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Abstract 

This report presents the outcomes of the project supported by the Texas Commission on Environmental 

Quality (TCEQ), focusing on the estimation of daily surface PM2.5 concentrations at 4 km spatial resolution 

across Texas from 2018 to 2022 using an advanced deep learning (DL) model. A key innovation of this 

project was the creation of continuous, accurate, and gap-free grids of surface PM2.5 estimates for each 

day, which effectively addressed the challenges posed by missing data in satellite imagery. Monitoring 

PM2.5, a critical pollutant known for its detrimental impacts on human health and the environment, 

typically employs various methods, such as satellite remote sensing and ground-based monitoring 

stations. However, these approaches have notable limitations. For instance, satellite data often have 

substantial gaps and rely on proxies like Aerosol Optical Depth (AOD) for PM2.5 monitoring. AOD, however, 

does not consistently correlate well with surface PM2.5 levels, thus compromising reliability. To mitigate 

these limitations, the UH-AQF Artificial Intelligence (AI) group at the University of Houston utilized 

sophisticated DL techniques to create high-resolution, gap-free grids of surface PM2.5 levels, markedly 

improving the accuracy of PM2.5 monitoring in all regions. 

Our research employed a two-phase DL model combining a deep convolutional neural network 

(DeepCNN) with a depthwise partial convolutional neural network (PCNN). In the first phase, we used 

predictor variables such as satellite AOD, surface observations, and outputs from chemical transport 

models to generate gap-free daily PM2.5 grids. The second phase refined these estimates using additional 

features, producing highly accurate daily PM2.5 maps. The performance of our DL model was rigorously 

evaluated against ground station measurements using metrics like the correlation coefficient (R), index of 

agreement (IOA), mean absolute bias (MAB), and root mean square error (RMSE). From 2018 to 2022, our 

PCNN-DeepCNN model demonstrated robust capability in estimating surface PM2.5, achieving R and IOA 

scores between 0.89-0.93 and 0.94-0.96, respectively. Additionally, the model maintained a low bias with 

MAB ranging from 1.3 to 1.79 μg/m³ and RMSE from 1.87 to 3.25 μg/m³ in different years. Spatial cross-

validation results further confirmed the model's advanced spatial accuracy, exhibiting R values from 0.81 

to 0.87 and IOA from 0.89 to 0.93. In addition to its high accuracy, a significant advantage of our model 

over previous studies is its ability to handle missing values in satellite data. This ensures that our estimated 

PM2.5 maps are complete, providing PM2.5 values for all regions, including those without monitoring 

stations and areas affected by dense cloud cover. 

The project also aimed to enhance policy-making by providing high-resolution PM2.5 coverage across 

Texas, supporting the implementation of the State Implementation Plan (SIP). Our team developed a 

method to calculate design values (DVs) for all regions and identify non-attainment areas using the DL-

estimated PM2.5 grids. Traditional methods, relying on sparse EPA monitoring stations, often fail to provide 

DVs in many counties due to a lack of monitoring infrastructure. In contrast, our DL model delivered 

comprehensive coverage for all 254 Texas counties. A comparative analysis revealed that our DL-derived 

DVs (DL-DV) detected significantly more counties violating the National Ambient Air Quality Standards 

(NAAQS) for PM2.5 than EPA-derived DVs (EPA-DV). For instance, the EPA-DV identified violations in 8, 8, 

and 10 counties for the years 2020, 2021, and 2022, respectively, whereas the DL-DV indicated 94, 76, 

and 71 non-compliant counties for the same periods. For these analyses, the annual PM2.5 NAAQS was set 

at 9 µg/m3. This discrepancy highlights potential underestimations of air quality issues by traditional EPA 
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methods and underscores the necessity for advanced monitoring techniques like ours to achieve more 

accurate air quality data. 

Our team also developed a web portal with various tools for data analysis and visualization, enhancing 

the accessibility and utility of the data for researchers, policymakers, and the public. This report 

underscores the potential of advanced DL models to significantly enhance our understanding and 

monitoring of air quality. These models are particularly valuable in regions where traditional monitoring 

infrastructure is absent or where high cloud cover impedes PM2.5 monitoring using satellite data. The 

methodologies and findings of this project are expected to inform future air quality monitoring and 

management strategies, promoting better health and environmental outcomes. 

1. Introduction 

Particulate matter with an aerodynamic diameter of less than 2.5 μm, known as PM2.5, poses a significant 

threat to human health (Feng et al., 2016; Pascal et al., 2014) and the environment (Ma et al., 2021; 

Manisalidis et al., 2020). Numerous studies have established a link between PM2.5 exposure and adverse 

health outcomes, including cardiovascular disease (Hayes et al., 2020), respiratory illnesses (Pun et al., 

2017; Xing et al., 2016), myocardial infarction (Madrigano et al., 2013), and increased mortality rates 

(Schwartz et al., 1996). Therefore, monitoring surface PM2.5 concentrations is crucial for a range of 

applications, including public health initiatives and environmental research. 

Surface PM2.5 monitoring is conventionally conducted using three primary methods, one of which includes 

measurements at ground stations (Ginzburg et al., 2015). While these surface monitoring stations offer 

precision and accuracy, their limited number restricts spatial coverage. Consequently, estimating PM2.5 

exposures based on these stations is likely to be fraught with errors due to their sparse distribution, 

uneven placement, and variability in measurement frequencies (Ghahremanloo et al., 2021). Another 

strategy for monitoring surface PM2.5 involves the use of chemical transport models (CTMs), such as the 

Community Multiscale Air Quality (CMAQ) modeling system (Zhang et al., 2019). Despite their widespread 

use and relevance, these models often exhibit significant biases that can limit their utility across various 

scientific domains. For instance, Ghahremanloo et al. (2022) evaluated the accuracy of daily PM2.5 

simulations by CMAQ across the contiguous United States (CONUS) from February to June 2019, finding a 

correlation coefficient (R) of 0.50 and a mean absolute bias (MAB) of 2.79 µg/m3, indicating the model's 

limited accuracy in PM2.5 simulations. 

Satellite remote sensing also represents an alternative method for monitoring PM2.5 levels (Kloog et al., 

2011). However, this approach is hindered by the presence of missing data in satellite imagery due to 

factors such as cloud cover, snow, and high surface reflectivity. For instance, Xiao et al. (2017) reported 

an average of nearly 60% missing data in aerosol optical depth (AOD) images of the Moderate Resolution 

Imaging Spectroradiometer (MODIS) from 2013 to 2014 in the Yangtze River Delta, China, primarily due 

to these conditions. Additionally, satellites do not directly measure surface PM2.5 concentrations but 

instead rely on proxies like AOD. The relationship between AOD and surface PM2.5 is not consistently 

strong, which complicates this method's reliability. Fu et al. (2022) investigated the correlation between 

AOD and PM2.5 using ground-based observations from 19 stations across China during 2017-2019 and 

found correlations ranging from a low of 0.03 to a medium of 0.60, indicating significant variability. They 
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attributed this variability to meteorological conditions and aerosol composition differences, which often 

decouple AOD from PM2.5 levels. Furthermore, AOD represents the extinction of solar radiation by 

aerosols throughout the entire atmospheric column, which may not accurately reflect ground-level PM2.5 

levels, especially in the presence of elevated aerosol layers (Ghahremanloo et al., 2021). Consequently, 

reliance on AOD alone for PM2.5 monitoring can introduce significant biases. Thus, developing more 

accurate methodologies that address the limitations of current PM2.5 monitoring tools is crucial. 

Estimating daily PM2.5 grids at high accuracy can significantly improve the quality of various applications, 

such as public health studies and governmental decision-making. 

One advanced approach to estimating surface concentrations of PM2.5 is the application of machine 

learning (ML) and deep learning (DL) models. Recent advancements in satellite-derived data products 

have further propelled the prominence of data-driven ML approaches. These approaches are particularly 

valued for their capacity to develop accurate estimation models through the use of extensive supervised 

training datasets (Park et al., 2020). In the realms of atmospheric sciences, climate, oceanography, and 

chemistry, numerous studies have applied ML/DL algorithms for purposes such as forecasting (Gong et 

al., 2022; Grigsby et al., 2023; Wu et al., 2020), image imputation (Lops et al., 2022; Singh et al., 2024), 

and the creation of digital twins (Payami et al., 2024; Salman et al., 2024). These applications leverage 

surface PM2.5 data as target regression labels and training models to map input predictors to PM2.5 levels 

through supervised learning. Once trained, these models can accurately estimate PM2.5 concentrations in 

areas underserved by ground-based monitoring, demonstrating significant generalization capabilities 

(Ghahremanloo et al., 2023; Sayeed et al., 2022). 

Early research in this field predominantly utilized simpler linear or generalized linear regression models 

to estimate PM2.5 levels (Gupta & Christopher, 2009; Zhao et al., 2018). However, recent advancements 

have shifted focus towards more sophisticated nonlinear methods to achieve higher accuracy. For 

instance, Hu et al. (2017) employed a random forest (RF) model that combined satellite and model AOD 

data with meteorological factors and land-use information to generate daily PM2.5 estimates across the 

CONUS with a 12 km spatial resolution. Similarly, Ghahremanloo et al. (2021) utilized the RF algorithm, 

incorporating Multiangle Implementation of Atmospheric Correction (MAIAC) AOD and various predictor 

variables, to estimate daily ground-level PM2.5 concentrations at a finer 1 km spatial resolution in Texas. 

This study integrated aerosol-related parameters, including daily Ångström Exponent and column 

densities of dust, sea salt, sulfur dioxide (SO2), sulfate (SO4), and organic carbon (OC). Expanding the toolkit 

further, Park et al. (2020) implemented a convolutional neural network (CNN) that processed 27 input 

parameters, such as AOD from MODIS and global models, alongside meteorological data and land-use 

characteristics. Their model focused on estimating daily mean PM2.5 concentrations in the CONUS, 

demonstrating that finer spatial resolution in AOD data could significantly enhance the accuracy of PM2.5 

predictions compared to coarser resolutions. Additionally, Di et al. (2016) developed a hybrid neural 

network model that integrated satellite data, land-use regression, and CTMs outputs to estimate PM2.5 

levels in the United States from 2000 to 2022. The inclusion of convolutional layers in their model 

facilitated the effective processing of diverse data types, thus enabling accurate mapping of the complex 

spatial and temporal variations of PM2.5. 

This project, funded by the Texas Commission on Environmental Quality (TCEQ), introduced an advanced 

DL model to estimate daily surface concentrations of PM2.5 across Texas from 2018 to 2022 with a 4 km 
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spatial resolution. A notable innovation of this project, distinguishing it from previous efforts, is the 

creation of continuous, gap-free grids of estimated surface PM2.5 for each day, effectively eliminating the 

impact of missing values from satellite imagery in the final outputs. The DL approach utilized in this study 

also demonstrated high accuracy in estimating surface PM2.5 levels. The UH-AQF artificial intelligence (AI) 

group also aimed to improve policy-making by offering detailed PM2.5 coverage across Texas, aiding the 

State Implementation Plan (SIP). Our team devised a method using DL to calculate design values (DVs) in 

all regions and identify non-attainment areas statewide. Additionally, we have developed an accessible 

data portal equipped with a range of analytical tools designed to facilitate various analyses, including 

temporal and spatial averaging, calculation of DVs, and data downloading, all tailored to work with the 

DL-estimated PM2.5 grids. 

2. Study Area and Data 

Our research project delved into Texas, the second-largest state nestled in the south-central regions of 

the United States, boasting 254 counties and prominent urban centers such as Dallas, Houston, Austin, 

and San Antonio. Spanning an expansive area of 696,200 square kilometers and home to a populace of 

31.9 million (source: https://www.census.gov), Texas served as the focal point of our investigation. The 

study, conducted from January 1, 2018, to December 31, 2022, involved the utilization of a variety of 

aerosol and meteorology-related predictor variables as inputs for training our DL model. This model was 

devised to estimate daily PM2.5 concentrations at a spatial resolution of 4 km. Further elucidation 

regarding the specific target and predictor variables is provided below. Figure 1 illustrates the study area 

alongside the PM2.5 monitoring stations established by the Environmental Protection Agency (EPA). 

 

 

Figure 1. The study area encompasses the state of Texas. Green circles denote EPA ground stations monitoring hourly 
PM2.5 concentrations throughout Texas. 

 

2.1. Target Variable 
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The target variable in our DL model was surface PM2.5 observations. We sourced hourly surface PM2.5 

concentrations recorded at air quality monitoring stations throughout the CONUS from January 2018 to 

December 2022 via the EPA Air Quality System (AQS). While the first phase of our DL model employs EPA 

stations across the CONUS for training, the second phase of the model focuses solely on stations in Texas. 

The downloaded hourly PM2.5 observations were aggregated to derive daily mean concentrations, 

subsequently subject to a filtration process to exclude data of low quality based on the quality assurance 

information furnished by the EPA. Below are detailed explanations of the predictor variables utilized in 

our DL model. All variables were prepared for Texas from 2018 to 2022, with the exception of three 

features: MODIS AOD, CMAQ PM2.5, and the percentage of urban space (PUS). These were prepared for 

the first phase of the DL model over the CONUS to augment the training dataset for this phase. 

 

2.2. Predictor Variables 

2.2.1. MODIS Products 

The MODIS instrument aboard NASA's Terra and Aqua satellites is used to measure various Earth system 

variables, including AOD. Several algorithms, such as the MAIAC, have been developed to retrieve AOD 

data from MODIS measurements. MAIAC stands out for its ability to retrieve AOD at a high spatial 

resolution of 1 km (Lyapustin et al., 2011). This algorithm is particularly adept at correcting for atmospheric 

effects and retrieving aerosol information over both dark vegetated regions and bright surfaces, although 

it currently excludes snow and bright salt pans. To obtain the MAIAC AOD data, we utilized the Level-1 

Atmosphere Archive and Distribution System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/). The 

MAIAC AOD was used only in the first phase (i.e., partial convolutional neural network (PCNN)) of our DL 

model. We selected only pixels classified as superior quality, as indicated by the quality assurance flags 

included in the dataset (Liu et al., 2009). After excluding images containing clouds and invalid pixels, our 

dataset consisted of 7,837 swath images from 2018 to 2022. In our study, we prepared AOD datasets over 

the CONUS by combining multiple swath images retrieved per day. Our DL model requires input data 

without missing values. To address missing and invalid data, we averaged images from multiple days. 

Additionally, we prepared daily Enhanced Vegetation Index (EVI) data sourced from the MODIS MOD13C1 

product, which provides global vegetated surface data at a spatial resolution of 0.05° (Didan, 2015). Figure 

2 displays the monthly mean MAIAC AOD from MODIS for June 2018 over Texas, while Figure 3 presents 

the MODIS EVI for the entire globe in 2022. 
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Figure 2. Spatial distribution of MODIS AOD over Texas in June 2018. 

 

 

 
Figure 3. Spatial distribution of MODIS EVI over the globe in 2022. 

 

2.2.2. Chemical Transport Model Simulated PM2.5 

We used the CMAQ model version 5.2 (Byun & Schere, 2006) to simulate surface PM2.5 concentrations 

over the CONUS at a 12 km spatial resolution from February to June 2019 and 2020. The CMAQ PM2.5 data 

was exclusively utilized during the initial phase, known as depthwise PCNN, of the DL model. The key 

aspect of depthwise PCNN in estimating surface PM2.5 is capturing the spatial pattern of PM2.5 over the 

study area, derived from CMAQ PM2.5 and AOD data. Given this focus, the duration of the CMAQ dataset, 

even if it does not encompass full calendar years, is sufficient for training the depthwise PCNN because 
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the key information lies in the spatial distribution patterns rather than the long-term temporal 

completeness of the data (Ghahremanloo et al., 2023). The emissions input for CMAQ simulations 

included anthropogenic and biogenic emissions sourced from the 2017 EPA National Emissions Inventory 

(NEI) (Eyth & Vukovich, 2016; Eyth et al., 2016), lightning-induced nitric oxide (NO) emissions from the 

National Lightning Detection Network (NLDN) (Orville, 2008) and biomass burning emissions from the Fire 

INventory from National Center for Atmospheric Research (FINN) version 1.5 (Wiedinmyer et al., 2006, 

2011, 2014). We prepared the meteorology input for CMAQ through simulations using the Weather 

Research and Forecasting (WRF) model version 4.0. We used the National Centers for Environmental 

Prediction (NCEP) North American Regional Reanalysis (NARR) data as the initial and boundary conditions 

and implemented the indirect soil moisture and temperature nudging technique (Gilliam & Pleim, 2010; 

Pleim & Xiu, 2003) with a four-dimensional data assimilation option (Hogrefe et al., 2015). We then 

averaged the CMAQ-simulated hourly surface PM2.5 concentrations into the daily mean. The cubic 

convolution interpolation method (Ghahremanloo et al., 2023; Keys, 1981) was used to resample the 

spatial resolution of CMAQ PM2.5 data from 12 km to 4 km. This approach interpolates values by fitting a 

smooth curve through the 16 nearest cell centers, employing a symmetric kernel of piecewise cubic 

polynomials that ensures continuity and a continuous first derivative across unit subintervals from -2 to 

+2. Subsequently, the resampled CMAQ datasets were subjected to validation against surface 

observations of PM2.5 from EPA stations in 2019 and 2020. We also applied the cubic convolution 

interpolation method to resample all variables in the data products described in Sections 2.2.3 and 2.2.4 

to a spatial resolution of 4 km. The mean CMAQ PM2.5 concentrations during the February-June 2019 over 

the CONUS is shown in Figure 4. 

 

 
Figure 4. Mean PM2.5 concentrations generated using CMAQ model during February-June 2019 over the CONUS. 

 

2.2.3. North American Land Data Assimilation System (NLDAS) 

NLDAS is a project that combines satellite and ground-based observational data with advanced land 

surface models to provide comprehensive and accurate reanalysis data of land surface conditions in North 
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America at a 0.125° spatial resolution. The required meteorological variables over Texas for the 2018-

2022 period were downloaded from the LAADS & Distribution System Distributed Active Archive Center 

(DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/). We prepared daily meteorological fields, including air 

temperature, surface pressure, specific humidity, U and V components of wind speed (UWind and VWind, 

respectively), downward shortwave/longwave radiation flux (SRad and LRad, respectively), and 

convective available potential energy (CAPE) at 4 km resolution from NLDAS, using the resampling process 

described earlier. Figure 5 illustrates an example of NLDAS datasets, specifically displaying NLDAS air 

temperature data in 2019 that has been resampled to a 4 km spatial resolution across the CONUS. 

 

 
Figure 5. NLDAS air temperature data resampled to 4 km spatial resolution over the CONUS in 2019.  

 

2.2.4. Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) 

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) products 

provide hourly estimates of atmospheric, oceanic, and land surface conditions spanning from 1980 to the 

present at a resolution of 0.5°×0.625°. The MERRA-2 datasets for the 2018-2022 period were downloaded 

from the LAADS DAAC. We prepared daily planetary boundary layer height (PBLH), surface layer height 

(SLH), and surface concentrations of SO4, organic carbon (OC), black carbon (BC), dust, and sea salt from 

MERRA-2. As MERRA-2 does not offer direct PM2.5 data, we calculated surface PM2.5 concentrations using 

the below equation from Provençal et al. (2017). Notably, we excluded gridded nitrate concentrations 

from the calculation, as the MERRA-2 dataset does not provide this data across the study area. The Spatial 

distribution of MERRA-2 PM2.5 resampled to 4 km spatial resolution in 2019 is shown in Figure 6. 

 

MERRA PM2.5 = (1.375 × SO4) + (1.8 × OC) + BC + Dust + Sea salt                 (1) 
 

https://ladsweb.modaps.eosdis.nasa.gov/
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Figure 6. MERRA-2 PM2.5 concentrations resampled to 4 km spatial resolution over the CONUS in 2019.  

 

 

2.2.5. Other Variables 

The road density (RD) data, expressed in kilometers per square kilometer (km/km²) and shown in Figure 

7, was sourced from the Global Roads Inventory Project (Meijer et al., 2018). This dataset, which has a 

spatial resolution of 8 km, exclusively represents the density of highways in each pixel, omitting other 

road types. Figure 8 showcases population density (PD) data, expressed as the number of people per 

square kilometer, which was obtained from the NASA Socio-economic Data and Applications Center 

(SEDAC) (https://sedac.ciesin.columbia.edu/) and derived at a spatial resolution of 4 km. Additionally, 

Figure 9 features the PUS data, also at a 4 km resolution, compiled from the U.S. National Land Cover 

Database (NLCD) (https://www.mrlc.gov/data/nlcd-2019-land-cover-conus). This database details the 

extent of land development across the CONUS. Surface elevation data, presented in Figure 10, was 

acquired from the GTOPO30 dataset by the United States Geological Survey (USGS) 

(https://earthexplorer.usgs.gov/), offering a global digital elevation model at a spatial resolution of 1 km, 

covering the entire Earth. 

 

https://earthexplorer.usgs.gov/).


10 

 

 
Figure 7. Road density (RD) data showing the density of highways (km/km2) in each pixel over the CONUS. 

 

 

 
Figure 8. Population density (PD) (number of people/km2) over the CONUS in 2020. 
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Figure 9. Percentage of urban space (PUS) over the CONUS in 2019. 

 

 

 
Figure 10. Surface elevation data over the globe. 
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3. Methodology 

The UH-AQF AI group utilized a two-phase DL framework to estimate daily surface PM2.5 concentrations 

at 4 km spatial resolution over Texas from 2018 to 2022. The initial phase employs a depthwise PCNN and 

the variables of MODIS AOD, CMAQ PM2.5, and PUS to fill the gaps between EPA PM2.5 stations, creating 

gap-free daily PM2.5 grids (hereafter referred to as PCNN-PM2.5) from 2018 to 2022. Subsequently, a deep 

convolutional neural network (DeepCNN) was applied in the second phase. This DeepCNN utilized 

additional predictor variables such as surface elevation, MERRA PM2.5, MODIS EVI, PD, PUS, RD, and 

various meteorological parameters to refine and bias-correct the output from the first phase (i.e., PCNN-

PM2.5). The result was a set of highly accurate, gap-free daily grids of surface PM2.5 concentrations from 

2018 to 2022. Figure 11 depicts the schematic structure of the PCNN-DeepCNN model employed in this 

study. Furthermore, subsequent sections offer comprehensive details on the programming platforms, 

virtual environments, the PCNN-DeepCNN model, and other exercises implemented in this project. 

 

 
 
Figure 11. The schematic structure of the PCNN-DeepCNN model used for surface PM2.5 estimation. The S1, S2, S3 
... Sn refer to the predictor variables used in the second phase (DeepCNN) of the model. 

 

3.1. Software 

For this project, we employed both MATLAB and Python programming languages to optimize our 

workflow. MATLAB was primarily utilized for preprocessing and preparing the datasets, ensuring they 

were ready for analysis. In contrast, Python was the main tool for developing the DL models and 

generating outputs. This dual-language approach leveraged the strengths of each platform to efficiently 
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handle different aspects of our computational tasks. We also established a dedicated virtual environment 

on our local servers to facilitate the development of Python codes and DL models. Typically, developing a 

DL model in Python involves a few basic steps: installing Python, adding required libraries via the terminal, 

coding in a single “.py” file or a notebook, and executing the program from the terminal. This approach 

suffices for straightforward Python scripting. However, more complex DL projects, such as the estimation 

of surface PM2.5 levels using DL, often require managing multiple files, packages, and dependencies. To 

effectively handle these complexities, it becomes essential to develop and isolate an environment specific 

to the project. Thus, the creation of a unique virtual environment was imperative for our work. A virtual 

environment in Python is a self-contained directory that houses a specific version of the Python 

interpreter along with various additional libraries, independent of those installed system-wide. This setup 

prevents conflicts between project dependencies and system-installed libraries. 

Within the dedicated Python virtual environment we established for this project, we installed several 

essential libraries. A library is a curated collection of classes, methods, and modules that application codes 

can leverage to perform specific tasks without needing to develop these functionalities from scratch. 

Libraries are often specialized (e.g., handling strings, input/output operations, and network connections), 

making their Application Programming Interfaces (APIs) more focused and reducing dependencies. 

Essentially, libraries offer a repository of class definitions that enhance code reusability. The term "Code 

Reusability" refers to the practice of using pre-written code to achieve desired functionalities in new 

projects, thus allowing developers to focus more on solving specific problems rather than reinventing 

basic routines. For example, some libraries feature a ‘findLastIndex()` function that can locate the last 

occurrence of a character in a string, which developers can readily use by calling 

`findLastIndex(charToFind)` with the character of interest as a parameter. Below are examples of key 

libraries installed in our virtual environment, which support a range of data manipulation, analysis, and 

ML tasks: 

 

• Pandas: Developed under the Berkeley Software Distribution, this open-source library is crucial in 

data science for data manipulation, analysis, and cleaning, often serving as an alternative to using 

languages like R for data tasks. 

• NumPy: Known for its robust capabilities in scientific computation, NumPy supports extensive 

matrix operations and mathematical computations, making it indispensable for linear algebra and 

serving as a multidimensional container for large data arrays. 

• SciPy: This library extends NumPy's capabilities by adding advanced mathematical functions, 

optimization, regression, and more. It's designed for efficient high-level computations integral to 

scientific computing. 

• Scikit-learn: As a comprehensive ML toolkit, this library offers a wide array of algorithms for 

classification, regression, and clustering, including support-vector machines and RFs, and is 

designed to interoperate with NumPy and SciPy. 

• Keras: Developed by Google, Keras facilitates DL by providing an intuitive API for constructing and 

training neural networks, and it's known for its user-friendliness and modularity. 

• TensorFlow: Created by Google Brain, this library is a cornerstone in performing high-performance 

numerical computations used extensively in ML and DL, capable of conducting complex 

calculations essential for researchers in mathematics, physics, and AI. 
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These libraries not only streamline the development process but also significantly enhance our project's 

capabilities to tackle complex data-driven challenges. 

 

3.2. First Phase of the PCNN-DeepCNN Model: Depthwise PCNN 

The standard version of the PCNN model was developed based on a U-Net CNN architecture (Ronneberger 

et al., 2015) which has been widely used for tasks where input and output have a one-to-one 

correspondence, such as image inpainting. U-Net models offer several benefits relevant to the research: 

(a) have a straightforward structure, (b) allow global localization and context, and (c) preserve the full 

context of input images (Alom et al., 2018). The vanilla PCNN model utilizes a U-Net-like encoder-decoder 

architecture but replaces convolutional layers with partial convolutional layers, allowing only valid pixel 

processing. It also incorporates skip connections similar to U-Net to combat the loss of spatial information 

caused by downsampling in the encoding layers. These connections transmit the output of an encoding 

layer to the corresponding decoding layer, enabling the network to upsample encoded information 

efficiently (Liu et al., 2018). In place of padding, the model uses partial convolution padding (Liu et al., 

2018) with the appropriate masking at the edges of the image. This ensures that values outside the 

boundaries are treated as missing or holes. It also guarantees that incorrect values outside the image do 

not affect the inpainted content at the edges (Liu et al., 2018). Depthwise PCNN, a more advanced version 

of standard PCNN, introduces depthwise convolution (Liu et al., 2021; Lops et al., 2022). Unlike standard 

PCNNs, where the convolution operation is performed across all input channels for each filter, in the 

depthwise PCNNs, each filter operates on a single input channel, which reduces the parameter count 

compared to conventional PCNN, thereby streamlining the network's complexity, and enhancing 

parameter efficiency. This is particularly beneficial when training data is limited or computational 

resources are constrained (Liu et al., 2021). Furthermore, the depthwise PCNN can learn more channel-

specific features due to the individual operation of each filter on a single input channel, potentially leading 

to better performance when different input channels contain diverse types of information (Lops et al., 

2022). 

Before training our depthwise PCNN, we standardized our three main input variables (CMAQ PM2.5, 

MODIS AOD, and PUS) to a uniform pixel resolution of 778×1456 to ensure consistency across the 

datasets. We applied data augmentation to enhance the model's generalization ability across various 

spatial contexts. We extracted 256×256 pixels patches from the larger matrices of 778×1456 pixels, 

creating overlapping patches with varied strides to diversify training data. The resulting 256×256 images 

served as the input to our depthwise PCNN, with corresponding masks applied to simulate the actual 

distribution of air quality monitoring stations. These masks were randomly augmented to retain a subset 

of stations, mirroring the actual sparse and irregular distribution of air quality sensors. This approach 

allowed us to create a training dataset that closely mimics the partial availability of PM2.5 data due to the 

uneven distribution of monitoring infrastructure. By training the depthwise PCNN with this augmented 

dataset, the model is expected to be better equipped for estimating PM2.5 levels, accurately reflecting the 

variability and spatially incomplete nature of observed air quality data. The trained depthwise PCNN 

model was utilized to fill the gaps between EPA PM2.5 monitoring stations on a daily basis. Since the 

depthwise PCNN utilizes the U-Net architecture, it can be trained on input resolutions of 256×256 pixels 
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and then applied to images of varying resolutions during the final estimation. Thus, we perform the final 

estimation at a 778×1456-pixel resolution in order to avoid irregularities that could occur when combining 

overlapping patches. Consistent with the training phase, the imputation process has three input predictor 

variables: MODIS AOD, PUS, and grid-based station PM2.5 measurements, which replace CMAQ PM2.5 used 

in the training phase. Unlike previous studies that relied on more straightforward methods like Kriging, 

inverse distance weighting (IDW), and RF, for air pollutant interpolation (Di et al., 2016; Ghahremanloo et 

al., 2021; Hu et al., 2017) the depthwise PCNN approach offers increased accuracy in imputation tasks due 

to its effectiveness in capturing spatial pollutant patterns, as highlighted by Lops et al. (2021). 

 

3.3. Second Phase of the PCNN-DeepCNN Model: DeepCNN 

After filling the gaps between EPA PM2.5 stations and preparing the PCNN-PM2.5 explained in the previous 

section, we fed PCNN-PM2.5 along with other predictor variables into a DeepCNN model to bias correct 

daily PCNN-PM2.5 grids. The DeepCNN integrates convolutional and dense layers, starting with a 1D 

convolution layer (16 filters with ReLU activation function), a dropout layer to prevent overfitting, a flatten 

layer, and two dense layers (500 and 265 neurons with Swish activation function). The regression-focused 

output layer has a single neuron. The hyper-parameters of the DeepCNN model (e.g., number of neurons, 

filters, and dropout percentage) were obtained using the Optuna hyperparameter optimization 

framework (Akiba et al., 2019). We used RMSprop with an adaptive learning rate and momentum to 

optimize the model and used a custom loss function based on the index of agreement (IOA). The optimum 

hyperparameters selected by Optuna for the DeepCNN model are shown in Table 1. 

 

Table 1. Hyperparameters of the DeepCNN model selected by the Optuna framework. 

Hyperparameter Number/Description 

Number of convolutional layers 

Activation function in convolutional layer 

Dropout layer in convolutional layer 

Number of filters 

Kernel size 

Number of dense layers 

Number of neurons in dense layers 

Activation functions in dense layers 

Dropout layer in dense layers 

Learning rate 

Optimizer 

Batch size 

1 

Relu 

One layer with 0.065 drop rate 

16 

2 

2 

500 and 265 neurons in the first and second layers 

Relu and Swish in the first and second layers 

One dropout (0.16) layer in the first layer 

0.000255 

RMSprop 

952 

 

 

After training the PCNN-DeepCNN model, our team used it to create the daily mean surface PM2.5 maps 

at 4 km spatial resolution over Texas in the 2018-2021 period. The main code for the map creation phase 

was developed in Python programming platform and the application of parallel computing in our powerful 
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servers significantly reduced the running time for the map creation phase. The code uses the DL models 

trained specifically for each year from 2018 to 2021 and incorporates the same predictor variables used 

in the training phase, but in a 2D grid format, to estimate daily PM2.5 levels over the study area. Parallel 

computing involves breaking down significant problems into smaller, autonomous, and usually similar 

segments that can be concurrently processed by multiple processors. These processors communicate 

through shared memory, and upon finishing their tasks, their outcomes are merged as part of a 

comprehensive algorithm. The primary objective of parallel computing is to enhance the accessible 

computational capability, leading to quicker application processing and more efficient problem-solving. 

In order to implement parallel computing for PM2.5 map creation, our team used the multiprocessing 

package in Python. This module is designed to facilitate the creation of processes using an interface 

comparable to the threading module. The multiprocessing package provides the capability for both local 

and remote concurrency, bypassing the Global Interpreter Lock by employing sub-processes in lieu of 

threads. As a result, programmers can make optimal use of multiple processors available on a specific 

machine. The multiprocessing module is compatible with both UNIX and Windows operating systems. 

 

3.4. Feature Engineering 

We employed a two-step feature engineering approach to address the multicollinearity and select the 

best combination of predictor variables for our DL model. In the initial step, we identified highly correlated 

variables by calculating the variance inflation factor (VIF) of each predictor. We excluded the predictor 

variables with VIFs greater than ten, the threshold value of which was set based on the premise that the 

variables with a VIF higher than ten were considered to exhibit significant multicollinearity with other 

variables (Ghahremanloo et al., 2023; Kline, 2015). Eliminating these highly correlated predictors ensures 

that each variable included contributes uniquely to the estimation of PM2.5 concentrations without being 

redundantly influenced by correlations with other predictors, thereby enhancing our model's accuracy 

and reliability. We then utilized SHapley Additive exPlanations (SHAP) feature importance (Lundberg & 

Lee, 2017) to determine the optimal combination of predictor variables for our model. SHAP evaluates 

feature importance by comparing model estimations with and without each feature. As its estimates, 

however, are influenced by the order in which the model captures each feature, this process is 

implemented in every possible order so that the features can be fairly compared (Lundberg and Lee, 

2017). Subsequently, we excluded less important predictor variables based on their SHAP feature 

importance scores of the selected parameters in pre-trained models. Specifically, four predictor 

variables—air temperature, specific humidity, SLH, and CAPE—were identified as redundant and were 

consequently eliminated from the model during the feature engineering process. The final predictor 

variables employed in the DeepCNN phase comprise PCNN-PM2.5 (the first phase's output), SRad, LRad, 

UWind, VWind, surface pressure, PBLH, Precipitation, MERRA PM2.5, MODIS EVI, surface elevation, PD, 

PUS, and RD. 

 

3.5. Model Evaluation 

We evaluated the accuracy of our PCNN-DeepCNN model for surface PM2.5 estimation using both ten-fold 

cross-validation (10-CV) and spatial cross-validation (Spatial-CV) techniques. In 10-CV, the dataset is 

divided randomly into ten non-overlapping clusters, with the model trained on nine clusters and tested 
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on the remaining one. This process is repeated ten times, allowing each cluster to serve as the test set 

once. This comprehensive approach ensures that every data point is used for validation at least once, 

providing a thorough assessment of the model's generalization ability. The schematic workflow of the 10-

CV approach is depicted in Figure 12. In contrast, Spatial-CV is specifically employed to evaluate the spatial 

performance of our model. This method divides samples based on their monitoring stations and is crucial 

for assessing how well the model estimates PM2.5 concentrations across different spatial areas, 

considering the spatial autocorrelation inherent in environmental data. Model performance is evaluated 

using several metrics, including R, IOA, MAB, and root mean square error (RMSE), which compare the 

surface PM2.5 estimated by our model against station observations over Texas. High values of R and IOA 

indicate strong agreement between the estimated and observed PM2.5 concentrations, indicating high 

accuracy. Meanwhile, MAB and RMSE quantify the average magnitude and variability of errors. 

Additionally, we assessed the performance of the DeepCNN model across four seasons to evaluate its 

performance under seasonal variations. Below are the formulas used to calculate the evaluation metrics 

in this project, where 𝐸𝑖 is estimated samples, 𝑂𝑖 the observed samples, �̅� the mean estimated samples, 

�̅� the mean observed samples, and N is a number of samples. 

 

𝑅 =  
∑ (𝐸𝑖−�̅�).(𝑂𝑖−�̅�)𝑛

𝑖=1

√∑ (𝐸𝑖−�̅�)2𝑛
𝑖=1 .√∑ (𝑂𝑖−�̅�)2𝑛

𝑖=1

                 (2) 

 

𝐼𝑂𝐴 = 1 −
∑ (𝐸𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝐸𝑖−�̅�|+|𝑂𝑖−�̅�|)2𝑛
𝑖=1

                (3)  

 

𝑀𝐴𝐵 =  
1

𝑁
∑ |𝐸𝑖 − 𝑂𝑖|

𝑛
𝑖=1                 (4)   

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐸𝑖 − 𝑂𝑖)2𝑛

𝑖=1                 (5) 
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Figure 12. The schematic structure of the ten-fold cross-validation (10-CV) approach for evaluating the performance 
of the Deep Convolutional Neural Network (Deep-CNN) model at surface PM2.5 estimation. 

4. Results and Discussions 

4.1. Performance of the First Phase of the PCNN-DeepCNN Model 

Table 2 details the performance of the PCNN model in filling the gaps between EPA PM2.5 stations and 

creating the daily PCNN-PM2.5 grids across the CONUS from 2018 to 2022. The number of valid pixels with 

station observations inside accounted for less than 0.1% of the total number of pixels in the input, 

indicating the scarcity of in-situ measurement data. Despite the limited number of stations, the PCNN 

model demonstrated reliable accuracy, achieving R ranging from 0.35 to 0.60, MAB between 2.00 and 

12.58 μg/m³, and an RMSE from 3.11 to 15.08 μg/m³. Moreover, the IOA ranged from 0.59 to 0.86, 

underscoring the model estimates’ strong agreement with observed data. The lower accuracy for 2020 

compared to other years can be attributed to the high number of extreme events like the 2020 California 

wildfires and COVID-19 lockdown, which the PCNN model could not capture properly. The overall results 

suggest that, even with limited spatial coverage of input data, the PCNN could robustly estimate PM2.5 

concentrations with fair accuracy, highlighting its potential for broad applications in air quality monitoring 

and environmental research. It is important to note that the results in Table 2 are not the final accuracy 

of the model and they only show the accuracy of the depthwise PCNN, the first phase of the PCNN-

DeepCNN model. 

 

 

 

Table 2: Validation Results of the output of the first phase of the model, the imputed surface PM2.5 Levels (PCNN-
PM2.5), over the CONUS from 2018 to 2022. R, IOA, MAB, and RMSE refer to the correlation coefficient, the index of 
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agreement, the mean absolute bias, and the root mean square error, respectively. MAB and RMSE are in the unit of 
μg/m3.  

Year R IOA MAB RMSE 

2018 

2019 

2020 

2021 

2022 

0.59 

0.60 

0.35 

0.52 

0.40 

0.82 

0.86 

0.59 

0.73 

0.78 

4.12 

2.00 

12.58 

6.24 

2.74 

5.65 

3.11 

15.08 

7.76 

4.83 

 

 

4.2. Performance of the Second Phase of the PCNN-DeepCNN Model 

Table 3 presents the results of 10-CV and Spatial-CV for the DeepCNN model, which demonstrates the 

final accuracy of the PCNN-DeepCNN model in estimating daily surface PM2.5 concentrations across Texas 

from 2018 to 2022. The 10-CV data indicate a substantial improvement by the DeepCNN in reducing bias 

compared to the initial phase of the model. Specifically, the MAB was reduced from a range of 2.0-12.58 

μg/m³ to 1.3-1.79 μg/m³, and the RMSE decreased from 3.11-15.08 μg/m³ to 1.87-3.25 μg/m³. 

Additionally, R and IOA saw significant enhancements, improving from 0.35-0.60 to 0.89-0.93 for R, and 

from 0.59-0.86 to 0.94-0.96 for IOA in the transition from the PCNN (first phase) to the DeepCNN (second 

phase) model. Despite the relatively lower performance of the PCNN model in 2020, the incorporation of 

DeepCNN in the second phase markedly improved its accuracy, effectively correcting biases. These 

improvements underscore the PCNN-DeepCNN model's capability to produce accurate, gap-free grids of 

daily surface PM2.5 levels at a 4 km spatial resolution over Texas. 

The Spatial-CV results also underscore the advanced spatial accuracy of our DL system in estimating 

surface PM2.5 levels. In the Spatial-CV, the model exhibited consistent R values, ranging from 0.81 to 0.87. 

Similarly, IOA values were robust, varying from 0.89 to 0.93, which closely aligns with the results from the 

overall cross-validation. The notable improvement in performance from the PCNN model in the first phase 

to the DeepCNN model in the second phase can be attributed primarily to the bias correction achieved 

through the integration of additional predictor variables by DeepCNN. While the PCNN phase was aimed 

at imputing missing PM2.5 data, it did not adequately address systematic biases or external factors that 

influence PM2.5 levels. This was particularly evident in 2020, a year marked by significant disruptions such 

as widespread wildfires on the West Coast and the COVID-19 pandemic, which significantly altered air 

quality patterns by reducing emissions in some regions and changing patterns of human and industrial 

activity (Ghahremanloo et al., 2022). Figure 13 presents a scatter plot that compares estimated PM2.5 

concentrations from the PCNN-DeepCNN model with observed PM2.5 levels across the study area 

throughout the period from 2018 to 2022, further highlighting the high accuracy of the model at PM2.5 

estimation. 

 

 

Table 3: Validation Results of the PCNN-DeepCNN model at estimating surface PM2.5 levels over Texas from 2018 to 
2022. R, IOA, MAB, and RMSE refer to the correlation coefficient, the index of agreement, the mean absolute bias, 
and the root mean square error, respectively. MAB and RMSE are in the unit of μg/m3.  
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Year R IOA MAB RMSE  R IOA MAB RMSE 

2018 
2019 
2020 
2021 
2022 

0.92 
0.91 
0.93 
0.91 
0.89 

0.96 
0.95 
0.96 
0.95 
0.94 

1.66 
1.30 
1.79 
1.79 
1.51 

2.73 
1.87 
3.25 
2.68 
2.76 

 

0.86 
0.84 
0.87 
0.87 
0.81 

0.92 
0.91 
0.93 
0.93 
0.89 

2.07 
1.72 
2.15 
2.06 
1.84 

3.73 
2.61 
5.51 
3.78 
3.43 

 

  

 

Figure 13. Scatterplots comparing estimated and observed surface PM2.5 levels across the study area averaged over 
2018-2022. The color bar represents the density of samples within the scatterplots, with warmer colors (red) 
indicating higher data point concentrations and cooler colors (blue) showing areas with fewer data points.  

 

In evaluating the performance of our PCNN-DeepCNN model, a comparative analysis with existing studies 

reveals insightful contrasts. Ghahremanloo et al. (2021) employed an RF algorithm to estimate ground-

level PM2.5 concentrations across Texas for the period between 2014 and 2018, achieving 10-CV R ranging 

between 0.83 and 0.90, with an MAB of 1.47 to 1.77 μg/m3. However, their model was unable to handle 

the missing values in the MAIAC AOD images, resulting in PM2.5 maps that also contained gaps. Compared 

to Park et al. (2020), who recorded a 10-CV R of 0.90 at PM2.5 estimation using an RF model, our DL model 

again demonstrated relatively superior performance. Park et al. (2020) also highlighted the effectiveness 

of CNN models over RF in specific scenarios and the incremental benefit of ensemble methods like CNN-

RF in spatially stratified cross-validation. This comparison not only underscores the efficacy of our model 

but also emphasizes its potential applicability in diverse environmental and temporal settings. An 

important advantage of our model is its spatiotemporal consistency and ability to eliminate missing 
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values, enhancing data reliability. This feature, coupled with its high accuracy, sets it apart from other 

methods that are susceptible to data gaps. 

Figure 14 presents a comparative seasonal performance of the PCNN-DeepCNN model for PM2.5 

estimation. The model achieved the best performance in summer with an IOA of 0.92. Winter had the 

highest MAB at 1.78 μg/m3, indicating some inconsistencies likely due to seasonal variability. The lowest 

MAB was in spring at 1.32 μg/m3, highlighting the model's better estimation accuracy during this season. 

Our analysis revealed that the winter season posed the most significant challenge for PM2.5 estimation. 

This observation aligns with the results of Di et al. (2016) and Park et al. (2020), who also reported lower 

R values during winter. The lower winter performance in our study may be attributed to factors such as 

complex atmospheric conditions, including temperature inversions (Di et al., 2016), increased emission 

sources, and changes in the chemical composition of PM2.5 (Wei et al., 2019). 

 

 

Figure 14. Scatterplots comparing estimated and observed surface PM2.5 levels across the study area, segmented by 
seasons. The color bar represents the density of samples within the scatterplots, with warmer colors (red) indicating 
higher data point concentrations and cooler colors (blue) showing areas with fewer data points. 

 
Figure 15 illustrates the comparative analysis of observed and estimated PM2.5 concentrations over three 

sample stations in Texas during 2018, employing the PCNN-DeepCNN model. Our DL model, which was 
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not previously trained on data from these stations, effectively estimates PM2.5 levels, capturing both the 

trends and actual concentrations with high accuracy. Values of R range from 0.85 to 0.91, indicating a 

strong agreement between the estimated and observed data. The MAB values, ranging from 1.5 to 2.4 

µg/m3, further affirm the model's accuracy in quantifying air quality. This figure underscores the model's 

robust generalization capabilities, as it performs well even on previously unseen data, a testament to its 

potential applicability across different geographical locations without the need for retraining. The charts 

demonstrate how the model closely follows the peaks and troughs of PM2.5 fluctuations, suggesting it 

could be a valuable tool for real-time air quality monitoring and public health advisories. The minimal 

divergence in MAB across the stations also highlights the consistent performance of the model across 

varied environmental conditions within Texas. 

 

 

Figure 15. Comparison between the observed and estimated PM2.5 concentrations in three sample stations over 
Texas in 2018. The number of observations at each station is different and stations do not measure PM2.5 for the 
entire 365 days. 

 

Figure 16 shows the estimated PM2.5 concentrations over Texas in the 2018-2022 period. According to this 

figure, PM2.5 levels are higher in urban environments, such as Houston, Dallas, and Austin. Eastern and 

southern regions of Texas also experience higher levels of PM2.5, compared to other regions (e.g., western 

Texas). The higher levels of PM2.5 in East Texas might be attributed to a large number of oil refineries, 

industrial sections, and power plants in this region (Ghahremanloo et al., 2021). Moreover, according to 
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Ghahremanloo et al. (2022), In 1994, the governments of the United States, Mexico, and Canada signed 

the North American Free Trade Agreement (NAFTA) to create a free trade zone. Since that time, NAFTA 

has fostered the growth and accumulation of industrial regions and rapid population growth in regions 

close to the U.S.-Mexico border (Karnae and John, 2019). In light of these changes, the U.S. EPA predicted 

that air pollution would be a significant problem in regions close to the border (Karnae and John, 2019). 

This can be one main reason for relatively higher PM2.5 levels in southern Texas. Figure 16 also plots 

surface PM2.5 observations (i.e., circles in Figure 16) measured in EPA stations on the DL-estimated PM2.5 

maps over Texas in the 2018-2022 period to evaluate performance of the PM2.5 map creation phase. 

According to this figure, there is a high degree of agreement between observed and estimated PM2.5 

concentrations, highlighting promising performance of our DL models in the map creation phase. In order 

to make an apple to apple comparison between the annual mean PM2.5 maps and PM2.5 observations in 

Figure 16, we included only those EPA stations which measure PM2.5 in at least 340 days at each year. 

 

 

 
 
 
 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/mexico
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nafta
https://www.sciencedirect.com/science/article/pii/S1352231022000097#bib41
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/united-states-of-america
https://www.sciencedirect.com/science/article/pii/S1352231022000097#bib41
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Figure 16. Maps showing the estimated PM2.5 levels over Texas from 2018 to 2022 along with the EPA PM2.5 
observations showed in circles to validate the maps. 

 

Figure 17 compares county-wise DVs calculated using our DL estimated PM2.5 grids (left column) 

(henceforth referred to as DL-DV) with the DVs calculated using EPA monitoring stations (right column) 

(henceforth referred to as EPA-DV). The National Ambient Air Quality Standards (NAAQS) for PM2.5, 

established by the EPA, set the annual standard at 9 µg/m³. This standard is used to determine which 

regions are in compliance and which violate the NAAQS for PM2.5. The EPA's methodology for calculating 
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DVs involves selecting the highest DV from all the stations in a county as the representative DV for that 

county. Our study adopts the same principle but utilizes the DL-estimated PM2.5 grids for this calculation. 

It means that each pixel from our estimated grids play the role of a monitoring station. Since the DL-

estimated PM2.5 pixels are uniformly available across Texas, using them instead of monitoring stations to 

calculate DVs leads to significant improvements. Relying solely on monitoring stations results in many 

counties lacking DVs due to the absence of monitoring infrastructure. For instance, in the years 2020, 

2021, and 2022, monitoring stations provided DVs for only 15, 19, and 22 out of 254 counties in Texas, 

respectively. In contrast, calculating DVs using our DL-estimated PM2.5 grids ensures coverage for all 254 

counties in Texas, thereby enhancing the accuracy and completeness of DV calculations. 

Our DL model's high-resolution grids capture the spatial variability of air quality within each county, 

offering a comprehensive view that surpasses the capabilities of point-based data from monitoring 

stations. In our comparative analysis of NAAQS violations across Texas, we observed notable discrepancies 

between the findings based on EPA-DV and DL-DV. Specifically, the EPA-DV identified eight, eight, and ten 

counties in 2020, 2021, and 2022, respectively, as violating the NAAQS for PM2.5 in Texas. In contrast, the 

DL-DV indicated a significantly higher number of non-compliant counties—94, 76, and 71 for the same 

years. This difference can be largely attributed to the incomplete coverage of EPA-DV across all counties 

in the CONUS, suggesting a potential underestimation of air quality issues. Furthermore, while all counties 

identified as violating the NAAQS based on EPA-DV were also found non-compliant in the DL-DV 

assessment, additional counties were flagged by the DL-DV. Specifically, four counties in 2020, seven in 

2021, and four in 2022, considered compliant according to EPA-DV, were found to be non-compliant in 

the DL-DV analysis. This discrepancy underscores the critical need for enhanced monitoring techniques 

and suggests that our DL methodology could provide a more accurate and inclusive assessment of air 

quality, detecting violations that may be missed due to gaps in the existing EPA monitoring network. 
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Figure 17. Comparative county-wise Visualization of PM2.5 design values (DVs): The left column illustrates PM2.5 DVs 
across Texas for (a) 2020, (c) 2021, and (e) 2022 as estimated by our model (DL-DV). The right column displays the 
EPA's reported PM2.5 DVs (EPA-DV) for (b) 2020, (d) 2021, and (f) 2022. 
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5. Web Portal for Supporting the State Implementation Plan (SIP) 

The UH-AQF AI team has developed a data portal dedicated to data processing and visualization. The tools 

available on this portal provide substantial support for implementing SIP across Texas and analyzing PM2.5 

levels. For instance, as noted in the previous section, generating DVs using our DL-estimated PM2.5 grids—

a feature also available through this web portal—ensures comprehensive coverage for all 254 counties in 

Texas. This enhancement in accuracy and completeness of DV calculations aids decision-makers in 

developing more effective SIPs. To develop this portal, we leveraged the Streamlit library in Python. 

Streamlit is an open-source framework tailored for crafting interactive web applications for data science 

projects. It stands out for its user-friendliness, enabling swift prototyping with minimal coding, seamless 

integration with popular data science libraries, and effortless app sharing through various deployment 

options. Now, the portal is accessible via our local severs at (http://spock.geosc.uh.edu:8501/) and most 

of the processing is done online in the server upon request.  Our portal boasts seven distinct tools 

meticulously engineered for data processing, visualization, and data retrieval. These tools comprise the 

Temporal Averaging Tool, Slider Tool, Temporal Data Comparison Tool, Data Download Tool, AOD-PM2.5 

Comparison Tool, GIF Tool, and Design Value Tool. Each tool is meticulously designed to accept user inputs 

and execute specific functions tailored for processing PM2.5 data generated through DL. Below is further 

explanations about each tool included in the portal.  

 

5.1. Temporal Averaging Tool 

The tool allows users to define a date range of their choice and generates a spatial plot showcasing the 

average DL-estimated PM2.5 concentrations map within that specified timeframe. Users enjoy the 

flexibility of inputting date ranges ranging from a minimum of 2 days to a maximum of 4 full years. To 

illustrate, refer to Figure 18, which presents a sample plot for Temporal Averaging Tool. In this scenario, 

the user has opted for a date range spanning from January 1, 2022, to December 31, 2022. The tool then 

leverages this input to compute the average concentrations across the designated date range and 

subsequently generates the corresponding spatial plot. This tool operates in two distinct modes: a simple 

mode (depicted in Figure 18a), which generates a straightforward 2D plot, and an interactive mode (as 

shown in Figure 18b), where an interactive plot is produced. In the interactive mode, Longitude, Latitude, 

and Estimated PM2.5 levels are displayed at each point where the cursor is positioned, enhancing user 

engagement and data exploration. 
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Figure 18. Temporal Averaging Tool that creates plots showing the mean PM2.5 levels during the desired period in a) 

simple mode and b) interactive mode. 

 

5.2. Slider Tool to Compare Two Days of DL-Estimated PM2.5 Maps 

This tool is specifically engineered for comparing the spatial distribution of DL-estimated PM2.5 

concentrations for two specific dates. It features a slider functionality, enabling users to seamlessly 

navigate and visualize the spatial plots for both the selected day and the following day. An illustrative 

example of this spatial comparison tool is showcased in Figure 19. By simply sliding the tool to the left, 

users can observe the spatial plot for January 28, 2021, while sliding it to the right will unveil the plot for 

January 27, 2021. This interactive feature facilitates the straightforward comparison of data between two 

consecutive days, enhancing user-friendliness and aiding in data analysis. 
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Figure 19. Slider Tool to compare the estimated PM2.5 maps from January 27, 2021, to January 28, 2021. 

 

5.3. Temporal Comparison Tool 

The tool necessitates input parameters, such as a designated date range and coordinate range values 

(latitude/longitude range), which can be specified for either a specific geographical area or a single point 

location. Users have the flexibility to input these parameters directly or via an interactive map interface, 

facilitating easy selection for a single point location or a specific geographical domain. Once these 

parameters are set, the tool computes the average PM2.5 concentration over the specified spatiotemporal 

region. Additionally, the tool allows for the selection of multiple locations or areas, generating an 

interactive time-series plot showcasing the PM2.5 concentration trends for all selected locations within a 

single figure. Furthermore, users are provided with the option to export the resulting plot as a CSV file for 

further analysis or documentation. For visual reference, refer to Figure 20, which demonstrates a sample 

execution of this process to compare PM2.5 trends within a geographic domain and two other point 

locations, encompassing the entirety of the year 2022. 
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Figure 20. Temporal Comparison Tool to compare estimated PM2.5 levels in different locations. 

 
 
 
5.4. Data Download Tool 

This tool allows users to input a date and generates estimated PM2.5 levels over Texas for that specific day. 

It offers three distinct modes of operation: 1) Pre-prepared daily plots: Users can input a date, and the 

tool generates a pre-prepared PM2.5 plot for the specified date. 2) Simple plot tool: Users have the option 

to input a date along with additional parameters such as color map, color bar, min-max range, font size, 

font type, and title. The tool then produces a plot incorporating the specified arguments for the given 

date. 3) Interactive plot tool: Users input a date, and the tool generates an interactive spatial map 

illustrating daily estimates. Both pre-prepared and simple plots can be directly downloaded from the tool 

interface. For visual representation, refer to Figure 21, which illustrates this tool's interface. 
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Figure 21. Data Download Tool. 

 

5.5. AOD-vs-PM2.5 Comparison Tool 

This tool is designed to display the DL-estimated PM2.5 alongside the AOD data sourced from MODIS for 

the same day. This tool allows for a rough comparison between PM2.5 and AOD levels on a given day. 

Notably, the MODIS AOD integrated into the data portal is the MODIS Terra and Aqua combined MAIAC 

product. It is essential to highlight that unlike the DL-estimated PM2.5, the MODIS AOD image reflects AOD 

levels at the satellite's overpass time and is not a representation of daily mean values. Consequently, users 

should exercise caution when interpreting and comparing these two distinct products. Figure 22 shows 

that despite the temporal difference between DL-estimated PM2.5 and the MODIS AOD, the spatial 

distribution of PM2.5 and AOD reveals a noticeable similarity in the selected date. 
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Figure 22. The AOD-vs-PM2.5 Comparison Tool to compare the DL-estimated PM2.5 and MODIS AOD for the same day. 

 

5.6. GIF Tool 

The GIF tool allows users to select a specific time period and generate a Graphics Interchange Format (GIF) 

file illustrating the spatiotemporal distribution changes of PM2.5 across Texas. This feature helps users in 

monitoring and analyzing changes in PM2.5 concentrations within the studied region. Figure 23 showcases 

the generated GIF, exhibiting PM2.5 changes from August 19 to August 25, 2018, and highlighting 

transportation of PM2.5 plume from western to eastern Texas during six days. We recommend utilizing the 

latest version of Microsoft Word to ensure proper display of the GIF in Figure 23. The GIF is also available 

at 

“https://www.dropbox.com/scl/fi/jti3gn6nwyga2fmp8ex3l/GIF_For_TCEQ.gif?rlkey=vip2kg9ilix39o816r1

k3t0xc&dl=0” at Drop Box. 
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Figure 23. The Graphics Interchange Format (GIF) Tool showing the spatiotemporal changes in the DL-estimated 
PM2.5 levels over Texas from August 19 to August 25, 2018. 

 

5.7. Design Value Tool 

The Design Value Tool displays the estimated DVs for all counties. The tool offers two modes: a) Simple 

plot (Figure 24a): Users can input the year, and the tool displays the DVs for the input year. The DV 

calculation adopts the EPA's principle of assigning the maximum value of DV in all stations in a county as 

the DV value of the county. Our tool, however, uses pixels from the estimated PM2.5 grids instead of 

stations. b) Interactive plot (Figure 24b): Users can input the year, and the tool displays an interactive map 

displaying DV for the selected year for all counties. The elevation of each county in the Figure 24b is an 

indicator of the DV value for the given county, and the users can zoom, rotate, and tilt the output for 

better visualization. 
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Figure 24. The Design Value Tool showing the design values (DVs) for each county over Texas in 2021. 

 

6. Future Enhancement and Extension of the Project 

The methodology developed under this grant can be further enhanced and extended in various ways. One 

promising approach is to leverage products derived from new geostationary Earth orbit (GEO) satellites, 

such as the Tropospheric Emissions: Monitoring of Pollution (TEMPO), which provides more consistent 

and frequent observations. The temporal resolution of GEO satellites typically spans from a few minutes 

to an hour, which is notably finer compared to those on the low Earth orbit (LEO) satellites that, at best, 

have a 12-hour orbiting cycle over specific geographic locations. TEMPO, designed to monitor aerosols 

and air pollutants across North America every daylight hour, offers unparalleled temporal resolution. 

Utilizing TEMPO AOD data, our PCNN-DeepCNN model can estimate surface PM2.5 concentrations hourly 

across Texas and four neighboring states (henceforth referred to as Texas+4) of New Mexico, Oklahoma, 

Arkansas, and Louisiana. Incorporating four neighboring states into the PM2.5 analysis could enhance our 

understanding of PM2.5 transport into Texas. Additionally, the comprehensive spatial and temporal 

coverage of TEMPO enhances our model's capability to estimate surface PM2.5 levels even during 

nighttime, showcasing the advanced potential of our PCNN-DeepCNN model. 

Furthermore, this project can be expanded to include high-resolution estimations of other pollutants, such 

as nitrogen dioxide (NO2) and ozone, across the Texas+4 domain over an extended period. While TEMPO 

data is only available from November 2023 onwards, our PCNN-DeepCNN model can utilize this alongside 

data from other satellite instruments—including the TROPOspheric Monitoring Instrument (TROPOMI) on 

Sentinel-5p, the Ozone Monitoring Instrument (OMI) on Aura, and MODIS on Terra and Aqua satellites—

to estimate surface concentrations of PM2.5, NO2, and ozone from 2000 to 2024. Table 4 outlines the 

projected budget for expanding the project to daily estimate surface concentrations of PM2.5, NO2, and 

ozone at 4 km resolution over the Texas+4 domain for this period. The estimated cost for monitoring each 
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pollutant is $120,000. However, the bundled project cost—which includes all three pollutants—is only 

$200,000. This reduction is due to partial overlapping processes and data products across the pollutants, 

which decreases both workload and cost. Additionally, the domain could be expanded to encompass the 

entire CONUS if TCEQ deems it advantageous. Table 5 mirrors Table 4 but differs in that it presents 

budgets for hourly estimations rather than daily. It should be noted that the budget and other details 

presented in Tables 4 and 5 are preliminary estimates. All aspects are open for negotiation to align with 

the requirements of both the TCEQ and the UH-AQF AI group at the University of Houston. 

 
 
Table 4: Estimated budget for daily estimations of surface concentrations of PM2.5, NO2, and ozone at 4 km spatial 
resolution across the Texas+4 domain from 2000 to 2024. Texas+4 domain includes five states: Texas, New Mexico, 
Oklahoma, Arkansas, and Louisiana. The final row details the information for the bundled project, which 
encompasses the estimation of all three pollutants. 

Pollutant Domain Period Resolution Task Duration Budget 

PM2.5 
NO2 
Ozone 

Texas+4 
Texas+4 
Texas+4 

2000-2024 
2000-2024 
2000-2024 

4km/Daily 
4km/Daily 
4km/Daily 

15 months 
15 months 
15 months 

$120,000 
$120,000 
$120,000 

All Three Texas+4 2000-2024 4km/Daily 22 months $200,000 

 

 
 
Table 5: Estimated budget for hourly estimations of surface concentrations of PM2.5, NO2, and ozone at 4 km spatial 
resolution across the Texas+4 domain from 2000 to 2024. Texas+4 domain includes five states: Texas, New Mexico, 
Oklahoma, Arkansas, and Louisiana. The final row details the information for the bundled project, which 
encompasses the estimation of all three pollutants. 

Pollutant Domain Period Resolution Task Duration Budget 

PM2.5 
NO2 
Ozone 

Texas+4 
Texas+4 
Texas+4 

2000-2024 
2000-2024 
2000-2024 

4km/Hourly 
4km/Hourly 
4km/Hourly 

18 months 
18 months 
18 months 

$150,000 
$150,000 
$150,000 

All Three Texas+4 2000-2024 4km/Hourly 24 months $260,000 
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