

Marine Emissions Inventory Development for Modeling

Peter Hoholick

Presented at the HGB Air Quality Technical Information Meeting on July 28, 2022

Marine Emissions: Purpose

Texas and Gulf Coast are home to busy shipping lanes and nation's busiest ports.

The Houston-Galveston-Brazoria (HGB) ozone nonattainment area has significant shipping activity.

Commercial Marine Vehicle (CMV) emissions essential to quantify, understand, and project in future years.

Leading ports in the United States in 2019, by tonnage

(in million tons)

Marine Emissions: CMVs

Ocean-Going Vessels (OGVs)

- Container Ships, Cruise Ships, etc.
- Bigger C3 engines
- Move into and out of port

Harbor Craft

- Tugboats, Barges, Dredges, etc.
- Smaller engines (C1/C2)
- Remain in port
- Much more activity
- Less available ship data

Marine Emissions: Activity Types

- Transit/Underway: Vessels moving outside of restricted speed zone, electricity drawn from propulsion engine
- Maneuvering: Getting into and out of docked position, going slower, often with tugs, more auxiliary use
- Hotelling: Vessels docked or waiting to dock, propulsion engine is off, all needs met by auxiliary

Engine Function

- Propulsion engines (main engines) supply power to move the vessel
- Auxiliary engines supply power for non-propulsion (e.g., electrical) loads
- Boilers provide heat and steam on vessels for a variety of purposes

Marine Emissions: In the dark ages...

- Inventories required dedicated marine emissions studies, done periodically for different areas.
- Different areas had studies for different years.
- Most recent had to be projected to base year, patched together, then projected to future years.
- Until along came...

Automatic Identification System (AIS)

- Real-time tracking system used for navigation
- Required on CMVs (C1, C2, C3) starting 2016
- Fine-scale location and speed data on all commercial vehicles every few minutes
- Used in US and international waters

Image Courtesy of Ramboll

Air Quality Division • MARINER • PH • 7/28/2022

MARINER (Post-2020)

- FY2018 Ramboll (nee Environ) generate marine EI for TCEQ using AIS data
- FY2020 Ramboll contracted again to create a tool to automatically generate marine EIs from AIS data
 - Project manager: Chris Kite
 - Marine Emissions Resolver (MARINER) python tool created
 - Design follows the 2020 EPA draft guidance (EPA, 2020) on estimating port and marine emissions
- FY2022 New project with Ramboll expands capabilities of MARINER and provides important updates
 - Project manager: Beata Czader

ENVIRONMENTAL QUALITY

IHS Database

- World's largest maritime ships database
- Over 200,000 vessels characterized
- Vessel size, age, type of cargo, and total capacity
- Fuel and exhaust scrubber types
- Main engine, auxiliary engine, and boiler specifications

Calculating Emissions

$E = P \times A \times EF \times LLAF$

- Where E = per vessel emissions (g)
 - P = engine operating power (kW)
 - A = engine operating activity (h)
 - EF = emission factor (g/kWh)
 - LLAF = low load adjustment factor, a unitless factor that reflects increasing propulsion emissions during low load operations (always 1 for auxiliary engines and boilers)

2017 Harbor Craft Transit (tons) 0-3 4 - 14 15 - 40 41 - 88 89 - 195

Gridded output ready for PRESHP/EPS3

4-km Gridded Harbor Craft NOx Transit Emissions

MARINER outputs

- Capable of every ship, every hour, every day activity reports of actual emissions (below)
- For now, EPS3 modeling needs only aggregated gridded emissions (left) as a preshp file.

	A	В	С	D	E	F	G	
1	VesselType	EPAShipType	VesselClass	SpeedBin	FIPS	Hour	NauticalM	lile
2	79	Container Ship	C3	3	85000	3.777222	54.36132	
З	71	Container Ship	C3	1	48201	7.639444	0.450231	
4	71	Container Ship	C3	2	48201	0.191667	0.451571	
5	71	Container Ship	C3	3	48071	0.633611	7.7737	
6	71	Container Ship	C3	3	48167	1.904444	27.83773	
7	71	Container Ship	C3	3	48201	1.730556	14.18205	
8	71	Container Ship	C3	3	85000	7.415556	151.8126	
9	81	Chemical Tanker	C3	1	85000	23.89972	2.170933	
10	52	Tug Boat	C1C2	1	22000	48.40778	1.842608	
11	52	Tug Boat	C1C2	1	48007	4.665556	0.087026	
12	52	Tug Boat	C1C2	1	48167	19.7575	0.929964	
13	52	Tug Boat	C1C2	1	48201	35.91222	2.599125	
14	52	Tug Boat	C1C2	1	48245	0.233056	0.056523	
15	52	Tug Boat	C1C2	1	48355	47.94417	3.655926	
16	52	Tug Boat	C1C2	1	48361	24.29333	1.714928	
17	52	Tug Boat	C1C2	2	22000	1.374444	2.234892	

Daily Activity Report summarized by FIP (county) and Ship Type

Air Quality Division • MARINER • PH • 7/28/2022

Air Quality Division • MARINER • PH • 7/28/2022

Simulating future years

Year	All C2 Vessels	Container	Solid Bulk	Cruise	All Others
2019	1.000000	1.000000	1.000000	1.000000	1.000000
2023	0.939208	1.097158	1.181150	1.089570	1.060376
2026	0.947661	1.209225	1.301796	1.200862	1.168686

• EPS3 cntlem module

Activity Projections Relative to 2019

- Base year (2019) is multiplied by 'adjustment factors' based on expected changes over time.
- Adjustment factors estimate changes in activity and lower emission rates from newer ships.
- Can also be altered based on specific planned events...

Year	NOx	SO2	PM - Main	PM - Auxiliary
2019	100.00%	100.00%	100.00%	100.00%
2023	80.80%	100.00%	100.00%	100.00%
2026	66.70%	100.00%	100.00%	100.00%

C3 Emissions Factors relative to 2019

Future Year Simulations: Houston Ship Channel Sensitivity

- Port of Houston's 'Projected Emissions Reductions for Houston Ship Channel Expansion Channel Improvement Project' (2019)
- Anticipated emissions reductions due to fewer larger ships, reduced hoteling
- Changes applied to:
 - 2026 future year
 - Harris, Chambers, Galveston Counties;
 - 9 C3 ship types;
 - Only Hotelling and Transit.

Image Courtesy of www.expandthehoustonshipchannel.com

Period	NO _x	VOC
Annual Reductions (tpy)	147.20	3.35
Daily Reductions (tpd)	0.40	0.01
Daily Unadjusted Emissions (tpd)	16.71	2.18
Daily Adjusted Emissions (tpd)	16.31	2.17
Daily Adjustment Factor	0.9759	0.9958

North American Category 3 Commercial Marine Vessel Emissions: NO_x 2019 Average Summer Day Interpolated from EPA 2016v1 Modeling Platform (12.00x12.00km cells)

Geographic Scope

- AIS data used all over US and internationally
- However, computing demands limit MARINERs range
 - Currently using EPA data for larger modeling domains

What's Up Next for MARINER?

- FY2022 contract with Ramboll (Proj. Manager: Beata Czader)
 - Faster processing time
 - 2019 processing slow, exclusive usage of Linux server
 - Faster MARINER can be used in more areas
 - Gap-fill missing data with Texas-specific averages
 - Update IHS data and new variables
 - New outputs (temporal profiles, activity reports)
 - Future updates?
 - Run independent of IHS database
 - Expand further to Atlantic and Pacific modeling domains

Questions?

Marine Emissions Team:

- Beata Czader <u>beata.czader@tceq.texas.gov</u>
- Peter Hoholick <u>peter.hoholick@tceq.texas.gov</u>

