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Executive Summary 

The purpose of this project is to improve TCEQ’s simulation of ozone photochemistry by 

applying a proven lightning data assimilation (LDA) method in the Weather Research and 

Forecasting (WRF) model. The method will force deep convection in the meteorological model 

where lightning is observed and only allow shallow convection where it is not, which will improve 

the representation of clouds in the meteorological and photochemical models.  This is 

accomplished in WRF through the Multi-Scale Kain Fritsch (MSKF) cumulus parameterization 

scheme (Zheng et al., 2016) and the version of WRF with this capability is referred to here as 

WRF-MSKF-LDA.   

In this work, AER developed software to download, process, and regrid publicly available 

observations from the Geostationary Lightning Mapper (GLM) into the input format required by 

the WRF LDA method.  A User’s Guide was provided to TCEQ for this software. To determine 

the accuracy of the lightning regridding software, we (1) used multiple calculation methods to 

determine the WRF grid point nearest a flash and (2) plotted comparisons of multiple time periods 

of raw flash data and regridded data (LNT). The resulting LNT data, regridded using both methods, 

were identical for all tested dates. Plots of co-located raw flash and regridded lightning data were 

also used for evaluation over different time scales (multiple days, multiple hours, only 10 minutes). 

We implemented the LDA method into the MSKF scheme in WRF and provided TCEQ with 

a recipe to implement this change in current and future versions of WRF. We evaluated the 

performance of WRF for June 2019 simulations with the Model Evaluation Toolkit (MET). The 

domain and namelist configuration of the WRF run were provided directly by TCEQ. Per the work 

order, we performed point-based verification of temperature and wind speed by comparing WRF 

output to surface station observations obtained from MADIS. We also performed grid-based 

verification of precipitation by comparing WRF output to Stage-IV radar-based precipitation 

estimates. Stage-IV precipitation data was accumulated over 24-h and 6-h intervals. We found 

little difference in the temperature, wind, and precipitation verification across both domains, which 

was highly surprising. Evaluation revealed that the LDA worked almost solely to suppress 

precipitation where lightning did not occur and was not adding precipitation where lightning was 

occurring. We theorize increasing the perturbation threshold LDA allows inside the MSKF to 

trigger convection could address this issue. 

To test the impact of the new MSKF LDA data assimilation on simulations of O3 in Texas, we 

ran CAMx with (LDA) and without LDA (noLDA) for June 2019. CAMx inputs for May 15-June 

30 were provided by TCEQ corresponding to their 2019 O3 modeling platform. In general, both 

CAMx runs compare well to observations, with low mean bias and mean error. However, there is 

little difference between the noLDA and LDA runs, and to the extent there is a difference, the 

noLDA runs are slightly worse. For example, the mean bias across all East Texas sites and days 

increased to 2.5 ppbv from 2.2 ppbv when LDA was implemented. 

For future work, we recommend testing an increase in the moisture and temperature 

perturbations allowed within LDA for triggering convection in MSKF. This increase is necessary 

due to the different way entrainment and convective updraft is calculated within MSKF compared 

to the Kain-Fritsch (KF, Kain, 2004), parameterizations, where LDA was originally implemented 

and tested. 
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1 Introduction 

1.1 Project Objectives  

The purpose of this project is to improve TCEQ’s simulation of ozone photochemistry by applying 

a proven lightning data assimilation (LDA) method in the Weather Research and Forecasting 

(WRF) model. The method will force deep convection in the meteorological model where 

lightning is observed and only allow shallow convection where it is not, which will improve the 

representation of clouds in the meteorological and photochemical models.  This is accomplished 

in WRF through the Multi-Scale Kain Fritsch (MSKF) cumulus parameterization scheme (Zheng 

et al., 2016) and the version of WRF with this capability is referred to here as WRF-MSKF-LDA.    

1.2 Background 

A key deficiency of many retrospective meteorological simulations is the timing and location of 

convective rainfall. In addition to poor simulation of rainfall itself, misplacement of deep 

convection can negatively affect near-surface meteorology such as temperature, humidity, winds, 

and boundary layer height, all of which negatively impact air quality simulations. 

 

Heath et al., (2016) developed a simple LDA method for improving parameterized deep convection 

in retrospective weather simulations. The method has a straightforward approach to force deep 

convection where lightning is observed and only allow shallow convection where it is not. The 

LDA method has been used to improve air quality simulations in Community Model for Air 

Quality (CMAQ) (Heath et al. 2018) and into the modeling system used by the Environmental 

Protection Agency (EPA) (e.g., Kang et al., 2020; Pleim et al., 2019; Kang et al. 2019; Pye et al., 

2018; Foroutan and Pleim, 2017). The LDA method for this project improves upon the previous 

work by applying the technique at higher resolutions and using publicly available satellite-derived 

lightning observations from GLM (Goodman et al., 2013). 

 

2 Lightning Data Assimilation 

A LDA User Guide document, Deliverables 3.2 and 4.2, describes the code provided by AER to 

download, process, and regrid publicly available observations from the Geostationary Lightning 

Mapper (GLM) into the input format required by the WRF LDA method. It consists of three Python 

scripts: get_data.py, to retrieve the data; regrid_ltg.py, to regrid the data to the WRF grid; and 

gcdistance.py, a function called by regrid_ltg.py. Methods for installing the libraries necessary to 

run the codes on TCEQ computing systems were included in the User Guide, along with quality 

assurance of the gridded lightning data when compared to the point lightning flash data. 

 

2.1 GLM Data 

The get_data.py script, executed with two arguments, start_date and end_date, will download all 

the GLM data between (and inclusive of) those dates.  The data files will be downloaded in netCDF 

format to sub-directories with names corresponding to the day-of-year and hour of the data.  For 

example, the data for June 1, 2019, for 0000 UTC to 0059 UTC will be downloaded to sub-

directory 152/00.  Each file will have a descriptive name that indicates the range of the time 

covered and the creation date. For example, the file name below can be interpreted as follows. 

OR_GLM-L2-LCFA_G16_s20191520000000_e20191520000200_c20191520000228.nc 

Data starting date: 2019 day 152 
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Data starting time: 00:00:00.0 UTC 

Data starting date: 2019 day 152 

Data ending time: 00:00:20.0 UTC   

File creation date: 2019 day 152 

File creation time: 00:00:22.8 UTC 

The file sizes are variable depending on how much lightning data is available.  Generally, we have 

found that 1 day is about 1.5 – 2.5 GB of data. 

2.2 Preprocessing and Regridding GLM data 

The lightning data is then regridded to the WRF domain using regrid_ltg.py.  The script requires 

that the GLM data have been downloaded into the directory structure described in the previous 

section.  It also needs WRF grid information from the geo_em.d{domid}.nc file that is created by 

the WPS. Finally, it also requires the gcdistance function and expects it to be available via the 

delivered gcdistance.py file placed in the same working directory. The command syntax for 

regrid_ltg.py is illustrated with the following example. 

python regrid_ltg.py --start_date 2019-06-01_00:00:00 --

end_date 2019-06-02_00:00:00 --base_dir /mnt/fsx-

rd/WRF_LDA/GLM_Data --wrf_dir /mnt/fsx-rd/WRF_LDA/WPS --

domid 01 

In the above example note that start_date and end_date inputs include the hours, minutes, and 

seconds.  These parameters must be specified to exactly match the start and end times of the WRF 

run. The base_dir parameter must include the full path to the GLM data where there will be day-

of-year/hour subdirectories as described in the previous section.  Similarly, the wrf_dir input must 

include the full path to the WRF geo_em.d{domid}.nc file.  The domid input specifies to which 

WRF domain the lightning data will be regridded. 

The output of the script is one ltgda_d{domid}_YYYY-MM-DD.nc file with YYYY-MM-DD 

corresponding to start_date. The file contains one variable, LNT, of the same horizontal 

dimensions as the WRF domain domid, with the grid cell set to 1 if a lightning flash occurred 

within that cell and 0 if not. LNT also has a time dimension that currently updates at 10 min 

timesteps. Each LNT timestep includes any lightning flash occurrences between that time and 30 

min into the future. The 10-min update cadence and 30-min accumulation interval was chosen to 

coincide with Heath et al. (2016) and its original development of the lightning data assimilation 

method. The inclusion of 30 minutes into the future at each timestep allows the convective 

parameterization to be turned on prior to the appearance of lightning, as convection typically 

initiates some time before the first lightning flash. The 10-min update cadence will be tested during 

upcoming tasks to evaluate the sensitivity of the LDA method to that selection. 

The current configuration of one output file containing all timesteps can be modified by AER upon 

request if the size of the file becomes unwieldy: if a ltgda file is being created for a WRF run 

lasting for several months, for example. In the case of the WRF runs conducted as described below, 

one ltgda file was created for each domain for each day’s run (30 hours), which were all initialized 

individually. 
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2.3 Quality assurance of regridded GLM data 

To determine the accuracy of the lightning regridding software, we (1) used multiple calculation 

methods to determine the WRF grid point nearest a flash and (2) plotted comparisons of multiple 

time periods of raw flash data and regridded data (LNT). The two calculation methods used were 

the geopy library distance function and an internally coded great circle distance function using the 

haversine formula; the two methods assume slightly different shapes of the earth. The resulting 

LNT data, regridded using both methods, were identical for all tested dates. Plots of co-located 

raw flash and regridded lightning data were also used for evaluation over different time scales 

(multiple days, multiple hours, only 10 minutes). Again, all were identical. 

2.4 Lightning Data Assimilation Options in WRF MSKF 

There are several options that control the lightning data assimilation in the WRF-MSKF-LDA 

system.  One is the time interval at which lightning data will be simulated. This is determined by 

generating gridded lightning data at a specified time interval and specifying this same interval in 

the WRF namelist.input file as described in the Technical Memo for Deliverable 5.1   An interval 

of 10 minutes is recommended as this has been tested in the development of the assimilation system  

(Heath et al., 2016) and is the interval used in the simulations performed for this project.  In 

practice, the advantages of a shorter time interval must be weighed against the disadvantages of 

increased compute time and storage space required for the gridded lighting data files.  Another 

option that can influence the impact of the LDA is the interval at which the MSKF convective 

scheme is called. Generally, the cumulus parameterization interval, cudt, set in namelist.input 

should be set to 0, to run every model timestep.  The WRF run time can be sped up, slightly, by 

setting it to 10 to match the grouping of the lightning observations.  As with the lightning data 

interval there will be a trade-off between model compute time and simulation accuracy.   

  

There are also three convection suppression options available in the WRF-MSKF-LDA system 

and these are set with the suppress_opt entry in  the WRF namelist.input file as described in the 

Technical Memo for Deliverable 5.1.  If suppress_opt=0,  the MSKF scheme will run as normal if 

lightning is not present in a grid box, but deep convection will be forced if the lightning is present. 

For suppress_opt=1, if lightning is not present in a grid box the MSKF scheme will be skipped 

entirely.  This option is generally not recommended as it is the most severe restriction on 

convective parameterization.  For suppress_opt=2,  if lightning is not present only shallow 

convection will be allowed in the MSKF scheme.  Some tests at EPA (Heath et al., 2016) showed 

that suppress_opt=2 was the best option for the normal KF scheme (Kain, 2004),  thus, this is the 

recommended starting option.  But option suppress_opt=0 may also work well for the MSKF 

scheme, so it is worth testing if there are not major improvements with suppress_opt=2. 

 

2.5 Impact of MSKF Suppression Options 

 

A few preliminary tests were performed with the WRF-MSKF-LDA system to ensure that the 

lightning data were read-in correctly and that the lightning variable LNT generally lines up with 

convective rainfall variable RAINC in the WRF output files.  These tests were also evaluated to 

examine the impact of the MSKF suppression options.  Only suppress_opt=0 and suppress_opt=2 

were tested.  Figure 1 below shows the LNT field and Figure 1b shows the RAINC field for a 24-

hour test simulation performed using suppress_opt=2, as set in the provided namelist.input file.  

Figure 1c shows the RAINC field at the same time for a simulation that was performed with all 
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the same settings as in Figure 2 but with suppress_opt=0.  Note that for the run with the 

suppress_opt=2  there is a notably better match between the LNT and RAINC.  It is not a perfect 

match because shallow RAINC as well as grid-resolved precipitation will still be included, and 

because the lifetime of the convective clouds is different than the grouping of the lightning 

observations.   The suppress_opt=2 run shown in Figure 2 is also more like the observed Stage-IV 

precipitation analysis shown in Figure 1d. By limiting the amount of deep convection triggered by 

the convective parameterization, the deep convection that is triggered has a better source of 

available instability and can produce more intense convection and rainfall.  
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Figure 1: (a) The LNT field for a 24-hour WRF-MSKF-LDA simulation beginning 0000 UTC 1 

June 2019. The red shaded areas are grid points for which lightning was observed during the 

simulation period. (b) RAINC field accumulation ending at 0000 UTC 2 June 2019.  This 

simulation was performed with suppress_opt=2. (c) RAINC field accumulation ending at 0000 

UTC 2 June 2019 with suppress_opt=0. (d) Accumulated 24-h precipitation from the NCEP/EMC 

Stage-IV gridded analysis over the same time period. The Stage-IV analysis uses a radar-based 

precipitation estimate that is manually quality controlled using surface observation data. 
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3 Evaluation of WRF Runs with and without LDA 

3.1 Using MET 

The Model Evaluation Toolkit (MET; available publicly online via 

https://dtcenter.org/community-code/model-evaluation-tools-met/download), was used to perform 

the WRF output validation. MET offers many different verification methods. Per the work order, 

we performed point-based verification of temperature and wind speed by comparing WRF output 

to surface station observations obtained from MADIS. Hourly observation data was retrieved. 

Observations within 5 minutes of the model output time were retained.  

 

We also performed grid-based verification of precipitation by comparing WRF output to Stage-IV 

radar-based precipitation estimates. Stage-IV precipitation data was accumulated over 24-h 

intervals. 

 

3.2 Temperature and Winds  

The verification statistics for temperature are found in Table 1 and for U (west -to-east)  and V 

(south-to-north ) winds in Tables 2 and 3 respectively.   Lower and upper confidence limits are 

calculated assuming a bivariate normal distribution of the two fields (forecast and observations). 

These confidence limits were used to identify statistically significant difference between the two 

skill scores.  There were no statistically significant differences in verification statistics between 

the LDA and noLDA runs found for 2-m temperature or 10-m U or V wind speeds. 

 

Table 1: WRF MET temperature  statistics for the simulations with and without LDA. 

Domain 1 LDA noLDA 

Pearson Correlation Coefficient 0.897494 0.895109 

lower confidence limit 0.88883 0.886265 

upper confidence limit 0.905519 0.903306 

Mean Error -0.005814 0.014493 

lower confidence limit -0.11081 -0.090706 

upper confidence limit 0.099182 0.119693 

Error Standard Deviation 2.435534 2.440162 

lower confidence limit 2.36349 2.367978 

upper confidence limit 2.512142 2.516918 

 

Domain 2 LDA noLDA 

Pearson Correlation Coefficient 0.656352 0.651841 

lower confidence limit 0.579312 0.57447 

upper confidence limit 0.722439 0.718396 

Mean Error 0.279499 0.41105 

lower confidence limit 0.024556 0.159513 

upper confidence limit 0.534441 0.662588 

Error Standard Deviation 1.884298 1.858283 

lower confidence limit 1.719612 1.695803 

upper confidence limit 2.084156 2.055482 

https://dtcenter.org/community-code/model-evaluation-tools-met/download
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Table 2: U wind speed statistics. 

 

Domain 1 LDA noLDA 

Pearson Correlation Coefficient 0.632422 0.643467 

lower confidence limit 0.605726 0.61737 

upper confidence limit 0.65771 0.668166 

Mean Error 0.144268 0.127233 

lower confidence limit 0.048594 0.034334 

upper confidence limit 0.239942 0.220131 

Error Standard Deviation 2.18067 2.117155 

lower confidence limit 2.115056 2.053445 

upper confidence limit 2.250516 2.184975 

 

 

Domain 2 LDA noLDA 

Pearson Correlation Coefficient 0.443159 0.464456 

lower confidence limit 0.330607 0.354102 

upper confidence limit 0.54364 0.562392 

Mean Error 0.140278 0.065772 

lower confidence limit -0.120094 -0.179684 

upper confidence limit 0.400649 0.311228 

Error Standard Deviation 1.899931 1.790332 

lower confidence limit 1.731923 1.631955 

upper confidence limit 2.10434 1.983041 

 

Table 3: V wind speed statistics. 

Domain 1 LDA noLDA 

Pearson Correlation Coefficient 0.649082 0.663419 

lower confidence limit 0.623478 0.63861 

upper confidence limit 0.673317 0.686872 

Mean Error 0.146229 0.15806 

lower confidence limit 0.045048 0.05993 

upper confidence limit 0.24741 0.25619 

Error Standard Deviation 2.306602 2.236837 

lower confidence limit 2.237211 2.169539 

upper confidence limit 2.380467 2.308476 

 

Domain 2 LDA noLDA 

Pearson Correlation Coefficient 0.463447 0.47852 
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lower confidence limit 0.35541 0.371973 

upper confidence limit 0.559862 0.573216 

Mean Error 0.401154 0.410009 

lower confidence limit 0.100074 0.126057 

upper confidence limit 0.702234 0.693962 

Error Standard Deviation 2.198002 2.072212 

lower confidence limit 2.003719 1.888986 

upper confidence limit 2.434358 2.295131 

 

 

3.3 Evaluating 6 and 24-hour Precipitation 

The precipitation statistics are presented in Table 4.   When all thirty days of the simulation period 

are considered the differences between the LDA and noLDA statistics are small.  We also 

considered whether LDA would be more impactful on days with substantial precipitation than on 

days where little to no precipitation occurred.  For Domain 1, which covers CONUS, it was not 

practical to subjectively separate high precipitation days from low precipitation days as substantial 

precipitation occurred in some part of the domain on all the days.  Therefore, we focused on 

Domain 2 that covered eastern Texas only, but this was also not easy as June 2019 was a very 

rainy month in Texas.   According to NWS Advanced Hydrologic Prediction Service (AHPS) at  

https://water.weather.gov/precip/ many locations in eastern Texas reported more than 127 mm (5 

inches) of rainfall during the month.  We used daily AHPS observed precipitation analyses to select 

six days (20 % of total) with substantial heavy precipitation coverage and six days with little 

precipitation in eastern Texas.  The statistics for these subsets of days are referred to in the tables 

as  “wet” and “dry’ respectively.  For the wet days the Pearson Correlation Coefficient for the 24-

hour precipitation was better for LDA (0.417) than for no LDA(0.312).  For the 6-hour 

precipitation it was also better for LDA (0.238) compared to noLDA (0.210) but to a much smaller 

degree than for the 24-hour precipitation. However, for both the 24-hour and 6-hour precipitation 

the Mean Error and Standard Deviation statistics were larger for the LDA simulations.  For the dry 

days the Pearson Correlation Coefficient for the 24-hour precipitation was greater for the LDA 

(0.271 ) than for noLDA ( 0.195) but for the 6-hour precipitation the LDA value (0.098) was 

slightly lower than for the noLDA value (0.105).  However, for these days both the 24-hour and 

6-hour Mean Error were about half as large for LDA than for noLDA. 

 

Overall, the impacts of LDA on the WRF precipitation simulation were mixed and less substantial 

than anticipated.  To investigate this further we have examined plots of convective and gridded 

rain for the WRF runs with and without LDA.  Sample plots for the case of June 6, 2019, are shown 

in Figures 2.  In general, it appears the lightning assimilation is significantly suppressing the 

convective precipitation.  This possibility will be further explored in Section 3.4.  

 

  

https://water.weather.gov/precip/
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Table 4: WRF MET precipitation statistics for the simulations with and without LDA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Domain 1 LDA noLDA 

Pearson Correlation Coefficient 
  

24-hour 0. 401564 0.413194 

6-hour 0.290604 0.287735 

Mean Error 
  

24-hour 0.200166 -0.188526 

6-hour 0.047263 -0.042505 

Error Standard Deviation 
  

24-hour 10.680689 9.258428 

6-hour 4.950240 4.410723 

Domain 2 LDA All LDA Dry LDA Wet noLDA All noLDA 

Dry 

noLDA 

Wet 

Pearson 

Correlation 

Coefficient 

 
  

 
  

24-hour 0.296738 0.270708 0.417221 0.257560 0.194789 0.312253 

6-hour 0.153928 0.097543 0.238339 0.151281 0.105681 0.209951 

Mean Error 
 

  
 

  

24-hour 0.310334 -0.971195 1.856453 -0.903175 -1.859827 0.347953 

6-hour 0.082687 0.051284 0.537450 -0.228820 -0.116058 -0.295021 

Error Standard 

Deviation 

 
  

 
  

24-hour 13.480625 9.237843 17.567272 12.58414 9.647536 17.489318 
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Figure 2: 24-hour Gridded and convective precipitation for the June 6, 2019 case for WRF LDA 

( top) and WRF_noLDA (bottom) 
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3.4 Explanation for lack of Impact of LDA on Statistics 

The lack of impact of the LDA on the precipitation, temperature, and wind statistics was 

perplexing, given that we have seen extensive improvement when using the LDA method with the 

original Kain-Fritsch (KF) parameterization (Kain 2004): for example, in Heath et al. (2016), the 

original motivation for the study, as well as in recent AER work evaluating Kain-Fritsch 

parameterization performance both with and without LDA over the state of Oklahoma during the 

Deep Convective Cloud and Chemistry (DC3) field campaign, also for a domain with 12-km 

horizontal resolution. 

 

To determine the reason behind this puzzling lack of impact, we evaluated the rainfall fields 

produced on individual dates identified as “wet” (see Section 3.1 above). The KF parameterization 

separates rainfall output into “RAINC”, or convective precipitation output by the parameterization, 

and “RAINNC”, or grid-scale precipitation output directly by the model itself. 

 

Figure 3 below shows the RAINC output from WRF with LDA (upper left), without LDA (upper 

right), the difference between the two (bottom left), and Stage-IV observations for 6 June 2019. 

Note that the lower left subfigure in Figure 3 shows the impact of the LDA was almost entirely to 

reduce the amount of precipitation produced by the convective parameterization. Recall that 

suppress_opt = 2 was used, which shifts processing within the convective parameterization to the 

shallow part of the parameterization scheme if lightning is not detected and is then output in the 

grid-scale precipitation if any is produced. The suppression took place in the correct location when 

compared to the location of lightning (Figure 3 top left). For example, the large amount of 

convective precipitation along the Gulf Coast in southern Mississippi and Alabama that was not 

occurring in observations was suppressed in the LDA run. An (albeit smaller) increase in grid-

scale precipitation is evident in Figure 4 in the same area (bottom left), where some of the shallow 

convective precipitation is being produced. 



 

Figure 3: (upper left) WRF accumulated RAINC in LDA run (mm; colorbar) and occurrence of lightning in WRF grid cell (pink dots) over 

24 h ending 0600 UTC 7 June 2019. (upper right) WRF accumulated RAINC in noLDA run (mm; colorbar). (bottom left) Difference 

between RAINC in LDA – noLDA run. Brown regions are where the LDA run was drier than the noLDA run. (bottom right) Stage-IV 

precipitation analysis. Note the different color scale used. 
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Figure 4: As in Fig. 2, but for RAINNC, gird-scale precipitation. Note the precipitation color scales for WRF RAINNC and Stage-IV are 

now similar. 



However, unlike all AER’s previous tests using LDA, the LDA did not result in an increase in 

RAINC in areas where lightning was occurring.  Instead, it served only to suppress incorrect 

precipitation. Considering that the resulting forecast would be a good bit drier than the noLDA 

forecast, it is impressive the precipitation statistics showed little change. 

 

The LDA design as well as a difference in entrainment calculation between the KF and Multi-

Scale Kain Fritsch (MSKF) potentially reveals the answer for the lack of increase in RAINC. The 

LDA applies small perturbations in moisture and temperature to the cloud base within the 

parameterization’s calculations of a convective updraft. If the resulting updraft is strong enough 

to reach the -20C level (as would be necessary to generate enough mixed phase particles for 

lightning to occur), the parameterization continues as normal. If the resulting updraft is not strong 

enough, additional moisture and temperature perturbations are applied until a limit of 1 g/kg of 

moisture increase has been applied. If the updraft is still not deep enough, no convection is trigged 

at that timestep, despite lightning having been present. This design is the same between the KF 

and MSKF configurations. 

 

The potential difference lies in the calculation of the entrainment, and hence, updraft speed, in KF 

as compared to the MSKF. The MSKF includes an additional scaling factor when calculating 

entrainment that is dependent on the grid scale (i.e., Eqs. 1-3 of Zheng et al. 2016), that is not 

present in the KF. We theorize that this additional factor results in a different updraft profile. Thus, 

the perturbations applied by the LDA were only rarely able to produce a tall enough updraft to 

reach -20C. We hypothesize that increasing the perturbation limit of 1 g/kg of moisture would 

improve the LDA simulations by allowing it to force precipitation more successfully. 

 

4 Impact of LDA on CAMx 

4.1 Description of CAMx 

To test the impact of the new MSKF LDA data assimilation on simulations of O3 in Texas, we ran 

CAMx with (LDA) and without LDA (noLDA) for June 2019. CAMx inputs for May 15-June 30 

were provided by TCEQ corresponding to their 2019 O3 modeling platform, with a 12 km 

resolution over the contiguous US and a 4 km resolution over East Texas. We used wrf2camx to 

prepare updated 12 km and 4 km meteorological files to drive CAMx starting June 1 based on the 

WRF simulations discussed in Section 3.  

 

Initial testing found an error in the wrf2camx land use files. These files lacked the “watermask” 

variable to distinguish fresh water from sea water. As the TCEQ inputs were in netCDF, and the 

watermask code provided by Ramboll only works on CAMx binary input files, we decided to use 

the TCEQ-provided land use files in our simulations. Thus, the only difference between the 

noLDA and LDA runs were the 4 km and 12 km 2D and 3D meteorological files.  

 

4.2 Evaluation of CAMx with and without WRF LDA 

Our CAMx runs were evaluated using AMET v1.3 and 2019 AQS data provided by the U.S. EPA1. 

Only the 4 km domain was evaluated as this would be of most interest to TCEQ. Here we discuss 

 
1 https://drive.google.com/drive/folders/1k37U9USjp6_vpr77BCyZ_JrxGtLudRWG from 

https://www.epa.gov/cmaq/atmospheric-model-evaluation-tool 

https://drive.google.com/drive/folders/1k37U9USjp6_vpr77BCyZ_JrxGtLudRWG
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the results for MDA8 O3 at all sites in the 4 km domain. This evaluation satisfies the requirement 

that 10% of the data for the project be audited.  

 

Table 5 shows various statistics for the CAMx runs with LDA and without LDA. In general, both 

model runs compare well to observations, with low mean bias and mean error. However, there is 

little difference between the noLDA and LDA runs, and to the extent there is a difference, the 

noLDA runs are slightly worse. For example, the mean bias across all East Texas sites and days 

increased to 2.5 ppbv from 2.2 ppbv when LDA was implemented. 

 

Figure 5 shows a scatter plot of the MDA8 O3 value at each site and day, (a) for LDA and (b) for 

noLDA. Figure 6 is a map of mean bias in MDA8 O3 at each site in East Texas for June 2019. 

Again, there is little noticeable difference between the LDA and noLDA runs.  

 

Table 5. Statistics for MDA8 O3 across all sites in East Texas for June 2019. 

Simulation LDA NoLDA 

Mean Bias (ppb)  2.5 2.2 

Mean Error (ppb) 9.3 9.2 

RMSE (ppb) 11.6 11.3 

Normalized Mean Bias (%) 6.1 5.4 

Normalized Mean Error (%) 22.7 22.4 

R2 0.45 0.46 

 

 
Figure 5. Scatterplots of MDA8 values for all days and sites in East Texas for June 2019. (a) a) 

CAMx simulation with LDA. (b) CAMx simulation without LDA. 
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Figure 6. Mean bias in MDA8 O3 for June 2019 at all AQS sites in East Texas. (a) CAMx 

simulation with LDA. (b) CAMx simulation without LDA. 

 

5 Summary and Recommendations for Further Study 

In this work, AER developed software to download, process, and regrid publicly available 

observations from the Geostationary Lightning Mapper (GLM) into the input format required by 

the WRF LDA method.  A User’s Guide was provided to TCEQ for this software. To determine 

the accuracy of the lightning regridding software, we (1) used multiple calculation methods to 

determine the WRF grid point nearest a flash and (2) plotted comparisons of multiple time periods 

of raw flash data and regridded data. Plots of co-located raw flash and regridded lightning data 

were also used for evaluation over different time scales (multiple days, multiple hours, only 10 

minutes). 

We implemented the LDA method into the Multi-Scale Kain-Fritsch (MSKF) scheme in WRF and 

provided TCEQ with a recipe to implement this change in current and future versions of WRF. 

We evaluated the performance of WRF for June 2019 simulations with the Model Evaluation 

Toolkit (MET). We found little difference in the temperature, wind, and precipitation verification 

across both domains, which was highly surprising. Evaluation revealed that the LDA worked 

almost solely to suppress precipitation where lightning did not occur and was not adding 
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precipitation where lightning was occurring. We theorize increasing the perturbation threshold 

LDA allows inside the MSKF to trigger convection could address this issue. 

To test the impact of the new MSKF LDA data assimilation on simulations of O3 in Texas, we ran 

CAMx with (LDA) and without LDA (noLDA) for June 2019. In general, both CAMx runs 

compare well to observations, with low mean bias and mean error. However, there is little 

difference between the noLDA and LDA runs, and to the extent there is a difference, the noLDA 

runs are slightly worse. 

 

For future work, we suggest rerunning a few select dates from the “wet” subset of dates using an 

increased temperature and moisture perturbation threshold in the LDA option within MSKF. 

 

6 References 

Foroutan, H., and Pleim, J. E. (2017), Improving the simulation of convective dust storms in 

regional‐to‐global models, J. Adv. Model. Earth Syst., 9, 2046– 2060, 

doi:10.1002/2017MS000953. 

Goodman, S. J., and Coauthors (2013), The GOES-R Geostationary Lightning Mapper (GLM). 

Atmos. Res., 125–126, 34–49, doi:https://doi.org/10.1016/j.atmosres.2013.01.006. 

Heath, N. K., and D. Dean (2018), Application of Lightning Data Assimilation Technique to 

Improve Transport and Dispersion Simulations. Paper presented at 20th Joint Conference on 

the Applications of Air Pollution Meteorology with the A&WMA, American Meteorological 

Society, P6.4. 

Heath, N. K., Pleim, J. E., Gilliam, R. C., and Kang, D. (2016), A simple lightning assimilation 

technique for improving retrospective WRF simulations, J. Adv. Model. Earth Syst., 8, 1806– 

1824, doi:10.1002/2016MS000735. 

Holle, R. L., Cummins, K. L., and Brooks, W. A. (2016). Seasonal, Monthly, and Weekly 

Distributions of NLDN and GLD360 Cloud-to-Ground Lightning, Mon. Wea. Rev., 144(8), 

2855-2870. 

Kain, J. S,, (2004), The Kain-Fritsch convective parameterization: an update, J. Appl. Meteor. 

Climatol., 43(1), 170 -181., https://doi.org/10.1175/1520-

0450(2004)043%3C0170:TKCPAU%3E2.0.CO;2 

Kang, D., Mathur, R., Pouliot, G.A. et al. (2020), Significant ground-level ozone attributed to 

lightning-induced nitrogen oxides during summertime over the Mountain West States. npj 

Clim Atmos Sci, 3, 6 (2020). https://doi.org/10.1038/s41612-020-0108-2. 

Kang, D., K. Pickering, D. Allen, K. Foley, Cheung Wong, R. Mathur, and S. Roselle (2019), 

Simulating lightning NO production in CMAQv5.2: evolution of scientific updates. Geosci. 

Model Dev., Copernicus Publications, Katlenburg-Lindau, Germany, 12(7):3071–3083, 

(2019). https://doi.org/10.5194/gmd-12-3071-2019. 

Pleim, J. E., Ran, L., Appel, W., Shephard, M. W., and Cady‐Pereira, K. (2019), New 

bidirectional ammonia flux model in an air quality model coupled with an agricultural model. 

J. Adv. Model. Earth Sys., 11, 2934– 2957. https://doi.org/10.1029/2019MS001728. 

Pye H. T., Zuend A, Fry JL, et al. (2018), Coupling of organic and inorganic aerosol systems and 

the effect on gas-particle partitioning in the southeastern US. Atmos Chem Phys., 18(1), 357- 

370. doi:10.5194/acp-18-357-2018 

https://doi.org/10.5194/gmd-12-3071-2019
https://doi.org/10.1029/2019MS001728


 23 

Zheng, Y., Alapaty, K., Herwehe, J. A., Del Genio, A. D., and Niyogi, D. (2016). Improving 

High- Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) 

Model with an Updated Kain–Fritsch Scheme, Mon. Wea. Rev., 144(3), 833-860 

 




