaumont-Port Arthur	Beaumont Downtown	482450009	1086 Vermont Avenue, Beaumont	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Suburban	30.0364453	-94.0710918
Beaumont-Port Arthur	Beaumont Downtown	482450009	1086 Vermont Avenue, Beaumont	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	30.0364453	-94.0710918
Beaumont-Port Arthur	Beaumont Downtown	482450009	1086 Vermont Avenue, Beaumont	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	30.0364453	-94.0710918
Beaumont-Port Arthur	Hamshire	482450022	12552 Second St, Not In A City	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	General, Background; Regional Transport	Neighborhood / Urban Scale	Suburban	29.8639616	-94.3178022
Beaumont-Port Arthur	Hamshire	482450022	12552 Second St, Not In A City	03	SLAMS	UV Photometric	Continuous	General, Background; Regional Transport	Urban Scale	Suburban	29.8639616	-94.3178022
Beaumont-Port Arthur	Hamshire	482450022	12552 Second St, Not In A City	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.8639616	-94.3178022
Beaumont-Port Arthur	Hamshire	482450022	12552 Second St, Not In A City	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	29.8639616	-94.3178022
Beaumont-Port Arthur	Hamshire	482450022	12552 Second St, Not In A City	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.8639616	-94.3178022
Beaumont-Port Arthur	Hamshire	482450022	12552 Second St, Not In A City	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.8639616	-94.3178022
Beaumont-Port Arthur	Jefferson County Airport	482450018	End of 90th Street @ Jefferson County Airport, Port Arthur	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	General, Background	Neighborhood	Suburban	29.9428198	-94.0007959
Beaumont-Port Arthur	Jefferson County Airport	482450018	End of 90th Street @ Jefferson County Airport, Port Arthur	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.9428198	-94.0007959
Beaumont-Port Arthur	Jefferson County Airport	482450018	End of 90th Street @ Jefferson County Airport, Port Arthur	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.9428198	-94.0007959
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood	Suburban	29.9799952	-94.0047669

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	03	PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Nederland 17th Street	482451035	1516 17th Street, Nederland	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.9799952	-94.0047669
Beaumont-Port Arthur	Orange 1st Street	483611083	2239 1st Street, Orange	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Urban and Center City	30.1537808	-93.7259766
Beaumont-Port Arthur	Orange 1st Street	483611083	2239 1st Street, Orange	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	30.1537808	-93.7259766
Beaumont-Port Arthur	Orange 1st Street	483611083	2239 1st Street, Orange	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	30.1537808	-93.7259766
Beaumont-Port Arthur	Port Arthur Memorial School	482450021	2200 Jefferson Drive, Port Arthur	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.9229228	-93.9089999
Beaumont-Port Arthur	Port Arthur Memorial School	482450021	2200 Jefferson Drive, Port Arthur	PM2.5 FEM	QA Collocated, SLAMS	Beta Attenuation, 209	Continuous	Quality Assurance	Neighborhood	Suburban	29.9229228	-93.9089999
Beaumont-Port Arthur	Port Arthur West	482450011	623 Ellias Street, Port Arthur	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.897523	-93.9910809
Beaumont-Port Arthur	Port Arthur West	482450011	623 Ellias Street, Port Arthur	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Urban and Center City	29.897523	-93.9910809

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Beaumont-Port Arthur	Port Arthur West	482450011	623 Ellias Street, Port Arthur	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure; Source Oriented	Neighborhood	Urban and Center City	29.897523	-93.9910809
Beaumont-Port Arthur	Port Arthur West	482450011	623 Ellias Street, Port Arthur	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Urban and Center City	29.897523	-93.9910809
Beaumont-Port Arthur	Port Arthur West	482450011	623 Ellias Street, Port Arthur	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure; Source Oriented	Neighborhood	Urban and Center City	29.897523	-93.9910809
Beaumont-Port Arthur	Port Arthur West 7th Street Gate 2	482451071	West 7th Street, Valero Port Arthur Gate 2, Port Arthur	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	29.8441175	-93.9652274
Beaumont-Port Arthur	Port Arthur West 7th Street Gate 2	482451071	West 7th Street, Valero Port Arthur Gate 2, Port Arthur	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	29.8441175	-93.9652274
Beaumont-Port Arthur	Port Arthur West 7th Street Gate 2	482451071	West 7th Street, Valero Port Arthur Gate 2, Port Arthur	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	29.8441175	-93.9652274
Beaumont-Port Arthur	SETRPC 40 Sabine Pass	482450101	5200 Mechanic, Not In A City	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood	Rural	29.7279404	-93.8940883
Beaumont-Port Arthur	SETRPC 42 Mauriceville	483611100	Intersection of TX Hwys 62 & 12, Port Arthur	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport; Upwind Background	Regional Scale	Suburban	30.1942921	-93.8671774
Beaumont-Port Arthur	SETRPC 43 Jefferson Co Airport	482450102	Jefferson County Airport, Port Arthur	03	SPM	UV Photometric	Continuous	Max Precursor Emissions Impact	Middle Scale	Suburban	29.9427366	-94.000673
Beaumont-Port Arthur	West Orange	483611001	2700 Austin Ave, West Orange	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	30.0852641	-93.7613464
Beaumont-Port Arthur	West Orange	483611001	2700 Austin Ave, West Orange	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	30.0852641	-93.7613464
Beaumont-Port Arthur	West Orange	483611001	2700 Austin Ave, West Orange	Solar Radiation	SPM	Photovoltaic	Continuous	Source Oriented	Neighborhood	Urban and Center City	30.0852641	-93.7613464
Beaumont-Port Arthur	West Orange	483611001	2700 Austin Ave, West Orange	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Urban and Center City	30.0852641	-93.7613464
Beaumont-Port Arthur	West Orange	483611001	2700 Austin Ave, West Orange	Wind	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Urban and Center City	30.0852641	-93.7613464
Big Spring*	Big Spring Midway	482271072	1218 N. Midway Rd, Big Spring	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	32.2804529	-101.407117

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Big Spring	Big Spring Midway	482271072	1218 N. Midway Rd, Big Spring	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Rural	32.2804529	-101.407117
Big Spring	Big Spring Midway	482271072	1218 N. Midway Rd, Big Spring	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	32.2804529	-101.407117
Borger*	Borger FM 1559	482331073	19440 FM 1559, Borger	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	35.6760264	-101.440043
Borger	Borger FM 1559	482331073	19440 FM 1559, Borger	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	35.6760264	-101.440043
Borger	Borger FM 1559	482331073	19440 FM 1559, Borger	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	35.6760264	-101.440043
Brownsville-Harlingen	Brownsville East 6th		85 East 6th Street, Brownsville	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure		Urban and Center City	25.900951	-97.5077924
Brownsville-Harlingen	Brownsville East 6th Street	480611098	85 East 6th Street, Brownsville	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	25.900951	-97.5077924
- Brownsville-Harlingen	Brownsville East 6th Street	480611098	85 East 6th Street, Brownsville	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Urban and Center City	25.900951	-97.5077924
Brownsville-Harlingen	Brownsville East 6th Street	480611098	85 East 6th Street, Brownsville	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	25.900951	-97.5077924
Brownsville-Harlingen	Harlingen Teege	480611023	1602 W Teege Avenue, Harlingen	03	SLAMS	UV Photometric	Continuous	Population Exposure		Suburban	26.2003477	-97.7126985
			1602 W Teege	Temperature		AIO2 sonic weather						
Brownsville-Harlingen		480611023	Avenue, Harlingen 1602 W Teege	(Outdoor)	SPM	sensor AIO2 sonic weather	Continuous	Population Exposure		Suburban	26.2003477	-97.7126985
Brownsville-Harlingen	Isla Blanca State	480611023	Avenue, Harlingen 33174 State Park Road 100, South	Wind	SPM	sensor	Continuous	Population Exposure		Suburban	26.2003477	-97.7126985
Brownsville-Harlingen	Park Road Isla Blanca State	480612004	Padre Island 33174 State Park Road 100, South	PM2.5 FEM Temperature	SPM	Beta Attenuation, 209 AIO2 sonic weather	Continuous	Regional Transport	Urban Scale	Rural	26.0711132	-97.1577302
Brownsville-Harlingen		480612004	Padre Island 33174 State Park	(Outdoor)	SPM	sensor	Continuous	Regional Transport	Regional Scale	Rural	26.0711132	-97.1577302
Brownsville-Harlingen		480612004	Road 100, South Padre Island	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Rural	26.0711132	-97.1577302

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
College Station-Bryan	Bryan Finfeather Road	480411086	3670 Finfeather Road, Bryan	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure; Regional Transport	Neighborhood	Rural	30.6283338	-96.3628341
College Station-Bryan	Bryan Finfeather Road	480411086	3670 Finfeather Road, Bryan	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	30.6283338	-96.3628341
College Station-Bryan	Bryan Finfeather Road	480411086	3670 Finfeather Road, Bryan	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	30.6283338	-96.3628341
College Station-Bryan	Franklin Oak Grove	483951076	8127 Oak Grove Road, Franklin	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	31.1689547	-96.4819935
College Station-Bryan	Franklin Oak Grove	483951076	8127 Oak Grove Road, Franklin	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	31.1689547	-96.4819935
College Station-Bryan	Franklin Oak Grove	483951076	8127 Oak Grove Road, Franklin	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	31.1689547	-96.4819935
Corpus Christi	Corpus Christi Huisache	483550032	3810 Huisache Street, Corpus Christi	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.8044885	-97.4315277
Corpus Christi	Corpus Christi Huisache	483550032	3810 Huisache Street, Corpus Christi	PM2.5 FEM	QA Collocated, SLAMS	Beta Attenuation, 209	Continuous	Quality Assurance	Neighborhood	Urban and Center City	27.8044885	-97.4315277
Corpus Christi	Corpus Christi Huisache	483550032	3810 Huisache Street, Corpus Christi	S02	SLAMS	Pulsed Fluorescence	Continuous	Highest Concentration; Population Exposure	Neighborhood	Urban and Center City	27.8044885	-97.4315277
Corpus Christi	Corpus Christi Huisache	483550032	3810 Huisache Street, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Middle Scale	Urban and Center City	27.8044885	-97.4315277
Corpus Christi	Corpus Christi Huisache	483550032	3810 Huisache Street, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Middle Scale	Urban and Center City	27.8044885	-97.4315277
Corpus Christi	Corpus Christi Tuloso	483550026	9860 La Branch, Corpus Christi	03	SLAMS	UV Photometric	Continuous	Population Exposure		Suburban	27.8324346	-97.5554299
Corpus Christi	Corpus Christi Tuloso	483550026	9860 La Branch, Corpus Christi	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure		Suburban	27.8324346	-97.5554299
Corpus Christi	Corpus Christi Tuloso	483550026	9860 La Branch, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	27.8324346	-97.5554299
Corpus Christi	Corpus Christi Tuloso	483550026	9860 La Branch, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	27.8324346	-97.5554299

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Corpus Christi	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	27.7653368	-97.4342747
Corpus Christi	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Suburban	27.7653368	-97.4342747
Corpus Christi	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood	Suburban	27.7653368	-97.4342747
Corpus Christi	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	27.7653368	-97.4342747
Corpus Christi	Corpus Christi West	483550025	902 Airport Road, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	27.7653368	-97.4342747
Corpus Christi	Dona Park	483550034	5707 Up River Rd, Corpus Christi	PM10 FEM	SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.8118332	-97.4657062
Corpus Christi	Dona Park	483550034	5707 Up River Rd, Corpus Christi	PM2.5	SLAMS	Broadband spectroscopy, 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.8118332	-97.4657062
Corpus Christi	Dona Park	483550034	5707 Up River Rd, Corpus Christi	PM2.5 (Speciation)	SLAMS	Carbons, Elements, Ions, 2025, URG	24 Hours; 1/6 Days	Population Exposure; Unknown	Neighborhood	Urban and Center City	27.8118332	-97.4657062
Corpus Christi	Dona Park	483550034	5707 Up River Rd, Corpus Christi	PM2.5 (FRM)	QA Collocated, SPM	Sequential FRM Gravimetric, 145	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Urban and Center City	27.8118332	-97.4657062
Corpus Christi	Dona Park	483550034	5707 Up River Rd, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Regional Scale	Urban and Center City	27.8118332	-97.4657062
Corpus Christi	Dona Park	483550034	5707 Up River Rd, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Regional Scale	Urban and Center City	27.8118332	-97.4657062
Corsicana	Corsicana Airport	483491051	Corsicana Airport, Corsicana	Dew Point	SPM	Derived at site	Continuous	General, Background		Rural	32.0319609	-96.3991408
Corsicana	Corsicana Airport	483491051	Corsicana Airport, Corsicana	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Background; Max Precursor Emissions Impact	Urban Scale	Rural	32.0319609	-96.3991408
Corsicana		483491051	Corsicana Airport, Corsicana	03	SPM	UV Photometric	Continuous	General, Background; Max Ozone Concentration	Urban Scale	Rural	32.0319609	-96.3991408
Corsicana		483491051	Corsicana Airport, Corsicana	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Source Oriented	Neighborhood	Rural	32.0319609	-96.3991408

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Corsicana	Corsicana Airport	483491051	Corsicana Airport, Corsicana	Relative Humidity	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	32.0319609	-96.3991408
Corsicana	Corsicana Airport	483491051	Corsicana Airport, Corsicana	S02	SPM	Pulsed Fluorescence	Continuous	Source Oriented	Urban Scale	Rural	32.0319609	-96.3991408
Corsicana	Corsicana Airport	483491051	Corsicana Airport, Corsicana	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	32.0319609	-96.3991408
Corsicana	Corsicana Airport	483491051	Corsicana Airport, Corsicana	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	32.0319609	-96.3991408
Corsicana	Richland Southeast 1220 Road	483491081	Southeast 1220 Road, Richland	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	31.904101	-96.3518731
Corsicana	Richland Southeast 1220 Road	483491081	Southeast 1220 Road, Richland	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background		Rural	31.904101	-96.3518731
Corsicana	Richland Southeast 1220 Road	483491081	Southeast 1220 Road, Richland	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	31.904101	-96.3518731
Dallas-Fort Worth- Arlington	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure		Suburban	32.656415	-97.0885713
Dallas-Fort Worth- Arlington	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	03	SLAMS	UV Photometric	Continuous	Population Exposure		Suburban	32.656415	-97.0885713
Dallas-Fort Worth- Arlington	Arlington Municipal Airport	484393011	5504 South Collins Street, Arlington	Solar Radiation		Photovoltaic	Continuous	Highest Concentration	Neighborhood	Suburban	32.656415	-97.0885713
Dallas-Fort Worth-	Arlington Municipal	484393011	5504 South Collins	Temperature	SPM			Highest				
Arlington Dallas-Fort Worth-	Airport Arlington Municipal		Street, Arlington 5504 South Collins	(Outdoor)		Aspirated Thermister Potentiometer Cup	Continuous	Concentration	Neighborhood	Suburban	32.656415	-97.0885713
Arlington Dallas-Fort Worth-	Airport	484393011	Street, Arlington 1650 Airport Drive,	Wind	SPM	Anemometer	Continuous	Concentration	Neighborhood	Suburban	32.656415	-97.0885713
Arlington Dallas-Fort Worth-	Cleburne Airport	482510003	Cleburne 1650 Airport Drive,	03	PAMS, SLAMS	UV Photometric	Continuous	Population Exposure		Suburban	32.3535894	-97.4367486
Arlington Dallas-Fort Worth-	Cleburne Airport	482510003	Cleburne 1650 Airport Drive,	Radar Profiler	SPM	Radar Profiler	Continuous	Regional Transport	Regional Scale	Suburban	32.3535894	-97.4367486
Arlington	Cleburne Airport	482510003	Cleburne	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	32.3535894	-97.4367486

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Cleburne Airport	482510003	1650 Airport Drive, Cleburne	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	32.3535894	-97.4367486
Dallas-Fort Worth- Arlington	Cleburne Airport	482510003	1650 Airport Drive, Cleburne	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	32.3535894	-97.4367486
Dallas-Fort Worth- Arlington	Convention Center	481130050	717 South Akard, Dallas	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Urban and Center City	32.7742637	-96.7976938
Dallas-Fort Worth- Arlington	Convention Center	481130050	717 South Akard, Dallas	PM10 (FRM)	QA Collocated, SLAMS	HiVol Gravimetric, 141	24 Hours; 1/12 Days	Population Exposure	Neighborhood	Urban and Center City	32.7742637	-96.7976938
Dallas-Fort Worth- Arlington	Convention Center	481130050	717 South Akard, Dallas	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.7742637	-96.7976938
Dallas-Fort Worth- Arlington	Convention Center	481130050	717 South Akard, Dallas	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.7742637	-96.7976938
Dallas-Fort Worth- Arlington	Convention Center	481130050	717 South Akard, Dallas	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.7742637	-96.7976938
Dallas-Fort Worth- Arlington	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	PM10 (FRM)	SPM	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Urban and Center City	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	PM2.5 (TEOM) ^N	SPM	TEOM Gravimetric, 702	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Urban and Center City	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Dallas Bexar Street	481131096	5800 Bexar Street, Dallas	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neiahborhood	Urban and Center City	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Barometric Pressure	PAMS, SLAMS	Barometric pressure transducer	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Carbonyl	PAMS, SLAMS	DNPH Silica HPLC	Seasonal, 8 Hour; Seasonal	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas		NCORE, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact; Population Exposure	-	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Dew Point	SPM	Derived at site	Continuous	Population Exposure		Urban and Center City	32.8198122	-96.8601547

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	NO2 (Direct)	PAMS, SLAMS	Direct-Read NO2	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	NOy (High Sensitivity)	NCORE, PAMS, SLAMS	Chemiluminescence	Continuous	Highest Concentration	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	03	NCORE, PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM10 FEM	NCORE, SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM10-2.5	NCORE, SLAMS	Broadband spectroscopy, 640	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM2.5	NCORE, SLAMS	Broadband spectroscopy, 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM2.5 (FRM)	NCORE, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/3 Days	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM2.5 (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/12 Days	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	PM2.5 (Speciation)	CSN STN, NCORE, SLAMS	Carbons, Elements, Ions, SASS, URG	24 Hours; 1/3 Days	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Relative Humidity	NCORE, PAMS, SLAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	SO2 (High Sensitivity)	NCORE, SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Concentration; Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Visibility	SPM	Visibility Sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas Hinton	481130069	1415 Hinton Street, Dallas	Wind	PAMS, SLAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8198122	-96.8601547
Dallas-Fort Worth- Arlington	Dallas LBJ Freeway	481131067	8652 LBJ Freeway, Dallas	NO/NO2/NOx	Near Road, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.9211603	-96.7535256
Dallas-Fort Worth- Arlington	Dallas LBJ Freeway	481131067	8652 LBJ Freeway, Dallas	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.9211603	-96.7535256
Dallas-Fort Worth- Arlington	Dallas LBJ Freeway	481131067	8652 LBJ Freeway, Dallas	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.9211603	-96.7535256
Dallas-Fort Worth- Arlington	Dallas North #2	481130075	12532 1/2 Nuestra Drive, Dallas	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood	Suburban	32.9192141	-96.8084864
Dallas-Fort Worth- Arlington	Dallas North #2	481130075	12532 1/2 Nuestra Drive, Dallas	03	PAMS, SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	32.9192141	-96.8084864
Dallas-Fort Worth- Arlington	Dallas North #2	481130075	12532 1/2 Nuestra Drive, Dallas	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	32.9192141	-96.8084864
Dallas-Fort Worth- Arlington	Dallas North #2	481130075	12532 1/2 Nuestra Drive, Dallas	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	General, Background	Neighborhood	Suburban	32.9192141	-96.8084864
Dallas-Fort Worth- Arlington	Dallas North #2	481130075	12532 1/2 Nuestra Drive, Dallas	Wind	PAMS, SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Suburban	32.9192141	-96.8084864
Dallas-Fort Worth- Arlington	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood	Suburban	32.6764526	-96.872045
Dallas-Fort Worth- Arlington	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	32.6764526	-96.872045
Dallas-Fort Worth- Arlington	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background		Suburban	32.6764526	-96.872045
Dallas-Fort Worth- Arlington	Dallas Redbird Airport Executive	481130087	3277 W Redbird Lane, Dallas	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background		Suburban	32.6764526	-96.872045

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	NOy (High Sensitivity)	PAMS, SLAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure		Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	Speciated VOC (Canister)	PAMS, SLAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Ozone Concentration; Population Exposure	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Denton Airport South	481210034	Denton Airport South, Denton	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Urban Scale	Rural	33.2190828	-97.1962872
Dallas-Fort Worth- Arlington	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Urban Scale	Rural	32.9878868	-97.4771536
Dallas-Fort Worth- Arlington	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood	Rural	32.9878868	-97.4771536
Dallas-Fort Worth- Arlington	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	Solar Radiation		Photovoltaic	Continuous	Highest	Middle Scale	Rural	32.9878868	-97.4771536
Dallas-Fort Worth- Arlington	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest	Middle Scale	Rural	32.9878868	-97.4771536

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Eagle Mountain Lake	484390075	14290 Morris Dido Newark Rd, Eagle Mountain	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Middle Scale	Rural	32.9878868	-97.4771536
Dallas-Fort Worth- Arlington	Earhart	481130061	3434 Bickers (Earhart Elem School), Dallas	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Urban and Center City	32.7853694	-96.8765568
Dallas-Fort Worth- Arlington	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	со	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.6647562	-97.3378966
Dallas-Fort Worth- Arlington	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	NO/NO2/NOx	Near Road, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.6647562	-97.3378966
Dallas-Fort Worth- Arlington	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Microscale	Urban and Center City	32.6647562	-97.3378966
Dallas-Fort Worth- Arlington	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	PM2.5 FEM	QA Collocated, SLAMS	Beta Attenuation, 209	Continuous	Quality Assurance	Microscale	Urban and Center City	32.6647562	-97.3378966
Dallas-Fort Worth- Arlington	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.6647562	-97.3378966
Dallas-Fort Worth- Arlington	Fort Worth California Parkway North	484391053	1198 California Parkway North, Fort Worth	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	32.6647562	-97.3378966
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Carbonyl	PAMS, SLAMS	DNPH Silica HPLC	24 Hours; Seasonal	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Middle Scale	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	03	PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8058061	-97.3565215

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Fort Worth Northwest	484391002	3317 Ross Ave, Fort Worth	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	32.8058061	-97.3565215
Dallas-Fort Worth- Arlington	Frisco	480850005	6590 Hillcrest Road, Frisco	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	33.1323982	-96.7864381
Dallas-Fort Worth- Arlington	Frisco	480850005	6590 Hillcrest Road, Frisco	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Urban Scale	Suburban	33.1323982	-96.7864381
Dallas-Fort Worth- Arlington	Frisco	480850005	6590 Hillcrest Road, Frisco	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Urban Scale	Suburban	33.1323982	-96.7864381
Dallas-Fort Worth- Arlington	Frisco	480850005	6590 Hillcrest Road, Frisco	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Urban Scale	Suburban	33.1323982	-96.7864381
Dallas-Fort Worth- Arlington	Frisco Eubanks	480850009	6601 Eubanks, Frisco	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure; Source Oriented	Neighborhood	Suburban	33.1446692	-96.8288093
Dallas-Fort Worth- Arlington	Frisco Eubanks	480850009	6601 Eubanks, Frisco	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood	Suburban	33.1446692	-96.8288093
Dallas-Fort Worth- Arlington	Frisco Eubanks	480850009	6601 Eubanks, Frisco	TSP (Pb)	QA Collocated, SLAMS	HiVol ICP-MS	24 Hours; 1/12 Days	Population Exposure; Source Oriented	Neighborhood	Suburban	33.1446692	-96.8288093
Dallas-Fort Worth- Arlington	Frisco Eubanks	480850009	6601 Eubanks, Frisco	Wind (3m)	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood	Suburban	33.1446692	-96.8288093
Dallas-Fort Worth- Arlington	Frisco Stonebrook	480850029	7202 Stonebrook Parkway, Frisco	TSP (Pb)	SPM	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood	Suburban	33.1360535	-96.824481
Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984288	-97.0637058
Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Dew Point	SPM	Derived at site	Continuous	Highest Concentration; Max Ozone Concentration	Neighborhood	Suburban	32.984288	-97.0637058
- Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood	Suburban	32.984288	-97.0637058

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
								Max Ozone				
Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	03	PAMS, SLAMS	UV Photometric	Continuous	Concentration; Population Exposure	Neighborhood	Suburban	32.984288	-97.0637058
Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984288	-97.0637058
Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984288	-97.0637058
Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Speciated VOC (Canister)	PAMS, SLAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Ozone Concentration; Population Exposure	Neighborhood	Suburban	32.984288	-97.0637058
Dallas-Fort Worth- Arlington	Grapevine Fairway	484393009	4100 Fairway Dr, Grapevine	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984288	-97.0637058
Dallas-Fort Worth- Arlington	Grapevine Fairway		4100 Fairway Dr, Grapevine	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	32.984288	-97.0637058
Dallas-Fort Worth- Arlington	Greenville	482311006	824 Sayle Street, Greenville	NO/NO2/NOx		Chemiluminescence	Continuous	Population Exposure; Upwind Background		Suburban	33.1530947	-96.1155723
Dallas-Fort Worth- Arlington	Greenville	482311006	824 Sayle Street, Greenville	03	SLAMS	UV Photometric	Continuous	Population Exposure; Upwind Background	-	Suburban	33.1530947	-96.1155723
Dallas-Fort Worth- Arlington	Greenville	482311006	824 Sayle Street, Greenville	Solar Radiation		Photovoltaic	Continuous	General, Background		Suburban	33.1530947	-96.1155723
Dallas-Fort Worth- Arlington	Greenville	482311006	824 Sayle Street, Greenville	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	-	Suburban	33.1530947	-96.1155723
Dallas-Fort Worth-			824 Sayle Street,			Potentiometer Cup		· · ·	_			
Arlington Dallas-Fort Worth-	Greenville Haws Athletic	482311006	Greenville 600 1/2 Congress	Wind	SPM	Anemometer	Continuous	General, Background	-	Suburban Urban and	33.1530947	-96.1155723
Arlington Dallas-Fort Worth-	Center	484391006	St, Fort Worth 900 FM 667 Ellis	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure		Center City	32.7591555	-97.342298
Arlington Dallas-Fort Worth-	Italy	481391044	County, Italy 900 FM 667 Ellis	Dew Point	SPM	Derived at site	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Arlington Dallas-Fort Worth-	Italy	481391044	County, Italy 900 FM 667 Ellis	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Arlington	Italy	481391044	County, Italy	03	PAMS, SLAMS	UV Photometric	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Italy	481391044	900 FM 667 Ellis County, Italy	Relative Humidity	PAMS, SLAMS	Humidity Sensor	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Dallas-Fort Worth- Arlington	Italy	481391044	900 FM 667 Ellis County, Italy	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Dallas-Fort Worth- Arlington	Italy	481391044	900 FM 667 Ellis County, Italy	Speciated VOC (Canister)	PAMS, SLAMS	Canister GC-MS	24 Hours; 1/6 Days	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Dallas-Fort Worth- Arlington	Italy	481391044	900 FM 667 Ellis County, Italy	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Dallas-Fort Worth- Arlington	Italy	481391044	900 FM 667 Ellis County, Italy	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Dallas-Fort Worth- Arlington	Italy	481391044	900 FM 667 Ellis County, Italy	Wind	PAMS, SLAMS	Potentiometer Cup Anemometer	Continuous	Upwind Background	Urban Scale	Rural	32.1754716	-96.870167
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	Dew Point	SPM	Derived at site	Continuous	Highest Concentration	Neighborhood	Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Population Exposure; Upwind Background		Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	03	PAMS, SLAMS	UV Photometric	Continuous	Population Exposure; Upwind Background	Urban Scale	Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Upwind Background	Urban Scale	Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Upwind Background	Urban Scale	Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure; Upwind Background		Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Upwind Background	Urban Scale	Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Upwind Background	Urban Scale	Suburban	32.5649693	-96.3176709
Dallas-Fort Worth- Arlington	Kaufman	482570005	3790 S Houston St, Kaufman	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Upwind Background	Urban Scale	Suburban	32.5649693	-96.3176709

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Urban Scale	Suburban	32.9224893	-97.2821031
Dallas-Fort Worth- Arlington	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood	Suburban	32.9224893	-97.2821031
Dallas-Fort Worth- Arlington	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Urban Scale	Suburban	32.9224893	-97.2821031
Dallas-Fort Worth- Arlington	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	General, Background	Urban Scale	Suburban	32.9224893	-97.2821031
Dallas-Fort Worth- Arlington	Keller	484392003	FAA Site off Alta Vista Road, Fort Worth	Wind	PAMS, SLAMS	Potentiometer Cup Anemometer	Continuous	General, Background	Urban Scale	Suburban	32.9224893	-97.2821031
Dallas-Fort Worth- Arlington	Parker County	483670081	3033 New Authon Rd, Weatherford	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Rural	32.8687891	-97.9059299
Dallas-Fort Worth- Arlington	Parker County	483670081	3033 New Authon Rd, Weatherford	Solar Radiation	SPM	Photovoltaic	Continuous	Source Oriented	Neighborhood	Rural	32.8687891	-97.9059299
Dallas-Fort Worth- Arlington	Parker County	483670081	3033 New Authon Rd, Weatherford	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Neighborhood	Rural	32.8687891	-97.9059299
Dallas-Fort Worth- Arlington	Parker County	483670081	3033 New Authon Rd, Weatherford	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Neighborhood	Rural	32.8687891	-97.9059299
Dallas-Fort Worth- Arlington	Pilot Point	481211032	792 E Northside Dr, Pilot Point	03	SLAMS	UV Photometric	Continuous	Population Exposure	Regional Scale	Suburban	33.4106492	-96.9445946
Dallas-Fort Worth- Arlington	Pilot Point	481211032	792 E Northside Dr, Pilot Point	Solar Radiation	SPM	Photovoltaic	Continuous	Upwind Background	Regional Scale	Suburban	33.4106492	-96.9445946
Dallas-Fort Worth- Arlington	Pilot Point	481211032	792 E Northside Dr, Pilot Point	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Upwind Background	Regional Scale	Suburban	33.4106492	-96.9445946
Dallas-Fort Worth- Arlington	Pilot Point	481211032	792 E Northside Dr, Pilot Point	Wind	SPM	AIO2 sonic weather sensor	Continuous	Upwind Background	Regional Scale	Suburban	33.4106492	-96.9445946
Dallas-Fort Worth- Arlington	Rockwall Heath	483970001	100 E Heath St, Rockwall	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	32.936524	-96.4592018
Dallas-Fort Worth- Arlington	Rockwall Heath	483970001	100 E Heath St, Rockwall	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood	Suburban	32.936524	-96.4592018

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Dallas-Fort Worth- Arlington	Rockwall Heath	483970001	100 E Heath St, Rockwall	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	32.936524	-96.4592018
Dallas-Fort Worth- Arlington	Rockwall Heath	483970001	100 E Heath St, Rockwall	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood	Suburban	32.936524	-96.4592018
Dallas-Fort Worth- Arlington	Terrell Jamison Court	482570020	8 Jamison Ct, Terrell	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	32.728561	-96.318552
Dallas-Fort Worth- Arlington	Terrell Jamison Court	482570020	8 Jamison Ct, Terrell	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood	Suburban	32.728561	-96.318552
Dallas-Fort Worth- Arlington	Terrell Jamison Court	482570020	8 Jamison Ct, Terrell	TSP (Pb)	QA Collocated, SLAMS	HiVol ICP-MS	24 Hours; 1/12 Days	Quality Assurance; Source Oriented	Neighborhood	Suburban	32.728561	-96.318552
Dallas-Fort Worth- Arlington	Terrell Jamison Court	482570020	8 Jamison Ct, Terrell	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	32.728561	-96.318552
Eagle Pass	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.7046287	-100.451154
Eagle Pass	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.7046287	-100.451154
Eagle Pass	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	Visibility	SPM	Visibility Sensor	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.7046287	-100.451154
Eagle Pass	Eagle Pass	483230004	265 Foster Maldonado, Eagle Pass	Wind	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Urban and Center City	28.7046287	-100.451154
El Paso	Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background		Suburban	31.7467473	-106.402795
	Ascarate Park SE	481410055	650 R E Thomason		SPM	Derived at site	Continuous			Suburban	31.7467473	-106.402795
El Paso			650 R E Thomason	Dew Point				General, Background Highest Concentration;	Neighborhood /			
El Paso	Ascarate Park SE	481410055	Loop, El Paso 650 R E Thomason	NO/NO2/NOx	· · ·	Chemiluminescence	Continuous	Upwind Background Max Ozone Concentration;		Suburban	31.7467473	-106.402795
El Paso	Ascarate Park SE	481410055	Loop, El Paso 650 R E Thomason	03	PAMS, SLAMS QA Collocated,	UV Photometric Sequential FRM	Continuous 24 Hours;	Upwind Background		Suburban	31.7467473	-106.402795
El Paso	Ascarate Park SE	481410055	Loop, El Paso	PM2.5 (FRM)	SPM	Gravimetric, 145	1/12 Days	Quality Assurance	Neighborhood	Suburban	31.7467473	-106.402795

MSA ,	CBSA	Site Name	Site Number	Address	Monitor Type	e Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso		Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	31.7467473	-106.402795
El Paso		Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.7467473	-106.402795
El Paso		Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration; Upwind Background	Neighborhood	Suburban	31.7467473	-106.402795
El Paso		Ascarate Park SE	481410055	650 R E Thomason Loop, El Paso	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.7467473	-106.402795
				650 R E Thomason					Highest Concentration;				
El Paso		Ascarate Park SE	481410055	650 R E Thomason	Visibility	SPM	Visibility Sensor AIO2 sonic weather	Continuous	Population Exposure Background; Max Ozone		Suburban	31.7467473	-106.402795
El Paso		Ascarate Park SE	481410055	Loop, El Paso 800 S San Marcial	Wind CO (High	PAMS, SLAMS	sensor	Continuous	Concentration; Highest	Neighborhood	Suburban Urban and	31.7467473	-106.402795
El Paso		El Paso Chamizal	481410044	Street, El Paso 800 S San Marcial	Sensitivity)		Gas Filter Correlation	Continuous	Concentration	Neighborhood	Center City Urban and	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	Street, El Paso 800 S San Marcial	Dew Point	SPM	Derived at site	Continuous	General, Background Tignest Concentration; Max Precursor Emissions	Neighborhood	Center City Urban and	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	Street, El Paso 800 S San Marcial	NO/NO2/NOx NOy (High	PAMS, SLAMS	Chemiluminescence	Continuous	Impact Highest	Neighborhood	Center City Urban and	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	Street, El Paso	Sensitivity)	NCORE, SLAMS	Chemiluminescence	Continuous	Concentration Max Precursor	Neighborhood	Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	03	NCORE, PAMS, SLAMS	UV Photometric	Continuous	Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	PM10 FEM	SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	PM10-2.5	NCORE, SLAMS	Broadband spectroscopy, 640	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	PM2.5	NCORE, SLAMS	Broadband spectroscopy, 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	PM2.5 (FRM)	Collocated for method 638, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/3 Days	Highest Concentration; Population Exposure	Neighborhood	Urban and Center City	31.7657056	-106.455242

MSA ,	CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	PM2.5 (Speciation)	CSN STN, NCORE, SLAMS	Carbons, Elements, Ions, SASS, URG	24 Hours; 1/3 Days	Highest Concentration	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	SO2 (High Sensitivity)	NCORE, SLAMS	Pulsed Fluorescence	Continuous	Highest Concentration	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Precursor Emissions Impact	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Chamizal	481410044	800 S San Marcial Street, El Paso	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Background; Max Precursor Emissions Impact	Neighborhood	Urban and Center City	31.7657056	-106.455242
El Paso		El Paso Mimosa	481410038	7501 Mimosa Avenue, El Paso	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Suburban	31.7358796	-106.377925
El Paso		Ivanhoe	481410029	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	03	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	31.7857542	-106.323631
El Paso		Ivanhoe	481410029	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Suburban	31.7857542	-106.323631
El Paso		Ivanhoe	481410029	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	Relative Humidity	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.7857542	-106.323631
El Paso		Ivanhoe	481410029	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background		Suburban	31.7857542	-106.323631
El Paso		Ivanhoe	481410029	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	Wind	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background		Suburban	31.7857542	-106.323631
El Paso		Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	СО	SLAMS	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood	Suburban	31.8624965	-106.547327
El Paso		Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	03	SPM	UV Photometric	Continuous	General, Background	Neighborhood	Suburban	31.8624965	-106.547327

Site Name	Site Number	Address	Monitor Type	e Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Suburban	31.8624965	-106.547327
Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	PM10 (FRM)	QA Collocated, SLAMS	HiVol Gravimetric, 141	24 Hours; 1/12 Days	Population Exposure	Neighborhood	Suburban	31.8624965	-106.547327
Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.8624965	-106.547327
Ojo De Agua	481411021	6767 Ojo De Agua, El Paso	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	31.8624965	-106.547327
Skyline Park	481410058	5050A Yvette Drive, El Paso	03	Border Grant, SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	31.8939186	-106.425836
Skyline Park	481410058	5050A Yvette Drive, El Paso	Temperature (Outdoor)	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	31.8939186	-106.425836
Skyline Park	481410058	5050A Yvette Drive, El Paso	Wind	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	31.8939186	-106.425836
Socorro Hueco	481410057	320 Old Hueco Tanks Road, El Paso	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	31.6675435	-106.287975
Socorro Hueco	481410057	320 Old Hueco Tanks Road, El Paso	PM10 FEM	SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	Neighborhood	Suburban	31.6675435	-106.287975
Socorro Hueco		320 Old Hueco			Broadband						-106.287975
		320 Old Hueco		QA Collocated,	Broadband						-106.287975
		320 Old Hueco					- <i>'</i>				
		320 Old Hueco	Temperature		AIO2 sonic weather						-106.287975
		320 Old Hueco			AIO2 sonic weather						-106.287975
Socorro Hueco	481410057	Tanks Road, El Paso 2700 Harrison Avenue, El Paso	Wind PM10 (FRM)	SPM	sensor HiVol Gravimetric, 141	24 Hours; 1/6	Population Exposure Population Exposure		Suburban Urban and Center City	31.6675435	-106.287975
	Ojo De Agua Ojo De Agua Ojo De Agua Ojo De Agua Skyline Park Skyline Park Skyline Park Socorro Hueco Socorro Hueco Socorro Hueco Socorro Hueco	Ojo De Agua481411021Ojo De Agua481411021Ojo De Agua481411021Ojo De Agua481411021Skyline Park481410058Skyline Park481410058Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057Socorro Hueco481410057	Ojo De Agua4814110216767 Ojo De Agua, El PasoOjo De Agua4814110216767 Ojo De Agua, El PasoSkyline Park4814100585050A Yvette Drive, El PasoSkyline Park4814100585050A Yvette Drive, El PasoSkyline Park4814100585050A Yvette Drive, El PasoSkyline Park481410057320 Old Hueco Tanks Road, El PasoSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoSocorro Huec	Ojo De Agua4814110216767 Ojo De Agua, El PasoPM10 (FRM)Ojo De Agua4814110216767 Ojo De Agua, El PasoPM10 (FRM)Ojo De Agua4814110216767 Ojo De Agua, El PasoTemperature (Outdoor)Ojo De Agua4814110216767 Ojo De Agua, El PasoTemperature (Outdoor)Ojo De Agua4814110216767 Ojo De Agua, El PasoWindSkyline Park4814100585050A Yvette Drive, El PasoOjo De AguaSkyline Park4814100585050A Yvette Drive, El PasoTemperature (Outdoor)Skyline Park4814100585050A Yvette Drive, El PasoWindSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoO3Socorro Hueco481410057320 Old Hueco Tanks Road, El PasoPM10 FEMSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoPM2.5Socorro Hueco481410057320 Old Hueco Tanks Road, El PasoPM2.5Socorro Hueco481410057320 Old Hueco Tanks Road, El PasoPM2.5Socorro Hueco481410057320 Old Hueco Tanks Road, El PasoRadar ProfilerSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoRadar ProfilerSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoCudoor)Socorro Hueco481410057320 Old Hueco Tanks Road, El PasoCudoor)Socorro Hueco481410057320 Old Hueco Tanks Road, El PasoCudoor) <tr <td="">Socorro Hueco481410</tr>	Ojo De Agua4814110216767 Ojo De Agua, El PasoPM10 (FRM)SLAMSOjo De Agua4814110216767 Ojo De Agua, El PasoPM10 (FRM)SLAMSOjo De Agua4814110216767 Ojo De Agua, El PasoTemperature (Outdoor)SPMOjo De Agua4814110216767 Ojo De Agua, El PasoTemperature (Outdoor)SPMOjo De Agua4814110216767 Ojo De Agua, El PasoTemperature (Outdoor)SPMOjo De Agua4814100585050A Yvette Drive, I PasoO3Border Grant, SLAMSSkyline Park4814100585050A Yvette Drive, El PasoTemperature (Outdoor)Border Grant, SLAMSSkyline Park4814100585050A Yvette Drive, El PasoWindSPMSkyline Park4814100585050A Yvette Drive, UindBorder Grant, SLAMSSkyline Park481410057320 Old Hueco Tanks Road, El PasoO3SLAMSSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoPM10 FEMSLAMSSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoQA Collocated, SLAMSSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoQA collocated, SLAMSSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoRodar ProfilerSPMSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoRodar ProfilerSPMSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoSPMSPMSocorro	Ojo De Agua481411021É767 Ojo De Agua, El PasoPM10 (FRM)SLAMSHiVol Gravimetric, 141Ojo De Agua481411021É1 PasoPM10 (FRM)QA Collocated, SLAMSHiVol Gravimetric, 141Ojo De Agua481411021É1 PasoTemperature (Outdoor)SPMAIO2 sonic weather sensorOjo De Agua481411021É1 PasoColuctor)SPMAIO2 sonic weather sensorOjo De Agua481411021É1 PasoOutdoor)SPMAIO2 sonic weather sensorOjo De Agua481411021É1 PasoOaBorder Grant, SLAMSUV PhotometricSkyline Park481410058S050A Yvette Drive, El PasoBorder Grant, SLAMSAIO2 sonic weather sensorSkyline Park481410058S050A Yvette Drive, El PasoBorder Grant, SLAMSAIO2 sonic weather sensorSkyline Park481410057320 Old Hueco Tanks Road, El PasoO3SLAMSUV PhotometricSocorro Hueco481410057320 Old Hueco Tanks Road, El PasoSLAMSBroadband spectroscopy, 639Socorro Hueco481410057Tanks Road, El PasoPM10 FEMSLAMSBroadband spectroscopy, 638Socorro Hueco481410057Tanks Road, El PasoQA Collocated, SLAMSBroadband spectroscopy, 638Socorro Hueco481410057Tanks Road, El PasoPM2.5SLAMSBroadband spectroscopy, 638Socorro Hueco481410057Tanks Road, El PasoQA Collocated, SLAMSSpectroscopy, 638Socorro Huec	Site Name Site Number Address Monitor Type Network Methods Schedule Ojo De Agua 481411021 EF Paso PM10 (FRM) SLAMS HiVol Gravimetric, 141 Days Ojo De Agua 481411021 EF Paso PM10 (FRM) SLAMS HiVol Gravimetric, 141 Days Ojo De Agua 481411021 EF Paso Gr67 Ojo De Agua, EF Paso Temperature (Outdoor) SPM AlO2 sonic weather sensor 24 Hours; Ojo De Agua 481411021 EF Paso Gr67 Ojo De Agua, Temperature (Outdoor) SPM AlO2 sonic weather sensor Continuous Ojo De Agua 481411021 EF Paso O3 SLAMS UV Photometric Continuous Skyline Park 481410058 SDGA Yvette Drive, EF Paso Border Grant, SLAMS UV Photometric Continuous Skyline Park 481410058 SDGA Yvette Drive, EF Paso Border Grant, SLAMS AlO2 sonic weather sensor Continuous Scoorro Hueco 481410057 Tanks Road, EF Paso O3 SLAMS HiVol Gravimetric Continuous S	Site Name Site Number Address Montor Type Network Methods Schedule Objective Ojo De Agua 481411021 6767 Ojo De Agua, El Paso El Paso PM10 (FRM) SLAMS Hivol Gravimetric, 141 Days Population Exposure Ojo De Agua 481411021 6767 Ojo De Agua, El Paso OA Collocated, SLAMS Hivol Gravimetric, 141 1/12 Days Population Exposure Ojo De Agua 481411021 6767 Ojo De Agua, El Paso Temperature (Outdoor) SPM Al02 sonic weather sensor Continuous General, Background Ojo De Agua 481411021 6767 Ojo De Agua, El Paso Temperature SIV Border Grant, Qua Sulta Sulta Al02 sonic weather sensor Continuous Population Exposure Skyline Park 481410058 5050A Yvette Drive, El Paso Border Grant, Quates Al02 sonic weather sensor Continuous Population Exposure Skyline Park 481410058 5050A Yvette Drive, El Paso Border Grant, Quates Al02 sonic weather sensor Continuous Population Exposure Scoorro Hueco 481410057 7anks Road, El Paso M10 FEM	Site Name Site Number Address Montor Type Network Methods Schedule Objective Spacini Scale Op De Agua 481411021 6767 Ojo De Agua, El Paso PH10 (FRM) SLAMS HiVol Gravimetric, 141 Days Population Exposure Neighborhood Op De Agua 481411021 6767 Ojo De Agua, El Paso PH10 (FRM) SLAMS HiVol Gravimetric, 141 1/12 Days Population Exposure Neighborhood Op De Agua 481411021 6767 Ojo De Agua, El Paso PH10 (FRM) SLAMS HiVol Gravimetric, 141 1/12 Days Population Exposure Neighborhood Op De Agua 481411021 6767 Ojo De Agua, El Paso Temperature (Outdoor) A102 sonic weather sensor Continuous Population Exposure Neighborhood Skyline Park 48141021 5767 Ojo De Agua, El Paso Border Grant, Ojo De Agua A102 sonic weather sensor Continuous Population Exposure Neighborhood Skyline Park 481410058 5050A Vette Drive, El Paso Border Grant, Ojo Di Auco A102 sonic weather sensor Continuous Population Exposure Neighborhood </td <td>Site Name Site Number Address Nonicy Type Network Network Network Network Schedule Objective Spatial Sciel Setting Ojo De Agua 481411021 Ef Paso PH10 (FRM) SLMS HiVol Gravimetric, 141 24 Haurs; Days Population Exposure Neighborhood Suburban Ojo De Agua 459411021 Ef Paso PH10 (FRM) SLMS HiVol Gravimetric, 141 24 Haurs; 1/12 Days Population Exposure Neighborhood Suburban Ojo De Agua 459411021 Ef Paso PH10 (FRM) SLMS HIVol Gravimetric, 141 1/12 Days Population Exposure Neighborhood Suburban Ojo De Agua 451411021 Ef Paso Vind SFR ADO2 sonic weather sensor Continuous Population Exposure Neighborhood Suburban Skyline Park 481410058 SPSA Ywite Drive, Ef Paso SLMS MO2 sonic weather sensor Continuous Population Exposure Neighborhood Suburban Skyline Park 481410058 SPSA Ywite Drive, Ef Paso SLMS MO2 son</td> <td>Site Number Site Number Address Monitor Vipe Network Methods Schedule Objective Splital Scill Setting Littude Op De Aqua 49141021 EF 70 to De Aqua, 48141021 SF7 Op De Aqua, EF 780 PM10 (FRM) SLAMS HVol Gravimetin, 141 24 Hours: 1/6 Days Population Exposure Neighborhood Suburban 31.8624965 Op De Aqua 48141021 EF 780 PM10 (FRM) SLAMS HVol Gravimetin, 141 24 Hours: 1/2 E Suburban Population Exposure Neighborhood Suburban 31.8624965 Op De Aqua 48141021 EF 780 PM10 (FRM) SLAMS HVol Gravimetin, 141 24 Hours: 1/2 E Suburban Population Exposure Neighborhood Suburban 31.8624965 Op De Aqua 48141021 EF 780 PM AIO2 sonic weather sensor Continuous Repulation Exposure Neighborhood Suburban 31.8624965 Skyline Park 481410058 EF 880 Wind SPM SIGN Sonic weather sensor Continuous Population Exposure Neighborhood Suburban 31.8624965 Skyline Park 481410058 EF 880 Wind SPM SLAMS Continuous Population Exposure Neighborhood Suburban 31.8939186 <t< td=""></t<></td>	Site Name Site Number Address Nonicy Type Network Network Network Network Schedule Objective Spatial Sciel Setting Ojo De Agua 481411021 Ef Paso PH10 (FRM) SLMS HiVol Gravimetric, 141 24 Haurs; Days Population Exposure Neighborhood Suburban Ojo De Agua 459411021 Ef Paso PH10 (FRM) SLMS HiVol Gravimetric, 141 24 Haurs; 1/12 Days Population Exposure Neighborhood Suburban Ojo De Agua 459411021 Ef Paso PH10 (FRM) SLMS HIVol Gravimetric, 141 1/12 Days Population Exposure Neighborhood Suburban Ojo De Agua 451411021 Ef Paso Vind SFR ADO2 sonic weather sensor Continuous Population Exposure Neighborhood Suburban Skyline Park 481410058 SPSA Ywite Drive, Ef Paso SLMS MO2 sonic weather sensor Continuous Population Exposure Neighborhood Suburban Skyline Park 481410058 SPSA Ywite Drive, Ef Paso SLMS MO2 son	Site Number Site Number Address Monitor Vipe Network Methods Schedule Objective Splital Scill Setting Littude Op De Aqua 49141021 EF 70 to De Aqua, 48141021 SF7 Op De Aqua, EF 780 PM10 (FRM) SLAMS HVol Gravimetin, 141 24 Hours: 1/6 Days Population Exposure Neighborhood Suburban 31.8624965 Op De Aqua 48141021 EF 780 PM10 (FRM) SLAMS HVol Gravimetin, 141 24 Hours: 1/2 E Suburban Population Exposure Neighborhood Suburban 31.8624965 Op De Aqua 48141021 EF 780 PM10 (FRM) SLAMS HVol Gravimetin, 141 24 Hours: 1/2 E Suburban Population Exposure Neighborhood Suburban 31.8624965 Op De Aqua 48141021 EF 780 PM AIO2 sonic weather sensor Continuous Repulation Exposure Neighborhood Suburban 31.8624965 Skyline Park 481410058 EF 880 Wind SPM SIGN Sonic weather sensor Continuous Population Exposure Neighborhood Suburban 31.8624965 Skyline Park 481410058 EF 880 Wind SPM SLAMS Continuous Population Exposure Neighborhood Suburban 31.8939186 <t< td=""></t<>

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
El Paso	Van Buren	481410693	2700 Harrison Avenue, El Paso	Relative Humidity	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.8133479	-106.464537
El Paso	Van Buren	481410693	2700 Harrison Avenue, El Paso	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.8133479	-106.464537
El Paso	Van Buren	481410693	2700 Harrison Avenue, El Paso	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	31.8133479	-106.464537
Granbury	Granbury	482210001	200 N Gordon Street, Granbury	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	32.442322	-97.8035558
Granbury	Granbury	482210001	200 N Gordon Street, Granbury	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Middle Scale	Suburban	32.442322	-97.8035558
Granbury	Granbury	482210001	200 N Gordon Street, Granbury	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Middle Scale	Suburban	32.442322	-97.8035558
Granbury	Granbury	482210001	200 N Gordon Street, Granbury	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Middle Scale	Suburban	32.442322	-97.8035558
Houston-Pasadena- The Woodlands	Baytown	482010058	7210 1/2 Bayway Drive, Baytown	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.770689	-95.0312263
Houston-Pasadena- The Woodlands	Baytown	482010058	7210 1/2 Bayway Drive, Baytown	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	29.770689	-95.0312263
Houston-Pasadena- The Woodlands	Baytown	482010058	7210 1/2 Bayway Drive, Baytown	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	29.770689	-95.0312263
Houston-Pasadena- The Woodlands	Baytown Garth	482011017	4898 Ashbel Cove Drive, Trailer A, Baytown	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.8271903	-94.9882896
Houston-Pasadena- The Woodlands	Baytown Garth	482011017	4898 Ashbel Cove Drive, Trailer A, Baytown	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood	Suburban	29.8271903	-94.9882896
Houston-Pasadena- The Woodlands	Baytown Garth	482011017	4898 Ashbel Cove Drive, Trailer A, Baytown	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	29.8271903	-94.9882896
Houston-Pasadena- The Woodlands	Baytown Garth	482011017	4898 Ashbel Cove Drive, Trailer A, Baytown	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure		Suburban	29.8271903	-94.9882896
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	Dew Point	SPM	Derived at site	Continuous	Highest Concentration	Neighborhood	Suburban	29.8027231	-95.1254893

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Neighborhood	Suburban	29.8027231	-95.1254893
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	03	PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Suburban	29.8027231	-95.1254893
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.8027231	-95.1254893
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.8027231	-95.1254893
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Population Exposure	Neighborhood	Suburban	29.8027231	-95.1254893
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.8027231	-95.1254893
Houston-Pasadena- The Woodlands	Channelview	482010026	1405 Sheldon Road, Channelview	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Suburban	29.8027231	-95.1254893
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Carbonyl	PAMS, SLAMS	DNPH Silica HPLC	24 Hours; Seasonal	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	CO (High Sensitivity)	SPM	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	03	PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Houston Monroe	482010062	9726 1/2 Monroe, Houston	PM10 (FRM)	QA Collocated, SLAMS	HiVol Gravimetric, 141	24 Hours; 1/12 Days	Highest Concentration; Population Exposure	Neighborhood	Suburban	29.625622	-95.267065
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	PM10 FEM	SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	PM2.5	SLAMS	Broadband spectroscopy, 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/6 Days	Concentration; Population Exposure; Source Oriented	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	PM2.5 (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/12 Days	Highest Concentration; Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	PM2.5 (Speciation)	SPM	Carbons, Elements, Ions, 2025, 2025	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Precipitation	SPM	Continuous	Continuous	General, Background	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Relative Humidity	PAMS, SLAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Concentration; Population Exposure; Source Oriented	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Temperature (Outdoor)	PAMS, SLAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Clinton	482011035	9525 1/2 Clinton Dr, Houston	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.7337367	-95.2576045
Houston-Pasadena- The Woodlands	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	General, Background; Population Exposure	Urban Scale	Suburban	30.350355	-95.4251242
Houston-Pasadena- The Woodlands	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	03	PAMS, SLAMS	UV Photometric	Continuous	General, Background; Population Exposure	Urban Scale	Suburban	30.350355	-95.4251242
Houston-Pasadena- The Woodlands	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	General, Background	Neighborhood	Suburban	30.350355	-95.4251242
MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
------------------------------------	----------------------------	-------------	---------------------------------	--------------------------	-------------	------------------------------------	-----------------------	--	-------------------------------	---------------------	------------	-------------
Houston-Pasadena- The Woodlands	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Highest Concentration	Neighborhood	Suburban	30.350355	-95.4251242
Houston-Pasadena- The Woodlands	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	30.350355	-95.4251242
Houston-Pasadena- The Woodlands	Conroe Relocated	483390078	9472A Hwy 1484, Conroe	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	30.350355	-95.4251242
Houston-Pasadena- The Woodlands	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	PM2.5 (FRM)	SPM	Sequential FRM Gravimetric, 145	24 Hours; 1/6 Days	Source Oriented	Middle Scale	Suburban	28.9644069	-95.3549703
Houston-Pasadena- The Woodlands	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	PM2.5 (Speciation)	SPM	Elements	24 Hours; 1/6 Days	Source Oriented	Middle Scale	Suburban	28.9644069	-95.3549703
Houston-Pasadena- The Woodlands	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	SO2	SPM	Pulsed Fluorescence	Continuous	Source Oriented	Middle Scale	Suburban	28.9644069	-95.3549703
Houston-Pasadena- The Woodlands	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Middle Scale	Suburban	28.9644069	-95.3549703
Houston-Pasadena- The Woodlands	Freeport South Avenue I	480391012	207 South Avenue I, Freeport	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Middle Scale	Suburban	28.9644069	-95.3549703
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	Dew Point	SPM	Derived at site	Continuous	General, Background; Upwind Background	Middle Scale	Suburban	29.2544674	-94.8612829
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	General, Background; Upwind Background	Middle Scale / Urban Scale	Suburban	29.2544674	-94.8612829
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Upwind Background		Suburban	29.2544674	-94.8612829
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport	Regional Scale		29.2544674	-94.8612829
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston		PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background		Suburban	29.2544674	-94.8612829
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	Solar Radiation		Photovoltaic	Continuous	Max Ozone Concentration; Upwind Background		Suburban	29.2544674	-94.8612829
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background		Suburban	29.2544674	-94.8612829

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Galveston 99th Street	481671034	9511 Avenue V 1/2, Galveston	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Background; Max Ozone Concentration;	Urban Scale	Suburban	29.2544674	-94.8612829
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Barometric Pressure	PAMS, SLAMS	Barometric pressure transducer	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Urban Scale	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	NOy (High Sensitivity)	PAMS, SLAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	03	PAMS, SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	PM2.5 (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/12 Days	Population Exposure	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Relative Humidity	PAMS, SLAMS	Humidity Sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Ozone Concentration	Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Aldine	482010024	4510 1/2 Aldine Mail Rd, Houston	Wind	Other, PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background; Max Ozone Concentration	Middle Scale / Neighborhood	Suburban	29.9010271	-95.3261393
Houston-Pasadena- The Woodlands	Houston Bayland Park	482010055	6400 Bissonnet Street, Houston	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Neighborhood	Suburban	29.6957433	-95.4992418
Houston-Pasadena- The Woodlands	Houston Bayland Park	482010055	6400 Bissonnet Street, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Middle Scale	Suburban	29.6957433	-95.4992418
Houston-Pasadena- The Woodlands	Houston Bayland Park	482010055	6400 Bissonnet Street, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.6957433	-95.4992418

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena-	Houston Bayland	102010055	6400 Bissonnet		6.DM			Background; Max Precursor Emissions			20 6057422	05 1000 110
The Woodlands	Park	482010055	Street, Houston	Solar Radiation	SPM	Photovoltaic	Continuous	Impact General,	Middle Scale	Suburban	29.6957433	-95.4992418
Houston-Pasadena- The Woodlands	Houston Bayland Park	482010055	6400 Bissonnet Street, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Background; Max Precursor Emissions Impact	Middle Scale	Suburban	29.6957433	-95.4992418
Houston-Pasadena- The Woodlands	Houston Bayland Park	482010055	6400 Bissonnet Street, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	Background; Max Precursor Emissions Impact	Middle Scale	Suburban	29.6957433	-95.4992418
Houston-Pasadena- The Woodlands	Houston Croquet	482010051	13826 1/2 Croquet, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.6239579	-95.4743419
	nousion croquet	402010031	nouston	05	SLANS	ov motomethe	Continuous		Neighborhood	Suburban	25.0255575	55.4745415
Houston-Pasadena- The Woodlands	Houston Croquet	482010051	13826 1/2 Croquet, Houston	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Suburban	29.6239579	-95.4743419
Houston-Pasadena- The Woodlands	Houston Croquet	482010051	13826 1/2 Croquet, Houston	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	29.6239579	-95.4743419
Houston-Pasadena- The Woodlands	Houston Croquet	482010051	13826 1/2 Croquet, Houston	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood	Suburban	29.6239579	-95.4743419
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Barometric Pressure	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Carbonyl	PAMS, SLAMS	DNPH Silica HPLC	Seasonal, 24 Hours; Seasonal	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	CO (High Sensitivity)	NCORE, SLAMS	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	NO2 (Direct)	PAMS, SLAMS	Direct-Read NO2	Continuous	Population Exposure; Source Oriented	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	NOy (High Sensitivity)	NCORE, PAMS, SLAMS	Chemiluminescence	Continuous	Population Exposure		Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	03	NCORE, PAMS, SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	PM10 FEM	SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	PM10-2.5	NCORE, SLAMS	Broadband spectroscopy, 640	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	PM2.5	NCORE, SLAMS	Broadband spectroscopy, 638	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	PM2.5 (FRM)	NCORE, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/3 Days	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	PM2.5 (Speciation)	CSN STN, CSN Supplemental, SLAMS	Carbons, Elements, Ions, SASS, URG	24 Hours; 1/3 Days	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	PM2.5 (Speciation)	CSN STN, QA Collocated, SLAMS	Carbons, Elements, Ions, SASS, URG	Days, 24 Hours; 1/3 Days	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	General, Background	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Relative Humidity	NCORE, PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	SO2 (High Sensitivity)	NCORE, SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Speciated VOC (AutoGC)	PAMS, SLAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Temperature (Outdoor)	NCORE, PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	UV Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston Deer Park #2	482011039	4514 1/2 Durant Street, Deer Park	Wind	NCORE, PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Neighborhood	Urban and Center City	29.6700343	-95.1285059
Houston-Pasadena- The Woodlands	Houston East	482011034	1262 1/2 Mae Drive, Houston	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Highest Concentration; Population Exposure	Middle Scale / Neighborhood	Suburban	29.7680329	-95.2205736
Houston-Pasadena- The Woodlands	Houston East	482011034	1262 1/2 Mae Drive, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.7680329	-95.2205736

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	e Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Houston East	482011034	1262 1/2 Mae Drive, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.7680329	-95.2205736
Houston-Pasadena- The Woodlands	Houston East	482011034	1262 1/2 Mae Drive, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Suburban	29.7680329	-95.2205736
Houston-Pasadena- The Woodlands	Houston East	482011034	1262 1/2 Mae Drive, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	29.7680329	-95.2205736
Houston-Pasadena- The Woodlands	Houston Harvard Street	482010417	160 Harvard Street, Houston	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.7728616	-95.395874
Houston-Pasadena- The Woodlands	Houston Harvard Street	482010417	160 Harvard Street, Houston	03	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.7728616	-95.395874
Houston-Pasadena- The Woodlands	Houston Harvard Street	482010417	160 Harvard Street, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	29.7728616	-95.395874
Houston-Pasadena- The Woodlands	Houston Harvard Street	482010417	160 Harvard Street, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Urban and Center City	29.7728616	-95.395874
Houston-Pasadena- The Woodlands	Houston Monroe	482010062	9726 1/2 Monroe, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.625622	-95.267065
Houston-Pasadena- The Woodlands	Houston Monroe	482010062	9726 1/2 Monroe, Houston	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Suburban	29.625622	-95.267065
Houston-Pasadena- The Woodlands	Houston Monroe	482010062	9726 1/2 Monroe, Houston	Precipitation	SPM	Continuous	Continuous	General, Background	Neighborhood	Suburban	29.625622	-95.267065
Houston-Pasadena- The Woodlands	Houston North Loop	482011052	822 North Loop, Houston	со	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.8143921	-95.3878182
Houston-Pasadena- The Woodlands	Houston North Loop		822 North Loop, Houston	NO/NO2/NOx	Near Road,	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.8143921	-95.3878182
Houston-Pasadena- The Woodlands	Houston North Loop		822 North Loop, Houston	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.8143921	-95.3878182
Houston-Pasadena- The Woodlands	Houston North Loop		822 North Loop, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.8143921	-95.3878182
Houston-Pasadena- The Woodlands	Houston North Loop		822 North Loop, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.8143921	-95.3878182

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Houston North Wayside	482010046	7330 1/2 North Wayside, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.8285155	-95.283981
Houston-Pasadena- The Woodlands	Houston North Wayside	482010046	7330 1/2 North Wayside, Houston	PM10 (TEOM)	SPM	TEOM Gravimetric with modification, 879	Continuous	Population Exposure	Neighborhood	Suburban	29.8285155	-95.283981
Houston-Pasadena- The Woodlands	Houston North Wayside	482010046	7330 1/2 North Wayside, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.8285155	-95.283981
Houston-Pasadena- The Woodlands	Houston North Wayside	482010046	7330 1/2 North Wayside, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.8285155	-95.283981
Houston-Pasadena- The Woodlands	Houston North Wayside	482010046	7330 1/2 North Wayside, Houston	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.8285155	-95.283981
Houston-Pasadena- The Woodlands	Houston Southwest Freeway	482011066	5617 Westward Avenue, Houston	NO/NO2/NOx	Near Road, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.7216274	-95.4926626
Houston-Pasadena- The Woodlands	Houston Southwest Freeway	482011066	5617 Westward Avenue, Houston	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.7216274	-95.4926626
Houston-Pasadena- The Woodlands	Houston Southwest Freeway	482011066	5617 Westward Avenue, Houston	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.7216274	-95.4926626
Houston-Pasadena- The Woodlands	Houston Westhollow	482010066	3333 1/2 Hwy 6 South, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.7233161	-95.6359248
Houston-Pasadena- The Woodlands	Houston Westhollow	482010066	3333 1/2 Hwy 6 South, Houston	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.7233161	-95.6359248
Houston-Pasadena- The Woodlands	Houston Westhollow	482010066	3333 1/2 Hwy 6 South, Houston	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	29.7233161	-95.6359248
Houston-Pasadena- The Woodlands	Houston Westhollow	482010066	3333 1/2 Hwy 6 South, Houston	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood	Suburban	29.7233161	-95.6359248
Houston-Pasadena- The Woodlands	La Porte Airport C243	482011043	La Porte Airport, 2434 Buchanan Street, La Porte	Precipitation	PAMS, SLAMS	Rain Gauge	Continuous	General, Background	Neighborhood	Suburban	29.6720413	-95.0646873
Houston-Pasadena- The Woodlands	La Porte Airport C243	482011043	La Porte Airport, 2434 Buchanan Street, La Porte	Radar Profiler	SPM	Radar Profiler	Continuous	Regional Transport	Regional Scale	Suburban	29.6720413	-95.0646873
Houston-Pasadena- The Woodlands	La Porte Airport C243	482011043	La Porte Airport, 2434 Buchanan Street, La Porte	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.6720413	-95.0646873

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	La Porte Airport C243	482011043	La Porte Airport, 2434 Buchanan Street, La Porte	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.6720413	-95.0646873
Houston-Pasadena- The Woodlands	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure; Source Oriented	Middle Scale / Neighborhood	Suburban	29.0437516	-95.4729592
Houston-Pasadena- The Woodlands	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	03	SLAMS	UV Photometric	Continuous	Population Exposure; Source Oriented	Neighborhood	Suburban	29.0437516	-95.4729592
Houston-Pasadena- The Woodlands	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale	Suburban	29.0437516	-95.4729592
Houston-Pasadena- The Woodlands	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale	Suburban	29.0437516	-95.4729592
Houston-Pasadena- The Woodlands	Lake Jackson	480391016	109B Brazoria Hwy 332 West, Lake Jackson	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale / Regional Scale	Suburban	29.0437516	-95.4729592
Houston-Pasadena- The Woodlands	Lang	482010047	4401 1/2 Lang Rd, Houston	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Urban Scale	Suburban	29.834214	-95.489122
Houston-Pasadena- The Woodlands	Lang	482010047	4401 1/2 Lang Rd, Houston	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	29.834214	-95.489122
Houston-Pasadena- The Woodlands	Lang	482010047	4401 1/2 Lang Rd, Houston	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Suburban	29.834214	-95.489122
Houston-Pasadena- The Woodlands	Lynchburg Ferry	482011015	4364 Independence Parkway South, Baytown	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Source Oriented	Middle Scale / Neighborhood	Suburban	29.7589325	-95.0793377
Houston-Pasadena- The Woodlands	Lynchburg Ferry	482011015	4364 Independence Parkway South, Baytown	03	SLAMS	UV Photometric	Continuous	Source Oriented	Middle Scale	Suburban	29.7589325	-95.0793377
Houston-Pasadena- The Woodlands	Lynchburg Ferry	482011015	4364 Independence Parkway South, Baytown	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Neighborhood	Suburban	29.7589325	-95.0793377
Houston-Pasadena- The Woodlands	Lynchburg Ferry	482011015	4364 Independence Parkway South, Baytown	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	29.7589325	-95.0793377
Houston-Pasadena- The Woodlands	Lynchburg Ferry	482011015	4364 Independence Parkway South, Baytown	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Neighborhood	Suburban	29.7589325	-95.0793377
Houston-Pasadena- The Woodlands	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Urban Scale	Suburban	29.5204449	-95.3925322

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	29.5204449	-95.3925322
Houston-Pasadena- The Woodlands	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	29.5204449	-95.3925322
Houston-Pasadena- The Woodlands	Manvel Croix Park	480391004	4503 Croix Pkwy, Manvel	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Suburban	29.5204449	-95.3925322
Houston-Pasadena- The Woodlands	Northwest Harris County	482010029	16822 Kitzman, Tomball	Dew Point	SPM	Derived at site	Continuous	General, Background	Microscale	Rural	30.0395333	-95.673909
Houston-Pasadena- The Woodlands	Northwest Harris County	482010029	16822 Kitzman, Tomball	NO/NO2/NOx	PAMS, SLAMS	Chemiluminescence	Continuous	Extreme Downwind; Population Exposure	Urban Scale	Rural	30.0395333	-95.673909
Houston-Pasadena- The Woodlands	Northwest Harris County	482010029	16822 Kitzman, Tomball	03	PAMS, SLAMS	UV Photometric	Continuous	Extreme Downwind; Population Exposure	Urban Scale	Rural	30.0395333	-95.673909
Houston-Pasadena- The Woodlands	Northwest Harris County	482010029	16822 Kitzman, Tomball	Relative Humidity	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	30.0395333	-95.673909
Houston-Pasadena- The Woodlands	Northwest Harris County	482010029	16822 Kitzman, Tomball	Solar Radiation	PAMS, SLAMS	Photovoltaic	Continuous	General, Background	Urban Scale	Rural	30.0395333	-95.673909
Houston-Pasadena- The Woodlands	Northwest Harris County	482010029	16822 Kitzman, Tomball	Temperature (Outdoor)	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background	Urban Scale	Rural	30.0395333	-95.673909
Houston-Pasadena- The Woodlands	Northwest Harris County	482010029	16822 Kitzman, Tomball	Wind	PAMS, SLAMS	AIO2 sonic weather sensor	Continuous	General, Background; Upwind Background	Urban Scale	Rural	30.0395333	-95.673909
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	Barometric Pressure	SPM	Barometric pressure transducer	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	Dew Point	SPM	Derived at site	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	03	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	Precipitation	SPM	Continuous	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	Relative Humidity	SPM	Humidity Sensor	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	S02	SPM	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	UV Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Park Place	482010416	7421 Park Place Blvd, Houston	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Urban and Center City	29.6863013	-95.2947349
Houston-Pasadena- The Woodlands	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Neighborhood	Suburban	29.5830619	-95.0155477
Houston-Pasadena- The Woodlands	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Suburban	29.5830619	-95.0155477
Houston-Pasadena- The Woodlands	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Neighborhood	Suburban	29.5830619	-95.0155477
Houston-Pasadena- The Woodlands	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale	Suburban	29.5830619	-95.0155477
Houston-Pasadena- The Woodlands	Seabrook Friendship Park	482011050	4522 Park Rd, Seabrook	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale	Suburban	29.5830619	-95.0155477
Houston-Pasadena- The Woodlands	Seabrook Friendship Park		4522 Park Rd, Seabrook	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Middle Scale	Suburban	29.5830619	-95.0155477
Houston-Pasadena- The Woodlands	Texas City Ball Park		2516 1/2 Texas Avenue, Texas City		SPM	Pulsed Fluorescence	Continuous	Highest Concentration	Neighborhood	Urban and Center City	29.3852371	-94.9315312
Houston-Pasadena- The Woodlands	Texas City Ball Park		2516 1/2 Texas Avenue, Texas City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	-	Urban and Center City	29.3852371	-94.9315312
Houston-Pasadena- The Woodlands	Texas City Ball Park		2516 1/2 Texas Avenue, Texas City		SPM	AIO2 sonic weather sensor	Continuous	General, Background		Urban and Center City	29.3852371	-94.9315312

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Houston-Pasadena- The Woodlands	Texas City Fire Station	481670004	2516 Texas Avenue, Texas City	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Highest Concentration	Neighborhood	Urban and Center City	29.3847929	-94.9313057
Killeen-Temple-Fort Hood	Killeen Skylark Field	480271047	1605 Stone Tree Drive, Killeen	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	General, Background	Urban Scale	Urban and Center City	31.0880092	-97.6797438
Killeen-Temple-Fort Hood	Killeen Skylark Field	480271047	1605 Stone Tree Drive, Killeen	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Urban and Center City	31.0880092	-97.6797438
Killeen-Temple-Fort Hood	Killeen Skylark Field	480271047	1605 Stone Tree Drive, Killeen	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Urban and Center City	31.0880092	-97.6797438
Killeen-Temple-Fort Hood	Killeen Skylark Field	480271047	1605 Stone Tree Drive, Killeen	Wind	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Urban and Center City	31.0880092	-97.6797438
Killeen-Temple-Fort Hood	Temple Georgia	480271045	8406 Georgia Avenue, Temple	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale	Suburban	31.1224356	-97.4310452
Killeen-Temple-Fort Hood	Temple Georgia	480271045	8406 Georgia Avenue, Temple	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Suburban	31.1224356	-97.4310452
Killeen-Temple-Fort Hood	Temple Georgia	480271045	8406 Georgia Avenue, Temple	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.1224356	-97.4310452
Killeen-Temple-Fort Hood	Temple Georgia	480271045	8406 Georgia Avenue, Temple	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	31.1224356	-97.4310452
Kingsville	National Seashore	482730314	20420 Park Road, Corpus Christi	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Regional Transport	Regional Scale	Rural	27.4224225	-97.3008586
Kingsville	National Seashore	482730314	20420 Park Road, Corpus Christi	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Rural	27.4224225	-97.3008586
Kingsville	National Seashore	482730314	20420 Park Road, Corpus Christi	Wind	SPM	AIO2 sonic weather sensor	Continuous	Regional Transport	Regional Scale	Rural	27.4224225	-97.3008586
Laredo	Laredo Bridge	484790017	700 Zaragosa St, Laredo	PM10 (FRM)	Border Grant, SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Highest Concentration	Microscale	Urban and Center City	27.5018254	-99.5030062
Laredo	Laredo Bridge	484790017	700 Zaragosa St, Laredo	Speciated VOC (Canister)	Border Grant, SLAMS	Canister GC-MS	24 Hours; 1/6 Days	Highest Concentration	Neighborhood	Urban and Center City	27.5018254	-99.5030062
Laredo	Laredo Bridge	484790017	700 Zaragosa St, Laredo	Temperature (Outdoor)	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.5018254	-99.5030062

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Laredo	Laredo Bridge	484790017	700 Zaragosa St, Laredo	Wind	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.5018254	-99.5030062
Laredo	Laredo College	484790016	Washington Street, (corner of Taylor and Crawford	со	Border Grant, SLAMS	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.5079621	-99.5239985
Laredo	Laredo College	484790016	Washington Street, (corner of Taylor and Crawford	03	Border Grant, SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.5079621	-99.5239985
Laredo	Laredo College	484790016	Washington Street, (corner of Taylor and Crawford	PM10 (FRM)	Border Grant, SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure	Neighborhood	Urban and Center City	27.5079621	-99.5239985
Laredo	Laredo College	484790016	Washington Street, (corner of Taylor and Crawford	Temperature (Outdoor)	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.5079621	-99.5239985
Laredo	Laredo College	484790016	Washington Street, (corner of Taylor and Crawford	Wind	Border Grant, SLAMS	AIO2 sonic weather sensor	Continuous	Population Exposure	Neighborhood	Urban and Center City	27.5079621	-99.5239985
Laredo	World Trade Bridge	484790313	Mines Road 11601 FM 1472, Laredo	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Source Oriented	Microscale	Suburban	27.5996022	-99.5334135
Longview	Longview	481830001	Gregg Co Airport near Longview, Longview	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Population Exposure	Neighborhood	Rural	32.3786949	-94.7118191
Longview	Longview	481830001	Gregg Co Airport near Longview, Longview	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood	Rural	32.3786949	-94.7118191
Longview	Longview	481830001	Gregg Co Airport near Longview, Longview	Precipitation	SPM	Rain Gauge	Continuous	General, Background	Neighborhood	Rural	32.3786949	-94.7118191
Longview	Longview	481830001	Gregg Co Airport near Longview, Longview	S02	SLAMS	Pulsed Fluorescence	Continuous	General, Background; Population Exposure	Neiahborhood	Rural	32.3786949	-94.7118191
Longview	Longview	481830001	Gregg Co Airport near Longview, Longview	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	-	Rural	32.3786949	-94.7118191
Longview	Longview	481830001	Gregg Co Airport near Longview, Longview	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background		Rural	32.3786949	-94.7118191
Longview	Longview	481830001	Gregg Co Airport near Longview, Longview	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	-	Rural	32.3786949	-94.7118191
Longview	Tatum CR 2181d Martin Creek Lake	484011082	9515 County Road 2181d, Tatum	S02	SPM	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	32.2779277	-94.570867

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Longview	Tatum CR 2181d Martin Creek Lake	484011082	9515 County Road 2181d, Tatum	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.2779277	-94.570867
Longview	Tatum CR 2181d Martin Creek Lake	484011082	9515 County Road 2181d, Tatum	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.2779277	-94.570867
Lubbock	Lubbock 12th Street	483031028	3901 East 12th Street, Lubbock	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Urban and Center City	33.5855582	-101.786921
Lubbock	Lubbock 12th Street	483031028	3901 East 12th Street, Lubbock	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Regional Scale	Urban and Center City	33.5855582	-101.786921
Lubbock	Lubbock 12th Street	483031028	3901 East 12th Street, Lubbock	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Regional Scale	Urban and Center City	33.5855582	-101.786921
Longview**	Hallsville Red Oak Road	482031079	9206 Red Oak Road, Hallsville	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	32.4702261	-94.4816027
Longview** (Marshall)	Hallsville Red Oak Road	482031079	9206 Red Oak Road, Hallsville	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.4702261	-94.4816027
Longview** (Marshall)	Hallsville Red Oak Road	482031079	9206 Red Oak Road, Hallsville	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	32.4702261	-94.4816027
Longview**	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	General, Background	Regional Scale / Urban Scale	Rural	32.6689906	-94.1674541
Longview** (Marshall)	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	03	SLAMS	UV Photometric	Continuous	General, Background	Regional Scale	Rural	32.6689906	-94.1674541
Longview** (Marshall)	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	PM2.5 (Speciation)	CSN Supplemental, SLAMS	Carbons, Elements, Ions, SASS, URG	Days, 24 Hours; 1/3 Days	General, Background; Regional Transport	Regional Scale	Rural	32.6689906	-94.1674541
Longview** (Marshall)	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	General, Background	Regional Scale	Rural	32.6689906	-94.1674541
Longview** (Marshall)	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background		Rural	32.6689906	-94.1674541
Longview** (Marshall)	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background		Rural	32.6689906	-94.1674541
Longview** (Marshall)	Karnack	482030002	Hwy 134 & Spur 449, Not In A City	Visibility	SPM	Visibility Sensor	Continuous	General, Background		Rural	32.6689906	-94.1674541

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
Longview**			Hwy 134 & Spur			AIO2 sonic weather						
(Marshall)	Karnack	482030002	449, Not In A City	Wind	SPM	sensor	Continuous	General, Background	Urban Scale	Rural	32.6689906	-94.1674541
McAllen-Edinburg- Mission	Edinburg East Freddy Gonzalez Drive	482151046	1491 East Freddy Gonzalez Drive, Edinburg	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Regional Scale	Urban and Center City	26.2884916	-98.152059
McAllen-Edinburg- Mission	Edinburg East Freddy Gonzalez Drive	482151046	1491 East Freddy Gonzalez Drive, Edinburg	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Regional Scale	Urban and Center City	26.2884916	-98.152059
McAllen-Edinburg- Mission	Edinburg East Freddy Gonzalez Drive	482151046	1491 East Freddy Gonzalez Drive, Edinburg	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Regional Scale	Urban and Center City	26.2884916	-98.152059
McAllen-Edinburg- Mission	Mission	482150043	2300 North Glasscock, Mission	03	SLAMS	UV Photometric	Continuous	General, Background	Neighborhood	Suburban	26.2262425	-98.2911384
McAllen-Edinburg- Mission	Mission	482150043	2300 North Glasscock, Mission	PM10 FEM	SLAMS	Broadband spectroscopy, 639	Continuous	Population Exposure	-	Suburban	26.2262425	-98.2911384
McAllen-Edinburg- Mission	Mission	482150043	2300 North Glasscock, Mission	PM2.5	SLAMS	Broadband spectroscopy, 638	Continuous	Population Exposure	Neighborhood	Suburban	26.2262425	-98.2911384
McAllen-Edinburg- Mission	Mission	482150043	2300 North Glasscock, Mission	Solar Radiation	SPM	Photovoltaic	Continuous	General, Background	Neighborhood	Suburban	26.2262425	-98.2911384
McAllen-Edinburg- Mission	Mission	482150043	2300 North Glasscock, Mission	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	26.2262425	-98.2911384
McAllen-Edinburg- Mission	Mission	482150043	2300 North Glasscock, Mission	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	26.2262425	-98.2911384
Mount Pleasant	Cookville FM 4855	484491078	385 CR 4855, Not In A City	S02	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	33.0751297	-94.8472992
Mount Pleasant	Cookville FM 4855	484491078	385 CR 4855, Not In A City	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	33.0751297	-94.8472992
Mount Pleasant	Cookville FM 4855	484491078	385 CR 4855, Not In A City	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Rural	33.0751297	-94.8472992
None	Bravo Big Bend	480430101	Big Bend National Park, Big Bend Nat Park	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	General, Background		Rural	29.3025659	-103.177901
			Big Bend National Park, Big Bend Nat	Temperature								
None	Bravo Big Bend	480430101	Park	(Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	microscale	Rural	29.3025659	-103.177901

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
None	Bravo Big Bend	480430101	Big Bend National Park, Big Bend Nat Park	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Regional Scale	Rural	29.3025659	-103.177901
None	Fairfield FM 2570 Ward Ranch	481611084	488 FM 2570, Fairfield	S02	SPM	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood	Rural	31.797821	-96.103106
None	Fairfield FM 2570 Ward Ranch	481611084	488 FM 2570, Fairfield	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Rural	31.797821	-96.103106
None	Fairfield FM 2570 Ward Ranch	481611084	488 FM 2570, Fairfield	Wind	SPM	AIO2 sonic weather sensor	Continuous	Source Oriented	Neighborhood	Rural	31.797821	-96.103106
None	Karnes County	482551070	1100B East Main Avenue, Karnes City	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Upwind Background	Urban Scale	Rural	28.8804342	-97.8880657
None	Karnes County	482551070	1100B East Main Avenue, Karnes City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Rural	28.8804342	-97.8880657
None	Karnes County	482551070	1100B East Main Avenue, Karnes City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	28.8804342	-97.8880657
Odessa	Odessa Gonzales	481351014	2700 Disney, Odessa	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Highest Concentration	Regional Scale	Suburban	31.8702642	-102.334753
Odessa	Odessa Gonzales	481351014	2700 Disney, Odessa	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood	Suburban	31.8702642	-102.334753
Odessa	Odessa Gonzales	481351014	2700 Disney, Odessa	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood	Suburban	31.8702642	-102.334753
San Antonio-New Braunfels	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Source Oriented; Upwind Background	Urban Scale	Rural	29.2753871	-98.311694
San Antonio-New Braunfels	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	03	SLAMS	UV Photometric	Continuous	Source Oriented; Upwind Background	Urban Scale	Rural	29.2753871	-98.311694
San Antonio-New Braunfels	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure; Source Oriented	Urban Scale	Rural	29.2753871	-98.311694
San Antonio-New Braunfels	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure; Source Oriented	Neighborhood	Rural	29.2753871	-98.311694
San Antonio-New Braunfels	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Urban Scale	Rural	29.2753871	-98.311694

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	e Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
San Antonio-New Braunfels	Calaveras Lake	480290059	14620 Laguna Rd, San Antonio	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Urban Scale	Rural	29.2753871	-98.311694
San Antonio-New Braunfels	Camp Bullis	480290052	marker off Wilderness Trail), Near Wilderness Rd,	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Urban Scale	Rural	29.6320912	-98.5649436
San Antonio-New Braunfels	Camp Bullis	480290052	marker off Wilderness Trail), Near Wilderness Rd,	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale	Rural	29.6320912	-98.5649436
San Antonio-New Braunfels	Camp Bullis	480290052	marker off Wilderness Trail), Near Wilderness Rd,	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Urban Scale	Rural	29.6320912	-98.5649436
San Antonio-New Braunfels	Camp Bullis	480290052	marker off Wilderness Trail),	Temperature	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Urban Scale	Rural	29.6320912	-98.5649436
San Antonio-New Braunfels	Camp Bullis	480290052	Near Wilderness Rd, marker off Wilderness Trail), Near Wilderness Rd,		SPM	AIO2 sonic weather sensor		Highest Concentration	Urban Scale	Rural	29.6320912	-98.5649436
San Antonio-New Braunfels	Floresville Hospital Boulevard	484931038	1404 Hospital Blvd, Floresville	NO/NO2/NOx		Chemiluminescence	Continuous	Max Precursor Emissions Impact; Upwind Background		Rural	29.1306942	-98.1480798
San Antonio-New Braunfels	Floresville Hospital Boulevard	484931038	1404 Hospital Blvd, Floresville	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background		Rural	29.1306942	-98.1480798
San Antonio-New Braunfels	Floresville Hospital Boulevard	484931038	1404 Hospital Blvd, Floresville	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background		Rural	29.1306942	-98.1480798
San Antonio-New Braunfels	Frank Wing Municipal Court	480290060	401 South Frio St, San Antonio	PM10 (FRM)	SLAMS	HiVol Gravimetric, 141	24 Hours; 1/6 Days	Population Exposure		Urban and Center City	29.4221892	-98.5054098
San Antonio-New			911 Old Hwy 90	. ,						Urban and		
Braunfels San Antonio-New	Old Hwy 90	480290677	911 Old Hwy 90	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure		Center City Urban and	29.4239414	-98.5805074
Braunfels San Antonio-New	Old Hwy 90	480290677	West, San Antonio 911 Old Hwy 90	(Outdoor)	SPM	Aspirated Thermister Potentiometer Cup	Continuous	General, Background		Center City Urban and	29.4239414	-98.5805074
Braunfels San Antonio-New	Old Hwy 90 San Antonio	480290677	West, San Antonio 3843 Bulverde Parkway, San	Wind	SPM	Anemometer	Continuous	General, Background		Center City	29.4239414	-98.5805074
Braunfels San Antonio-New Braunfels	Bulverde Parkway San Antonio Bulverde Parkway	480291087	Antonio 3843 Bulverde Parkway, San Antonio	PM10 FEM PM2.5	SLAMS	spectroscopy, 639 Broadband spectroscopy, 638	Continuous	Population Exposure Population Exposure		Suburban	29.6351323	-98.4176798

MSA , CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
San Antonio-New Braunfels	San Antonio Bulverde Parkway	480291087	3843 Bulverde Parkway, San Antonio	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.6351323	-98.4176798
San Antonio-New Braunfels	San Antonio Bulverde Parkway	480291087	3843 Bulverde Parkway, San Antonio	Wind	SPM	AIO2 sonic weather sensor	Continuous	General, Background	Neighborhood	Suburban	29.6351323	-98.4176798
San Antonio-New Braunfels	San Antonio Interstate 10 West	480291069	5821 IH 10 West, San Antonio	NO/NO2/NOx	Near Road, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.485106	-98.531343
San Antonio-New Braunfels	San Antonio Interstate 10 West	480291069	5821 IH 10 West, San Antonio	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.485106	-98.531343
San Antonio-New Braunfels	San Antonio Interstate 10 West	480291069	5821 IH 10 West, San Antonio	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.485106	-98.531343
San Antonio-New Braunfels	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	СО	Near Road, SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.5294195	-98.3913933
San Antonio-New Braunfels	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	NO/NO2/NOx	Near Road, SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.5294195	-98.3913933
San Antonio-New Braunfels	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	PM2.5 FEM	Near Road, SLAMS	Beta Attenuation, 209	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.5294195	-98.3913933
San Antonio-New Braunfels	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.5294195	-98.3913933
San Antonio-New Braunfels	San Antonio Interstate 35	480291069	9904 IH 35 N, San Antonio	Wind	SPM	AIO2 sonic weather sensor	Continuous	Max Precursor Emissions Impact	Microscale	Urban and Center City	29.5294195	-98.3913933
San Antonio-New Braunfels	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood	Suburban	29.5150608	-98.6202036
San Antonio-New Braunfels	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale	Suburban	29.5150608	-98.6202036
San Antonio-New Braunfels	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	PM2.5 (FRM)	QA Collocated, SLAMS	Sequential FRM Gravimetric, 145	24 Hours; 1/12 Days	Population Exposure; Quality Assurance	Urban Scale	Suburban	29.5150608	-98.6202036
San Antonio-New Braunfels	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Suburban	29.5150608	-98.6202036
San Antonio-New Braunfels	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Urban Scale	Suburban	29.5150608	-98.6202036

MSA, CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
San Antonio-New Braunfels	San Antonio Northwest	480290032	6655 Bluebird Lane, San Antonio	Wind	SPM	AIO2 sonic weather sensor	Continuous	Highest Concentration	Urban Scale	Suburban	29.5150608	-98.6202036
San Antonio-New Braunfels	Von Ormy Highway 16	480131090	17534 North State Highway 16, Not In A City	PM2.5 FEM	SPM	Beta Attenuation, 209	Continuous	Population Exposure; Source Oriented	Microscale	Rural	29.1628698	-98.5891166
San Antonio-New Braunfels	Von Ormy Highway 16	480131090	17534 North State Highway 16, Not In A City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General, Background	Neighborhood	Rural	29.1628698	-98.5891166
San Antonio-New Braunfels	Von Ormy Highway 16	480131090	17534 North State Highway 16, Not In A City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General, Background	Neighborhood	Rural	29.1628698	-98.5891166
Texarkana, TX- Texarkana, AR	Texarkana New Boston	480371031	2700 New Boston Rd, Texarkana	PM2.5 FEM	SLAMS	Beta Attenuation, 209	Continuous	Population Exposure	Urban Scale	Urban and Center City	33.4362237	-94.0777527
Texarkana, TX- Texarkana, AR	Texarkana New Boston	480371031	2700 New Boston Rd, Texarkana	Temperature (Outdoor)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure		Urban and Center City	33.4362237	-94.0777527
Texarkana, TX- Texarkana, AR	Texarkana New Boston	480371031	2700 New Boston Rd, Texarkana	Wind (3m)	SPM	AIO2 sonic weather sensor	Continuous	Population Exposure	Urban Scale	Urban and Center City	33.4362237	-94.0777527
Tyler	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	General, Background	Urban Scale	Rural	32.3440208	-95.4157725
Tyler	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler	03	SLAMS	UV Photometric	Continuous	General, Background	Urban Scale	Rural	32.3440208	-95.4157725
Tyler	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler	Precipitation	SPM	Rain Gauge	Continuous	General, Background	Neighborhood	Rural	32.3440208	-95.4157725
Tyler	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler	Solar Radiation		Photovoltaic	Continuous	General, Background	_	Rural	32.3440208	-95.4157725
Tyler	Tyler Airport Relocated	484230007	14790 County Road 1145, Tyler		SPM	AIO2 sonic weather sensor	Continuous	General, Background	-	Rural	32.3440208	-95.4157725
	Tyler Airport	484230007	14790 County Road	. ,	SPM	AIO2 sonic weather				Rural	32.3440208	-95.4157725
Tyler	Relocated		1145, Tyler 106 Mockingbird	Wind		sensor	Continuous	General, Background		Urban and		
Victoria	Victoria	484690003	Lane, Victoria 106 Mockingbird	03	SLAMS	UV Photometric	Continuous	Population Exposure Highest		Center City Urban and	28.836215	-97.005507
Victoria	Victoria	484690003	Lane, Victoria	Solar Radiation	SPM	Photovoltaic	Continuous	Concentration	Neighborhood	Center City	28.836215	-97.005507

MSA ,	CBSA	Site Name	Site Number	Address	Monitor Type	Network	Methods	Operating Schedule	Monitoring Objective	Spatial Scale	Location Setting	Latitude	Longitude
				106 Mockingbird	Temperature		AIO2 sonic weather		Highest		Urban and		
Victoria		Victoria	484690003	Lane, Victoria 106 Mockingbird	(Outdoor)	SPM	AIO2 sonic weather	Continuous	Concentration	Neighborhood	Center City Urban and	28.836215	-97.005507
Victoria		Victoria	484690003	Lane, Victoria 4472 Mazanec Rd,	Wind	SPM	sensor	Continuous	Concentration	Neighborhood	Center City	28.836215	-97.005507
Waco		Waco Mazanec	483091037	Waco 4472 Mazanec Rd,	СО	SLAMS	Gas Filter Correlation	Continuous	Upwind Background		Rural	31.6531097	-97.0707005
Waco		Waco Mazanec	483091037	Waco 4472 Mazanec Rd,	03	SLAMS	UV Photometric	Continuous	Upwind Background	Regional Scale		31.6531097	-97.0707005
Waco		Waco Mazanec	483091037	Waco 4472 Mazanec Rd,	PM2.5 (TEOM) ^N		TEOM Gravimetric, 702		Regional Transport	Regional Scale		31.6531097	-97.0707005
Waco		Waco Mazanec	483091037	Waco 4472 Mazanec Rd,	SO2	SLAMS	Pulsed Fluorescence	Continuous	Upwind Background		Rural	31.6531097	-97.0707005
Waco		Waco Mazanec	483091037	Waco 4472 Mazanec Rd,	Solar Radiation		Photovoltaic AIO2 sonic weather	Continuous	Regional Transport	Urban Scale	Rural	31.6531097	-97.0707005
Waco		Waco Mazanec	483091037	Waco 4472 Mazanec Rd,	(Outdoor)	SPM	AIO2 sonic weather	Continuous	Regional Transport	Urban Scale	Rural	31.6531097	-97.0707005
Waco		Waco Mazanec	483091037	Waco	Wind	SFIL	sensor	Continuous	Regional Transport	Urban Scale	Rural	31.6531097	-97.0707005

Symbol/Acronym	Description
*	Micropolitan Statistical Area
	Marshall, Texas, is no longer a Micropolitan Statistical Area according to the United States Office of Management and Budget (OMB)
**	and is currently designated as a part of the Longview MSA, AQS is pending updates to match the new OMB designation.
N	Monitor is acceptable for Air Quality Index reporting and not suitable for comparison against the NAAQS
24-Hours; 1/12 Days	1 24-hour sample, once every twelfth day
24-Hours; 1/6 Days	1 24-hour sample, once every sixth day
24-Hours; 1/3 Days	1 24-hour sample, once every third day
24 Hours; Seasonal, 8 Hour; Seasonal	1 24-hour sample every sixth day seasonal, three eight-hour samples seasonal
8 Hour; Seasonal, 24 Hours; Seasonal	1 24-hour sample every sixth day seasonal, three eight-hour samples seasonal
#	number
AR	Arkansas
AutoGC	automated gas chromatograph
Ave	avenue
AQS	Air Quality System
BAM	beta attenuation method
Blvd	boulevard
Border	The Border network designation is part of the SLAMS network for monitors within 100 kilometers of the United States/Mexico border.
CBSA	
	core based statistical area
Co CO	county
CR	carbon monoxide
	county road
CSN STN	Chemical Speciation Network Speciation Trends Network site (includes NCore monitors/requirements, samples analyzed by EPA contracted laboratory)
DNPH	dinitrophenylhydrazine
Dr	drive
E	east
FM	farm-to-market
FEM	federal equivalent method
FRM	federal reference method
GC	gas chromatograph
GC-MS	gas chromatograph mass spectrometry
HiVol	high-volume
Hi-Vol ICP-MS	high-volume with inductively coupled plasma by mass spectrometry
HPLC	high performance liquid chromatography
Hwy(s)	highway(s)
IH	Interstate Highway
LBJ	Lyndon B Johnson
LC	local conditions
Ln	lane
m	meter
Max	maximum
MSA	metropolitan statistical area/micropolitan statistical area
NAAQS	National Ambient Air Quality Standards
NCore	National Core Multipollutant Monitoring Stations
NCore	National Core Multipollutant Monitoring Stations

Symbol/Acronym	Description
Ν	north
NE	northeast
NO ₂	nitrogen dioxide
NO/NO ₂ /NO _x	nitrogen oxides
NOy	total reactive nitrogen
03	ozone
PAMS	Photochemical Assessment Monitoring Stations
Pkwy	parkway
PM ₁₀	particulate matter of 10 micrometers or less in diameter
PM _{10-2.5}	coarse particulate matter
PM _{2.5}	particulate matter of 2.5 micrometers or less in diameter
QA Collocated	quality assurance collocated (duplicate monitor)
Rd	road
S	south
SASS	Speciation Air Sampling System
SE	southeast
SETRPC	Southeast Texas Regional Planning Commission
SLAMS	State or Local Air Monitoring Stations
SO ₂	sulfur dioxide (one-hour and five-minute maximum monitors)
SPM	special purpose monitor
St	street
SVRD	service road
TCEQ	Texas Commission on Environmental Quality
TEOM	tapered element oscillating microbalance (not NAAQS comparable)
ТММОС	total non-methane organic compound
TSP (Pb)	total suspended particulate (lead)
ТХ	Texas
URG	Universal Research Group
UTEP	University of Texas at El Paso
UV	ultraviolet
VOC	volatile organic compound
W	west
Wind	All wind sampler types produce data for parameters 61101, 61103, 61104, 61105, and 61106.
Yd	yard

Appendix C

Population and Criteria Pollutant Monitor Requirements and Count Summary by Metropolitan Statistical Area

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

Appendix C: Population and Criteria Pollutant Monitor Requirements and Count Summary by Metropolitan Statistical Area

Texas Metropolitan Statistical Area	2023 Population Estimate ¹	NO ₂ and NO/NO _y Monitors Required ²	NO ₂ and NO/NO _y Monitors Existing ^{2,3}	SO ₂ Monitors Required ²	SO ₂ Monitors Existing ^{2,3}	Pb Monitors Required	Pb Monitors Existing	O ₃ Monitors Required		CO Monitors Required ²	CO Monitors Existing ^{2,3}	PM ₁₀ Monitors Required ³	PM ₁₀ Monitors Existing ³	PM _{2.5} Monitors Required ³	PM _{2.5} Monitors Existing ³
Dallas-Fort Worth-Arlington	8,100,037	6	16	2	2	3	3	4	17	2	2	4-8	4	8	11
Houston-Pasadena-The Woodlands	7,510,253	6	20	3	6	0	0	4	21	2	3	4-8	6	8	19
San Antonio-New Braunfels	2,703,999	3	6	1	1	0	0	2	3	1	1	2-4	2	4	6
Austin-Round Rock-San Marcos	2,473,275	2	2	0	1	0	0	2	2	1	1	2-4	2	3	3
McAllen-Edinburg-Mission	898,471	0	0	0	0	0	0	1	1	0	0	1-2	1	2	2
El Paso	873,331	2	3	1	1	0	0	3	6	1	2	4-8	6	6	6
Killeen-Temple	501,333	0	1	0	0	0	0	2	2	0	0	1-2	0	1	1
Brownsville-Harlingen	426,710	0	0	0	0	0	0	1	1	0	0	0-1	0	1	2
Corpus Christi	448,323	0	0	0	3	0	0	2	2	0	0	0-1	1	1	3
Beaumont-Port Arthur	395,479	1	4	3	4	0	0	2	7	0	0	0-1	0	1	3
Lubbock	360,104	0	0	0	0	0	0	1	0	0	0	0-1	0	0	1
Longview	293,498	0	2	1	3	0	0	1	2	0	0	0-1	0	1	2
Waco	304,865	0	0	0	1	0	0	1	1	0	1	0-1	0	0	1
College Station-Bryan	281,445	0	0	1	1	0	0	0	0	0	0	0-1	0	1	1
Amarillo	272,395	0	0	1	2	0	0	0	0	0	0	0-1	0	0	1
Laredo	269,148	0	0	0	0	0	0	0	1	0	1	0-1	2	1	1
Tyler	245,209	0	1	0	0	0	0	1	1	0	0	0	0	0	0
Abilene	181,591	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Midland	182,324	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Odessa	164,494	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Wichita Falls	149,947	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Texarkana	145,907	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Sherman-Denison	146,907	0	0	0	0	0	0	0	0	0	0	0	0	0	0
San Angelo	120,606	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Victoria	98,808	0	0	0	0	0	0	1	1	0	0	0	0	0	0
Granbury ⁴	67,774	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Eagle Pass	57,762	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Corsicana ⁴	55,635	0	1	1	2	0	0	0	1	0	0	0	0	0	1
Mount Pleasant ⁴	56,423	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Big Spring ^₄	30,554	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Kingsville ⁴	30,069	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Borger ⁴	20,033	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Karnes County ⁵	NA	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Freestone County ⁵	NA	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Big Bend National Park ⁵	NA	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Totals ³		20	57	17	31	3	3	28	70	7	11	18-45	24	40	69

¹United States Census Bureau population estimates as of July 1, 2023. <u>Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)</u> ²Required and existing counts include NO_v, high-sensitivity SO₂, and high-sensitivity CO monitors.

³Individual monitors may fulfill multiple requirements and are only counted once. Collocated quality control monitors are not included in totals. ⁴Area is classified as a micropolitan statistical area and not subject to SLAMS (State or Local Air Monitoring Stations) requirements.

⁵Area not classified as a metropolitan or micropolitan statistical area; county population data is not applicable.

Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget Delineation Files (census.gov)

CO - carbon monoxide

NA - not applicable

 NO_2 and NO/NO_{γ} - nitrogen dioxide, nitrogen oxide, and total reactive nitrogen compounds

Pb - lead

 $\ensuremath{\mathsf{PM}_{10}}\xspace$ - particulate matter of 10 micrometers or less in diameter

PM_{2.5} - particulate matter of 2.5 micrometers or less in diameter

O3 - ozone

SO₂ - sulfur dioxide

Appendix D

Nitrogen Dioxide, Nitrogen Oxide, and Total Reactive Nitrogen Compounds Monitor Requirements and Count Assessment

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

Appendix D: Nitrogen Dioxide, Nitrogen Oxide, and Total Reactive Nitrogen Compounds Monitor Requirements and Count Assessment

Core Based Statistical Areas	2023 Population Estimate ¹	Required NO ₂ Area-Wide Monitors	Required NO ₂ RA-40 Monitors	Required NO ₂ Near-Road Monitors	Required True NO ₂ PAMS Monitors	Required NO/NO _y PAMS/NCore Monitors	Total Required NO ₂ and NO/NO _y Monitors	Total Existing NO ₂ and NO/NO _y Monitors ²
Dallas-Fort Worth-Arlington	8,100,037	1	1	2	1	1	6	16
Houston-Pasadena-The Woodlands	7,510,253	1	1	2	1	1	6	20
San Antonio-New Braunfels	2,703,999	1	0	2	0	0	3	6
Austin-Round Rock-San Marcos	2,473,275	1	0	1	0	0	2	2
McAllen-Edinburg-Mission	898,471	0	0	0	0	0	0	0
El Paso	873,331	0	1	0	0	1	2	3
Killeen-Temple	501,333	0	0	0	0	0	0	1
Brownsville-Harlingen	426,710	0	0	0	0	0	0	0
Corpus Christi	448,323	0	0	0	0	0	0	0
Beaumont-Port Arthur	395,479	0	1	0	0	0	1	4
Lubbock	360,104	0	0	0	0	0	0	0
Longview	293,498	0	0	0	0	0	0	2
Waco	304,865	0	0	0	0	0	0	0
College Station-Bryan	281,445	0	0	0	0	0	0	0
Amarillo	272,395	0	0	0	0	0	0	0
Laredo	269,148	0	0	0	0	0	0	0
Tyler	245,209	0	0	0	0	0	0	1
Abilene	181,591	0	0	0	0	0	0	0
Midland	182,324	0	0	0	0	0	0	0
Odessa	164,494	0	0	0	0	0	0	0
Wichita Falls	149,947	0	0	0	0	0	0	0
Texarkana	145,907	0	0	0	0	0	0	0
Sherman-Denison	146,907	0	0	0	0	0	0	0
San Angelo	120,606	0	0	0	0	0	0	0
Victoria	98,808	0	0	0	0	0	0	0
Eagle Pass	57,762	0	0	0	0	0	0	0
Corsicana ³	55,635	0	0	0	0	0	0	1
Karnes County ⁴	NA	0	0	0	0	0	0	1
Totals		4	4	7	2	3	20	57

¹United States Census Bureau population estimates as of July 1, 2023.

Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)

Delineation Files (census.gov)

²Monitors may fulfill multiple monitoring requirements and are only counted once.

³Area is classified as a micropolitan statistical area and not subject to SLAMS (State or Local Air Monitoring Stations) requirements.

⁴Area not classified as a metropolitan or micropolitan statistical area; county population data is not applicable.

Core Based Statistical Areas are delineated by the United States Office of Management and Budget

NCore - National Core Multipollutant Monitoring Stations

NO - nitrogen oxide

NO2 - nitrogen dioxide

NO_Y - total reactive nitrogen compounds

PAMS - Photochemical Assessment Monitoring Stations

RA-40 - Regional Administrator 40

Appendix E

Sulfur Dioxide Monitor Requirements and Count Assessment

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

Core Based Statistical Area	County	2023 Population Estimates ¹	2023 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2023 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Dallas-Fort Worth-		0.400.007					10.001					
Arlington		8,100,037				5,307	42,991	1	0	1	2	2
	Collin Dallas		8	153	11	150 897						
	Dallas		217	1,025	345	378						
	Ellis		283	437	342 2,931	2,629						
	Hunt		2,303	2,995 48	2,931	2,629						
	Johnson		70	103	63	109						
	Kaufman		70	103	89	129						
	Parker		108	140	154	131						
	Rockwall		0		0	10						
	Tarrant		21	793	20	794						
	Wise		13	28	12	29						
Houston-Pasadena-The Woodlands		7,510,253				38,786	291,295	2	0	1	3	6
	Austin		4	14	3	15						
	Brazoria		562	674	547	689						
	Chambers		198	293	252	240						
	Fort Bend		28,515	23,979	23,881	28,613						
	Galveston		1,169	1,272	1,077	1,363						
	Harris		6,216	8,125	6,692	7,648						
	Liberty		9	29	11	26						
	Montgomery		76		30	167						
	San Jacinto		0	5	1	4						
Con Antonio Nou	Waller		0	23	2	21						
San Antonio-New Braunfels		2,703,999				7,458	20,165	1	0	0	1	1
	Atascosa		4,748	10,920	10,615	5,052						
	Bandera		0	2	0	2						
	Bexar		1,189	1,574	1,267	1,495						
	Comal		331	352	325	358						
	Guadalupe		86	176	128	134						
	Kendall		0	10	2	7						
	Medina		0	10	0	10						
	Wilson		221	397	219	398						

Core Based Statistical Area	County	2023 Population Estimates ¹	2023 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2023 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Austin-Round Rock-San												
Marcos		2,473,275				1,512	3,739	0	0	0	0	1
	Bastrop		83	102	88	97						
	Caldwell		2	22	0							
	Hays		848	1,459	1,428	878						
	Travis		121	377	129	369						
	Williamson		79	70	4	144						
McAllen-Edinburg-Mission		898,471				115	103	0	0	0	0	0
	Hidalgo		30	114	29	115						
El Paso		873,331				295	257	0	0	1	1	1
	El Paso		164	292	171	286						
	Hudspeth		6	9	6	9						
Killeen-Temple		501,333				172	86	0	0	0	0	0
	Bell		100	75	17	158						
	Coryell		0	8	0	8						
	Lampasas		0	5	0	-						
Brownsville-Harlingen		426,710				79	34	0	0	0	0	0
	Cameron		3	78	2							
Corpus Christi		448,323				1,321	592	0	0	0	0	3
	Aransas		0	12	0	12						
	Nueces		769	716	508	976						
	San Patricio		304	89	60	333						
Beaumont-Port Arthur		395,479				15,752	6,230	1	2	0	3	4
	Hardin		1	8	1	8						
	Jefferson		12,354	11,981	11,762	12,572						
	Orange		3,126	3,912	3,866	3,172						
Lubbock		360,104				857	309	0	0	0	0	0
	Cochran		0	609	0	609						
	Crosby		0	3	0	-						
	Garza		0	69	0							
	Hockley		53	47	1	99						
	Lubbock		7	74	9							
L	Lynn		0	6	0	6						

Core Based Statistical Area	County	2023 Population Estimates ¹	2023 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2023 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Longview		293,498				13,983	4,104	0	1	0	1	3
-	Gregg		18	80	20	78	,					
	Harrison		420	1,947	1,913	453						
	Rusk		13,429	43,744	43,729	13,444						
	Upshur		0	9	2	8						
Waco		304,865				2,913	888	0	0	0	0	1
	Bosque		1,059	1,316	1,310	1,064						
	Falls		0	7	0	7						
	McLennan		1,743	2,496	2,397	1,843						
College Station-Bryan		281,445				10,382	2,922	0	1	0	1	1
	Brazos		8	51	9	49						
	Burleson		0	7	0	7						
	Robertson		10,322	11,182	11,178	10,326						
Amarillo		272,395				10,770	2,934	0	1	0	1	2
	Armstrong		1	2	1	2						
	Carson		14	3	0							
	Oldham		0	1	0	=						
	Potter		10,595	8,273	8,217	10,651						
	Randall		67	115	83	99						
Laredo		269,148				232	62	0	0	0	0	0
	Webb		190	388	347	232						
Tyler		245,209				396	97	0	0	0	0	0
	Smith		340	481	425	396						
Abilene		181,591				90	16	0	0	0	0	0
	Callahan		0	3	0	3						
	Jones		55	26	22	59						
	Taylor		0	29	0	29						
Midland		182,324				5,838	1,064	0	0	0	0	0
	Martin		175	3,532	39	3,667						
	Midland		173	2,121	123	2,171						
Odessa		164,494				1,679	276	0	0	0	0	0
	Ector		1,124	959	404	1,679						

Core Based Statistical Area	County	2023 Population Estimates ¹	2023 Point Source Data (tpy)	2020 NEI Data (tpy)	2020 Point Source Data (tpy)	2020 NEI Non-Point Source Data with 2023 Point Source Data (tpy)	PWEI	Required SO ₂ PWEI Monitors	Required SO ₂ DRR Monitors	Required SO ₂ NCore Monitors (high- sensitivity)	Total Required SO ₂ Monitors	Existing Monitors ²
Wichita Falls		149,947				642	96	0	0	0	0	0
	Archer		0	2	0	2						
	Clay		70	61	59	73						
	Wichita		503	553	489	568						
Texarkana		145,907				47	7	0	0	0	0	0
	Bowie		26	56	35	47						
Sherman-Denison		146,907				60	9	0	0	0	0	0
	Grayson		8	57	6							
San Angelo		120,606				64	8	0	0	0	0	0
	Irion		0	34	0	34						
	Tom Green		1	31	1	30						
Victoria		98,808				9,637	952	0	0	0	0	0
	Goliad		9,578	7,959	7,955	9,582						
	Victoria		32	52	29	54						
Eagle Pass		57762				0	0	0	0	0	0	0
	Maverick		0	0	0	0						
Corsicana ³		55,635				3,541	197	NA	1	0	1	2
	Navarro		3,518	3,630	3,607	3,541						
Mount Pleasant ³		56,423				9,545	539	NA	1	0	1	1
	Camp		0	48	45	2						
	Morris		0	13	0	13						
	Titus		9,496	8,203	8,169	9,530						
Big Spring ³		30,554				6,555	200	NA	1	0	1	1
	Howard		4,154	6,380	3,979	6,555						
Borger ³		20,033				2,389	48	NA	1	0	1	1
	Hutchinson		2,377	7,827	7,815	2,389						
None		not available					NA	NA	NA	0	0	1
	Freestone ⁴		16		15	21						
	Sterling⁴		1	8	1	8						
Total Monitors								5	9	3	17	31

1United States Census Bureau population estimates as of July 1, 2023.

⁴Monitors may fulfill multiple monitoring requirements and are only counted once.

³Micropolitan statistical area

⁴Area not classified as a metropolitan or micropolitan statistical area.

Core Based Statistical Areas are defined by the United States Office of Management and Budget

DRR - Data Requirements Rule

NA - not applicable

NCore - National Core Multipollutant Monitoring Stations

NEI - National Emissions Inventory

Air Emissions Inventories | US EPA

Delineation Files (census.gov)

Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)

PWEI - population weighted emission index (Core Based Statistical Area Population*[2020 NEI non-point source data and 2023 point source data]/1,000,000)

 SO_2 - sulfur dioxide

tpy - tons per year

2025 Annual Monitoring Network Plan

Sulfur Dioxide Ongoing Data Requirements Annual Report

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

Appendix F: Sulfur Dioxide Ongoing Data Requirements Annual Report

As required by 40 Code of Federal Regulations (CFR) Section 51.1205(b), this report provides the Texas Commission on Environmental Quality's (TCEQ) annual assessment of sulfur dioxide (SO₂) emissions changes for areas designated attainment/unclassifiable for the 2010 SO₂ National Ambient Air Quality Standard (NAAQS), where the designations were based on characterization of air quality by modeling actual SO₂ emissions.

Out of all Texas counties (or portions of counties) currently designated attainment/unclassifiable for the 2010 SO₂ NAAQS, only the seven counties, shown in Table 1 below, were designated based on modeled actual SO₂ emissions. The most recent (2023) total estimated SO₂ emissions, based on quality assured data from the relevant sources in each county, are listed in Table 1 below. The table includes emissions from the previous year (2022) and the change in SO₂ emissions from 2022 to 2023. The relevant source in Wilbarger County was shut down in 2020, resulting in zero emissions for 2022-2023.

The relevant sources in Atascosa, Fort Bend, Lamb, Limestone, and Robertson Counties had emission decreases from the previous year. Since the emissions have decreased for these locations from the previous year, the original designation modeling for each county provides reasonable assurance that the areas continue to meet the 2010 one-hour SO₂ primary NAAQS.

The relevant source in Goliad County had an emission increase from the previous year. Table 2 below shows the average county SO₂ emissions data used in the 2012-2014 designation modeling. The average emissions data for years 2021-2023, which would likely be used for any new modeling initiated to reevaluate compliance with the 2010 SO₂ NAAQS, is shown in Table 2 below. This comparison shows that the original designation modeling evaluated higher emissions for each area. Since higher emissions were evaluated, the original designation modeling provides reasonable assurance that the areas continue to meet the 2010 one-hour SO₂ primary NAAQS.

For any area where SO₂ monitoring was conducted to characterize air quality pursuant to 40 CFR Section 51.1203, the TCEQ continues to operate the monitor(s) used to meet those requirements and reports quality assured data pursuant to existing ambient monitoring regulations, unless the monitor(s) have been approved for shut down by the EPA Regional Administrator pursuant to 40 CFR Section 51.1203(c)(3) or 40 CFR Section 58.14.

The TCEQ recommends that no additional SO_2 air quality modeling is needed to determine compliance with the 2010 SO_2 NAAQS for any of the seven Texas counties listed below in Table 1.

County	Relevant Source	2022 SO2 (tpy)	2023 SO ₂ (tpy)	Difference 2022 to 2023	Cause for Emission Increase
Atascosa	San Miguel Electric Plant	9,489	4,615	-4,874	No increase reported
Fort Bend	W.A. Parish Electric Generating Station	34,136	28,498	-5,638	No increase reported
Goliad	Coleto Creek Power Station	8,206	9,577	1,372	No major operational changes: increase in fuel oil consumption and the coal sulfur content increased

Table 1: 2022 to 2023 Emissions Comparisons

Appendix F: Sulfur Dioxide Ongoing Data Requirements Annual Report

County	Relevant Source	2022 SO ₂ (tpy)	2023 SO2 (tpy)	Difference 2022 to 2023	Cause for Emission Increase
Lamb	Tolk Station Power Plant	8,667	8,430	-238	No increase reported
Limestone	Limestone Electric Generating Station	6,337	5,596	-741	No increase reported
Robertson	Twin Oaks Power Station	2,316	2,126	-190	No increase reported
Wilbarger	Oklaunion Power Station (shut down in late 2020)	0	0	0	Not applicable

 SO_2 – sulfur dioxide

tpy – tons per year

Table 2: Average Emissions Comparison

County	Relevant Source	2012-2014 SO2 Average (tpy)	2021-2023 SO2 Average (tpy)	Three Year Average SO ₂ Comparison Change	
Goliad	Coleto Creek Power Station	15,832	9,395	-6,437	

SO₂ – sulfur dioxide

tpy – tons per year

Total Suspended Particulate Lead Monitor Requirements and Count Assessment

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

Appendix G: Total Suspended Particulate Lead Monitor Requirements and **Count Assessment**

Metropolitan Statistical Area	County	Pb Source (Facility Name) or Monitoring Requirement	2021 Pb Source Emissions (tpy)	2022 Pb Source Emissions (tpy)	2023 Pb Source Emissions (tpy)	Site Name	Required Monitors ¹	Existing Monitors ¹
Dallas-Fort Wo	rth-Arlington						3	3
	Collin	Maintenance Area	NA	NA	NA	Frisco Eubanks ^{1,2}	1	1
	Collin	Maintenance Area	NA	NA	NA	Frisco Stonebrook ²	1	1
	Kaufman	Conecsus, LLC	0.2130	0.0833	0.0970	Terrell Jamison Court ^{1,3}	1	1
Totals							3	3

²Monitor required to fulfill State Implementation Plan commitments.

³Site relocated in October 2024

LLC - Limited Liability Company

NA - not applicable

Pb - lead

tpy - tons per year

¹Collocated quality control monitors are not included in totals.

Appendix H

Ozone Monitor Requirements and Count Assessment

Texas Commission on Environmental Quality 2025 Annual Monitoring Network Plan

Appendix H: Ozone Monitor Requirements and Count Assessment

Metropolitan Statistical Area	2023 Population Estimates ¹	2021-2023 8-Hour Design Value (ppm)	Design Value as Percent of NAAQS ²	Total Required SLAMS Monitors	Total Required NCore/PAMS Monitors	Total Required Monitors ³	Total Existing Monitors ⁴
Dallas-Fort Worth-Arlington	8,100,037	0.081	116%	3	1	4	17
Houston-Pasadena-The Woodlands	7,510,253	0.083	119%	3	1	4	21
San Antonio-New Braunfels	2,703,999	0.076	109%	2	0	2	3
Austin-Round Rock-San Marcos	2,473,275	0.071	101%	2	0	2	2
McAllen-Edinburg-Mission ⁵	898,471	0.058	83%	1	0	1	1
El Paso	873,331	0.074	106%	2	1	3	6
Killeen-Temple	501,333	0.071	101%	2	0	2	2
Brownsville-Harlingen	426,710	0.057	81%	1	0	1	1
Corpus Christi	448,323	0.063	90%	2	0	2	2
Beaumont-Port Arthur	395,479	0.065	93%	2	0	2	7
Lubbock	360,104	NA	NA	1	0	1	0
Longview	293,498	0.065	93%	1	0	1	2
Waco	304,865	0.068	97%	1	0	1	1
College Station-Bryan	281,445	NA	NA	0	0	0	0
Amarillo	272,395	NA	NA	0	0	0	0
Laredo ⁵	269,148	0.057	81%	0	0	0	1
Tyler	245,209	0.069	99%	1	0	1	1
Abilene	181,591	NA	NA	0	0	0	0
Midland	182,324	NA	NA	0	0	0	0
Odessa	164,494	NA	NA	0	0	0	0
Wichita Falls	149,947	NA	NA	0	0	0	0
Texarkana	145,907	NA	NA	0	0	0	0
Sherman-Denison	146,907	NA	NA	0	0	0	0
San Angelo	120,606	NA	NA	0	0	0	0
Victoria	98,808	0.060	86%	1	0	1	1
Eagle Pass	57,762	NA	NA	0	0	0	0
Granbury ⁶	67,774	0.075	107%	0	0	0	1
Corsicana ⁶	55,635	0.065	93%	0	0	0	1
Totals				25	3	28	70

¹United States Census Bureau population estimates as of July 1, 2023.

²2015 eight-hour ozone National Ambient Air Quality Standard (NAAQS) is 0.070 parts per million (ppm).

³Total Required Monitors is a sum of requirements for SLAMS, PAMS, and NCore.

⁴Monitors may fulfill multiple monitoring requirements and are only counted once.

⁵Monitor deployed 2022-2023, incomplete design values are not used for regulatory compliance.

⁶Area is classified as a micropolitan statistical area and is not subject to SLAMS requirements.

Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget

Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)

NA - not applicable

NCore - National Core Multipollutant Monitoring Stations PAMS - Photochemical Assessment Monitoring Stations SLAMS - State or Local Air Monitoring Stations

Delineation Files (census.gov)
Appendix I

Carbon Monoxide Monitor Requirements and Count Assessment

Appendix I: Carbon Monoxide Monitor Requirements and Count Assessment

Core Based Statistical Area ¹	2023 Population Estimates ²	Site Name	Required CO NCore Monitors	Required CO Near-Road Monitors	Total Required Monitors ³	Total Existing Monitors ⁴
Dallas-Fort Worth-Arlington	8,100,037		1	1	2	2
		Dallas Hinton⁵	1	0	1	1
		Fort Worth California Parkway North	0	1	1	1
Houston- Pasadena-The Woodlands	7,510,253		1	1	2	3
		Clinton⁵	0	0	0	1
		Houston Deer Park #2 ⁵	1	0	1	1
		Houston North Loop	0	1	1	1
San Antonio- New Braunfels	2,703,999		0	1	1	1
		San Antonio Interstate 35	0	1	1	1
Austin-Round Rock-San Marcos	2,473,275		0	1	1	1
		Austin North Interstate 35	0	1	1	1
El Paso	873,331		1	0	1	2
		El Paso Chamizal ⁵	1	0	1	1
		Ojo De Agua	0	0	0	1
Waco	304,865		0	0	0	1
		Waco Mazanec	0	0	0	1
Laredo	269,148		0	0	0	1
		Laredo Vidaurri	0	0	0	1
Totals			3	4	7	11

¹This list does not include core based statistical areas with zero requirements and zero monitors.

 $^{2}\mbox{United}$ States Census Bureau population estimates as of July 1, 2023.

Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)

³Total Required Monitors is a sum of requirements for NCore and Near-Road.

⁴Monitors may fulfill multiple monitoring requirements and are only counted once.

⁵High-Sensitivity CO monitor

- number

CO - carbon monoxide

NCore - National Core Multipollutant Monitoring Stations

Particulate Matter of 10 Micrometers or Less Monitor Requirements and Count

Assessment

	Table 1: Particulate Matter of 10 Micrometers or Less Monitoring Red	quirements Assessment and Monitor Locations ¹
--	--	--

Metropolitan Statistical Area	2023 Population Estimates ²	Site Name	2021-2023 Maximum Concentration (μg/m ³)	Maximum Concentration in Comparison to Percent of NAAQS ³ (%)	Required Monitors ^{4,5}	Existing Monitors ^{4,5}
Dallas-Fort Worth- Arlington	8,100,037		125	83	4-8	4
		Convention Center (planned PM ₁₀ FEM continuous) (collocated QC manual filter-based pair)	125	83		
		Dallas Bexar Street (New monitor activated September 2021) (planned PM_{10} FEM continuous)	89	59		
		Dallas Hinton ⁶ (NEW! PM ₁₀ FEM continuous monitor activated June 2023)	NA	NA		
		Earhart (planned relocation)	97	65		
Houston-Pasadena-The Woodlands	7,510,253		156	104	4-8	6
		Clinton (PM_{10} FEM continuous monitor activated October 2024)	106	71		
		Houston Deer Park #2 ⁶ (NEW! PM ₁₀ FEM continuous monitor activated February 2023)	NA	NA		
		Houston Monroe (NEW! collocated QC manual filter-based pair activated February 2025)	156	104		
		Houston North Wayside (monitor non-NAAQS comparable)	NA	NA		
		Lang	103	69		
		Texas City Fire Station (planned PM_{10} FEM continuous)	149	99		
San Antonio-New Braunfels	2,703,999		101	67	2-4	2
		San Antonio Bulverde Parkway (PM ₁₀ FEM continuous monitor activated November 2023)	101	67		
		Frank Wing Municipal Court (proposed relocation to Old Highway 90)	98	65		
Austin-Round Rock-San Marcos	2,473,275		97	65	2-4	2
		Austin Webberville Road (PM ₁₀ FEM continuous monitor activated November 2023)	97	65		
		Austin Audubon Society	90	60		

Metropolitan Statistical Area	2023 Population Estimates ²	Site Name	2021-2023 Maximum Concentration (μg/m ³)	Maximum Concentration in Comparison to Percent of NAAQS ³ (%)	Required Monitors ^{4,5}	Existing Monitors ^{4,5}
McAllen-Edinburg-Mission	898,471		97	65	1-2	1
		Mission (PM_{10} FEM continuous monitor activated October 2023)	97	65		
El Paso	873,331		154	102	4-8	6
		El Paso Mimosa (previously Riverside) (planned PM_{10} FEM continuous)	153	102		
		El Paso Chamizal ⁶ (NEW! PM ₁₀ FEM continuous monitor activated July 2023)	NA	NA		
		Ivanhoe (planned PM_{10} FEM continuous)	154	103		
		Ojo De Agua (planned PM_{10} FEM continuous)	126	84		
		Socorro Hueco (PM ₁₀ FEM continuous monitor activated May 2024)	116	77		
		Van Buren (planned PM_{10} FEM continuous)	135	90		
Killeen-Temple	501,333		NA	0	1-2	0
Brownsville-Harlingen	426,710		NA	0	0-1	0
Corpus Christi	448,323		89	59	0-1	1
		Dona Park (PM ₁₀ FEM continuous monitor activated January 2024)	89	59		
Beaumont-Port Arthur	395,479		NA	0	0-1	0
Lubbock	360,104		NA	0	0-1	0
Longview	293,498		NA	0	0-1	0
Waco	304,865		NA	0	0-1	0
College Station-Bryan	281,445		NA	0	0-1	0
Amarillo	272,395		NA	0	0-1	0

Metropolitan Statistical Area	2023 Population Estimates ²	Site Name	2021-2023 Maximum Concentration (µg/m ³)	Maximum Concentration in Comparison to Percent of NAAQS ³ (%)	Required Monitors ^{4,5}	Existing Monitors ^{4,5}
Laredo	269,148		111	74	0-1	2
		Laredo College (previously Laredo Vidaurri)	88	59		
		Laredo Bridge	111	74		
Totals					18-45	24

¹This list doesn't include metropolitan statistical areas with zero requirements and zero monitors.

²United States Census Bureau population estimates as of July 1, 2023.

Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)

³Current PM₁₀ NAAQS is 150 micrograms per cubic meter (μ g/m³).

 $^{4}_{2}$ 2021-2023 PM₁₀ available maximum 24-hour concentration data was evaluated to confirm minimum monitoring requriements as a percentage of the PM₁₀ NAAQS

⁵Collocated quality control manual filter-based monitors are not counted.

⁶New monitor activated in 2023, limited PM₁₀ ambient data insufficient for minimum monitoring requirement comparison

Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget

% - percent

FEM - federal equivalent method

NAAQS - National Ambient Air Quality Standards

PM₁₀ - particulate matter of 10 micrometers or less in diameter

Metropolitan and Micropolitan Statistical Areas Population Totals (census

Delineation Files (census.gov)

Site Name	2021-2023 Maximum Concentration ² (µg/m ³)	2023 Annual Mean Concentration (µg/m³)	2022 Annual Mean Concentration (µg/m³) ²	2021 Annual Mean Concentration (µg/m³) ³
El Paso Mimosa (previously Riverside) (planned FEM continuous)	220	52	49	51
Laredo Bridge (planned FEM continuous)	111	30	35	24
Houston Monroe (NEW! collocated QC pair) ³	156	20	22	23
Ivanhoe (planned FEM continuous)	126	29	31	35
Van Buren (planned FEM continuous)	135	27	30	30
Convention Center (collocated QC pair) (planned FEM continuous)	92	28	28	21
Earhart (planned relocation and FEM continuous)	81	27	26	19
Frank Wing Municipal Court	98	24	25	24
Dallas Bexar Street (monitor deployed September 2021) (planned FEM continuous)	83	26	25	21
Ojo De Agua (collocated QC pair) (planned FEM continuous)	126	22	25	24
Lang	103	20	22	24
Texas City Fire Station (planned FEM continuous)	149	17	20	21
Laredo College (previously Laredo Vidaurri) (planned FEM continuous)	88	27	20	29
Austin Audubon Society (planned FEM continuous)	89	17	18	19

Table 2: Particulate Matter of 10 Micrometers or Less Manual Filter-Based Monitor Concentrations¹

¹Particulate matter of 10 micrometers or less (PM₁₀) continuous methods have no collocated QC requirements and are not evaluated in this table.

²Data associated with pending exceptional event reports are not included.

³Highest annual mean concentrations, confirms at least half of collocated QC monitoring occurs at network sites among the highest.

QC - quality control

µg/m³ - micrograms per cubic meter

Appendix K

Particulate Matter of 2.5 Micrometers or Less Monitor Requirements and Count Assessment

Table 1: Particulate Matter of 2.5 Micrometers or Less Monitor Requirement and Count Summary

Metropolitan Statistical Area	2023 Population Estimates ¹	2021-2023 DV (μg/m ³) Annual (for Area)	2021-2023 DV (µg/m ³) 24-Hour (for Area)	Percent of NAAQS Annual ² (for Area)	Percent of NAAQS 24-Hour ³ (for Area)	Required FRM/ FEM Monitors	Required NCore Monitors	Required Near-Road Monitors	Total Required Monitors ⁴	Total Existing Monitors ⁴
Dallas-Fort Worth-Arlington	8,100,037	9.9	25	110	71	3	4	1	8	11
Houston-Pasadena-The Woodlands	7,510,253	12.5	25	139	71	3	4	1	8	19
San Antonio-New Braunfels	2,703,999	9.0	25	100	71	3	0	1	4	6
Austin-Round Rock-San Marcos	2,473,275	9.6	23	107	66	3*	0	1	3	3
McAllen-Edinburg-Mission	898,471	9.6	26	107	74	2	0	0	2	2
El Paso	873,331	9.0	22	100	63	2	4	0	6	6
Killeen-Temple	501,333	7.3	21	81	60	1	0	0	1	1
Brownsville-Harlingen	426,710	10.9	30	121	86	1	0	0	1	2
Corpus Christi	448,323	8.4	24	93	69	1	0	0	1	3
Beaumont-Port Arthur	395,479	8.8	20	98	57	1	0	0	1	3
Lubbock	360,104	5.7	18	63	51	0	0	0	0	1
Longview ⁵	293,498	9.5	23	106	66	1	0	0	1	2
Waco ⁶	304,865	NA	NA	NA	NA	0	0	0	0	1
College Station-Bryan	281,445	7.9	21	88	60	1	0	0	1	1
Amarillo	272,395	6.0	15	67	43	0	0	0	0	1
Laredo	269,148	9.7	27	108	77	1	0	0	1	1
Odessa	164,494	7.3	18	81	51	0	0	0	0	1
Texarkana	145,907	10.3	23	114	66	1	0	0	1	1
Eagle Pass	57,762	7.9	23	88	66	1	0	0	1	1
Corsicana ^{5,7}	55,635	NA	NA	NA	NA	0	0	0	0	1
Kingsville ⁷	30,069	9.9	28	110	80	0	0	0	0	1
Big Bend National Park ^{5,8}	NA	6.2	15	69	43	0	0	0	0	1
Totals*						27	12	4	40	69

¹United States Census Bureau population estimates as of July 1, 2023.

Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)

²2024 PM_{2.5} Annual NAAQS is 9.0 micrograms per cubic meter (μ g/m³).

 $^{3}2024 \text{ PM}_{2.5} \text{ 24-hour NAAQS is 35 } \mu\text{g/m}^{3}$.

⁴Individual monitors may fulfill multiple requirements and are only counted once. Collocated quality control monitors are not included in totals.

⁵Annual values do not meet completeness criteria; monitors deployed in 2021 to 2023. Incomplete design value information is not used for the purposes of regulatory compliance.

⁶PM_{2.5} TEOM monitor is non-FEM/FRM (non-NAAQS comparable).

⁷Area is classified as a micropolitan statistical area and is not subject to SLAMS (State or Local Ambient Monitoring Stations) requirements.

⁸Area not classified as a metropolitan or micropolitan statistical area.

*Near-Road monitor fulfills multiple requirements

This list does not include metropolitan statistical areas with no requirement and no monitors. NAAQS - National Ambient Air Quality Standards

DV - design value

FEM - federal equivalent method

FRM - federal reference method

NCore - National Core Multipollutant Monitoring Stations $\mu g/m^3$ - micrograms per cubic meter

NA - not applicable

2025 Annual Monitoring Network Plan

 Table 2: Particulate Matter of 2.5 Micrometers or Less Monitor Design Value, Location, Monitor Type, and Requirements

 Assessment

Metropolitan Statistical Area ¹	2023 Population Estimates ²	Site Name	Monitor Type(s)	2021-2023 Annual DV (µg/m³)	2021-2023 24-Ноиг DV (µg/m³)	Percent of NAAQS (Annual ³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
Dallas-Fort Worth-Arlington	8,100,037			9.9	25	110	71	11
		Convention Center	BAM 1022 (planned T640x)	9.9	23	110	66	1
		Dallas Hinton (collocated QC pair)	Partisol 2025, T640x PM2.5, T640x PM10-2.5, SASS/URG Speciation ⁶ (Partisol 2025 QC)	8.9	19	99	54	4
		Dallas Bexar Street	TEOM ⁷ (planned BAM 1022)	NA	NA	NA	NA	1
		Denton Airport South	BAM 1022	7.7	20	86	57	1
		Fort Worth California Parkway North (collocated QC pair)	BAM 1022 (BAM 1022 QC)	8.7	22	97	63	1
		Fort Worth Northwest	BAM 1022	8.9	22	99	63	1
		Haws Athletic Center	BAM 1022	9.6	25	107	71	1
		Kaufman ⁸	BAM 1022 (NEW in 2022)	8.0	21	89	60	1
Houston-Pasadena-The Woodlands	7,510,253			12.5	25.0	139	71	19
		Baytown	BAM 1022	10.5	22	117	63	1
		Clinton (collocated QC pair)	Partisol 2025, (Partisol 2025 QC), T640X PM2.5, Partisol 2025 Speciation	10.7	24	119	69	3
		Conroe Relocated ⁸	BAM 1022 (NEW in 2021)	10.0	23	111	66	1
		Galveston 99 th Street	BAM 1022	8.3	21	92	60	1

Metropolitan Statistical Area ¹	2023 Population Estimates ²	Site Name	Monitor Type(s)	2021-2023 Annual DV (µg/m³)	2021-2023 24-Ноиг DV (µg/m ³)	Percent of NAAQS (Annual ³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ^s
		Freeport South Avenue I ⁸	Partisol 2025 with speciation (NEW in 2023)	8.3	21	92	60	2
		Houston Aldine (collocated QC pair)	BAM 1022, (Partisol 2025 QC)	10.2	22	113	63	1
		Houston Bayland Park ⁸	BAM 1022 (NEW in 2022)	10.2	25	113	71	1
		Houston Deer Park #2 (speciation collocated QC pair)	Partisol 2025, T640X PM2.5, T640X PM10-2.5, SASS/URG Speciation ⁶ (SASS/URG Speciation QC ⁶)	8.9	23	99	66	4
		Houston East	BAM 1022	10.4	23	116	66	1
		Houston North Loop	BAM 1022	11.7	25	130	71	1
		Houston North Wayside	BAM 1022 (NEW in 2021)	12.5	27	139	77	1
		Houston Westhollow ⁸	BAM 1022 (New in 2021)	8.6	21	96	60	1
		Seabrook Friendship Park ⁸	BAM 1022 (NEW in 2021)	7.9	19	88	54	1
San Antonio-New Braunfels	2,703,999			9.0	25	100	71	6
		Calaveras Lake	BAM 1022	7.1	22	79	63	1
		Old Highway 90 ⁸	BAM 1022 (NEW in 2024)	NA	NA	NA	NA	1
		San Antonio Bulverde Parkway ⁸	T640x (NEW in 2023)	NA	NA	NA	NA	1
		San Antonio Interstate 35	BAM 1022	8.9	22	99	63	1
		San Antonio Northwest (collocated QC pair)	BAM 1022, (Partisol 2025 QC)	8.6	23	96	66	1

Metropolitan Statistical Area ¹	2023 Population Estimates ²	Site Name	Monitor Type(s)	2021-2023 Annual DV (µg/m ³)	2021-2023 24-Ноиг DV (µg/m ³)	Percent of NAAQS (Annual ³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
		Von Ormy Highway 16	BAM 1022	9.0	25	100	71	1
Austin-Round Rock-San Marcos	2,473,275			9.6	23	107	66	3
		Austin North Interstate 35	BAM 1022	9.6	22	107	63	1
		Austin North Hills Drive (previously Austin Northwest)	BAM 1022	8.7	23	97	66	1
		Austin Webberville Road	T640x	9.3	22	103	63	1
McAllen-Edinburg-Mission	898,471			9.6	26	107	74	2
		Edinburg East Freddy Gonzalez Drive	BAM 1022	9.6	26	107	74	1
		Mission ⁸	T640x	9.3	23	103	66	1
El Paso	873,331			9.0	22	100	63	6
		Ascarate Park SE (collocated QC pair)	BAM 1022 (NEW in 2024), (Partisol 2025 QC)	NA	NA	NA	NA	1
		El Paso Chamizal	Partisol 2025, T640x PM2.5, T640x PM10-2.5, URG/SASS Speciation ⁶	9.0	22	100	63	4
		Socorro Hueco (collocated QC pair)	T640x (New in 2024), (T640x QC)	NA	NA	NA	NA	1
Killeen-Temple	501,333			7.3	21	81	60	1
		Temple Georgia	BAM 1022	7.3	21	81	60	1

Metropolitan Statistical Area ¹	2023 Population Estimates ²	Site Name	Monitor Type(s)	2021-2023 Annual DV (µg/m ³)	2021-2023 24-Hour DV (µg/m ³)	Percent of NAAQS (Annual ³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ⁵
Brownsville-Harlingen	426,710			10.9	30	121	86	2
		Brownsville East 6th Street ⁸	BAM 1022	7.2	22	80	63	1
		Isla Blanca State Park Road	BAM 1022	10.9	30	121	86	1
Corpus Christi	448,323			8.4	24	93	69	3
		Corpus Christi Huisache (collocated QC pair)	BAM 1022 (BAM 1022 QC)	8.4	22	93	63	1
		Dona Park	T640x, URG/2025 Speciation	8.4	24	93	69	2
Beaumont-Port Arthur	395,479			8.8	20	98	57	3
		Hamshire	BAM 1022	8.1	19	90	54	1
		Port Arthur Memorial School (collocated QC pair)	BAM 1022, (BAM 1022 QC)	8.8	20	98	57	1
		SETRPC 42 Mauriceville	BAM 1022	8.3	19	92	54	1
Lubbock	360,104			5.7	18	63	51	1
		Lubbock 12 th Street	BAM 1022	5.7	18	63	51	1
Longview ⁸	293,498			9.5	23	106	66	2
		Karnack ⁸	BAM 1022, URG/SASS Speciation ⁶	9.5	23	106	66	2
Waco	304,865			NA	NA	NA	NA	1
		Waco Mazanec	TEOM 1405 ⁷	NA	NA	NA	NA	1

2025 Annual Monitoring Network Plan

Metropolitan Statistical Area ¹	2023 Population Estimates ²	Site Name	Monitor Type(s)	2021-2023 Аппиаl DV (µg/m ³)	2021-2023 24-Ноиг DV (µg/m ³)	Percent of NAAQS (Annual ³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ^s
College Station-Bryan	281,445			7.9	21	88	60	1
		Bryan Finfeather Road	BAM 1022	7.9	21	88	60	1
Amarillo	272,395			6.0	15	67	43	1
		Amarillo 24th Street (relocated from Amarillo A&M in Dec 2024)	BAM 1022	6.0	15	67	43	1
Laredo	269,148			9.7	27	108	77	1
		World Trade Bridge	BAM 1022	9.7	27	108	77	1
Odessa	164,494			7.3	18	81	51	1
		Odessa Gonzales	BAM 1022	7.3	18	81	51	1
Texarkana	145,907			10.3	23	114	66	1
		Texarkana New Boston	BAM 1022	10.3	23	114	66	1
Eagle Pass	57,762			7.9	23	88	66	1
		Eagle Pass	BAM 1022	7.9	23	88	66	1
Corsicana ^{8,9}	55,635			8.7	22	97	63	1
		Corsicana Airport ⁸	BAM 1022	8.7	22	97	63	1
Kingsville ⁹	30,069			9.9	28	110	80	1
		National Seashore	BAM 1022	9.9	28	110	80	1

Metropolitan Statistical Area ¹	2023 Population Estimates ²	Site Name	Monitor Type(s)	2021-2023 Annual DV (μg/m ³)	2021-2023 24-Hour DV (µg/m³)	Percent of NAAQS (Annual ³)	Percent of NAAQS (24-Hour ⁴)	Total Existing Monitors ^s
Big Bend National Park ^{8,10}	NA			6.2	15	69	43	1
		Bravo Big Bend ⁸	BAM 1022	6.2	15	69	43	1
Totals								69
¹ This list does not include metropolitan statistical areas with no requirements and no monitors. ² United States Census Bureau population estimates as of July 1, 2023. ³ 2024 PM _{2.5} Annual NAAQS is 9.0 μg/m ³ .			Metropolitan and Micropolitan Statistical Areas Population Totals (census.gov)					

 $^{4}2024 \text{ PM}_{2.5}$ 24-hour NAAQS is 35 µg/m³.

⁵Collocated guality control monitor types are not included in totals.

⁶Speciation monitor for NCore or Chemical Speciation Network (CSN).

⁷PM_{2.5} TEOM monitors are non-FEM/FRM (non-NAAQS comparable).

⁸Annual values do not meet completeness criteria; monitors deployed in 2021 - 2023. Incomplete design value (gray font) information is not used for regulatory compliance.

⁹Area is classified as a micropolitan statistical area and is not subject to SLAMS requirements.

¹⁰Area not classified as a metropolitan or micropolitan statistical area.

Metropolitan Statistical Areas are delineated by the United States Office of Management and Budget Delineation Files (census.gov)

Monitors marked "NEW!" were recently activated continuous FEM. If the FEM replaced a FRM, then a design value will still be applicable for regulatory compliance.

- number

DV - design value

FEM - federal equivalent method

FRM - federal reference method

NA - not applicable

NAAQS - National Ambient Air Quality Standards

NCore - National Core Multipollutant Monitoring Stations require PM_{2.5} FRM mass, PM_{2.5} FEM continuous mass, PM_{10-2.5} and PM_{2.5} CSN speciation

OFW - Old Fort Worth

PM_{2.5} FRM mass method code 145 by Partisol 2025 or 2025i

 $PM_{2.5}$ FEM mass method code 209 by beta attenuation method (BAM) 1022

PM_{2.5} FEM mass method code 638 by broadband spectroscopy T640x

PM_{2.5} non-regulatory mass method code 702 by tapered element oscillating microbalance (TEOM)

 $\rm PM_{2.5}$ speciation method codes 810, 811, 812, 826, 831, 838, 839, 840, 841, 842, 846, and 849

PM_{10-2.5} method code 640 by broadband spectroscopy T640x

QC - quality control

SASS - second generation speciation sampling system (for Chemical Speciation Network [CSN] only)

SETRPC - Southeast Texas Regional Planning Commission

SE - southeast

SLAMS - State or Local Air Monitoring Stations

URG - University Research Glassware speciation sampler

µg/m³ - micrograms per cubic meter

Appendix L

Volatile Organic Compound and Carbonyl Monitor Requirements and Count Assessment

Appendix L: Volatile Organic Compound and Carbonyl Monitor Requirement and Count Summary

Core Based Statistical Area ¹	Required PAMS VOC AutoGC Monitors	Existing VOC Canister Monitors	Existing VOC AutoGC Monitors	Total Existing VOC Monitors
Dallas-Fort Worth-Arlington	1	3	2	5
Houston-Pasadena-The Woodlands	1	0	3	3
El Paso	0	0	1	1
Beaumont-Port Arthur	0	0	2	2
Laredo	0	1	0	1
Totals	2	4	8	12

Table 1: Volatile Organic Compound Monitor Requirement and Count Assessment

¹This list does not include core based statistical areas with zero requirements and zero monitors.

AutoGC – automated gas chromatograph

PAMS – Photochemical Assessment Monitoring Stations

VOC – volatile organic compound

Table 2: Carbonyl Monitor Requirement and Count Summary

Core Based Statistical Area ¹	Required PAMS Carbonyl Samplers	Total Existing Carbonyl Samplers
Dallas-Fort Worth-Arlington	1	2
Houston-Pasadena-The Woodlands	1	2
Totals	2	4

¹This list does not include core based statistical areas with zero requirements and zero monitors. PAMS – Photochemical Assessment Monitoring Stations