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1. Meteorological Modeling Overview

Texas Commission on Environmental Quality (TCEQ) is developing a new 2022
modeling platform (TCEQ 2022 modeling platform), which will be used in the
photochemical modeling that will support various upcoming state implementation
plan (SIP) revisions. The TCEQ 2022 modeling platform has a modeling episode of
January 1 through December 31, 2022, and TCEQ has developed preliminary
meteorological inputs for the modeling episode using the Weather Research and
Forecasting (WRF) model. WRF is a numerical weather prediction (NWP) and community
supported model that is a free and shared resource with distributed development and
support. Meteorological modeling was conducted for the entire 2022 year using
month-long model runs.! A Lambert Conformal Conic (LCC) map projection with
geographical coordinates defined in Table 1: Lambert Conformal Conic Map Projections
was used for the WRF modeling.

Table 1: Lambert Conformal Conic Map Projections

Projection Parameter Projection Value
First True Latitude (Alpa): 33°N
Second True Latitude (Beta): 45°N
Central Longitude (Gamma): 97'W
Projection Origin: 97°'W, 40°N
Spheroid: Perfect Sphere, Radius = 6370 km

TCEQ’s 2022 WRF modeling is configured with two domains. The first is a 12km grid
resolution domain that covers the continental United States (U.S.) and a large portion
of Canada and Mexico. The second is a 4km fine grid domain covering the eastern half
of Texas where the current nonattainment areas are located. Figure 1: WRF Modeling
Domains depicts the boundaries of the WRF domains. The easting and northing ranges
for each domain are defined in Table 2: WRF Modeling Domain Definitions.

! Each month-long simulation includes 24 hours of spin-up and 48 hours of spin-down. The last
two weeks of December 2021 were simulated to use for photochemical model ramp-up time
and only for the 12km domain.



Figure 1: WRF Modeling Domains. 12 km domain (red) encompassing the continental
United States and 4 km domain (green) over eastern Texas.

Table 2: WRF Modeling Domain Definitions

Domain Easting Range Northing East/West North/South
(km) Range (KM) Grid Points Grid Points
nca_12km (-3492, 3492) (-432, 540) 583 505
txf_4km (-3024, 3024) (-1692, -504) 244 298

The WREF vertical layer structure is intended to provide high resolution in the lowest
part of the atmosphere where pollutant mixing is critical, as shown in Figure 2: WRF
Vertical Layer Structure.
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Figure 2: WRF Vertical Layer Structure. Vertical layer structure for the 4km domain
(left) is similar but not identical to the vertical layer structure for the 12km domain
(right).

The WRF configuration and data used for modeling can be seen in Table 3: TCEQ 2022
WRF Modeling Configuration.



Table 3: TCEQ 2022 WRF Modeling Configuration

Parameter Description Configuration
WRF Version 4.5.2
WPS Version 4.5
Domains nca_12km, txf_4km
Analysis Input Data ERAS
Topographic Inputs GMTED2010
Sea Surface Temperature Input Data ERAS
Land Use/Land Category Input Data MODIS IGBP (21 class)
Nesting None

Surface Analysis nudging

12km and 4km, for Temp, wind, and
humidity

3D Analysis Nudging

12km and 4km, Temp, wind, and
humidity only above PBL

Observational Nudging

None

Land Surface Model

Noah

Surface Layer Physics

Revised MM5 Scheme

Shortwave Radiation

Rapid Radiative Transfer Model (RRTM)

Longwave Radiation

Rapid Radiative Transfer Model (RRTM)

Planetary Boundary Layer Scheme

YSU

Cumulus Parameterization Option

Kain Fritsch Scheme on 12km only

Microphysics

WSM6 on 12km and 4km

Vertical Coordinate System

Hybrid

The WRF Preprocessing System (WPS) version 4.5 was used to prepare the monthly
WRF model runs. WPS consists of three programs that prepare inputs to the model:
geogrid, ungrib, and metgrid. An outline of WPS and how it relates to the WRF
modeling system can be seen in Figure 3: Overview of the WPS and WRF modeling

framework.
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Figure 3: Overview of the WPS and WRF modeling framework. Adapted from the
NCAR January 2021 Tutorial (Wang, 2021).

2. WRF Model Performance Evaluation (MPE)

2.1: Approach

The section describes the performance evaluation of the preliminary WRF
meteorological model runs for the 2022 base year. This evaluation follows U.S.
Environmental Protection Agency’s (EPA) guidelines for the evaluation of base year
meteorological fields, which has the following objectives:

e to “determine if the meteorological model output fields represent a reasonable
approximation of the actual meteorology that occurred during the modeling
period;” and

e to “identify and quantify the existing biases and errors in the meteorological
predictions in order to allow for a downstream assessment of how the air quality
modeling results are affected by issues associated with the meteorological data.”

TCEQ conducted both an operational evaluation (i.e., quantitative, statistical, and
graphical comparison) and a phenomenological assessment (qualitative comparison of
model output to observed meteorological features) to meet these objectives.

The quantitative MPE of the 2022 WRF runs was conducted using surface observations
from Continuous Air Monitoring Station (CAMS) sites across the 4km domain and
includes statistical performance metrics compared with respective performance
benchmarks. CAMS monitoring site locations used for MPE can be seen in Figure 4:
CAMS monitoring sites within the txf_4km modeling domain.
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Figure 4: CAMS monitoring sites (red dots) within the txf_4km modeling domain
(green boundary).

Table 4: NWP Performance Benchmarks lists the meteorological model performance
benchmarks for simple (Emery et al., 2001) and complex (Kemball-Cook et al., 2005)
situations. The simple benchmarks were created by studying well-performing
meteorological model evaluation results for mostly flat terrain and simple
meteorological conditions (e.g., stationary high pressure) and for modeling that was
mostly conducted to support air quality modeling (e.g., ozone SIP modeling). The
complex benchmarks were developed during the Western Regional Air Partnership
(WRAP) regional haze modeling and are performance benchmarks for more complex
conditions, such as the complex terrain of the Rocky Mountains and Alaska (Kemball-
Cook et al., 2005). McNally (2009) analyzed multiple annual runs that included
complex terrain conditions and suggested an alternative set of complex conditions
benchmarks for temperature. These benchmarks are not to provide a pass/fail grade
for the WRF model runs, but to contextualize its results within the historical literature
of past NWP performance (Emery, 2001).



Table 4: NWP Performance Benchmarks

Conditions Simple Complex
Temperature Bias <+0.5’K <+2.0°K
Temperature Gross Error <+2.0K <#3.5K
Wind Speed Bias <+0.5 m/s <+1.5m/s
Wind Speed RMSE <2m/s <2.5m/s
Wind Direction Bias <+10 <+10°
Wind Direction Gross Error < 30° <55°
Mixing Ratio Bias <+0.8 g/kg <+1.0 g/kg
Mixing Ratio Error < 2.0 g/kg <2.0 g/kg

2.2: Preliminary 4km Domain-Wide MPE

TCEQ’s WRF model configuration performs well when compared to quality assured
observed data from various monitoring sites within the 4km domain. The four
standard meteorological parameters (wind speed, wind direction, temperature, and
humidity) consistently perform within or just outside of the simple conditions
benchmarks when analyzing the quarterly domain averages.

Figure 5: Quarterly average soccer plot panel with wind speed, wind direction,
temperature, and humidity performance, Figure 6: Quarterly average soccer plot panel
with wind speed, wind direction, temperature, and humidity performance for daytime
hours only, and Figure 7: Quarterly average soccer plot panel with wind speed, wind
direction, temperature, and humidity performance for nighttime hours only show
quarterly soccer plot panels of model performance in complex and simple conditions
for all hours, daytime hours, and nighttime hours, respectively. Analyzing the
difference between daytime and nighttime performance can help determine if better
performance is needed during times of the day when formation and/or transport of
certain pollutants is important. Performance across all hours falls within the simple
conditions benchmarks, except for Q2 (April, May, and June) wind speed, which has a
bias slightly greater than the +0.5 m/s simple conditions benchmark. Model
performance for the four meteorological parameters averaged across all months but
only for daytime hours (Figure 5) and nighttime hours (Figure 6) also shows reasonable
performance. For daytime hours, Q2 wind speed and temperature fall outside of the
simple conditions benchmarks, with a bias of approximately 1 m/s and 0.6 degrees
Kelvin, respectively. Nighttime hours show better performance for wind speed and
temperature than daytime hours, with wind direction performance showing greater
bias and error for some quarters. The model also estimates wind direction well during
the day when patterns within the planetary boundary layer (PBL) are more consistent,
but it slightly degrades in performance during nighttime hours when the PBL breaks
down and general flow is more scattered and random.
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Figure 5: Quarterly average soccer plot panel with wind speed, wind direction,
temperature, and humidity performance. Observed data is from quality assured
CAMS data monitors within the 4km domain. Q1 consists of the months January,
February, and March. Q2 consists of the months April, May, and June. Q3 consists
of the months July, August, and September. Q4 consists of the months October,

November, and December.
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Figure 6: Quarterly average soccer plot panel with wind speed, wind direction,
temperature, and humidity performance for daytime hours only. Observed data is
from quality assured CAMS data monitors within the 4km domain. Q1 consists of
the months January, February, and March. Q2 consists of the months April, May,
and June. Q3 consists of the months July, August, and September. Q4 consists of
the months October, November, and December.
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Figure 7: Quarterly average soccer plot panel with wind speed, wind direction,
temperature, and humidity performance for nighttime hours only. Observed data is
from quality assured CAMS data monitors within the 4km domain. Q1 consists of
the months January, February, and March. Q2 consists of the months April, May,
and June. Q3 consists of the months July, August, and September. Q4 consists of
the months October, November, and December.

Though the 4km domain covers many different areas of Texas with varying
atmospheric characteristics, generally, the model estimates temperature and wind
speed well during nighttime hours when temperatures are cooler and wind speeds are
slower, but it tends to overestimate these parameters during the day. This is supported
by Figure 8: July hourly temperature for the 4km domain, where the time series of
temperature for July shows WRF estimating nighttime lows well but overpredicting the
daytime highs during the hot summer month. Figure 9: January hourly temperature for
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the 4km domain shows a temperature timeseries for a winter month. While the
statistical measures in the soccer plot panels show performance for temperature is
generally worse for Q1 (January, February, and March) compared to other quarters, the
timeseries does show how well the model is able to replicate complicated winter
diurnal temperature patterns. Despite slightly missing the timing of the highest
temperature on some days or underestimating the lowest temperatures on other days,

this shows the capability of the current model configuration to capture varying
temperatures well.

Temperature at 2m
WRF Run: 202207.wrf452.noah_ysu_nca (txf_4km)

Modeled
Average values over all sites in txf_4km area —— Observed

25 ~ L\ \ ‘ | |\ | I i I AR I ' A

Temperature (°C)
———
- —
=

25

i 1 1 I i 1 1 1 i I
) ] 02 a2 04 05 06 o7 o2 o8 10 11 12 13 14 15 16 17 18 1% 20 21 22 22 24 25 26 27 28 29 30 3
00:00 00:00 00:00 00:00 00:00 00:00 C0:00¢ 00:00 0C:0C 00:00 00:00 00:00 00:00 00:00 00:0C 00:00 00:00 00:00 0C:00 0C:0C 00:00 0C:00 00:00 00:00 00:00 00:00 00:C0 0C:00 00:00 00:00 00:00

(Vo Va Ve WaVaVaVa VaVa VAVAVAVAV Vo Wa VaVAVAVAV. VoV Ve VaVaVaVaVWa WaWa |

2022-07 Date and Time

Figure 8: July hourly temperature for the 4km domain. Mean observed
temperatures (red) are compared to mean modeled temperatures (blue).
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Figure 9: January hourly temperature for the 4km domain. Mean observed
temperatures (red) are compared to mean modeled temperatures (blue).

Figure 10: 2022 monthly total precipitation averaged over the 4km domain shows
precipitation totals at CAMS monitoring sites compared to WRF precipitation totals at
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those same locations and averaged across the 4km modeling domain. The month of
May has the worst model performance and underrepresented the average precipitation
total at these locations by more than 2 inches. Other months also underestimated
precipitation totals at the various sites across the 4km domain. These errors are likely
from WRF misrepresenting the quantity of precipitation for a given feature and
possibly missing entire rain events.
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Figure 10: 2022 monthly total precipitation averaged over the 4km domain.

Overall, the preliminary WRF simulations for 2022 performed reasonably well when
analyzing domain-wide statistics and looking at the standard meteorological
parameters. TCEQ will continue evaluating model performance, focusing on individual
nonattainment areas and additional meteorological parameters.
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