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Executive Summary 

Detecting the transport of smoke plumes from the initial fire location to populated 
areas usually requires a human analyst to track the extent and transport of the smoke. 
However, recent advances in artificial intelligence and computer vision would allow this 
analysis to be performed automatically. In ML techniques, DNNs use multiple hidden 
layers and hyperparameters to classify complex data. DNNs consist of input datasets 
(“truth”/ “label” and “predictor”/ “feature”), output dataset (predicted quantity), and a 
suite of hyperparameters that tune the model including modulating behavior at each 
hidden layer. DNN parameters and hyperparameters can be readily tuned to optimize the 
predictive model (i.e, optimize the agreement of DNN features with the DNN labels).  

In this study, AER expanded the GOES radiance-based CNN approach developed in 
previous work (Phase I) to incorporate data from TROPOMI and the upcoming TEMPO 
mission in the neural network training.  We analyzed the changes our new data and 
approach made to the smoke plume predictions from Phase I. We compared the DNN-
based smoke plume predictions with the NOAA HMS truth data over a subset of key dates 
that included heavy smoke events studied during the TRACER-AQ campaign. Finally, we 
evaluated the improved smoke plume tracking models with the  results  of  the surface 
BC2 campaign. 

Our Phase II work incorporated several key differences from Phase I methods with 
the goal to greatly improve performance, speed and, ultimately, the utility and real-world 
applicability of smoke plume tracking ML techniques. Our streamlined Phase II 
processing has enabled more sophisticated model evaluation through (i) elimination of 
the manual spatial domain selection window; (ii) its ability to efficiently ingest GOES data 
so multiple dates can be readily evaluated; and (iii) its option to include multiple feature 
dimensions (temporal slices and/or multiple variables including radiance bands from 
GOES, UVAI from TROPOMI, and trace gases from TEMPO). We successfully 
demonstrated full DNN output for each of TEMPO+GOES (proof-of-concept only), 
TROPOMI+GOES and GOES_Only (for science and societal application). 

Our Phase II work resulted in the following broad conclusions: 

• NOAA HMS data is a valid choice for truth data based on comparison with 
smoke-relevant ground-based BC2 observations 

• A DNN using TROPOMI and/or GOES data produces results consistent with 
NOAA HMS when evaluated against BC2 observations 

• A PCA analysis on UVAI 340-380nm and GOES bands 1-8 and 15 indicates that 
PC1 through PC3  explain ~86% of the data variance. Optimal GOES bands used 
for smoke prediction are 1,2,3, and 15 and feature as important in the first two 
of ten PCs. TROPOMI UVAI is features as  important in PC3 and, to a lesser 
extent, PC2. 

• Importance of using optimal GOES bands in a DNN >> importance of including 
adjacent GOES timestamps in that DNN. 

• DNN performance >> naïve Bayes performance from Phase I 

• Many outstanding issues/questions from Phase I resolved 
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1. Introduction  

1.1 Project Objectives 

The purpose of this project was to extend the work accomplished by AER in Phase I 
Work Order Number 582-21-22400-007 (Phase I). In Phase I, AER used a naïve Bayes 
model along with the NOAA HMS analyst-derived smoke mask and radiance observations 
from GOES to identify smoke plumes. In this subsequent project (Phase II), AER 
developed an improved machine learning smoke mask algorithm that optimized the use 
of GOES data while also including the capability to use data from The TROPOspheric 
Monitoring Instrument (TROPOMI) and Tropospheric Emissions: Monitoring of 
Pollution (TEMPO) satellite instruments in the neural network training. In addition, 
Phase II included a smoke plume tracking model evaluation component using surface 
observations from the BC2 surface data. In summary, AER’s Phase II objectives were to 
deliver (i) an improved smoke plume detection algorithm relative to Phase I, (ii) the code 
and data used to develop the Phase II model, and (iii) a final report and user’s guide 
summarizing its use in tracking the transport of biomass burning smoke plumes. 

Task 3 of the Work Order – “Using Computer Vision Techniques to Identify and 
Track Smoke Plumes – was concerned with all the Phase II technical development and 
results. In this task, we streamlined all Phase I Jupyter Notebook python-based code into 
standard python-based code. We also developed Phase II base python code where NOAA 
HMS truth data was incorporated into a DNN framework along with GOES radiance data, 
TROPOMI UVAI data, and TEMPO NO2 and HCHO EASD. All the base python code from 
Phase I and Phase II were then ingested into end-user Jupyter Notebook interfaces where 
an end-user can run Phase I and Phase II versions of smoke plume tracking using GOES-
TEMPO, GOES-TROPOMI, and GOES-only data inputs. Further objectives of Task 3 were 
to (i) optimize the training datasets provided to the DNN to and (ii) evaluate the Phase II 
model against BC2 observational surface data of smoke-relevant species from the HGB 
region.  

The schedule of deliverables for this project is given in Error! Reference source 
not found.. 

 

Table 1. Projected Schedule for TCEQ Work Order No. 582-22-31966-013 

Milestones Planned Date 

Task 1 – Work Plan  

1.1: TCEQ-approved Work Plan February 3, 2022 

1.2: TCEQ-approved QAPP February 3, 2022 

Task 2 – Monthly Progress Reports 

Task 3 – Using Computer Vision Techniques to Identify and Track Smoke Plumes 

3.1: Documentation, Scripts, Data Files  May 31, 2022 

Task 4 – Draft and Final Reports 

4.1: Draft Report June 15, 2022 

4.2: Final Report June 30, 2022 
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1.2 Background 

Various satellite observations provide valuable information on the locations of fires 
and transport of smoke. However, there are multiple products that use different 
techniques to identify smoke plumes which can result in disagreement on the extent of 
the area covered by biomass burning smoke. In many cases, detecting the transport of 
smoke plumes from the initial fire location to populated areas usually requires a human 
analyst to track the extent and transport of the smoke. Fortunately, recent advances in 
artificial intelligence and computer vision would allow this analysis to be performed 
automatically. For example, Ba et al. (2019) used satellite observations from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) to train a convolutional neural network 
(CNN) model called SmokeNet to classify scenes as smoke, dust, etc. Similarly, Larsen et 
al. (2020) used a deep fully convolutional neural network to predict fire smoke in satellite 
imagery of Australia in near-real time. The algorithm had a high classification accuracy 
and precision and could be applied to any geographic region.  
 One difficulty is in establishing a reference, or “truth”, dataset as smoke detection 
and tracking smoke plume transport is not directly measurable. The NOAA HMS smoke 
plume data set, used as the ML “truth” dataset in this study, is a powerful operational 
product that is used by many air quality and health agencies to understand and quantify 
the potential impact of biomass burning smoke plumes on communities within the U.S. 
In order to produce the HMS dataset, human analysts examine a series of CONUS images 
and products, including GOES imagery (typically in visible wavelengths) for a given day 
and individually outline regions over which they perceive smoke plumes. This approach 
is powerful, as there are substantial variations in the size, shape, color, and evolution of 
smoke plumes, and human perception is capable of incorporating large amounts of data 
and quickly processing them in order to classify smoke plumes from, for example, clouds. 
However, there is ultimately individual subjectivity within this process, and it is extremely 
difficult to hard-code and develop machine tools to readily duplicate the series of 
subjective choices than an individual analyst might make (Brown-Steiner et al., 2021). 
 There are multiple smoke-relevant data sets available for training a smoke plume 
DNN. In this study, we primarily used raw GOES radiance data across all bands (as 
opposed to the imagery itself that is used in the HMS smoke plume estimation). When 
available, we also incorporated TROPOMI UVAI data into our ML framework in addition 
to the GOES data. We also demonstrated how TEMPO NO2 and HCHO data can be 
incorporated into a TEMPO-GOES ML model version; TEMPO is scheduled for launch in 
2023 but there are currently EASD available for a small number of dates for planning 
purposes. 
1.3 Report Outline 

This Final Report highlights major activities and key findings, provides pertinent 
analysis, describes encountered problems and associated corrective actions, and details 
relevant statistics including data, parameter, or model completeness, accuracy and 
precision. It satisfies Deliverables 4.2 of the Work Plan for Work Order No. 582-22-
31966-013: 

Deliverable 4.2:    Final Report 
Deliverable 4.2 Due Date:  June 30, 2022 
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The major results of Task 3 are summarized in Section 2. Section 3 discusses the 
quality assurance findings for this project following the procedures from the project 
Quality Assurance Project Plan (QAPP). Section 4 summarizes our conclusions and 
Section 5 makes recommendations for future work based on the results of this project.  

 
2 Using Computer Vision Techniques to Identify and Track Smoke Plumes 

2.1 Introduction 

In Machine Learning (ML), Deep Neural Networks (DNN) use multiple hidden 
layers and hyperparameters to classify complex data. DNNs consist of input datasets 
(“truth”/“label” and “predictor”/“feature”), output dataset (predicted quantity), and a 
suite of hyperparameters that tune the model including modulating behavior at each 
hidden layer. DNN parameters and hyperparameters can be readily tuned to optimize the 
predictive model (i.e, optimize the agreement of DNN features with the DNN labels).  

In this study, AER expanded the GOES radiance-based CNN approach developed in 
previous work to incorporate data from TROPOMI and the upcoming TEMPO mission in 
the  neural  network  training.  We analyzed the changes our new data and approach made 
to the smoke plume predictions from Phase I. We compared the DNN-based smoke plume 
predictions with the NOAA HMS truth data over a subset of key dates  that included heavy 
smoke events studied during the TRACER-AQ campaign. Finally, we evaluated the 
improved smoke plume  tracking  models  with  the  results  of  the surface BC2 campaign. 

Our Phase II work incorporated several key differences from Phase I methods with 
the goal to greatly improve performance, speed and, ultimately, the utility and real-world 
applicability of smoke plume tracking ML techniques. To this end, in Phase II we 
eliminated significant sources of computing time overhead by leveraging our Amazon 
Web Services (AWS) resources to access more efficiently the large and numerous GOES 
data files. We also eliminated the Phase I manual training/testing region selection and 
replaced it with an automated random training/testing splitting of data across the study 
domain. In addition, Phase II demonstrated the ability to incorporate additional smoke-
relevant data in addition to GOES radiances (i.e., TROPOMI UVAI, TEMPO NO2, 
TEMPO HCHO). Finally, the Phase II enhancements have enabled direct use of 
observational surface data to evaluate quality of both the truth dataset and the DNN 
model smoke predictions. This section demonstrates how the enhanced computing 
efficiency, model automation, and expansion enables the Phase II model to readily be 
deployed for important science and societal biomass burning applications.  

2.2 Data Description 

We briefly describe the datasets below. For more detail, please refer to Brown-
Steiner et al. (2021). For detailed instructions on data access and download, please refer 
to the User Guide accompanying this Work Order (Deliverable 3.1). 

2.2.1 NOAA HMS 

To make the HMS Fire and Smoke product, National Environmental Satellite, 
Data, and Information Service (NESDIS) satellite analysts manually generate a daily 
operational list of fire locations and outline areas of smoke. After identifying fire 
locations, HMS analysts use imagery from multiple NOAA and NASA satellites to 
identify the geographic extent of smoke plumes. Smoke detection is done primarily 
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with visible-band geostationary GOES imagery, which has high temporal coverage 
(typically every 10 min), occasionally assisted by GOES infrared imagery and polar 
orbiting satellite imagery (Brown-Steiner et al., 2021).  

2.2.2 GOES ABI L1bRadC Bands 1-16.  

The GOES L1b RadC (CONUS) radiances product provides top-of-atmosphere 
(TOA) outgoing radiances for 16 wavelength bands. The table below details the main 
features of the L1b product associated with each band and, based on our Phase II 
work, whether the band is optimal for smoke detection. Given the limited time span 
and geographic extent of our project, we designate bands as either “optimal”, “likely 
useful” or “uncertain”. 

2.2.3 TROPOMI UVAI 

TROPOMI Ultraviolet Aerosol Index (UVAI) is measured at two wavelength 
windows: 354-388nm (OMI Heritage) and 340-380nm (TOMS Heritage). Positive 
UVAI values indicate absorbing aerosols like smoke and dust; negative values 
indicate non-absorbing aerosols. Details on data access and processing for this study 
are provided in the accompanying User Guide. 

2.2.4 TEMPO EASD 

In preparation for the launch of the Tropospheric Emissions: Monitoring of 
Pollution (TEMPO) instrument scheduled for launch in January 2023, TEMPO 
synthetic data is available in NetCDF file format from NASA’s Short-term Prediction 
Research and Transition Center (SPoRT). In this study, inclusion of TEMPO EASD 
served as a placeholder for future analysis when real TEMPO data become available. 
6-minute temporal resolution synthetic data are available for nitrogen dioxide (NO2), 
formaldehyde (HCHO) and aerosols for three dates: 2020-07-16 and 2020-07-17 for 
NO2 and HCHO; 2020-08-26 for aerosols. In this project, we focused on NO2 and 
HCHO using synthetic data from 2020-07-16. There was no smoke detected by HMS 
for the time window of the aerosol coverage, so we did not include aerosol EASD in 
this study. 

2.2.5 BC2 Surface Measurements 

BC2 surface measurements of smoke-relevant species were used in HMS 
“truth” dataset and DNN model evaluation. BC2 measurement locations are shown 
in Figure 1. Further details including data access are provided in the accompanying 
User Guide. 

2.2.6 TRACER-AQ Measurements 

The TRACER-AQ campaign did not have sufficient smoke-relevant data 
available to use in our observational data-based model evaluation. We therefore 
relied only on BC2 data for model evaluation. However, the TRACER-AQ data 
influenced selection of our study dates – the TRACER-AQ Gulfstream V aircraft 
platform was deployed on several dates with heavy regional smoke, and we 
incorporated a subset of these dates in our study temporal domain. See Table  3. 
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Table 2. GOES L1b Radiance Bands evaluated in this study. 

Band ID Optimal for Smoke? Wavelength (mm) Resolution (km) Grid Spacing 

1 Yes 0.47/Vis Blue 1 3000x5000 

2 Yes 0.64/Vis Red 0.5 6000x10000 

3 Yes 0.86/NearIR Veg 1 3000x5000 

4 Likely 1.37/NearIR Cirrus 2 1500x2500 

5 Likely 1.6/NearIR Snow, Ice 1 3000x5000 

6 Likely 2.2/NearIR Cloud Ice 2 1500x2500 

7 Likely 3.9/IR Shortwave 2 1500x2500 

8 Likely 6.2/IR Upper Level Water Vapor 2 1500x2500 

9 Uncertain 6.9/IR Mid Level Water Vapor 2 1500x2500 

10 Uncertain 7.3/IR Lower Level Water Vapor 2 1500x2500 

11 Uncertain 8.4/Cloud Top Phase 2 1500x2500 

12 Uncertain 9.6/IR-Ozone 2 1500x2500 

13 Uncertain 10.3/IR-Clean 2 1500x2500 

14 Uncertain 11.2/IR-Standard 2 1500x2500 

15 Yes 12.3/IR-Dirty 2 1500x2500 

16 Uncertain 13.3/IR-CO2 2 1500x2500 

 

M 

Figure 1. Map of BC2 surface sites (Houston Area). Highlighted sites (red circles) are those 
that had with available measurements for our selected study dates. 
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2.3 Methods 

2.3.1 Code, Model, and Computing Structures 

All data was analyzed and processed using a combination of Python and R. A 
schematic of the data sets and scripts used, along with their location in the flow of the 
ML framework, is shown in the figure below. Drawing upon code developed in Phase 
I, there are also three separate DNN models: versions for TEMPO+GOES data, 

TROPOMI+GOES data, and GOES-only data. The latter is for instances where 
neither TROPOMI nor TEMPO data was available. See Table 3.  

Similar to Phase I, NOAA HMS “truth” polygons are converted to GOES-grid-
based point data and are assigned a binary smoke label (0=no smoke detected by 
HMS, 1 = smoke detected). The NOAA HMS qualitative smoke density estimates are 
ignored for our purposes. 

The Phase II GOES+TEMPO and GOES+TROPOMI extension processes 
included data trimming, data quality filtering and the splitting of synthetic TEMPO 
data into training and testing components. In addition, the GOES AWS OpenData 
bucket was directly mounted which significantly increased the efficiency of our ML 
process by eliminating the need to copy and store the numerous large radiance files. 

We incorporate pre-processed TROPOMI UVAI data as csv files for each date 
with all data quality filtered including removal of missing values. See accompanying 
User Guide for details on TROPOMI UVAI data downloading and processing. 

We have further implemented an option to incorporate multiple time slices as 
well as multiple predictor variables: e.g., multiple radiance bands + TEMPO nitrogen 
dioxide + TEMPO formaldehyde (+ a placeholder for the TEMPO aerosol product, 
when that becomes available). In the Results section, we evaluate the relative 
importance of adjacent time slices over optimal predictor variables. 

Finally, the Phase II DNN was designed such that most of the code complexity 
(including most functions) is handled by the base python code. The user interface 

Figure 2. Summary of ML framework components. BC2 (direct) and TRACER-AQ 
(indirect, via study date selection) data are final steps in the process where the ML 
smoke prediction in the Houston area is compared to smoke-relevant measurements. 
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consists of three Jupyter Notebooks (the TEMPO+GOES placeholder for upcoming 
TEMPO mission data, TROPOMI+GOES, and GOES-only). All post-processing of 
DNN output is done in R. See User Guide for more details. 

 

2.3.2 Study Spatial and Temporal Domain Selection 

We subset the spatial domain to a broadly TCEQ-relevant region (approx. 
bounds: 15N, 38N, -110W, -82W). Our spatial domain is shown in Figure 3 along with 
NOAA HMS daily smoke plumes and TROPOMI UVAI data for an example date 
2020-10-01. Smoke presence was evaluated for 21 dates (Table 3). 

 

2.3.3 Model Optimization: Hyperparameter Tuning and PCA 

We use the Sequential model from the keras python library. The Sequential model 
is used when creating a linear stack of layers with their corresponding weights. Our 
dataset comprising of images in their vectorized formats best works with the 
Sequential model where each layer has exactly one input tensor and one output tensor 
(Brown-Steiner et al., 2021). We follow common machine learning practice by setting 
our training, testing, and validation data fractions to 70%, 20%, and 10%, 
respectively, of the total data set. Our hyperparameter space consists of 11 settings 
that are described in Table 4 and described in more detail in Brown-Steiner et al. 
(2021).  

Figure 3. Study spatial domain overlaid with (left) HMS smoke plume polygons and 
(right) processed TROPOMI UVAI data. Date shown: 2020-10-01.  
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As discussed later in the Results section, we also implemented a basic Principal 
Component Analysis to eliminate redundancy (and therefore improve computing 
efficiency/reduce overfitting) in GOES radiance predictor variables. 

 

Table 3. List of dates for smoke plume ML model. TEMPO data is EASD. 
Date  Explanation   HMS “Truth” 

shows smoke 
in HGB?  

Available Data Sets 

20200425 Continuity with Phase I No TROPOMI, GOES, HMS, BC2 

20200716   TEMPO data (HCHO, 
NO2) No 

TROPOMI, TEMPO, GOES, 

HMS, BC2 
20200717   TEMPO data (HCHO, 

NO2) No 
TROPOMI, TEMPO, GOES, 

HMS, BC2 
20200826 TEMPO data (Aerosols) 

No 
TROPOMI, TEMPO, GOES, 

HMS, BC2 
20200928  BC2 + HMS Smoke Events 

in Houston 
No  TROPOMI, GOES, HMS, BC2 

20200929  BC2 + HMS Smoke Events 
in Houston 

Yes (Smith 
Point Only) 

 TROPOMI, GOES, HMS, BC2 

20201001  BC2 + HMS Smoke Events 
in Houston 

Yes  TROPOMI, GOES, HMS, BC2 

20201002  BC2 + HMS Smoke Events 
in Houston 

Yes  TROPOMI, GOES, HMS, BC2 

20201003  BC2 + HMS Smoke Events 
in Houston 

Yes TROPOMI, GOES, HMS, BC2 

20201004  BC2 + HMS Smoke Events 
in Houston 

Yes TROPOMI, GOES, HMS, BC2 

20201005  BC2 + HMS Smoke Events 
in Houston 

Yes TROPOMI, GOES, HMS, BC2 

20201006  BC2 + HMS Smoke Events 
in Houston 

Yes TROPOMI, GOES, HMS, BC2 

20201007  BC2 + HMS Smoke Events 
in Houston 

Yes TROPOMI, GOES, HMS, BC2 

20201008  BC2 + HMS Smoke Events 
in Houston 

No TROPOMI, GOES, HMS, BC2 

20201009  BC2 + HMS Smoke Events 
in Houston 

No TROPOMI, GOES, HMS, BC2 

20210901 TRACER-AQ GV Flt 1 Yes GOES, HMS, BC2 

20210903 TRACER-AQ GV Flt 2 Yes  GOES, HMS, BC2 

20210908 TRACER-AQ GV Flt 3 Yes GOES, HMS, BC2 

20210909 TRACER-AQ GV Flt 4 Yes GOES, HMS, BC2 

20210910 TRACER-AQ GV Flt 5 Yes  GOES, HMS, BC2 

20210911 TRACER-AQ GV Flt 6 Yes  GOES, HMS, BC2 
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Table 4. List of key hyperparameters in the DNN Phase II model. Where more than one   
element in a hyperparameter’s setting exists, the number of elements reflects the number 
of hidden layers in the DNN. 

Hyperparameter Description Value 

nNodesH Number of nodes per hidden layer. [16, 16] 

lossRateH Penalty for a bad prediction. [3e-3, 3e-3] 

drop Dropout fraction randomly zeroes 
nodes to simulate a larger network. 

[0, 0] 

activateH Activation function used for hidden 
layers. Rectified Linear Unit (ReLu) 
is the most widely used activation 
function in almost all convolutional 
neural networks and deep learning. 

['relu', 'relu'] 

nNodesFC Number of fully connected nodes. 1 

activateFC Activation function for fully 
connected neural network. ‘Sigmoid’ 
maps output values from 0-1 and is 
appropriate for Boolean-type 
applications. 

‘sigmoid’ 

optimizer The RMSprop optimizer uses an 
adaptive learning rate instead of 
treating the learning rate as a 
hyperparameter. This means that the 
learning rate changes over time. 

‘rmsprop’ 

loss We trained a binary classifier to do a 
pixel-wise classification as 
Smoke/No Smoke. We use the binary 
cross-entropy as our loss function. 
The binary classification problem 
posed is – “what is the probability of 
there being smoke in the pixel?” 

‘binary_crossentropy’ 

nEpochs Number of model iterations. 25 

batchSize Base-12; used to balance speed of 
model while minimizing the 
tendency to over-generalize. 

96 

 

2.3.4 Model Output and Evaluation 

Given the nature of the TEMPO EASD, the TEMPO+GOES Jupyter Notebook was 
run for demonstration purposes only. However, we used the output from 
TROPOMI+GOES and GOES_Only model runs (via the Jupyter notebook interfaces) 
for the science applications discussed in the Results section. We ran the 
TROPOMI+GOES and GOES_Only models using multiple conformations of the 
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hyperparameter and predictor space. We then evaluated the most important GOES 
bands using PCA. The final optimized model was selected based on the 
hyperparameter settings that consistently resulted in highest agreement between the 
NOAA HMS truth and TROPOMI+GOES predictors. A PCA was performed on this 
final optimized model to extract the most important predictors.  

The DNN models (either TROPOMI+GOES or GOES_Only) were run for the 
study dates in Table 3, with the GOES_Only version run for dates without TROPOMI 
data. The Jupyter Notebook outputs DNN results as csv files for later analysis in R. 
The csv files consist of truth and predictor values for each gridcell along with 
predicted smoke (as a probability of smoke – i.e., mapped to values ranging from 0-
1 by the sigmoid activation function). Quality of predicted and “truth” smoke 
designations were then evaluated based on binning smoke-relevant BC2 surface 
measurements on smoke- and non-smoke days. The accompanying User Guide 
provides detailed instructions. We discuss key results in the following section. 

 

2.4 Key Results 

2.4.1 Phase II Streamlining 

By directly accessing GOES data from the OpenData AWS portal we have 
significantly increased the efficiency of our DNN and its capacity to be used for 
science and societal applications. In addition, our streamlined Phase II processing 
has enabled more sophisticated model evaluation through (i) elimination of the 
manual spatial domain selection window; (ii) its ability to efficiently ingest GOES 
data so multiple dates can be readily evaluated; and (iii) its option to include multiple 
feature dimensions (temporal slices and/or multiple variables including radiance  
bands from GOES, UVAI from TROPOMI, and trace gases from TEMPO). We 
successfully demonstrated full DNN output for each of TEMPO+GOES (proof-of-
concept only), TROPOMI+GOES and GOES_Only (for science and societal 
application). 

2.4.2 Model Optimization: Hyperparameter tuning and PCA results 

Our final selected model was Model 2 from Table 5 and with a Train/Test score 
of 64%, Model 2 represents an improvement of 11% over the Phase 1 (Naïve Bayes) 
version of our smoke prediction. We found that eliminating a drop rate, doubling the 
number of nodes for each of the two hidden layers, while decreasing the batch size to 
96 was the most efficient way to obtain the highest performance. Notably, 
performance was fairly insensitive to loss rate (penalty for a bad prediction).   

Prior to applying the final Model 2 for our science applications, we wanted to 
remove feature redundancies.  Given that GOES data processing incurs significant 
computational time and space, we wanted to minimize the number of GOES bands 
used for maximum information; the results of this analysis are summarized in Table 
6 and the steps are described below.  

Our first step was to run Model 2 individually for each GOES band (1-16) along 
with both TROPOMI UVAI bands (340-380nm, 354-388nm); all other settings were 
held constant. The mean Phase 1 train/test score across all 16 bands was 51%, or about 
the same as a coin toss (Table 6). We then established a selection criterion where a 
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Table 5. Hyperparameter Tuning Step 1: Identification of key hyperparameters. Blank cells indicate values identical to 
Model 1-Base. Shaded green models were selected for use in final model selection in Step 2. Data Used: TROPOMI, 
GOES, and NOAA HMS from 2022-10-01. 

 

 MODEL 

  1-Base 1a 1b 1c 1d 1e 1f 1g 1h 1i 

 

 
[8, 8]  

     
[16, 16] 

  

 
[3e-3,3e-3]  

   
[3e-2 3e-2] [3e-4 3e-4] 

   
drop [0.5,0.6]  

  
[0,0] 

     
activate [‘relu’,‘relu’] [‘elu’, ‘elu’] 

        
Fully connected 

  

  

  

  

  

  

  

  

  

  

nNodesFC 1 
         

activateFC 'sigmoid’ 
         

Fitting and Training 

 

 

 

 

 

 

 

 

 
 

optimizer 'rmsprop’ 
 

'adam’ 
       

loss 

'binary 

cross- entropy’ 
         

metrics [‘accuracy’] 
         

nEpochs 25 
  

10 
    

50 
 

batchSize 256 
        

96 

GOES Band 6 
         

Train Score 0.6 0.6 0.59 0.59 0.62 0.6 0.6 0.61 0.61 0.6 

Test Score 0.59 0.59 0.58 0.58 0.61 0.59 0.59 0.6 0.6 0.6 

Phase 1 Test  0.53 

Phase 1 Train 0.52 
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GOES band was deemed smoke-relevant if the associated DNN Model 2 performance 
was >10% over the Phase 1 mean. Based on this criterion, GOES bands 1-8 and 15 
each resulted in a DNN/Phase 2 model performance >61%.   

Table 6. Summary of Model 2 performance on 2020-10-01 using available TROPOMI 
UVAI data GOES bands. GOES bands in bold font rows are likely most smoke-relevant 
based on the DNN performance. Italicized results are various combinations of the 
selected smoke-relevant GOES bands. Highlighted green row indicates optimized model. 

Phase 1 Ref: 
Train Score 

Phase 1 Ref: 
Test Score 

Phase 2 DNN 
Train Score 

Phase 2 DNN 
Test Score 

GOES Band 
Used 

GOES File(s) 
Used 

0.5 0.5 0.62 0.62 1 1,2,3,4 

0.5 0.5 0.64 0.64 2 1,2,3,4 

0.5 0.5 0.64 0.64 3 1,2,3,4 

0.5 0.5 0.63 0.63 4 1,2,3,4 

0.5 0.5 0.64 0.64 5 1,2,3,4 

0.53 0.52 0.64 0.63 6 1,2,3,4 

0.53 0.53 0.65 0.64 7 1,2,3,4 

0.52 0.52 0.64 0.64 8 1,2,3,4 

0.51 0.51 0.55 0.55 9 1,2,3,4 

0.51 0.5 0.56 0.56 10 1,2,3,4 

0.5 0.5 0.57 0.56 11 1,2,3,4 

0.5 0.5 0.54 0.54 12 1,2,3,4 

0.5 0.5 0.61 0.61 13 1,2,3,4 

0.5 0.5 0.59 0.59 14 1,2,3,4 

0.5 0.5 0.66 0.66 15 1,2,3,4 

0.5 0.5 0.57 0.56 16 1,2,3,4 

0.5 0.5 0.72 0.72 1-8,15 3 

0.5 0.5 0.72 0.71 1,2,3,15 3 

0.5 0.5 0.68 0.68 1,2,3 3 

 

We re-ran Model 2 combining information from all nine of the selected bands 
which resulted in a model performance of 72% on 2022-10-01 (versus a Phase 1 model 
performance of 50%). However, processing nine GOES bands is still time and 
computationally expensive, so we narrowed down the necessary bands further by 
performing a PCA on the nine-band data set. The goal here was to remove redundancy 
– i.e., eliminating the need to process features (GOES bands in particular) that had 
little to no impact on ultimate model smoke predictive capacity. The relative 
contribution of the 10 principal components (PC) to the variance of the dataset is 
shown in Figure 4. Of note, PC1, PC2, and PC3 explained 49%, 28%, and 9.7%  of  the 
data variance respectively. Within PC1 and PC2, GOES bands 1,2,3, and 15 were 
among the most relevant. Also worth noting, TROPOMI UVAI was not identified as a 
prominent feature until PC3 and, to a lesser extent, PC2. Therefore, in instances 
where TROPOMI UVAI data were not yet available (i.e., the 2021 study dates in 



Work Order No. 582-22-31966-013      Final Report 

19 

September and October) relying on GOES data only for smoke prediction is a 
reasonable approach. 

Noting that GOES band 1 explains most of the variance in smoke predictions, 
we used this to explore the relative importance of incorporating adjacent time slices 
vs. optimal GOES bands b1, b2, b3, and b15. In other words, would the model perform 
as well or better if band 1 and adjacent time slices were used rather than bands 1,2,3, 
15 and a single time slice? The purpose, again, was to minimize compute effort and 
maximize performance as processing the four bands for each time slice takes nearly 
30 minutes. Table 6 and Figure 5 clearly illustrate that using optimal PC1 and PC2 
bands 1,2,3 and 15 is more valuable than using a single band 1 that explains the most 
variance. For applications, a user can include the four optimal GOES bands and a 
single time slice, thereby saving considerable computing overhead. 

 

 

2.4.3 Model Application and Evaluation 

Other than noting successful end-to-end completion of TEMPO+GOES, the 
limited TEMPO EASD data prevented us from conducting further evaluation. In this 
section we focus entirely on the TROPOMI+GOES and GOES Only DNN 
formulations. We trained and tested the TROPOMI+GOES and GOES Only models 
against the HMS “truth” for the study dates shown in Table 3.  

For our evaluation with BC2 surface station observational data, we used the DNN 
csv file output for each study date. A screenshot of the DNN model output is shown 
in Figure 6 for clarity. For each date, we find the nearest point in the DNN testing 
output csv file to each of the four BC2 sites shown in Figure 1. Then, we provide the 

  1     2     3     4      5     6     7     8     9    10  

Variance Explained 

0       0.2        0.4      0.6      0.8      1.0 

Figure 4. Results from PCA of TROPOMI+GOES features. Table provides output from PC1-
PC3; for clarity we have not shown PCs 4-10. UVAI is 340-380nm. 

 PC1 
Weights 

PC2 
Weights 

PC3 
Weights 

UVAI 0.0276 0.150 -0.972 

GOES b1 0.420 -0.0185 -0.0594 

GOES b2 0.421 0.0896 -0.0154 

GOES b3 0.381 0.192 -0.0290 

GOES b4 0.342 -0.223 -0.00213 

GOES b5 0.206 0.509 0.0821 

GOES b6 0.287 0.428 0.130 

GOES b7 -0.165 0.521 0.122 

GOES b8 -0.352 0.127 -0.112 

GOES b15 -0.327 0.391 -0.0106 
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smoke category for the pixel nearest to each site and date for (i) HMS “truth” and (ii) 
DNN prediction. If the HMS truth value is “1”, the smoke category for that site and 
date is “smoke”; otherwise, it is non-smoke. If the DNN predicted smoke probability 
is >0.6, the smoke category for that site and date is “smoke”; otherwise, it is non-
smoke. We then aggregate all the data for each site and divide into “smoke” and 
“non-smoke” days for both HMS and DNN prediction. Table 7 summarizes these 
results for the four BC2 sites. We find that both the HMS and DNN smoke 
categorizations are consistently associated with significantly higher values of smoke-
relevant variables measured at the BC2 sites, suggesting that HMS and DNN have 
some smoke predictive power. However, the DNN tends to predict more “non-
smoke” events such that BC2 measurements on DNN-predicted smoke days are 
skewed lower than on HMS-predicted smoke days. But we also note that these 
differences between HMS and DNN categorizations are typically not significant. 

 

 

Figure 5. Illustration of the value of optimal bands over time slices (adjacent files). 
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Figure 6. Screenshot of DNN output. In this example, the DNN was tested for a single 
GOES band (band 1) at file 2 (GOES_b1_f2) and TROPOMI UVAI at 340-380nm. 
Additional GOES bands are appended column-wise with the same naming convention 
(GOES_bX_fY). Files are output as csv to enable further analysis. 
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Table 7. BC2 Surface Station data from four sites evaluated according to predictions of smoke by HMS (“truth”) and the DNN (predicted). For each study date and BC2 
site, and smoke estimate (HMS, DNN) daily averages of data were calculated for “smoke” or “nonsmoke” days. Within each smoke category, differences in BC2 data 
across HMS and DNN-based predictions are also shown. 95% CIs derived from t-test. Significant differences are in bold italics. 

All units: ppb CO O3 NO NO2 NOy SO2 

Jones Forest 
HMS Mean: Smoke Days 142 40.5         

HMS Mean: Nonsmoke Days 111 28.7         

HMS Smoke-Nonsmoke (95% CI) 30.7 (17.7, 43.7) 11.8 (11.1,12.6)         

DNN Mean: Smoke Days 135 40.0         

DNN Mean: Nonsmoke Days 116 29.1         

DNN Smoke-Nonsmoke (95% CI) 18.2 (5.17, 31.2) 11.0 (10.2, 11.8)         

DNN-HMS Smoke Days (95% CI) -0.498 (-1.34,0.34) -0.498 (-1.34, 0.340)         

DNN-HMS Nonsmoke Days (95% CI) 0.377 (-0.336, 1.09) 0.377 (0.336, 1.09)         

Launch Trailer 
HMS Mean: Smoke Days 248 33.8 4.54 13.3 18.4   

HMS Mean: Nonsmoke Days 151 20.7 3.15 10.8 11.6   

HMS Smoke-Nonsmoke (95% CI) 97.1 (86.5,108) 13.1 (12.04, 14.2) 1.38 (0.955, 1.82) 2.51 (1.81, 3.21) 6.78 (6.06, 7.51)   

DNN Mean: Smoke Days 246 34.2 4.11 12.2 17.8   

DNN Mean: Nonsmoke Days 162 21.6 3.60 11.8 12.7   

DNN Smoke-Nonsmoke (95% CI) 83.8 (73.2, 94.4) 12.6 (11.5, 13.8) 0.514  (0.0708,0.958) 0.352 (-0.373, 1.08) 5.06 (4.31, 5.80)   

DNN-HMS Smoke Days (95% CI) -2.56 (-13.0,7.91) 0.412 (-0.938, 1.76) -0.427 (-0.932, 0.0784) -1.10 (-1.92, -0.278) -0.635 (-1.48, 0.207)   

DNN-HMS Nonsmoke Days (95% CI) 10.7 (0.0772, 21.3) 0.868 (0.130,1.61) 0.449 (0.0880, 0.810) 1.06 (0.473, 1.65) 1.09 (0.480, 1.71)   

Moody Tower 
HMS Mean: Smoke Days 183 38.7 3.45 12.2 17.4 0.576 

HMS Mean: Nonsmoke Days 133 22.0 1.89 6.78 10.0 0.210 

HMS Smoke-Nonsmoke (95% CI) 49.9 (43.3, 56.5) 16.7 (15.7, 17.7) 1.56 (1.19, 1.93) 5.46 (4.99, 5.93) 7.37 (6.69, 8.05) 0.367 (0.309, 0.425) 

DNN Mean: Smoke Days 178 39.2 3.21 12.1 16.7 0.470 

DNN Mean: Nonsmoke Days 142 23.2 2.19 7.36 11.2 0.318 

DNN Smoke-Nonsmoke (95% CI) 36.1 (29.1,43.0) 16.0 (15.0, 17.1) 1.02 (0.631, 1.42) 4.74 (4.24, 5.24) 5.49 (4.78, 6,19) 0.152  (0.0935, 0.211) 

DNN-HMS Smoke Days (95% CI) -5.54 (-13.9, 2.85) 0.414 (-0.839, 1.67) -0.233 (-0.718, 0.252) -0.147 (-0.757, 0.463) -0.722  (-1.54, 0.0921) -0.106 (-0.178, -0.0341) 

DNN-HMS Nonsmoke Days (95% CI) 8.31 (3.63,13.0) 1.14 (0.420, 1.87) 0.303 (0.0647, 0.541) 0.577 (0.259, 0.894) 1.16 (0.611,  1.70) 0.108 (0.0683, 0.149) 
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Smith Point 
HMS Mean: Smoke Days   43.3 0.410 3.90     

HMS Mean: Nonsmoke Days   30.5 0.239 2.27     

HMS Smoke-Nonsmoke (95% CI)   12.8 (11.9,13.8) 0.171 (0.0763, 0.265) 1.62 (1.23, 2.01)     

DNN Mean: Smoke Days   41.5 0.358 3.54     

DNN Mean: Nonsmoke Days   31.1 0.273 2.47     

DNN Smoke-Nonsmoke (95% CI)   10.3 (9.37, 11.2) 0.0852 (-0.00692, 0.177) 1.07 (0.714, 1.43)     

DNN-HMS Smoke Days (95% CI)   -1.89 (-2.81, -0.969) -0.0517 (-0.155, 0.0519) -0.356 (-0.856, 0.144)     

DNN-HMS Nonsmoke Days (95% CI)   0.651 (-0.279, 1.58) 0.0339 (-0.0480, 0.116) 0.194 (0.0228, 0.365)     
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2.5 Challenges and Problems Encountered 

• TEMPO EASD data sparsity (NO2, HCHO for two days only that are not 
particularly reflective of smoky conditions over Texas). TEMPO EASD Aerosol 
data was only for a few hours on one day that (i) did not overlap with either 
NO2 or HCHO EASD dates (ii) had no smoke. Therefore, we could only test 
TEMPO+GOES with NO2 and HCHO as features. 

• The TRACER-AQ campaign did not have sufficient smoke-relevant data 
available to use in our observational data-based model evaluation. We 
therefore relied only on BC2 data. 

• Issue: TROPOMI UVAI data has significant “missingness” for the original 
selected 4 dates (2020-04-25, 2020-07-16, 2020-07-17, 2020-08-26). The low 
hourly sample size for the four dates selected makes it difficult to incorporate 
in a meaningful way in our current ML set up. Solution: We extended our ML 
smoke plume tracking dates of interest to 19 days beyond the original 4 
proposed and subset over regions relevant to Texas to manage compute time. 
There is now sufficient data coverage for smoke-relevant dates (see example 
date in Figure 1) 

• Issue: Multiple product grid resolutions makes a GOES+TEMPO+TROPOMI 
version of our model computationally expensive; we will explore ways to 
circumvent this. Solution: We have two versions of the model, 
GOES+TEMPO and GOES+TROPOMI. Given that TEMPO synthetic data only 
exists for three dates, this is unlikely to substantially change any results.  

• Issue: Sequential processing of features led to inconsistency in feature and 
label location indices. The result was that feature and label locations were 
getting scrambled and did not refer to the same spatial point; in other words, 
a given row of features and a label were scrambled geographically therefore 
producing meaningless results. Solution: We refined our index selection 
method and such that TROPOMI (TEMPO) features are randomly split into 
training and testing; the associated locations are then mapped to the nearest 
HMS-to-pixel location (to get the label location) and then passed to the GOES 
feature selection (to get the nearest GOES feature).  

 

 
3 Quality Assurance 

The processing and analysis scripts used in this project will be inspected by a team 
member not involved in their creation for accuracy. All automated calculations and at 
least 10% of manual calculations will be inspected for correctness. This meets the 
requirement of Level III QAPPs that 10% of the data must be inspected.  

As the quality of the information, including secondary data, was not be evaluated 
by EPA, the below disclaimer applies to all project deliverables: 

Disclaimer: The information contained in this report or deliverable has 
not been evaluated by EPA for this specific application, i.e. the use of computer 
vision techniques to identify and track smoke plumes. 
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4 Conclusions  

Here we summarize the conclusions of our project, with reference to the 
corresponding report section. 

• NOAA HMS data is a valid choice for truth data based on comparison with 
smoke-relevant ground-based BC2 observations 

• The TROPOMI+GOES and GOES Only DNN produces results consistent with 
NOAA HMS when evaluated against BC2 observations 

• A PCA analysis on UVAI 340-380nm and GOES bands 1-8 and 15 indicates that 
PC1 through PC3  explain ~86% of the data variance. Optimal GOES bands used 
for smoke prediction are 1,2,3, and 15 and feature as important in the first two 
of ten PCs. TROPOMI UVAI is features as  important in PC3 and, to a lesser 
extent, PC2. 

• Importance of optimal GOES bands >> importance of adjacent GOES 
timestamps 

• DNN performance >> naïve Bayes performance from Phase I 

• Many outstanding issues/questions from Phase I resolved 

 
5 Recommendations for Further Study 

Based on the results of this work, we make the following recommendations for 
further study: 

• Eventual multi-product model (TEMPO+TROPOMI+GOES) when real 
TEMPO data becomes available, including TEMPO aerosol data. 

• Multi-regional multi-season approach: relevant GOES bands and other 
features (TROPOMI UVAI, TEMPO data) might vary in importance based on 
type of fire/smoke (e.g. agricultural vs. forest, including distance from fire).  

• Aggregate training data sets across multiple dates rather than training and 
testing on the same date. This will include more randomization in the training 
and testing (and also a larger sample size). The testing can then be done for 
individual dates of interest. 
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