Bryan W. Shaw, Ph.D., P.E., Chairman

Toby Baker, Commissioner

Jon Niermann, Commissioner

Richard A. Hyde, P.E., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

June 29, 2016

Mr. Mark Hansen Associate Director, Air Programs U.S. Environmental Protection Agency Region 6 1445 Ross Avenue, Suite 1200 Dallas, TX 78202-2733 Re: 2016 Annual Monitoring Network Plan

Dear Mr. Hansen:

In accordance with 40 Code of Federal Regulations §58.10, the Texas Commission on Environmental Quality (TCEQ) is submitting the *2016 Annual Monitoring Network Plan* (AMNP) for your consideration.

The AMNP provides information on the Texas network of ambient air monitors established to meet regulatory requirements of the National Ambient Air Quality Standards and other monitors that support this effort. This document presents the current Texas network as well as proposed changes to the network from July 1, 2015, through December 31, 2017.

The AMNP was made available for public inspection for 30 days prior to submission. During the comment period, the TCEQ received three sets of comments concerning the 2016 AMNP. In response to these comments, the TCEQ added Appendix K to summarize and provide a written response to each comment. All comments received during the public inspection period are enclosed.

If you need additional information, please contact me at (512) 239-0539.

Sincerely,

Richard C. Chism, Director

Monitoring Division

Enclosures

Texas Commission on Environmental Quality

2016 Annual Monitoring Network Plan

P.O. Box 13087, Austin, Texas 78711-3087

Table of Contents

2 2
3
3
4
4
6
8
11
12
13
15
19
20
20
21
21
22
23
23

List of Appendices

- Appendix A Ambient Air Monitoring Network Site List
- Appendix B Population and Monitoring Requirements by Metropolitan Statistical Area
- Appendix C Nitrogen Dioxide and Total Reactive Nitrogen Monitoring Requirements
- Appendix D Sulfur Dioxide Monitoring Requirements
- Appendix E Sulfur Dioxide Data Requirements Rule Monitor Placement Evaluations
- Appendix F Ozone Monitoring Requirements
- Appendix G Carbon Monoxide Monitoring Requirements
- Appendix H Particulate Matter of 10 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes
- Appendix I Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements, Federal Reference Method Monitor Locations, and Method Codes
- Appendix J Acronym and Abbreviation List
- Appendix K TCEQ Responses to Comments Received on the 2016 Annual Monitoring Network Plan

List of Tables

- Table 1: Near-Road Site List
- Table 2: Recommended Source-Oriented Sulfur Dioxide Monitoring Stations
- Table 3: 2013-2014 Lead Point Source Emissions Inventory Data
- Table 4: Sites Measuring National Core Multipollutant Monitoring Stations Total Suspended Particulate Lead
- Table 5: Particulate Matter of 10 Micrometers or Less Monitoring Requirements
- Table 6: Particulate Matter of 10 Micrometers or Less Collocation Summary
- Table 7: Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements
- Table 8: Continuous Particulate Matter of 2.5 Micrometers or Less Decommission Recommendation Summary
- Table 9: Canister and Automated Gas Chromatograph Site List

2016 Annual Monitoring Network Plan

Introduction

Title 40 Code of Federal Regulations (CFR) Part 58.10 requires states to submit an annual monitoring network plan (AMNP) to the United States (U.S.) Environmental Protection Agency (EPA) by July 1 of each year. This monitoring plan is required to provide the implementation and maintenance framework for an air quality surveillance system, known commonly as the ambient air quality monitoring network. The AMNP must be made available for public inspection and comment for at least 30 days prior to submission to the EPA. The AMNP is forwarded to the EPA for final review and approval along with any comments received during the 30-day inspection period and the associated Texas Commission on Environmental Quality (TCEQ) responses as an appendix.

This document provides information on the TCEQ ambient air monitoring network established to meet the National Ambient Air Quality Standards (NAAQS) regulatory requirements and other monitors that support this effort. This document presents the current Texas network, as well as recommended changes to the network, from July 1, 2015, through December 31, 2017. As described in 40 CFR Part 58, Appendix D, monitors are deployed to meet minimum design requirements for the State or Local Air Monitoring Stations (SLAMS), Photochemical Assessment Monitoring Stations (PAMS), and National Core Multipollutant Monitoring Stations (NCore) federally required ambient air monitoring networks. A list of all monitors and their respective networks is located in Appendix A.

Based on annual internal audits performed to date, all monitoring sites are meeting the requirements defined in 40 CFR Part 58 Appendices A, B, C, D, and E, with one exception. The Brownsville site (EPA air quality system [AQS] database number [#] 480610006) is no longer meeting the siting criteria defined 40 CFR Part 58, Appendix E due to a utility structure constructed in the monitoring path of the sampler inlets after the site was deployed. The TCEQ is investigating options for site relocation to meet siting criteria.

Because SLAMS requirements are partially based on population, a summary of core based statistical areas (CBSAs) or metropolitan statistical areas (MSAs), 2015 U.S. Census Bureau population estimates, and a summary count of required monitors is located in Appendix B. The TCEQ relied on this summary in evaluating monitors as documented in this AMNP. The U.S. Census Bureau defines CBSA as a collective term for MSAs, and the terms are used interchangeably in this plan.

Note: Monitoring data has been updated from originally posted copy to reflect final data certification. In addition, Baytown Refinery has been removed from the list of sources to be monitored by January 1, 2017, in this AMNP to reflect the current list of 13 sources initially identified in the Data Requirements Rule.

Regulatory Network Changes

Nitrogen Dioxide (NO₂)

The TCEQ NO₂ network is designed to meet area-wide, Regional Administrator 40 (RA-40), and near-road monitoring requirements. Title 40 CFR Part 58, Appendix D, Section 5 also requires hourly averaged NO₂, nitrogen oxide (NO), and total reactive nitrogen compounds (NO_y) to be collected at required NCore sites under the PAMS program. The state-wide NO₂ network consists of NO₂ monitoring at 46 sites, with NO_y measured at five sites. Appendix C of this plan summarizes the monitoring requirements and the current number of NO₂ and NO_y monitors in each MSA in Texas.

Area-Wide Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.3 requires one area-wide ambient air quality monitoring site in each CBSA with a population of 1,000,000 or more persons in Texas. The requirements stipulate that the site must be located in the area with the expected highest NO₂ concentrations that are also representative of a neighborhood or larger (urban) spatial scale. Neighborhood scale monitoring is representative of air quality conditions in an area with dimensions between 0.5 and 4.0 kilometers, and urban scale monitoring is representative of air quality conditions in an area with dimensions between 4.0 and 50 kilometers according to 40 CFR Part 58, Appendix D, Section 4.3.5(a).

Based on 2015 U.S. Census Bureau population estimates for Texas, area-wide neighborhood or urban scale NO₂ monitoring is required in the Dallas-Fort Worth-Arlington, Houston-Woodlands-Sugar Land, San Antonio-New Braunfels, and Austin-Round Rock CBSAs. The following four NO₂ monitors meet these area-wide requirements, as approved in the TCEQ *2013 Annual Monitoring Network Plan* response letter from EPA Region 6 dated May 28, 2014. These monitors and their identification numbers are:

- Houston-The Woodlands-Sugar Land: Clinton (AQS# 482011035);
- Dallas-Fort Worth-Arlington: Dallas Hinton (AQS# 481130069);
- San Antonio-New Braunfels: San Antonio Northwest (AQS# 480290032); and
- Austin-Round Rock: Austin Northwest (AQS# 484530014).

Regional Administrator Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.4 states that the EPA Regional Administrators will collaborate with the states to designate a minimum of 40 NO₂ monitoring stations nationwide that are sited in locations to protect susceptible and vulnerable populations. The TCEQ collaborated with the EPA to identify appropriate monitoring sites to meet this requirement. The following four NO₂ monitors meet this requirement, as approved in the TCEQ *2013 Annual Monitoring Network Plan* response letter from EPA Region 6 dated May 28, 2014:

- El Paso: Ascarate Park Southeast (SE) (AQS# 481410055);
- Houston: Clinton (AOS# 482011035);
- Arlington: Arlington Municipal Airport (AQS# 484393011); and
- Nederland: Nederland High School (AQS# 482451035).

Near-Road NO₂ Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.3.2 requires one microscale near-road monitor in each CBSA with a population of 500,000 or more persons to be located near a major road with high annual average daily traffic (AADT) counts. An additional near-road monitor is required in each CBSA with a population of 2,500,000 or more persons. The current TCEQ near-road monitoring network, summarized in Table 1, is meeting this requirement with six operational near-road sites as approved in the TCEQ *2014 Annual Monitoring Network Plan* response letter from EPA Region 6 received January 14, 2015.

Table 1: Near-Road Site List

AQS Number	Site Name	Core Based Statistical Area	U.S. Census Bureau 2015 Population Estimate	Parameters Monitored (described below)
481131067	Dallas LBJ Freeway	Dallas-Fort Worth- Arlington	7,102,796	NO ₂ , met
484391053	Fort Worth California Parkway North	Dallas-Fort Worth- Arlington	7,102,796	NO ₂ , CO, PM _{2.5} , met
482011066	Houston Southwest Freeway	Houston-The Woodlands-Sugar Land	6,656,947	NO ₂ , met
482011052	Houston North Loop	Houston-The Woodlands-Sugar Land	6,656,947	NO ₂ , CO, PM _{2.5} , met
480291069	San Antonio Interstate 35*	San Antonio-New Braunfels	2,384,075	NO ₂ , met
484531068	Austin North Interstate 35*	Austin-Round Rock	2,000,860	NO ₂ , met

^{*}Carbon monoxide (CO) and particulate matter of 2.5 micrometers or less (PM_{2.5}) will be added by 1/1/2017.

Title 40 CFR Part 58, Appendix D, Section 4.3.2 currently requires the establishment of NO₂ near-road sites in the El Paso and McAllen-Edinburg-Mission CBSAs based on each area's 2015 U.S. Census Bureau population estimates. However, on May 5, 2016, the EPA proposed to remove the rule that requires NO₂ near-road monitoring in CBSAs with populations between 500,000 and 1,000,000 persons. The EPA is initiating this action based on a review of data generated by existing near-road NO₂ sites in larger CBSAs beginning in 2012. The data from these near-road sites indicate that the current NO₂ air quality concentrations in the near-road environment are generally well below both the annual and one-hour daily maximum NAAQS levels of 53 parts per billion (ppb) and 100 ppb, respectively. The EPA's proposal does not remove or modify the existing requirements for near-road NO₂ monitoring in CBSAs with 1,000,000 or more persons. The proposal is available at the following web address.

AQS - Air Quality System

met – meteorological equipment with sensors to monitor wind speed, wind direction, and ambient temperature

NO₂ – nitrogen dioxide

U.S. - United States

Due to the EPA proposal on May 5, 2016, to revise the near-road NO₂ monitoring requirements, the TCEQ has currently suspended planning activities for near-road sites in the El Paso and McAllen-Edinburg-Mission CBSAs. The TCEQ understands that EPA plans to complete the associated final rule before the January 1, 2017, deadline for operation. The TCEQ will continue to follow this issue and adjust near-road planning as further information becomes available from the EPA.

Changes to the Regulatory NO₂ Monitoring Network

The EPA recently finalized a clarification for NO₂ monitoring requirements in the Federal Register on March 28, 2016, *Revisions to the Ambient Monitoring Quality Assurance and Other Requirements; Final Rule,* stating that NO₂ was never a required NCore measurement and that the definition in 40 CFR Part 58 was erroneous. Based on this clarification, the TCEQ recommends removal of the NCore network designation from the NO₂ monitors at El Paso Chamizal (AQS# 481410044) and Houston Deer Park #2 (AQS# 482011039) from AQS effective April 27, 2016. These two monitors will continue to operate and fulfill PAMS and SLAMS NO₂ network requirements.

The TCEQ NO₂ network, as discussed above and summarized in Appendix C, meets or exceeds monitoring requirements in all areas. No further changes to the network are recommended at this time.

Sulfur Dioxide (SO₂)

Monitoring Requirements

Title 40 CFR Part 58, Appendix D, Section 4.4.2, requires states to establish an SO₂ monitoring network based on a calculated population weighted emissions index (PWEI). This index is calculated by multiplying the population of a CBSA with the emissions inventory (EI) data for counties within that CBSA. The calculated value is then divided by one million to obtain the PWEI value. The PWEI monitoring requirements are listed below:

- One monitor in CBSAs with a PWEI value equal to or greater than 5,000;
- Two monitors in CBSAs with a PWEI value equal to or greater than 100,000; and
- Three monitors in CBSAs with a PWEI value equal to or greater than 1,000,000.

As shown in Appendix D, the TCEQ used the 2015 U.S. Census Bureau population estimates and 2011 National Emissions Inventory (NEI) data with 2014 TCEQ point-source EI data to calculate the PWEI and determine the minimum monitoring requirements for each CBSA. The PWEI analysis described in Appendix D confirms that the TCEQ is currently meeting PWEI SO₂ monitoring requirements.

Data Requirements Rule

On June 2, 2010, the EPA established a primary (health based) one-hour SO₂ NAAQS at a level of 75 ppb. On August 10, 2015, EPA finalized the *Data Requirements Rule for the 1-Hour Sulfur Dioxide Primary NAAQS* (DRR). This DRR requires air agencies to provide data to characterize air quality around sources that emit 2,000 tons per year (tpy) or more of SO₂ and that are not located in an area already designated nonattainment. The DRR establishes criteria for identifying the emission sources and associated areas for SO₂ air quality characterization. The DRR also provides deadlines for source-oriented monitoring and/or modeling to characterize ambient air quality impacts from the identified SO₂ sources. Air agencies have the option to characterize air

quality by modeling predicted impacts of actual source emissions or by using strategically sited ambient air quality monitors. Monitors must be located in areas surrounding the identified SO₂ sources where maximum one-hour SO₂ concentrations are expected. The agency is required to submit information on deployment of new monitoring stations to the EPA Regional Administrator by July 1, 2016, as part of the AMNP.

Changes to the Regulatory SO₂ Monitoring Network

On January 15, 2016, the TCEQ provided the EPA with a list of 25 SO₂ sources meeting the DRR emissions applicability threshold. Based on the need to characterize air quality for the purposes of making area designations, the TCEQ will deploy source-oriented SO₂ monitors near 13 sources by the January 1, 2017, rule deadline. Due to the close geographical proximity of 4 out of the 13 sources, a total of 11 monitoring stations, listed in Table 2, are proposed for deployment to characterize ambient air quality surrounding each of these sources. The EPA is expected to finalize area designations for the remaining 12 sources by July 2, 2016. The TCEQ will pursue monitoring station locations as expeditiously as practical for any of the 12 remaining sources designated as nonattainment under the EPA's final action.

Table 2: Recommended Source-Oriented Sulfur Dioxide Monitoring Stations

Facility Name(s)	County Name	New Air Monitoring Station Name	AQS Number
Big Spring Carbon Black	Howard	Big Spring Midway	482271072
Calaveras Plant	Bexar	Heritage Middle School	480290622
Oxbow Calcining	Jefferson	Port Arthur 7 th Street	482451071
AEP Pirkey Power Plant	Harrison	Hallsville Red Oak	482031079
Streetman Plant	Navarro	Streetman Interstate 45*	483491081
Welsh Power Plant	Titus	Cookville FM 4855	484491078
Sandow Steam Electric Station and Sandow 5 Generating Plant	Milam	Rockdale John D. Harper Road*	483311075
Oak Grove Steam Electric Station	Robertson	Franklin Oak Grove*	483951076
Sid Richardson Borger Carbon Black and Orion Borger Carbon Black	Hutchinson	Borger FM 1559*	482331073
Harrington Generating Station	Potter	Amarillo Xcel El Rancho	483751077
Orion Echo Carbon Black Plant	Orange	Orange 1 st Street*	483611083

^{*}Site name and location pending EPA approval

AQS - Air Quality System

FM - farm-to-market

TCEQ Site Selection Process

The TCEQ focused on complying with the directly-applicable federal requirements listed in 40 CFR Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring station locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. The DRR requirements stipulate that ambient air monitoring stations must be deployed in areas

of maximum expected one-hour SO₂ concentrations in ambient air. The TCEQ approach included utilizing multiple techniques and guidance provided in the *SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistant Document* (Monitoring TAD). The Monitoring TAD suggests that modeling is one technique that may be used to assist in identifying potential ambient air monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD).

The TCEQ considered the modeling analyses, but did not rely solely on them in the prioritization of potential sites. The latitude and longitude of each SO₂ source designated for ambient air monitoring was plotted on a satellite map. Surrounding properties and associated owners were identified utilizing county appraisal district information. The TCEQ then collectively considered the following parameters: predominant wind flow, modeling analyses, property owner agreement, and logistical constraints, such as space, power availability, terrain, grade, and drainage. Failure to meet criteria for any single parameter did not necessarily exclude the location from consideration.

A monitor placement evaluation was performed for each source-oriented SO_2 air monitoring station listed in Table 2. The evaluations and resultant siting proposals are located in Appendix E. Evaluations with a draft watermark are pending EPA approval.

Lead (Pb)

Monitoring Requirements

The TCEQ Pb network is designed to meet 40 CFR Part 58, Appendix D, Section 4.5 monitoring requirements. This section requires a minimum of one source-oriented ambient air Pb monitoring site to measure maximum concentrations near each facility that emits 0.50 tpy and each airport that emits 1.0 tpy or more of Pb based on either the most recent NEI data or annual EI data submitted to meet state reporting requirements. In addition, state agencies are required to conduct ambient air Pb monitoring near Pb sources that are expected to show, or have shown in the past, to contribute to a maximum Pb concentration in ambient air in excess of the NAAQS of 0.15 micrograms per cubic meter (μ g/m³). To meet these requirements, the TCEQ supports total suspended particulate (TSP) Pb monitoring at six source-oriented sites and seven population exposure sites. Three of these sites also support non-source-oriented NCore requirements. The TCEQ network meets or exceeds federal requirements with Pb monitoring at these 13 sites.

Lead Waivers

The EPA Regional Administrator may waive the requirement in 40 CFR Part 58, Appendix D, 4.5(a) for monitoring near specific Pb sources with sufficient demonstration that the Pb source will not contribute to a maximum concentration in ambient air greater than 50 percent (%) of the NAAQS of 0.15 μ g/m³ based on historical monitoring data, modeling, or other approved means. All approved waivers must be renewed once every five years as part of the network assessment required under 40 CFR Part 58.10(d).

The TCEQ has submitted five Pb waivers for source-oriented monitoring since 2010, and all were granted by the EPA Region 6. Three of these waivers are no longer required because source emissions have decreased below the 0.50 tpy threshold. Requests to renew the Pb waivers for the Lower Colorado River Authority Fayette Power Plant in Fayette County and the U.S. Department of the Army facility in Fort Hood were submitted in the 2015 TCEQ *Texas Five-Year Ambient Monitoring Network***Assessment*. The two waiver renewal requests included information regarding a Pb modeling analysis indicating that the predicted maximum ground level concentration for a rolling three-month average continue to remain below 50% of the NAAQS. These waiver renewal requests were approved in the TCEQ 2015 Annual Monitoring Network Plan response letter from EPA Region 6 dated October 26, 2015, and are considered valid until July 1, 2020. In addition to the waivers, a Pb ambient air monitor was deployed in 2011 to monitor ambient Pb concentrations downwind of the Conecsus, Limited Liability Company (LLC) facility just west of the City of Terrell, therefore, no waiver request has been submitted for this source.

The TCEQ compared 2013 and 2014 point source EI data to reevaluate sources that reported Pb emissions of 0.50 tpy or more. Table 3 provides information regarding the sources with existing Pb waivers and required Pb monitoring. Three sources reported Pb emissions greater than 0.50 tpy in 2013. All three sources reduced their reported Pb emissions in 2014, with two out of the three sources reporting emissions well below this threshold. Through existing ambient air monitors and current Pb waivers, the TCEQ is meeting or exceeding all federal Pb monitoring requirements.

Table 3: 2013-2014 Lead Point Source Emissions Inventory Data

Company	County	2013 Pb Emissions (tpy)	2014 Pb Emissions (tpy)	TCEQ Comments
United States Department of the Army, Fort Hood	Bell	0.74	0.08	Pb waiver renewal approved on October 26, 2015.
Lower Colorado River Authority	Fayette	0.59	0.51	Pb waiver renewal approved on October 26, 2015.
Conecsus LLC	Kaufman	0.69	0.33	Pb is currently monitored at the Terrell Temtex site.

LLC - limited liability company

Pb - lead

TCEQ - Texas Commission on Environmental Quality

tpy - tons per year

According to 40 CFR Part 58, Appendix D, Section 3, Pb monitoring has been a required NCore measurement at sites in CBSAs with a population of 500,000 or more persons since 2011. However, the requirement to measure airborne particulate Pb at NCore sites was eliminated in the EPA's final rule published in the Federal Register on March 28, 2016, *Revisions to the Ambient Monitoring Quality Assurance and Other Requirements; Final Rule.* The EPA removed this requirement due to the extremely low concentrations being measured at these sites. The certified NCore non-source Pb data received by the EPA has typically been low: 3-month rolling averages measure around 0.01 µg/m³ as compared to the NAAQS level of 0.15 µg/m³.

In addition, the EPA noted that non-source Pb data will continue to be measured as particulate matter of 10 micrometers or less in diameter (PM₁₀) Pb at National Air Toxics Trends Station (NATTS) sites. The EPA also noted that the ongoing monitoring networks will adequately support the Pb non-source monitoring objectives. The TCEQ currently measures PM₁₀ Pb speciation at two NATTS sites, Houston Deer Park #2 (AQS# 482011039) and Karnack (AQS# 482030002), and PM_{2.5} Pb speciation as a part of the Chemical Speciation Network (CSN) at Houston Deer Park #2, Dallas Hinton (AQS# 481130069), and El Paso Chamizal (AQS# 481410044), as noted in Appendix A. The TCEQ currently measures NCore TSP Pb at three sites: Dallas Hinton, Houston Deer Park #2, and Ascarate Park SE (AQS# 481410055) in El Paso. Table 4 details the locations of the NCore TSP Pb measurements along with NATTS PM₁₀ Pb speciation and CSN PM_{2.5} Pb speciation.

Table 4: Sites Measuring National Core Multipollutant Monitoring Stations Total Suspended Particulate Lead

Sites Measuring NCore TSP Pb	AQS Number	2013-2015 Design Value (µg/m³)	Other Pb Monitoring in Area
Dallas Hinton	481130069	0.01	PM _{2.5} Pb speciation at this site for CSN
Ascarate Park SE (in El Paso)	481410055	0.01	PM _{2.5} Pb speciation at El Paso Chamizal for CSN
Houston Deer Park #2	482011039	0.00	PM ₁₀ Pb speciation at this site for NATTS

- number

 $\mu g/m^3$ – micrograms per cubic meter

AQS – Air Quality System

CSN - Chemical Speciation Network

NATTS - National Air Toxics Trends Stations

NCore - National Core Multipollutant Monitoring Stations

 PM_{10} – particulate matter 10 micrometers or less

PM_{2.5} – particulate matter 2.5 micrometers or less

Pb - lead

SE - southeast

TSP - total suspended particulate

Collin County Pb Redesignation Request

On December 31, 2010, the EPA designated an area surrounding Exide Technologies (Exide) located in Frisco, Collin County, as nonattainment for the 2008 Pb NAAQS (75 Federal Register 71033). To demonstrate attainment, the area is required to have three-month rolling average monitoring data below the NAAQS for 36 consecutive months. The Collin County Pb monitoring network consists of four regulatory Pb ambient air quality monitors, two collocated Pb ambient air quality monitors, and a meteorological station. Data from these monitors are used to determine the area's compliance with the 2008 Pb NAAQS. Between January 1, 2013, and December 31, 2015, there was no measured three-month rolling average above the Pb NAAQS. The current design value is 0.08 $\mu g/m^3$ as of December 31, 2015. Thus, the area has demonstrated compliance with the 2008 Pb NAAQS.

Based on measured compliance with the standard, the TCEQ proposed the *Collin County Redesignation Request and Maintenance Plan State Implementation Plan Revision for the 2008 Lead National Ambient Air Quality Standard* on April 27, 2016.

With this state implementation plan revision, the TCEQ would request that the Collin County Pb nonattainment area be redesignated as attainment for the 2008 Pb standard and that the EPA approve the associated proposed maintenance plan. The tentatively scheduled adoption is scheduled to occur by October 2016. Once adopted by the Commissioners, the request will be submitted to the EPA for approval. If the EPA approves the TCEQ request to designate the Collin County area as attainment for Pb, the TCEQ will evaluate and may propose changes to the existing Pb monitors in Collin County as allowed by the maintenance plan.

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.4.4 requires a primary quality assurance organization to select 15% of the Pb monitoring sites within their network, not counting non-source-oriented NCore sites, for collocated sampling with the first of these sites measuring the highest Pb concentrations in the network. Based on the current network of primary Pb monitors, excluding the three NCore sites, the TCEQ is required to have two collocated Pb monitors. The TCEQ has three collocated Pb monitors; two are in Collin County at the Frisco Eubanks site (AQS# 480850009) and the Frisco 7 site (AQS# 480850007), and the third is in El Paso at the Ojo De Agua site (AQS# 481411021). The 2015 average concentration at the Frisco Eubanks site has decreased and is no longer the highest Pb concentration in the state. According to 2015 data, the Terrell Temtex (AQS# 482570020) site now has the highest three-month rolling average concentration (0.04 $\mu g/m^3$) in the network. The TCEQ recommends relocation of the collocated monitor in order to maintain compliance, as discussed in the Changes section below.

Changes to the Regulatory Pb Monitoring Network

Pending the EPA's approval of the TCEQ's final Collin County Pb redesignation request, the TCEQ may propose future changes to existing primary Pb monitors in Collin County. However, the collocation needs of the TCEQ Pb network have changed due to the decrease in measured concentrations from the Frisco monitors. To maintain compliance with collocation requirements, the TCEQ recommends the relocation of the collocated Pb monitor from the Frisco 7 site to the Terrell Temtex site.

Due to revisions to 40 CFR Part 58, Appendix D, Section 3(b) published by the EPA on March 28, 2016, TSP Pb monitoring is no longer a required measurement at NCore sites. The TCEQ recommends to discontinue the TSP Pb monitors at the three NCore sites listed in Table 4.

Ozone (O_3)

Network design criteria for SLAMS sites, described in 40 CFR Part 58, Appendix D, Section 4.1, require O_3 monitoring in each CBSA with a population of 350,000 or more persons. Monitoring is also required in CBSAs with lower populations if measured O_3 values in that MSA are within 85% of the NAAQS of 0.070 parts per million (ppm). According to 2015 U.S. Census Bureau population estimates and 2013-2015 eight-hour O_3 design values, the TCEQ is required to operate a minimum of 25 O_3 monitors to meet SLAMS network requirements. The TCEQ is exceeding the requirement with more than 50 O_3 monitors in the SLAMS network, as listed in Appendix A.

Additional monitoring at NCore sites in a CBSA with a population of 1,000,000 or more persons is also required as a part of the PAMS program under 40 CFR Part 58, Appendix D, Section 5. The TCEQ is exceeding PAMS and NCore requirements with O₃ monitors at all three NCore sites in the Houston, Dallas, and El Paso CBSAs.

The EPA published a final rule on October 26, 2015, revising the primary and secondary NAAQS for O_3 . Both the primary and secondary standards were strengthened to 0.070 ppm from the existing standard of 0.075 ppm. The measurement form remains as the annual fourth-highest daily maximum eight-hour concentration, averaged over three years. Revisions to the O_3 NAAQS also include changes to monitoring, network design, and data handling, including updates to the PAMS program requirements. According to 2013-2015 eight-hour O_3 design values, the revisions to the standard will not change the number of overall network monitors required in 2016. This information is shown in Appendix F of this document. The TCEQ is required to operate a minimum of 30 O_3 monitors for all combined network requirements and is currently exceeding the requirements with 70 monitors across the state.

Changes to the Regulatory O₃ Monitoring Network

As described above and summarized in Appendix F of this document, the TCEQ O₃ network is meeting or exceeding the current MSA requirements, and no changes to the network are recommended at this time.

Carbon Monoxide (CO)

Title 40 CFR Part 58, Appendix D, Section 3.0 requires high-sensitivity CO monitors at NCore sites. The TCEQ meets this requirement with CO monitors at all three NCore sites in the Houston-Woodlands-Sugar Land, Dallas-Fort Worth-Arlington, and El Paso CBSAs. Title 40 CFR Part 58, Appendix D, Section 4.2 also requires CO monitors at near-road sites in CBSAs of 1,000,000 or more persons. The TCEQ meets this requirement with CO monitors at near-road sites in the Houston and Dallas CBSAs. The TCEQ will deploy CO monitors to meet the January 1, 2017, deadline at near-road sites in the Austin-Round Rock and San Antonio-New Braunfels CBSAs.

The TCEQ CO monitoring network is required to operate a total of seven CO monitors. The TCEQ is currently exceeding the requirements through the operation of thirteen total CO monitors: eight CO monitors and five high-sensitivity CO monitors. A summary of the required and current CO monitors in each CBSA is included in Appendix G.

The EPA revisions to the PAMS program under the final rule published on October 26, 2015, and as listed in 40 CFR Part 58, Appendix D, Section 5, remove CO from the list of required PAMS measurements. The CO monitors at the Houston Clinton site (AQS# 482011035) and the Beaumont Nederland High School site (AQS# 482451035) are now exceeding minimum requirements. The TCEQ will reevaluate the option to decommission these monitors during the assessment of the PAMS network to be published in the 2018 AMNP.

Changes to the Regulatory CO Monitoring Network

In compliance with near-road requirements in the Austin-Round Rock and San Antonio-New Braunfels CBSAs, the TCEQ will deploy gas filter correlation CO monitors (method 093) at the Austin North Interstate 35 (AQS# 484531068) and San Antonio Interstate 35 (AQS# 480291069) sites by January 1, 2017.

Particulate Matter of 10 Micrometers or Less (PM₁₀)

The TCEQ PM_{10} network is designed to meet the area requirements of 40 CFR Part 58, Appendix D, Section 4.6, which specifies the range of PM_{10} monitoring stations required in MSAs based on population and measured concentrations, if available. A sample of this information is provided in Table 5. The TCEQ network consists of PM_{10} monitoring at 27 sites. Compliance with the PM_{10} standard is based on the number of measured exceedances of the 150 $\mu g/m^3$ standard on average over a three year period. The evaluation of PM_{10} monitoring requirements was completed using the 2015 U.S. Census Bureau population estimates and 2015 measured PM_{10} concentrations. This evaluation and the associated maximum 2013-2015 concentrations for each MSA are shown in Appendix H, Table 1. From this evaluation, the TCEQ determined that each MSA listed in Appendix H within the PM_{10} network meets or exceeds minimum PM_{10} monitoring requirements.

Table 5: Particulate Matter of 10 Micrometers or Less Monitoring Requirements

Population	High	Medium	Low
Category	Concentration ¹	Concentration ²	Concentration ³
>1,000,000	6-10	4-8	2-4
500,000-1,000,000	4-8	2-4	1-2
250,000-500,000	3-4	1-2	0-1
100,000-250,000	1-2	0-1	0

 $^{^{\}mathrm{I}}$ High Concentration areas are those for which ambient PM $_{10}$ data show ambient concentrations exceeding the PM $_{10}$ NAAQS by 20 percent or more

PM₁₀ - particulate matter of 10 micrometers or less in diameter

> - greater than

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.3.4 requires a primary quality assurance organization to select 15% of the PM_{10} monitoring sites within the PM_{10} network for collocated sampling. At least 50% of the selected sites should have an annual mean particulate matter concentration among the highest in the network. Based on the current network of 27 PM_{10} monitors, the TCEQ is required to have four collocated monitors. The TCEQ has eight PM_{10} collocated monitors at the sites listed in Table 6.

 $^{^2}$ Medium Concentration areas are those for which ambient PM $_{10}$ data show ambient concentrations exceeding 80 percent of the PM $_{10}$ NAAQS

 $^{^3}$ Low Concentration areas are those for which ambient PM $_{10}$ data show ambient concentrations less than 80 percent of the PM $_{10}$ NAAOS

Table 6: Particulate Matter of 10 Micrometers or Less Collocation Summary

AQS Number	Sites with PM ₁₀ Collocated Monitors	2013-2015 Maximum Concentration (µg/m³)	2013-2015 Annual Average Concentration (μg/m³)	Additional Information
482011035	Clinton	130	38	Ranked in the highest 25% network concentration
482150043	Socorro Hueco	145	30	Ranked in the highest 25% network concentration
482010047	Convention Center	93	27	Ranked in the highest 25% network concentration
481411021	Laredo Vidaurri	80	25	Decreasing trend, not in the highest 25% for 2014, and 2015
484530021	Dona Park	83	23	Decreasing trend, not in the highest 25% for 2014, and 2016
482010071	Ojo De Agua	91	17	Collocated to support exceptional events
484790017	Houston Deer Park #2	91	19	Collocation to meet NATTS requirements
481410029	Texas City Fire Station	92	18	Not ranked in the highest 25% network concentration

- number

% - percent

μg/m³ - micrograms per cubic meter

AQS - Air Quality System

NATTS - National Air Toxics Trends Stations

PM₁₀ - particulate matter 10 micrometers or less

 PM_{10} measured annual average concentration data was evaluated from 2013-2015 as shown in Table 6 and in more detail in Appendix H, Table 2. PM_{10} measurement concentrations at Clinton (AQS# 482011035), Socorro Hueco (AQS# 481410057), and Convention Center (AQS# 481130050) sites had annual mean concentrations among the highest in the network and continue to satisfy collocation requirements. The three-year average PM_{10} concentration is not in the network highest 25% at Ojo De Agua (AQS# 481411021); however the data supports area exceptional events. Additionally, the Ojo De Agua PM_{10} collocated monitor supports exceptional events analysis. The PM_{10} collocated monitor at Houston Deer Park #2 (AQS# 482011039) supports collocation requirements for the NATTS program.

Appendix H, Table 2 lists the maximum concentration measurement during the 3-year period of 2013-2015 and also includes the 2013, 2014, and 2015 annual mean concentrations for each PM_{10} site. All of these data were utilized during the PM_{10} collocation assessment. The TCEQ exceeds minimum PM_{10} collocation requirements through the PM_{10} monitor operation of the eight sites listed in Table 6. The TCEQ annually evaluates the data to determine network efficacy for the collocated PM_{10} monitors.

Changes to the Regulatory PM₁₀ Monitoring Network

The TCEQ recommends the decommission of the Pasadena HL&P site PM_{10} monitor in the Houston-Woodlands-Sugar Land MSA by December 31, 2016. This MSA is required to have a range of four to eight PM_{10} monitors; the TCEQ currently operates eight. The Pasadena HL&P PM_{10} site measured the lowest 2013-2015 three-year maximum concentration (74 $\mu g/m^3$, 49% of the NAAQS) in the MSA. The area contains adequate spatial coverage with one PM_{10} monitor four miles to the west and seven total PM_{10} monitors in the area. The number of required and current PM_{10} monitors in each MSA is included in Appendix H, Table 1.

According to 2013, 2014, and 2015 monitoring data and trends, PM₁₀ concentrations at Laredo Vidaurri, Dona Park, and Texas City Fire Station are not in the network's highest 25% annual concentrations. The TCEQ recommends the decommission of collocated monitors, with primary monitors remaining active, at the sites listed below:

- Laredo Vidaurri (AQS# 484790016);
- Dona Park (AQS# 483550034); and
- Texas City Fire Station (AQS# 481670004).

Particulate Matter of 2.5 Micrometers or Less (PM_{2.5})

Monitoring Requirements

The TCEQ PM_{2.5} network is designed to meet area, NCore, and near-road monitoring requirements. The state-wide PM_{2.5} network consists of PM_{2.5} federal reference method (FRM) gravimetric monitoring at 25 sites, continuous PM_{2.5} monitoring at 45 sites, and PM_{2.5} speciation monitoring at seven sites, for a total of 53 sites with at least one type of PM_{2.5} monitoring. Title 40 CFR Part 58, Appendix D, Section 4.7 requires PM_{2.5} monitoring in MSAs with populations of 500,000 or more persons and in MSAs with lower populations if measured PM_{2.5} design values for an MSA are within 85% of the NAAQS. The current PM_{2.5} annual arithmetic mean concentration standard is 12.0 μ g/m³ averaged over three years and the PM_{2.5} 24-hour average concentration standard is 35 μ g/m³ for the 98th percentile, averaged over three years.

Title 40 CFR Part 58, Appendix D, Section 4.7.1(2) requires $PM_{2.5}$ monitoring at near-road stations and 40 CFR Part 58.13 (f) requires the $PM_{2.5}$ monitor to be located in each CBSA with a population of 2,500,000 or more persons by January 1, 2015, and also in each CBSA with a population of 1,000,000 or more persons by January 1, 2017. In addition, 40 CFR Part 58, Appendix D, Section 3 requires $PM_{2.5}$ monitoring at all NCore sites.

A detailed analysis of PM_{2.5} monitoring and siting requirements using the 2015 U.S. Census Bureau population estimates and 2015 measured PM_{2.5} concentrations is provided in Appendix I. A summary of the MSA populations, design values, and

requirements is provided in Table 7. Through this evaluation, the TCEQ determined that minimum requirements are met or exceeded for all areas and parameters. The TCEQ's assessment of $PM_{2.5}$ monitoring requirements and current monitors is included in Appendix I, Table 1. Appendix I, Table 2 provides information regarding each $PM_{2.5}$ FRM site.

Table 7: Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements

	PM _{2.5}						
Metropolitan Statistical Area	FRM Required Monitors ¹	FRM Existing Monitors ²	Speciation Required Monitors ^{1,2}	Speciation Existing Monitors ^{1,2}	Continuous Required Monitors ^{1,2}	Continuous Existing Monitors ²	
Dallas-Fort Worth-Arlington	4	6	1	2	3	8	
Houston-The Woodlands-Sugar Land	4	6	2	2	3	10	
San Antonio-New Braunfels	2	2	0	0	1	5	
Austin-Round Rock	2	2	0	0	1	3	
El Paso	2	2	1	1	2	4	
McAllen-Edinburg-Mission ⁴	2	2	0	0	1	1	
Corpus Christi	1	2	1	1	1	1	
Killeen-Temple	0	0	0	0	0	0	
Brownsville-Harlingen	1	1	0	0	1	1	
Beaumont-Port Arthur	0	0	0	0	0	3	
Lubbock	0	0	0	0	0	1	
Laredo	0	0	0	0	0	1	
Waco	0	0	0	0	0	1	
Amarillo	0	0	0	0	0	1	
Odessa	0	0	0	0	0	2	
Texarkana	1	1	0	0	1	1	
Marshall ³	0	1	0	1	0	1	
Eagle Pass ³	0	0	0	0	0	1	
Totals	19	25	5	7	14	45	

¹Required monitors include State or Local Air Monitoring Stations (SLAMS) and National Core (NCore) requirements.

²Individual monitors may fulfill one or more requirements.

³Area is classified as a micropolitan area and not subject to SLAMS requirements.

⁴Site annual values do not meet completeness criteria.

FRM - federal reference method

PM_{2.5} - particulate matter of 2.5 micrometers or less in diameter

Collocation Requirements

Title 40 CFR Part 58, Appendix A, Section 3.2.3 requires a primary quality assurance organization to select 15% of the PM_{2.5} monitoring sites within the network for collocated sampling. Eighty percent of the collocated audit monitors should be deployed at sites with annual average or daily concentrations estimated to be within 20% of the NAAQS listed in the previous section. Based on the current PM_{2.5} network of 25 FRM monitors, the TCEQ is required to have four collocated PM_{2.5} monitors and currently has three. To meet this requirement, the TCEQ recommends adding a collocated PM_{2.5} FRM monitor in the El Paso MSA.

The EPA approved a collocated $PM_{2.5}$ FRM monitor at the El Paso Chamizal site (AQS# 481410044) in the TCEQ 2015 AMNP response letter. This site was chosen based on the annual and 24-hour $PM_{2.5}$ concentrations in the El Paso area. This site has an annual 2013-2015 design value of 9.9 μ g/m³, which is within 17% of the NAAQS, meeting the collocation requirements listed above.

Changes to the Regulatory PM_{2.5} Monitoring Network

In compliance with near-road monitoring requirements, the TCEQ recommends deployment of PM_{2.5} FRM monitors (method 145 with a 1-in-3 day sampling schedule) at existing near-road stations in the Austin-Round Rock and San Antonio-New Braunfels CBSAs. The TCEQ plans to deploy a new PM_{2.5} FRM monitor to the San Antonio Interstate 35 site (AQS# 480291069) and relocate the PM_{2.5} FRM monitor from the Austin Audubon Society site (AQS# 484530020) to the Austin North Interstate 35 near-road site (AQS# 484531068). The 2013-2015 annual design value of the PM_{2.5} monitor at the Austin Audubon Society site is 7.8 μ g/m³, 65% of the annual PM_{2.5} NAAQS of 12.0 μ g/m³. The relocation of the Austin Audubon Society PM_{2.5} monitor to the Austin North Interstate 35 station will allow the monitor to support multiple monitoring requirements. PM_{2.5} monitors will be operational by January 1, 2017 at the Austin North Interstate 35 site (AQS# 484531068) and the San Antonio Interstate 35 site (AQS# 480291069).

As discussed in the TCEQ 2015 AMNP, the TCEQ relocated the Texarkana station (AQS# 480370004) approximately one mile northwest to physically accommodate both an FRM monitor and a continuous monitor to comply with requirements. The new location is Texarkana New Boston (AQS# 480371031). The EPA approved this site on March 23, 2016. This site fulfills area requirements for a continuous PM_{2.5} monitor and a PM_{2.5} FRM monitor. The established design value for the Texarkana MSA for 2013-2015 is 9.8 μ g/m³, and exhibits a decreasing trend from the 2012-2014 design value of 10.2 μ g/m³. The TCEQ requests EPA approval for a reduction in the sampling frequency of the FRM monitor at this site from 1-in-3 days to 1-in-6 days.

Title 40 CFR Part 58, Appendix D, Section 4.7 Table D-5 lists the PM_{2.5} MSA minimum monitoring requirements. Continuous PM_{2.5} monitoring is required for at least one-half of these sites and requires at least one continuous analyzer in each MSA to be collocated with a required FRM monitor. Details regarding the entire TCEQ PM_{2.5} network are found in Appendix I. The TCEQ recommends the decommission of four continuous PM_{2.5} tapered element oscillating microbalances (TEOMs), listed below in Table 8, designated as special purpose monitors. The continuous PM_{2.5} TEOMs are not necessary

to meet CFR requirements. The remaining monitors in these MSAs continue to meet and exceed federal requirements.

Table 8: Continuous Particulate Matter of 2.5 Micrometers or Less Decommission Recommendation Summary

Site Name	Metropolitan Statistical Area (MSA)	2015 Annual Mean (µg/m³)	MSA Required Monitors	MSA Existing Monitors	Reason
Dallas Hinton (AQS# 481130069)	Dallas-Fort Worth- Arlington	8.8	3	8	Redundant due to one FRM and one continuous FEM at this site, excess of continuous monitors in MSA
Kingwood (AQS# 482011042)	Houston-The Woodlands- Sugar Land	8.7	3	10	No longer needed for spatial coverage, excess of continuous monitors in MSA
Italy (AQS# 481391044)	Dallas-Fort Worth- Arlington	7.9	3	8	No longer needed for spatial coverage, excess of continuous monitors in MSA
Odessa Hays Elementary School (AQS# 481350003)	Odessa	7.7	0	2	No longer needed for spatial coverage, excess of continuous monitors in MSA

- number

μg/m³ - micrograms per cubic meter AQS - Air Quality System FRM - federal reference method FEM - federal equivalent method

Volatile Organic Compounds (VOCs)

Title 40 CFR Part 58, Appendix D, Section 5 requires hourly averaged speciated VOC monitoring at NCore sites located in a CBSA with a population of 1,000,000 or more persons as part of the revised PAMS program requirements. The TCEQ meets this requirement with one automated gas chromatograph (autoGC) at each NCore site. The TCEQ also monitors speciated VOC concentrations using discrete canister sampling. The TCEQ has eight autoGCs and six canister samplers in the PAMS network and an additional four canister samplers to support the NATTS and special purpose monitoring. No changes are recommended for the VOC monitoring network. However, the TCEQ will reevaluate all PAMS measurements during the assessment of the PAMS network to be published in the 2018 AMNP.

The PAMS network canister samplers and autoGC monitors are listed in Table 9, and a complete list of these monitors is in Appendix A of this document.

Table 9: Canister and Automated Gas Chromatograph Site List

AQS Number	TCEQ Region	Site Name	Sampler Type	AQS Network & Monitor Type
481130069	04-Dallas/Fort Worth	Dallas Hinton	Canister	PAMS
481130069	04-Dallas/Fort Worth	Dallas Hinton	AutoGC	PAMS/NCore
481210034	04-Dallas/Fort Worth	Denton Airport South	Canister	PAMS
481391044	04-Dallas/Fort Worth	Italy	Canister	PAMS
482511008	04-Dallas/Fort Worth	Johnson County Luisa	Canister	SPM
484391002	04-Dallas/Fort Worth	Fort Worth Northwest	Canister	PAMS
484391002	04-Dallas/Fort Worth	Fort Worth Northwest	AutoGC	PAMS
484393009	04-Dallas/Fort Worth	Grapevine Fairway	Canister	PAMS
482030002	05-Tyler	Karnack	Canister	SPM
481410044	06-El Paso	El Paso Chamizal	AutoGC	PAMS/NCore
482450009	10-Beaumont	Beaumont Downtown	AutoGC	PAMS
482451035	10-Beaumont	Nederland High School	AutoGC	PAMS
482010026	12-Houston	Channelview	AutoGC	PAMS
482011035	12-Houston	Clinton	AutoGC	PAMS
482011039	12-Houston	Houston Deer Park #2	Canister	NATTS/PAMS
482011039	12-Houston	Houston Deer Park #2	Canister	NATTS, QA Collocated
482011039	12-Houston	Houston Deer Park #2	AutoGC	PAMS/NCore
484790017	16-Laredo	Laredo Bridge	Canister	SPM

- number

AQS - Air Quality System

AutoGC - automated gas chromatograph

NATTS - National Air Toxics Trends Stations

NCore - National Core Multipollutant Monitoring Stations

PAMS - Photochemical Assessment Monitoring Stations

QA - quality assurance

SPM - special purpose monitor

TCEQ – Texas Commission on Environmental Quality

Carbonyls

The TCEQ collects carbonyl samples at three sites in accordance with PAMS requirements listed under 40 CFR Part 58, Appendix D, Section 5. In addition, the TCEQ has two special purpose carbonyl samplers in support of the NATTS program and one additional special purpose sampler. The TCEQ exceeds monitoring requirements with a total of six carbonyl samplers at the sites listed below:

- Dallas Hinton (AQS# 481130069);
- Clinton (AQS# 482011035);
- Houston Deer Park #2 (AQS# 482011039);
- Karnack (AQS# 482030002);
- Fort Worth Northwest (AQS# 484391002); and
- Ascarate Park SE (AQS# 481410055).

As summarized above and in Appendix A of this document, the TCEQ carbonyl monitoring network is meeting or exceeding all requirements, and no changes are recommended this year.

Meteorology

Title 40 CFR Part 58, Appendix D, Section 5 requires surface and upper-air meteorology measurements at all PAMS sites located at NCore stations in CBSAs with a population of 1,000,000 or more persons. The TCEQ collects surface meteorology data at all PAMS sites and most network sites. Surface meteorology includes wind speed, wind direction, and outdoor temperature. The TCEQ operates radar profilers to fulfill the PAMS upper air meteorology requirements. Surface meteorology and upper air meteorology are included in the Appendix A site list.

On March 28, 2016, the EPA published revisions to 40 CFR Part 58.16 (effective April 27, 2016) that removed the requirements for air agencies to report the average daily temperature and average daily pressure from manual PM_{2.5} samplers. It also removed the requirement for Pb sites to report average temperature and average pressure recorded by the sampler or from nearby airports. The TCEQ requests approval to discontinue the submittal of this meteorological data to AQS effective May 1, 2016.

Three meteorological parameters listed in the Special Purpose network in the 2015 AMNP are required to support the PAMS network: relative humidity, ultraviolet (UV) radiation, and solar radiation. The meteorological parameters at the monitoring sites listed below were updated to be listed under the PAMS network as of January 1, 2016:

- Dallas Hinton (AQS# 481130069) relative humidity;
- El Paso University of Texas at El Paso (UTEP) (AQS# 481410037) UV radiation;
- El Paso Chamizal (AQS# 481410044) solar radiation; and
- Houston Aldine (AQS# 482010024) relative humidity.

Summary

Status of Previously Recommended Changes

The following is a summary of changes that have occurred since the 2015 AMNP.

- The EPA approved the Texarkana station (AQS# 480370004) relocation on March 23, 2016, approximately one mile northwest to physically accommodate both a PM_{2.5} FRM monitor and a PM_{2.5} continuous monitor to comply with area requirements. The new station, deployed February 27, 2016, is named Texarkana New Boston (AQS# 480371031). This site fulfills area requirements with a continuous PM_{2.5} monitor (method 702 deployed on April 7, 2016) and a PM_{2.5} FRM monitor (method 145).
- The TCEQ deployed the required McAllen-Edinburg-Mission MSA PM₁₀ monitor (method 141) at the new Edinburg East Freddy Gonzalez Drive (AQS# 482151046) site to meet requirements in the area on July 16, 2015.
- The TCEQ deployed two PM_{2.5} FRM gravimetric samplers (method 145 with a 1-in-3 day sampling schedule) to the existing network at Brownsville station (AQS# 480610006) in the Brownsville-Harlingen MSA and at the new Edinburg East Freddy Gonzalez Drive station (AQS# 482151046) in the McAllen-Edinburg-Mission MSA in June and July of 2015, respectively.
- The continuous PM_{2.5} TEOM special purpose monitor at the City Public Service (CPS) Pecan Valley site (AQS# 480290055) located in the San Antonio area was decommissioned in November 2015. The site was removed at the property owner's request. The San Antonio-New Braunfels MSA population is greater than 1,000,000 persons and requires a minimum of two PM_{2.5} FRM monitors and one PM_{2.5} continuous monitor according to requirements in 40 CFR Part 58, Appendix D, Section 4.7.1. and 4.7.2. Currently, two PM_{2.5} FRM monitors and five PM_{2.5} continuous monitors are located in the area. The PM_{2.5} annual design value for the area is 8.5 μg/m³ and is 71% of the NAAQS. These monitors meet and exceed PM_{2.5} monitoring requirements in this MSA and no further action is proposed for this monitor.
- The EPA indicated in the 2015 TCEQ AMNP approval letter that the AQS network designation on the following monitors be changed from SPM to PAMS. The following parameters were updated in AQS as of January 1, 2016:
 - Relative humidity at Dallas Hinton (AQS# 481130069);
 - UV radiation at El Paso UTEP (AQS# 481410037);
 - Solar radiation at El Paso Chamizal (AOS# 481410044); and
 - Relative humidity at Houston Aldine (AQS# 482010024).

2016 Proposed Network Changes

The following is a summary of proposed changes discussed in this year's assessment.

- The TCEQ recommends removal of the NCore network designation in AQS for the NO₂ monitors at El Paso Chamizal (AQS# 481410044) and Houston Deer Park #2 (AQS# 482011039) and maintaining the PAMS and SLAMS network designations only. The EPA clarified in the March 28, 2016, revision to 40 CFR Part 58 that NO₂ was never a required measurement under NCore and that the previous version was erroneous to include it.
- The TCEQ proposes to deploy 12 SO₂ monitoring stations to characterize the ambient air near designated sources of SO₂ emissions in accordance with the DRR.
- The TCEQ recommends deployment of PM_{2.5} FRM monitors (method 145 with a 1-in-3 day sampling schedule) at existing near-road stations in the Austin-Round Rock and San Antonio-New Braunfels CBSAs. The TCEQ plans to deploy a new PM_{2.5} FRM monitor to the San Antonio Interstate 35 site (AQS# 480291069) and relocate the PM_{2.5} FRM monitor from the Austin Audubon Society site (AQS# 484530020) to the Austin North Interstate 35 near-road site (AQS# 484531068) before January 1, 2017.
- The TCEQ plans to deploy gas filter correlation CO monitors (method 093) to the San Antonio Interstate 35 site (AQS# 480291069) and to the Austin North Interstate 35 near-road site (AQS# 484531068) before January 1, 2017.
- The TCEQ recommends the relocation of a collocated Pb monitor from the Frisco 7 site to the Terrell Temtex site since it measures the highest 2015 Pb average concentration in the network.
- Due to revisions to 40 CFR Part 58, Appendix D, Section 3(b), TSP Pb monitoring is no longer a required measurement at NCore sites. The TCEQ recommends to discontinue the TSP Pb monitors at three NCore sites Houston Deer Park #2 (AQS# 482011039), Dallas Hinton (AQS# 481130069), and El Paso Chamizal site (AQS# 481410044).
- The TCEQ recommends the decommission of the Pasadena HL&P PM₁₀ monitor in the Houston-Woodlands-Sugar Land MSA by December 31, 2016.
- The TCEQ recommends the decommission of collocated PM₁₀ monitors, with primary monitors remaining active, at the Laredo Vidaurri (AQS# 484790016), Dona Park (AQS# 483550034), and Texas City Fire Station (AQS# 481670004) sites.
- The TCEQ recommends the decommission of four continuous PM_{2.5} TEOMs designated as special purpose monitors located at Dallas Hinton (AQS# 481130069), Kingwood (AQS# 482011042), Italy (AQS# 481391044), and Odessa Hays Elementary School (AQS# 481350003).
- The TCEQ plans to deploy a collocated PM_{2.5} FRM monitor to the El Paso Chamizal site (AQS# 481410044) to meet collocation requirements.

• The TCEQ requests to discontinue the submittal of average daily temperature and average daily pressure, effective May 1, 2016, from manual PM_{2.5} samplers, and average temperature and average pressure recorded at Pb sites by the sampler or from nearby airports to AQS, according to changes to 40 CFR 58.16 requirements.

Conclusion

After consideration of the federal regulations, 2015 U.S. Census Bureau population data, and 2015 design values, the TCEQ will meet or exceed all monitoring requirements with the above mentioned recommendations for the next calendar year. This network plan focuses on the current network and changes within this network from July 1, 2015, through December 31, 2017.

Instructions for Comments

Send comments pertaining to this document to the following address.

Texas Commission on Environmental Quality P.O. Box 13087 Attention: Holly Landuyt, MC-165 Austin, Texas 78711-3087

Or email to: monops@tceq.texas.gov

Appendix A

Ambient Air Monitoring Network Site List

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

AQS Site ID	Site Name	Address/Location	MSA / CBSA	Latitude	Longitude	Location Setting	Sampler Type	AQS Network	Sampling/Analysis Methods	Operating Schedule	Monitoring Objective	Spatial Scale
480271045	Temple Georgia	8406 Georgia Avenue, Temple	Killeen- Temple-Fort Hood, TX	31.1224187	-97.4310523	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
480271045	Temple Georgia	8406 Georgia Avenue, Temple	Killeen- Temple-Fort Hood, TX	31.1224187	-97.4310523	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
480271045	Temple Georgia	8406 Georgia Avenue, Temple	Killeen- Temple-Fort Hood, TX	31.1224187	-97.4310523	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
480271047	Killeen Skylark Field	1605 Stone Tree Drive, Killeen	Killeen- Temple-Fort Hood, TX	31.0880022	-97.6797343	Urban and Center City	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
480271047	Killeen Skylark Field	1605 Stone Tree Drive, Killeen	Killeen- Temple-Fort Hood, TX	31.0880022	-97.6797343	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Urban Scale
480271047	Killeen Skylark Field	1605 Stone Tree Drive, Killeen	Killeen- Temple-Fort Hood, TX	31.0880022	-97.6797343	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Urban Scale
480290032	San Antonio Northwest	6655 Bluebird Lane, San Antonio	San Antonio, TX	29.5150900	-98.6201660	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood
480290032	San Antonio Northwest	6655 Bluebird Lane, San Antonio	San Antonio, TX	29.5150900	-98.6201660	Suburban	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale
480290032	San Antonio Northwest	6655 Bluebird Lane, San Antonio	San Antonio, TX	29.5150900	-98.6201660	Suburban	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Urban Scale
480290032	San Antonio Northwest	6655 Bluebird Lane, San Antonio	San Antonio, TX	29.5150900	-98.6201660	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Urban Scale
480290032	San Antonio Northwest	6655 Bluebird Lane, San Antonio	San Antonio, TX	29.5150900	-98.6201660	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Urban Scale
480290032	San Antonio Northwest	6655 Bluebird Lane, San Antonio	San Antonio, TX	29.5150900	-98.6201660	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Urban Scale
480290052	Camp Bullis	F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	San Antonio, TX	29.6320582	-98.5649364	Rural	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale
480290052	Camp Bullis	F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	San Antonio, TX	29.6320582	-98.5649364	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Urban Scale
480290052	Camp Bullis	F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	San Antonio, TX	29.6320582	-98.5649364	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Urban Scale
480290052	Camp Bullis	F Range (1000Yd marker off Wilderness Trail), Near Wilderness Rd, San Antonio	San Antonio, TX	29.6320582	-98.5649364	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Urban Scale

480290053	Selma	16289 North Evans Rd #2, Selma	San Antonio, TX	29.5877408	-98.3125118	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
480290053	Selma	16289 North Evans Rd #2, Selma	San Antonio, TX	29.5877408	-98.3125118	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
480290059	Calaveras Lake	14620 Laguna Rd, San Antonio	San Antonio, TX	29.2753812	-98.3116919	Rural	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Source Oriented; Upwind Background	Urban Scale
	Calaveras Lake	14620 Laguna Rd, San Antonio	San Antonio, TX	29.2753812	-98.3116919	Rural	03	SLAMS	UV Photometric	Continuous	Source Oriented; Upwind Background	Urban Scale
480290059	Calaveras Lake	14620 Laguna Rd, San Antonio	San Antonio, TX	29.2753812	-98.3116919	Rural	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure; Upwind Background	Urban Scale
480290059	Calaveras Lake	14620 Laguna Rd, San Antonio	San Antonio, TX	29.2753812	-98.3116919	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Regional Scale
480290059	Calaveras Lake	14620 Laguna Rd, San Antonio	San Antonio, TX	29.2753812	-98.3116919	Rural	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure; Source Oriented	Neighborhood
480290059	Calaveras Lake	14620 Laguna Rd, San Antonio	San Antonio, TX	29.2753812	-98.3116919	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Urban Scale
480290059	Calaveras Lake	14620 Laguna Rd, San Antonio	San Antonio, TX	29.2753812	-98.3116919	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Urban Scale
480290060	Frank Wing Municipal Court	401 South Frio St, San Antonio	San Antonio, TX	29.4221832	-98.5053810	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Middle Scale
480290676	Palo Alto	9011 Poteet Jourdanton Hwy, San Antonio	San Antonio, TX	29.3327898	-98.5513832	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
480290676	Palo Alto	9011 Poteet Jourdanton Hwy, San Antonio	San Antonio, TX	29.3327898	-98.5513832	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
480290676	Palo Alto	9011 Poteet Jourdanton Hwy, San Antonio	San Antonio, TX	29.3327898	-98.5513832	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
480290677	Old Hwy 90	911 Old Hwy 90 West, San Antonio	San Antonio, TX	29.4239439	-98.5804991	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
480290677	Old Hwy 90	911 Old Hwy 90 West, San Antonio	San Antonio, TX	29.4239439	-98.5804991	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
480290677	Old Hwy 90	911 Old Hwy 90 West, San Antonio	San Antonio, TX	29.4239439	-98.5804991	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
480291069	San Antonio Interstate 35	9904 IH 35 N, San Antonio	San Antonio, TX	29.5294000	-98.3913900	Urban and Center City	NO/NO2/NOx	Near Road/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale
	San Antonio Interstate 35	9904 IH 35 N, San Antonio	San Antonio, TX	29.5294000	-98.3913900	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale
	San Antonio Interstate 35	9904 IH 35 N, San Antonio	San Antonio, TX	29.5294000	-98.3913900	Urban and	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale

	1	I	1	Ap <u>l</u>	benuix A.	Center	it Air Mon 			1	I	
						City						
480370004	Texarkana	2315 W 10th Street, Texarkana	Texarkana, TX- Texarkana, AR	33.4257582	-94.0708021	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Urban Scale
480371031	Texarkana New Boston	2700 New Boston Road	Texarkana, TX- Texarkana, AR	33.4361110	-94.0777800	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Urban Scale
480371031	Texarkana New Boston	2701 New Boston Road	Texarkana, TX- Texarkana, AR	33.4361110	-94.0777800	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Urban Scale
480391004	Manvel Croix Park	4503 Croix Pkwy, Manvel	Houston- Sugar Land- Baytown, TX	29.5204432	-95.3925089	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood/ Urban Scale
480391004	Manvel Croix Park	4503 Croix Pkwy, Manvel	Houston- Sugar Land- Baytown, TX	29.5204432	-95.3925089	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
480391004	Manvel Croix Park	4503 Croix Pkwy, Manvel	Houston- Sugar Land- Baytown, TX	29.5204432	-95.3925089	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
480391004	Manvel Croix Park	4503 Croix Pkwy, Manvel	Houston- Sugar Land- Baytown, TX	29.5204432	-95.3925089	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
480391016	Lake Jackson	109B Brazoria Hwy 332 West, Lake Jackson	Houston- Sugar Land- Baytown, TX	29.0437592	-95.4729462	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure; Source Oriented	Middle Scale/ Neighborhood
480391016	Lake Jackson	109B Brazoria Hwy 332 West, Lake Jackson	Houston- Sugar Land- Baytown, TX	29.0437592	-95.4729462	Suburban	О3	SLAMS	UV Photometric	Continuous	Population Exposure; Source Oriented	Neighborhood
480391016	Lake Jackson	109B Brazoria Hwy 332 West, Lake Jackson	Houston- Sugar Land- Baytown, TX	29.0437592	-95.4729462	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale
480391016	Lake Jackson	109B Brazoria Hwy 332 West, Lake Jackson	Houston- Sugar Land- Baytown, TX	29.0437592	-95.4729462	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Middle Scale
480391016	Lake Jackson	109B Brazoria Hwy 332 West, Lake Jackson	Houston- Sugar Land- Baytown, TX	29.0437592	-95.4729462	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Middle Scale
480430101	Bravo Big Bend	Big Bend National Park, Big Bend Nat Park	None	29.3025518	103.1779076	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Regional Scale
480430101	Bravo Big Bend	Big Bend National Park, Big Bend Nat Park	None	29.3025518	- 103.1779076	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Regional Scale

				11/1	JCHUIA 11.	MIIDICI	IL AII MIOI	iitoring			•	
480430101	Bravo Big Bend	Big Bend National Park, Big Bend Nat Park	None	29.3025518	- 103.1779076	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Regional Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	Ambient Temperature TSP (Pb)	SPM	Derived from KBRO	24 Hours; 1/6 Days	General/Background	Urban Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	Barometric Pressure TSP (Pb)	SPM	Derived from KBRO	24 Hours; 1/6 Days	General/Background	Urban Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	СО	SPM	Gas Filter Correlation	Continuous	Highest Concentration	Neighborhood
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Regional Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Urban Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Neighborhood
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	SVOC	SPM	HiVol PUF XAD GC- MS	24 Hours; 1/6 Days	Population Exposure; Upwind Background	Middle Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Urban Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Urban Scale
480610006	Brownsville	344 Porter Drive, Brownsville	Brownsville- Harlingen, TX	25.8925176	-97.4938295	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
480611023	Harlingen Teege	1602 W Teege Avenue, Harlingen	Brownsville- Harlingen, TX	26.2003347	-97.7126837	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
480611023	Harlingen Teege	1602 W Teege Avenue, Harlingen	Brownsville- Harlingen, TX	26.2003347	-97.7126837	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
480611023	Harlingen Teege	1602 W Teege Avenue, Harlingen	Brownsville- Harlingen, TX	26.2003347	-97.7126837	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
480612004	Isla Blanca Park	Lot B 69 1/2, South Padre Island	Brownsville- Harlingen, TX	26.0696153	-97.1621996	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Urban Scale
480612004	Isla Blanca Park	Lot B 69 1/2, South Padre Island	Brownsville- Harlingen, TX	26.0696153	-97.1621996	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Regional Transport	Regional Scale
480612004	Isla Blanca Park	Lot B 69 1/2, South Padre Island	Brownsville- Harlingen, TX	26.0696153	-97.1621996	Rural	Wind (3m)	SPM	Potentiometer Cup Anemometer	Continuous	Regional Transport	Regional Scale

		•			ociiam ii.	1 11110101	it All Mol	intorning .	•			
480710013	Smith Point Hawkins Camp	1850 Hawkins Camp Rd, Anahuac	Houston- Sugar Land- Baytown, TX	29.5462437	-94.7869686	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Neighborhood
480710013	Smith Point Hawkins Camp	1850 Hawkins Camp Rd, Anahuac	Houston- Sugar Land- Baytown, TX	29.5462437	-94.7869686	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Neighborhood
480850003	Frisco 5th St	7471 South 5th Street, Frisco	Dallas-Fort Worth- Arlington, TX	33.1423361	-96.8246832	Suburban	Ambient Temperature TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Middle Scale
480850003	Frisco 5th St	7471 South 5th Street, Frisco	Dallas-Fort Worth- Arlington, TX	33.1423361	-96.8246832	Suburban	Barometric Pressure TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Middle Scale
480850003	Frisco 5th St	7471 South 5th Street, Frisco	Dallas-Fort Worth- Arlington, TX	33.1423361	-96.8246832	Suburban	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Middle Scale
480850005	Frisco	6590 Hillcrest Road, Frisco	Dallas-Fort Worth- Arlington, TX	33.1324003	-96.7864188	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
480850005	Frisco	6590 Hillcrest Road, Frisco	Dallas-Fort Worth- Arlington, TX	33.1324003	-96.7864188	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Urban Scale
480850005	Frisco	6590 Hillcrest Road, Frisco	Dallas-Fort Worth- Arlington, TX	33.1324003	-96.7864188	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Urban Scale
480850005	Frisco	6590 Hillcrest Road, Frisco	Dallas-Fort Worth- Arlington, TX	33.1324003	-96.7864188	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Urban Scale
480850007	Frisco 7	6931 Ash Street, Frisco	Dallas-Fort Worth- Arlington, TX	33.1474141	-96.8257693	Suburban	Ambient Temperature TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Neighborhood
480850007	Frisco 7	6931 Ash Street, Frisco	Dallas-Fort Worth- Arlington, TX	33.1474141	-96.8257693	Suburban	Barometric Pressure TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Neighborhood
480850007	Frisco 7	6931 Ash Street, Frisco	Dallas-Fort Worth- Arlington, TX	33.1474141	-96.8257693	Suburban	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood
480850007	Frisco 7	6931 Ash Street, Frisco	Dallas-Fort Worth- Arlington, TX	33.1474141	-96.8257693	Suburban	TSP (Pb)	QA Collocated/ SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood
480850009	Frisco Eubanks	6601 Eubanks, Frisco	Dallas-Fort Worth- Arlington, TX	33.1446618	-96.8288087	Suburban	Ambient Temperature TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Neighborhood
480850009	Frisco Eubanks	6601 Eubanks, Frisco	Dallas-Fort Worth- Arlington, TX	33.1446618	-96.8288087	Suburban	Barometric Pressure TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Neighborhood
480850009	Frisco Eubanks	6601 Eubanks, Frisco	Dallas-Fort Worth- Arlington, TX	33.1446618	-96.8288087	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure; Source Oriented	Neighborhood
480850009	Frisco Eubanks	6601 Eubanks, Frisco	Dallas-Fort Worth-	33.1446618	-96.8288087	Suburban	TSP (Pb)	QA Collocated/ SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood

i	ı	1	1	112)CIIGI21 1 1.		LAII MIOII	ntoring	1		1	i
			Arlington, TX									
480850009	Frisco Eubanks	6601 Eubanks, Frisco	Dallas-Fort Worth- Arlington, TX	33.1446618	-96.8288087	Suburban	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood
480850009	Frisco Eubanks	6601 Eubanks, Frisco	Dallas-Fort Worth- Arlington, TX	33.1446618	-96.8288087	Suburban	Wind (3m)	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	
480850029	Frisco Stonebrook	7202 Stonebrook Parkway, Frisco	Dallas-Fort Worth- Arlington, TX	33.1360249	-96.8244725	Urban and Center City	Ambient Temperature TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Neighborhood
480850029	Frisco Stonebrook	7202 Stonebrook Parkway, Frisco	Dallas-Fort Worth- Arlington, TX	33.1360249	-96.8244725	Urban and Center City	Barometric Pressure TSP (Pb)	SPM	Derived from 484393009	24 Hours; 1/6 Days	General/Background	Neighborhood
480850029	Frisco Stonebrook	7202 Stonebrook Parkway, Frisco	Dallas-Fort Worth- Arlington, TX	33.1360249	-96.8244725	Urban and Center City	TSP (Pb)	SPM	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481130018	Morrell	3049 Morrell, Dallas	Dallas-Fort Worth- Arlington, TX	32.7449810	-96.7818829	Urban and Center City	PM10 (Speciation)	SPM	ICP-AES	24 Hours; 1/6 Days	Source Oriented	Neighborhood
481130050	Convention Center	717 South Akard, Dallas	Dallas-Fort Worth- Arlington, TX	32.7742622	-96.7976859	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481130050	Convention Center	717 South Akard, Dallas	Dallas-Fort Worth- Arlington, TX	32.7742622	-96.7976859	Urban and Center City	PM10 (FRM)	QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481130050	Convention Center	717 South Akard, Dallas	Dallas-Fort Worth- Arlington, TX	32.7742622	-96.7976859	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Highest Concentration; Population Exposure	Neighborhood
481130050	Convention Center	717 South Akard, Dallas	Dallas-Fort Worth- Arlington, TX	32.7742622	-96.7976859	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
481130050	Convention Center	717 South Akard, Dallas	Dallas-Fort Worth- Arlington, TX	32.7742622	-96.7976859	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
481130061	Earhart	3434 Bickers (Earhart Elem School), Dallas	Dallas-Fort Worth- Arlington, TX	32.7853591	-96.8765711	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Ambient Temperature TSP (Pb)	SPM	Derived from KDAL	24 Hours; 1/6 Days	General/Background	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Barometric Pressure TSP (Pb)	SPM	Derived from KDAL	24 Hours; 1/6 Days	General/Background	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Carbonyl	PAMS	DNPH Silica HPLC	3 Hours; Seasonal, 24 Hours; Seasonal	Max Precursor Emissions Impact	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	CO (High Sensitivity)	NCORE/ PAMS/ SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood

	•		•	App	Jenuix A.		it Air Mon	ntoring	•	•	1	
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	NO/NO2/NOx	PAMS/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	NOy (High Sensitivity)	NCORE/ SLAMS	Chemiluminescence	Continuous	Highest Concentration	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	03	NCORE/ PAMS/ SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	PM10-2.5	NCORE	Beta Attentuation	Continuous	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	PM2.5 (FEM)	NCORE/ SLAMS	Beta Attentuation	Continuous	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	PM2.5 (FRM)	NCORE/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/1 Days	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	PM2.5 (FRM)	QA Collocated/SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	PM2.5 (Speciation)	NCore	Carbons Elements Ions Sequential Non-FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Highest Concentration	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Relative Humidity	NCORE/ PAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	SO2 (High Sensitivity)	NCORE/ SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Solar Radiation	PAMS/ SLAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Highest Concentration; Max Precursor Emissions Impact	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Speciated VOC (Canister)	PAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Precursor Emissions Impact	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	TSP (Pb)	NCORE/ SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood

i	i	•		, 11PI	ociiaizi i i.		it All Miol	ntoring		1	1	
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Visibility	SPM	Visibility Sensor	Continuous	Population Exposure	Neighborhood
481130069	Dallas Hinton	1415 Hinton Street, Dallas	Dallas-Fort Worth- Arlington, TX	32.8200608	-96.8601165	Urban and Center City	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
481130075	Dallas North #2	12532 1/2 Nuestra Drive, Dallas	Dallas-Fort Worth- Arlington, TX	32.9192056	-96.8084975	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood
481130075	Dallas North #2	12532 1/2 Nuestra Drive, Dallas	Dallas-Fort Worth- Arlington, TX	32.9192056	-96.8084975	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
481130075	Dallas North #2	12532 1/2 Nuestra Drive, Dallas	Dallas-Fort Worth- Arlington, TX	32.9192056	-96.8084975	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Urban Scale
481130075	Dallas North #2	12532 1/2 Nuestra Drive, Dallas	Dallas-Fort Worth- Arlington, TX	32.9192056	-96.8084975	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
481130075	Dallas North #2	12532 1/2 Nuestra Drive, Dallas	Dallas-Fort Worth- Arlington, TX	32.9192056	-96.8084975	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
481130075	Dallas North #2	12532 1/2 Nuestra Drive, Dallas	Dallas-Fort Worth- Arlington, TX	32.9192056	-96.8084975	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
481130087	Dallas Redbird Airport Executive	3277 W Redbird Lane, Dallas	Dallas-Fort Worth- Arlington, TX	32.6764506	-96.8720596	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood
481130087	Dallas Redbird Airport Executive	3277 W Redbird Lane, Dallas	Dallas-Fort Worth- Arlington, TX	32.6764506	-96.8720596	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
481130087	Dallas Redbird Airport Executive	3277 W Redbird Lane, Dallas	Dallas-Fort Worth- Arlington, TX	32.6764506	-96.8720596	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
481130087	Dallas Redbird Airport Executive	3277 W Redbird Lane, Dallas	Dallas-Fort Worth- Arlington, TX	32.6764506	-96.8720596	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
481131067	Dallas LBJ Freeway	8652 LBJ Freeway, Dallas	Dallas-Fort Worth- Arlington, TX	32.9211800	-96.7535500	Urban and Center City	NO/NO2/NOx	Near Road/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale
481131067	Dallas LBJ Freeway	8652 LBJ Freeway, Dallas	Dallas-Fort Worth- Arlington, TX	32.9211800	-96.7535500	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale
481131067	Dallas LBJ Freeway	8652 LBJ Freeway, Dallas	Dallas-Fort Worth- Arlington, TX	32.9211800	-96.7535500	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale

		•		, 11PI	ociidin 11.	111110101	it All Mion	intoring	•			
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	NOy (High Sensitivity)	PAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	03	PAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	Precipitation	PAMS	Rain Gauge	Continuous	Max Ozone Concentration	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Ozone Concentration	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Ozone Concentration	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	Speciated VOC (Canister)	PAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Ozone Concentration; Population Exposure	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Ozone Concentration	Urban Scale
481210034	Denton Airport South	Denton Airport South, Denton	Dallas-Fort Worth- Arlington, TX	33.2190690	-97.1962836	Rural	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Ozone Concentration	Urban Scale
481211032	Pilot Point	792 E Northside Dr, Pilot Point	Dallas-Fort Worth- Arlington, TX	33.4106476	-96.9445903	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Regional Scale
481211032	Pilot Point	792 E Northside Dr, Pilot Point	Dallas-Fort Worth- Arlington, TX	33.4106476	-96.9445903	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Upwind Background	Regional Scale
481211032	Pilot Point	792 E Northside Dr, Pilot Point	Dallas-Fort Worth- Arlington, TX	33.4106476	-96.9445903	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Upwind Background	Regional Scale
481211032	Pilot Point	792 E Northside Dr, Pilot Point	Dallas-Fort Worth- Arlington, TX	33.4106476	-96.9445903	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Upwind Background	Regional Scale
481350003	Odessa-Hays Elementary School	Barrett & Monahans Streets, Odessa	Odessa, TX	31.8365747	102.3420368	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Urban Scale
481350003	Odessa-Hays Elementary School	Barrett & Monahans Streets, Odessa	Odessa, TX	31.8365747	102.3420368	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
481350003	Odessa-Hays Elementary School	Barrett & Monahans Streets, Odessa	Odessa, TX	31.8365747	102.3420368	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
481351014	Odessa Gonzales	2700 Disney, Odessa	Odessa, TX	31.8702534	- 102.3347563	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Highest Concentration	Neighborhood
481351014	Odessa Gonzales	2700 Disney, Odessa	Odessa, TX	31.8702534	- 102.3347563	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood

				1121	onan 11.	1 11110101	it All Mion	iii oi iii g		i .		
481351014	Odessa Gonzales	2700 Disney, Odessa	Odessa, TX	31.8702534	102.3347563	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Source Oriented	Neighborhood
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	PM2.5 (FRM)	SPM	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Microscale
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	PM2.5 (Speciation)	SPM	Carbons Elements Ions Sequential FRM Gravimetric Sequential Non-FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Regional Scale
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
481390016	Midlothian OFW	2725 Old Fort Worth Road, Midlothian	Dallas-Fort Worth- Arlington, TX	32.4820829	-97.0268987	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	Dew Point	SPM	Derived at site	Continuous	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	NO/NO2/NOx	PAMS/ SLAMS	Chemiluminescence	Continuous	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	03	PAMS/ SLAMS	UV Photometric	Continuous	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Upwind Background	Regional Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	Relative Humidity	PAMS	Humidity Sensor	Continuous	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	SO2	SPM	Pulsed Fluorescence	Continuous	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	Solar Radiation	PAMS	Photovoltaic	Continuous	Upwind Background	Urban Scale

		•		, 11PI	Jonath II.	1 11110101	t All Mol	ntoring	•		1	
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	Speciated VOC (Canister)	PAMS	Canister GC-MS	24 Hours; 1/6 Days	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	UV Radiation	PAMS	Photovoltaic	Continuous	Upwind Background	Urban Scale
481391044	Italy	900 FM 667 Ellis County, Italy	Dallas-Fort Worth- Arlington, TX	32.1754166	-96.8701892	Rural	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Upwind Background	Urban Scale
481410029	Ivanhoe	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	El Paso, TX	31.7857687	- 106.3235781	Suburban	03	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood
481410029	Ivanhoe	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	El Paso, TX	31.7857687	- 106.3235781	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481410029	Ivanhoe	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	El Paso, TX	31.7857687	- 106.3235781	Suburban	Relative Humidity	Border Grant/SPM	Humidity Sensor	Continuous	General/Background	Neighborhood
481410029	Ivanhoe	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	El Paso, TX	31.7857687	106.3235781	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
481410029	Ivanhoe	10834 Ivanhoe (Ivanhoe Fire Station), El Paso	El Paso, TX	31.7857687	- 106.3235781	Suburban	Wind	Border Grant/SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	- 106.5012595	Urban and Center City	Ambient Temperature TSP (Pb)	SPM	Sequential FRM Gravimetric		General/Background	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	Barometric Pressure TSP (Pb)	SPM	Sequential FRM Gravimetric		General/Background	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	- 106.5012595	Urban and Center City	Dew Point	SPM	Derived at site	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	- 106.5012595	Urban and Center City	NO/NO2/NOx	PAMS/ SLAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	03	PAMS/ SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	General/Background; Population Exposure	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Highest Concentration	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	Precipitation	PAMS	Rain Gauge	Continuous	Max Ozone Concentration	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	- 106.5012595	Urban and Center City	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Ozone Concentration	Neighborhood

1	1	1	i	, 11PI	Julia A.		LAII MIOII	intorning .			1	1
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	- 106.5012595	Urban and Center City	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	- 106.5012595	Urban and Center City	Solar Radiation	SPM	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Ozone Concentration	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	UV Radiation	PAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood
481410037	El Paso UTEP	250 Rim Rd, El Paso	El Paso, TX	31.7682914	106.5012595	Urban and Center City	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Ozone Concentration	Neighborhood
481410038	Riverside	301 Midway Dr (Riverside High School), El Paso	El Paso, TX	31.7338000	106.3721000	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	CO (High Sensitivity)	NCORE/ SLAMS	Gas Filter Correlation	Continuous	Highest Concentration	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	Dew Point	SPM	Derived at site	Continuous	Highest Concentration; Max Precursor Emissions Impact	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	NO/NO2/NOx	NCORE/ PAMS/ SLAMS	Chemiluminescence	Continuous	Highest Concentration; Max Precursor Emissions Impact	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	NOy (High Sensitivity)	NCORE	Chemiluminescence	Continuous	Highest Concentration	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	03	NCORE/ PAMS/ SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	PM10-2.5	NCORE	Beta Attentuation	Continuous	Highest Concentration; Population Exposure	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	PM2.5 (FEM)	NCORE/ SLAMS	Beta Attentuation	Continuous	Highest Concentration; Population Exposure	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	PM2.5 (FRM)	NCORE/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Highest Concentration; Population Exposure	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	PM2.5 (FRM)	QA Collocated/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Highest Concentration; Population Exposure	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	PM2.5 (Speciation)	NCORE	Carbons Elements Ions Sequential Non-FRM Gravimetric	24 Hours; 1/3 Days	Highest Concentration	Neighborhood

	_		_	Apj	Jenuix A.	Ampien	it Air Mon	ntoring	_	_	_	
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	SO2 (High Sensitivity)	NCORE	Pulsed Fluorescence	Continuous	Highest Concentration	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Highest Concentration; Max Precursor Emissions Impact	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	- 106.4552272	Urban and Center City	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood
481410044	El Paso Chamizal	800 S San Marcial Street, El Paso	El Paso, TX	31.7656854	106.4552272	Urban and Center City	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	106.4028059	Suburban	Ambient Temperature TSP (Pb)	NCORE		24 Hours; 1/6 Days	General/Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	106.4028059	Suburban	Barometric Pressure	PAMS	Barometer	Continuous	Max Ozone Concentration; Upwind Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	106.4028059	Suburban	Barometric Pressure TSP (Pb)	NCORE		24 Hours; 1/6 Days	General/Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	Carbonyl	SPM	DNPH Silica HPLC	24 Hours; 1/6 Days	Max Ozone Concentration; Upwind Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	СО	SLAMS	Gas Filter Correlation	Continuous	Highest Concentration	Urban Scale
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	Dew Point	SPM	Derived at site	Continuous	Highest Concentration; Upwind Background	Urban Scale
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Highest Concentration; Upwind Background	Neighborhood / Urban Scale
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	О3	PAMS	UV Photometric	Continuous	Max Ozone Concentration; Upwind Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	106.4028059	Suburban	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Ozone Concentration; Upwind Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Ozone Concentration; Upwind Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	106.4028059	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Ozone Concentration; Upwind Background	Neighborhood
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	TSP (Pb)	NCORE	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood

1	•	i	i	, 11PI	JCIICIA II.		L THE WIOL	itoring	i	ī	•	
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	- 106.4028059	Suburban	Visibility	SPM	Visibility Sensor	Continuous	Highest Concentration; Population Exposure	Urban Scale
481410055	Ascarate Park SE	650 R E Thomason Loop, El Paso	El Paso, TX	31.7467753	106.4028059	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Ozone Concentration; Upwind Background	Neighborhood
481410057	Socorro Hueco	320 Old Hueco Tanks Road, El Paso	El Paso, TX	31.6675000	106.2880000	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
481410057	Socorro Hueco	320 Old Hueco Tanks Road, El Paso	El Paso, TX	31.6675000	106.2880000	Suburban	PM10 (FRM)	Border Grant/QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481410057	Socorro Hueco	320 Old Hueco Tanks Road, El Paso	El Paso, TX	31.6675000	106.2880000	Suburban	PM10 (FRM)	Border Grant/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	General/Background; Population Exposure	Neighborhood
481410057	Socorro Hueco	320 Old Hueco Tanks Road, El Paso	El Paso, TX	31.6675000	106.2880000	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
481410057	Socorro Hueco	320 Old Hueco Tanks Road, El Paso	El Paso, TX	31.6675000	106.2880000	Suburban	SVOC	SPM	HiVol PUF XAD GC- MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481410057	Socorro Hueco	320 Old Hueco Tanks Road, El Paso	El Paso, TX	31.6675000	106.2880000	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
481410057	Socorro Hueco	320 Old Hueco Tanks Road, El Paso	El Paso, TX	31.6675000	106.2880000	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
481410058	Skyline Park	5050A Yvette Drive, El Paso	El Paso, TX	31.8939133	106.4258270	Suburban	03	Border Grant/ SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
481410058	Skyline Park	5050A Yvette Drive, El Paso	El Paso, TX	31.8939133	- 106.4258270	Suburban	SO2	Border Grant/ SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
481410058	Skyline Park	5050A Yvette Drive, El Paso	El Paso, TX	31.8939133	106.4258270	Suburban	Temperature (Outdoor)	Border Grant/SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
481410058	Skyline Park	5050A Yvette Drive, El Paso	El Paso, TX	31.8939133	106.4258270	Suburban	Wind	Border Grant/SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
481410693	Van Buren	2700 Harrison Avenue, El Paso	El Paso, TX	31.8133700	106.4645200	Urban and Center City	PM10 (FRM)	SPM	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481410693	Van Buren	2700 Harrison Avenue, El Paso	El Paso, TX	31.8133700	- 106.4645200	Urban and Center City	Relative Humidity	SPM	Humidity Sensor	Continuous	Population Exposure	
481410693	Van Buren	2700 Harrison Avenue, El Paso	El Paso, TX	31.8133700	106.4645200	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	
481410693	Van Buren	2700 Harrison Avenue, El Paso	El Paso, TX	31.8133700	- 106.4645200	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	106.5473000	Suburban	Ambient Temperature TSP (Pb)	SPM	Derived from KELP	24 Hours; 1/6 Days	General/Background	Neighborhood
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	- 106.5473000	Suburban	Barometric Pressure TSP (Pb)	SPM	Derived from KELP	24 Hours; 1/6 Days	General/Background	Neighborhood

				, 11PI	ociidin 11.	1 11110101	it All Mion	intoring				
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	106.5473000	Suburban	СО	SLAMS	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	106.5473000	Suburban	PM10 (FRM)	QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/12 Days	Population Exposure	Neighborhood
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	106.5473000	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	106.5473000	Suburban	TSP (Pb)	QA Collocated/ SLAMS	HiVol ICP-MS	24 Hours; 1/12 Days	Population Exposure	Neighborhood
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	106.5473000	Suburban	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
481411021	Ojo De Agua	6767 Ojo De Agua, El Paso	El Paso, TX	31.8624700	106.5473000	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
481490001	Fayette County	636 Roznov Rd, Round Top	None	29.9624745	-96.7458748	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport; Source Oriented	Regional Scale
481670004	Texas City Fire Station	2516 Texas Avenue, Texas City	Houston- Sugar Land- Baytown, TX	29.3844440	-94.9308330	Urban and Center City	PM10 (FRM)	QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Highest Concentration	Neighborhood
481670004	Texas City Fire Station	2516 Texas Avenue, Texas City	Houston- Sugar Land- Baytown, TX	29.3844440	-94.9308330	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Highest Concentration	Neighborhood
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	Dew Point	SPM	Derived at site	Continuous	General/Background; Upwind Background	Middle Scale
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	General/Background; Upwind Background	Middle Scale / Urban Scale
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	О3	PAMS/ SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Upwind Background	Urban Scale
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	PM2.5 (FRM)	SPM	Sequential FRM Gravimetric	24 Hours; 1/6 Days; 24 Hours; Daily (Apr- Aug)	Regional Transport	Regional Scale
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Regional Scale
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Ozone Concentration; Upwind Background	Urban Scale
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Ozone Concentration; Upwind Background	Urban Scale

•		•		11/1	CHUIA 11.	minorci	IL AII MIOII	itoring			•	-
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Ozone Concentration; Upwind Background	Urban Scale
481671034	Galveston 99th Street	9511 Avenue V 1/2, Galveston	Houston- Sugar Land- Baytown, TX	29.2544736	-94.8612886	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Ozone Concentration; Upwind Background	Urban Scale
481830001	Longview	Gregg Co Airport near Longview, Longview	Longview, TX	32.3786823	-94.7118107	Rural	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Population Exposure	Neighborhood
481830001	Longview	Gregg Co Airport near Longview, Longview	Longview, TX	32.3786823	-94.7118107	Rural	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
481830001	Longview	Gregg Co Airport near Longview, Longview	Longview, TX	32.3786823	-94.7118107	Rural	Precipitation	SPM	Rain Gauge	Continuous	General/Background	Neighborhood
481830001	Longview	Gregg Co Airport near Longview, Longview	Longview, TX	32.3786823	-94.7118107	Rural	SO2	SLAMS	Pulsed Fluorescence	Continuous	General/Background; Population Exposure	Neighborhood
481830001	Longview	Gregg Co Airport near Longview, Longview	Longview, TX	32.3786823	-94.7118107	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
481830001	Longview	Gregg Co Airport near Longview, Longview	Longview, TX	32.3786823	-94.7118107	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
481830001	Longview	Gregg Co Airport near Longview, Longview	Longview, TX	32.3786823	-94.7118107	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	Barometric Pressure	PAMS	Barometer	Continuous	Max Ozone Concentration	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Urban Scale
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	NOy (High Sensitivity)	PAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	03	PAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Middle Scale
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood

				11/1	CHUIA 11.	MIIDICI	IL AII MIOII	itoring	•		•	-
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	PM2.5 (Speciation)	SPM	Carbons Elements Ions Sequential FRM Gravimetric Sequential Non-FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Ozone Concentration	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Ozone Concentration	Neighborhood
482010024	Houston Aldine	4510 1/2 Aldine Mail Rd, Houston	Houston- Sugar Land- Baytown, TX	29.9010364	-95.3261373	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Ozone Concentration	Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	Dew Point	SPM	Derived at site	Continuous	Highest Concentration	Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	03	PAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Population Exposure	Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land-	29.8027073	-95.1254948	Suburban	TNMOC (AutoGC)	PAMS	GC	Continuous	Population Exposure	Neighborhood

	i.			141	ciidix 11.	¹ MIIDICI	It All Moll	ntoring	1		•	
			Baytown, TX									
482010026	Channelview	1405 Sheldon Road, Channelview	Houston- Sugar Land- Baytown, TX	29.8027073	-95.1254948	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
482010029	Northwest Harris County	16822 Kitzman, Tomball	Houston- Sugar Land- Baytown, TX	30.0395240	-95.6739508	Rural	Dew Point	SPM	Derived at site	Continuous	Source Oriented	Microscale
482010029	Northwest Harris County	16822 Kitzman, Tomball	Houston- Sugar Land- Baytown, TX	30.0395240	-95.6739508	Rural	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Extreme Downwind; Population Exposure; Upwind Background	Urban Scale
482010029	Northwest Harris County	16822 Kitzman, Tomball	Houston- Sugar Land- Baytown, TX	30.0395240	-95.6739508	Rural	O3	PAMS	UV Photometric	Continuous	Extreme Downwind; Population Exposure; Upwind Background	Urban Scale
482010029	Northwest Harris County	16822 Kitzman, Tomball	Houston- Sugar Land- Baytown, TX	30.0395240	-95.6739508	Rural	Relative Humidity	PAMS	Humidity Sensor	Continuous	Extreme Downwind; Upwind Background	Urban Scale
482010029	Northwest Harris County	16822 Kitzman, Tomball	Houston- Sugar Land- Baytown, TX	30.0395240	-95.6739508	Rural	Solar Radiation	PAMS	Photovoltaic	Continuous	Extreme Downwind; Upwind Background	Urban Scale
482010029	Northwest Harris County	16822 Kitzman, Tomball	Houston- Sugar Land- Baytown, TX	30.0395240	-95.6739508	Rural	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Extreme Downwind; Upwind Background	Urban Scale
482010029	Northwest Harris County	16822 Kitzman, Tomball	Houston- Sugar Land- Baytown, TX	30.0395240	-95.6739508	Rural	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Extreme Downwind; Upwind Background	Urban Scale
482010046	Houston North Wayside	7330 1/2 North Wayside, Houston	Houston- Sugar Land- Baytown, TX	29.8280859	-95.2840958	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482010046	Houston North Wayside	7330 1/2 North Wayside, Houston	Houston- Sugar Land- Baytown, TX	29.8280859	-95.2840958	Suburban	SO2	SPM	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482010047	Lang	4401 1/2 Lang Rd, Houston	Houston- Sugar Land- Baytown, TX	29.8341670	-95.4891670	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Urban Scale
482010047	Lang	4401 1/2 Lang Rd, Houston	Houston- Sugar Land- Baytown, TX	29.8341670	-95.4891670	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
482010047	Lang	4401 1/2 Lang Rd, Houston	Houston- Sugar Land- Baytown, TX	29.8341670	-95.4891670	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood

	1	i	1	, 11PI	1				i .		i	1
482010051	Houston Croquet	13826 1/2 Croquet, Houston	Houston- Sugar Land- Baytown, TX	29.6238890	-95.4741670	Suburban	O3	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482010051	Houston Croquet	13826 1/2 Croquet, Houston	Houston- Sugar Land- Baytown, TX	29.6238890	-95.4741670	Suburban	SO2	SPM	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482010051	Houston Croquet	13826 1/2 Croquet, Houston	Houston- Sugar Land- Baytown, TX	29.6238890	-95.4741670	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
482010051	Houston Croquet	13826 1/2 Croquet, Houston	Houston- Sugar Land- Baytown, TX	29.6238890	-95.4741670	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
482010055	Houston Bayland Park	6400 Bissonnet Street, Houston	Houston- Sugar Land- Baytown, TX	29.6957294	-95.4992190	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Neighborhood
482010055	Houston Bayland Park	6400 Bissonnet Street, Houston	Houston- Sugar Land- Baytown, TX	29.6957294	-95.4992190	Suburban	O3	SLAMS	UV Photometric	Continuous	Population Exposure	Middle Scale
482010055	Houston Bayland Park	6400 Bissonnet Street, Houston	Houston- Sugar Land- Baytown, TX	29.6957294	-95.4992190	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background; Max Precursor Emissions Impact	Middle Scale
482010055	Houston Bayland Park	6400 Bissonnet Street, Houston	Houston- Sugar Land- Baytown, TX	29.6957294	-95.4992190	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background; Max Precursor Emissions Impact	Middle Scale
482010055	Houston Bayland Park	6400 Bissonnet Street, Houston	Houston- Sugar Land- Baytown, TX	29.6957294	-95.4992190	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background; Max Precursor Emissions Impact	Middle Scale
482010058	Baytown	7210 1/2 Bayway Drive, Baytown	Houston- Sugar Land- Baytown, TX	29.7706975	-95.0312316	Suburban	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Middle Scale / Neighborhood
482010058	Baytown	7210 1/2 Bayway Drive, Baytown	Houston- Sugar Land- Baytown, TX	29.7706975	-95.0312316	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Neighborhood
482010058	Baytown	7210 1/2 Bayway Drive, Baytown	Houston- Sugar Land- Baytown, TX	29.7706975	-95.0312316	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
482010058	Baytown	7210 1/2 Bayway Drive, Baytown	Houston- Sugar Land- Baytown, TX	29.7706975	-95.0312316	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
482010060	Houston Kirkpatrick	5565 Kirkpatrick, Houston	Houston- Sugar Land-	29.8074146	-95.2936223	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood

		·		Th	iciiuix A.	AIIIDICI	it All Mol	ntoring	•			
			Baytown, TX									
482010060	Houston Kirkpatrick	5565 Kirkpatrick, Houston	Houston- Sugar Land- Baytown, TX	29.8074146	-95.2936223	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
482010062	Houston Monroe	9726 1/2 Monroe, Houston	Houston- Sugar Land- Baytown, TX	29.6255560	-95.2672220	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482010062	Houston Monroe	9726 1/2 Monroe, Houston	Houston- Sugar Land- Baytown, TX	29.6255560	-95.2672220	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482010062	Houston Monroe	9726 1/2 Monroe, Houston	Houston- Sugar Land- Baytown, TX	29.6255560	-95.2672220	Suburban	Precipitation	SPM	Rain Gauge	Continuous	General/Background	Neighborhood
482010062	Houston Monroe	9726 1/2 Monroe, Houston	Houston- Sugar Land- Baytown, TX	29.6255560	-95.2672220	Suburban	SO2	SPM	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482010066	Houston Westhollow	3333 1/2 Hwy 6 South, Houston	Houston- Sugar Land- Baytown, TX	29.7233330	-95.6358330	Suburban	О3	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482010066	Houston Westhollow	3333 1/2 Hwy 6 South, Houston	Houston- Sugar Land- Baytown, TX	29.7233330	-95.6358330	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482010066	Houston Westhollow	3333 1/2 Hwy 6 South, Houston	Houston- Sugar Land- Baytown, TX	29.7233330	-95.6358330	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
482010066	Houston Westhollow	3333 1/2 Hwy 6 South, Houston	Houston- Sugar Land- Baytown, TX	29.7233330	-95.6358330	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
482010071	Pasadena HL&P	1001 1/2 Red Bluff, Pasadena	Houston- Sugar Land- Baytown, TX	29.7164829	-95.2013298	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	Barometric Pressure	SPM	Barometer	Continuous	General/Background	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	Dew Point	SPM	Derived at site	Continuous	General/Background	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	Population Exposure	Neighborhood

		•		11/1	JCHUIA 11.	, minorci	ILAII MOII	itoring	•		•	-
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	O3	SPM	UV Photometric	Continuous	Population Exposure	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	Precipitation	SPM	Rain Gauge	Continuous	General/Background	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	Relative Humidity	SPM	Humidity Sensor	Continuous	General/Background	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	SO2	SPM	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	UV Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
482010416	Park Place	7421 Park Place Blvd, Houston	Houston- Sugar Land- Baytown, TX	29.6863890	-95.2947220	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
482011015	Lynchburg Ferry	4407 Independence Parkway South, Baytown	Houston- Sugar Land- Baytown, TX	29.7616528	-95.0813861	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Source Oriented	Middle Scale / Neighborhood
482011015	Lynchburg Ferry	4407 Independence Parkway South, Baytown	Houston- Sugar Land- Baytown, TX	29.7616528	-95.0813861	Suburban	03	SLAMS	UV Photometric	Continuous	Source Oriented	Middle Scale
482011015	Lynchburg Ferry	4407 Independence Parkway South, Baytown	Houston- Sugar Land- Baytown, TX	29.7616528	-95.0813861	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Neighborhood
482011015	Lynchburg Ferry	4407 Independence Parkway South, Baytown	Houston- Sugar Land- Baytown, TX	29.7616528	-95.0813861	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
482011015	Lynchburg Ferry	4407 Independence Parkway South, Baytown	Houston- Sugar Land- Baytown, TX	29.7616528	-95.0813861	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
482011017	Baytown Garth	8622 Garth Road Unit A, Baytown	Houston- Sugar Land-	29.8233190	-94.9837860	Suburban	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood

	•	i		1141	JCHUIA 11.	7 MIIDICI	it Aii Moi	intoring	i		•	
			Baytown, TX									
482011017	Baytown Garth	8622 Garth Road Unit A, Baytown	Houston- Sugar Land- Baytown, TX	29.8233190	-94.9837860	Suburban	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482011017	Baytown Garth	8622 Garth Road Unit A, Baytown	Houston- Sugar Land- Baytown, TX	29.8233190	-94.9837860	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood
482011017	Baytown Garth	8622 Garth Road Unit A, Baytown	Houston- Sugar Land- Baytown, TX	29.8233190	-94.9837860	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
482011017	Baytown Garth	8622 Garth Road Unit A, Baytown	Houston- Sugar Land- Baytown, TX	29.8233190	-94.9837860	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
482011034	Houston East	1262 1/2 Mae Drive, Houston	Houston- Sugar Land- Baytown, TX	29.7679965	-95.2205822	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Highest Concentration; Population Exposure	Middle Scale / Neighborhood
482011034	Houston East	1262 1/2 Mae Drive, Houston	Houston- Sugar Land- Baytown, TX	29.7679965	-95.2205822	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482011034	Houston East	1262 1/2 Mae Drive, Houston	Houston- Sugar Land- Baytown, TX	29.7679965	-95.2205822	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
482011034	Houston East	1262 1/2 Mae Drive, Houston	Houston- Sugar Land- Baytown, TX	29.7679965	-95.2205822	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Urban Scale
482011034	Houston East	1262 1/2 Mae Drive, Houston	Houston- Sugar Land- Baytown, TX	29.7679965	-95.2205822	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Barometric Pressure	PAMS	Barometer	Continuous	Max Precursor Emissions Impact	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Carbonyl	PAMS	DNPH Silica HPLC	24 Hours; Seasonal, 3 Hours; Seasonal, 24 Hours; 1/6 Days	Max Precursor Emissions Impact	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	CO (High Sensitivity)	PAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood

				. Apl	JCHUIA 11.	THIDICI	it All Mol	iitoring				-
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	03	PAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/3 Days	Highest Concentration; Source Oriented	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	PM10 (FRM)	QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Highest Concentration; Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	PM10 (Speciation)	SPM	ICP-MS	24 Hours; 1/3 Days	Population Exposure; Source Oriented	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/1 Days	Highest Concentration; Population Exposure; Source Oriented	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	PM2.5 (FRM)	QA Collocated/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Highest Concentration; Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Precipitation	SPM	Rain Gauge	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Highest Concentration; Population Exposure; Source Oriented	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land-	29.7337263	-95.2575931	Urban and Center City	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood

	•	Ī		Th	iciiuix A.	AIIIDICI	it All Mol	intornig	•		Ī	
			Baytown, TX									
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	UV Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
482011035	Clinton	9525 1/2 Clinton Dr, Houston	Houston- Sugar Land- Baytown, TX	29.7337263	-95.2575931	Urban and Center City	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Ambient Temperature TSP (Pb)	SPM	Derived from KHOU	24 Hours; 1/6 Days	General/Background	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Barometric Pressure TSP (Pb)	SPM	Derived from KHOU	24 Hours; 1/6 Days	General/Background	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Carbonyl	PAMS	DNPH Silica HPLC	24 Hours; 1/6 Days	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	CO (High Sensitivity)	NCORE	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	NO/NO2/NOx	NCORE/ PAMS/ SLAMS	Chemiluminescence	Continuous	Population Exposure; Source Oriented	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	NOy (High Sensitivity)	NCORE	Chemiluminescence	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	03	NCORE/ PAMS/ SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM10 (FRM)	QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Max Precursor Emissions Impact; Population Exposure; Source Oriented	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM10 (Speciation)	QA Collocated/ NATTS	ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood

i	i	i	i	11/1	CHUIM II.		it All Mion	ntoring	1	ī	•	1
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM10 (Speciation)	NATTS	ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM10-2.5	NCORE	Beta Attentuation	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM2.5 (Carbon)	SPM	Aethalometer	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM2.5 (FEM)	NCORE/ SLAMS	Beta Attentuation	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM2.5 (FRM)	NCORE/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM2.5 (Speciation)	NCORE	Carbons Elements Ions Sequential Non-FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM2.5 (Speciation)	QA Collocated/ NCORE	Carbons Elements Ions Sequential Non-FRM Gravimetric	24 Hours; 1/6 Days, 24 Hours; 1/3 Days	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Relative Humidity	NCORE/ PAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	SO2 (High Sensitivity)	NCORE	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Speciated VOC (Canister)	NATTS/ PAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land-	29.6700250	-95.1285077	Urban and Center City	Speciated VOC (Canister)	NATTS/QA Collocated/ SLAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Precursor Emissions Impact; Population Exposure	Neighborhood

	i.		i	7.1PI	ciiuix 11.	1 1111DIC11	it An Mon	itoring			•	i
			Baytown, TX									
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	SVOC	QA Collocated	HiVol PUF XAD GC- MS	24 Hours; 1/6 Days	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	SVOC	NATTS	HiVol PUF XAD GC- MS	24 Hours; 1/6 Days	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	TSP (Pb)	NCORE	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482011039	Houston Deer Park #2	4514 1/2 Durant St, Deer Park	Houston- Sugar Land- Baytown, TX	29.6700250	-95.1285077	Urban and Center City	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
482011042	Kingwood	3603 1/2 West Lake Houston Pkwy, Houston	Houston- Sugar Land- Baytown, TX	30.0584604	-95.1897514	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
482011042	Kingwood	3603 1/2 West Lake Houston Pkwy, Houston	Houston- Sugar Land- Baytown, TX	30.0584604	-95.1897514	Suburban	Precipitation	SPM	Rain Gauge	Continuous	General/Background	Neighborhood
482011043	La Porte Airport C243	La Porte Airport, 2434 Buchanan Street, La Porte	Houston- Sugar Land- Baytown, TX	29.6720000	-95.0647000	Suburban	Precipitation	PAMS	Rain Gauge	Continuous	General/Background	Neighborhood
482011043	La Porte Airport C243	La Porte Airport, 2434 Buchanan Street, La Porte	Houston- Sugar Land- Baytown, TX	29.6720000	-95.0647000	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	General/Background	Neighborhood
482011043	La Porte Airport C243	La Porte Airport, 2434 Buchanan Street, La Porte	Houston- Sugar Land- Baytown, TX	29.6720000	-95.0647000	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
482011050	Seabrook Friendship Park	4522 Park Rd, Seabrook	Houston- Sugar Land- Baytown, TX	29.5830473	-95.0155437	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Middle Scale / Neighborhood
482011050	Seabrook Friendship Park	4522 Park Rd, Seabrook	Houston- Sugar Land- Baytown, TX	29.5830473	-95.0155437	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482011050	Seabrook Friendship Park	4522 Park Rd, Seabrook	Houston- Sugar Land- Baytown, TX	29.5830473	-95.0155437	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Highest Concentration	Middle Scale

				ciidin 11.	1 11110101	triii Mion	110111115				_
Seabrook Friendship Park	4522 Park Rd, Seabrook	Houston- Sugar Land- Baytown, TX	29.5830473	-95.0155437	Suburban	SO2	SPM	Pulsed Fluorescence	Continuous	Population Exposure; Source Oriented	Neighborhood
Seabrook Friendship Park	4522 Park Rd, Seabrook	Houston- Sugar Land- Baytown, TX	29.5830473	-95.0155437	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale
Seabrook Friendship Park	4522 Park Rd, Seabrook	Houston- Sugar Land- Baytown, TX	29.5830473	-95.0155437	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Middle Scale
Seabrook Friendship Park	4522 Park Rd, Seabrook	Houston- Sugar Land- Baytown, TX	29.5830473	-95.0155437	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Middle Scale
Houston North Loop	822 North Loop, Houston	Houston- Sugar Land- Baytown, TX	29.8145300	-95.3876900	Urban and Center City	СО	Near Road/ SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale
Houston North Loop	822 North Loop, Houston	Houston- Sugar Land- Baytown, TX	29.8145300	-95.3876900	Urban and Center City	NO/NO2/NOx	Near Road/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale
Houston North Loop	822 North Loop, Houston	Houston- Sugar Land- Baytown, TX	29.8145300	-95.3876900	Urban and Center City	PM2.5 (FRM)	Near Road/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Max Precursor Emissions Impact	Microscale
Houston North Loop	822 North Loop, Houston	Houston- Sugar Land- Baytown, TX	29.8145300	-95.3876900	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale
Houston North Loop	822 North Loop, Houston	Houston- Sugar Land- Baytown, TX	29.8145300	-95.3876900	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer [020]SPOT READING	Continuous	Max Precursor Emissions Impact	Microscale
Houston Southwest Freeway	5617 Westward Avenue, Houston	Houston- Sugar Land- Baytown, TX	29.7216000	-95.4926500	Urban and Center City	NO/NO2/NOx	Near Road/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale
Houston Southwest Freeway	5617 Westward Avenue, Houston	Houston- Sugar Land- Baytown, TX	29.7216000	-95.4926500	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale
Houston Southwest Freeway	5617 Westward Avenue, Houston	Houston- Sugar Land- Baytown, TX	29.7216000	-95.4926500	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale
Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	Carbonyl	SPM	DNPH Silica HPLC	24 Hours; 1/6 Days	General/Background	Regional Scale
Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	General/Background	Regional Scale / Urban Scale
	Friendship Park Seabrook Friendship Park Seabrook Friendship Park Seabrook Friendship Park Houston North Loop Karnack	Friendship Park Seabrook Seabrook Friendship Park Seabrook Friendship Park Seabrook Houston Houston North Loop Houston North Loop Houston Houston North Loop B22 North Loop, Houston Houston North Loop B22 North Loop, Houston B22 North Loop, Houston South Loop Houston Southwest Freeway Freeway Freeway Seabrook 4522 Park Rd, Seabrook A522 Park Rd, Seabrook Seabrook Seabrook Freeway B22 North Loop, Houston South Loop, Houston South Loop, Houston Southwest Freeway Freeway Freeway Seabrook Footh Rd, Seabrook A522 Park Rd, Seabrook A522 Park Rd, Seabrook Freeway A522 Park Rd, Seabrook Freeway Rd, Seabrook Footh Rd, Seabrook Footh Rd, Seabrook A522 Park Rd, Seabrook Footh Rd, Seabrook Footh Rd, Seabrook Footh Rd, Seabrook A522 Park Rd, Seabrook Footh Rd, Footh Rd, Seabrook Footh Rd, Seabrook Footh Rd, F	Friendship Park Seabrook Seabrook Friendship Park Seabrook Friendship Park Seabrook Seabrook Friendship Park Seabrook Sugar Land- Baytown, TX Houston- Sugar Land- Baytown, TX Houston- Sugar Land- Bay	Seabrook Friendship Park 4522 Park Rd, Seabrook Houston-Sugar Land-Baytown, TX 29.5830473 Seabrook Friendship Park 4522 Park Rd, Seabrook Houston-Sugar Land-Baytown, TX 29.5830473 Seabrook Friendship Park 4522 Park Rd, Seabrook Houston-Sugar Land-Baytown, TX 29.5830473 Seabrook Friendship Park 4522 Park Rd, Seabrook Houston-Sugar Land-Baytown, TX 29.5830473 Houston North Loop 822 North Loop, Houston Houston-Sugar Land-Baytown, TX 29.5830473 Houston North Loop 822 North Loop, Houston Houston-Sugar Land-Baytown, TX 29.5830473 Houston North Loop 822 North Loop, Houston Houston-Sugar Land-Baytown, TX 29.5830473 Houston North Loop 822 North Loop, Houston Houston-Sugar Land-Baytown, TX 29.8145300 Houston North Loop 822 North Loop, Houston Houston-Sugar Land-Baytown, TX 29.8145300 Houston North Loop 822 North Loop, Houston Houston-Sugar Land-Baytown, TX 29.8145300 Houston North Loop 822 North Loop, Houston Houston-Sugar Land-Baytown, TX 29.7216000 Houston Southwest Freeway 5617 Westward Avenue, Houston Houston-Sugar Land-Ba	Seabrook Friendship Park A522 Park Rd, Seabrook A522 Park Rd, Sea	Seabrook Friendship Park Seabrook Sugar Land-Baytown, TX Suburban Seabrook Sugar Land-Baytown, TX Suburban Seabrook Seabrook Sugar Land-Baytown, TX Suburban Suburban Seabrook Seabrook Sugar Land-Baytown, TX Suburban Sub	Seabrook Friendship Park	Seabrook Seabrook	Seabrook Friendiship Seabrook Friendiship	Seabrook	Seabrook A522 Park Rd, South S

	•			, 11PI	Jonath II.	1 11110101	t All Mol	intoring	•			
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	03	SLAMS	UV Photometric	Continuous	General/Background	Regional Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	PM10 (FRM)	SPM	HiVol Gravimetric	24 Hours; 1/6 Days	General/Background	Neighborhood
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	PM10 (Speciation)	NATTS	ICP-MS	24 Hours; 1/6 Days	General/Background	Regional Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	PM2.5 (FRM)	SPM	Sequential FRM Gravimetric	24 Hours; 1/6 Days	General/Background	Regional Scale / Urban Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	PM2.5 (Speciation)	CSN Supplemental	Carbons Elements Ions Sequential Non-FRM Gravimetric	24 Hours; 1/3 Days	General/Background; Regional Transport	Regional Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	General/Background	Regional Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Urban Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	Speciated VOC (Canister)	SPM	Canister GC-MS	24 Hours; 1/6 Days	General/Background	Regional Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	SVOC	SPM	HiVol PUF XAD GC- MS	24 Hours; 1/6 Days	General/Background	Regional Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Urban Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	Visibility	SPM	Visibility Sensor	Continuous	General/Background	Urban Scale
482030002	Karnack	Hwy 134 & Spur 449, Not In A City	None	32.6689873	-94.1674569	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Urban Scale
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Urban Scale
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Urban Scale
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Urban Scale
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Microscale
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	SVOC	SPM	HiVol PUF XAD GC- MS	24 Hours; 1/6 Days	Population Exposure	Microscale
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Microscale
482150043	Mission	2300 North Glasscock, Mission	McAllen- Edinburg- Mission, TX	26.2262097	-98.2910690	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Microscale

					JCHUIA 11.		IL AII MIOI	iitoring			•	
482151046	Edinburg East Freddy Gonzalez Drive	1491 East Freddy Gonzalez Drive, Edinburg	McAllen- Edinburg- Mission, TX	26.2886220	-98.1520660	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Regional Scale
482151046	Edinburg East Freddy Gonzalez Drive	1491 East Freddy Gonzalez Drive, Edinburg	McAllen- Edinburg- Mission, TX	26.2886220	-98.1520660	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Regional Scale
482151046	Edinburg East Freddy Gonzalez Drive	1491 East Freddy Gonzalez Drive, Edinburg	McAllen- Edinburg- Mission, TX	26.2886220	-98.1520660	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Regional Scale
482151046	Edinburg East Freddy Gonzalez Drive	1491 East Freddy Gonzalez Drive, Edinburg	McAllen- Edinburg- Mission, TX	26.2886220	-98.1520660	Urban and Center City	Wind (3m)	SLAMS	Potentiometer Cup Anemometer	Continuous	Population Exposure	Regional Scale
482210001	Granbury	200 N Gordon Street, Granbury	Granbury, TX	32.4423044	-97.8035291	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482210001	Granbury	200 N Gordon Street, Granbury	Granbury, TX	32.4423044	-97.8035291	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Middle Scale
482210001	Granbury	200 N Gordon Street, Granbury	Granbury, TX	32.4423044	-97.8035291	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Middle Scale
482210001	Granbury	200 N Gordon Street, Granbury	Granbury, TX	32.4423044	-97.8035291	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Middle Scale
482311006	Greenville	824 Sayle Street, Greenville	Dallas-Fort Worth- Arlington, TX	33.1530882	-96.1155717	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure; Upwind Background	Neighborhood
482311006	Greenville	824 Sayle Street, Greenville	Dallas-Fort Worth- Arlington, TX	33.1530882	-96.1155717	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure; Upwind Background	Neighborhood
482311006	Greenville	824 Sayle Street, Greenville	Dallas-Fort Worth- Arlington, TX	33.1530882	-96.1155717	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
482311006	Greenville	824 Sayle Street, Greenville	Dallas-Fort Worth- Arlington, TX	33.1530882	-96.1155717	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
482311006	Greenville	824 Sayle Street, Greenville	Dallas-Fort Worth- Arlington, TX	33.1530882	-96.1155717	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
482450009	Beaumont Downtown	1086 Vermont Avenue, Beaumont	Beaumont- Port Arthur, TX	30.0364221	-94.0710606	Suburban	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood
482450009	Beaumont Downtown	1086 Vermont Avenue, Beaumont	Beaumont- Port Arthur, TX	30.0364221	-94.0710606	Suburban	03	PAMS/ SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482450009	Beaumont Downtown	1086 Vermont Avenue, Beaumont	Beaumont- Port Arthur, TX	30.0364221	-94.0710606	Suburban	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
482450009	Beaumont Downtown	1086 Vermont Avenue, Beaumont	Beaumont- Port Arthur, TX	30.0364221	-94.0710606	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
482450009	Beaumont Downtown	1086 Vermont Avenue, Beaumont	Beaumont- Port Arthur, TX	30.0364221	-94.0710606	Suburban	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482450009	Beaumont Downtown	1086 Vermont Avenue, Beaumont	Beaumont- Port Arthur, TX	30.0364221	-94.0710606	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood

				лþ	muix A.	AIIIDICI	ILAII MOL	ntoring				
482450009	Beaumont Downtown	1086 Vermont Avenue, Beaumont	Beaumont- Port Arthur, TX	30.0364221	-94.0710606	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
482450011	Port Arthur West	623 Ellias Street, Port Arthur	Beaumont- Port Arthur, TX	29.8975163	-93.9910842	Urban and Center City	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
482450011	Port Arthur West	623 Ellias Street, Port Arthur	Beaumont- Port Arthur, TX	29.8975163	-93.9910842	Urban and Center City	SO2	SLAMS	Pulsed Fluorescence	Continuous	Source Oriented	Neighborhood
482450011	Port Arthur West	623 Ellias Street, Port Arthur	Beaumont- Port Arthur, TX	29.8975163	-93.9910842	Urban and Center City	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure; Source Oriented	Neighborhood
482450011	Port Arthur West	623 Ellias Street, Port Arthur	Beaumont- Port Arthur, TX	29.8975163	-93.9910842	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Neighborhood
482450011	Port Arthur West	623 Ellias Street, Port Arthur	Beaumont- Port Arthur, TX	29.8975163	-93.9910842	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure; Source Oriented	Neighborhood
482450018	Jefferson County Airport	End of 90th Street @ Jefferson County Airport, Port Arthur	Beaumont- Port Arthur, TX	29.9427981	-94.0007700	Suburban	Precipitation	PAMS	Rain Gauge	Continuous	General/Background	Neighborhood
482450018	Jefferson County Airport	End of 90th Street @ Jefferson County Airport, Port Arthur	Beaumont- Port Arthur, TX	29.9427981	-94.0007700	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	General/Background	Neighborhood
482450018	Jefferson County Airport	End of 90th Street @ Jefferson County Airport, Port Arthur	Beaumont- Port Arthur, TX	29.9427981	-94.0007700	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
482450021	Port Arthur Memorial School	2200 Jefferson Drive, Port Arthur	Beaumont- Port Arthur, TX	29.9228943	-93.9090184	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
482450022	Hamshire	12552 Second St, Not In A City	Beaumont- Port Arthur, TX	29.8639574	-94.3178017	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	General/Background; Regional Transport	Neighborhood / Urban Scale
482450022	Hamshire	12552 Second St, Not In A City	Beaumont- Port Arthur, TX	29.8639574	-94.3178017	Suburban	03	SLAMS	UV Photometric	Continuous	General/Background; Regional Transport	Urban Scale
482450022	Hamshire	12552 Second St, Not In A City	Beaumont- Port Arthur, TX	29.8639574	-94.3178017	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
482450022	Hamshire	12552 Second St, Not In A City	Beaumont- Port Arthur, TX	29.8639574	-94.3178017	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
482450022	Hamshire	12552 Second St, Not In A City	Beaumont- Port Arthur, TX	29.8639574	-94.3178017	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
482450022	Hamshire	12552 Second St, Not In A City	Beaumont- Port Arthur, TX	29.8639574	-94.3178017	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
482450101	SETRPC 40 Sabine Pass	5200 Mechanic, Not In A City	Beaumont- Port Arthur, TX	29.7279314	-93.8940805	Rural	03	PAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood
482450102	SETRPC 43 Jefferson Co Airport	Jefferson County Airport, Port Arthur	Beaumont- Port Arthur, TX	29.9427514	-94.0006841	Suburban	03	SPM	UV Photometric	Continuous	Max Precursor Emissions Impact	Middle Scale
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	Barometric Pressure	PAMS	Barometer	Continuous	Max Precursor Emissions Impact	Neighborhood

	_			11/1	CHUIA 11.	1 minorei	LAII MOII	ntoring				_
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	CO (High Sensitivity)	PAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	O3	PAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	UV Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
482451035	Nederland High School	1800 N. 18th Street, Nederland	Beaumont- Port Arthur, TX	29.9789255	-94.0108717	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
482510003	Cleburne Airport	1650 Airport Drive, Cleburne	Dallas-Fort Worth- Arlington, TX	32.3535945	-97.4367419	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
482510003	Cleburne Airport	1650 Airport Drive, Cleburne	Dallas-Fort Worth- Arlington, TX	32.3535945	-97.4367419	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Highest Concentration	Neighborhood
482510003	Cleburne Airport	1650 Airport Drive, Cleburne	Dallas-Fort Worth- Arlington, TX	32.3535945	-97.4367419	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
482510003	Cleburne Airport	1650 Airport Drive, Cleburne	Dallas-Fort Worth- Arlington, TX	32.3535945	-97.4367419	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
482511008	Johnson County Luisa	2420 Luisa Ln, Alvarado	Dallas-Fort Worth- Arlington, TX	32.4697010	-97.1692710	Suburban	Speciated VOC (Canister)	SPM	Canister GC-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
482511008	Johnson County Luisa	2420 Luisa Ln, Alvarado	Dallas-Fort Worth- Arlington, TX	32.4697010	-97.1692710	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
482511008	Johnson County Luisa	2420 Luisa Ln, Alvarado	Dallas-Fort Worth- Arlington, TX	32.4697010	-97.1692710	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	Dew Point	SPM	Derived at site	Continuous	Highest Concentration	Neighborhood
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	NO/NO2/NOx	PAMS	Chemiluminescence	Continuous	Population Exposure; Upwind Background	Neighborhood / Urban Scale

		_			JUIUIA II.	MIIDICI	LAII MOI	iitoring	_			
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	О3	PAMS	UV Photometric	Continuous	Population Exposure; Upwind Background	Urban Scale
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Upwind Background	Regional Scale
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	Relative Humidity	PAMS	Humidity Sensor	Continuous	Upwind Background	Urban Scale
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure; Upwind Background	Urban Scale
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Upwind Background	Urban Scale
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Upwind Background	Urban Scale
482570005	Kaufman	3790 S Houston St, Kaufman	Dallas-Fort Worth- Arlington, TX	32.5649684	-96.3176873	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Upwind Background	Urban Scale
482570020	Terrell Temtex	2988 Temtex Blvd, Terrell	Dallas-Fort Worth- Arlington, TX	32.7319190	-96.3179110	Rural	Ambient Temperature TSP (Pb)	SPM	Derived from KTRL	24 Hours; 1/6 Days	General/Background	Neighborhood
482570020	Terrell Temtex	2988 Temtex Blvd, Terrell	Dallas-Fort Worth- Arlington, TX	32.7319190	-96.3179110	Rural	Barometric Pressure TSP (Pb)	SPM	Derived from KTRL	24 Hours; 1/6 Days	General/Background	Neighborhood
482570020	Terrell Temtex	2988 Temtex Blvd, Terrell	Dallas-Fort Worth- Arlington, TX	32.7319190	-96.3179110	Rural	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Neighborhood
482730314	National Seashore	20420 Park Road, Corpus Christi	Kingsville, TX	27.4269813	-97.2986922	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Regional Scale
482730314	National Seashore	20420 Park Road, Corpus Christi	Kingsville, TX	27.4269813	-97.2986922	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Regional Transport	Regional Scale
482730314	National Seashore	20420 Park Road, Corpus Christi	Kingsville, TX	27.4269813	-97.2986922	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Regional Transport	Regional Scale
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	СО	SLAMS	Gas Filter Correlation	Continuous	Upwind Background	Urban Scale
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Upwind Background	Urban Scale
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	03	SLAMS	UV Photometric	Continuous	Upwind Background	Regional Scale
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Regional Scale
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	SO2	SLAMS	Pulsed Fluorescence	Continuous	Upwind Background	Urban Scale

	•		•	App	Jenuix A.	Ampien	it Air Mon	ntoring				•
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	Regional Transport	Urban Scale
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Regional Transport	Urban Scale
483091037	Waco Mazanec	4472 Mazanec Rd, Waco	Waco, TX	31.6530743	-97.0706982	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Regional Transport	Urban Scale
483230004	Eagle Pass	265 Foster Maldonado, Eagle Pass	Eagle Pass, TX	28.7046070	100.4511555	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Regional Scale
483230004	Eagle Pass	265 Foster Maldonado, Eagle Pass	Eagle Pass, TX	28.7046070	100.4511555	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Regional Transport	Regional Scale
483230004	Eagle Pass	265 Foster Maldonado, Eagle Pass	Eagle Pass, TX	28.7046070	100.4511555	Urban and Center City	Visibility	SPM	Visibility Sensor	Continuous	Regional Transport	Regional Scale
483230004	Eagle Pass	265 Foster Maldonado, Eagle Pass	Eagle Pass, TX	28.7046070	100.4511555	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Regional Transport	Regional Scale
483390078	Conroe Relocated	9472A Hwy 1484, Conroe	Houston- Sugar Land- Baytown, TX	30.3503017	-95.4251278	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	General/Background; Population Exposure	Urban Scale
483390078	Conroe Relocated	9472A Hwy 1484, Conroe	Houston- Sugar Land- Baytown, TX	30.3503017	-95.4251278	Suburban	О3	PAMS/ SLAMS	UV Photometric	Continuous	General/Background; Population Exposure	Urban Scale
483390078	Conroe Relocated	9472A Hwy 1484, Conroe	Houston- Sugar Land- Baytown, TX	30.3503017	-95.4251278	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	General/Background	Neighborhood
483390078	Conroe Relocated	9472A Hwy 1484, Conroe	Houston- Sugar Land- Baytown, TX	30.3503017	-95.4251278	Suburban	Solar Radiation	PAMS/ SLAMS	Photovoltaic	Continuous	Highest Concentration	Neighborhood
483390078	Conroe Relocated	9472A Hwy 1484, Conroe	Houston- Sugar Land- Baytown, TX	30.3503017	-95.4251278	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
483390078	Conroe Relocated	9472A Hwy 1484, Conroe	Houston- Sugar Land- Baytown, TX	30.3503017	-95.4251278	Suburban	Wind	PAMS/ SLAMS	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
483491051	Corsicana Airport	Corsicana Airport, Corsicana	Corsicana, TX	32.0319335	-96.3991408	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Source Oriented	Neighborhood
483550025	Corpus Christi West	Corpus Christi State School (Airport Rd), 902 AIRPORT BLVD, Corpus Christi	Corpus Christi, TX	27.7653399	-97.4342619	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
483550025	Corpus Christi West	Corpus Christi State School (Airport Rd), 902 AIRPORT BLVD, Corpus Christi	Corpus Christi, TX	27.7653399	-97.4342619	Suburban	SO2	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood

		•		7.1PI	JCHUIA 11.	7 MIIDICI	it All Mol	ntoring	•	1	Ī	
483550025	Corpus Christi West	Corpus Christi State School (Airport Rd), 902 AIRPORT BLVD, Corpus Christi	Corpus Christi, TX	27.7653399	-97.4342619	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood
483550025	Corpus Christi West	Corpus Christi State School (Airport Rd), 902 AIRPORT BLVD, Corpus Christi	Corpus Christi, TX	27.7653399	-97.4342619	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
483550025	Corpus Christi West	Corpus Christi State School (Airport Rd), 902 AIRPORT BLVD, Corpus Christi	Corpus Christi, TX	27.7653399	-97.4342619	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
483550026	Corpus Christi Tuloso	9860 La Branch, Corpus Christi	Corpus Christi, TX	27.8324089	-97.5553798	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
483550026	Corpus Christi Tuloso	9860 La Branch, Corpus Christi	Corpus Christi, TX	27.8324089	-97.5553798	Suburban	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
483550026	Corpus Christi Tuloso	9860 La Branch, Corpus Christi	Corpus Christi, TX	27.8324089	-97.5553798	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
483550026	Corpus Christi Tuloso	9860 La Branch, Corpus Christi	Corpus Christi, TX	27.8324089	-97.5553798	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
483550032	Corpus Christi Huisache	3810 Huisache Street, Corpus Christi	Corpus Christi, TX	27.8045054	-97.4315816	Urban and Center City	PM2.5 (FRM)	QA Collocated/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
483550032	Corpus Christi Huisache	3810 Huisache Street, Corpus Christi	Corpus Christi, TX	27.8045054	-97.4315816	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Neighborhood
483550032	Corpus Christi Huisache	3810 Huisache Street, Corpus Christi	Corpus Christi, TX	27.8045054	-97.4315816	Urban and Center City	SO2	SLAMS	Pulsed Fluorescence	Continuous	Highest Concentration; Population Exposure	Neighborhood
483550032	Corpus Christi Huisache	3810 Huisache Street, Corpus Christi	Corpus Christi, TX	27.8045054	-97.4315816	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Middle Scale
483550032	Corpus Christi Huisache	3810 Huisache Street, Corpus Christi	Corpus Christi, TX	27.8045054	-97.4315816	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Middle Scale
483550034	Dona Park	5707 Up River Rd, Corpus Christi	Corpus Christi, TX	27.8118166	-97.4657031	Urban and Center City	PM10 (FRM)	QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
483550034	Dona Park	5707 Up River Rd, Corpus Christi	Corpus Christi, TX	27.8118166	-97.4657031	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
483550034	Dona Park	5707 Up River Rd, Corpus Christi	Corpus Christi, TX	27.8118166	-97.4657031	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
483550034	Dona Park	5707 Up River Rd, Corpus Christi	Corpus Christi, TX	27.8118166	-97.4657031	Urban and Center City	PM2.5 (Speciation)	CSN Supplemental	Carbons Elements Ions Sequential FRM Gravimetric Sequential Non-FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
483550034	Dona Park	5707 Up River Rd, Corpus Christi	Corpus Christi, TX	27.8118166	-97.4657031	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Regional Transport	Urban Scale

				App	Julia A.		IL AII MIOI	intoring				
483550034	Dona Park	5707 Up River Rd, Corpus Christi	Corpus Christi, TX	27.8118166	-97.4657031	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Regional Scale
483550034	Dona Park	5707 Up River Rd, Corpus Christi	Corpus Christi, TX	27.8118166	-97.4657031	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Regional Scale
483611001	West Orange	2700 Austin Ave, West Orange	Beaumont- Port Arthur, TX	30.0852629	-93.7613411	Urban and Center City	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood
483611001	West Orange	2700 Austin Ave, West Orange	Beaumont- Port Arthur, TX	30.0852629	-93.7613411	Urban and Center City	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
483611001	West Orange	2700 Austin Ave, West Orange	Beaumont- Port Arthur, TX	30.0852629	-93.7613411	Urban and Center City	Solar Radiation	SPM	Photovoltaic	Continuous	Source Oriented	Neighborhood
483611001	West Orange	2700 Austin Ave, West Orange	Beaumont- Port Arthur, TX	30.0852629	-93.7613411	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Neighborhood
483611001	West Orange	2700 Austin Ave, West Orange	Beaumont- Port Arthur, TX	30.0852629	-93.7613411	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Neighborhood
483611100	SETRPC 42 Mauriceville	Intersection of TX Hwys 62 & 12, Port Arthur	Beaumont- Port Arthur, TX	30.1945576	-93.8672365	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Upwind Background	Regional Scale
483670081	Parker County	3033 New Authon Rd, Weatherford	Dallas-Fort Worth- Arlington, TX	32.8687727	-97.9059308	Rural	03	SLAMS	UV Photometric	Continuous	Population Exposure	Urban Scale
483670081	Parker County	3033 New Authon Rd, Weatherford	Dallas-Fort Worth- Arlington, TX	32.8687727	-97.9059308	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	Source Oriented	Neighborhood
483670081	Parker County	3033 New Authon Rd, Weatherford	Dallas-Fort Worth- Arlington, TX	32.8687727	-97.9059308	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Source Oriented	Neighborhood
483670081	Parker County	3033 New Authon Rd, Weatherford	Dallas-Fort Worth- Arlington, TX	32.8687727	-97.9059308	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Source Oriented	Neighborhood
483750024	Amarillo SH 136	7100 State Highway 136, Amarillo	Amarillo, TX	35.2802728	- 101.7156402	Rural	Ambient Temperature TSP (Pb)	SPM	Derived from KAMA	24 Hours; 1/6 Days	General/Background	Middle Scale
483750024	Amarillo SH 136	7100 State Highway 136, Amarillo	Amarillo, TX	35.2802728	- 101.7156402	Rural	Barometric Pressure TSP (Pb)	SPM	Derived from KAMA	24 Hours; 1/6 Days	General/Background	Middle Scale
483750024	Amarillo SH 136	7100 State Highway 136, Amarillo	Amarillo, TX	35.2802728	- 101.7156402	Rural	TSP (Pb)	SLAMS	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure; Source Oriented	Middle Scale
483750320	Amarillo A&M	6500 Amarillo Blvd West, Amarillo	Amarillo, TX	35.2015922	101.9092746	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Urban Scale
483751025	Amarillo 24th Avenue	4205 NE 24th Avenue, Amarillo	Amarillo, TX	35.2367360	- 101.7874050	Suburban	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Neighborhood
483751025	Amarillo 24th Avenue	4205 NE 24th Avenue, Amarillo	Amarillo, TX	35.2367360	101.7874050	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood

				. Apl	muix A.	Ambici	IL AII MIOI	ntoring				
483751025	Amarillo 24th Avenue	4205 NE 24th Avenue, Amarillo	Amarillo, TX	35.2367360	- 101.7874050	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
483970001	Rockwall Heath	100 E Heath St, Rockwall	Dallas-Fort Worth- Arlington, TX	32.9365230	-96.4592108	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
483970001	Rockwall Heath	100 E Heath St, Rockwall	Dallas-Fort Worth- Arlington, TX	32.9365230	-96.4592108	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Neighborhood
483970001	Rockwall Heath	100 E Heath St, Rockwall	Dallas-Fort Worth- Arlington, TX	32.9365230	-96.4592108	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
483970001	Rockwall Heath	100 E Heath St, Rockwall	Dallas-Fort Worth- Arlington, TX	32.9365230	-96.4592108	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
484230007	Tyler Airport Relocated	14790 County Road 1145, Tyler	Tyler, TX	32.3440079	-95.4157515	Rural	NO/NO2/NOx	SPM	Chemiluminescence	Continuous	General/Background	Urban Scale
484230007	Tyler Airport Relocated	14790 County Road 1145, Tyler	Tyler, TX	32.3440079	-95.4157515	Rural	03	SLAMS	UV Photometric	Continuous	General/Background	Urban Scale
484230007	Tyler Airport Relocated	14790 County Road 1145, Tyler	Tyler, TX	32.3440079	-95.4157515	Rural	Precipitation	SPM	Rain Gauge	Continuous	General/Background	Neighborhood
484230007	Tyler Airport Relocated	14790 County Road 1145, Tyler	Tyler, TX	32.3440079	-95.4157515	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Neighborhood
484230007	Tyler Airport Relocated	14790 County Road 1145, Tyler	Tyler, TX	32.3440079	-95.4157515	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
484230007	Tyler Airport Relocated	14790 County Road 1145, Tyler	Tyler, TX	32.3440079	-95.4157515	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
484390075	Eagle Mountain Lake	14290 Morris Dido Newark Rd, Eagle Mountain	Dallas-Fort Worth- Arlington, TX	32.9878908	-97.4771754	Rural	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration	Neighborhood
484390075	Eagle Mountain Lake	14290 Morris Dido Newark Rd, Eagle Mountain	Dallas-Fort Worth- Arlington, TX	32.9878908	-97.4771754	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Middle Scale
484390075	Eagle Mountain Lake	14290 Morris Dido Newark Rd, Eagle Mountain	Dallas-Fort Worth- Arlington, TX	32.9878908	-97.4771754	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Middle Scale
484390075	Eagle Mountain Lake	14290 Morris Dido Newark Rd, Eagle Mountain	Dallas-Fort Worth- Arlington, TX	32.9878908	-97.4771754	Rural	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Middle Scale
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Carbonyl	SPM	DNPH Silica HPLC	24 Hours; 1/6 Days	Max Precursor Emissions Impact	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Dew Point	SPM	Derived at site	Continuous	Population Exposure	Middle Scale
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	NO/NO2/NOx	PAMS/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood

		•		1121	5011a12111.		it All Miol	ntoring		i		
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	03	PAMS/ SLAMS	UV Photometric	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Population Exposure	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Precursor Emissions Impact	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Precursor Emissions Impact	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Speciated VOC (AutoGC)	PAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Speciated VOC (Canister)	PAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Precursor Emissions Impact; Population Exposure	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	TNMOC (AutoGC)	PAMS	GC	Continuous	Max Precursor Emissions Impact; Population Exposure	Neighborhood
484391002	Fort Worth Northwest	3317 Ross Ave, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.8058183	-97.3565675	Urban and Center City	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Neighborhood
484391006	Haws Athletic Center	600 1/2 Congress St, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.7591432	-97.3423337	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Highest Concentration; Population Exposure	Neighborhood
484391006	Haws Athletic Center	600 1/2 Congress St, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.7591432	-97.3423337	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Highest Concentration	Neighborhood
484391053	Fort Worth California Parkway North	1198 California Parkway North,	Dallas-Fort Worth- Arlington, TX	32.6647220	-97.3380560	Urban and Center City	СО	Near Road/ SLAMS	Gas Filter Correlation	Continuous	Max Precursor Emissions Impact	Microscale
484391053	Fort Worth California Parkway North	1198 California Parkway North,	Dallas-Fort Worth- Arlington, TX	32.6647220	-97.3380560	Urban and Center City	NO/NO2/NOx	Near Road/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale
484391053	Fort Worth California Parkway North	1198 California Parkway North,	Dallas-Fort Worth- Arlington, TX	32.6647220	-97.3380560	Urban and Center City	PM2.5 (FRM)	Near Road/ SLAMS	Sequential FRM Gravimetric	24 Hours; 1/3 Days	Max Precursor Emissions Impact	Microscale
484391053	Fort Worth California Parkway North	1198 California Parkway North,	Dallas-Fort Worth- Arlington, TX	32.6647220	-97.3380560	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale
484391053	Fort Worth California Parkway North	1198 California Parkway North,	Dallas-Fort Worth- Arlington, TX	32.6647220	-97.3380560	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale
484392003	Keller	FAA Site off Alta Vista Road, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.9224736	-97.2820880	Suburban	03	SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood

			•	Th	Julian II.	Ambien	IL AII MIOI	intornig	•			
484392003	Keller	FAA Site off Alta Vista Road, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.9224736	-97.2820880	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	General/Background	Urban Scale
484392003	Keller	FAA Site off Alta Vista Road, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.9224736	-97.2820880	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Urban Scale
484392003	Keller	FAA Site off Alta Vista Road, Fort Worth	Dallas-Fort Worth- Arlington, TX	32.9224736	-97.2820880	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Urban Scale
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	Barometric Pressure	PAMS	Barometer	Continuous	Max Ozone Concentration	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	Dew Point	SPM	Derived at site	Continuous	Highest Concentration; Max Ozone Concentration	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	NO/NO2/NOx	PAMS/ SLAMS	Chemiluminescence	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	03	PAMS/ SLAMS	UV Photometric	Continuous	Max Ozone Concentration; Population Exposure	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	Relative Humidity	PAMS	Humidity Sensor	Continuous	Max Ozone Concentration	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	Solar Radiation	PAMS	Photovoltaic	Continuous	Max Ozone Concentration	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	Speciated VOC (Canister)	PAMS	Canister GC-MS	24 Hours; 1/6 Days	Max Ozone Concentration; Population Exposure	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	Temperature (Outdoor)	PAMS	Aspirated Thermister	Continuous	Max Ozone Concentration	Neighborhood
484393009	Grapevine Fairway	4100 Fairway Dr, Grapevine	Dallas-Fort Worth- Arlington, TX	32.9842596	-97.0637211	Suburban	Wind	PAMS	Potentiometer Cup Anemometer	Continuous	Max Ozone Concentration	Neighborhood
484393010	Stage Coach	8900 West Freeway, White Settlement	Dallas-Fort Worth- Arlington, TX	32.7392000	-97.4703300	Suburban	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484393011	Arlington Municipal Airport	5504 South Collins Street, Arlington	Dallas-Fort Worth- Arlington, TX	32.6563574	-97.0885849	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Neighborhood
484393011	Arlington Municipal Airport	5504 South Collins Street, Arlington	Dallas-Fort Worth- Arlington, TX	32.6563574	-97.0885849	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
484393011	Arlington Municipal Airport	5504 South Collins Street, Arlington	Dallas-Fort Worth- Arlington, TX	32.6563574	-97.0885849	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Highest Concentration	Neighborhood
484393011	Arlington Municipal Airport	5504 South Collins Street, Arlington	Dallas-Fort Worth- Arlington, TX	32.6563574	-97.0885849	Suburban	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Neighborhood

				144	JCIIUIA 11.	1 11110101	LAII MOII	itoring	•		•	
484393011	Arlington Municipal Airport	5504 South Collins Street, Arlington	Dallas-Fort Worth- Arlington, TX	32.6563574	-97.0885849	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
484393011	Arlington Municipal Airport	5504 South Collins Street, Arlington	Dallas-Fort Worth- Arlington, TX	32.6563574	-97.0885849	Suburban	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
484530014	Austin Northwest	3724 North Hills Dr, Austin	Austin- Round Rock, TX	30.3544356	-97.7602554	Suburban	NO/NO2/NOx	SLAMS	Chemiluminescence	Continuous	Population Exposure	Urban Scale
484530014	Austin Northwest	3724 North Hills Dr, Austin	Austin- Round Rock, TX	30.3544356	-97.7602554	Suburban	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
484530014	Austin Northwest	3724 North Hills Dr, Austin	Austin- Round Rock, TX	30.3544356	-97.7602554	Suburban	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
484530014	Austin Northwest	3724 North Hills Dr, Austin	Austin- Round Rock, TX	30.3544356	-97.7602554	Suburban	S02	SLAMS	Pulsed Fluorescence	Continuous	Population Exposure	Urban Scale
484530014	Austin Northwest	3724 North Hills Dr, Austin	Austin- Round Rock, TX	30.3544356	-97.7602554	Suburban	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	General/Background	Neighborhood
484530014	Austin Northwest	3724 North Hills Dr, Austin	Austin- Round Rock, TX	30.3544356	-97.7602554	Suburban	Wind (3m)	SPM	Potentiometer Cup Anemometer	Continuous	General/Background	Neighborhood
484530020	Austin Audubon Society	12200 Lime Creek Rd, Leander	Austin- Round Rock, TX	30.4831681	-97.8723005	Rural	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
484530020	Austin Audubon Society	12200 Lime Creek Rd, Leander	Austin- Round Rock, TX	30.4831681	-97.8723005	Rural	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484530020	Austin Audubon Society	12200 Lime Creek Rd, Leander	Austin- Round Rock, TX	30.4831681	-97.8723005	Rural	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484530020	Austin Audubon Society	12200 Lime Creek Rd, Leander	Austin- Round Rock, TX	30.4831681	-97.8723005	Rural	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
484530020	Austin Audubon Society	12200 Lime Creek Rd, Leander	Austin- Round Rock, TX	30.4831681	-97.8723005	Rural	Solar Radiation	SPM	Photovoltaic	Continuous	Population Exposure	Urban Scale
484530020	Austin Audubon Society	12200 Lime Creek Rd, Leander	Austin- Round Rock, TX	30.4831681	-97.8723005	Rural	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Urban Scale
484530020	Austin Audubon Society	12200 Lime Creek Rd, Leander	Austin- Round Rock, TX	30.4831681	-97.8723005	Rural	Wind (3m)	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Urban Scale
484530021	Austin Webberville Rd	2600B Webberville Rd, Austin	Austin- Round Rock, TX	30.2632079	-97.7128831	Urban and Center City	PM10 (FRM)	SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484530021	Austin Webberville Rd	2600B Webberville Rd, Austin	Austin- Round Rock, TX	30.2632079	-97.7128831	Urban and Center City	PM2.5 (FRM)	SLAMS	Sequential FRM Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484530021	Austin Webberville Rd	2600B Webberville Rd, Austin	Austin- Round Rock, TX	30.2632079	-97.7128831	Urban and Center City	PM2.5 (TEOM)	SPM	TEOM Gravimetric	Continuous	Population Exposure	Neighborhood
484530021	Austin Webberville Rd	2600B Webberville Rd, Austin	Austin- Round Rock, TX	30.2632079	-97.7128831	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood

				Apj	penaix A:	Ambier	IL AIF MOE	moring				
484530021	Austin Webberville Rd	2600B Webberville Rd, Austin	Austin- Round Rock, TX	30.2632079	-97.7128831	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
484531068	Austin North Interstate 35	8912 N IH 35 SVRD SB, Austin	Austin- Round Rock, TX	30.3538600	-97.6916600	Urban and Center City	NO/NO2/NOx	Near Road/ SLAMS	Chemiluminescence	Continuous	Max Precursor Emissions Impact	Microscale
484531068	Austin North Interstate 35	8912 N IH 35 SVRD SB, Austin	Austin- Round Rock, TX	30.3538600	-97.6916600	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Max Precursor Emissions Impact	Microscale
484531068	Austin North Interstate 35	8912 N IH 35 SVRD SB, Austin	Austin- Round Rock, TX	30.3538600	-97.6916600	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Max Precursor Emissions Impact	Microscale
484690003	Victoria	106 Mockingbird Lane, Victoria	Victoria, TX	28.8361697	-97.0055298	Urban and Center City	03	SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
484690003	Victoria	106 Mockingbird Lane, Victoria	Victoria, TX	28.8361697	-97.0055298	Urban and Center City	Solar Radiation	SPM	Photovoltaic	Continuous	Highest Concentration	Neighborhood
484690003	Victoria	106 Mockingbird Lane, Victoria	Victoria, TX	28.8361697	-97.0055298	Urban and Center City	Temperature (Outdoor)	SPM	Aspirated Thermister	Continuous	Highest Concentration	Neighborhood
484690003	Victoria	106 Mockingbird Lane, Victoria	Victoria, TX	28.8361697	-97.0055298	Urban and Center City	Wind	SPM	Potentiometer Cup Anemometer	Continuous	Highest Concentration	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	Ambient Temperature TSP (Pb)	SPM	Derived from KLRD	24 Hours; 1/6 Days	General/Background	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	Barometric Pressure TSP (Pb)	SPM	Derived from KLRD	24 Hours; 1/6 Days	General/Background	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	СО	Border Grant/SPM	Gas Filter Correlation	Continuous	Population Exposure	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	03	Border Grant/ SLAMS	UV Photometric	Continuous	Population Exposure	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	PM10 (FRM)	Border Grant/QA Collocated/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	PM10 (FRM)	Border Grant/ SLAMS	HiVol Gravimetric	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	Temperature (Outdoor)	Border Grant/SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	TSP (Pb)	Border Grant/SPM	HiVol ICP-MS	24 Hours; 1/6 Days	Population Exposure	Neighborhood
484790016	Laredo Vidaurri	2020 Vidaurri Ave, Laredo	Laredo, TX	27.5174485	-99.5152185	Suburban	Wind	Border Grant/SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
484790017	Laredo Bridge	700 Zaragosa St, Laredo	Laredo, TX	27.5018255	-99.5029843	Urban and Center City	СО	Border Grant/SPM	Gas Filter Correlation	Continuous	Population Exposure; Source Oriented	Microscale
484790017	Laredo Bridge	700 Zaragosa St, Laredo	Laredo, TX	27.5018255	-99.5029843	Urban and	PM10 (FRM)	Border Grant/SPM	HiVol Gravimetric	24 Hours; 1/6 Days	Highest Concentration	Microscale

				r r		Center City						
484790017	Laredo Bridge	700 Zaragosa St, Laredo	Laredo, TX	27.5018255	-99.5029843	Urban and Center City	Speciated VOC (Canister)	Border Grant/SPM	Canister GC-MS	24 Hours; 1/6 Days	Highest Concentration	Neighborhood
484790017	Laredo Bridge	700 Zaragosa St, Laredo	Laredo, TX	27.5018255	-99.5029843	Urban and Center City	Temperature (Outdoor)	Border Grant/SPM	Aspirated Thermister	Continuous	Population Exposure	Neighborhood
484790017	Laredo Bridge	700 Zaragosa St, Laredo	Laredo, TX	27.5018255	-99.5029843	Urban and Center City	Wind	Border Grant/SPM	Potentiometer Cup Anemometer	Continuous	Population Exposure	Neighborhood
484790313	World Trade Bridge	Mines Road 11601 FM 1472, Laredo	Laredo, TX	27.5994440	-99.5333330	Suburban	PM2.5 (TEOM)	Border Grant/SPM	TEOM Gravimetric	Continuous	Source Oriented	Microscale

LEGEND

@	at
1 24-Hour Avg, 1/6 Days	1 24-Hour Average, Once every Sixth Day
1 24-Hour; 1/3 Days	1 24-Hour Sample, Once every Third Day
1 24-Hours, Daily	1 24-Hour Sample, Daily
24 1-Hour Avg; Daily	24 1-Hour Average, Daily
8 3-Hours; 1/3 Days (Jul Sept.)	8 3-Hour Samples, Once every Third Day from July through September
8 3-Hours; 1/3 Days (Jun Aug.)	8 3-Hour Samples, Once every Third Day from June through August
AMNP	Annual Monitoring Network Plan
AQS	Air Quality System
AutoGC	automated gas chromatograph
Ave	Avenue
Blvd	Boulevard
Border	The Border network designation is part of the SLAMS network for monitors within 100 kilometers of the United States/Mexico border.
со	carbon monoxide
Со	County
Dr	Drive
Е	East
Elem	Elementary
FM	Farm-to-Market
FRM	federal reference method
Hwy	Highway

IH	Interstate Highway
Max	Maximum
N	North
NATTS	National Air Toxics Trends Stations
NCore	National Core Multipollutant Monitoring Stations
NE	Northeast
NO/NO ₂ /NO _x	nitrogen oxides
NO _y	total reactive nitrogen
O ₃	ozone
PAMS	Photochemical Assessment Monitoring Stations
PM ₁₀	particulate matter of 10 micrometers or less in diameter
PM _{10-2.5}	coarse particulate matter
PM _{2.5}	particulate matter of 2.5 micrometers or less in diameter
QA Collocated	quality assurance collocated monitor
Rd	Road
S	South
SB	South Bound
SETRPC	Southeast Texas Regional Planning Commission
SLAMS	State or Local Air Monitoring Stations
SO ₂	sulfur dioxide
SPM	special purpose monitor
St	Street
SVOC	semi-volatile organic compound
TCEQ	Texas Commission on Environmental Quality
TEOM	tapered element oscillating microbalance
TSP	total suspended particulate
TSP (Pb)	total suspended particulate (lead)
UV	ultraviolet
VOC	volatile organic compound
W	West
Yd	Yard

Appendix B

Population and Monitoring Requirements by Metropolitan Statistical Area

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Appendix B: Population and Monitoring Requirements by Metropolitan Statistical Area

		NO/NO ₂	/NO _x /NO _y	SO ₂		Pb		O ₃		со		PM ₁₀			Р	voc	
Texas Metropolitan Statistical Areas	Population*	Required	Current [†]	Required	Current [†]	Required	Current [†]	Required	Current [†]	Required	Current [†]	Required	Current [†]	Required	Current [†]	Required	Current [†]
Dallas-Fort Worth-Arlington	7,102,796	7	15	3	4	3	6	5	19	2	2	4 - 8	4	8	15	2	8
Houston-The Woodlands-Sugar Land	6,656,947	7	19	3	8	1	1	5	20	2	3	4 - 8	8	9	18	4	5
San Antonio-New Braunfels	2,384,075	2	3	1	1	0	0	2	3	1	0	2 - 4	2	3	7	0	0
Austin-Round Rock	2,000,860	2	2	1	1	0	0	2	2	1	0	2 - 4	2	3	5	0	0
El Paso	838,972	3	4	1	3	1	3	3	6	1	3	2 - 4	5	5	7	1	1
McAllen-Edinburg-Mission	842,304	0	0	0	0	0	0	1	1	0	0	2 - 4	2	3	3	0	0
Corpus Christi	452,422	0	0	0	3	0	0	2	2	0	0	0 - 1	1	3	4	0	0
Killeen-Temple	431,032	0	0	0	0	0	0	2	2	0	0	0 - 1	0	0	0	0	0
Brownsville-Harlingen	422,156	0	0	0	0	0	1	1	2	0	1	0 - 1	0	2	3	0	0
Beaumont-Port Arthur	408,419	1	4	1	2	0	0	2	7	0	1	0 - 1	0	0	3	2	2
Lubbock	311,154	0	0	0	0	0	0	0	0	0	0	0 - 1	0	0	1	0	0
Laredo	269,721	0	0	0	0	0	1	1	1	0	2	0 - 1	2	0	1	0	1
Waco	262,813	0	1	0	1	0	0	1	1	0	1	0 - 1	0	0	1	0	0
Amarillo	262,056	0	0	0	1	1	1	0	0	0	0	0 - 1	0	0	1	0	0
College Station-Bryan	249,156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tyler	222,936	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0
Longview	217,781	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	O
Abilene	169,578	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Midland	166,718	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
Odessa	159,436	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
Wichita Falls	150,780	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
Texarkana	149,769	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0
Sherman-Denison	125,467	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
San Angelo	119,659	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Victoria	99,913	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	C
Marshall ¹	66,746	0	1	0	0	0	0	0	1	0	0	0	2	0	4	0	1
Total		22	51	11	25	6	13	30	70	7	13	16-40	29	38	77	9	18
[†] Monitors may fulfill multiple monitoring	requirements, but are	only counted once.															

SO₂ - sulfur dioxide

Ph - lead

O₃ - ozone

PM₁₀ - particulate matter of 10 micrometers or less

PM_{2.5} - particulate matter of 2.5 micrometers or less

VOC - volatile organic compound

Only monitors included in Appendix A are included in this table.

Required and current monitor counts include NOy, high sensitivity SO₂, and high sensitivity CO.

Current monitor counts for Pb and PM₁₀ include speciation and collocated QA monitors.

Current monitor counts for PM_{2.5} include collocated QA, federal reference method, speciation, and continuous monitors.

Current monitor counts for VOC include automated gas chromatograph, canister, and collocated QA monitors.

 ${\rm PM}_{\rm 10-2.5}$ NCore requirements are not included in particulate matter counts

Planned deployment of required monitors is discussed in the applicable section of the AMNP document.

^{*}United States Census Bureau population estimates as of July 1, 2015

 $^{^{1}\}mbox{Area}$ is classified as a micropolitan statistical area and not subject to SLAMS requirements

NO/NO₂/NO_x/NO_v - oxides of nitrogen and total reactive nitrogen compounds

CO - carbon monoxide

Appendix C

Nitrogen Dioxide and Total Reactive Nitrogen Monitoring Requirements

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Appendix C: Nitrogen Dioxide and Total Reactive Nitrogen Monitoring Requirements

Core Based Statistical Areas	2015 Population Estimates ¹	Required NO ₂ Area-Wide Monitors	Required NO ₂ RA-40 Monitors	Required NO₂ Near- Road Monitors	Required NO ₂ PAMS Monitors	Required High Sensitivity NO _y NCore Monitors	Required High Sensitivity NO _y PAMS Monitors	Total Required Monitors ³	Total Current Monitors ²
			Arlington Municipal	Dallas LBJ Freeway and Fort Worth California					
Dallas-Fort Worth-Arlington	7,102,796		Airport	Parkway	Dallas Hinton	Dallas Hinton	Denton Airport South	7	15
-				Houston Southwest			·		
Houston-The Woodlands-				Freeway and Houston	Houston Deer Park	Houston Deer Park		_	
Sugar Land	6,656,947		Clinton	North Loop	#2	#2	Houston Aldine	7	19
San Antonio-New Braunfels	2,384,075	San Antonio	None	San Antonio Interstate 35	None	None	None	2	3
San Antonio New Bradiners	2,304,073	Northwest	None	Austin North Interstate	None	None	None	2	3
Austin-Round Rock	2,000,860	Austin Northwest	None	35	None	None	None	2	2
			Ascarate Park						
El Paso	838,972		SE	None	El Paso Chamizal	El Paso Chamizal	None	3	4
McAllen-Edinburg-Mission	842,304		None	None	None	None	None	0	0
Corpus Christi	452,422		None	None	None	None	None	0	0
Killeen-Temple	431,032	None	None	None	None	None	None	0	0
Brownsville-Harlingen	422,156	None	None	None	None	None	None	0	0
			Nederland High						
Beaumont-Port Arthur	408,419		School	None	None	None	None	1	4
Lubbock	311,154	None	None	None	None	None	None	0	0
Laredo	269,721	None	None	None	None	None	None	0	0
Waco	262,813	None	None	None	None	None	None	0	1
Amarillo	262,056	None	None	None	None	None	None	0	U
College Station-Bryan	249,156	None	None	None	None	None	None	0	0
Tyler	222,936	None	None	None	None	None	None	0	1
Longview	217,781	None	None	None	None	None	None	0	1
Abilene	169,578	None	None	None	None	None	None	0	U
Midland	166,718	None	None	None	None	None	None	0	0
Odessa	159,436	None	None	None	None	None	None	0	U
Wichita Falls	150,780	None	None	None	None	None	None	0	0
Texarkana	149,769	None	None	None	None	None	None	0	0
Sherman-Denison	125,467	None	None	None	None	None	None	0	0
San Angelo	119,659	None	None	None	None	None	None	0	0
Victoria	99,913	None	None	None	None	None	None	0	0
Marshall*	66,746	None	None	None	None	None	None	0	1
Total		4	4	6	3	3	2	22	51

¹United States Census Bureau population estimates as of July 1, 2015

²Monitors may fulfill multiple monitoring requirements but are only counted once

³Total required monitors is a count of individual requirements for area-wide, RA-40, near-road, PAMS, and high sensitivity monitors. Deployed monitors can fulfill multiple monitoring requirements.

^{*}Area is classified as a micropolitan statistical area and not subject to SLAMS requirements

PAMS - Photochemical Assessment Monitoring Stations

NCore - National Core Multipollutant Monitoring Stations

RA-40 - Regional Administrator 40

NO₂ - nitrogen dioxide

NO_Y - total reactive nitrogen compounds

Appendix D

Sulfur Dioxide Monitoring Requirements

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Appendix D: Sulfur Dioxide Monitoring Requirements

				Append	ix D. Sunu	r Dioxide Monito	n mg KC	quii cinci	165			
Core Based Statistical Area	County	2015 Population Estimates*	2011 Point Source (tpy)	2011 NEI Data (tpy)	2014 Point Source (tpy)	2011 NEI Non- Point Source Data with 2014 Point Source Data (tpy)	PWEI	Required SLAMS Monitors	Required SO ₂ DRR Monitors***	Required High Sensitivity SO ₂ NCore Monitors	Total Required SO ₂ Monitors	Existing Monitors**
Amarillo		262,056				14,644.26	3,838	o	1	0	1	1
74u	Armstrong	202,000	0.05	22.26	0.32	22.53	5,050		_		_	_
	Carson		0.23	18.19		18.13						
	Potter		15,139.02	15,265.36								
	Randall		120.57	157.28	118.52	155.23						
	Oldham		0.00	4.24		4.24						
Austin-Round												
Rock		2,000,860				3,875.83	7,755	1	0	0	1	1
	Bastrop		283.53	1,138.44	288.17	1,143.09						
	Caldwell		330.80	490.37	350.29	509.86						
	Hays		1,166.09	1,276.29		1,440.71						
	Travis		274.49	837.06		625.51						
	Williamson		0.78	157.04	0.40	156.66						
Beaumont-								_	_			_
Port Arthur		408,419			2225.22	24,701.99	10,089	1	2	0	3	2
	Hardin		0.95	252.35	2205.09							
	Jefferson		11,682.11	14,025.26	13305.69							
	Orange Newton		6,891.09 11.61		44.46							
Dallas-Fort	Newton		11.01	77.89	11.40	77.74						
Worth-		7,102,796				12.020.02	01 946					4
Arlington	Collin	7,102,796	663.08	064.22	23.58	12,930.93 324.74	91,846	1	0	1	. 2	4
	Dallas		422.39									
	Denton		252.62	453.59		654.41						
	Ellis		6,806.10	6,945.07	4008.64	4,147.61						
	Hunt		1.10		0.16							
	Kaufman		170.69		73.86							
	Rockwall		0.02	21.89	0.01	21.89						
	Johnson		61.75		88.32	180.98						
	Parker		78.25	130.08	154.39							
	Tarrant		17.34	1,581.13	23.00							
	Wise		11.50									
	Hood		8.21	3,394.07	11.96	3,397.82						
	Somervell		0.00	2.59	0.00	2.59						
Houston-The Woodlands-												
Sugar Land		6,656,947				60,432.75	402,298	2	1	1	4	8
	Austin	, ,	71.74	156.04	83.76		•					
	Brazoria		1,323.83	1,943.39	557.59							
	Chambers		71.84	566.00	218.21	712.37						
	Fort Bend		49,557.00			44,108.19						
	Galveston		1,079.40		1178.00							
	Harris		12,123.67			11,556.32						
	Liberty		22.14	250.24		158.76						
	Montgomery Waller		18.25 1.95		10.97 1.46	251.06 238.97		1				
	vvallet		1.93	239.46	1.40	230.97						
Longview	Constant	217,781	20.07		25.42	54,430.07	11,854	1	0	0	1	1
	Gregg Rusk		39.87	261.15				1				
	Upshur	 	69,068.26 60.64			129.64		 				
L	opanul		00.04	160.09	50.19	129.04						

Appendix D: Sulfur Dioxide Monitoring Requirements

				Append	na D. Sunu	r Dioxide Monito	ning KC	quii cinci	113			
Core Based Statistical Area San Antonio-	County	2015 Population Estimates*	2011 Point Source (tpy)	2011 NEI Data (tpy)	2014 Point Source (tpy)	2011 NEI Non- Point Source Data with 2014 Point Source Data (tpy)	PWEI	Required SLAMS Monitors	Required SO ₂ DRR Monitors***	Required High Sensitivity SO ₂ NCore Monitors	Total Required SO ₂ Monitors	Existing Monitors**
New												
Braunfels		2,384,075				28,226.14	67,293	1	1	0	2	1
	Atascosa	_,	10,194.70	10,227.81	6944.87	6,977.98		_	_		_	_
	Bandera		0.08	23.83		,						
	Bexar		22,820.01	24,637.28								
	Comal		343.91	438.51	377.02							
	Guadalupe		120.36	265.20	112.34							
	Kendall		0.24	36.36								
	Medina		0.00	120.31								
	Wilson		79.59									
	WIISON		75.55	111.02	003.02	033.23						
Abilene		169,578				1,738.90	295	0	0	0	0	0
	Callahan		0.17	1,651.81		1,651.63						
	Jones		0.00	19.16								
	Taylor		0.01	68.10	0.02	68.11						
Brownsville- Harlingen	Camaran	422,156			0.25	268.82	113	0	0	0	0	0
	Cameron		0.48	269.04	0.25	268.82						
College Station-Bryan		249,156				266.09	66	0	0	0	0	0
	Brazos		10.02	119.68	12.62							
	Burleson		0.00	63.61	0.00							
	Robertson		11,050.35	11,130.55								
Corpus				11,130.33								
Corpus Christi	Aransas	452,422	0.00	300.17	0.00	1,804.50 300.17	816	0	0	0	0	3
	Nueces		975.53									
	San Patricio		23.10	1,516.30								
	Sall Fatricio		25.10	167.13	25.10	173.20						
El Paso		838,972				577.60	485	0	o	1	1	3
	El Paso	000,000	283.18	572.15	262.73			_		_	_	
	Hudspeth		4.58	23.20								
Killeen- Temple		431,032		23.20		467.30		0	0	0	0	0
	Bell	,	70.34	230.87	61.67							
	Coryell		0.00	188.86				1			1	
	Lampasas		0.00	56.25				1			1	
Laredo	Webb	269,721	1.63			350.22	94	0	0	0	0	0
	AA CDD		1.62	61.34	290.50	350.22						
Lubbock	Crosby	311,154	0.00	40.70	0.00	217.19 40.70	68	0	0	0	0	0
	Lubbock	<u> </u>	11.25					 			 	
	Lynn	<u> </u>	0.00			26.15		 			 	
McAllen-	_,		5.50	20.15	5.00	23.13						
Edinburg-												
Mission		842,304				252.10	212	0	О	О	0	О
	Hidalgo	042,304	52.55	254.25	50.30			U	U	U	U	U
	nuaigu		32.33	254.35	50.50	232.10						
Midland	Midland	166,718	222.07	957.86	415.03	1,229.17 1,150.82	205	0	0	0	0	0
	Martin	<u> </u>	68.13	103.25				 			 	
	1	<u> </u>	00.13	103.25	15.25	, 3.33	l .	I	l	l	l .	

Appendix D: Sulfur Dioxide Monitoring Requirements

				<u> 11ppene</u>	in D. Sunu	i Dioxide Monic	<u> </u>	quii cinci	TES .			
Core Based Statistical Area	County	2015 Population Estimates*	2011 Point Source (tpy)	2011 NEI Data (tpy)	2014 Point Source (tpy)	2011 NEI Non- Point Source Data with 2014 Point Source Data (tpy)	PWEI	Required SLAMS Monitors	Required SO ₂ DRR Monitors***	Required High Sensitivity SO ₂ NCore Monitors	Total Required SO ₂ Monitors	Existing Monitors**
Odessa		159,436				1,920.14	306	o	o	0	0	· ·
Guessa	Ector	255/150	1,083.35	1,532.11	1471.38		300		•			
San Angelo		119,659				89.48	11	0	0	0	0	O
	Irion		0.26		0.24							
	Tom Green		0.75	48.99	0.55	48.79						
Sherman- Denison		125,467				170.10	21	0	o	o	0	o
	Grayson		1.03	167.12	4.01	170.10						
Texarkana	Davida	149,769			120 52	259.17 259.17	39	0	0	0	0	0
	Bowie		161.29	299.93	120.52							
Tyler	Citle	222,936			15.53	234.16	52	0	0	0	0	0
	Smith		403.33	621.97	15.52	234.16						
Victoria		99,913				318.78	32	О	0	0	0	0
	Goliad		13,829.53	13,884.78	135.73	190.98						
	Victoria		14.56	103.78	38.58	127.80						
Waco		262,813				3,837.83	1,009	О	0	0	0	1
	McLennan		1,019.06									
	Falls		0.00	29.72	0.00	29.72						
Wichita Falls		150,780				628.00	95	0	0	0	0	o
	Archer		0.00		0.00							
	Clay		0.03	67.35								
	Wichita		472.40	615.12	380.98	523.70						

^{*}United States Census Bureau population estimates as of July 1, 2015

DRR - Data Requirements Rule

NCore - National Core Multipollutant Monitoring Stations

NEI - National Emissions Inventory

PWEI - population weighted emission index (Population *[2011 NEI non-point source data plus 2014 point source data]/1,000,000)

 SO_2 - sulfur dioxide

tpy - tons per year

SLAMS - State or Local Air Monitoring Stations

 $[\]ensuremath{^{**}}$ Individual monitors may fulfill more than one monitoring requirement.

^{***}Monitor required to be operational by January 1, 2017.

Appendix E

Sulfur Dioxide Data Requirements Rule Monitoring Placement Evaluations

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Appendix E: Sulfur Dioxide Monitoring Placement Evaluations

Introduction

On August 21, 2015, the United States (U.S.) Environmental Protection Agency (EPA) finalized the sulfur dioxide (SO₂) Data Requirements Rule (DRR) for the 2010 one-hour SO₂ primary National Air Ambient Quality Standard (NAAQS). The DRR requires air agencies to characterize current air quality in areas around sources that emit 2,000 tons per year (tpy) or more of SO₂ and that are not located in an area already designated nonattainment. The DRR gives air agencies the option to characterize air quality using either modeling of actual source emissions or using appropriately sited ambient air quality monitors. Air agencies are required to locate the source-oriented SO₂ monitors in locations of expected maximum one-hour concentrations.

Per the DRR requirements, on January 15, 2016, the Texas Commission on Environmental Quality (TCEQ) provided the EPA with a list identifying 25 SO₂ sources meeting the rule's applicability threshold. Of the 25 DRR sources, the TCEQ will deploy source-oriented SO₂ monitors near 13 sources by the January 1, 2017, rule deadline. Due to the close geographical proximity of four out of the 13 sources, a total of 11 monitoring stations are proposed for deployment to characterize ambient air quality surrounding each of the 13 sources. The EPA is expected to finalize area designations for the remaining 12 sources by July 2, 2016. The TCEQ will pursue monitoring station locations as expeditiously as practical for any of the 12 remaining sources designated as nonattainment under the EPA's final action.

The TCEQ focused on complying with the directly-applicable federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring station locations that would appropriately and sufficiently characterize ambient air quality in areas around an SO₂ emissions source. The DRR requirements stipulate that air monitoring stations must be deployed in areas of maximum expected one-hour concentrations in ambient air. This approach included utilizing multiple techniques and guidance provided in the SO₂ NAAQS (National Ambinet Air Quality Standards) Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD). The Monitoring TAD suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD).

The TCEQ considered the modeling analysis, but did not rely solely on it in the prioritization of potential sites. The latitude and longitude of each SO₂ source designated for ambient air monitoring was plotted on a satellite map. Surrounding properties and associated owners were identified using county appraisal district information. The TCEQ then collectively considered the following parameters: predominant wind flow, modeling analyses, property owner agreement, and logistical constraints, such as space, power availability, terrain, grade, and drainage. Failure to meet criteria for any single parameter did not necessarily exclude the location from consideration.

This appendix includes information specific to each source used in locating new source-oriented SO₂ monitors for the purpose of compliance with the DRR.

Appendix E: Sulfur Dioxide Monitoring Placement Evaluations

Appendix E Table of Contents

Monitoring Placement Evaluations Approved by the EPA	
Big Spring Carbon Black	3
Calaveras Plant	24
Oxbow Calcining	41
AEP Pirkey Power Plant	58
Welsh Power Plant	8o
Sandow Steam Electric Station and Sandow 5 Generating Plant	101
Sid Richardson Borger Carbon Black and Orion Borger Carbon Black	118
Oak Grove Steam Electric Station	142
Orion Echo Carbon Black Plant	157
Harrington Generating Station	176
Streetman Plant (Draft evaluation pending EPA approval)	191

Note: The original posting of this document incorrectly identified CAPCOG Hutto and Lake Georgetown monitoring stations as having SO₂ monitors, when in fact they do not. In addition, Baytown Refinery has since been removed from this Appendix. Because Baytown Refinery's recent SO₂ emissions fell below the threshold set in the SO₂ DRR, the TCEQ removed Baytown Refinery from the list of sources initially identified for monitoring per the DRR. All draft monitoring placement evaluations have been approved by the EPA since original posting except the Streetman Plant Evaluation.

Big Spring Carbon Black Monitor Placement Evaluation

Source Information

- Name: Big Spring Carbon Black (Figure 2)
- Owner: Sid Richardson Carbon Company
- Facility function: chemical manufacturing
- Location: 32.267390, -101.418244, Texas Commission on Environmental Quality (TCEQ) Region 7, Howard County, Texas
- Sulfur Dioxide (SO₂) emissions data: 8,307 tons (2013), 5,947 tons (2014)
- Long-term emissions trend: decreasing, 40 percent (%) decrease from 2004 to 2014
- Emission profile: operational year-round
- Stack height: 51 meters
- SO₂ emission controls: none
- Permit related data: Federal Operating Permit

Existing Air Monitoring Sites

The nearest ambient air quality monitoring sites are detailed in Table 1. No TCEQ ambient air quality monitors are located within 98 kilometers (km) of Big Spring Carbon Black. The existing sites listed in Table 1 are not located to characterize maximum SO₂ source concentrations and are not downwind.

Table 1: Air Monitoring Sites Near Big Spring Carbon Black

Site	Location	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2012-2014)
Odessa Gonzales	98.5 kilometers southwest	No	Not applicable
Odessa-Hays Elementary School	101 kilometers southwest	No	Not applicable

Settings and Surroundings

The rural and suburban area surrounding Big Spring Carbon Black consists of the southwestern tablelands with elevation ranging from 690 to 850 meters as shown in Figure 1. (Griffith et al. 2004) No significant changes to the landscape were noted during the reconnaissance as compared to the Google Earth view shown in Figure 8. Mountain and valley wind channeling or other terrain related meteorological impacts are not expected in this area as detailed in Table 2.

Alon USA LP Big Spring Refinery (Alon), located approximately 1.5 km southwest of Big Spring Carbon Black, has the potential to influence SO₂ concentrations in the Big Spring Carbon Black area under certain meteorological conditions. Alon's SO₂ emissions were reported as 819 tons in 2014. Due to the site's location and the area's predominant southeasterly wind flow, it is anticipated that Alon would only minimally impact SO₂ concentrations around the Big Spring Carbon Black area when winds are from the southwest (approximately 4% of the time according to the Big Spring Airport wind rose data; Figures 3 and 4).

Figure 1: Big Spring Carbon Black Area Elevation Map

Figure 2: Big Spring Carbon Black Sulfur Dioxide Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Big Spring Airport, located 12 miles southwest of Big Spring Carbon Black. Figure 4 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on analysis of the 2012-2014 wind data, the dominant wind flow direction is from the south to southeast, approximately 36% of the average area wind flows. Over this three year period, calm winds (0-2 miles per hour) occurred on average 9% of the time and wind speeds averaged 10.3 miles per hour.

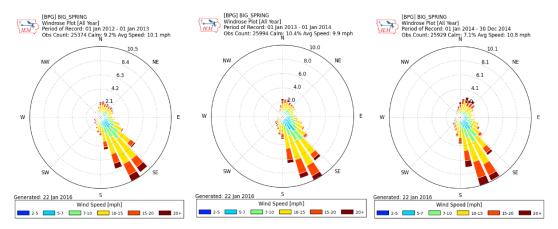


Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

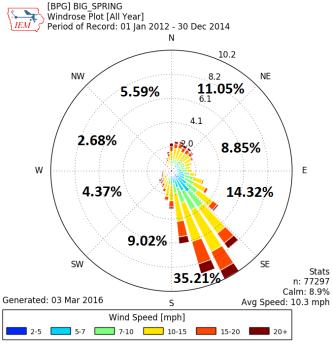


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72 km by 72 km;
- the one kiln stack was modeled and tracked as individual PiG puffs;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a + symbol. Big Spring Carbon Black's permitted property is outlined in black. Based on this analysis, the highest normalized concentrations, greater than 85% of the predicted off-property maximum, are expected within or north, northeast and east of Big Spring Carbon Black's property. The proposed monitor locations identified within Figure 5 (sites 14, 15, and 18) are within areas with predicted normalized concentrations within 50% to 80% of the off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-

property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around the Big Spring Carbon Black facility. Again, the location of the predicted off-property maximum is indicated by a + symbol and Big Spring Carbon Black's permitted property is outlined in black. Using this analysis metric, areas directly to the north, northeast, and east of the Big Spring Carbon Black facility scored greater than 60% and would be expected to see the highest frequency of elevated SO₂ concentrations. The areas directly to the north and northeast are not viable for monitor placement based on site reconnaissance and discussion with property owners.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with a λ symbol and Big Spring Carbon Black's permitted property is outlined in black. As with the normalized 99th percentile and normalized frequency metrics, areas directly north and directly east of the Big Spring Carbon Black facility scored greater than 90% using the composite metric. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest composite metric score did not yield a viable location for monitor placement.

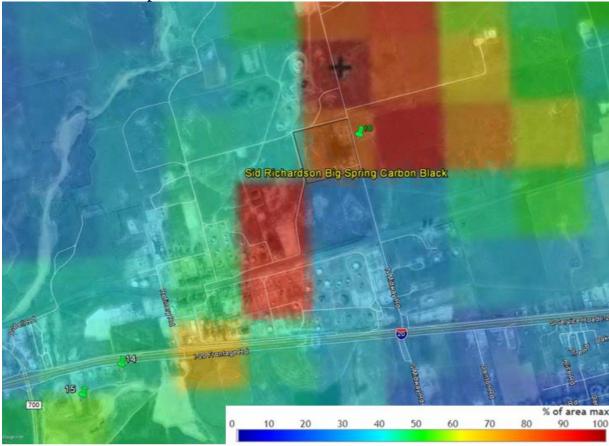


Figure 5: Big Spring Area CAMx Model Predictions, Normalized Concentrations, and Viable Site Locations (14, 15, 18)

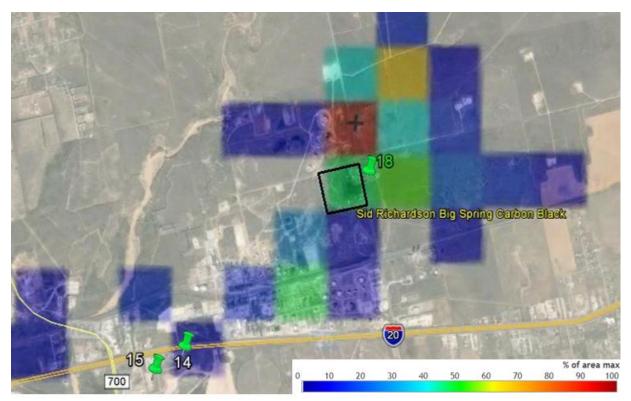


Figure 6: Big Spring Area CAMx Model Predictions, Normalized Frequency, (Number of Days) and Viable Site Locations

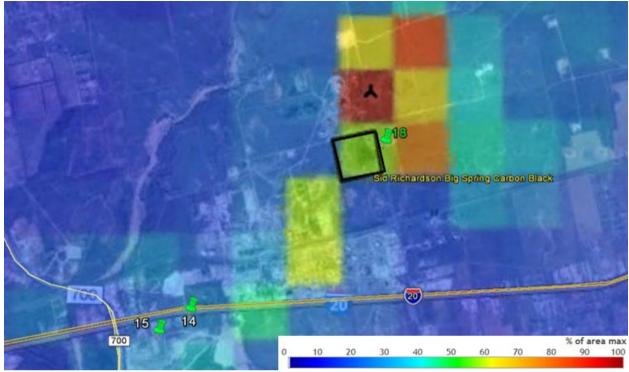


Figure 7: Big Spring Area CAMx Model Predictions Composite Metric and Viable Site Locations

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Big Spring Carbon Black that would characterize the highest SO₂ concentrations from this facility; therefore a new site is required. The TCEQ focused on complying with the federal requirements listed in Section 40 of the Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach includes utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analysis provided in Figures 5, 6, and 7 suggest that maximum SO₂ concentrations are expected to occur north and east of the Big Spring Carbon Black facility. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected within or directly north of Big Spring Carbon Black.

Twenty-three potential sites were identified as shown in Figure 8. Twenty of the identified potential sites (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22, and 23) are not considered viable and are indicated by red pins in Figure 8. Sites 1, 2, 3, 4, 5, 7, 8, 10, and 11 were in areas with restricted access, such as a locked gate to a private road. Property owners at sites 6, 9, 12, 16, 19, and 20 were unwilling or unresponsive. The property owner of site 16 was actively pursued due to the proximity to maximum off property concentrations, frequency, and composite metrics. After numerous conversations and written communication it was determined that the property owner was not willing to locate a monitoring site anywhere on the property. The outline of each non-viable property is indicated in yellow in Figure 8. While downwind of the source, predicted SO₂ concentrations around site 13 were considerably lower than other potential site locations. Sites 17, 21, 22, and 23 were also in areas with low predicted SO₂ concentrations and were not in preferable downwind locations. As a result these sites are no longer under consideration.

The three sites with satisfactory logistical and siting characteristics and locations anticipated to have peak concentrations include sites 14, 15, and 18, which are indicated by green pins in Figures 5, 6, 7, and 8. These site locations are also identified on the model and satellite image overlay shown in Figures 5, 6, and 7.

- Site 14 is positioned approximately 2.25 km southwest of the Big Spring Carbon Black facility. Although this site is not directly downwind of the source, the site does provide level ground, adequate space, and available power. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 45-50% of the maximum concentrations, so the site would be expected to measure elevated concentrations (likely during periods of calm or northerly winds). The property owner is amenable to a site agreement.
- Site 15 is positioned approximately 2.5 km southwest of the Big Spring Carbon Black facility. Although this site is not directly downwind of the source, the site does provide level ground, adequate space, and available power. The normalized 99th percentile concentration metric analysis predicted concentrations in this area

- to be 45-50% of the maximum concentrations, so the site would be expected to measure elevated concentrations (likely during periods of calm or northerly winds). The property owner is amenable to a site agreement.
- Site 18 is positioned directly east of the Big Spring Carbon Black facility and less than 0.5 km south of the off-property maximum concentration (see Figure 7). Although this site is not downwind of the source, the area approximately 150 meters south of the northeast corner property line, offers level ground, adequate space, and available power. This site area is the closest to the source within a radius of 2,500 meters. The northeast edge of this property is not viable due to numerous electrical, buried cable, and road easements restricting site location. The normalized 99th percentile concentration metric analysis predicted area concentrations to be 80-90% of the maximum, therefore the site would be expected to measure peak SO₂ concentrations near the source. A site agreement has been negotiated with the property owner.

Recommendation

Based on current facility operations, available emission data, wind patterns, modeling analysis, and evaluation of surrounding areas during site reconnaissance, site 18 (see Figures 9 and 10) is the only viable site recommended for placement of a new source-oriented ambient SO₂ monitoring station. No other areas withing a 2,500 meter radius were available for consideration. Although this site is not downwind, it is expected to measure peak concentrations during periods of calm wind speeds. While the modeling analysis predicts the highest maximum normalized concentration and composite metric score to be located 0.5 km to the north, a site agreement with the property owner of site 16 is unattainable. Site 18 is the closest location to the source and predicted maximum normalized SO₂ concentrations with available power, adequate space, level ground, and meets all federal siting criteria.

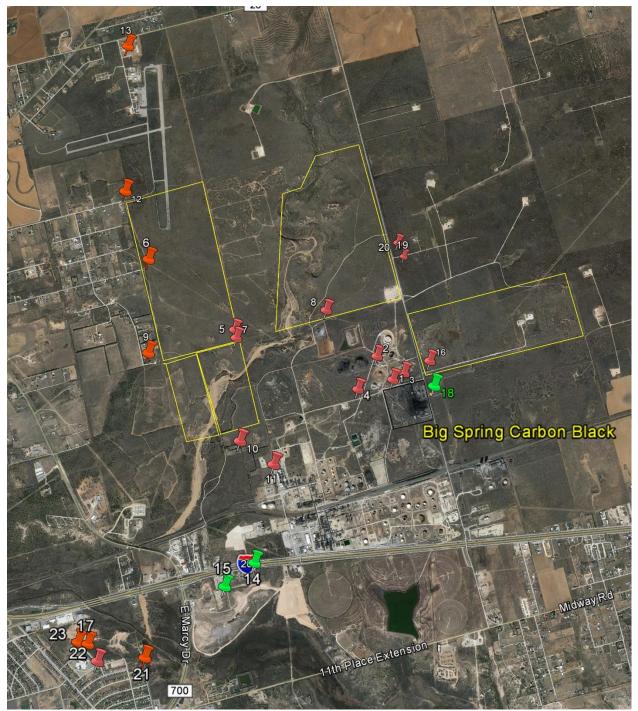


Figure 8: Potential Monitoring Sites for Big Spring Carbon Black

Table 2: Potential Sites Assessment¹

Site Number	Big Spring #1	Big Spring #2	Big Spring #3
Location	32.28067, -101.41135	32.28271, -101.41299	32.28125, -101.41021
Distance from SO ₂ Source ²	292 m	560 m	252 m
Wind Direction	S, SE	S, SE	S, SE
Grade	Not applicable	Not applicable	>2%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (NW)	Yes (N)
Obstructions and Height	Not measured, no site access	Not measured, no site access	Not measured, no site access
Distance from Site to Obstructions	Not applicable	Not applicable	Not applicable
Road/Site Access	No	No	No
Electricity Available <18 m	Not evaluated, no site access	Not evaluated, no site access	Not evaluated, no site access
Pros	Not applicable	Not applicable	Not applicable
Cons	 No site access Requires special permission and use of private industry road to access site 	 No site access Requires special permission and use of private industry road to access site 	 No site access Requires special permission and use of private industry road to access site >2% grade
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Big Spring #4	Big Spring #5	Big Spring #6
Location	32.27989, -101.41493 ²	32.28484, -101.42758 ²	32.29113, -101.43735
Distance from SO ₂ Source ²	608 m	1,883 m	3,020 m
Wind Direction	S, SE	S, SE	S, SE
Grade	Not applicable	Not applicable	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Not measured, no site access	Not measured, no site access	Trees (4-5 m) Ridge (5 m)
Distance from Site to Obstructions	Not applicable	Not applicable	Trees (18 m, 32 m SW, W from dripline) Ridge (132 m SE, E)
Road/Site Access	No	No	No
Electricity Available <18 m	Not evaluated, no site access	Not evaluated, no site access	Yes
Pros	Not applicable	Not applicable	 Level ground Downwind Space available Power available Easy operator access
Cons	 No site access Requires special permission and use of private industry road to access site 	 No site access Requires special permission and use of private industry road to access site 	 Slight grade in surrounding areas Declined by property owner
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Big Spring #7	Big Spring #8	Big Spring #9
Location	32.27989,	32.28484,	32.28390,
	-101.41493	-101.42758	-101.43652
Distance from SO ₂ Source ²	2,060 m	1,218 m	2,650 m
Wind Direction	S, SE	S, SE	S, SE
Grade	Not applicable	Not applicable	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Not measured, no site access	Not measured, no site access	Trees (4-8 m) Ridge (5 m)
Distance from Site to Obstructions	Not applicable	Not applicable	Trees (9 m, 38 m, 39 m NW) Ridge (30 m N)
Road/Site Access	No	No	Yes
Electricity Available <18 m	Not evaluated, no site access	Not evaluated, no site access	Yes
Pros	Not applicable	Not applicable	 Level ground Downwind Space available Power available Easy operator access
Cons	 No site access Requires special permission and use of private road to access site. 	 No site access Requires special permission and use of private road to access site. 	 Slight grade in surrounding areas On unpaved, dirt road; site may not be accessible during heavy rain events Declined by property owner
Viable Site (Yes, No, or Preferred)	No	No	No

		T	
Site Number	Big Spring #10	Big Spring #11	Big Spring #12
Location	32.27528, -101.42696	32.27328, -101.42349	32.29732, -101.43947
Distance from SO ₂ Source ²	1,786 m	1,570 m	3,496 m
Wind Direction	S, SE	S, SE	S, SE
Grade	Not applicable	Not applicable	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	No (W)	No (W)	Yes (NW)
Obstructions and Height	Not measured, no site access	Not measured, no site access	Trees (3-7 m) Buildings (4-5 m)
Distance from Site to Obstructions	Not applicable	Not applicable	Trees (45 m NW, E, SE, S from dripline) Buildings (33, 36 m NE)
Road/Site Access	No	No	Yes
Electricity Available <18 m	Not evaluated, no site access	Not evaluated, no site access	Yes
Pros	Not applicable	Not applicable	 Level ground Downwind Space available Power available Easy operator access Strong cellular service
Cons	 No site access Requires special permission and use of private road to access site 	 No site access Requires special permission and use of private road to access site 	Declined by property ownerPlanned future development
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Big Spring #13	Big Spring #14	Big Spring #15
Location	32.31065, -101.43968	32.26497, -101.42531	32.26308, -101.42832
Distance from SO ₂ Source ²	4,500 m	2,251 m	2,599 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	No (SW)	No (SW)
Obstructions and Height	Trees (7 m)	Tree (10 m) Buildings (5 m, 7 m) Tree (8 m)	None
Distance from Site to Obstructions	Trees (30 m SE)	Tree (10 m SW) Building (22 m W, 21 m N) Tree (13 m SE)	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	 Level terrain Property owner willing Road base and two sides of fence existing 	 Level ground Site agreement possible Space available Power available Easy operator access 	Level groundPower availableSite agreement PossibleSpace available
Cons Viable Site (Yes,	Low concentration of SO ₂ according to modeling analysis	 Low concentration of SO₂ according to modeling analysis Not downwind Yes 	 Low concentration of SO₂ according to modeling analysis Not downwind Yes
No, or Preferred)	IVO	163	103

Site Number	Big Spring #16	Big Spring #17	Big Spring #18
Location	32.28495, -101.40840	32.25825, -101.44174	32.28004, -101.40716
Distance from SO ₂ Source ²	592 m	3,908 m	160 m
Wind Direction	S, SE	S, SE	S, SE
Grade	Varies	>2%	<1%
Flood Plains	Varies	Possible	No
Mountain/ Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	No (SW)	No (E)
Obstructions and Height	None	Hill (3 m)	None
Distance from Site to Obstructions	None	Building (71 m) Steep grade (18 m)	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	 Power available Maximum off- property concentration of SO₂ emissions according to modeling analysis 	 Power available Site agreement possible Space available 	 High concentration and frequency according to modeling analysis Power Available Level ground Signed site agreement
Cons	 Rough terrain Numerous "No Trespassing" signs Unresponsive owner 	 Low concentration of SO₂ according to modeling analysis >2% grade 	 Not downwind Will require minor work to level ground and clear brush
Viable Site (Yes, No, or Preferred)	No	No	Preferred

Site Number	Big Spring #19	Big Spring #20	Big Spring #21
Location	32.29177, -101.41015	32.29290, -101.41080	32.25711, -101.43613
Distance from SO ₂ Source ²	1,324 m	1,481 m	3,591 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (N)	No (SW)
Obstructions and Height	None	None	Trees (6 m, 12 m) Building (6 m)
Distance from Site to Obstructions	None	None	Trees (8 m N, 15 m NE, 44 m SW) Building (S 25 m)
Road/Site Access	No	No	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Level groundPower available	Level groundPower available	Level groundPower availableSite agreement possibleSpace available
Cons	 Unresponsive property owner No driveway access Low concentration of SO₂ according to modeling analysis 	 Unresponsive property owner No driveway access Low concentration of SO₂ according to modeling analysis 	 Low concentration of SO₂ according to modeling analysis Not downwind
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Big Spring #22	Big Spring #23	
Location	32.25684,	32.25833,	
	-101.44078	-101.44281	
Distance from SO ₂	3,901 m	3,984 m	
Source ²			
Wind Direction	S, SE	S, SE	
Grade	<1%	<1%	
Flood Plains	No	No	
Mountain/Valley Winds	None	None	
Water Body Nearby ²	No	No	
Wind Channeling	None	None	
Downwind ²	No (SW)	No (SW)	
Obstructions and Height	Tree (12 m)	Tree (3 m) Building (20 m)	
Distance from	Tree (44 m NE)	Tree (8 m S)	
Site to Obstructions		Building (58 m S)	
Road/Site Access	Yes	Yes	
Electricity Available <18 m	Yes	Yes	
Pros	Level groundPower availableSpace availableAccessible	Level groundPower availableSpace AvailableAccessible	
Cons	 Low concentration of SO₂ according to modeling analysis Not downwind 	 Low concentration of SO₂ according to modeling analysis Not downwind 	
Viable Site (Yes, No, or Preferred)	No	No	

¹Based on 40 Code of Federal Regulations Part 58 and SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

% - percent

N – north

S - south

E – east W – west

NE – northeast

NW - northwest

SE - southeast

SW - southwest

m - meter

- number < - less than

> - greater than

²Based on Google Earth

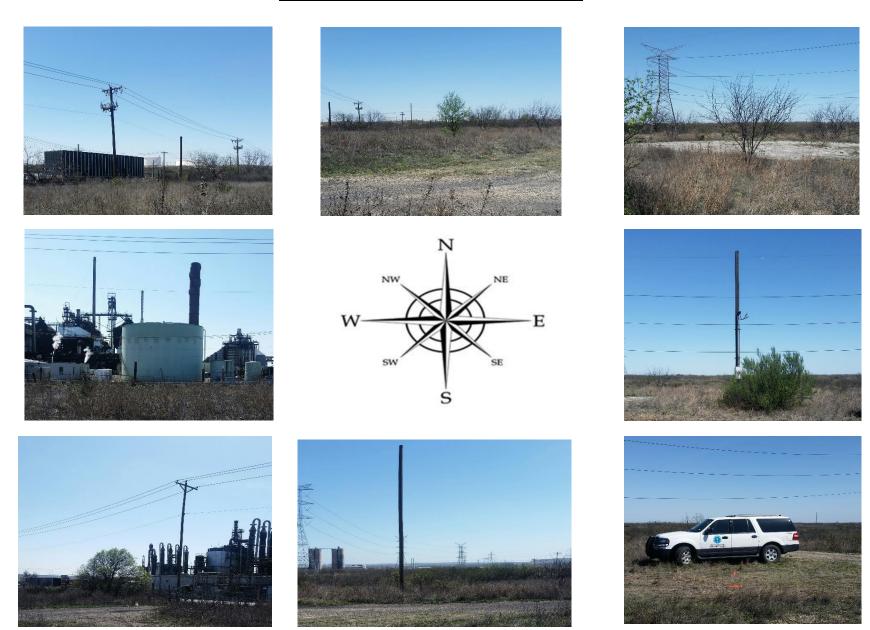


Figure 9: Big Spring Carbon Black #18 Potential Site Cardinal Direction Photos

Figure 10: Big Spring Carbon Black #18 Potential Site

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. Ecoregions of Texas. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Calaveras Plant Monitor Placement Evaluation

Source Information

- Name: Calaveras Plant (Calaveras) (Figure 2)
- Owner: City Public Service (CPS)
- Facility function: electric generation
- Location: 29.308300, -98.321000, TCEQ Region 13, Bexar County, Texas
- SO₂ emissions data: 12,718 tons (2013), 17,133 tons (2014)
- Long-term emissions trend: decreasing, 33% decrease from 2009 to 2014
- Emission profile: operational year-round
- Stack height(s): 2 stacks 102 meters high, which are currently active (shown in Figure 2).
- SO₂ emission controls: 1 limestone scrubber and 1 catalytic reduction each reduce SO₂ emissions by 90%. 1 absorption tower also reduces SO₂ emissions by 80% on a separate stack.
- Permit related data: Prevention of Significant Deterioration(PSD) permit

Existing Air Monitoring Sites

The nearest ambient air quality monitoring sites are detailed in Table 1. All existing SO₂ monitors have design values below the current SO₂ standard of 75 parts per billion (ppb). With the exception of Heritage Middle School, these existing monitoring sites are not located to characterize maximum SO₂ source concentrations and are not downwind. Heritage Middle School site is currently owned and operated by CPS and is in an optimal location.

Table 1: Air Monitoring Sites Near Calaveras Power Plant

Site	Location	Current Sulfur Dioxide (SO ₂) Monitoring	SO₂ Design Value (2012-2014)
Gate 58 CPS	1.57 kilometers northwest	No	Not applicable
Gate 9A CPS	2.3 kilometers southwest	No	Not applicable
Gardner Rd. Gas Sub- Station	2.8 kilometers north	No, private monitor on Calaveras property	Not applicable
Calaveras Lake	3.6 kilometers south	Yes, TCEQ	0.64 parts per billion*
Heritage Middle School	4.7 kilometers north	Yes, non-TCEQ private monitor	Not comparable

^{*}design value data does not meet completeness requirements for 2012

Settings and Surroundings

The rural area surrounding Calaveras consists of interior plains with a low elevation as shown in Figure 1. The terrain is characterized by flat to gently rolling hills, and grasses, forbs, and croplands are the dominant vegetation (Griffith et al. 2004). No significant changes to the landscape were noted during the reconnaissance as compared to the Google Earth view shown in Figure 8. Mountain and valley wind channeling or other terrain related meteorological impacts are not characteristic of this area as detailed in Table 2.

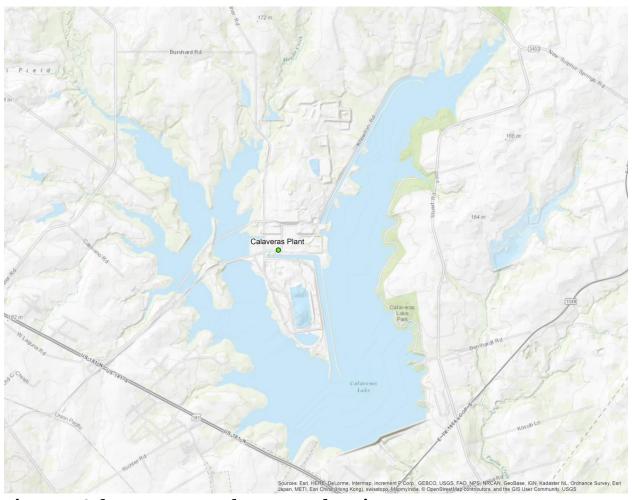


Figure 1: Calaveras Power Plant Area Elevation Map

Figure 2: Calaveras Power Plant SO₂ Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the San Antonio International Airport, located 29 kilometers northwest of Calaveras. Figure 4 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on analysis of the 2012-2014 wind data, the dominant wind flow direction for the area is south to southeast, with wind flows from the north, northeast, and northwest accounting for only 19% of the average annual wind flows. Over this three year period, calm winds (0-2 miles per hour) occurred on average 13% of the time and wind speeds averaged 8.2 miles per hour (Iowa Environmental Mesonet 2016).

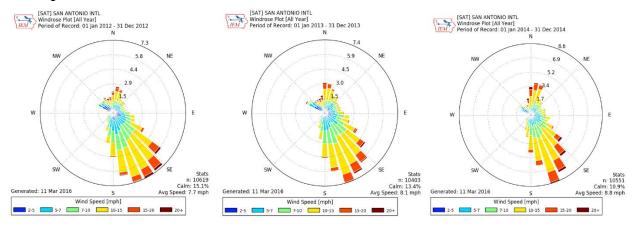


Figure 3: (From left to right) 2012, 2013, and 2014 individual Wind Rose Plots

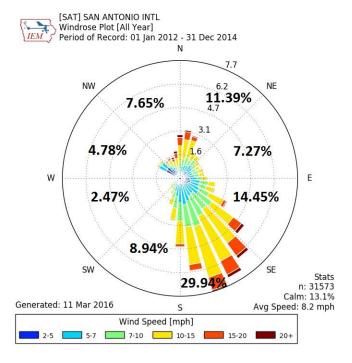


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique for identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72-km by 72-km;
- the two kiln stacks were modeled and tracked as individual PiG puffs;
- full year of 2012 12-km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4-km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 graphically presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a black square. Calaveras' permitted property is outlined in blue. Based on this analysis, the highest normalized concentrations, greater than 80% of the predicted off-property maximum, are expected within or immediately surrounding and to the north of Calaveras' property. The proposed monitor locations identified within Figure 5 are within areas with predicted normalized concentrations within 80% to 99% of the off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around the Calaveras facility. Again, the location of the predicted off-

property maximum is indicated by a black square and Calaveras' permitted property is outlined in blue. Using this analysis metric, areas directly to the north and areas directly west of the Calaveras facility scored greater than 80% and would be expected to see the highest frequency of elevated SO₂ concentrations.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum indicated by a black square, the off-property maximum composite metric indicated with λ , and Calaveras' permitted property is outlined in blue. As with the normalized 99th percentile and normalized frequency metrics, areas north and west of the Calaveras facility scored greater than 80% using the composite metric. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest composite metric score did yield a viable location for monitor placement.

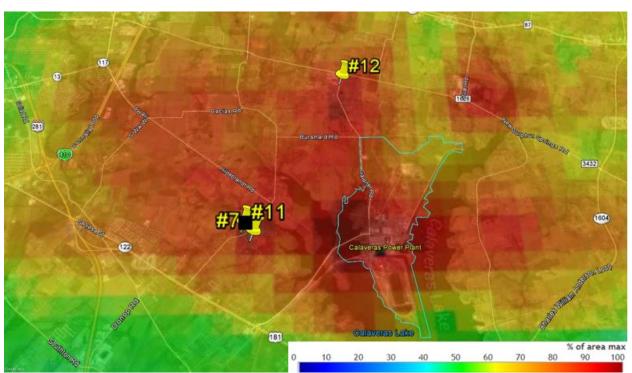


Figure 5: Calaveras Area CAMx Model Predictions Normalized Concentrations and Viable Site Locations

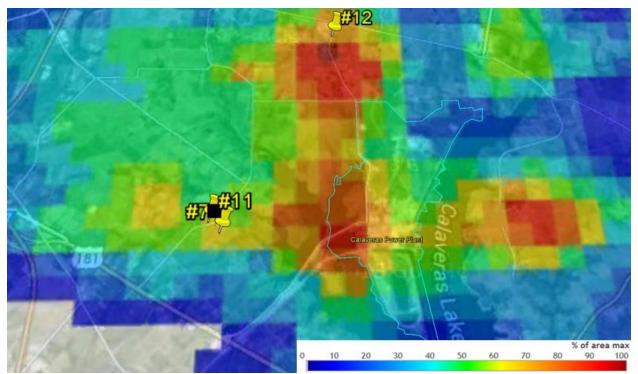


Figure 6: Calaveras Area CAMx Model Predictions Normalized Frequency (number of days) and Viable Site Locations

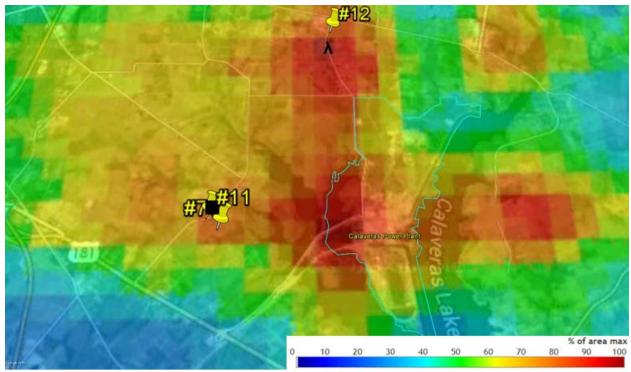


Figure 7: Calaveras Area CAMx Model Predictions Composite Metric and Viable Site Locations

Site Selection Criteria and Options

The TCEQ currently does not monitor SO₂ downwind of the Calaveras Power Plant; therefore an additional site is required to characterize maximum concentrations. The TCEQ focused on complying with the federal requirements listed in 40 CFR Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach includes utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analysis provided in Figures 5, 6, and 7 suggest that maximum ground level concentrations are expected to occur north and west of Calaveras.

Fifteen potential sites were identified as shown in Figure 8. Twelve of the identified potential sites (1, 2, 3, 4a, 4b, 4c, 4d, 5, 6, 8, 9, and 10) are not considered viable. Sites 2, 4a, and 4b were declined by the property owner. There was no response from the property owners at Sites 1, 3, and 6. Site 4c does not provide adequate space to locate an air monitor. Sites 4d and 5 have steep terrains that present significant grade issues diminishing their viability as a suitable monitoring site. Site 8 is on City Public Service property and within the restricted, fenced area permitted for the Calaveras Plant. Site 9 is logistically challenging due the presence of a gas pipeline that would hinder site construction activities, such as digging. Site 10 is limited by large trees that would present challenges in meeting federal requirements for minimum distance from an obstruction. Areas north of Site 8 and south of Site 12 along Gardner Road consist of private property homes and agricultural land retained by unresponsive property owners. As a result, these sites are no longer under consideration.

The three sites with satisfactory logistical and siting characteristics and locations anticipated to have peak off-property concentrations include sites 7, 11, and 12. These site locations are also identified on the model and satellite image overlay shown in Figures 5, 6, and 7.

- Site 7 is located approximately 3.5 km west from the Calaveras Plant in a rural community. This site is on level ground, has space and power available, but would involve logistical improvements, such as a new driveway and gate. The site is not directly downwind, but based on TCEQ's monitor placement modeling is located within an area of predicted maximum off-property SO₂ concentrations.
- Site 11 is located 3.7 km west of the Calaveras Plant in a rural community. This site is on level ground, has space and power available, but would involve logistical improvements, such as a new driveway and gate. The site is not directly downwind, but based on TCEQ's monitor placement modeling is located within an area of predicted maximum off-property SO₂ concentrations.
- Site 12 is approximately 4.7 km north of the Calaveras Plant and is approximately 0.4 km directly north from the off-property maximum composite metric indicated with λ noted in Figure 7at an existing monitoring station owned and operated by City Public Service adjacent to Heritage Middle School. Given this location is currently being used as a monitoring site, it satisfies all infrastructure and siting requirements for placement of an SO₂ monitor. A site agreement has been negotiated with the property owner and City Public Service is willing to

convey access to the TCEQ. This potential site is downwind and within an area of predicted a maximum off-property SO₂ concentrations based and a predicted off-property maximum composite metric on TCEQ's modeling.

Recommendation

Based on current plant operations, available emission data, wind patterns, and CAMx model predictions, Site 12 is the recommended location for placement of a new source-oriented ambient SO₂ monitoring station. While the modeling analysis results for sites 7, 11, and 12 show similar SO₂ concentrations, Site 12 is also well positioned between the source and an area frequented by the public, providing an advantage over the other viable sites. Site 12 is also the location of the off-property maximum composite metric, an average of the normalized 99th percentile concentration and normalized frequency metrics. Site 12 has an existing monitoring station in place and meets all federal siting criteria. Site 12 is shown in Figures 5, 6, 7, 8, 9, and 10.

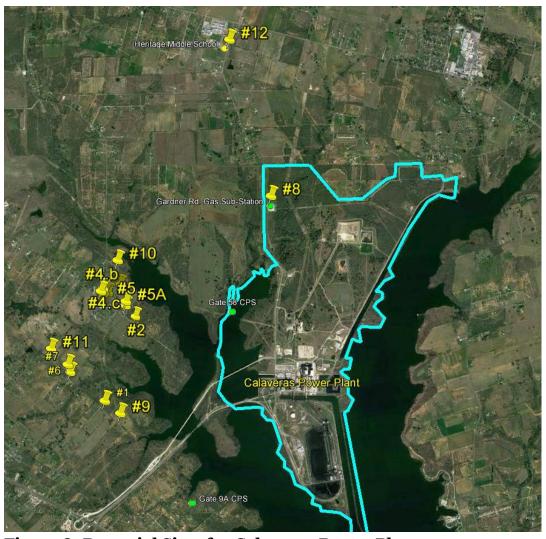


Figure 8: Potential Sites for Calaveras Power Plant

Table 2: Potential Sites Assessment¹

Site Number	Calaveras #1	Calaveras #2	Calaveras #3
Location ²	29.30476°, -98.35152°	29.31612°, -98.34669°	29.320369°, -98.35104°
Distance from SO ₂ Source (meters) ²	3,075	2,685	3,250
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (E); 3.07 kilometers	Yes; reservoir (E); 0.87 kilometers	Yes; reservoir (E); 1.45 kilometers
Wind Channeling	None	None	None
Downwind ²	No (W)	Yes (NW)	Yes (NW)
Obstructions and Height	Trees (10 m)	Trees (5 m)	Trees (15 m)
Distance from Site to Obstructions	Power substation (20-60 m E/SE) Trees (20-30 m E/SE from dripline)	Power substation (32 m E/SE) Trees (5 m E/SE from dripline)	Power substation (20 m SE) ² Trees (20 m SE from dripline) ²
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	Yes	Yes	Yes
Pros	Level ground Gate in place	Level groundDownwindPower availableEasy accessFew Obstructions	Level groundDownwindSpace availablePower available
Cons	 Not directly downwind (W of plant) Requires a transformer No response from property owner 	Property owner not agreeable	No response from property owner
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Calaveras #4a	Calaveras #4b	Calaveras #4c
Location ²	29.31914°, -98.35145°	29.31364°, -98.35651°	29.319243°, -98.35148°
Distance from SO ₂ Source (meters) ²	3,200	3,535	3,220
Wind Direction	S, SE (dominant);	S, SE (dominant);	S, SE (dominant)
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (E); 0.72 kilometers	Yes; reservoir (E); 1.96 kilometers	Yes; reservoir (E); 0.70 kilometers
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	N/A	N/A	Shrubs height (5 m)
Distance from Site to Obstructions	N/A	N/A	Power substation (10 m S) Shrubs (5 m S from dripline) ²
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	Yes	Yes	Yes
Pros	 Level ground Space available Optimal site of all 4a, 4b, 4c, and 4d locations Downwind 	Level groundDownwindPower availableSafe accessOpen field not used	Level groundPower availableDownwind
Cons	Property owner is not agreeable	Property owner is not agreeable	 Residential backyard used for recreation Not enough space Cable line SE of site
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Calaveras #4d	Calaveras #5	Calaveras #6
Location ²	29.31926°, -98.35142°	29.31786°, -98.34853°	29.308712, -98.35646
Distance from SO ₂ Source (meters) ²	3,220	2,890	3,560
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	>1%	>1%	<1%
Flood Plains	No	Yes	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (E); 0.72 kilometers	Yes; reservoir (E); 0.87 kilometers	Yes; reservoir (E); 0.83 kilometers
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	No (W)
Obstructions and Height	Trees (10 m and 15 m)	Trees (10 m)	Brush (10 m) Tree line (10 m)
Distance from Site to Obstructions	Trees (27m NE, 37m SE from dripline) ²	Trees (12 m) Trees (10 m in all directions from dripline) ²	Brush (20 m E, 20m E from dripline) ² Trees (42m SE, 42m SE from dripline) ²
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	Yes	No	Yes
Pros	Power availableDownwind	Downwind	Good accessPower available
Cons	 Significant slope Two additional electric poles needed Ditch at entryway 	 Uneven Terrain Significant slope Natural Gas Pipeline present on site No Power available Flood plains 	 Needs Transformer Not Downwind No response from property owner
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Calaveras #7	Calaveras #8	Calaveras #9
Location ²	29.30959°, -98.35745°	29.33215°, -98.32643°	291811, -982058
Distance from SO ₂ Source (meters) ²	3,500	2,555	2,800
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant);
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	No
Water Body Nearby ²	Yes; reservoir (E); 1.38 kilometers	Yes; reservoir (E); 1.22 kilometers	No
Wind Channeling	None	None	None
Downwind ²	No (W)	Yes (NW)	No (W)
Obstructions and Height	Trees (20 m)	None	Tree (10 m)
Distance from Site to Obstructions	Trees (20 m N from dripline) ²	NA	Tree (15 m to S)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	Yes	Yes	Yes
Pros	 Close proximity to modeled maxima Space available Power available Safe access Agreeable property owner 	 Level ground Downwind Power available Safe access Site agreement possible 	Level grade Close to the source
Cons	 Gate installation required Not downwind Yes	 On Calaveras property Natural gas pipeline may hinder installation Access issues 	 Gas pipeline hinders construction of site A transformer would need to be installed Property owner not agreeable No
Viable Site (yes, no, or preferred)	res	No	INO

Site Number	Calaveras #10	Calaveras #11	#12 Heritage Middle School
Location ²	29.19.21N, -98.211	29.311591°, -98.359697°	29.354663°, -98.334565°
Distance from SO ₂ Source (meters) ²	3,240	3,700	4,700
Wind Direction	S, SE (dominant);	S, SE (dominant);	S, SE (dominant);
Grade	<1%	<1%	<1%
Flood Plains	None	None	No
Mountain/Valley Winds	None	None	No
Water Body Nearby ²	No	Yes; pond (N) 177 m	No
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	No (W)	Yes (N)
Obstructions and Height	Trees (10 m, 6 m, and 10 m)	Barn (5 m)	NA
Distance from Site to Obstructions	Trees (35 m to SE); tree (20 m to SE); tree (21 m to E)	Barn (48 m to N)	NA
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	Yes	Yes	Yes
Pros	Downwind Agreeable property owner	Flat area Agreeable property owner Close proximity to modeled maxima	 Nearest to maximum frequency and maximum composite metric Current air monitoring site available Agreeable property owner Proximity to maximum concentrations Captures concentrations adjacent to a school Minimal installation
Cons	Surrounded by large obstructions	A gate and driveway would have to be constructed Not downwind	• None
Viable Site (yes, no, or preferred)	No	Yes	Recommended

¹Based on guidance from March 1, 2011, memorandum from Tyler Fox, EPA Office of Air Quality Planning and Standards, "Additional Clarification Regarding the Application of Appendix W Modeling Guidance for the 1-hr NAAQS." Research Triangle Park, North Carolina 27711.

²Based on Google Earth

SO₂ - sulfur dioxide

m - meters

% - percent

< - less than

E – east

N - north

NE - northeast

NW – northwest SE – southeast SW – southwest # – number

° – degree NA – Not applicable

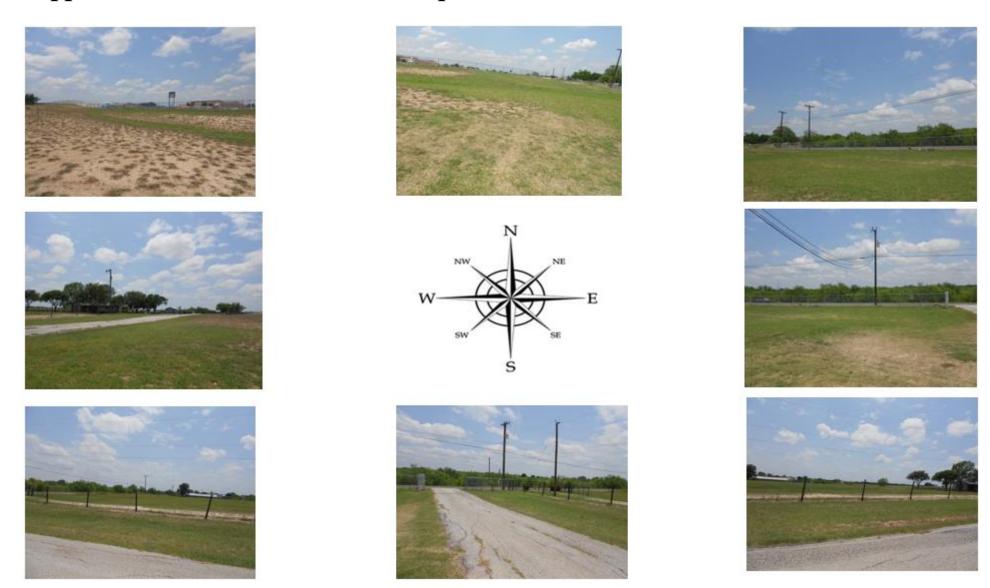


Figure 9: Calaveras #12 Potential Site Cardinal Direction Photos

Figure 10: Calaveras #12 Potential Site References

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas*. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Oxbow Calcining Monitor Placement Evaluation

Source Information

- Name: Oxbow Calcining LLC (Oxbow)
- Owner: Oxbow Carbon LLC
- Facility function: petroleum and coal products
- Location: 29.83560°, -93.96300°, Texas Commission on Environmental Quality (TCEQ) Region 10, Jefferson County, Texas
- Sulfur dioxide (SO₂) emissions data: 7,964 tons (2013), 11,319 tons (2014, preliminary data)
- Long-term emissions trend: decreasing, 25 percent (%) decrease from 2003 through 2013
- Emission profile: operational year-round
- Stack height(s): 4 stacks total; one is 38 meters and the other three are 56 meters each (shown in Figure 2)
- SO₂ emission controls: none
- Permit related data: Federal Operating Permit 1493

Existing Air Monitoring Sites

The nearest ambient air quality monitoring sites are detailed in Table 1. All existing SO₂ monitors have design values below the current SO₂ standard of 75 parts per billion (ppb). The existing sites are not located to characterize maximum SO₂ source concentrations and are not downwind.

Table 1: Air Monitoring Sites Located Near Oxbow

Site	Location	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2012-2014)
SETRPC Port Arthur	3.7 kilometers north	Yes (non-TCEQ private monitor)	not comparable
City Service Center Port Arthur	6.9 kilometers north	No	not applicable
Port Arthur West	7.3 kilometers northwest	Yes	51 parts per billion*
Port Arthur Memorial School	11.1 kilometers northeast	No	not applicable
Jefferson County Airport	12.6 kilometers northwest	No	not applicable

^{*}design value data does not meet completeness requirements for 2012

Settings and Surroundings

The rural area surrounding Oxbow consists of flat gulf coastal plains with a sea level elevation as shown in Figure 1. The gulf coast plains are primarily coastal prairies marked by forested vegetation and river channels. (Griffith et al. 2004) River channels run east, west, and south of Oxbow. No significant changes to the landscape were noted during the reconnaissance as compared to the Google Earth view shown in Figure 8. Mountain and valley wind channeling or other terrain related meteorological impacts are not characteristic of this area as detailed in Table 2.

Figure 1: Oxbow Area Elevation Map

Figure 2: Oxbow Calcining Sulfur Dioxide Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Jefferson County Airport, located 13 kilometers north-northwest of Oxbow. Figure 4 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on analysis of the 2012 – 21014 wind data, the dominant wind flow direction for the area is south to southeast, with wind flows from the north, northeast, and northwest accounting for only 23% of the average annual wind flows. Over this three year period, calm winds (0-2 miles per hour) occurred on average 17% of the time and wind speeds averaged 7.9 miles per hour (Iowa Environmental Mesonet 2016).

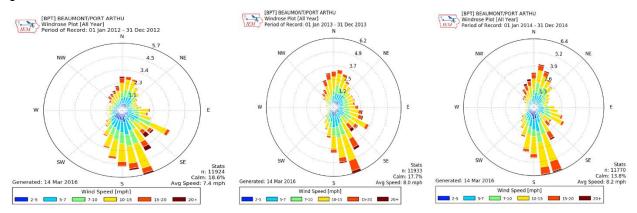


Figure 3: (From left to right) 2012, 2013, and 2014 individual Wind Rose Plots

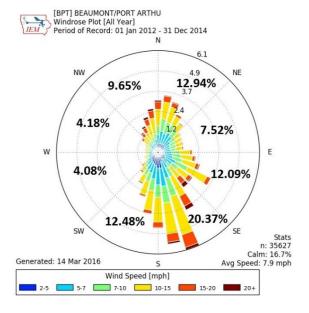


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique for identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72-km by 72-km;
- the four kiln stacks were modeled and tracked as individual PiG puffs;
- full year of 2012 12-km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4-km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 graphically presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a black cross. Oxbow's permitted property is outlined in blue. Based on this analysis, the highest normalized concentrations, greater than 70% of the predicted off-property maximum, are expected within or immediately surrounding Oxbow's property. The area immediately surrounding the predicted off-property maximum is a water retention and overflow area not viable for monitor placement based on site reconnaissance and discussions with property owners. However, both of the proposed monitor locations identified within Figure 5 are within areas with predicted normalized concentrations within 70% to 80% of the off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-

property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around the Oxbow facility. Again, the location of the predicted off-property maximum is indicated by a black cross and Oxbow's permitted property is outlined in blue. Using this analysis metric, areas within or directly to the north of the Oxbow facility scored greater than 70% and would be expected to see the highest frequency of elevated SO₂ concentrations. These areas are not viable for monitor placement based on site reconnaissance and discussions with property owners.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum indicated by a black cross and Oxbow's permitted property is outlined in blue. As with the normalized 99th percentile and normalized frequency metrics, areas within and directly north of the Oxbow facility scored greater than 70% using the composite metric. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest composite metric score did not yield a viable location for monitor placement.

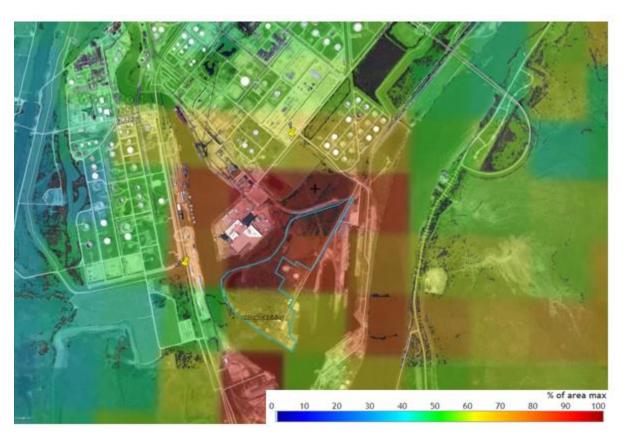


Figure 5: Oxbow Area CAMx Predicted Normalized 99th Percentile Concentrations and Viable Site Locations

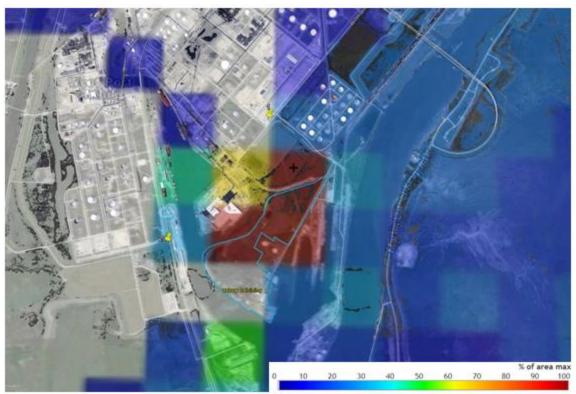


Figure 6: Oxbow Area CAMx Predicted Normalized Frequency (number of days) and Viable Site Locations

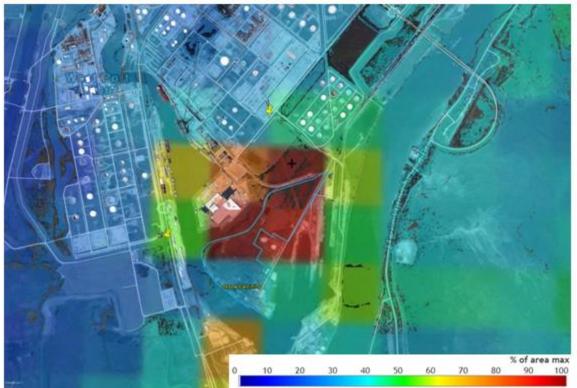


Figure 7: Oxbow Area CAMx Predicted Composite Metric and Viable Site Locations

Site Selection Criteria and Options

The TCEQ does not currently have SO₂ monitors located in the area surrounding Oxbow that would characterize the highest SO₂ concentrations from this facility; therefore a new site is required. The TCEQ focused on complying with the federal requirements listed in 40 CFR Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach includes utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analysis provided in Figures 5, 6, and 7 suggest that maximum SO₂ concentrations are expected to occur north-northeast of Oxbow and slightly south on days with northerly and/or calm winds. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected within or directly north of the Oxbow facility.

Ten potential sites were identified as shown in Figure 8. A logistical summary of all the potential sites is provided in Table 2. Eight of the identified potential sites (sites 3, 4, 5, 6, 7, 8, 9, and 10) are not considered viable. Sites 3 and 6 were excluded due to a lack of electrical availability and logistical issues. Sites 5 and 7 are on land that is currently for sale by the property owner. Sites 3, 4, 8, 9, and 10 are located well outside of the model maxima predicted area. Figure 8 also includes the identification of two parking lots labeled P 1 and P 2. Parking lot number 1 (P 1) is utilized for private facility parking beyond secured access gates. Parking lot number 2 (P 2) is utilized for heavy duty onroad vehicle parking and frequently contains idling vehicles. As a result, these sites are no longer under consideration.

The two sites with satisfactory logistical and siting characteristics and locations anticipated to have peak concentrations include sites 1 and 2. These site locations are also identified on the model and satellite image overlays shown in Figures 5, 6, and 7.

- Site 1 is positioned slightly north of Oxbow and southwest of a neighborhood that includes Abraham Lincoln Middle School and Booker T. Washington Elementary School approximately 3.5 to 4 kilometers from Oxbow. Electricity is available, and obstructions are a sufficient distance from the location to meet siting criteria. A site agreement has been negotiated with the property owner. This potential site is approximately 1.5 km north of Oxbow.
- Site 2 is located northwest of Oxbow in an industrial area, east of a large bayou and west of a marine vessel shipping channel. Electricity is available, and obstructions are a sufficient distance from the location to meet siting criteria. A site agreement has been negotiated with the property owner. This potential site is approximately 1.0 km west of Oxbow.

Recommendation

Based on current plant operations, available emission data, wind patterns, and CAMx model predictions, Site 1 is the recommended location for placement of a new source-oriented ambient SO_2 monitoring station. While the modeling analysis results for Sites 1 and 2 are very comparable, Site 1 would be directly downwind of the Oxbow facility and has the benefit of being well positioned between the source and a populated

neighborhood with two schools. Site 1 offers open areas, has available electricity, and meets all federal siting criteria. Site 1 is shown in Figures 5, 6, 7, 8, 9, and 10.



Figure 8: Potential Sulfur Dioxide Monitoring Sites for Oxbow Calcining

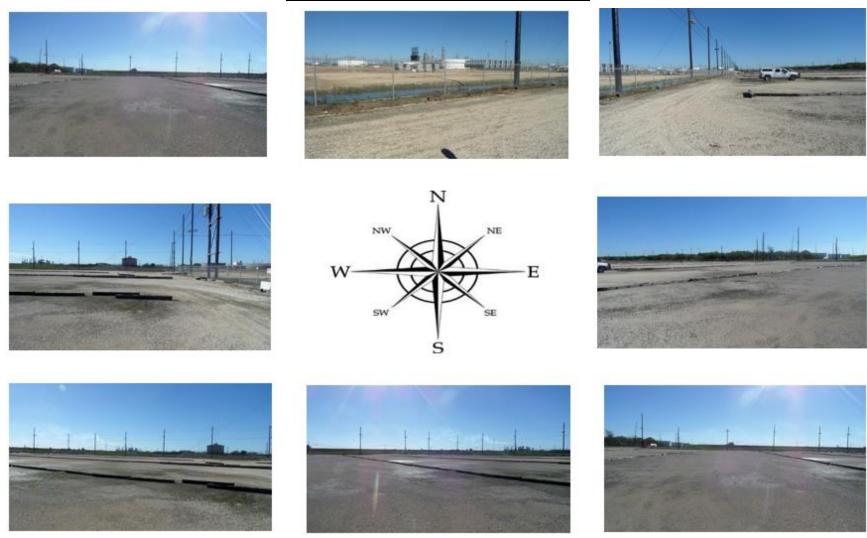


Figure 9: Oxbow #1 Potential Site Cardinal Direction Photos

Figure 10: Oxbow #1 Potential Site

Table 2: Potential Sites Assessment

Site Number	Oxbow #1	Oxbow #2	Oxbow #3
Location ²	29.84575° -93.96348°	29.83887°, -93.97028°	29.89393°, -93.97913°
Distance From SO ₂ Source ²	1,500 meters	800 meters	7,000 meters
Wind Direction	N, NW	N, NW	N, NW
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; river (E)	Yes; river (E)	Yes; river (E)
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (NW)	Yes (NW)
Obstructions and Height	None	None	Trees (10 meters)
Distance from Site to Obstructions	Not applicable	Not applicable	Trees (18 meters SE from dripline) ²
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	Yes	Yes	No
Pros	 Downwind Power available Space available Close proximity to source and modeled maxima Located between the source and a neighborhood with schools Predicted to receive the most frequent daily maximum concentrations 	 Level ground Power available Space available Close proximity to source and modeled maxima 	 Level ground Downwind Space available Intergovernmental agreement possible • Far from source
Cons	Located east of large truck parking	Adjacent to area with marine vessel transportNot downwind	Far from sourceNo power available
Viable Site (yes, no, or recommended)	Recommended	Yes	No
		l .	ı

Site Number	Oxbow #4	Oxbow #5	Oxbow #6
Location ²	29.89436°, -93.98871°	29.84382°, -93.97142°	29.83891°, -93.97016°
Distance From SO ₂ Source ²	7,030 m	1,240 m	775 m
Wind Direction	N, NW	N, NW	N, NW
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; river (E)	Yes; river (E)	Yes; river (E)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Building (10 m)	Building (8 m)	None
Distance from Site to Obstructions	Building (23 m NE) ²	Building (60 m E) ²	Not applicable
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	Yes	Yes	No
Pros	DownwindSpace availableLevel ground	DownwindPower availableClose proximity to sourceLevel ground	DownwindClose proximity to sourceLevel ground
Cons	Outside modeled maxima	Property is for sale	 Power may be difficult to acquire
Viable Site (yes, no, or recommended)	No	No	No

Site Number	Oxbow #7	Oxbow #8	Oxbow #9
Location ²	29.84188°, -93.97092°	29.89652°, -93.97865°	29.88459°, -93.99966°
Distance From SO ₂ Source ²	1,000 meters	7,050 meters	6,520 meters
Wind Direction	N, NW	N, NW	N, NW
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; river (E)	Yes; river (E)	Yes; river (E)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Building (8 meters)	Not applicable	Not applicable
Distance from Site to Obstructions	Building (60 meters E) ²	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 meters	No	Yes	Yes
Pros	Close proximity to sourceDownwind	• Downwind	Downwind
Cons	Property is for saleNo power available	Outside modeled maxima	Outside modeled maxima
Viable Site (yes, no, or recommended)	No	No	No

Site Number	Oxbow #10
Location ²	29.88479°, -94.01070°
Distance From SO ₂ Source ²	7,220 meters
Wind Direction	N, NW
Grade	<1%
Flood Plains	No
Mountain/Valley Winds	None
Water Body Nearby ²	Yes; river (SW)
Downwind ²	Yes (NW)
Obstructions and Height	Building (7 meters)
Distance from Site to Obstructions	Building (50 meters E) ²
Road/Site Access	Yes
Electricity Available <18 meters	No
Pros	• Downwind
Cons	Outside modeled maxima
Viable Site (yes, no, or recommended)	No

¹Based on guidance from March 1, 2011, memorandum from Tyler Fox, EPA Office of Air Quality Planning and Standards, "Additional Clarification Regarding the Application of Appendix W Modeling Guidance for the 1-hr NAAQS." Research Triangle Park, North Carolina 27711.

²Based on Google Earth

SO₂ - sulfur dioxide

% - percent

< - less than

E – east

N – north NE – northeast

NW – northwest

SE – southeast

SW - southwest

- number

° – degree

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas*. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

AEP Pirkey Power Plant Monitor Placement Evaluation

Source Information

- Name: AEP Pirkey Power Plant (Pirkey) (Figure 2)
- Owner: Southwestern Electric Power Company
- Facility function: electric generation
- Location: 32.46106, -94.48502, Texas Commission on Environmental Quality (TCEQ) Region 5, Harrison County, Texas
- Sulfur dioxide (SO₂) emissions data: 7,339 tons (2013), 2,916 tons (2014)
- Long-term emissions trend: decreasing, 84 percent (%) decrease from 2004 to 2014
- Emission profile: operational year-round
- Stack height: 160 meters
- SO₂ emission controls: limestone wet-scrubbing, 97% reduction efficiency
- Permit related data: Federal Operating Permit

Existing Air Monitoring Sites

The nearest ambient air quality monitoring sites are detailed in Table 1. No TCEQ ambient air quality monitors are located within 23 kilometers (km) of Pirkey. The existing SO₂ monitor at Longview has a design values below the current SO₂ standard of 75 parts per billion (ppb). The SO₂ monitor at Tyler Airport Relocated is a seasonal non-regulatory monitor. The Tyler Airport Relocated 2015 maximum 1-hour SO₂ concentration was 12.9 ppb. The existing sites listed in Table 1 are not located to characterize maximum SO₂ source concentrations and are not downwind.

Table 1: Air Monitoring Sites Near Pirkey

Site	Location	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2013-2015)
Longview	23 kilometers	Yes	46 parts per billion
	southwest		(ppb)
Karnack	38 kilometers	No	Not applicable
	northeast		
Tyler Airport	88 kilometers west	Yes	Not applicable
Relocated*			

^{*}Tyler Airport Relocated operates a non-regulatory, seasonal SO₂ monitor.

Settings and Surroundings

The rural area surrounding Pirkey consists of interior coastal plains with elevations ranging from approximately 100 to 130 m (as shown in Figure 1). The terrain is considered part of the Piney Woods ecological area and includes some of the most densely forested regions of Texas (Griffith et al. 2004). No significant changes to the landscape were noted during the reconnaissance as compared to the Google Earth view shown in Figures 8 and 9. Mountain and valley wind channeling or other terrain related meteorological impacts are not expected in this area as detailed in Table 2. Martin Lake Electrical Station (Martin Lake), located approximately 24 km southwest of Pirkey, has the potential to influence SO₂ concentrations in the Pirkey area under certain meteorological conditions. Martin Lake's SO₂ emissions were reported as 53,660 tons in 2014. Due to Pirkey's location, and the area's predominant southeasterly wind flow, it is anticipated that Martin Lake would only minimally impact SO₂ concentrations around the Pirkey area when winds are from the south-southwest (approximately 8% of the time according to the Marshall Airport wind rose data; Figures 3 and 4).

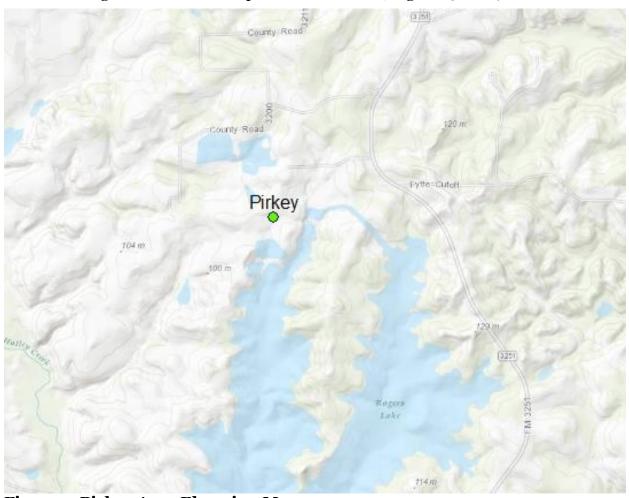


Figure 1: Pirkey Area Elevation Map

Figure 2: Pirkey Sulfur Dioxide Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Harrison County Airport in Marshall, Texas, located 18 km northeast of Pirkey. Figure 4 illustrates the 2012-2014 annual average speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on analysis of the 2012-2014 wind data, the dominant wind flow direction is 135 degrees southeast to 215 degrees south-southwest, approximately 29% of the average area wind flows. Over this three year period, calm winds (0-2 miles per hour) occurred on average 40% of the time and wind speeds averaged 4.3 miles per hour (Iowa Environmental Mesonet 2016).

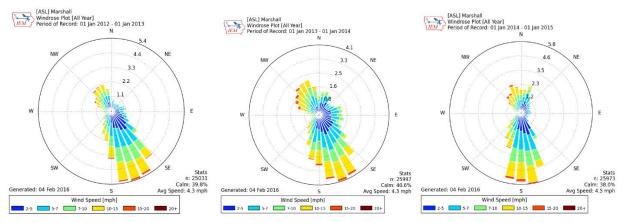


Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

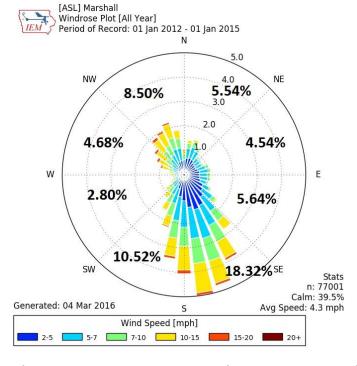


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup includes the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72 km by 72 km:
- the kiln stack was modeled and tracked as an individual PiG puff;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 graphically presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a + symbol. Pirkey's permitted property is outlined in black. Based on this analysis, the highest normalized concentrations, greater than 85% of the predicted off-property maximum, are expected approximately 18 km to the far north and northwest of Pirkey. The proposed monitor location identified in Figure 5 (site 15) is in an area of 75-80% predicted normalized off-property maximum concentrations.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-property maximum concentration by the number of days the off-property maximum was

predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around the Pirkey facility. Again, the location of the predicted off-property maximum is indicated by a + symbol and Pirkey's permitted property is outlined in black. Using this analysis metric, areas directly to the north and northwest of Pirkey scored greater than 50% and would be expected to see the highest frequency of elevated SO₂ concentrations.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with λ symbol and Pirkey's permitted property is outlined in black. The area approximately 6 km to the north of Pirkey scored greater than 70% using the composite metric. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest composite metric score, did not yield a viable location for monitor placement.

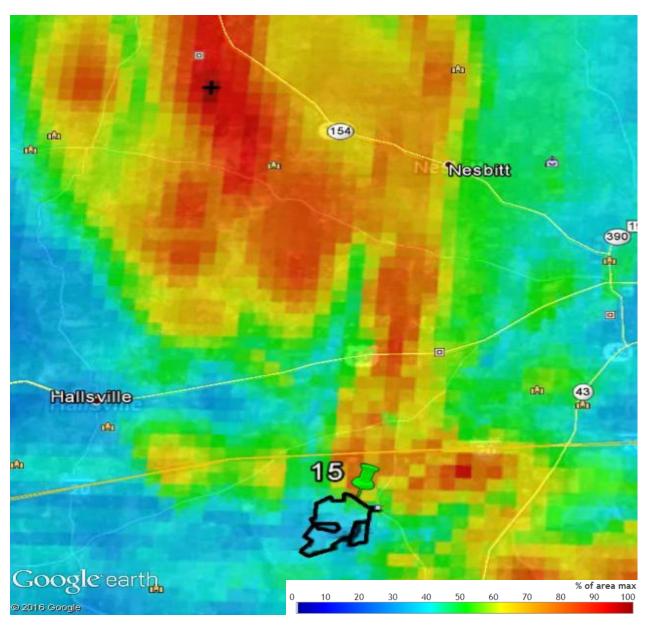


Figure 5: Pirkey Area CAMx Model Predictions Normalized Concentrations, and Viable Site Locations

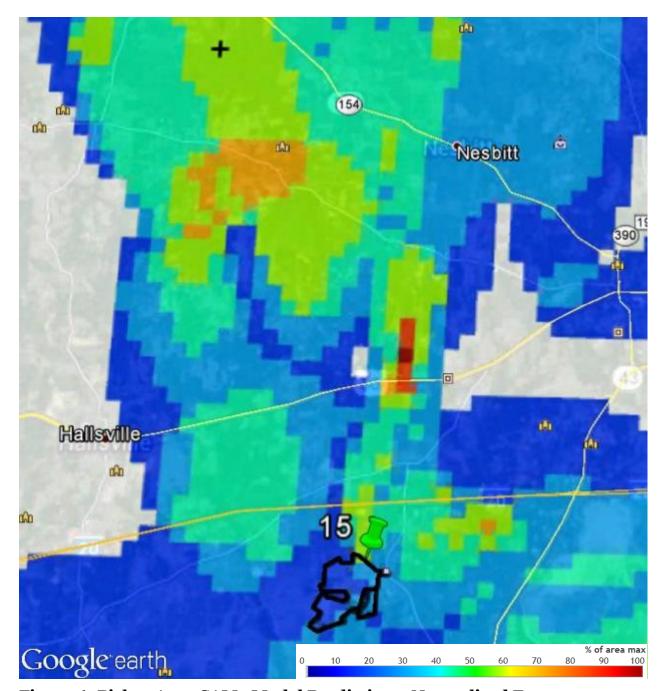


Figure 6: Pirkey Area CAMx Model Predictions, Normalized Frequency (number of days), and Viable Site Locations

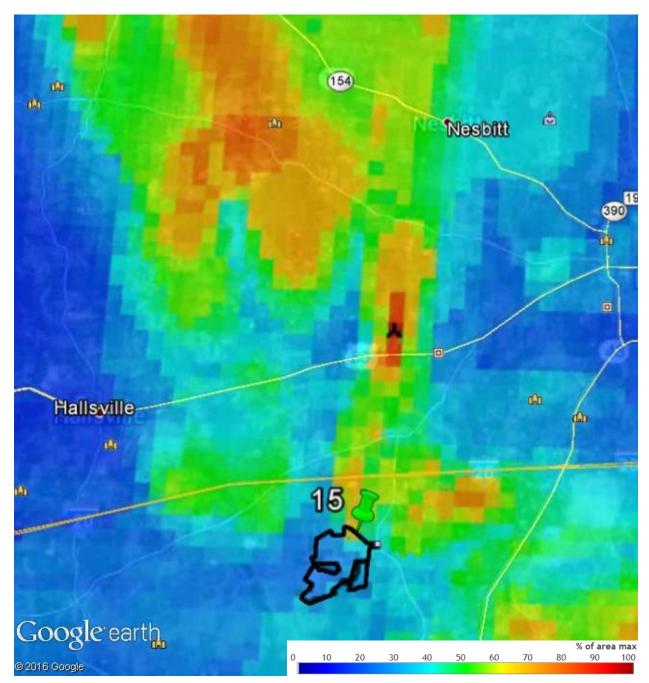


Figure 7: Pirkey Area CAMx Model Predictions Composite Metric and Viable Site Locations

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Pirkey that would characterize the highest SO₂ concentrations from this facility; therefore a new site is required. The TCEQ focused on complying with the federal requirements listed in Section 40 of the Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air qualities in areas around an SO₂ emissions source. This approach includes utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analysis provided in Figures 5, 6, and 7 suggest that maximum SO₂ concentrations are expected to occur north and northwest of Pirkey. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected north of Pirkey.

Twenty potential sites were identified as shown in Figures 8 and 9. A summary of all potential sites is shown in Table 2. Nineteen of the identified potential sites (sites 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, and 20) are not considered viable and are indicated by red pins in Figures 8 and 9. Property owners at sites 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19, and 20 either declined or were unresponsive. Site 6, located 2 km from the source, was in an area where obstructions are not a sufficient distance from the location to meet siting criteria. Site 9, located 3.7 km from the source, contained uneven terrain and is prone to flooding. Site 10, located 4 km from the source was in an area with low predicted SO_2 concentrations according to modeling analysis. As a result, these sites are no longer under consideration.

Site 15 is positioned approximately 1.0 km directly north of Pirkey. This site provides level ground, adequate space, and available power. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 75-80% of maximum concentrations, therefore the site would be expected to measure peak SO₂ concentrations near the source. A site agreement has been negotiated with the property owner.

Recommendation

Based on current facility operations, available emission data, wind patterns, logistics, and modeling analysis, site 15 (Figures 8, 9, 10, and 11) is the recommended location for placement of a new source-oriented ambient SO₂ monitoring station and is indicated by a green pin in Figures 5, 6, 7, 8, 9, and 11. While the modeling analysis predicts the highest maximum normalized concentrations and the highest composite metric scores to the north and northwest of the source, access to the property in these areas is unattainable. Site 15 is located in an area with predicted maximum normalized SO₂ concentrations of 75–80%, meets all federal siting criteria, and has available power, space, and level ground.

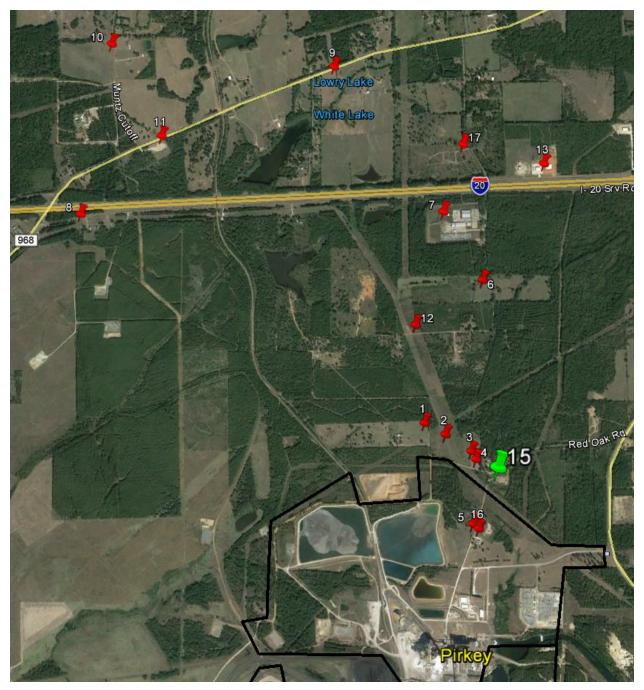


Figure 8: Potential Air Monitoring Sites within 4 km of Pirkey

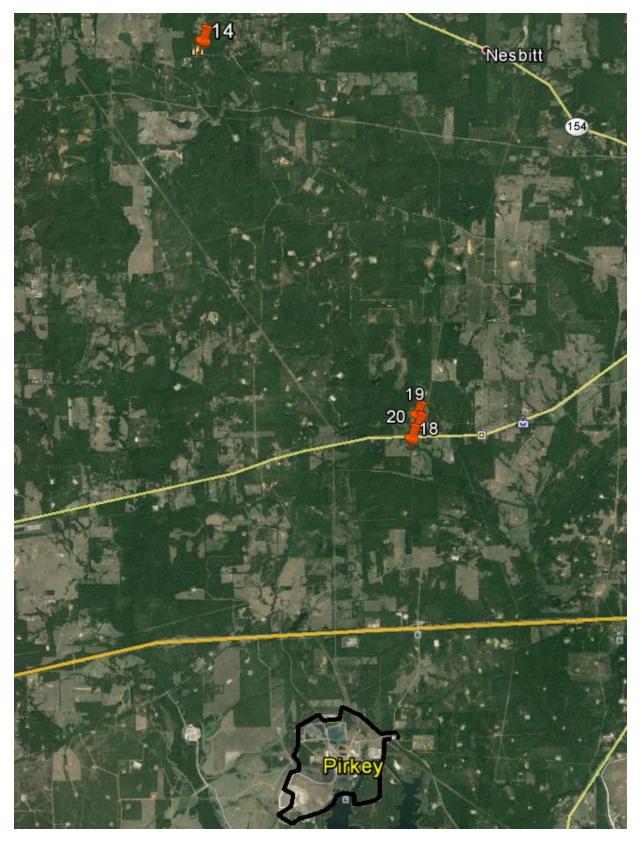


Figure 9: Potential Air Monitoring Sites More Than 4 km from Pirkey

Table 2: Potential Air Monitoring Site Assessment¹

Site Number	Pirkey #1	Pirkey #2	Pirkey #3
Location ²	32.47321,	32.47239,	32.47129,
	-94.48573	-94.48566	-94.48298
Distance from SO ₂ Source ²	1298 m	1265 m	1142 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	Yes	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (N)	Yes (N)
Obstructions and Height	Trees (15 m)	None	None
Distance from Site to Obstructions	Trees (20 m N from dripline)	None	None
Road/Site Access	No	Yes	Yes
Electricity Available <18 m	No	No	Yes
Property Owner	Jerry Michael and Annette McMullen	James Earl Byers	James Earl Byers
Pros	Level groundSpace availableDownwind	Level groundSpace availableDownwind	Level groundSpace availablePower availableDownwind
Cons	 Difficult access Extra power pole needed No response from the property owner 	 Challenging electrical connection Property owner declined Existing flood plain 	Property owner declined
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Pirkey #4	Pirkey #5	Pirkey #6
Location ²	32.471914,	32.47057,	32.48070,
	-94.48293	-94.48181	-94.48164
Distance from SO ₂ Source ²	1100 m	750 m	2183 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	>2%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (N)	Yes (N)
Obstructions and Height	Church (18 m)	None	Trees (20 m and 25 m)
Distance from Site to Obstructions	Church (15 m N)	None	Trees (30 m N from dripline) Trees (30 m W from dripline)
Road/Site Access	Yes	No	No
Electricity Available <18 m	Yes	No	No
Pros	Level groundClose to the sourcePower availableDownwind	Close to the sourceDownwindLevel ground	Downwind Space available
Cons	Unresponsive property owner	Property owner declined No power	 No power Difficult access Slight grade in surrounding areas Numerous obstructions
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Pirkey #7	Pirkey #8	Pirkey #9
Location ²	32.48517,	32.48433,	32.49364,
	-94.48203	-94.50815	-94.48735
Distance from SO ₂ Source ²	2557 m	3383 m	3700 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	>1%
Flood Plains	No	No	Yes
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (NW)	Yes (NW)
Obstructions and Height	Trees (25 m) Building (20 m)	Trees (25 m)	Trees (15 m)
Distance from	Trees (20 m N from	Trees (30 m N from	Trees (20 m E from
Site to	dripline)	dripline	dripline)
Obstructions	Building (35 m S)	Trees (30 m S from dripline)	Trees (20 m W from dripline)
Road/Site Access	Yes	Yes	No
Electricity Available <18 m	Yes	Yes	Yes
Pros	Space availableLevel groundClose to sourceDownwind	Level groundSpace availablePower availableDownwind	Space availablePower availableDownwind
Cons	Property owner declined	 Unresponsive property owner Low SO₂ concentrations according to modeling analysis 	 Slight grade in surrounding areas Existing flood plains Difficult to access
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Pirkey #10	Pirkey #11	Pirkey #12
Location ²	32.49396,	32.48805,	32.47840,
	-94.50600	-94.50419	-94.48701
Distance from SO ₂ Source ²	4200 m	3537 m	1934 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (N)
Obstructions and Height	Trees (20 m)	Trees (20-30 m)	None
Distance from Site to Obstructions	Trees (40 m N from dripline)	Trees (30 m E from dripline) Trees (30 m S from dripline)	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	Level groundSpace availablePower availableDownwind	Level ground Downwind	Level groundSpace availablePower availableDownwind
Cons	 Low concentration of SO₂ according to modeling analysis 	No power Property owner declined	Close proximity to power lines and other utility markers
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Pirkey #13	Pirkey #14	Pirkey #15
Location ²	32.48689,	32.61527,	32.47045,
	-94.47846	-94.54527	-94.48152
Distance from SO ₂ Source ²	2850 m	15150 m	1000 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NE)	Yes (NW)	Yes (N)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	None	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	 Level ground Space available Power available Easy access to site Downwind 	Maximum off- property concentration of SO ₂ emissions according to CAMx modeling Downwind Level ground	 Level ground Agreeable property owner Easy access to site High concentration and frequency according to modeling analysis Power available Downwind
Cons	Property owner declined	Unresponsive property ownerNo power	• None
Viable Site (yes, no, or preferred)	No	No	Preferred

Site Number	Pirkey #16	Pirkey #17	Pirkey #18
Location ²	32.46728,	32.48793,	32.51969,
	-94.48268	-94.48365	-94.47123
Distance from SO ₂ Source ²	650 m	2940 m	6770 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (N)	Yes (NE)
Obstructions and Height	Trees (20 m)	None	None
Distance from Site to Obstructions	Trees (55 m N from dripline)	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	No
Pros	 Level ground Space available Power available Easy access to site Downwind 	 High SO₂ concentrations and frequency according to modeling analysis Downwind Level ground 	 High SO₂ concentrations and frequency according to modeling analysis Level ground Downwind
Cons	Property owner declined	Unresponsive property ownerNo power	Unresponsive property ownerNo power
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Pirkey #19	Pirkey #20
Location ²	32.52403, -94.47001	32.52193, -94.46981
Distance from SO ₂ Source ²	7220 m	7050 m
Wind Direction	S, SE	S, SE
Grade	>1%	>1%
Flood Plains	No	No
Mountain/Valley Winds	None	None
Water Body Nearby ²	No	No
Wind Channeling	None	None
Downwind ²	Yes (NE)	Yes (NE)
Obstructions and Height	None	None
Distance from Site to Obstructions	None	None
Road/Site Access	Yes	Yes
Electricity Available <18 m	No	No
Pros	 High SO₂ concentrations and frequency according to modeling analysis Level ground Downwind 	 High SO₂ concentrations and frequency according to modeling analysis Level ground Downwind
Cons	Unresponsive property ownerNo power	Unresponsive property ownerNo power
Viable Site (yes, no, or preferred)	No	No

¹Based on 40 Code of Federal Regulations Part 58 and SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

% - percent

N - north

E – east

W - west

S - south

NE – northeast

NW - northwest

SE – southeast

SW - southwest

m - meter

- number

< - less than > - greater than

SO₂ - sulfur dioxide

²Based on Google Earth

Figure 10: Pirkey #15 Preferred Site Cardinal Direction Photos

Figure 11: Pirkey #15 Preferred Air Monitoring Site

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas*. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX ASOS.

Welsh Power Plant Monitor Placement Evaluation

Source Information

- Name: Welsh Power Plant (Welsh) (Figure 2)
- Owner: Southwestern Electric Power Company
- Facility function: electric generation
- Location: 33.05500, -94.83944, Texas Commission on Environmental Quality (TCEQ) Region 5, Titus County, Texas
- Sulfur dioxide (SO₂) emissions data: 19,720 tons (2013), 18,225 tons (2014)
- Long-term emissions trend: decreasing, 47 percent (%) decrease from 2004 to 2014
- Emission profile: operational year-round
- Stack heights: stacks 1, 2, and 3, each 92 meters (m), were decommissioned in late 2015; new 159 m stack was installed in 2015
- SO₂ emission controls: none
- Permit related data: Prevention of Significant Deterioration permit

Existing Air Monitoring Sites

The TCEQ operates four ambient air monitoring sites within a 100 kilometer (km) radius of Welsh. Table 1 details the four closest monitoring sites to Welsh in order of proximity. Maximum SO₂ ground level concentrations can be expected within close proximity to the source. Although two of these locations (Longview and Tyler Airport Relocated) are currently monitoring SO₂, none of the existing sites are positioned downwind or within reasonable proximity to the source to characterize maximum SO₂ concentrations.

Table 1: Air Monitoring Sites near Welsh

Site	Location	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2013-2015)
Texarkana	71 kilometers northeast	No	Not applicable
Longview	76 kilometers south	Yes	46 parts per billion
Karnack	77 kilometers southeast	No	Not applicable
Tyler Airport Relocated*	95 kilometers southwest	Yes	Not applicable

^{*}Tyler Airport Relocated operates a non-regulatory, seasonal SO₂ monitor.

Settings and Surroundings

The rural area surrounding Welsh consists of interior coastal plains with elevations ranging from approximately 100 to 130 m as shown in Figure 1. (Griffith et al. 2004) The terrain is considered part of the Piney Woods ecological area and includes some of the most densely forested regions of Texas. The area contains the Welsh Reservoir water body, surrounded by dense vegetation, and limited power sources. No significant changes to the landscape were noted during the reconnaissance as compared to the Google Earth view in Figure 8. Mountain and valley wind channeling or other terrain related meteorological impacts are not expected in this area.

Monticello Steam Electric Station (Monticello), located approximately 19 km northwest of Welsh, has the potential to influence SO₂ concentrations in the Welsh area under certain meteorological conditions. Monticello's SO₂ emissions were reported as 20,515 tons in 2014. Due to the site's location and the area's predominant southeasterly wind flow, it is anticipated that Monticello could impact SO₂ concentrations around the Welsh area when winds are from the northwest (approximately 8% of the time according to Mount Pleasant Airport wind rose data; Figures 3 and 4).

Figure 1: Welsh Area Elevation Map

Figure 2: Welsh Power Plant Sulfur Dioxide Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at Mount Pleasant Airport, located 13 km northwest of Welsh. Figure 4 illustrates the 2012-2014 annual average speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on analysis of the 2012-2014 wind data, the dominant wind flow direction is 110 degrees southeast to 180 degrees south. Approximately 30% of average annual wind flows are from the dominant wind flow direction. Over this three year period, calm winds (0-2 miles per hour) occurred 27% of the time and wind speeds averaged 5.8 miles per hour. (Iowa Environmental Mesonet 2016).

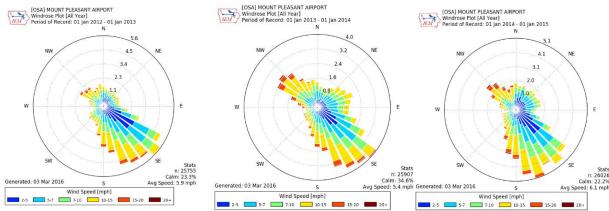


Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

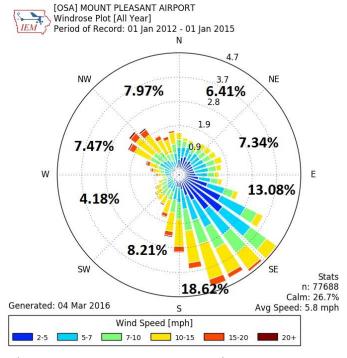


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup includes the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-m PiG sampling grid centered on the source spatially covering 72 km by 72 km;
- the four kiln stacks were modeled and tracked as individual PiG puffs;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 graphically presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a + symbol. Welsh permitted property is outlined in black. Based on this analysis, the highest normalized concentrations, greater than 85% of the predicted off-property maximum, are expected to occur in the area approximately 2 km to the north of Welsh over the Welsh Reservoir water body. The proposed monitor locations identified in Figure 5 (sites 14 and 15) are in areas of 75%-85% predicted normalized off-property maximum concentrations. Site 14 is located 0.75 km northwest of the predicted off-property maximum, while site 15 is located 1.16 km northeast of the predicted off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property

maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around Welsh. Again, the location of the predicted off-property maximum is indicated by a + symbol and Welsh's permitted property is outlined in black. Using this analysis metric, areas directly to the north and areas directly northwest of Welsh scored greater than 80% and would be expected to see the highest frequency of elevated SO₂ concentrations. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest normalized frequency score did not yield a viable location for monitor placement.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the off-property maximum composite metric indicated with λ , and Welsh's permitted property is outlined in black. As with the normalized 99th percentile and normalized frequency metrics, areas approximately 2 km north of Welsh scored greater than 80% using the composite metric. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest composite metric score did not yield a viable location for monitor placement.

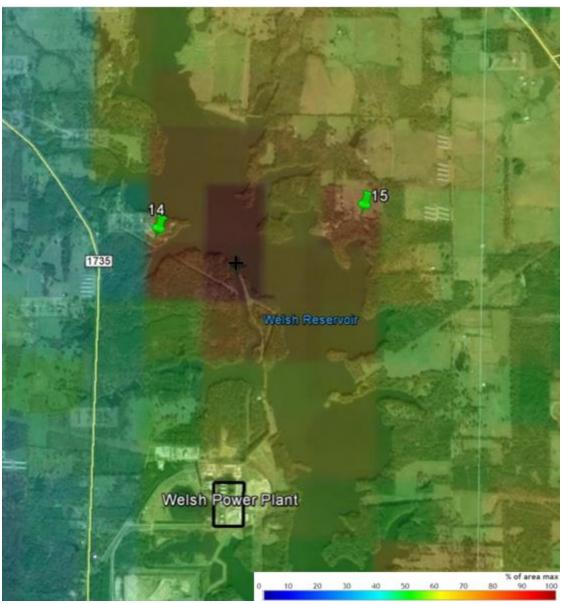


Figure 5: Welsh Area CAMx Model Predictions, Normalized Concentrations, and Viable Site Locations

Figure 6: Welsh CAMx Model Predictions, Normalized Frequency, (Number of Days), and Viable Site Locations

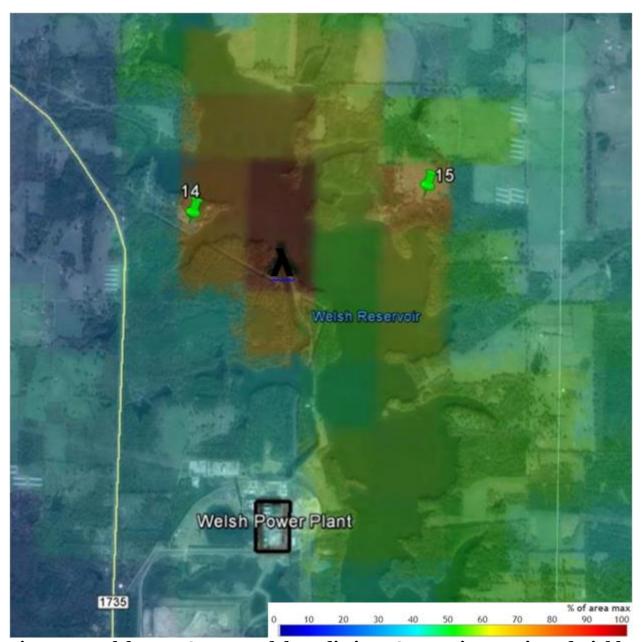


Figure 7: Welsh Area CAMx Model Predictions Composite Metric and Viable Site Locations

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Welsh that would be expected to characterize the highest SO₂ concentrations from this facility; therefore a new site is proposed. The TCEQ focused on complying with the federal requirements listed in Section 40 of the Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach includes utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analyses provided in Figures 5, 6, and 7 suggest that maximum SO₂ concentrations are expected to occur north of Welsh. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected north of Welsh.

Nineteen potential sites were identified as shown in Figure 8. Seventeen of the identified potential sites (1, 2, 3, 3A, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, and 18) are not considered viable and are indicated by red pins in Figure 8. Property owners at sites 2, 7, 10, 11, and 12 either declined or were unresponsive. Sites 3A, 13, and 16 had a large number of obstructions or were prone to flooding. Sites 1, 3, 4, 5, 6, 8, 9, 17, and 18 were in areas with low predicted SO₂ concentrations according to modeling analysis. The property north of site 2 and south of site 14 exhibited logistical hindrances including heavy vegetation common in the Piney Woods, a large water body, and a lack of access, and power sources. As a result, these sites and area are not suitable for placement of a monitor.

The two sites with satisfactory logistical and siting characteristics, located in areas anticipated to have peak concentrations, are sites 14 and 15. These site locations are identified on the model and satellite image overlays shown in Figures 5, 6, 7, and 8 indicated with a green pin.

- Site 14 is positioned approximately 2.2 km northwest of Welsh on the west side of the water body. This site is directly downwind of the source, provides level ground, adequate space, and available power, as shown in Figure 9. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 75%-80% of the maximum concentrations. An air monitoring site at this location would be expected to monitor peak SO₂ concentrations based on the dominant wind patterns and model analysis predictions. A site agreement has been negotiated with the property owner.
- Site 15 is positioned approximately 2.7 km northeast of Welsh on the east side of the water body. Although it is not directly downwind, this site is on level ground, has space, and power available. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 75-80% of the maximum concentrations; therefore, an air monitoring site at this location would be expected to monitor peak SO₂ concentrations. The property owner is amenable to a site agreement.

Recommendation

Based on current facility operations, available emissions data, wind patterns, and modeling analysis, site 14 (see Figures 9 and 10) is the recommended location for placement of a new source oriented ambient SO₂ monitoring station and is shown in Figures 5, 6, 7, 8, and 10. Site 14 is positioned directly downwind, on the same side of the Welsh Reservoir, and is expected to monitor a greater frequency of maximum concentrations than site 15. While the modeling analysis predicts the highest maximum normalized concentration and composite metric scores to the north of the source, a site agreement in this area is not viable due to the terrain and water body. Site 14 is located in an area with predicted maximum normalized SO₂ concentrations of 75%–80%, meets all federal siting criteria, and has available power and level ground.

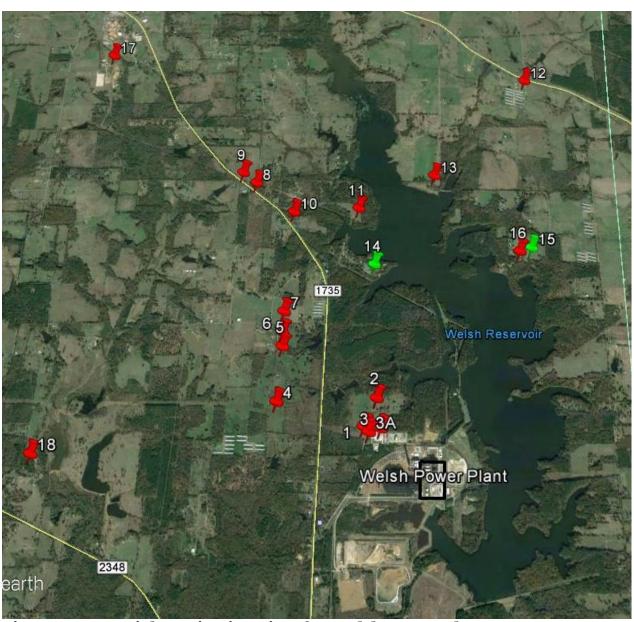


Figure 8: Potential Monitoring Sites for Welsh Power Plant

Table 2: Potential Sites Assessment¹

Site Number	Welsh #1	Welsh #2	Welsh #3
Location ²	33.05855,	33.06118,	33.05818,
Location	-94.84753	-94.84673	-94.84609
Distance from	582 m	909 m	428 m
SO ₂ Source ²	302 111	303 111	420 111
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (E)	Yes; reservoir (E)	Yes; reservoir (E)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Trees (15 m)	Trees (25 m)	Power substation (10 m), trees (20 m)
Distance from Site to Obstructions	Trees (20 m NE)	Trees (52 m E to dripline) Trees (56 m SE to dripline)	Power substation (20 m SE) Trees (10 m N to dripline)
Road/Site Access	Yes	Yes	No
Electricity Available <18 m	No	Yes	Yes
Pros	Level groundSpace availableDownwind	Level groundDownwindPower availableSpace available	Level groundDownwindClose to sourcePower availableSpace available
Cons	No powerToo close to facility	Property owner declined	Low SO ₂ concentrations according to modeling analysis
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Welsh #3A	Welsh #4	Welsh #5
Location ²	33.05783,	33.06071,	33.06614,
Location	-94.84740	-94.85780	-94.85742
Distance from SO ₂ Source ²	522 m	1,776 m	2,041 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	Yes	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (E)	Yes; reservoir (E)	Yes; reservoir (E)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Trees (30 m)	None	Trees (10-20 m)
Distance from Site to Obstructions	Trees (20 m N to dripline) Trees (9 m E to dripline) Trees (9 m S to dripline)	None	Trees (55 m NW to dripline) Trees (30 m NE to dripline) Trees (70 m S to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	Close to sourceDownwindLevel ground	Level groundSpace availableDownwind	Level groundDownwindSpace availablePower available
Cons	Numerous obstructionsFlood prone	 No power Low SO₂ concentrations according to modeling analysis 	 Site access would require extensive engineering due to a high berm Low SO₂ concentrations according to modeling analysis
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Welsh #6	Welsh #7	Welsh #8
Location ²	33.06758,	33.06974,	33.08403,
Location	-94.85738	-94.85744	-94.86159
Distance from SO ₂ Source ²	2,150 m	2,300 m	3,806 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (E)	Yes; reservoir (E)	Yes; reservoir (E)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	None	None	Trees (30 m)
Distance from Site to Obstructions	None	None	Trees (20-50 m all directions to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	Yes	Yes
Pros	Level groundSpace availableDownwind	Level groundDownwindSpace availablePower available	Level groundDownwindPower available
Cons	 No power Low SO₂ concentrations according to modeling analysis. 	 Unresponsive property owner Low SO₂ concentrations according to modeling analysis 	 Numerous obstructions Low SO₂ concentrations according to modeling analysis
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Welsh #9	Welsh #10	Welsh #11
Location ²	33.08527,	33.08067,	33.08142,
D.	-94.86334	-94.85698	-94.84899
Distance from SO ₂ Source ²	4,015 m	3,180 m	3,022 m
Wind Direction	S, SE	S, SE	S, SE
Grade	>5%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (E)	Yes; reservoir (E)	Yes; reservoir (E)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	None	Trees (15 m)	Trees (25 m) House (15 m)
Distance from Site to Obstructions	None	Trees (15 m N to dripline) Trees (15 m E to dripline) Trees (15 m W to dripline)	Trees (51 m NW to dripline) House (25 m SW)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Downwind Power available	Level groundDownwindSpace availablePower available	Level groundDownwindSpace availablePower available
Cons	 Unlevel terrain Low SO₂ concentrations according to modeling analysis 	Numerous obstructionsUnresponsive Property owner	Unresponsive property owner
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Welsh #12	Welsh #13	Welsh #14
Location ²	33.09678, -94.82739	33.08495, -94.83948	33.07481, -94.84691
Distance from SO ₂ Source ²	4,884 m	3,300 m	2,290 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	>1%	<1%
Flood Plains	No	Yes	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	No	Yes; reservoir (S)	Yes; reservoir (E)
Wind Channeling	None	None	None
Downwind ²	No (NE)	Yes (N)	Yes (NW)
Obstructions and Height	None	None	Trees (12-14 m)
Distance from Site to Obstructions	None	None	Trees (17 m NW to dripline) Trees (18 m NE to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	Level groundSpace availableEasy accessPower available	Easy accessDownwind	 Level ground Downwind Power available Space Available Agreeable property owner Located on the same reservoir side as facility
Cons	Not downwind Property owner declined	No PowerDifficult accessFlood proneSlight grade in surrounding area	• None
Viable Site (Yes, No, or Preferred)	No	No	Preferred

Site Number	Welsh #15	Welsh #16	Welsh #17
Location ²	33.07664, -94.82795	33.07626, -94.82940	33.10694, -94.89578
Distance from SO ₂ Source ²	2,600 m	2,450 m	6,380 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Nearby ²	Yes; reservoir (W)	Yes; reservoir (W)	No
Wind Channeling	None	None	None
Downwind ²	No (NE)	No (NE)	Yes (NW)
Obstructions and Height	None	Trees (14 m)	None
Distance from Site to Obstructions	None	Trees (23 m NE to dripline) Trees (24 m NW to dripline) Trees (26 m S to dripline)	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	 Space available Power available High concentration and frequency according to modeling analysis Level ground 	Power availableLevel ground	 Agreeable property owner Space available Downwind Level ground Power available
Cons	Not downwind Located on the west reservoir side	Numerous obstructionsNot downwind	Low SO ₂ concentrations according to modeling analysis
Viable Site (Yes, No, or Preferred)	Yes	No	No

Site Number	Welsh #18		
Location ²	33.05584,		
	-94.88454		
Distance from SO ₂	4,130 m		
Source ²			
Wind Direction	S, SE		
Grade	<1%		
Flood Plains	No		
Mountain/Valley Winds	None		
Water Body Nearby ²	No		
Wind Channeling	None		
Downwind ²	No (W)		
Obstructions and Height	Trees (15 m)		
Distance from Site to	Trees (25 m SW to dripline)		
Obstructions	Trees (30 m NE to dripline)		
	Trees (25 m S to dripline)		
Road/Site Access	Yes		
Electricity Available	Yes		
<18 m			
Pros	Level ground		
Cons	Not downwind		
	No power		
Viable Site (Yes, No,	No		
or Preferred)			

¹Based on guidance from March 1,

2011, memorandum from Tyler Fox, EPA Office of Air Quality Planning and Standards, "Additional Clarification Regarding the Application of Appendix W Modeling Guidance for the 1-hr NAAQS." Research Triangle Park, North Carolina 27711.

²Based on Google Earth

E – east

m - meter

N – north

NE - northeast

NW - northwest

S - south

SE - southeast

 SO_2 – sulfer dioxide

SW - southwest

W - west

> - greater than

< - less than

– number

% - percent

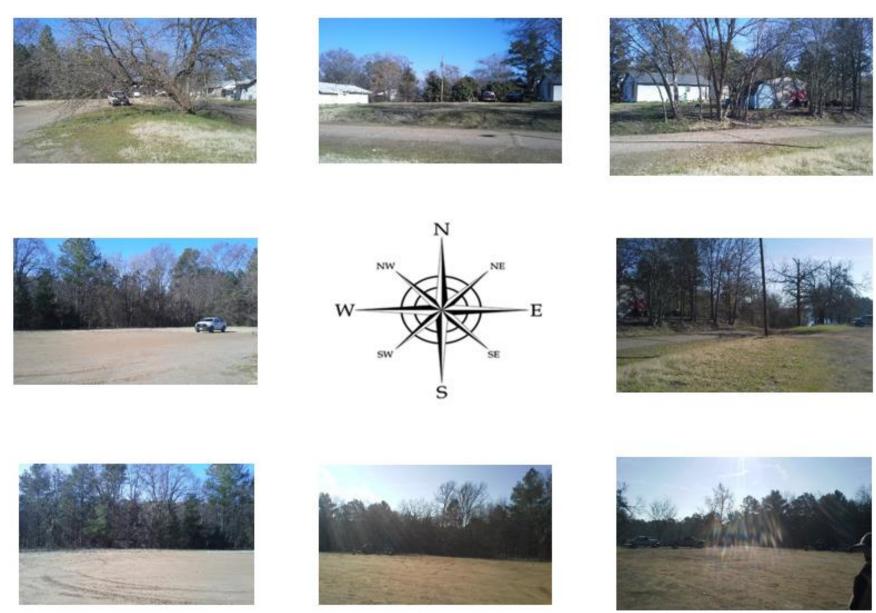


Figure 9: Welsh #14 Potential Site Cardinal Direction Photos

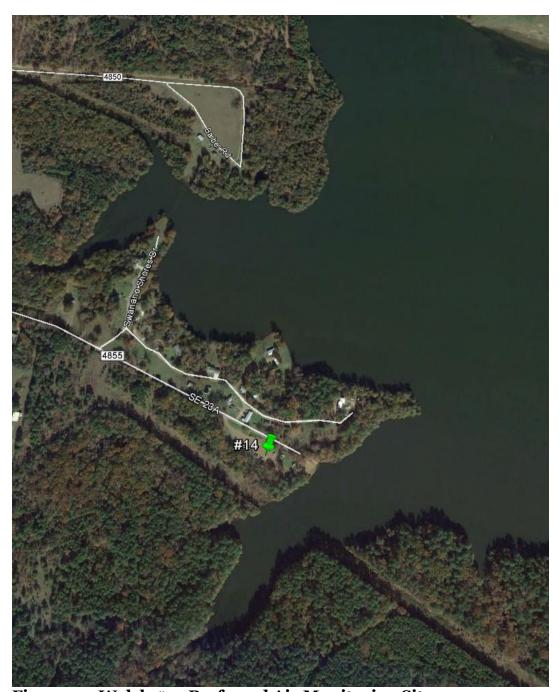


Figure 10: Welsh #14 Preferred Air Monitoring Site

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas*. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Sandow Monitor Placement Evaluation

Source Information

Two separately permitted facilities with sulfur dioxide (SO₂) emissions greater than 2,000 tons per year are located on contiguous property in Milam County, Texas. The facilities are officially referred to as the Sandow 5 Generating Plant and the Sandow Steam Electric Station and are approximately 250 meters (m) apart from each other (Figure 1). All subsequent discussions reference the two sources collectively as "Sandow."

Source 1

- Name: Sandow 5 Generating Plant (Figure 2)
- Owner: Luminant Generation Company, LLC
- Facility function: electric generation
- Location: 30.56725, -97.06101, Texas Commission on Environmental Quality (TCEQ) Region 9, Milam County, Texas
- SO₂ emissions data: 2,406 tons (2013), 2,260 tons (2014)
- Long-term emissions trend: increasing, 51 percent (%) increase from 2010 to 2014
- Emission profile: operational year-round
- Stack height(s): two stacks 102 m high, currently active
- SO₂ emission controls: miscellaneous methods of control reduce SO₂ emissions by 95% on two limestone injection boilers, polishing scrubbers also reduce SO₂ emissions by 3% on a circulating fluidized bed boiler
- Permit related data: Federal Operating Permit

Source 2

- Name: Sandow Steam Electric Station (Figure 3)
- Owner: Luminant Generation Company, LLC
- Facility function: electric generation
- Location: 30.56603, -97.06331, TCEQ Region 9, Milam County, Texas
- SO₂ emissions data: 19,761 tons (2013), 21,943 tons (2014)
- Long-term emissions trend: increasing, 34% increase from 2010 to 2014
- Emission profile: operational year-round
- Stack height: one stack 121 m high, currently active
- SO₂ emission controls: limestone wet-scrubbing, reduces SO₂ emissions by 76.6% on main boiler stack
- Permit related data: Federal Operating Permit

Existing Air Monitoring Sites

There are four existing air monitoring stations within a 75 kilometer (km) radius of Sandow. Two ambient air monitoring sites are operated by TCEQ (Austin Northwest and Austin Webberville Road) and two are operated by Capital Area Council of Governments (CAPCOG). Table 1 details the four closest monitoring sites in order of proximity. Maximum SO₂ ground level concentrations can be expected within close proximity to the source. Although one of these locations is currently monitoring SO₂, none of the existing sites are positioned downwind or within reasonable proximity to the source to characterize maximum SO₂ concentrations.

Table 1: Air Monitoring Sites Near Sandow

Site	Distance from Sandow	Current Sulfur Dioxide (SO ₂) Monitoring	SO₂ Design Value (2013-2015)
CAPCOG Hutto College Street	46 km west	No	Not applicable
CAPCOG Lake Georgetown	65 km northwest	No	Not applicable
Austin Northwest	70 km southwest	Yes	5 parts per billion
Austin Webberville Road	71 km southwest	No	Not applicable

CAPCOG - Capital Area Council of Governments

km - kilometers

Settings and Surroundings

The primarily rural area surrounding Sandow consists of the blackland prairie, which is characterized by flat to gently rolling hills, grasses, forbs, and croplands (Griffith et al. 2004). The elevation ranges from 150 to 171 meters as shown in Figure 1. No significant changes to the landscape were noted during the reconnaissance as compared to the satellite view shown in Figure 9. Due to a general lack of geographical obstructions and thick elevated vegetation, wind patterns are highly consistent across the Central Texas area. Mountain and valley wind channeling or other terrain related meteorological impacts are not expected in this area.



Figure 1: Sandow Area Elevation Map

Figure 2: Sandow 5 Sulfur Dioxide (SO₂) Stacks and Emissions, 2013

Figure 3: Sandow Steam Electric Station Sulfur Dioxide (SO₂) Stacks and Emissions, 2013

Meteorological Data

Figure 4 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Cameron Airport, located 35 km northeast of Sandow. Figure 5 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on the analysis of the 2012-2014 wind data, the dominant wind flow direction is 150 degrees south-southeast to 215 degrees south-southwest. Approximately 48% of the average area wind flows move from these directions. Over this three year period, calm winds (0-2 miles per hour) occurred on average 16.5% of the time, and wind speeds averaged 7.2 miles per hour (Iowa Environmental Mesonet 2016).

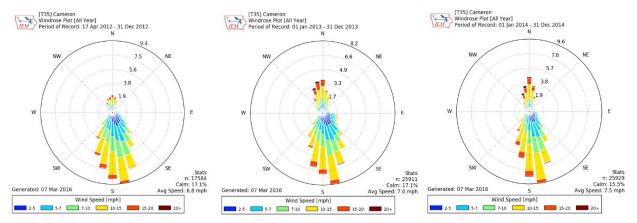


Figure 4: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

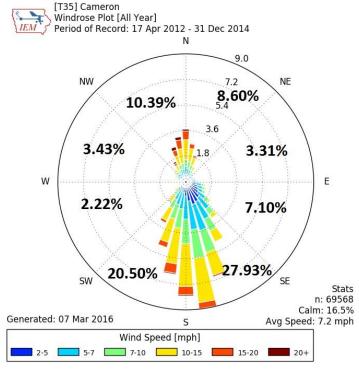


Figure 5: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72 km by 72 km;
- the three kiln stacks were modeled and tracked as individual PiG puffs;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 4 and 5.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 6 presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a "+" symbol. Sandow's permitted properties are outlined in black. Based on this analysis, the highest normalized concentrations, greater than 95% of the predicted off-property maximum, are expected to occur 2.1 km directly north of the Sandow facilities. This area, however, is not viable for monitor placement. After thorough consideration was given to the area north of Alcoa Lake (outlined in purple in Figure 9), the TCEQ determined that no viable site locations exist in this area due to lack of power and vehicle access (see section "Siting Options and Criteria"). Approximately 2.3 km southwest of the predicted off-property maximum is the proposed monitor location identified in Figure 6 as site 7. This site is in an area of predicted normalized concentrations within 40% to 50% of the off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property

maximum concentration. This metric was calculated by dividing the number of days the 99^{th} percentile concentration for each grid cell was greater than 75% of the predicted off-property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 7 presents the geographic distribution of normalized frequency around the Sandow facilities. Again, the location of the predicted off-property maximum is indicated by a "+" symbol, and Sandow's permitted properties are outlined in black. Using this analysis metric, areas directly to the north of the Sandow facilities scored greater than 95% and would be expected to see the highest frequency of elevated SO_2 concentrations.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 8 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with a " λ " symbol, and Sandow's permitted properties are outlined in black. Similar to the normalized 99th percentile and normalized frequency metrics, areas directly north of the Sandow facilities scored greater than 95% using the composite metric. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest composite metric score did not yield a viable location for monitor placement.

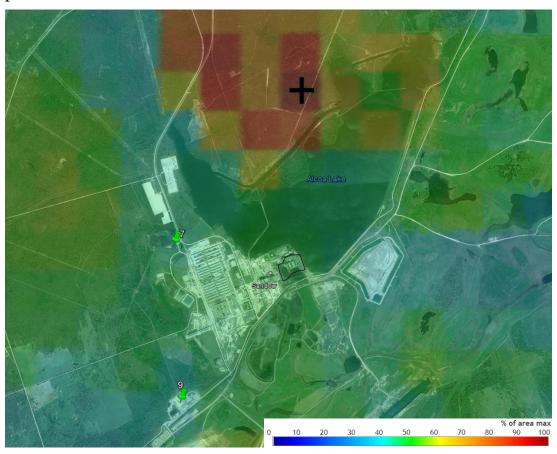


Figure 6: Sandow Area CAMx Model Predictions, Normalized Concentrations, and Viable Site Locations (7, 9)

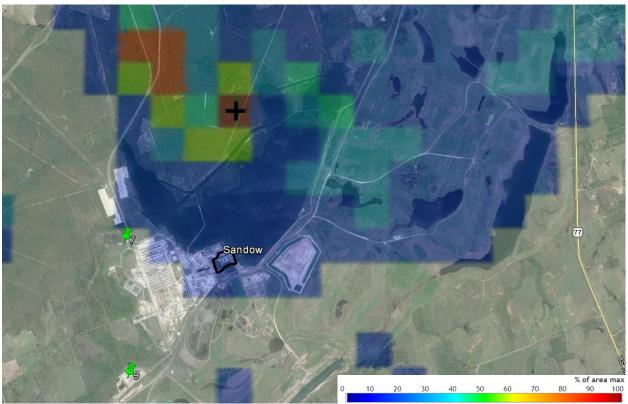


Figure 7: Sandow Area CAMx Model Predictions, Normalized Frequency, (Number of Days), and Viable Site Locations (7, 9)

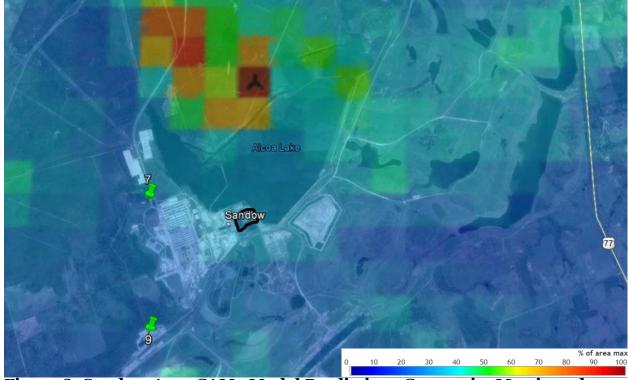


Figure 8: Sandow Area CAMx Model Predictions Composite Metric and Viable Site Locations (7, 9)

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Sandow that would be expected to characterize the highest SO₂ concentrations from these facilities; therefore a new site is proposed. The TCEQ focused on complying with the federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analyses provided in Figures 6, 7, and 8 suggest that maximum SO₂ concentrations are expected to occur north of the Sandow facilities. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the offproperty maximum is expected within or directly north of Sandow. Figure 9 depicts all potential site locations (red and green pins), their corresponding property lines (green), Sandow's permitted property (black), and Alcoa Lake (orange). The area in the figure outlined in blue belongs to a single property owner with the exception of areas outlined in green. The aforementioned wind rose and modeling data resulted in extensive consideration for potential site locations between Alcoa Lake and the northern borders of the blue property outline (outlined in purple). It was determined, however, that necessary electricity and vehicle access infrastructure to support a monitoring site was nonexistent, and the entire area had been pledged for the development of a solar farm. Thus, no further site agreements for land use could be granted. Consequently, ten potential sites were identified northwest, west, and southwest of the facility as shown in Figure 9. Eight of the identified potential sites (1, 2, 3, 4, 5, 6, 8, and 10) are not considered viable and are indicated by red pins. Sites 1 and 4 had many siting obstructions. Site 2 is in an area with restricted access, such as a locked gate to a private road. Property owners at sites 3, 5, and 6 were unwilling to negotiate site agreements or were unresponsive.

The owner of the area outlined in blue provided options for four monitoring sites northwest and southwest of the Sandow facilities; sites 7, 8, 9, and 10. Site 10 has no access to electricity and is prone to flooding. The area surrounding site 8 (outlined in yellow) is under a solar farm lease agreement and is therefore unsuitable for monitor placement. As a result, these potential sites are no longer under consideration.

Sites 7 and 9, indicated with green pins in Figure 9, have satisfactory logistical and siting characteristics. These site locations are also identified on the model and satellite image overlays in Figures 6, 7, and 8.

- Site 7 is positioned 1.4 km west of the Sandow facilities and approximately 2.4 km southwest of the off-property maximum concentration (see Figure 8). The site offers level ground, adequate space, available power, and is close to the source (see Table 2 and section "Recommendation"). The normalized 99th percentile concentration metric analysis predicted area concentrations to be 45% of the maximum concentrations. A site agreement has been negotiated with the property owner.
- Site 9 is positioned 1.9 km southwest of the Sandow facilities and approximately 4 km southwest of the off-property maximum concentration (see Figure 8). The site

provides level ground, adequate space, and available power. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 40% of the maximum concentrations. The property owner is amenable to a site agreement.

Recommendation

Based on current facility operations, available emissions data, wind patterns, logistics, and modeling analyses, site 7 (see Figures 10 and 11) is the recommended location for placement of a new source-oriented ambient SO₂ monitoring station. The most influential factors constraining potential site placement for Sandow were logistics (e.g., electricity and property access) and averse property owners. While the modeling analyses predict the highest maximum normalized concentration and composite metric score to be located 2.4 km to the northeast of site 7, a site placement in that area is not logistically feasible (electricity and access). This area was also not offered by the owner due to a preexisting lease agreement with a solar farm.

From the source, sites 7 and 9 are 1.4 km and 1.9 km respectively. In addition, the Sandow area experienced calm winds an average of 16.5% of the time from 2012-2014 (Figure 5). During calm wind conditions the proximity of site 7 would be expected to yield higher SO₂ concentrations than site 9. Site 7 is also the closest viable site to prevailing wind patterns coming from approximately 150 degrees south-southeast of the source. The recommended site has available power, adequate space, level ground, and meets all federal siting criteria. A site agreement has been negotiated with the property owner.

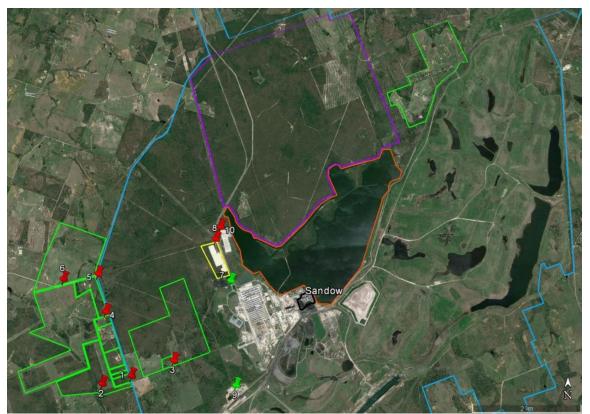


Figure 9: Potential Monitoring Sites for Sandow

Table 2: Potential Sites Assessment¹

Site Number	Sandow #1	Sandow #2	Sandow #3
Location	30.55379,	30.55251,	30.55628,
	-97.09541	-97.10099	-97.08730
Distance from SO ₂	3,670 m	4,190 m	2,810 m
Source ²		,	
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley	None	None	None
Winds			
Water Body Within	None	None	None
1,000 m			
Wind Channeling	None	None	None
Downwind ²	No (SW)	No (SW)	No (SW)
Obstructions and	Trees (10 m)	Trees (20 m)	Barn (5 m)
Height		Barn 5 m (E)	
Distance from Site	Trees (0-5 m N, S, E,	Trees (30 m SE)	Barn (55 m NW)
to Obstructions	W)	Trees (35 m S)	
		Barn (15 m E)	
Road/Site Access	Yes	No	Yes
Electricity Available	Yes	Yes	Yes
<18 m			
Pros	• Level ground	• Level ground	• Level ground
	Space available	Space available	Space available
Cons	Numerous	No site access	Property owner
	obstructions	Not downwind	declined
	Not downwind		Not downwind
Viable Site (Yes, No,	No	No	No
or Preferred)			

Site Number	Sandow #4	Sandow #5	Sandow #6
Location	30.56429,	30.57064,	30.56974,
	-97.10073	-97.10248	-97.10925
Distance from SO ₂	3,790 m	4,000 m	4,610 m
Source ²			
Wind Direction	S, SE	S, SE	S, SE
Elevation/Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	None	None	None
Wind Channeling	None	None	None
Downwind ²	No (W)	No (W)	No (W)
Obstructions and Height	Trees (12 m)	Trees (6 m)	None
Distance from Site to Obstructions	Trees (15-20 m, NW, W, E)	Trees (10 m NW)	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Level ground Space available	Level ground Space available	Level ground Space available
Cons	Numerous obstructions Not downwind	No driveway access Not downwind	Unresponsive property owner Unlevel ground Not downwind
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Sandow #7	Sandow #8
Location	30.56946,	30.57660,
	-97.07621	-97.07919
Distance from SO ₂	1,470 m	1,970 m
Source ²	,	,
Wind Direction	S, SE	S, SE
Elevation/Grade	<1%	<1%
Flood Plains	No	No
Mountain/Valley Winds	None	None
Water Body Within 1,000 m	Yes; Lake (E)	Yes; Lake (E)
Wind Channeling	None	None
Downwind ²	No (W)	No (NW)
Obstructions and Height	None	None
Distance from Site to Obstructions	None	None
Road/Site Access	Yes	Yes
Electricity Available	Yes	Yes
<18 m	res	res
Pros	Level groundSpace availableClose to the sourceEasy operator access	Level groundSpace availableEasy operator access
Cons	Not downwind	Leased to solar farmNot downwind
Viable Site (Yes, No, or Preferred)	Preferred	No

Site Number	Sandow #9	Sandow #10
Location	30.55227,	30.57869,
	-97.07529	-97.07828
Distance from SO ₂	1,915 m	2,019 m
Source ²		
Wind Direction	S, SE	S, SE
Elevation/Grade	<1%	<1%
Flood Plains	No	Yes
Mountain/Valley	None	None
Winds		
Water Body Within	None	Yes; Lake (E)
1,000 m		
Wind Channeling	None	None
Downwind ²	No (SW)	No (NW)
Obstructions and	None	None
Height		
Distance from Site	None	None
to Obstructions		
Road/Site Access	Yes	Yes
Electricity Available <18 m	Yes	No
Pros	Level groundSpace availableEasy operator	Space availableEasy operator access
	access	
Cons	Not downwind	No powerProne to floodingRough terrainNot downwind
Viable Site (Yes, No, or Preferred)	Yes	No

¹Based on 40 Code of Federal Regulations Part 58 and SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

E – east

m - meter

N – north

NE – northeast

NW - northwest

S – south

SE – southeast

SO₂ - sulfur dioxide

SW - southwest

W - west

> – greater than

< - less than # - number

% - percent

²Based on Google Earth

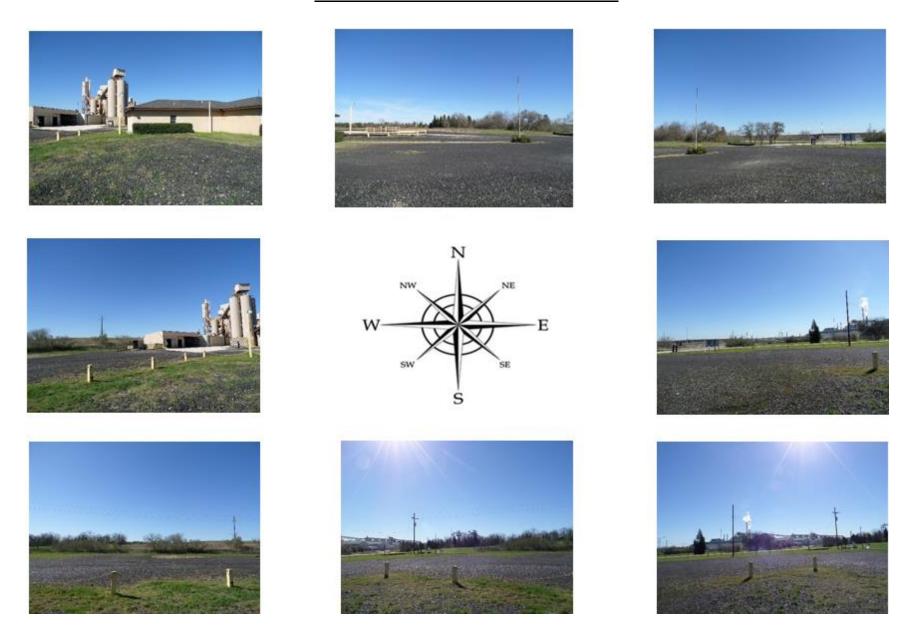


Figure 10: Sandow #7 Potential Site Cardinal Direction Photos

Figure 11: Sandow #7 Potential Site

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas*. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Borger Monitor Placement Evaluation

Source Information

Two separately permitted facilities with sulfur dioxide (SO₂) emissions greater than 2,000 tons per year are located in Borger, Texas. The facilities are officially referred to as the Sid Richardson Carbon Company Borger Carbon Black Plant and the Orion Engineered Carbons LLC Borger Carbon Black Plant. The two plants are approximately 195 meters (m) apart from each other. All subsequent modeling and recommendations consider the two sources separately; however, for practical reasons the facilities are collectively referred to as "Borger".

Source 1

- Name: Borger Carbon Black (Figure 2)
- Owner: Sid Richardson Carbon, LTD
- Facility function: electric generation
- Location: 35.66390, -101.43500, Texas Commission on Environmental Quality (TCEQ) Region 1, Hutchinson County, Texas
- SO₂ emissions data: 4,923 tons (2013), 4,862 tons (2014)
- Long-term emissions trend: decreasing, 46 percent (%) decrease from 2004 to 2014
- Emission profile: operational year-round
- Stack height: two stacks at 547 (m) and one stack at 132 m
- SO₂ emission controls: none
- Permit related data: Federal Operating Permit #1867A and Prevention of Significant Deterioration (PSD) permit #PSDTX1032

Source 2

- Name: Borger Carbon Black (Figure 3)
- Owner: Orion Engineered Carbons, LLC
- Facility function: chemical manufacturing
- Location: 35.66636, -101.43300, TCEQ Region 1, Hutchinson County, Texas
- SO₂ emissions data: 3,172 tons (2013), 3,027 (2014)
- Long-term emissions trend: increasing, 10% increase from 2010 to 2014
- Emission profile: operational year-round
- Stack height: one stack at 37 m, one stack at 30 m, and two stacks at 25 m
- SO₂ emission controls: none
- Permit related data: Federal Operating Permit #8780 and PSD # PSDTX416M1

•

Existing Air Monitoring Sites

The TCEQ operates six ambient air monitoring sites within a 70 kilometer (km) radius of Borger. Table 1 details the six closest monitoring sites in order of proximity. Maximum SO₂ ground level concentrations can be expected within close proximity to the sources. Although one of these locations is currently monitoring SO₂, none of the existing sites are positioned downwind or within reasonable proximity to the source to characterize maximum SO₂ concentrations

Table 1: TCEQ Air Monitoring Sites Near Borger

Site	Distance From Borger	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2013-2015)
Pantex 7	33 kilometers	No	Not applicable
Pantex 5	37 kilometers	No	Not applicable
Pantex 4	39 kilometers	No	Not applicable
Amarillo SH 136	50 kilometers	No	Not applicable
Amarillo 24 th Avenue	54 kilometers	Yes	22 parts per billion*
Amarillo A&M	67 kilometers	No	Not applicable

^{* -} incomplete data

TCEQ - Texas Commission on Environmental Quality

Settings and Surroundings

The rural area surrounding Borger consists of the southwestern tablelands with elevations ranging from 933 to 1009 m as shown in Figure 1 (Griffith et al. 2004). This area is characterized by rugged terrain and is undeveloped, with no power accessibility. No significant changes to the landscape were noted during the reconnaissance as compared to the satellite view shown in Figure 9. Mountain and valley wind channeling, or other terrain related meteorological impacts are not expected in this area.

Harrington Station Power Plant (Harrington Station), located approximately 55 km southwest of Borger, has the potential to influence SO₂ concentrations in the Borger area under certain meteorological conditions. Harrington Station's SO₂ emissions were reported as 15,465 tons in 2014. Due to the site's location and the area's predominant southwesterly wind flow, it is anticipated that Harrington Station could impact SO₂ concentrations around the Borger area when winds are from the southwest (approximately 21% of the time according to the Hutchinson County Airport wind rose data; Figures 4 and 5).



Figure 1: Borger Area Elevation Map

Figure 2: Borger (Sid Richardson) Sulfur Dioxide (SO₂) Stacks and Emissions, 2013

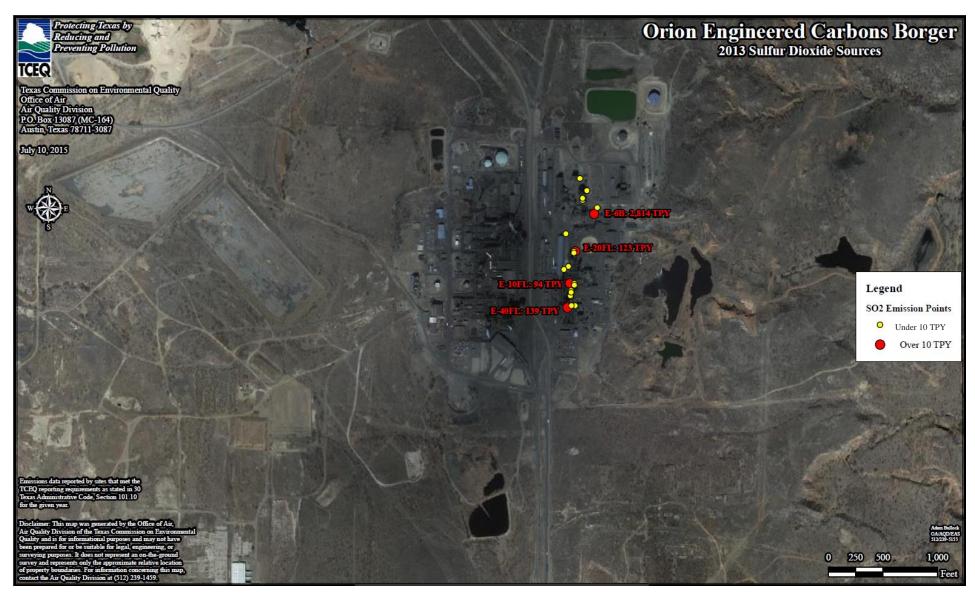


Figure 3: Borger (Orion) Sulfur Dioxide (SO₂) Stacks and Emissions, 2013

Meteorological Data

Figure 4 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at Hutchinson County Airport, located 5 km northeast of Borger. Figure 5 illustrates the 2012-2014 annual average speed. The length of each wind rose bar corresponds to the frequency of the wind coming from indicated direction by percentage. Based on analysis of the 2012-2014 wind data, the dominant wind flow direction is 150 degrees southeast to 240 degrees west-southwest. Approximately 45% of the average area wind flows are from the dominant wind flow direction. Over this three year period, calm winds (0-2 miles per hour) occurred 9.7% of the time and wind speeds averaged 10.3 miles per hour (Iowa Environmental Mesonet 2016).

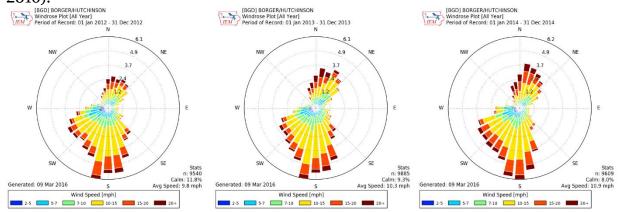


Figure 4: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

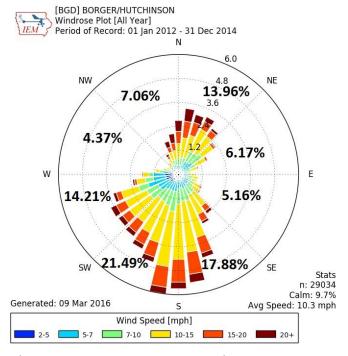


Figure 5: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx), with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72 km by 72 km;
- the one kiln stack was modeled and tracked as individual PiG puffs;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

•

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 4 and 5.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 6 graphically presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a "+" symbol. Borger permitted properties are outlined in black. Based on this analysis, the highest normalized concentrations, greater than 85% of the predicted off-property maximum, are expected to occur 1 km north of Borger. The viable monitor locations identified in Figure 6 as sites 9, 13, and 23 are within areas with predicted normalized concentrations between 65% and 80% of the off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-

property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 7 presents the geographic distribution of normalized frequency around Borger. Again, the location of the predicted off-property maximum is indicated by a "+" symbol, and the Borger permitted properties are outlined in black. Using this analysis metric, areas directly to the north of Borger scored greater than 70% and would be expected to see the highest frequency of elevated SO₂ concentrations. The areas directly to the north are not viable for monitor placement due to the undeveloped area, a lack of power sources, and no road access.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 8 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with a " λ " symbol, and Borger permitted properties are outlined in black. As with the normalized 99th percentile and normalized frequency metrics, areas directly north of Borger scored greater than 90% using the composite metric. The TCEQ's site reconnaissance showed that this area is not a viable location for an air monitoring station due to undeveloped areas, a lack of power sources, and no road access.

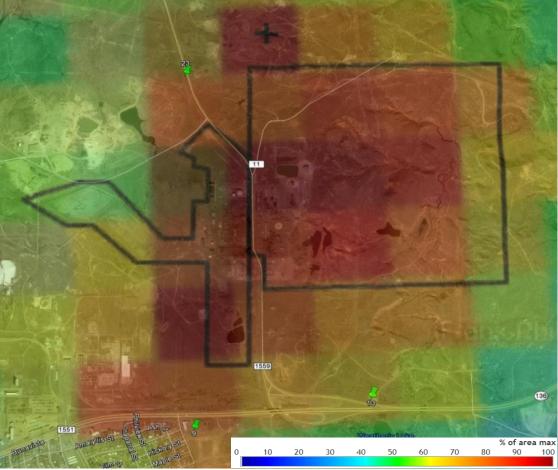


Figure 6: Borger Area CAMx Model Predictions, Normalized Concentrations, and Viable Site Locations

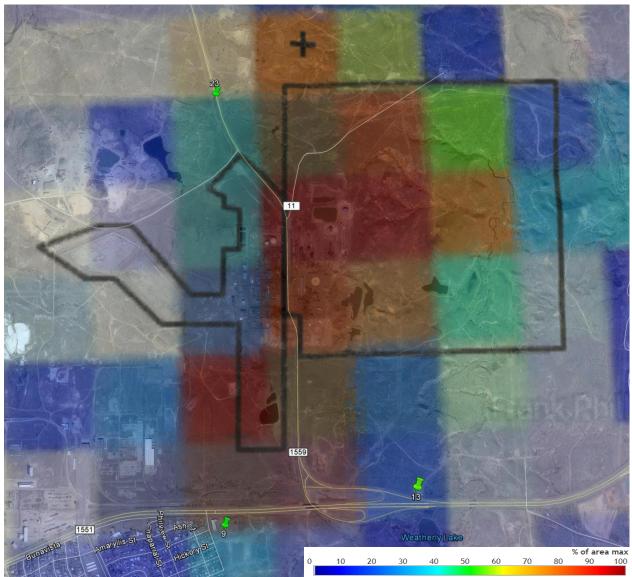


Figure 7: Borger Area CAMx Model Predictions, Normalized Frequency (Number of Days), and Viable Site Locations

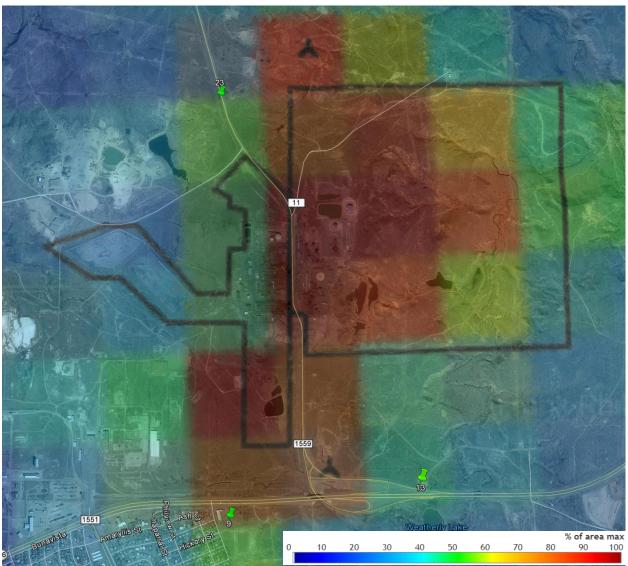


Figure 8: Borger Area CAMx Model Predictions Composite Metric and Viable Site Locations

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Borger that would be expected to characterize the highest SO₂ concentrations from these facilities; therefore, a new site is proposed. The TCEQ focused on complying with the federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach includes utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analyses provided in Figures 6, 7, and 8 suggest that maximum SO₂ concentrations are expected to occur north of Borger. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected north of Borger. Upon completing field assessments north of Borger, the TCEQ determined that necessary power and vehicle access infrastructure to support a monitoring site was nonexistent in this area.

Twenty-three potential sites were identified as shown in Figure 9. Although the highest modeled concentrations are to the north of Borger, this area is undeveloped and lacks power sources. The TCEQ visited more developed areas to the east, for a broader availability of power sources and property owners. A summary of all potential sites is shown in Table 2. Twenty of the identified potential sites (1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, and 22) are not considered viable and are indicated by red pins in Figure 9. Property owners at sites 1, 11, 16, 18, and 22 declined to negotiate site agreements. Sites 2, 3, 4, 12, 15, and 17 were not downwind of Borger and had low SO₂ concentrations according to the modeling analyses. Sites 5, 6, 7, 10, 20, and 21 were not viable due to potential interference from other local SO₂ sources, such as a barbecue restaurant, a gas plant, and gas wells. Site 8, located approximately 1.6 km southwest from the source was prone to flooding. Site 14, located approximately 4.0 km northwest from the source had no available power. Site 19, located approximately 0.5 km northwest from the source, contained an uneven terrain and was prone to flooding. As a result, these potential sites are no longer under consideration.

The three sites with satisfactory logistical and siting characteristics, located in areas anticipated to have peak concentrations, are sites 9, 13, and 23. These site locations are identified with a green pin on the model and satellite image overlays shown in Figures 6, 7, 8, and 9.

• Site 9 is positioned approximately 1.5 km south-southwest of Borger. This site is downwind of Borger when winds flow from the north-northeast (approximately 19% of the time). It is on level ground and has available space and power. This site has trees in the area that would influence final monitor placement. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 75%-80% of maximum concentrations. The property owner is amenable to a site agreement.

- Site 13 is positioned approximately 1.4 km south of Borger. This site is downwind of Borger when winds flow from the north-northwest (approximately 11% of the time). It is on level ground and has available space, power, a site pad, and an existing fence. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 55%-60% of maximum concentrations. A city owned utility building in the area would influence final monitor placement. The property owner is amenable to a site agreement
- Site 23 is positioned approximately 1.6 km northwest of Borger. This site is downwind of Borger when winds flow from the south-southeast (approximately 23% of the time). It is on level ground and has available space and power, as shown in Figure 10. Other areas within a 0.3 km radius were not considered viable due to the uneven terrain and a lack of available power sources. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 65%-70% of maximum concentrations. A site agreement has been negotiated with the property owner.

Recommendation

Due to the close proximity of Sid Richard Carbon, LTD and Orion Engineered Carbons, LLC, the TCEQ proposes one monitoring station for deployment to characterize ambient air quality surrounding these two sources. Based on property owner cooperation, proximity to the source, current facility operations, available emissions data, wind patterns, and modeling analyses, site 23 (see Figures 10 and 11) is the recommended location for placement of a new source-oriented ambient SO₂ monitoring station. This site is indicated by a green pin in Figures 6, 7, 8, 9 and 11. Of the viable sites, site 23 is the only site located downwind of Borger. Therefore, the TCEQ expects that site 23 will receive higher levels of SO₂ concentrations than sites 9 and 13. Site 23 is located in an area with predicted maximum normalized SO₂ concentrations between 65% and 80%. The recommended site has available power, level ground, and meets all federal siting criteria. A site agreement has been negotiated with the property owner.

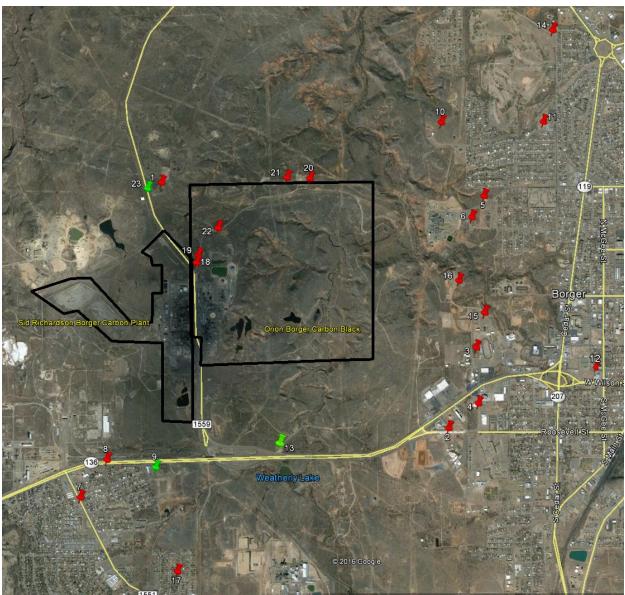


Figure 9: Potential Monitoring Sites for Borger

Table 2: Potential Sites Assessment¹

Site Number	Borger #1	Borger #2	Borger #3
Location ²	35.67678, -101.43972	35.65684, -101.40979	35.66333, -101.40705
Distance from SO ₂ Source ²	1,370 m	2,313 m	2,358 m
Wind Direction	S, SW	S, SW	S, SW
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	No (SE)	No (SE)
Obstructions and Height	None	None	Trees (3 m) Trees (7 m)
Distance from Site to Obstructions	None	None	Trees (10 m NW to dripline) Trees (7m SW to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	Yes	No
Pros	Level groundDownwindHigh SO₂ modeling	Level groundPower available	Level groundPower availableAgreeable property owner
Cons	No powerDifficult accessProperty owner declined	Not downwindLow SO₂ modeling	Not downwindNo powerLow SO₂ modeling
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Borger #4	Borger #5	Borger #6
Location ²	35.65881, -101.40684	35.67554, -101.40624	35.67384, -101.40745
Distance from SO ₂ Source ²	2,468 m	2,661 m	2,625 m
Wind Direction	S, SW	S, SW	S, SW
Grade	<1%	>2%	>1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	No (SE)	Yes (NNE)	Yes (NNE)
Obstructions and Height	Trees (12 m) Building (4 m)	None	Trees (3 m) Trees (5 m)
Distance from Site to Obstructions	Trees (22 m NW to dripline) Building (31 m N)	None	Trees (18 m SW to dripline) Trees (27 m NW to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	No	No
Pros	• Level ground	• Downwind	Level groundDownwind
Cons	 Not downwind No power Low SO₂ modeling 	 No power Possible interferences from local gas plant Slight grade in surrounding area Low SO₂ modeling 	 No power Possible interferences from local gas plant Low SO₂ modeling
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Borger #7	Borger #8	Borger #9
Location	35.65126, -101.44626	35.65430, -101.44365	35.65367, -101.43883
Distance from SO ₂ Source ²	2,010 m	1,587 m	1,449 m
Wind Direction	S, SW	S, SW	S, SW
Grade	<1%	<1%	<1%
Flood Plains	No	Yes	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	No (SW)	No (SW)	No (SW)
Obstructions and Height	Trees (4 m) Trees (6 m)	Trees (9 m)	Trees (10 m)
Distance from Site to Obstructions	Trees (13 m NW to dripline) Trees (18 m W to dripline)	Trees (17 m NE to dripline)	Trees (16 m E to dripline) Trees (6 m S to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Level groundPower available	Level groundPower available	 Level ground Power available Agreeable property owner High SO₂ modeling
Cons	 Not downwind Smoke from local restaurant may create interference Low SO₂ modeling 	 Not downwind Smoke from local restaurant may create interference Flood prone Numerous pipelines underground Low SO₂ modeling 	Not downwind Local obstructions
Viable Site (Yes, No, or Preferred)	No	No	Yes

Site Number	Borger #10	Borger #11	Borger #12
Location	35.68153, -101.41049	35.68155, -101.40035	35.66179, -101.39518
Distance from SO ₂ Source ²	2,740 m	3,799 m	3,805 m
Wind Direction	S, SW	S, SW	S, SW
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NNE)	Yes (NNE)	No (E)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	None	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Level groundDownwindPower available	Level groundDownwindPower available	Level ground Power available
Cons	 Possible interference from local gas plant Low SO₂ modeling 	Property owner declinedLow SO₂ modeling	Not downwindLow SO₂ modeling
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Borger #13	Borger #14	Borger #15
Location	35.65547, -101.42660	35.68896, -101.39941	35.66613, -101.40620
Distance from SO ₂ Source ²	1,390 m	3,967 m	2,440 m
Wind Direction	S, SW	S, SW	S, SW
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	No (S)	Yes (NNE)	No (E)
Obstructions and Height	Building (3 m)	None	None
Distance from Site to Obstructions	Building (8 m E)	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	 Level ground No pad or fence needed Power available Agreeable property owner High SO₂ modeling 	Level groundDownwindAgreeable property owner	Level groundPower availableAgreeable property owner
Cons	Not downwind Local obstructions	No powerLow SO₂ modeling	Not downwindLow SO₂ modeling
Viable Site (Yes, No, or Preferred)	Yes	No	No

Site Number	Borger #16	Borger #17	Borger #18
Location	35.66872, -101.40876	35.64530, -101.43667	35.67016, -101.43480
Distance from SO ₂ Source ²	1,170 m	2,194 m	752 m
Wind Direction	S, SW	S, SW	S, SW
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	No (E)	No (S)	Yes (N)
Obstructions and Height	Trees (3 m)	None	None
Distance from Site to Obstructions	Trees (10 m to dripline)	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Level groundPower available	Level groundPower available	 Level ground Downwind Power available Close proximity to source High SO₂ modeling
Cons	 Not downwind Property owner declined Low SO₂ modeling 	 Not downwind Low SO₂ modeling 	 Property owner declined Numerous pipelines Obstructed by large boulders
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Borger #19	Borger #20	Borger #21
Location	35.67075, -101.43464	35.67697, -101.42357	35.67703, -101.42583
Distance from SO ₂ Source ²	458 m	1,620 m	1,549 m
Wind Direction	S, SW	S, SW	S, SW
Grade	<2%	<1%	<1%
Flood Plains	Yes	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (NE)	Yes (NE)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	None	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	Yes	No
Pros	 Downwind Close proximity to source High SO₂ modeling Agreeable property owner 	Level groundDownwindPower availableAgreeable property owner	 Level ground Downwind Agreeable property owner High SO₂ modeling
Cons	 Property owner declined No power Flood prone High grade in surrounding area 	 Possible interference from local gas well Low SO₂ modeling 	 Possible interference from local gas well No power
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Borger #22	Borger #23
Location	35.67296, -101.43266	35.67613, -101.43967
Distance from SO ₂ Source ²	1,035 m	1,060 m
Wind Direction	S, SW	S, SW
Grade	<1%	<1%
Flood Plains	No	No
Mountain/Valley Winds	None	None
Water Body Within 1,000 m	No	No
Wind Channeling	None	None
Downwind ²	Yes (N)	Yes (NE)
Obstructions and Height	None	None
Distance from Site to Obstructions	None	None
Road/Site Access	Yes	Yes
Electricity Available <18 m	Yes	Yes
Pros	 Level ground Downwind Power available Close proximity to source High SO₂ modeling 	 Level ground Downwind Power available Agreeable property owner High SO₂ modeling
Cons	Property owner declined	• None
Viable Site (Yes, No, or Preferred)	No	Preferred

¹Based on 40 Code of Federal Regulations Part 58 and SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

% - percent

N – north S – south

E – east

W - west

NE – northeast

NNE – north-northeast

NW - northwest

SE - southeast

SW - southwest

m - meter

- number

< - less than

> - greater than

SO₂ – sulfur dioxide

²Based on Google Earth

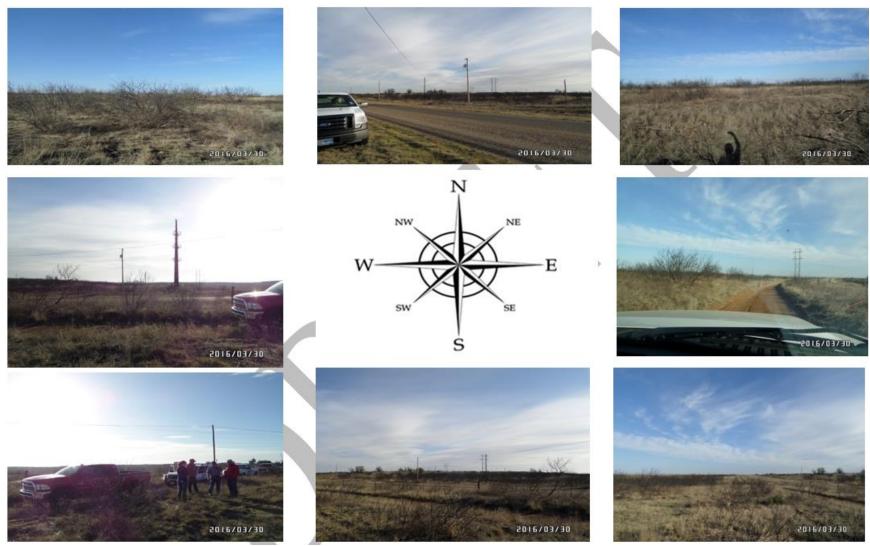


Figure 10: Borger #23 Preferred Site Cardinal Direction Photos

Figure 11: Borger Potential Site #23 Satellite Image References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. Ecoregions of Texas. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Oak Grove Monitor Placement Evaluation

Source Information

- Name: Oak Grove Steam Electric Station (Oak Grove) (Figure 2)
- Owner: Oak Grove Management Company, LLC
- Facility function: electric generation
- Location: 31.18208, -96.48806, Texas Commission on Environmental Quality (TCEQ) Region 9, Robertson County, Texas
- Sulfur dioxide (SO₂) emissions data: 6,950 tons (2013), 7,404 tons (2014)
- Long-term emissions trend: increasing, 205 percent (%) increase from 2010 to 2014
- Emission profile: operational year-round
- Stack height(s): two stacks 137 meters (m) high, currently active
- SO₂ emission controls: none
- Permit related data: New Source Review permit, Permit By Rule permit

Existing Air Monitoring Sites

The TCEQ operates three ambient air monitoring sites within a 100 kilometer (km) radius of Oak Grove. Table 1 details the three closest monitoring sites in order of proximity. Maximum SO₂ ground level concentrations can be expected close to the source. Although three of these locations are currently monitoring SO₂, none of the existing sites are within reasonable proximity to the source to characterize maximum SO₂ concentrations.

Table 1: Air Monitoring Sites Near Oak Grove

Site	Distance from Oak Grove	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2013-2015)
Waco Mazanec	76 km northwest	Yes	7 parts per billion (ppb)
Temple Georgia	90 km west	No	Not applicable
Corsicana Airport	94 km north	Yes	39 ppb

km - kilometer

Settings and Surroundings

The primarily rural area surrounding Oak Grove is located in the northern portion of the Southern Post Oak Savanna ecoregion of the East Central Texas Plains. This area is characterized by a mix of post oak woods, improved pasture, and rangeland (Griffith et al. 2004). The elevation ranges from 156 to 159 m as shown in Figure 1. The area is speckled with inactive oil and gas drilling pad sites with no access to power (Figure 8). No significant changes to the landscape were noted during the reconnaissance as compared to the satellite image shown in Figure 8. Due to the general lack of geographical obstructions and thick elevated vegetation, wind patterns are highly consistent across the Central Texas area. Mountain and valley wind channeling, or other terrain related meteorological impacts, are not expected in this area.

Figure 1: Oak Grove Area Elevation Map

Figure 2: Oak Grove Sulfur Dioxide (SO₂) Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at Hearne Airport, located 35 km southwest of Oak Grove. Figure 4 illustrates the 2012-2014 annual average wind speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on the analysis of the 2012-2014 wind data, the dominant wind flow direction for the area is 115 degrees southeast to 175 degrees south. Approximately 42% of the average area wind flows move from these directions. Over this three year period, calm winds (0-2 miles per hour) occurred on average 28.5% of the time, and wind speeds averaged 7.2 miles per hour (Iowa Environmental Mesonet 2016).

Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

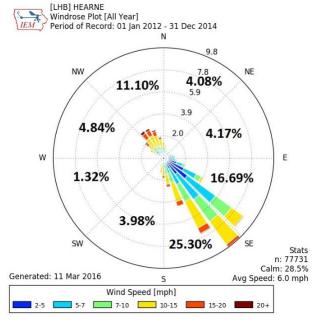


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72 km by 72 km;
- the two kiln stacks were modeled and tracked as individual PiG puffs;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a "+" symbol. Oak Grove's permitted property is outlined in black. Based on this analysis, the highest normalized concentrations, greater than 95% of the predicted off-property maximum, are expected to occur 2.6 km south of the Oak Grove facility; 0.3 km from the southern property line. Approximately 1.7 km northeast of the predicted off-property maximum is the proposed monitor location identified in Figure 5 as site 6. This site is in an area of predicted normalized concentrations within 50% to 55% of the off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the

99th percentile concentration for each grid cell was greater than 75% of the predicted off-property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around Oak Grove. Again, the location of the predicted off-property maximum is indicated by a "+" symbol, and Oak Grove's permitted property is outlined in black. Using this analysis metric, the same area 2.6 km south of the facility scored greater than 95% and would be expected to see the highest frequency of elevated SO₂ concentrations.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with a " λ " symbol, and Oak Grove's permitted property is outlined in black. As with the normalized 99th percentile and normalized frequency metrics, the same area south of the Oak Grove facility scored greater than 95% using the composite metric. Based on the TCEQ's site reconnaissance and outreach to property owners, areas with the highest composite metric score did not yield a viable location for monitor placement as amenable property owners were not located in these areas.

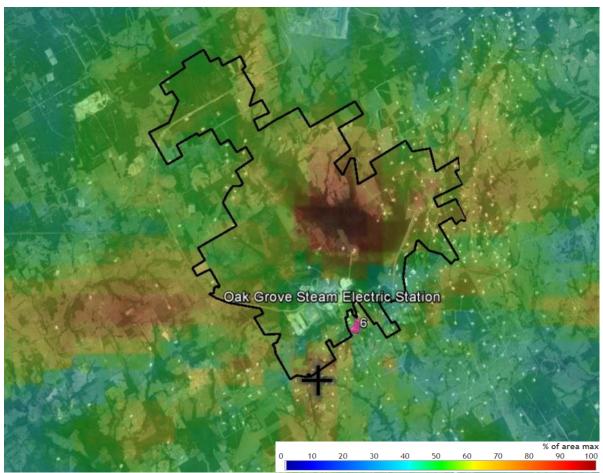


Figure 5: Oak Grove Area CAMx Model Predictions, Normalized Concentrations, and Viable Site Location 6

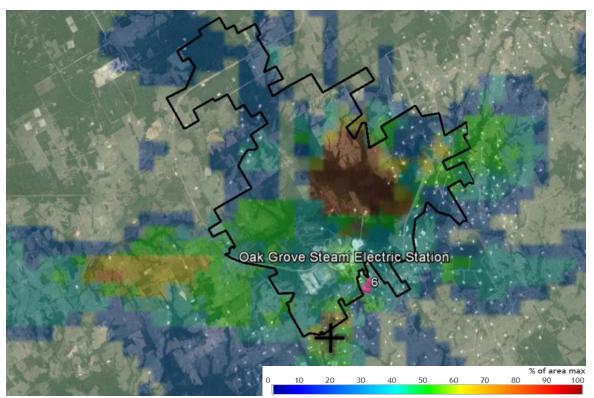


Figure 6: Oak Grove Area CAMx Model Predictions, Normalized Frequency (Number of Days), and Viable Site Location

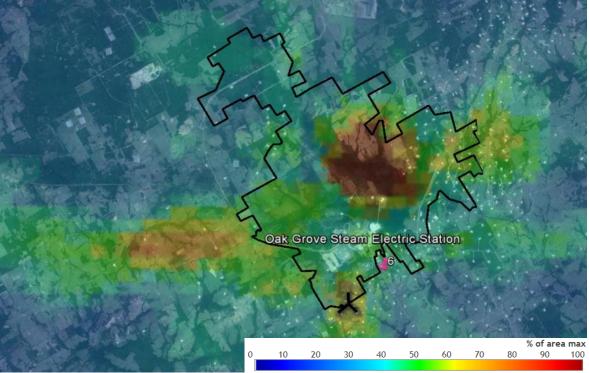


Figure 7: Oak Grove Area CAMx Model Predictions Composite Metric and Viable Site Location

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Oak Grove that would be expected to characterize the highest SO₂ concentrations from this facility, therefore, a new site is proposed. The TCEQ focused on complying with the federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analyses provided in Figures 5, 6, and 7 suggest that off-property maximum SO₂ concentrations are expected to occur south of the Oak Grove facility. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected south of Oak Grove. Figure 8 depicts all potential site locations (yellow, red, and pink pins), their corresponding private property lines (yellow), and the facility property line (black). A total of 25 potential sites were identified as shown in the figure. Upon first contact, property owners at sites 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25 (yellow pins) all refused any monitor placements, or their property was unsuitable. Therefore, no reconnaissance was performed in these locations, and they do not appear in Table 2. More detailed reconnaissance was performed at all other potential sites (red and pink pins). Six of the identified potential sites (1, 2, 3, 4, 5, and 8) are not considered viable; they are indicated by red pins. Site 1 is in an area with restricted access and the property owner was unresponsive. Property owners at sites 2, 3, and 4 were unwilling due to the obstruction a site would create. Site 5 is not considered viable due to lack of power on the property. After consideration, the property owner of Site 8 declined an air monitoring station on the property. As a result, these potential sites are no longer under consideration.

The one site with satisfactory logistical and siting characteristics is site 6. Site 6 is located in an area anticipated to experience elevated SO₂ concentrations and is indicated by a pink pin in Figures 5, 6, 7, and 8. Site 6 is positioned approximately 1.48 km south-southeast of the Oak Grove facility. This site is downwind of the source when winds are from the northwest, 15.9% of the year on average (see Figure 4). The site offers level ground, adequate space, available power, and is close to the source (see section "Recommendation" and Table 2), which is a benefit during calm conditions. The normalized 99th percentile concentration metric analysis predicted area concentrations in this area to be 45-50% of the maximum concentrations. A site agreement has been negotiated with the property owner.

Recommendation

Based on current facility operations, available emission data, wind patterns, logistics, and modeling analyses, site 6 (Figures 9 and 10) is the recommended location for placement of a new source-oriented ambient SO_2 monitoring station. The most influential factors constraining site placement for Oak Grove were averse property owners and logistics (e.g., property access and electricity). Property owners in areas where modeling predicted the highest concentrations (sites 7, 8, 9, 10, 11, and 16) all declined to negotiate site agreements. Additional locations were considered based on wind rose data but were either logistically unsuitable or property owners declined (sites 1, 2, 3, 4 and 5).

Historical meteorological data from 2012-2014 (Figure 4) show the area around site 6 experiences calm conditions an average of 28.5% of the year and is downwind of Oak Grove during northwesterly winds 15.9% of the year. Combined, calm or northwesterly wind conditions occurred an average of 44.4% annually, a greater percentage of time than prevailing wind patterns (42%). Site 6 is the closest viable location to the source (1.4 km) and the predicted off-property maximum normalized SO₂ concentrations with available power, adequate space, level ground, and meets all federal siting criteria. A site agreement has been negotiated with the property owner.

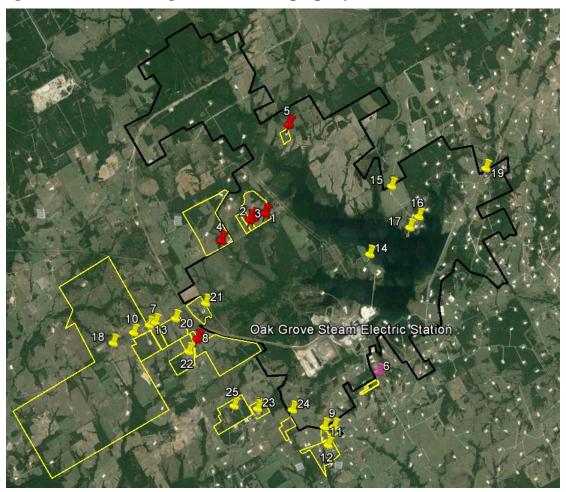


Figure 8: Potential Monitoring Sites for Oak Grove

Table 2: Potential Sites Assessment¹

Site Number	Oak Grove #1	Oak Grove #2	Oak Grove #3
Location ²	31.20789, -96.51338	31.20619, -96.51809	31.20628, -96.51869
Distance from SO ₂ Source ²	3,728 m	3,842 m	3,885 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; reservoir (E)	None	None
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Trees (20 m)	Trees (4 m, 30 m)	Trees (4 m, 30 m)
Distance from Site to Obstructions	Trees (30 m E, SW)	Trees (23 m E, 64 m SE, 28-50 m S, 8 m SW)	Trees (23 m E, 64 m SE, 28-50 m S, 8 m SW)
Road/Site Access	No	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	Level groundPower availableDownwind	Level ground Downwind	Level groundPower availableSpace availableDownwind
Cons	Unresponsive property ownerNo site accessRequires new road construction	 Property owner declined Requires work to access electricity Local obstructions 	Property owner declinedLocal obstructions
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Oak Grove #4	Oak Grove #5	Oak Grove #6
Location ²	31.20115,	31.22970,	31.16895,
	-96.52689	-96.50714	-96.48191
Distance from SO ₂	4,165 m	5,570 m	1,483 m
Source ²			
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	None	Yes; lake (S)	Yes; lake (N)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	No (SSE)
Obstructions and Height	Trees (10 m, 15 m)	Trees (6 m, 7 m, 10 m)	Trees (5 m, 12 m)
Distance from Site to Obstructions	Trees (36 m S, 46 m SE, 70 m E)	Trees (30 m W, E, NNE) Tanks (38 m SE)	Trees (12 m W, 40 m N)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	No	Yes
Pros	Level groundPower availableDownwindSpace available	Level groundDownwind	 Level ground Power available Space available Strong cell phone signal Agreeable property owner
Cons	Property owner declined	Power unavailableExisting oil and gas site	Not downwind
Viable Site (Yes, No, or Preferred)	No	No	Preferred

	T
Site Number	Oak Grove #8
Location ²	31.17705,
	-96.53370
Distance from SO ₂	4,383 m
Source ²	
Wind Direction	S, SE
Grade	<1%
Flood Plains	No
Mountain/Valley Winds	None
Water Body Within 1,000 m	None
Wind Channeling	None
Downwind ²	No (W)
Obstructions and	Trees (12 m)
Height	= (2,1 2=)
Distance from Site	Trees (34 m SE)
to Obstructions	Vaa
Road/Site Access	Yes
Electricity	No
Available <18 m	
Pros	Level ground
	Power available Space Available
	Space Available
Cons	Property owner
	declined
Viable Cite (Vec	Not downwind
Viable Site (Yes,	No
No, or Preferred) 1Based on 40 Code of Federa	l Degulations Part FO CO

¹Based on 40 Code of Federal Regulations Part 58 and SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

E – east

m – meter N – north

NE – northeast

NW - northwest

S – south

SE – southeast

 SO_2 – sulfur dioxide SW – southwest

W - west

> - greater than

< - less than

- number

% - percent

²Based on Google Earth

Figure 9: Oak Grove Potential Site #6 Cardinal Direction Photos

Figure 10: Oak Grove Potential Site #6 Satellite Image

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. *Ecoregions of Texas*. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS

Orion Echo Carbon Black Plant Monitor Placement Evaluation

Source Information

- Name: Orion Echo Carbon Black Plant (Orion Echo) (Figure 2)
- Owner: Orion Engineered Carbons, Limited Liability Company (LLC)
- Facility function: chemical manufacturing
- Location: 30.15245, -93.72090, Texas Commission on Environmental Quality (TCEQ) Region 10, Orange County, Texas
- Sulfur dioxide (SO₂) emission data: 4,132 tons (2013), 4,255 tons (2014)
- Long-term emissions trend: decreasing, 23 percent (%) decrease from 2004 through 2014
- Emission profile: operational year-round
- Stack height(s): 10 stacks over 10 tons per year, 31-50 meters (m) high, with 11 currently active sources
- SO₂ emission controls in place: none
- Permit related data: Federal Operating Permit, Prevention of Significant Deterioration (PSD) permit #PSDTX627M2

Existing Air Monitoring Sites

The TCEQ operates four ambient air monitoring sites within a 30 kilometer (km) radius of Orion Echo. Table 1 details the four closest monitoring sites in order of proximity. Maximum SO₂ ground level concentrations can be expected within close proximity to the source. None of the existing sites monitor for SO₂, and none are positioned downwind or within reasonable proximity to the source to characterize maximum SO₂ concentrations.

Table 1: Air Monitoring Sites Near Orion Echo

Site	Distance From Orion Echo	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2012-2015)
West Orange	8.3 km southwest	No	Not applicable
SETRPC 42	14.3 km northwest	No	Not applicable
Mauriceville			
Groves	27 km southwest	No	Not applicable
Port Neches Avenue L	29 km southwest	No	Not applicable

km - kilometer

SETRPC - South East Texas Regional Planning Commission

Settings and Surroundings

The Texas Gulf Coast includes the relatively flat Gulf Coastal Plains as shown in Figure 1. The prairies transition to the Interior Coastal Plains just west of Corpus Christi, Houston, and Beaumont-Port Arthur. These plains reach a maximum elevation of 800 feet and are marked by more forested vegetation and river valleys (Wermund 1996). The area surrounding Orion Echo contains dense forests and swampland. No significant changes to the landscape were noted during the reconnaissance as compared to the satellite view in Figure 8. Mountain and valley wind channeling or other terrain related meteorological impacts are not expected in this area.

The Temple-Inland Paper Mill (Temple-Inland) located approximately 7 km north-northwest of Orion Echo, has the potential to influence SO₂ concentrations in the Orion Echo area under certain meteorological conditions. Temple-Inland's SO₂ emissions were reported as 1,756 tons in 2014. Due to the site's location and the area's southeasterly wind flow, it is anticipated that Temple-Inland could impact SO₂ concentrations in the Orion Echo area when winds are from the northwest (approximately 7% of the time according to the Orange County Airport wind rose data; Figures 3 and 4).

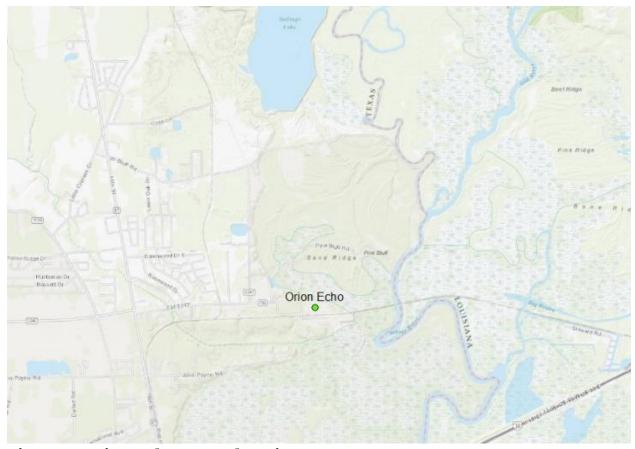


Figure 1: Orion Echo Area Elevation Map

Figure 2: Orion Sulfur Dioxide (SO₂) Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Orange County Airport, located 12 km southwest of Orion Echo. Figure 4 illustrates the 2012-2014 annual average wind speed and direction. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on analysis of the 2012-2014 wind data, the dominant wind flow direction is 135 degrees southeast to 205 degrees south-southeast. Approximately 26% of average annual wind flows are from the dominant wind flow direction. Over this three year period, calm winds (0-2 miles per hour) occurred 27% of the time, and wind speeds averaged 5.4 miles per hour (Iowa Environmental Mesonet 2016).

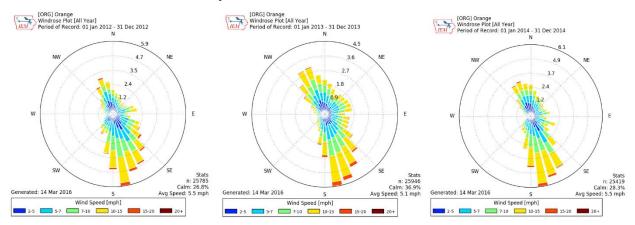


Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

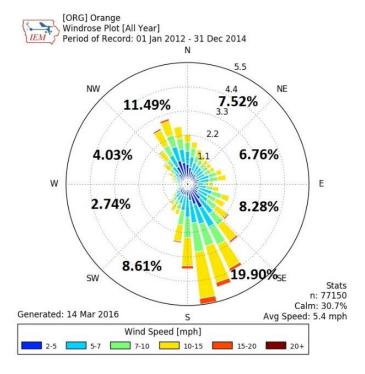


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-m PiG sampling grid centered on the source spatially covering 72 km by 72 km;
- the kiln stacks were modeled and tracked as individual PiG puffs;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a "+" symbol. Orion Echo's permitted property is outlined in black. Based on this analysis, the highest normalized concentrations, greater than 80% of the predicted off-property maximum, are expected to occur in the area approximately 0.8 km to the north of Orion Echo in a densely forested region. Swamps and dense vegetation make the area directly to the north of Orion Echo an unsuitable location to deploy an air monitoring station. The proposed monitor location identified within Figure 5 as site 21 is in an area of 75%-85% of predicted normalized off-property maximum concentrations. Site 21 is located 0.9 km southwest of the predicted off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the

99th percentile concentration for each grid cell was greater than 75% of the predicted off-property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around Orion Echo. Again, the location of the predicted off-property maximum is indicated by a "+" symbol, and Orion Echo permitted property is outlined in black. Using this analysis metric, areas directly to the north of Orion Echo scored greater than 80% and would be expected to see the highest frequency of elevated SO₂ concentrations. This area, within Orion Echo property along with areas directly to the north, is not viable due to dense vegetation and swamps.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with a " λ " symbol, and Orion Echo permitted property is outlined in black. As with the normalized 99th percentile and normalized frequency metrics, areas within Orion Echo permitted property and areas directly to the north scored greater than 80% using the composite metric. Areas with a high composite metric were not viable due to dense vegetation and swamps.

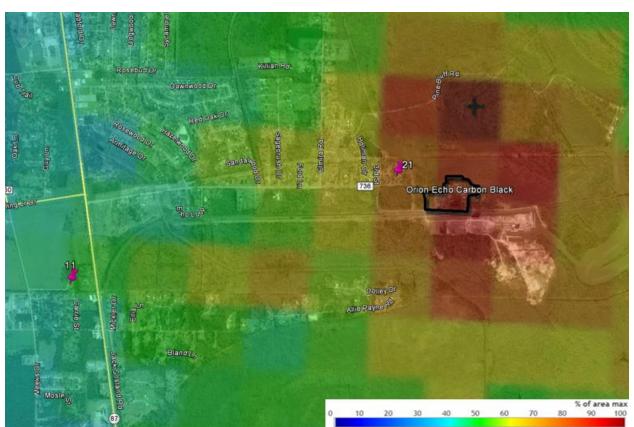


Figure 5: Orion Echo Area CAMx Model Predictions, Normalized Concentrations, and Viable Site Locations

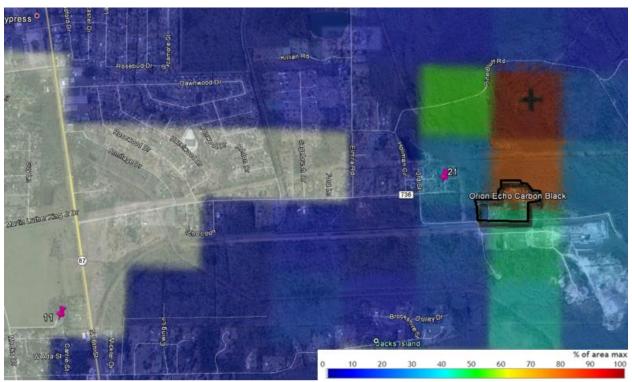


Figure 6: Orion Echo Area CAMx Model Predictions, Normalized Frequency (number of days), and Viable Site Locations

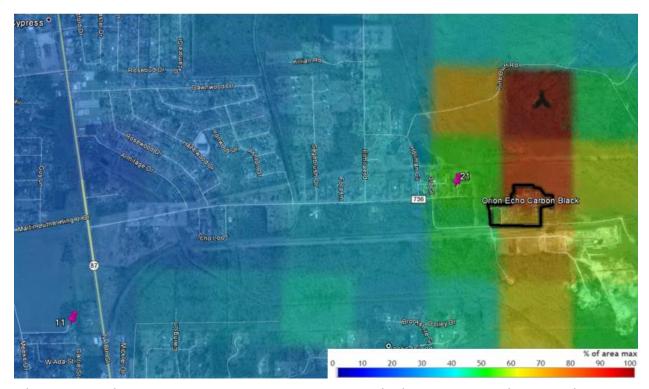


Figure 7: Orion Echo Area CAMx Model Predictions Composite Metric and Viable Site Locations

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Orion Echo that would be expected to characterize SO₂ concentrations from this facility; therefore a new site is proposed. The TCEQ focused on complying with the federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analyses provided in Figures 5, 6, and 7 suggests that maximum SO₂ concentrations are expected to occur within the Orion Echo permitted area and the area directly north and northeast of Orion Echo. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected directly north of Orion Echo over a densely forested region. The TCEQ determined that the necessary space and stable ground to support a monitoring site in this area was nonexistent.

Twenty-one potential sites were identified as shown in Figure 8. A summary of all potential sites is shown in Table 2. The TCEQ was unable to explore regions to the north and east of Orion Echo due to an expansive forest and swamp terrain that encompasses the entire area. Nineteen of the potential sites (sites 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, and 20) are not considered viable and are indicated by red pins in Figure 8. Flood plains or obstructions made sites 1, 2, 3, 5, 12, 13, 17, and 20 unsuitable for monitor placement. Property owners at sites 4, 7, 8, 9, 10, 14, 16, 18, and 19 either were unwilling to negotiate a site agreement or were unresponsive. Site 6, located approximately 2.8 km from the source, contained numerous underground pipelines and associated easements. Site 15, located approximately 3.2 km from the source, is currently for sale by the owner. As a result, these sites are no longer under consideration.

The two sites with amenable property owners and satisfactory logistical and siting characteristics are sites 11 and 21. These site locations are identified with a pink pin on the model and satellite image overlays in Figures 5, 6, 7, and 8.

- Site 11 is positioned approximately 3.2 km southwest of Orion Echo. This site is downwind of Orion Echo approximately 7% of the time when wind flows from the northeast. The area is level and has available space and power. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 45%-55% of maximum concentrations. The property owner is amenable to a site agreement
- Site 21 is positioned approximately 0.5 km northwest of Orion Echo. This site is downwind of Orion Echo approximately 20% of the time when winds flow from the south-southeast. The area is level and has available space and power. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 70%-80% of maximum concentrations. A site agreement has been negotiated with the property owner.

Recommendation

Based on current facility operations, available emissions data, wind patterns, and modeling analysis, site 21 (see Figures 9 and 10) is the recommended location for placement of a new source-oriented ambient SO₂ monitoring station. Site 21 is indicated by a pink pin in Figures 5, 6, 7, and 8. Site 21 is positioned downwind of Orion Echo and is expected to monitor a greater frequency of maximum concentrations than site 11. Located in an area with predicted maximum normalized SO₂ concentrations between 70% and 80%, site 21 has available power, level ground, and meets all federal siting criteria. A site agreement has been negotiated with the property owner.

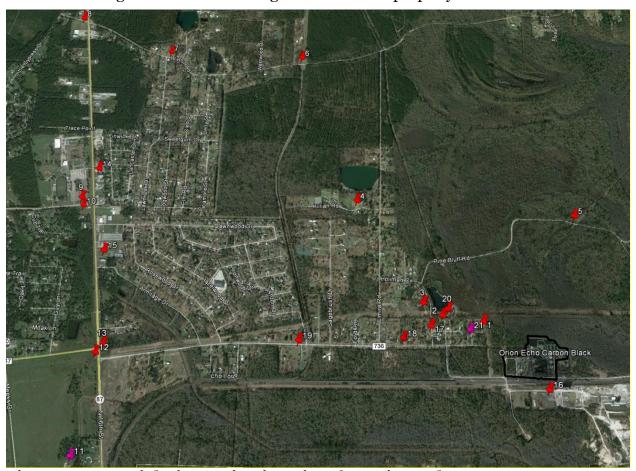


Figure 8: Potential Air Monitoring Sites for Orion Echo

Table 2: Potential Sites Assessment¹

Site Number	Orion Echo #1	Orion Echo #2	Orion Echo #3
Location ²	30.15395, -93.72501	30.15459, -93.72767	30.15491, -93.72866
Distance from SO ₂ Source ²	438 m	709 m	870 m
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	>2%	<1%	>2%
Flood Plains	Yes	No	Yes
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; pond (NW)	Yes; pond (N)	Yes; ponds (NE, NW)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Tree (17-20 m)	Trees (20 m)	Trees (20 m)
Distance from Site to Obstructions	Tree (30 m S to dripline)	Trees (7 m N to dripline), Trees (7 m W to dripline), Trees 7 m S to dripline)	Trees (30 m to dripline in all directions)
Road/Site Access	Yes	Yes	No
Electricity Available <18 m	No	No	No
Pros	 Downwind Space available Close proximity to source High SO₂ modeling 	 Downwind Space available Level ground High SO₂ modeling 	 Downwind High SO₂ modeling
Cons	Uneven terrainNo power availableFlood prone	Numerous obstructionsNo power available	 Flood prone Numerous obstructions No power available Uneven terrain No access
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Orion Echo #4	Orion Echo #5	Orion Echo #6
Location ²	30.16163,	30.16137,	30.17233,
	-93.73438	-93.71763	-93.73891
Distance from	1,670 m	1,050 m	2,830 m
SO ₂ Source ²			
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	<1%	<1%	>2%
Flood Plains	No	Yes	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; ponds (N, SW, SE)	No	Yes; ponds (W, NW)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	No (NNE)	Yes (NW)
Obstructions and Height	Trees (10-13 m)	Trees (25 m)	Trees (20 m)
Distance from Site to Obstructions	Tree (20 m SE from dripline), Trees (15 m SW from dripline)	Trees (30 m W to dripline), Trees (30 m W to dripline), Trees (30 m E to dripline)	Trees (28 m NW, 47 m SE)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	DownwindLevel groundPower available	 Level ground Power available High SO₂ modeling 	DownwindSpace availableLevel groundPower available
Cons	 Unresponsive property owner Low SO₂ modeling Numerous obstructions 	Flood proneNot downwindNumerous obstructions	 Existing underground pipelines Low SO₂ modeling
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Orion Echo #7	Orion Echo #8	Orion Echo #9
Location ²	30.17244, -93.74998	30.17496, -93.75784	30.16119, -93.75614
Distance from SO ₂ Source ²	3,570 m	4,320 m	3,470 m
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; ponds (NE, E)	Yes; pond (E)	Yes; pond (S)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (NW)	Yes (NW)
Obstructions and Height	Trees (13 m)	None	None
Distance from Site to Obstructions	Trees (23 m W to dripline), Trees (23 m E to dripline)	NA	NA
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	DownwindLevel groundPower available	DownwindLevel groundPower available	DownwindLevel groundPower available
Cons	 Property owner declined Numerous obstructions Low SO₂ modeling 	 Property owner declined Low SO₂ modeling 	 Property owner declined No space available Low SO₂ modeling
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Orion Echo #10	Orion Echo #11	Orion Echo #12
Location ²	30.16076,	30.14519,	30.15128,
	-93.75513	-93.75350	-93.75278
Distance from	3,435 m	3,244 m	3,076 m
SO ₂ Source ²			
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	<1%	<1%	>1%
Flood Plains	No	No	Yes
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; pond (S)	Yes; pond (N)	Yes; pond (NW)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	No (SW)	No (W)
Obstructions and Height	None	Building (5 m), Building (5 m)	None
Distance from Site to Obstructions	NA	Building (15 m E), Building (15 m E)	NA
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	DownwindSpace availableLevel groundPower available	Space availableLevel groundPower availableAgreeable property owner	Power available
Cons	 Property owner declined Low SO₂ modeling 	 Not downwind Low SO₂ modeling Numerous obstructions 	 Slight grade in surrounding area Not downwind Existing underground pipelines Flood prone Low SO₂ modeling
Viable Site (yes, no, or preferred)	No	Yes	No

Site Number	Orion Echo #13	Orion Echo #14	Orion Echo #15
Location ²	30.15178,	30.16333,	30.15774
	-93.75232	-93.75449	-93.75321
Distance from	3,028 m	3,452 m	3,168 m
SO ₂ Source ²			
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	>1%	<1%	<1%
Flood Plains	Yes	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; pond (NW)	Yes; pond (SW)	Yes; ponds (W, SW)
Wind Channeling	None	None	None
Downwind ²	No (W)	Yes (NW)	Yes (NW)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	NA	NA	NA
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Power available	DownwindLevel groundPower available	DownwindLevel groundPower availableSpace available
Cons	 Slight grade in surrounding area Not downwind Existing underground pipelines Flood prone Low SO₂ modeling 	 Property owner declined Low SO₂ modeling 	 Property is for sale Low SO₂ modeling
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Orion Echo #16	Orion Echo #17	Orion Echo #18
Location ²	30.15029,	30.15383,	30.15298,
	-93.72044	-93.72877	-93.7307 ⁷
Distance from	242 m	775 m	953 m
SO ₂ Source ²			
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; pond (NW), river (E)	Yes; ponds (N)	Yes; ponds (NE)
Wind Channeling	None	None	None
Downwind ²	No (S)	Yes (NW)	No (W)
Obstructions and Height	None	Trees (20 m)	Tree (15 m)
Distance from Site to Obstructions	N/A	Tree (27 m NW to dripline), Tree (45 m W to dripline)	Tree 19 m (NE to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	Yes	No
Pros	 Space available Level ground Close proximity to source High SO₂ modeling 	 Downwind Space available Level ground Close proximity to source Power available 	Level groundClose to sourceEasy site access
Cons	 No power available Not downwind Potential interference from railroad Property owner declined 	 Numerous obstructions Low SO₂ modeling 	 Property owner declined Not downwind No space available No power available Numerous obstructions Low SO₂ modeling
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Orion Echo #19	Orion Echo #20	Orion Echo #21
Location ²	30.15255,	30.15495,	30.15369,
	-93.73833	-93.72751	-93.72592
Distance from	1,680 m	698 m	503 m
SO ₂ Source ²			
Wind Direction	S, SE (dominant)	S, SE (dominant)	S, SE (dominant)
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; ponds (N, S)	Yes; lake (N)	Yes; ponds (NW, E)
Wind Channeling	None	None	None
Downwind ²	No (W)	Yes (NW)	Yes (NW)
Obstructions and Height	None	Trees (10 m)	Trees (10 m)
Distance from Site to Obstructions	NA	Trees (10 m N to dripline), Trees (10 m W to dripline)	Trees (15 m N to dripline), Tree (18 m S to dripline), Trees (23 m W to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	Level groundPower available	 Downwind Level ground Power available High SO₂ modeling 	 Downwind Level ground Power available Close to source High SO₂ modeling
Cons	 Unresponsive property owner Low SO₂ modeling Not downwind 	Existing underground pipelinesNumerous obstructions	Numerous obstructions
Viable Site (yes, no, or preferred)	No	No NAMOS Posignations Sour	Preferred

 $^{{}^{\}mathrm{I}}$ Based on 40 Code of Federal Regulations Part 58 and SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

% - percent

N - north

 S – south

E – east

W - west

NA - not applicable

NNE – north-northeast

NW - northwest

SE – southeast

SW - southwest

m - meter

- number

< - less than

> - greater than

SO₂ – sulfur dioxide

²Based on Google Earth

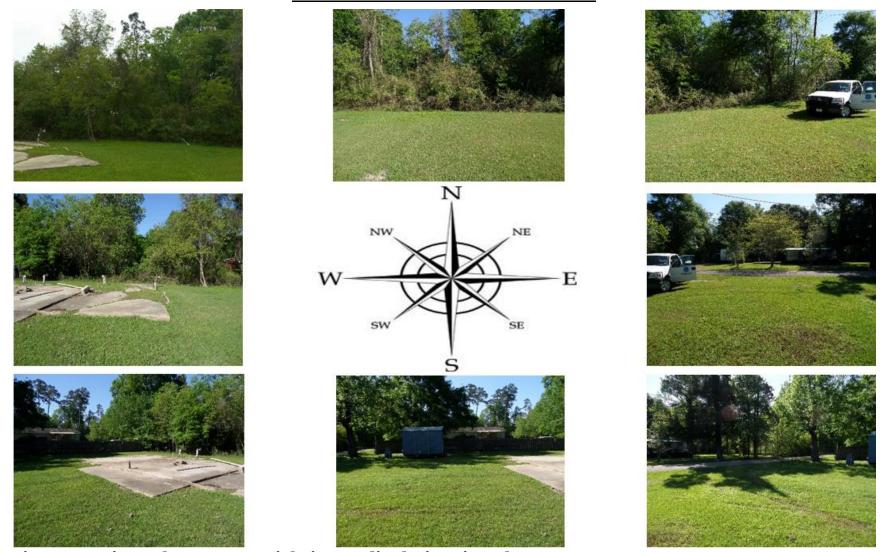


Figure 9: Orion Echo #21 Potential Site Cardinal Direction Photos

Figure 10: Orion Echo #21 Potential Site Location

References

Wermund, E.G., *Physiographic Map of Texas*, The University of Texas at Austin Bureau of Economic Geology, 1996.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Harrington Station Power Plant Monitor Placement Evaluation

Source Information

- Name: Harrington Station Power Plant (Harrington Station) (Figure 2)
- Owner: Southwestern Public Service Company
- Facility function: electric generation
- Location: 35.29920, -101.74700, Texas Commission on Environmental Quality (TCEQ) Region 1, Potter County, Texas
- Sulfur dioxide (SO₂) emissions data: 15,349 tons (2012), 14,309 tons (2013), 15,465 tons (2014)
- Long-term emissions trend: decreasing, 44 percent (%) decrease from 2004 through 2014
- Emission profile: operational year-round
- Stack height(s): three stacks; stack 1-1, 76 meters (m), stacks 2-1 and 3-1, 91 m
- SO₂ emission controls: none
- Permit related data: Federal Operating Permit, Prevention of Significant Deterioration (PSD) permit #PSDTX017M2 and #PSDTX631M1

Existing Air Monitoring Sites

The TCEQ operates six ambient air monitoring sites within a 25 kilometer (km) radius of Harrington Station. Table 1 details the sites in order of proximity. Maximum SO₂ ground level concentrations can be expected within close proximity to the source. One of these locations is currently monitoring SO₂ (Amarillo 24th Avenue) and has a design value below the current SO₂ standard of 75 parts per billion (ppb). None of the six sites around Harrington Station are positioned downwind or within reasonable proximity to the source to characterize maximum SO₂ concentrations.

Table 1: Air Monitoring Sites near Harrington Station

Site	Distance from Harrington Station	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2013-2015)
Amarillo SH 136	3.5 km southwest	No	Not applicable
Amarillo 24 th Avenue	7.8 km southwest	Yes	22 parts per billion
Pantex 4	15 km northeast	No	Not applicable
Pantex 5	16 km northeast	No	Not applicable
Amarillo A & M	18 km southwest	No	Not applicable
Pantex 7	19 km north	No	Not applicable

km - kilometer

& - and

SH - state highway

Settings and Surroundings

The rural and suburban areas surrounding Harrington Station consist of the Llano Estacado ecoregion of the high prairies of north Texas. This area is characterized by level, treeless expanses and arid conditions (Griffith et al. 2004). The elevation ranges from 1066 to 1095 meters as shown in Figure 1. Several small bodies of water surround Harrington Station, with river channels running to the west. No significant changes to the landscape were noted during the reconnaissance as compared to the satellite image shown in Figure 8. Mountain and valley wind channeling or other terrain related meteorological impacts are not expected in this area.

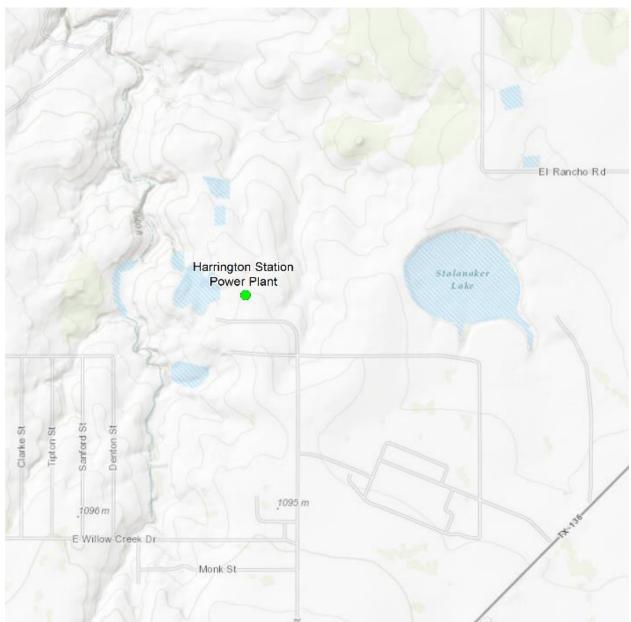


Figure 1: Harrington Station Area Elevation Map

Figure 2: Harrington Station Sulfur Dioxide (SO₂) Stacks and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Amarillo Airport located 8 km southeast of Harrington Station. Figure 4 illustrates the 2012-2014 annual average wind speed and direction. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on analysis of the 2012-21014 wind data, the dominant wind flow direction is 135 degrees southeast to 235 degrees southwest. Approximately 45% of average annual wind flows are from the dominant wind flow direction. Calm winds (0-2 miles per hour) occurred on average 3.9% of the time, and wind speeds averaged 13.3 miles per hour (Iowa Environmental Mesonet 2016).

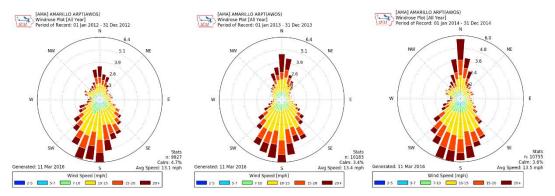


Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

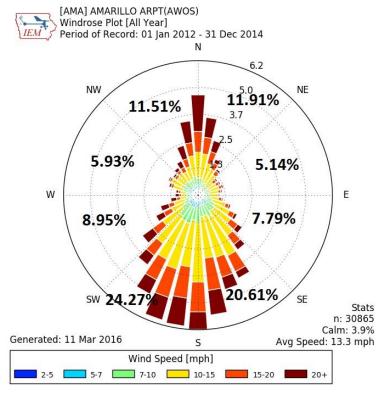


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72 km by 72 km;
- the three kiln stacks were modeled and tracked as individual PiG puffs;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a "+" symbol. Harrington Station's permitted property is outlined in black. Based on this analysis, the highest normalized concentrations, greater than 95% of the predicted off-property maximum, are expected 2.5 km north-northeast of Harrington Station's permitted property. This area is located on a water retention and overflow area that is not viable for monitor placement based on site reconnaissance and property owner discussions. However, the proposed monitor location identified in Figure 5 as site 1 is in an area of predicted normalized concentrations within 85% to 90% of the off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-

property maximum concentration by the number of days the off-property maximum was predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around the Harrington Station facility. Again, the location of the predicted off-property maximum is indicated by a "+" symbol, and Harrington Station's permitted property is outlined in black. Using this analysis metric, the area 2.3 km to the north of the Harrington Station facility scored greater than 90% and would be expected to see the highest frequency of elevated SO₂ concentrations. This area is not viable for monitor placement due to lack of power and public access.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with a " λ " symbol, and Harrington Station's permitted property is outlined in black. Similar to the normalized frequency metric, the area 2.3 km north of Harrington Station scored greater than 90% using the composite metric. However, based on the TCEQ's site reconnaissance, areas with the highest composite metric score did not yield a viable location for monitor placement.

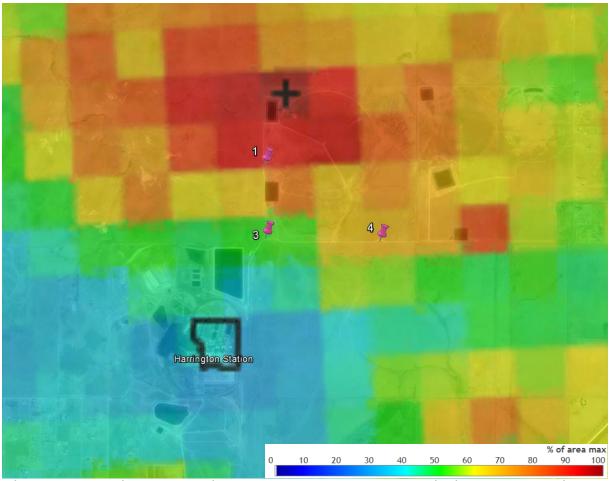


Figure 5: Harrington Station Area CAMx Model Predictions, Normalized 99th Percentile Concentrations, and Viable Site Locations (1, 3, 4)

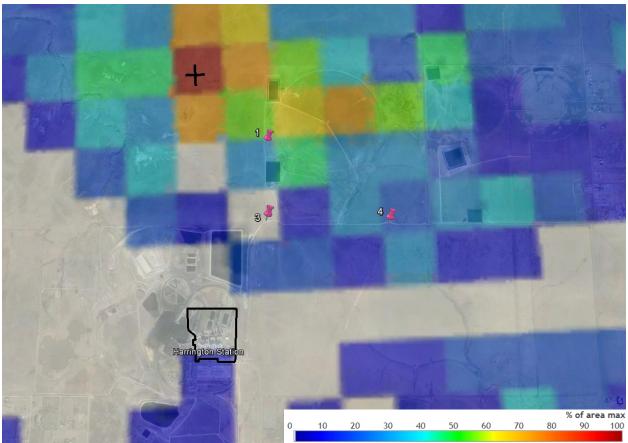


Figure 6: Harrington Station Area CAMx Model Predictions, Normalized Frequency (Number of Days), and Viable Site Locations (1, 3, 4)

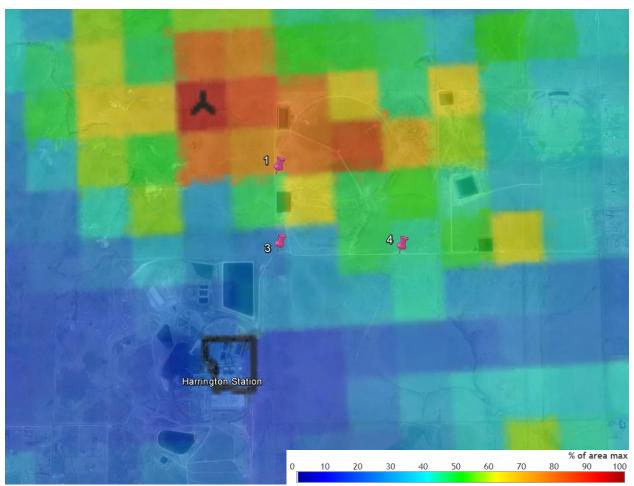


Figure 7: Harrington Station Area CAMx Model Predictions Composite Metric and Viable Site Locations (1, 3, 4)

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Harrington Station that would be expected to characterize the highest SO₂ concentrations from this facility; therefore a new site is proposed. The TCEQ focused on complying with the federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analyses provided in Figures 5, 6, and 7 suggest that maximum SO₂ concentrations are expected to occur north-northeast of Harrington Station. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 95% of the off-property maximum is expected directly north of the Harrington Station facility. Figure 8 depicts all potential site locations (red and pink pins), their corresponding property lines (blue), Harrington Station's permitted property line (black), and Stalanaker Lake (purple). The area in the figure outlined in yellow is prone to flooding, the area outlined in white has no public access, and the area outlined in orange has no power. The property surrounding Stalanaker Lake has been leased for agricultural use. These areas are nonviable for monitor placement. Areas to the west and north of the blue property line containing sites 1, 2, and 3 have no power and no public access; these areas are nonviable monitor site locations.

Six potential sites were identified north-northeast and northeast of Harrington Station as shown in Figure 8. Three of the identified potential sites (2, 5, and 6) are not considered viable and are indicated by red pins. Site 2 has uneven terrain. Site 5 has uneven terrain and is prone to flooding. After consideration, the property owner of site 6 declined an air monitoring station on the property. As a result, these potential sites are no longer under consideration.

The three sites with satisfactory logistical and siting characteristics, located in areas anticipated to have peak concentrations, are sites 1, 3, and 4. These sites are located with a pink pin on the model and satellite image overlays shown in figures 5, 6, 7, and 8.

- Site 1 is positioned north-northeast and approximately 1.9 km from Harrington Station. This potential site is downwind and provides level ground, adequate space, and available power. This location also rests on top of a hill where up-slope air flow is maximized. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 85%-90% of the maximum concentrations. A site agreement has been negotiated with the property owner.
- Site 3 is located north-northeast of Harrington Station. This site is approximately 1.2 km from the source and is downwind. The site has adequate space and available power. However, this site is prone to flooding and is located in a low-lying area. Normalized 99th percentile concentration metric analysis predicted this area to be 45%-50% of the maximum concentrations.
- Site 4 is located northeast and approximately 2.0 km from Harrington Station.
 The site offers level ground, available space, and power. The normalized 99th

percentile concentration metric analysis predicted concentrations in this area are 60% of the maximum concentrations.

Recommendation

Based on property owner cooperation, current facility operations, available emission data, wind patterns, logistics, and modeling analyses, site 1 (Figures 9 and 10) is the recommended location for placement of a new source-oriented ambient SO₂ monitoring station. Although site 1 and 4 have comparable siting logistics, historical meteorological data from 2012-14 (Figure 4) indicates site 4 averaged winds from the source approximately 9% of the year, compared to 24% for site 1.

Site 1 is the closest viable site to the off-property maximums for all three modeling analyses performed. Despite the proximity of site 3 to the source and similar winds to site 1, geographic influences (elevation) contributed to site 3 receiving the lowest scores on each modeling analysis. Site 3 is also prone to flooding. Based on historical meteorological data and modeling, site 1 is expected to characterize maximum off-property SO₂ concentrations and meets all logistical and federal siting criteria. A site agreement has been negotiated with the property owner.

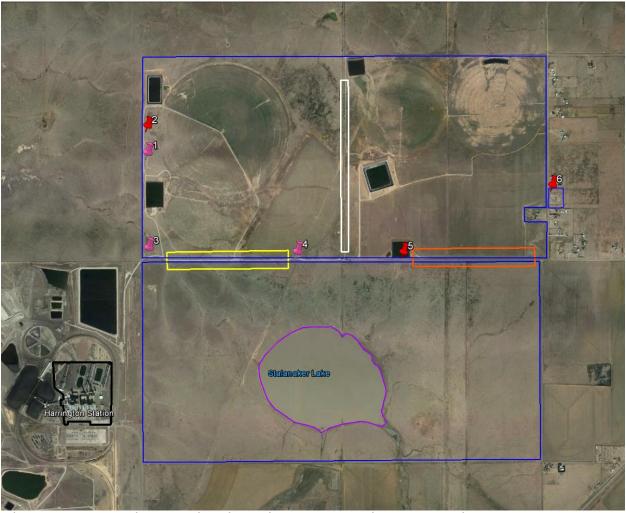


Figure 8: Potential Monitoring Sites for Harrington Station

Table 2: Potential Sites Assessment¹

Cita Namela	Haminatan 44	11ai.a at #3	Haminatar #2
Site Number	Harrington #1	Harrington #2	Harrington #3
Location ²	35.31629,	35.31833,	35.30942,
	-101.74176	-101.74171	-101.74168
Distance from	1,959 m	2,181 m	1,235 m
SO ₂ Source ²	OW 0 05	0144 0 05	000 000
Wind Direction	SW, S, SE	SW, S, SE	SW, S, SE
Grade	<1%	>1%	<1%
Flood Plains	No	No	Yes
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	No	No	No
Wind Channeling	None	None	None
Downwind ²	Yes (NNE)	Yes (NNE)	Yes (NNE)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	NA	NA	NA
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	 Downwind Power available Space available Level ground Agreeable property owner Accessible High SO₂ modeling 	 Downwind Power available Space available Accessible High SO₂ modeling 	 Downwind Power available Space available Level ground Close to source Accessible
Cons	• None	Uneven terrain	Flood proneLow SO₂ modeling
Viable Site (Yes, No, or Preferred)	Preferred	No	Yes

Site Number	Harrington #4	Harrington #5	Harrington #6
Location ²	35.30891,	35.30916,	35.31394,
	-101.72851	-101.71912	-101.70598
Distance from SO ₂ Source ²	1,995 m	2,762 m	4,067 m
Wind Direction	SW, S, SE	SW, S, SE	SW, S, SE
Grade	<1%	>1%	<1%
Flood Plains	No	Yes	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; lake (S)	Yes; lake (S)	No
Wind Channeling	None	None	None
Downwind ²	Yes (NE)	Yes (NE)	Yes (NE)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	NA	NA	NA
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	 Downwind Power available Space available Level ground Accessible Agreeable property owner 	 Downwind Power available Space available Accessible Agreeable property owner High SO₂ modeling 	DownwindPower availableSpace availableLevel groundAccessible
Cons	• Low SO ₂ modeling	Flood proneUneven terrainWill require major work to level ground	 Property owner declined Low SO₂ modeling
Viable Site (Yes, No, or Preferred)	Yes	No	No

¹Based on 40 Code of Federal Regulations Part 58 and SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

m – meter

NA - not applicable

NE - northeast

NNE – north-northeast

S - south

SE – southeast

SO₂ - sulfur dioxide

SW - southwest

> - greater than

< - less than

- number

% - percent

²Based on Google Earth

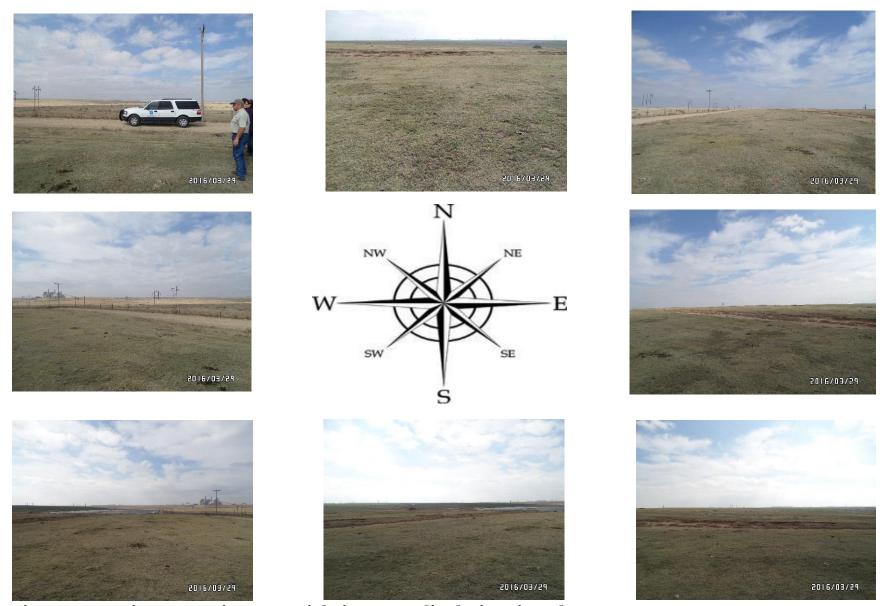


Figure 9: Harrington Station Potential Site #1 Cardinal Direction Photos

Figure 10: Harrington Station Potential Site #1 Satellite Image

References

Griffith, G. E., S. A. Bryce, J. M. Omernik, J. A. Comstock, A. C. Rogers, B. Harrison, S. L. Hatch, and D. Bezanson. Ecoregions of Texas. (2 sided color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia: U.S. Geological Survey, 2004. Scale 1:2,500,000.

"IEM: Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Streetman Plant Monitor Placement Evaluation

Source Information

- Name: Streetman Plant (Streetman) (Figure 2)
- Owner: TRNLWS Limited Liability Company (LLC)
- Facility function: lightweight aggregate manufacturing
- Location: 31.91385, -96.34903, Texas Commission on Environmental Quality (TCEQ) Region 4, Navarro County, Texas
- Sulfur dioxide (SO₂) emissions: 3,391 tons (2013), 3,350 tons (2014)
- Long-term emissions trend: Decreasing, 4.6 percent (%) decrease from 2004 through 2014
- Emission profile: operational year-round
- Stack height: 35 meters (m)
- SO₂ emission controls in place: none
- Permit related data: Federal Operating Permit #1117

Existing Air Monitoring Sites

The TCEQ operates four ambient air monitoring sites within a 75 kilometer (km) radius of Streetman. Table 1 details the four closest monitoring sites to Streetman in order of proximity. Maximum SO₂ ground level concentrations can be expected within close proximity to the source. Although all of these locations are currently monitoring SO₂, none of the existing sites are positioned downwind or within reasonable proximity to the source to characterize maximum SO₂ concentrations.

Table 1: Air Monitoring Sites Near Streetman

Site	Distance From Streetman	Current Sulfur Dioxide (SO ₂) Monitoring	SO ₂ Design Value (2013-2015)
Corsicana Airport	14 kilometers north	Yes	39 parts per billion (ppb)
Italy	57 kilometers northwest	Yes	8 ppb
Kaufman	72 kilometers north	Yes	13 ppb
Waco Mazanec	74 kilometers southwest	Yes	7 ppb

Settings and Surroundings

The rural and suburban area surrounding Streetman consists of the Balcones Canyonlands region, with elevations ranging from approximately 111 m to 132 m as shown in Figure 1. Streetman property is bordered by the Richland Chambers Reservoir to the northwest, north, and northeast. No significant changes to the landscape were noted during the reconnaissance as compared to the Google Earth view shown in Figure 8. Mountain and valley wind channeling or other terrain related meteorological impacts are not expected in this area.

Big Brown Electric Station (Big Brown), located approximately 30 km southeast of Streetman, has the potential to influence SO₂ concentrations in the Streetman area under certain meteorological conditions. Big Brown's SO₂ emissions were reported as 57,460 tons in 2014. Due to Streetman's location and area wind flows, it is anticipated that Big Brown could impact SO₂ concentrations around the Streetman area when winds are from 100 degrees to 120 degrees southeast (approximately 6% of the time according to the Corsicana Municipal Airport wind rose data).

Figure 1: Streetman Area Elevation Map

Figure 2: Streetman Plant Sulfur Dioxide (SO₂) Stack and Emissions, 2013

Meteorological Data

Figure 3 provides illustrations of area annual average wind speed and direction for 2012, 2013, and 2014 from meteorological sensors at the Corsicana Municipal Airport, located 14 km north of Streetman. Figure 4 illustrates the 2012-2014 annual average speed. The length of each wind rose bar corresponds to the frequency of the wind coming from the indicated direction by percentage. Based on the analysis of the 2012-2014 wind data, the dominant wind flow direction is 145 degrees southeast to 205 degrees south-southwest. Approximately 38% of average area wind flows are from the dominant wind flow direction. Over this three year period, calm winds (0-2 miles per hour) occurred 8% of the time, and wind speeds averaged 8.9 miles per hour (Iowa Environmental Mesonet 2016).

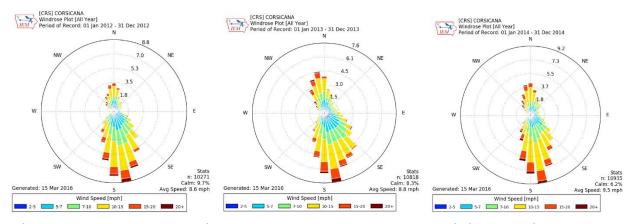


Figure 3: (From left to right) 2012, 2013, and 2014 Individual Wind Rose Plots

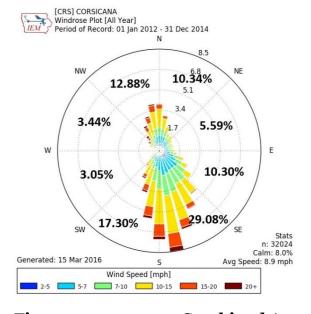


Figure 4: 2012-2014 Combined Average Wind Rose Plot

Modeling Analysis for Monitoring Site Placement

The SO_2 NAAQS Designations Source-Oriented Monitoring Technical Assistant Document (Monitoring TAD) suggests that modeling is one technique that may be used to assist in identifying potential monitoring sites. The TCEQ's modeling for monitor placement used the Comprehensive Air Model with Extensions (CAMx) with model options set as equivalent as possible to American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). The setup included the following parameterizations:

- CAMx 6.20 with speed ups and Plume-in-Grid (PiG) fix, without chemistry and without half-life decay;
- 500-meter PiG sampling grid centered on the source spatially covering 72 km by 72 km:
- the one kiln stack was modeled and tracked as an individual PiG puff;
- full year of 2012 12 km gridded Weather Research and Forecasting Model (WRF) meteorology interpolated to 4 km;
- 2014 hourly point source electric generating unit (EGU) emissions; and
- 2014 annual point source non-EGU emissions from State of Texas Air Reporting System (STARS) processed down to hourly emissions.

All model outputs were normalized relative to the predicted off-property maximum concentration, and therefore do not represent absolute predicted results comparable to the NAAQS. The results were then analyzed using three metrics: normalized 99th percentile concentration, normalized frequency, and a composite using both the 99th percentile and frequency metrics. The primary areas targeted for monitor placement included consideration of all three model output metrics, along with the meteorological data presented in Figures 3 and 4.

From the model outputs, normalized 99th percentile concentrations were calculated by dividing the 99th percentile daily maximum concentration for each grid cell within the modeling domain by the predicted off-property maximum concentration for the domain. The calculated results thus represent a percentage of the predicted concentrations for each grid cell to the off-property maximum. Figure 5 presents the results for the normalized 99th percentile concentration metric analysis with the location of the predicted off-property maximum indicated by a "+" symbol. Streetman permitted property is outlined in black. Based on this analysis, the highest normalized concentrations greater than 85% of the predicted off-property maximum are expected to occur in the area within Streetman permitted property and the area 0.3 km north-northeast over the Richland Chambers Reservoir. The proposed monitor location identified in Figure 5 (site 18) is outside the predicted normalized off-property maximum concentrations and 1.0 km south of the predicted off-property maximum.

To evaluate the frequency at which high concentrations may be expected, a normalized frequency metric was developed to represent the number of days the modeled concentration for each grid cell was predicted to be greater than 75% of the off-property maximum concentration. This metric was calculated by dividing the number of days the 99th percentile concentration for each grid cell was greater than 75% of the predicted off-property maximum concentration by the number of days the off-property maximum was

predicted to occur. Figure 6 presents the geographic distribution of normalized frequency around Streetman. The location of the predicted off-property maximum is indicated by a "+" symbol, and Streetman permitted property is outlined in black. Using this analysis metric, areas within Streetman and areas directly to the north, northeast, and east of Streetman scored greater than 60% and would be expected to see the highest frequency of elevated SO₂ concentrations. The area within Streetman property along with areas directly to the north, northeast, and east of Streetman are not viable for monitor placement. The areas immediately to the north and northeast are not viable due to the Richland Chambers Reservoir. The area directly east of the plant is not viable, because the property owner declined access to the property.

Finally, a composite metric was developed to aid in identifying areas where the predicted highest concentration and predicted highest frequency overlap. The composite metric was calculated at each grid cell by averaging the normalized 99th percentile concentration and normalized frequency metrics. Figure 7 illustrates the geographic distribution of the composite metric analysis results with the location of the predicted off-property maximum with a " λ " symbol, and Streetman permitted property is outlined in black. As with the normalized 99th percentile and normalized frequency metrics, areas within Streetman property along with areas directly north and northeast of Streetman scored greater than 80% using the composite metric. Similar to areas with a high frequency metric, areas with a high composite metric were not viable due to the Richland Chambers Reservoir and property access.

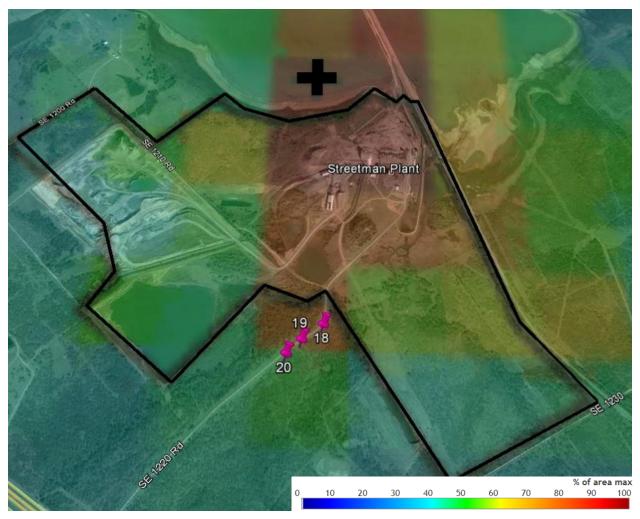


Figure 5: Streetman Area CAMx Model Predictions, Normalized Concentrations, and Viable Site Locations

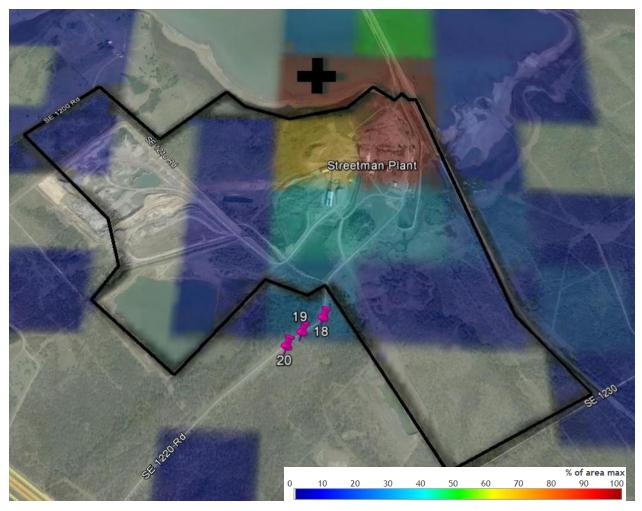


Figure 6: Streetman Area CAMx Model Predictions, Normalized Frequency (Number of Days), and Viable Site Locations

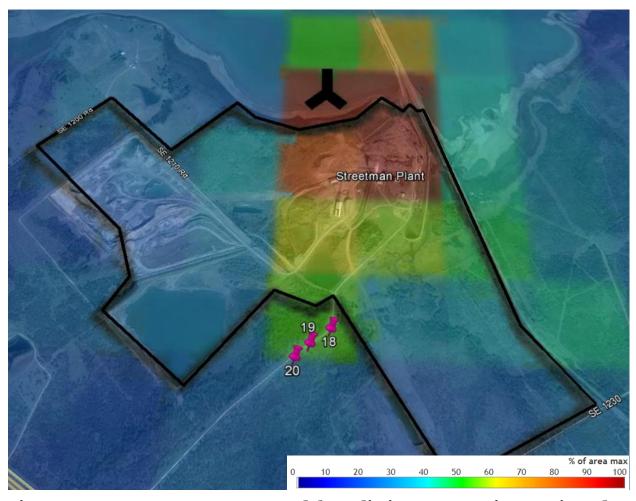


Figure 7: Streetman Area CAMx Model Predictions Composite Metric and Viable Site Locations

Siting Options and Criteria

The TCEQ does not currently have SO₂ monitors located in the area surrounding Streetman that would be expected to characterize the highest SO₂ concentrations from this facility; therefore a new site is proposed. The TCEQ focused on complying with the federal requirements listed in 40 Code of Federal Regulations (CFR) Part 58, Appendix E regarding siting criteria. In addition, the TCEQ evaluated monitoring site locations that would appropriately and sufficiently characterize air quality in areas around an SO₂ emissions source. This approach included utilizing multiple techniques and guidance provided in the Monitoring TAD.

The modeling analyses provided in Figures 5, 6, and 7 suggest that maximum SO₂ concentrations are expected to occur within the Streetman permitted area and north, northeast, and east of Streetman. In addition, the highest frequency of SO₂ concentrations predicted to be greater than 75% of the off-property maximum is expected directly north of Streetman over the Richland Chambers Reservoir. Access to the area directly to the east of the facility was declined by the property owner.

Twenty-one potential sites were identified as shown in Figures 8 and 9. A summary of all potential sites is shown in Table 2. Eighteen of the identified potential sites (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 21) are not considered viable and are indicated by red pins in Figures 8 and 9. Property owners at sites 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13 either declined or were unresponsive after multiple communication attempts. Non-viable site property lines are outlined with green boundaries. Sites 12, 14, 15 and 21 were in areas with low predicted SO₂ concentrations according the modeling analysis. Sites 16 and 17 were in flood prone areas.

- Site 18 is located approximately 1.0 km south-southwest of Streetman. This site is downwind of Streetman when winds flow from the north-northeast. Access to areas with higher expected wind flows was either declined by their respective property owners or was impossible due to the Richland Chambers Reservoir. Site 18 provides level ground and adequate space. The property owner is also amenable to deploying an air monitoring station in this area. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 50%-60% of the maximum concentrations. Site 18 is indicated with a pink pin in Figures 5, 6, 7, and 8.
- Site 19 is located approximately 1.2 km southwest of Streetman. This site is downwind of Streetman when winds flow from the north-northeast. Access to areas with higher expected wind flows was either declined by their respective property owners or was impossible due to the Richland Chambers Reservoir. This site provides level ground, and adequate space. The property owner is also amenable to deploying an air monitoring station in this area. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 50%-60% of the maximum concentrations. Site 19 is indicated with a pink pin in Figures 5, 6, 7, and 8.
- Site 20 is located approximately 1.3 km southwest of Streetman. This site is downwind of Streetman when winds flow from the north-northeast. Access to areas with higher expected wind flows was either declined by their respective property owners or was impossible due to the Richland Chambers Reservoir. This site

provides level ground, and adequate space. The property owner is also amenable to deploying an air monitoring station in this area. The normalized 99th percentile concentration metric analysis predicted concentrations in this area to be 25%-35% of the maximum concentrations. Site 20 is indicated with a pink pin in Figures 5, 6, 7, and 8.

Recommendation

The modeling analyses predicts the highest maximum normalized concentration and composite metric score to be located over the Richland Chambers Reservoir water body. Therefore, based on property owner cooperation, proximity to the source, current facility operations, available emissions data, wind patterns, and modeling analyses, site 18 (Figures 8, 10, and 11) is the recommended location for placement of a new source-oriented ambient SO₂ monitoring station. Areas directly to the east and west of the source are not viable locations due to property owners who are unwilling or unresponsive to the TCEQ. Site 18 is preferred over sites 19 and 20 due to its closer proximity to the source.

Historical meteorological data from 2012-2014 (Figure 4) shows the area around site 18 experiences calm conditions an average of 8% of the year and is downwind of Streetman during northeasterly winds 10% of the year. Combined, calm or northeasterly wind conditions occurred an average of 18% annually. Site 18 is the closest viable location to the source (1.0 km) with 75%-85% predicted off-property maximum normalized SO_2 concentrations. Site 18 also has available space, level ground, and meets all federal siting criteria. A site agreement has been negotiated with the property owner.

Figure 8: Potential Monitoring Sites South of Richland Chambers Reservoir

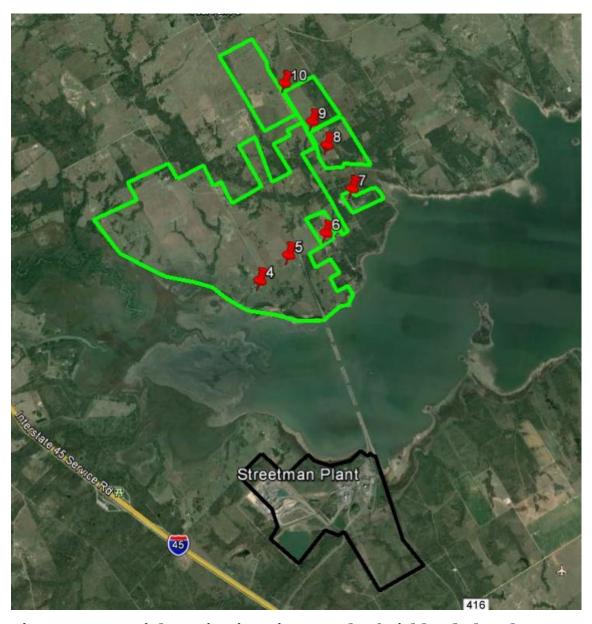


Figure 9: Potential Monitoring Sites North of Richland Chambers Reservoir

Table 2: Potential Sites Assessment¹

Site Number	Streetman #1	Streetman #2	Streetman #3
Location	31.91678,	31.91849,	31.91844,
	-96.34929	-96.36757	-96.36790
Distance from SO ₂ Source ²	330 m	1,709 m	1,858 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; reservoir (N)	Yes; reservoir (NE)	Yes; reservoir (NE)
Wind Channeling	None	None	None
Downwind ²	Yes (N)	Yes (NW)	Yes (NW)
Obstructions and Height	None	None	Trees (10 m)
Distance from Site to Obstructions	None	None	Trees (45 m W to dripline) Trees (30 m S to dripline)
Road/Site Access	No	Yes	Yes
Electricity Available <18 m	Yes	Yes	Yes
Pros	 Level ground Downwind High SO₂ modeling Power available 	Level groundDownwindSite accessPower available	Level groundPower availableSpace availableDownwindSite access
Cons	Property owner declined No access	 Unresponsive property owner Low SO₂ modeling 	Property owner declinedLow SO₂ modeling
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Streetman #4	Streetman #5	Streetman #6
Location	31.94847,	31.95045,	31.95446,
	-96.36894	-96.36329	-96.35584
Distance from SO ₂	4,020 m	4,388 m	4,604 m
Source ²			
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; reservoir (S)	Yes; reservoir (S)	Yes; reservoir (S)
Wind Channeling	None	None	None
Downwind ²	Yes (NW)	Yes (N)	Yes (N)
Obstructions and Height	None	None	Trees (10 m)
Distance from Site to Obstructions	None	None	Trees (20 m W to dripline) Trees (20 m NW to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity	Yes	Yes	No
Available <18 m			
Pros	 Level ground 	 Level ground 	 Level ground
	Downwind	 Downwind 	Space available
	• Site access	Power available	• Downwind
	Power available	Site access	Site access
Cons	 Property owner 	 Property owner 	• No power
	declined	declined	Property owner
	• Low SO ₂	• Low SO ₂	declined
	modeling	modeling	• Low SO ₂ modeling
Viable Site (Yes, No,	No	No	No
or Preferred)			

Site Number	Streetman #7	Streetman #8	Streetman #9
Location	31.96239, -96.35170	31.96966, -96.35631	31.97580, -96.35952
Distance from SO ₂ Source ²	5,590 m	6,526 m	7,025 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	>1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; reservoir (SE)	None	None
Wind Channeling	None	None	None
Downwind ²	Yes (NE)	Yes (N)	Yes (N)
Obstructions and Height	Trees (15-20 m)	Trees (12 m)	None
Distance from Site to Obstructions	Trees (40 m SE to dripline) Trees (40 m W to dripline)	Trees (20 m SW to dripline)	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	No	Yes
Pros	Level groundDownwindSite access	Level groundSpace availableDownwindSite access	Space availableDownwindSite accessPower available
Cons	 No power Unresponsive property owner Low SO₂ modeling 	 Unresponsive property owner No power Low SO₂ modeling 	 Slight grade in surrounding area Unresponsive property owner Low SO₂ modeling
Viable Site (Yes, No, or Preferred)	No	No	No

Site Number	Streetman #10	Streetman #11	Streetman #12
Location	31.98266,	31.91122,	31.54752,
	-96.36470	-96.39605	-96.22548
Distance from	7,779 m	4,440 m	2,250 m
SO ₂ Source ²			
Wind Direction	S, SE	S, SE	S, SE
Elevation/Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	None	None	Yes; reservoir (E)
Wind Channeling	None	None	None
Downwind ²	Yes (NNE)	No (W)	No (SW)
Obstructions and Height	Trees (10 m)	None	None
Distance from Site to Obstructions	Trees (20 m SE to dripline)	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	No	Yes
Pros	Level groundSpace availableDownwindSite access	Level groundSpace availableSite access	 Level ground Space available Power available Close proximity to facility Agreeable property owner Site access
Cons	 No power Unresponsive property owner Low SO₂ modeling 	 Not downwind No power Declined by property owner Low SO₂ modeling 	Not downwind Low SO ₂ modeling
Viable Site (yes, no, or preferred)	No	No	No

Site Number	Streetman #13	Streetman #14	Streetman #15
Location	31.54346, -96.20553	31.90510, -96.38168	31.90169, -96.35473
Distance from SO ₂ Source ²	1,399 m	3,172 m	1,376 m
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	None	None	Yes; pond (W)
Wind Channeling	None	None	None
Downwind ²	No (E)	No (SW)	No (S)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	None	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	Yes	Yes	No
Pros	Level groundPower availableSite access	Level groundPower availableSite access	 Level ground Close proximity to facility Agreeable property owner Site access
Cons	 Not downwind Declined by property owner Low SO₂ modeling 	 Not downwind Low SO₂ modeling 	 Not downwind Low SO₂ modeling No power
Viable Site (Yes, No, or Recommended)	No	No	No

Site Number	Streetman #16	Streetman #17	Streetman #18
Location	31.90501,	31.90594,	31.90412,
	-96.35144	-96.35181	-96.35185
Distance from SO ₂	905 m	853 m	1,037 m
Source ²			
Wind Direction	S, SE	S, SE	S, SE
Grade	>1%	>1%	<1%
Flood Plains	Yes	Yes	No
Mountain/Valley Winds	None	None	None
Water Body Within 1,000 m	Yes; pond (W)	Yes; pond (W)	Yes; pond (W)
Wind Channeling	None	None	None
Downwind ²	No (S)	No (S)	No (S)
Obstructions and Height	None	None	Trees (10 m)
Distance from Site to Obstructions	None	None	Trees (9 m SE to dripline), Trees (9 m S to dripline)
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	No	No
Pros	 Close proximity to facility Agreeable property owner Site access High SO₂ modeling 	 Close proximity to facility Agreeable property owner Site access High SO₂ modeling 	 Level ground Close proximity to facility Agreeable property owner Site access High SO₂ modeling Property owner will remove obstructions
Cons	Slight grade in surrounding areaNot downwindNo powerFlood prone	 Slight grade in surrounding area Not downwind No power Flood prone 	Not downwindNo powerRemoval of trees in area to meet siting criteria
Viable Site (Yes, No, or Recommended)	No	No	Preferred

Site Number	Streetman #19	Streetman #20	Streetman #21
Location	31.90332,	31.90259,	31.90275,
	-96.35305	-96.35389	-96.34872
Distance from SO ₂	1,210 m	1,281 m	1,274 m
Source ²			
Wind Direction	S, SE	S, SE	S, SE
Grade	<1%	<1%	<1%
Flood Plains	No	No	No
Mountain/Valley	None	None	None
Winds			
Water Body Within	Yes; pond (W)	Yes; pond (W)	None
1,000 m			
Wind Channeling	None	None	None
Downwind ²	No (S)	No (S)	No (S)
Obstructions and Height	None	None	None
Distance from Site to Obstructions	None	None	None
Road/Site Access	Yes	Yes	Yes
Electricity Available <18 m	No	No	No
Pros	 Level ground Close proximity to facility Agreeable property owner High SO₂ modeling Site access Not downwind 	 Level ground Close proximity to facility Agreeable property owner Site access Not downwind 	 Level ground Close proximity to facility Agreeable property owner High SO₂ modeling Site access Not downwind
	No power	No power Low SO ₂ modeling	No power Low SO ₂ modeling
Viable Site (Yes, No, or Recommended)	Yes	Yes	No

¹Based on 40 Code of Federal Regulations Part 58 and SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document

²Based on Google Earth

m – meter % – percent N – north

S - south

E – east W – west

NNE – north-northeast NE – northeast

NW - northwest

SE – southeast

SW - southwest

- number

< - less than

> - greater than

SO₂ – sulfur dioxide

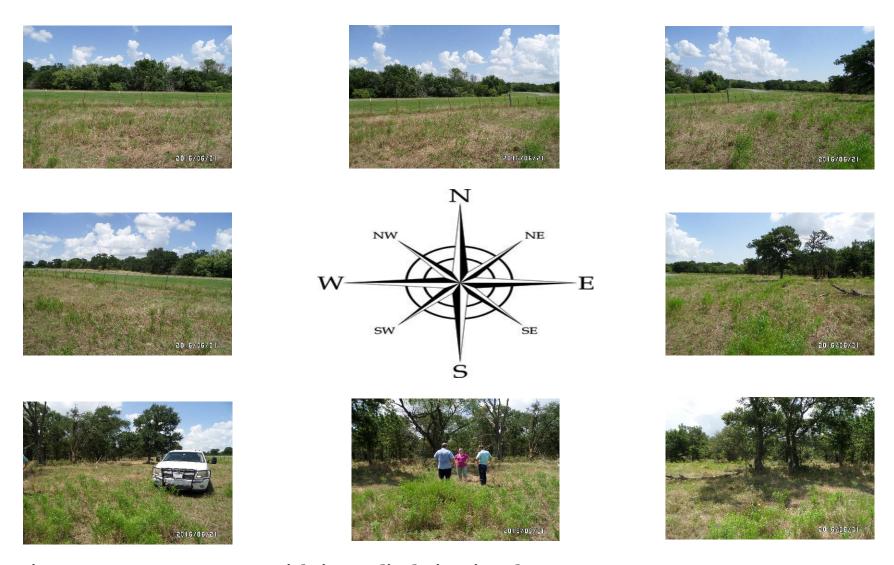


Figure 10: Streetman #18 Potential Site Cardinal Direction Photos

Figure 11: Streetman #18 Preferred Air Monitoring Site

References

"IEM : Site Locator." Iowa Environmental Mesonet. 2016. Accessed April 06, 2016. https://mesonet.agron.iastate.edu/sites/locate.php?network=TX_ASOS.

Appendix F

Ozone Monitoring Requirements

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Appendix F: Ozone Monitoring Requirements

Metropolitan Statistical Area	2015 Population Estimates ¹	2013-2015 8-Hour Design Value (parts per billion)	Design Value as Percent of NAAQS ²	Total Required SLAMS Monitors	Total Required PAMS Monitors	Total Required NCore Monitors	Total Required Monitors ³	Total Existing Monitors ⁴
Dallas-Fort Worth-Arlington	7,102,796	83	119%	3	1	1	5	19
Houston-The Woodlands-Sugar La	6,656,947	80	114%	3	1	1	5	20
San Antonio-New Braunfels	2,384,075	78	111%	2	0	0	2	3
Austin-Round Rock	2,000,860	68	97%	2	0	0	2	2
McAllen-Edinburg-Mission	842,304	56	80%	1	0	0	1	1
El Paso	838,972	71	101%	2	0	1	3	6
Corpus Christi	452,422	65	93%	2	0	0	2	2
Killeen-Temple	431,032	69	99%	2	0	0	2	2
Brownsville-Harlingen	422,156	59	84%	1	0	0	1	2
Beaumont-Port Arthur	408,419	68	97%	2	0	0	2	7
Lubbock	311,154	N/A	N/A	0	0	0	0	0
Laredo	269,721	59	84%	1	0	0	1	1
Waco	262,813	67	96%	1	0	0	1	1
Amarillo	262,056	N/A	N/A	0	0	0	0	0
College Station-Bryan	249,156	N/A	N/A	0	0	0	0	0
Tyler	222,936	67	96%	1	0	0	1	1
Longview	217,781	68	97%	1	0	0	1	1
Abilene	169,578	N/A	N/A	0	0	0	0	0
Midland	166,718	N/A	N/A	0	0	0	0	0
Odessa	159,436	N/A	N/A	0	0	0	0	0
Wichita Falls	150,780	N/A	N/A	0	0	0	0	0
Texarkana	149,769	N/A	N/A	0	0	0	0	0
Sherman-Denison	125,467	N/A	N/A	0	0	0	0	0
San Angelo	119,659	N/A	N/A	0	0	0	0	0
Victoria	99,913	64	91%	1	0	0	1	1
Marshall*	66,746	N/A	N/A	0	0	0	0	1
Totals 1 United States Consus Bureau populati	N/A	N/A	N/A	25	2	3	30	70

¹United States Census Bureau population estimates as of July 1, 2015

O₃ - ozone

N/A - not applicable

PAMS - Photochemical Assessment Monitoring Stations

SLAMS - State or Local Air Monitoring Stations

NCore - National Core Multipollutant Monitoring Stations

²2015 8-Hour Ozone National Ambient Air Quality Standard (NAAQS) is 70 parts per billion

³Total Required Monitors is a count of individual requirements for SLAMS, PAMS, and NCore.

⁴Individual monitors may fulfill more than one monitoring requirement.

^{*}Classified as Micropolitan Statistical Area and does not apply to SLAMS requirements

Appendix G

Carbon Monoxide Monitoring Requirements

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Appendix G: Carbon Monoxide Monitoring Requirements

Core Based Statistical Areas	2015 Population Estimates ¹	Required CO Near-Road Monitors	Required High Sensitivity CO NCore Monitors	Total Required Monitors	Total Current Monitors ²
Dallas-Fort Worth-Arlington	7,102,796	Fort Worth California Parkway	Dallas Hinton	2	2
San Antonio-New Braunfels		San Antonio Interstate 35 ³	N/A	1 ³	0
Austin-Round Rock	2,000,860	Austin Interstate 35 ³	N/A	1 ³	0
El Paso	838,972	N/A	El Paso Chamizal	1	3
Houston-The Woodlands- Sugar Land	6,656,947	Houston North Loop	Houston Deer Park #2	2	3
Laredo	269,721	N/A	N/A	0	2
Brownsville-Harlingen	422,156	N/A	N/A	0	1
Beaumont-Port Arthur	408,419	N/A	N/A	0	1
Waco	262,813	N/A	N/A	0	1
McAllen-Edinburg-Mission	842,304	N/A	N/A	0	0
Corpus Christi	452,422	N/A	N/A	0	0
Killeen-Temple	431,032	N/A	N/A	0	0
Lubbock	311,154	N/A	N/A	0	0
Amarillo	262,056	N/A	N/A	0	0
College Station-Bryan	249,156	N/A	N/A	0	0
Tyler	222,936	N/A	N/A	0	0
Longview	217,781	N/A	N/A	0	0
Abilene	169,578	N/A	N/A	0	0
Midland	166,718	N/A	N/A	0	0
Odessa	159,436	N/A	N/A	0	0
Wichita Falls	150,780	N/A	N/A	0	0
Texarkana	149,769	N/A	N/A	0	0
Sherman-Denison	125,467	N/A	N/A	0	0
San Angelo	119,659	N/A	N/A	0	0
Victoria	99,913	N/A	N/A	0	0
Total		4	3	7	13

¹United States Census Bureau population estimates as of July 1, 2015

CO - carbon monoxide

NCore - National Core Multipollutant Monitoring Stations

N/A - not applicable

²Monitors may fulfill multiple monitoring requirements, but are only counted once in the total monitor counts.

³Monitor required to be operational by January 1, 2017

Appendix H

Particulate Matter of 10 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

<u>Appendix H: Particulate Matter of 10 Micrometers or Less</u> <u>Monitoring Requirements, Monitor Locations, and Method Codes</u>

Table 1: Particulate Matter of 10 Micrometers or Less Monitoring Requirements and Monitor Locations

	2015		2013-2015			
	2015 Population		Maximum Concentration	Percent of	Required	Existing
Metropolitan Statistical Area	Estimates*	Site Name	(μg/m³)	NAAQs**	Monitors***	Monitors
Dallas-Fort Worth-Arlington	7,102,796	Site Huille	(Ma) /	TO DE LOS	4-8	4
	1,722,7100	Earhart	132	88		-
		Convention Center (collocated pair)	93	62		
		Dallas North #2	82	55		
		Stage Coach	70	47		
Marshall (Micropolitan Statistical Area)	218,842				0	1
	,	Karnack	73	49		
Houston-The Woodlands-Sugar Land	6,656,947				4-8	8
		Clinton (collocated pair)	130	87		
		Houston Monroe	99	66		
		Houston Westhollow	95	63		
		Lang	94	63		
		Texas City Fire Station (collocated pair)	92	61		
		Houston Deer Park #2 (collocated pair)	91	61		
		Houston Aldine	90	60		
		Pasadena HL&P	74	49		
San Antonio-New Braunfels	2,384,075				2-4	2
		Selma	78	52		
		Frank Wing Municipal Court	73	49		
Austin-Round Rock	2,000,860				2-4	2
		Austin Webberville Rd	99	66		
		Austin Audubon Society	76	51		
El Paso	838,972				2-4	5
		Socorro Hueco (collocated pair)	145	97		
		Riverside	143	95		
		Ojo De Agua (collocated pair)	91	61		
		Van Buren	81	54		
		Ivanhoe	76	51		
McAllen-Edinburg-Mission	842,304				2-4	2
		Mission	138	92		
		Edinburg East Freddy Gonzalez Drive (new in 2015)	70	N/A		
Corpus Christi	452,422				0-1	1
		Dona Park (collocated pair)	83	55		
Laredo	269,721				0-1	2
		Laredo Vidaurri (collocated pair)	80	53		
		Laredo Bridge	54	36		
Totals	N/A		N/A	N/A	N/A	27

This list does not include Metropolitan Statistical Areas with zero requirements and zero monitors.

NAAQS - National Ambient Air Quality Standards

µg/m3 - micrograms per cubic meter

PM10 - particulate matter of 10 micrometers or less

N/A - not applicable

^{*}United States Census Bureau population estimates as of July 1, 2015

^{**}Current PM10 NAAQS is 150 µg/m3

^{***}Required monitor count is based on population, percent of NAAQS, and maximum concentration

Appendix H: Particulate Matter of 10 Micrometers or Less Monitoring Requirements, Monitor Locations, and Method Codes

Table 2: Particulate Matter of 10 Micrometers or Less Monitor and Method Code

AQS Number	Site Name	Method Code	2013-2015 Maximum Concentration (µg/m³)	2015 Annual Mean Concentration (µg/m³)	2014 Annual Mean Concentration (µg/m	2013 Annual Mean Concentration (µg/m³)
484530020	Austin Audubon Society	141	76	17	19	14
484530021	Austin Webberville Rd	141	99	23	26*	20
482011035	Clinton (collocated pair)	64	130	41*	42*	31*
481130050	Convention Center (collocated pair)	141	93	24*	27*	30*
481130075	Dallas North #2	141	82	19	20	18
483550034	Dona Park (collocated pair)	141	83	23	24	23
481130061	Earhart	141	132	24*	25*	28*
482151046	Edinburg East Freddy Gonzalez Drive	141	70	22	N/A	N/A
480290060	Frank Wing Municipal Court	141	73	22	25*	23
482010024	Houston Aldine	141	90	23	24	21
482011039	Houston Deer Park #2 (collocated pair)	141	91	19	19	18
482010062	Houston Monroe	64	99	25*	24	22
482010066	Houston Westhollow	64	95	20	20	20
481410029	Ivanhoe	62	76	19	20	20
482030002	Karnack	141	73	15	15	16
482010047	Lang	64	94	25*	24	21
484790017	Laredo Bridge	62	54	19	19	15
484790016	Laredo Vidaurri (collocated pair)	62	80	24	23	29*
482150043	Mission	141	138	27*	27*	33*
481411021	Ojo De Agua (collocated pair)	62	91	16	17	19
482010071	Pasadena HL&P	62	74	21	20	21
481410038	Riverside	62	143	25*	26*	28*
480290053	Selma	141	78	19	22	18
481410057	Socorro Hueco (collocated pair)	62	145	25*	32*	34*
484393010	Stage Coach	64	70	17	19	19
481670004	Texas City Fire Station (collocated pair)	63	92	16	20	19
481410693	Van Buren	62	81	15	20	18

^{*}sites having annual mean particulate matter concentration among the highest 25 percent

AQS - Air Quality System

PM10 - particulate matter of 10 micrometers or less

μg/m³ - micrograms per cubic meter

N/A - not applicable

Appendix I

Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements, Federal Reference Method Monitor Locations, and Method Codes

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

<u>Appendix I: Particulate Matter of 2.5 Micrometers or Less</u> <u>Monitoring Requirements, Federal Reference Method Monitor Locations, and Method Codes</u>

Table 1: Particulate Matter of 2.5 Micrometers or Less Monitoring Requirements

Table 1: Particulate Matter of		2013- 2015 DV (μg/m³)		Percent of NAAQS		FRM Speciation		Continuous			
Metropolitan Statistical Area	2015 Population Estimates ¹	Annual	24- Hour	Annual ²	24- Hour³	Required Monitors ⁴	Existing Monitors ⁵	Required Monitors ⁶	Existing Monitors ⁶	Required Monitors ⁶	Existing Monitors ⁵
Dallas-Fort Worth-Arlington	7,102,796	10.2	22	85	63	4	6	1	2	3	8
Houston-The Woodlands-Sugar Land	6,656,947	11.6	24	97	69	4	6	2	2	3	10
San Antonio-New Braunfels	2,384,075	8.5	22	71	63	2	2	0	0	1	5
Austin-Round Rock	2,000,860	9.2	22	77	63	2	2	0	0	1	3
El Paso	838,972	9.9	29	83	83	2	2	1	1	2	4
McAllen-Edinburg-Mission ⁸	842,304	10.1	25	84	71	2	2	0	0	1	1
Corpus Christi	452,422	10.1	26	84	74	1	2	1	1	1	1
Killeen-Temple	431,032	N/A	N/A	N/A	N/A	0	0	0	0	0	0
Brownsville-Harlingen ⁸	422,156	N/A	N/A	N/A	N/A	1	1	0	0	1	1
Beaumont-Port Arthur	408,419	N/A	N/A	N/A	N/A	0	0	0	0	0	3
Lubbock	311,154	N/A	N/A	N/A	N/A	0	0	0	0	0	1
Laredo	269,721	N/A	N/A	N/A	N/A	0	0	0	0	0	1
Waco	262,813	N/A	N/A	N/A	N/A	0	0	0	0	0	1
Amarillo	262,056	N/A	N/A	N/A	N/A	0	0	0	0	0	1
Odessa	159,436	N/A	N/A	N/A	N/A	0	0	0	0	0	2
Texarkana	150,780	9.8	22	82	63	1	1	0	0	1	1
Marshall ⁷	66,746	9.0	20	75	57	0	1	0	1	0	1
Eagle Pass ⁷	57,706	N/A	N/A	N/A	N/A	0	0	0	0	0	1
Totals	N/A	N/A	N/A	N/A	N/A	19	25	5	7	14	45

¹United States Census Bureau population estimates as of July 1, 2015

²Current PM_{2.5} Annual NAAQS is 12 micrograms per cubic meter (µg/m3)

³Current PM_{2.5} 24-hour NAAQS is 35 µg/m³

⁴Required monitors include State or Local Air Monitoring Stations (SLAMS) and National Core (NCore) requirements.

⁵Individual monitors may fulfill one or more requirements.

⁶Required monitors include SLAMS and NCore requirements. Individual monitors may fulfill one or more requirements.

⁷Area is classified as a micropolitan area and not subject to SLAMS requirements.

⁸Site annual values do not meet completeness criteria.

DV - Design Value

SPM - special purpose monitor

FRM - federal reference method

N/A - not applicable

NAAQS - National Ambient Air Quality Standards

This list does not include Metropolitan Statistical Areas with no requirement and no monitors.

<u>Appendix I: Particulate Matter of 2.5 Micrometers or Less</u> <u>Monitoring Requirements, Federal Reference Method Monitor Locations, and Method Codes</u>

Table 2: Particulate Matter of 2.5 Micrometers or Less Federal Reference Method Locations and Method Codes

AQS Number	PM _{2.5} FRM Site Name	Method Code
480290032	San Antonio Northwest	145
480290059	Calaveras Lake	145
480291069	San Antonio Interstate 35 (future deployment in 2016)	145
480370004	Texarkana	145
480610006	Brownsville	145
481130050	Convention Center	145
481130069	Dallas Hinton (collocated pair)	145
481390016	Midlothian OFW	145
481410037	El Paso UTEP	145
481410044	El Paso Chamizal (future collocated pair in 2016)	145
481671034	Galveston 99th Street	145
482010024	Houston Aldine	145
482010058	Baytown	145
482011035	Clinton (collocated pair)	145
482011039	Houston Deer Park #2	145
482011052	Houston North Loop	145
482030002	Karnack	145
482150043	Mission	145
482151046	Edinburg East Freddy Gonzalez Drive	145
483550032	Corpus Christi Huisache (collocated pair)	145
483550034	Dona Park	145
484391002	Fort Worth Northwest	145
484391006	Haws Athletic Center	145
484391053	Fort Worth California Parkway North	145
484530020	Austin Audubon Society	145
484530021	Austin Webberville Road	145
484531068	Austin North Interstate 35 (future deployment in 2016)	145

AQS - Air Quality System FRM - federal reference method

PM_{2.5} - particulate matter of 2.5 micrometers or less

Appendix J

Acronym and Abbreviation List

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Appendix J: Acronym and Abbreviation List

- number

% – percent

> - greater than

μg/m³ – micrograms per cubic meter

AADT – annual average daily traffic

AERMOD - American Meteorological Society/Environmental Protection Agency

AMNP – annual monitoring network plan

AQS - Air Quality System

autoGC – automated gas chromatograph

CAMx – Comprehensive Air Model with Extensions

CBSA – core based statistical area

CFR – Code of Federal Regulations

CO - carbon monoxide

CPS – City Public Service

CSN – Chemical Speciation Network

DRR – Data Requirements Rule

EI – emissions inventory

Exide – Exide Technologies

EPA – Environmental Protection Agency

FRM – federal reference method

HL&P – Houston Light and Power

LLC – limited liability company

MSA – metropolitan statistical area

NAAQS – National Ambient Air Quality Standards

NATTS - National Air Toxics Trends Stations

NCore – National Core Multipollutant Monitoring Stations

NEI - National Emissions Inventory

NO₂ – nitrogen dioxide

NO – nitrogen monoxide

NO_y – total reactive nitrogen compounds

 O_3 – ozone

PAMS – Photochemical Assessment Monitoring Stations

Pb - lead

ppb – parts per billion

ppm – parts per million

PM₁₀ – particulate matter of 10 micrometers or less in diameter

PM_{2.5} – particulate matter of 2.5 micrometers or less in diameter

PWEI - population weighted emissions index

QA – quality assurance

Appendix J: Acronym and Abbreviation List

RA-40 - Regional Administrator 40

Rd – Road

SE - southeast

SETRPC - South East Texas Regional Planning Committee

SLAMS – State or Local Air Monitoring Stations

SO₂ – sulfur dioxide

SPM – special purpose monitor

STN – Speciation Trends Network

TCEQ - Texas Commission on Environmental Quality

TEOM - tapered element oscillating microbalance

tpy – tons per year

TSP – total suspended particulate

U.S. - United States

UTEP - University of Texas at El Paso

UV – ultra violet

VOC - volatile organic compound

Appendix K

TCEQ Response to Comments Received on the 2016 Annual Monitoring Network Plan

Texas Commission on Environmental Quality 2016 Annual Monitoring Network Plan

Introduction

As required by 40 Code of Federal Regulations (CFR) Part 58.10, the Texas Commission on Environmental Quality (TCEQ) posted the 2016 Annual Monitoring Network Plan (AMNP) for public inspection for 30 days prior to submittal to the United States (U.S.) Environmental Protection Agency (EPA). During the public comment period from May 16, 2016, to June 16, 2016, the TCEQ received three sets of comments regarding the posted document. The comments included a recommendation for an additional ozone (O_3) monitor in the Austin area, discussion of the El Paso County monitoring network, and the adequacy of the TCEQ plan for monitoring source-oriented emissions of sulfur dioxide (SO_2) and particulate matter of 2.5 micrometers or less $(PM_{2.5})$.

Summary and Response

Comment: The Capital Area Council of Governments (CAPCOG) Central Texas Clean Air Coalition (CAC) recommended that the TCEQ deploy an additional ozone monitor at Continuous Ambient Monitoring Station (CAMS) 171 in east Austin in order to provide real-time O₃ data for East Austin residents. In support for this additional monitor, CAPCOG noted that:

- Adding an ozone monitor to CAMS 171 would enable co-pollutant analysis, due to the existing particulate matter (PM) and volatile organic compounds (VOC) sampling at the site;
- The marginal cost of adding an ozone monitor to this station should be much lower than the marginal cost of establishing a brand-new monitoring station elsewhere;
- TCEQ's 2015 Five-Year Ambient Air Monitoring Network Assessment indicated that TCEQ's two ozone monitors at CAMS 3 and 38 are "highly correlated," and that the only reason that they would not be considered "fully redundant" is that they are more than 5 kilometers (km) apart;
- CAMS 171 is more than 10 km away from the nearest TCEQ ozone monitor, and is located to the east of the core urban area, whereas CAMS 3 and 38 are both northwest of the urban core;
- Deployment of an additional regulatory ozone monitor in East Austin should not have adverse consequences for the region's attainment status, since the location is upwind of the urban core on virtually all days when the region traditionally sees high ozone measurements, and would provide an additional perspective on ozone levels in Travis County if a future ozone NAAQS used a statistical form that relied on averaging ozone levels across multiple monitoring stations: and
- TCEQ's decision to only report regulatory monitoring data to EPA for Air Quality Index (AQI) purposes means that residents of East Austin lack real-time data AQI data for ozone in their immediate vicinity, which would likely provide a more realistic picture of the frequency of high ozone days in that area than the data collected at CAMS 3 and 38 would provide.

Response: The TCEQ appreciates and acknowledges CAPCOG's request, however, TCEQ evaluates all requests for additional monitor siting by assessing the current federal requirements for monitoring in addition to case specific indicators of a need for monitoring to assess public health impacts and available resources. The TCEQ is meeting all current regulatory O₃ requirements in accordance with 40 CFR Part 58, Appendix D, 4.1.

The TCEQ evaluated likely sources of precursor emissions and area topographical and meteorological information in order to select both an upwind location (to evaluate transport into the urban core) and a downwind location that was the most likely to observe the highest O_3 concentrations in the Austin-Round Rock metropolitan statistical area (MSA). The TCEQ agrees with CAPCOG's assertion that East Austin is upwind of the urban core on virtually all days when the region traditionally sees high O_3 measurements, and therefore does not agree that there is regulatory benefit for monitor placement in East Austin at this time. The placement of these regulatory monitors, in addition to the supplemental information provided by non-regulatory monitors, provides a high degree of certainty that the monitored O_3 concentrations are representative of the entire Austin-Round Rock MSA. At this time, TCEQ has no information indicating that additional monitoring is needed in East Austin.

Compliance with the NAAQS is determined using data from the monitor with the highest concentrations in an area. The O_3 NAAQS was revised on October 26, 2015, and the TCEQ does not expect any changes to the method of determining compliance for at least five years. In addition, the EPA added new requirements for states to develop and implement an Enhanced Monitoring Plan (EMP) detailing enhanced O_3 and O_3 precursor monitoring activities. The TCEQ will reevaluate its O_3 network as part of the EMP, including the consideration of the need for additional O_3 monitoring in the Austin area. The EMP and all related network changes will be included in the 2018 AMNP.

Comment: CAPCOG commented that the TCEQ listed two SO₂ monitors in Appendix E of the 2016 AMNP, at the Hutto and Lake Georgetown monitoring stations, that are no longer operational. CAPCOG requested that the TCEQ remove the two monitors from the AMNP accordingly.

Response: The TCEQ appreciates this comment, and the referenced SO₂ monitors have been removed from the document.

Comment: Western Refining, Inc. commented that it acknowledges and approves of the TCEQ's proposals for the air monitoring network in El Paso County.

Response: The TCEQ appreciates the support expressed by the commenter.

Comment: Western Refining, Inc. also suggested that the TCEQ consider the need for additional O_3 monitoring in El Paso County as part of the 2017 AMNP review, as the region may be designated nonattainment status by the EPA in the future.

Response: Comments relating to future AMNP reviews are beyond the scope of this AMNP review. However, the TCEQ appreciates the comments and looks forward to continued participation by all commenters on future AMNP reviews.

Comment: The Sierra Club (SC) commented that the TCEQ must comply with the *Data Requirements Rule for the 1-Hour Sulfur Dioxide Primary NAAQS* (DRR) to characterize peak one-hour SO₂ concetrations for all sources that emit more than 2,000 tons per year of SO₂. SC states, "TCEQ incorrectly suggests that it need not include in its monitoring plan any of the facilities subject to EPA's designation consent decree." SC recommends that the TCEQ should not wait for EPA designations before announcing a plan to comply with the rule. SC further states that the TCEQ "cannot simply wait for EPA to make a designation decision before the state decides how to comply with the rule."

Response: The TCEQ does not agree with these comments. The TCEQ is meeting all current regulatory SO₂ requirements set forth in the DRR and in 40 CFR Part 58, Appendix D, Section 4.4.2. The 2016 AMNP includes proposed SO₂ monitoring locations for the characterization of air quality relevant to those DRR sources for which monitors must be operational by January 1, 2017.

EPA plans to release designations on July, 2, 2016, for some sites, and on August 31, 2016, for the remaining sites. When the designation status of these sites is released by EPA, the TCEQ will comply with any related federal monitoring requirements. However, the TCEQ does not have the obligation to develop an attainment plan before a nonattainment designation has been made by the EPA. The TCEQ will provide notification regarding its approach to characterizing air quality to EPA by the DRR deadline of July 1, 2016. There is no requirement in the DRR that the TCEQ provide this notification as part of the AMNP.

Comment: SC commented that "monitors alone cannot accurately evaluate compliance with the SO₂ NAAQS" and that TCEQ's plan to deploy a more extensive network suffers from being "too slow, too impractical, and too ineffective for monitoring to replace modeling as the primary means of implementing the one-hour SO₂ NAAQS."

SC indicated that a single monitor may not be sufficient to characterize SO₂ and that the TCEQ may not be able to locate a monitor where the modeling indicates highest impacts. Additionally SC believes that full implementation of the NAAQS could take up to a decade and that it is more expeditious and cost-effective to perform air dispersion modeling.

Response: The TCEQ does not agree with these comments. Comments related to modeling for the determination of NAAQS compliance are beyond the scope of this AMNP, and the time required by the EPA to make attainment designations is beyond the control of the TCEQ. Air agencies are given the option to model or monitor emissions impacts from sources listed in the DRR, and the TCEQ's SO₂ monitoring plan is in compliance with the options and requirements set forth in the DRR. The TCEQ continues to support the use of ambient air monitoring data as the appropriate information for use in making designation decisions.

Comment: SC commented that the TCEQ focused only on a subset of sources applicable to the DRR, and the network is inadequate to determine if sources are emitting unhealthy levels of SO₂. SC suggests that TCEQ is undermining the core purpose of EPA's monitoring regulations by omitting monitoring plans for the largest emitters in the state. SC states that the monitoring plan will not accurately represent

peak SO₂ concentrations in Texas, and recommends that the TCEQ reevaluate its proposed monitoring plan to ensure proper site placement.

Response: The TCEQ does not agree with these comments. The TCEQ is meeting or exceeding all regulatory monitoring requirements set forth in the DRR and in 40 CFR Part 58, Appendix D. The 2016 AMNP includes proposed SO₂ monitoring locations for the characterization of air quality relevant to those DRR sources for which monitors must be operational by January 1, 2017.

Comment: SC commented that the TCEQ monitoring network is not adequate to assess the air impacts of the largest polluters located in rural areas of the state.

Response: The TCEQ does not agree with these comments. As shown in the 2016 AMNP, the TCEQ air monitoring network is meeting or exceeding all federal requirements as defined in 40 CFR, Part 58, Appendix D. While these federal network design requirements emphasize monitoring in areas of high population density, the TCEQ currently operates 20 air monitoring stations with 52 monitors in rural areas throughout Texas. Of the 52 monitors, 19 are special purpose monitors that exceed federal network design requirements.

Comment: SC commented that the monitoring network is currently inadequate to assess fracking pollution across the state.

Response: The TCEQ does not agree with these comments. The TCEQ reviewed and evaluated the federal monitoring requirements for all criteria and air-toxic pollutants. The 2016 AMNP details Texas' current and future compliance with existing monitoring regulations in all areas of Texas. The TCEQ will continue to use the AMNP to annually assess compliance with federal monitoring requirements, including requirements for monitoring pollutants emitted during oil and gas activities, such as VOCs. Although outside the scope of the AMNP, a network of 18 automated gas chromatographs (autoGCs) and 14 canister samplers, most of which are state-funded and exceed federal requirements, monitor VOCs throughout the Barnett and Eagle Ford Shale areas. More information on the TCEQ's efforts related to oil and gas activities is available online at http://www.tceq.texas.gov/assistance/industry/oil-and-gas/oilgas.html.

Supporting Documentation

The Sierra Club submitted <u>Exhibit 4</u>, a list of particulate matter emissions from top 100 sources in Texas, and <u>Exhibit 5</u>, the Natural Resources Defense Council, *Fracking Fumes: Air Pollution from Hudraulic Fracturing Threatens Public Health and Communities*, as supporting documentation to their comments.

Capital Area Council of Governments

6800 Burleson Road, Building 310, Suite 165 Austin, Texas 78744-2306 (p) 512.916.6000 (f) 512.916.6001 www.capcog.org

BASTROP BLANCO BURNET CALDWELL FAYETTE HAYS LEE LLANO TRAVIS WILLIAMSON

June 8, 2016

Ms. Holly Landuyt P.O. Box 13087, MC-165 Texas Commission on Environmental Quality Austin, TX 78711-3087

RE: 2016 Annual Monitoring Network Plan

Dear Ms. Landuyt:

The Capital Area Council of Governments (CAPCOG) Central Texas Clean Air Coalition (CAC) appreciates this opportunity to comment on the Texas Commission on Environmental Quality (TCEQ) 2016 Annual Monitoring Network Plan. In light of the region's population and ozone levels, the CAC believes that it would be appropriate for TCEQ to deploy at least one additional regulatory ozone monitor in the Austin area using its own resources, and that Continuous Air Monitoring Station (CAMS) 171 in East Austin would be an appropriate location to put it.

- Adding an ozone monitor to CAMS 171 would enable co-pollutant analysis, due to the existing
 particulate matter (PM) and volatile organic compounds (VOC) sampling at the site;
- The marginal cost of adding an ozone monitor to this station should be much lower than the marginal cost of establishing a brand-new monitoring station elsewhere;
- TCEQ's 2015 Five-Year Ambient Air Monitoring Network Assessment indicated that TCEQ's two
 ozone monitors at CAMS 3 and 38 are "highly correlated," and that the only reason that they
 would not be considered "fully redundant" is that they are more than 5 kilometers (km) apart;
- CAMS 171 is more than 10 km away from the nearest TCEQ ozone monitor, and is located to the east of the core urban area, whereas CAMS 3 and 38 are both northwest of the urban core;
- Deployment of an additional regulatory ozone monitor in East Austin should not have adverse
 consequences for the region's attainment status, since the location is upwind of the urban core
 on virtually all days when the region traditionally sees high ozone measurements, and would
 provide an additional perspective on ozone levels in Travis County if a future ozone NAAQS used
 a statistical form that relied on averaging ozone levels across multiple monitoring stations; and
- TCEQ's decision to only report regulatory monitoring data to EPA for Air Quality Index (AQI)
 purposes means that residents of East Austin lack real-time data AQI data for ozone in their
 immediate vicinity, which would likely provide a more realistic picture of the frequency of high
 ozone days in that area than the data collected at CAMS 3 and 38 would provide.

Sincerely,

Travis County Judge Sarah Eckhardt Chair, Central Texas Clean Air Coalition From: MONOPS

Sent: Tuesday, May 17, 2016 8:57 AM

To: Holly Landuyt < Holly Landuyt@tceq.texas.gov Loc: James Janysek@tceq.texas.gov

Subject: FW: Comment on 2016 Annual Monitoring Network Plan

Importance: High

Holly,

AMNP comment received from CAPCOG, please see below.

~Heather

From: Hoekzema, Andrew [mailto:ahoekzema@capcog.org]

Sent: Monday, May 16, 2016 3:49 PM **To:** MONOPS < <u>MONOPS@tceq.texas.gov</u>>

Cc: May, Ken < kmay@capcog.org>

Subject: Comment on 2016 Annual Monitoring Network Plan

Holly:

Page E-122 in "Appendix E: Sulfur Dioxide Data requirements Rule Monitor Placement Evaluations" (https://www.tceq.texas.gov/assets/public/compliance/monops/air/annual_review/2016-AMNP-Appendix-E.pdf), states that there are two SO₂ monitors operated by CAPCOG – one at Lake Georgetown and one at Hutto – while these stations have previously measured SO₂, they haven't for several years and we have no plans to restart SO₂ monitoring at these locations. As such, please remove reference to CAPCOG monitoring SO₂ or explain that we used to operate SO₂ monitors at these locations.

Thanks,

Andrew Hoekzema

Air Quality Program Manager Capital Area Council of Governments 6800 Burleson Road, Bldg 310, Suite 165 Austin, TX 78744 Phone: (512) 916-6043 * Fax (512) 916-6001 ahoekzema@capcog.org ~ www.capcog.org

www.AirCentralTexas.org

No electronic communication by a CAPCOG employee may legally obligate the agency

June 16, 2016

Texas Commission on Environmental Quality P.O. Box 13087 Attention: Holly Landuyt, MC-165 Austin, Texas 78711-3087

Submitted by email to: monops@tceq.texas.gov

Re: 2016 Annual Air Monitoring Network Plan

Western Refining, Inc. ("Western") respectfully submits these comments regarding the Texas Commission on Environmental Quality (TCEQ) 2016 Annual Air Monitoring Network Plan. We appreciate the opportunity to provide comment on this important tool for assuring air quality and attainment with National Ambient Air Quality Standards.

Western is an independent crude oil refiner and marketer of refined products, headquartered in El Paso, Texas. Western owns and operates two refineries, one in El Paso, Texas, and one near Gallup, New Mexico, with a combined capacity of 156,000 barrels per day. The wholesale segment includes a fleet of crude oil and finished product truck transports, and wholesale petroleum products operations in Arizona, California, Colorado, Georgia, Maryland, Nevada, New Mexico, Texas, and Virginia. The retail segment includes retail service stations and convenience stores in Arizona, New Mexico, and Texas. Western Refining, Inc. also owns the general partner and approximately 65% of the limited partnership interest of Western Refining Logistics, LP and the general partner and approximately 39% of the limited partnership interest in Northern Tier Energy, LP, including its refinery in Saint Paul Park, Minnesota.

In El Paso County, Western's business and operations provide a substantial positive impact. Western has approximately 500 employees in the El Paso area, in the refinery and company offices. Our average wage for these employees is one of the highest average wages in El Paso. We employ a number of contractors in addition to company employees. And we operate more than 25 retail gasoline stations with convenience stores in El Paso, providing additional employment. We are the largest property tax payer in the county. Western donates approximately \$1,000,000 annually to local non-profit, charitable organizations; our charitable donations include scholarships and donations to nearby schools, among other things, and we are the largest contributor to the United Way of El Paso.

We applaud TCEQ's thoughtful approach to optimizing the air monitoring network and assuring cost effectiveness of the monitors operated as well as meeting or exceeding all EPA requirements. Specifically, for El Paso County, we support the following proposals included by TCEQ in the monitoring plan:

 Deploying a collocated PM_{2.5} FRM monitor at the El Paso Chamizal site to meet collation requirements Comments from Western Refining Inc TCEQ 2016 Annual Monitoring Network Plan June 16, 2016

- Removal of the NCore network designation for the NO₂ monitors at the El Paso Chamizal and maintaining the PAMS and SLAMS network designations only
- Adding no source-oriented sulfur dioxide monitoring stations in El Paso County
- Discontinuing the TSP Pb monitor at El Paso Chamizal

Given the annual measurements of $PM_{2.5}$ at the Chamizal site that fall within 17% of the NAAQS, the collocated $PM_{2.5}$ FRM monitor at this site may prove to be especially valuable.

We have no additional recommendations for the monitoring plan for 2016. Nonetheless, given that EPA requires an annual review of the monitoring plan, we recommend additional considerations for the monitoring plan review cycle in 2017. Very possibly, EPA will designate El Paso County nonattainment under the 2015 ozone standard. Additional monitoring information may gain importance as TCEQ strives to bring El Paso County back into attainment. The conceptual model that has been developed for El Paso County recommends additional monitoring to support further understanding of ozone transport into the area and ozone mixing from upper layers. We urge TCEQ to consider the recommendations from the conceptual model in devising future monitoring plans for El Paso County, in 2017.

If you have any questions on the information contained in this email, please contact Marise Textor at 915-474-7897 or marise.textor@wnr.com.

Sincerely.

Marise Textor

Director, Regulatory Affairs

cc: David Brymer – david.brymer@tceq.texas.gov
Donna Huff – donna.huff@tceq.texas.gov
Erik Gribbin -- erik.gribbin@tceq.texas.gov
Fernando Mercado -- fernando.mercado@tceq.texas.gov

June 16, 2016

Holly Landuyt, MC-165 Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

monops@tceq.texas.gov

Via Electronic Mail

Re: Sierra Club Comments on Texas's Proposed 2016 Annual Monitoring Network Plan

Dear Ms. Landuyt,

On behalf of thousands of members and supporters who live, work, and recreate in Texas, Sierra Club respectfully submits these comments regarding the Texas Commission on Environmental Quality's ("TCEQ") Proposed 2016 Annual Monitoring Network Plan.

Monitoring network plans must achieve three objectives: (1) provide the public with data on air pollution; (2) provide supporting data for air pollution research; and (3) "support compliance with ambient air quality standards and emissions strategy development." Additionally, a network must also incorporate "a variety of types of monitoring sites."

² Id. §1.1.1. The regulations specify "six general site types":

(a) Sites located to determine the highest concentrations expected to occur in the area covered by the network. (b) Sites located to measure typical concentrations in areas of high population density. (c) Sites located to determine the impact of significant sources or source categories on air quality. (d) Sites located to determine general background concentration levels. (e) Sites located to determine the extent of regional pollutant transport among populated areas; and in support of secondary standards. (f) Sites located to measure air pollution impacts on visibility, vegetation damage, or other welfare-based impacts.

¹ 40 C.F.R. § 58 App. D, § 1.1 (2011).

Monitoring sites must be capable of informing air quality managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and air pollution levels near specific sources.³

To further those objectives, and to ensure that Texas adopts and implements a robust air quality monitoring network that ensures clean, healthy air for all Texans, Sierra Club respectfully provides these comments, which addressing three significant concerns in TCEQ's 2016 Annual Air Monitoring Network Plan: (1) the adequacy of TCEQ's proposed SO₂ monitoring network under the Data Requirements Rule for the 2010 National Ambient Air Quality Standard ("NAAQS"); (2) the dearth of monitoring in rural areas despite many large stationary sources located there; and (3) new monitoring needs resulting from the boom in shale gas production, known as fracking.

I. TCEQ'S SO2 MONITORING NETWORK IS INSUFFICIENT TO SUPPORT COMPLIANCE WITH THE 1-HOUR SO2 NAAQS.

A. The Public Health Impacts of SO₂ Emissions are Significant.

Sulfur dioxide pollution causes numerous harmful human health and environmental effects. EPA has determined that exposure to SO₂ on time scales as short as five minutes can cause decrements in lung function, asthma attacks, and respiratory and cardiovascular morbidity.⁴ Children and adults with asthma are particularly at risk for adverse health effects from short-term SO2 exposure.⁵ Exposure to SO₂ can also aggravate existing heart disease, leading to increased hospitalizations and premature death.⁶ According to EPA, fossil fuel combustion at electric utilities contributes the majority of anthropogenic SO₂ emissions.⁷

In addition to the direct adverse health effects of SO₂ emissions, SO₂ pollution contributes to the formation of secondary particles of fine particulate matter (PM2.5). Secondary particles of PM2.5 are formed from atmospheric reactions of chemicals, including SO₂, and most of the fine particle pollution in the United States is formed in this way. PM2.5 pollution contributes to a number of adverse health effects, including heart attacks, aggravated asthma, decreased lung function, coughing, and difficulty breathing. Most disturbingly, PM2.5 is also associated with premature death in people with existing heart or lung disease. According to the EPA, "the evidence is sufficient to conclude that the relationship between long-term PM2.5

^{3&}lt;sub>Id</sub>

⁴ *See* Primary National Ambient Air Quality Standard for Sulfur Dioxide Final Rule, 75 Fed. Reg. 35,520, 35,525 (June 22, 2010).

⁵ See id. at 35,525-26.

⁶ Sulfur Dioxide, Envtl. Prot. Agency, http://www.epa.gov/oaqps001/sulfurdioxide/health.html.

⁷ Envtl. Prot. Agency, Our Nation's Air: Status and Trends Through 2008, 6, Fig. 2 (2010).

⁸ EPA, Basic Information on Particulate Matter, available at http://www.epa.gov/pm/basic.html .

⁹ EPA, Health Information on Particulate Matter, available at http://www.epa.gov/pm/health.html (last visited June 23, 2014).

 $^{^{10}}$ *Id*.

B. <u>EPA's 2010 SO₂ NAAQS</u>

Recognizing that the prior 24-hour and annual SO_2 standards did not adequately protect the public against adverse respiratory effects associated with short term (5 minutes to 24 hours) SO_2 exposure, EPA revised the primary SO_2 NAAQS in 2010. ¹² To reflect the most current science on SO_2 impacts, EPA set the new ambient standard at 75 ppb (196 μ g/m3) as an hourly average. ¹³ Due both to its shorter averaging time (1-hour versus 24-hour) and significantly lower allowable concentration (75 ppb versus 140 ppb), the new standard is considerably more stringent than the prior SO_2 NAAQS and promises significant public health benefits. EPA estimated that the new 1-hour SO_2 standard would, if properly implemented, prevent 2,300-5,900 premature deaths and 54,000 asthma attacks a year. ¹⁴

Timely implementation of the new NAAQS is therefore critical. Each year of delay in implementing the SO₂ NAAQS means, on a national level, as many as 5,900 people will die prematurely and 54,000 asthma attacks will occur unnecessarily. Each year of delay will likewise drive up the medical costs that individuals will have to pay, and will be another year in which people must abstain from everyday activities such as exercise, school, and work. EPA estimated that the net benefit of implementing the 75 ppb SO₂ NAAQS was up to \$36 billion dollars nationally. ¹⁵

In adopting the 1-hour SO2 NAAQS, EPA recognized the "strong source-oriented nature of SO₂ ambient impacts." 75 Fed. Reg. at 35,370. Unlike regional pollution problems, short term SO₂ air pollution problems are caused by single sources and occur in the near vicinity of that source. Thus, EPA concluded that the appropriate methodology for purposes of determining compliance, attainment, and nonattainment with the new NAAQS is modeling, since it would be virtually impossible to site sufficient monitors around each individual source of SO₂ pollution. See 75 Fed. Reg. at 35,551 (describing dispersion modeling as "the most technically appropriate, efficient, and readily available method for assessing short-term ambient SO₂ concentrations in areas with large point sources."). EPA also determined in the final SO₂ NAAQS rule that it did "not expect monitoring to become the primary method by which ambient concentrations are compared to the new 1-hour SO2 NAAQS." 16

_

¹¹ EPA, Integrated Science Assessment for Particulate Matter, EPA/600/R-08/139F (Dec. 2009), at 7-96, available at http://www.epa.gov/ncea/pdfs/partmatt/Dec2009/PM_ISA_full.pdf .

¹² Minn. R. 7007.0100(7)(K-L); *see also* 40 C.F.R. § 50.17(a); Primary National Ambient Air Quality Standard for Sulfur Dioxide, 75 FR 35520, 35520-21 (June 22, 2010).

¹³ 40 C.F.R. § 50.17(a).

¹⁴ Envtl. Prot. Agency, Final Regulatory Impact Analysis (RIA) for the SO2 National Ambient Air Quality Standards (NAAQS), 5-35, tbl. 5.14 (2010).

¹⁵ 75 Fed. Reg. 35,520, 35,588 (June 22, 2010).

¹⁶ 75 Fed. Reg. at 35551.

C. <u>EPA's Data Requirements Rule</u>

On August 10, 2015, EPA finalized the Data Requirements Rule ("DRR") for the 2010 one-hour SO2 primary standard, which requires TCEQ to provide data to characterize air quality around many major sources of SO_2 .¹⁷ In particular, the rule requires the state to characterize the air quality around sources that emit 2,000 tons per year (tpy) or more of SO_2 and that are not located in an area already designated nonattainment. In Texas, there are 25 major sources of SO_2 meeting the DRR emissions applicability threshold.¹⁸

The DRR sets explicit deadlines for states to submit source-oriented monitoring or modeling to characterize ambient air quality impacts from major sources of SO₂ that meet the 2,000 tpy threshold. The state has three options. For each source identified under the DRR criteria, the state will be required to notify EPA by July 1, 2016, whether it intends to (1) characterize air quality through ambient monitoring, (2) characterize air quality through air quality modeling, or (3) whether it will be subjecting the pertinent source or sources to enforceable emission limits that will keep the source below this rule's 2,000 tpy threshold. If the air agency intends to rely on monitoring for a source, the air agency must include information about the planned new monitors in the annual monitoring plan that the air agency must submit to the EPA by July 1, 2016; and the air agency must also ensure that the new monitors are operational by January 1, 2017. The state's monitoring plans, however, are subject to EPA approval, and if the state's new monitors are not approved and operational by January 1, 2017, the state must demonstrate attainment with air dispersion modeling.¹⁹

To use monitoring to characterize air quality, states must take appropriate steps to identify, relocate and/or install new ambient SO₂ monitors that would characterize peak 1-hour SO₂ concentrations in areas around or impacted by identified SO₂ sources. In determining where to locate monitors, the Data Requirements Rule's Technical Assistance Document indicates that states should take into account all existing data in determining where to site monitors, including

²⁰ See generally, 80 Fed. Reg. 51085-88. In the Data Requirements Rule's companion Technical Assistance Document ("TAD"), EPA offers the following guidance on how air agencies might satisfy the SO₂ data requirements in order to determine compliance with the NAAQS: The EPA expects monitoring conducted in response to [an anticipated] future data requirements rule to be targeted, source-oriented monitoring, for which the primary objective would be to identify peak SO₂ concentrations in the ambient air that are attributable to an identified emission source or group of sources.

See SO2 NAAQS Designations Source-Oriented Monitoring Technical Assistance Document, U.S. EPA Office of Air and Radiation, Office of Air Quality Planning and Standards, Air Quality Assessment Division (December 2013 Draft),

http://www.epa.gov/airquality/sulfurdioxide/pdfs/SO2MonitoringTAD.pdf.

¹⁷ Data Requirements Rule for the 2010 1-Hour Sulfur Dioxide (SO2) Primary National Ambient Air Quality Standard (NAAQS), 80 Fed. Reg. 51052 (Aug. 21, 2015) (to be codified at 40 C.F.R. § 51, Subpart BB).

¹⁸ 2016 Air Monitoring Network Plan at 7; *see also* https://www3.epa.gov/airquality/sulfurdioxide/drr/drr-source-list-epa.pdf.

¹⁹ See 80 Fed. Reg. at 51074, 51087-88.

"existing modeling results." Air agencies that choose to use monitoring as a means of satisfying the Data Requirements Rule are thus required to develop a network proposal, in which it demonstrates (based on all available modeling) that the area characterized around an identified SO_2 source (or sources) includes the locations where peak 1-hour SO_2 concentrations are expected to occur. ²²

TCEQ's 2016 Annual Monitoring Network Plan indicates that the agency intends to deploy source-oriented SO₂ monitors near 14 of the 25 identified sources by the January 1, 2017 rule deadline.²³ TCEQ further indicates that due to the close geographical proximity of 4 out of the 14 sources, a total of 12 monitoring stations are proposed for deployment to characterize ambient air quality surrounding each of these sources. Because EPA is subject to a consent decree to complete area SO2 designations for the remaining 12 sources on Texas's DRR list by July 2, 2016, ²⁴ TCEQ has indicated that it does not intend to characterize SO2 emissions near any of those locations.²⁵ Sources located in Texas for which EPA will issue area designations by July 2, 2016, include Big Brown, Sandy Creek Energy Station, Sandow, Monticello, San Miguel, Coleto Creek, Martin Lake, Tolk Station, Optim Energy Twin Oaks, Harrington Station, Limestone, and WA Parish. In 2012, which is when EPA's designations were required under the 2010 standard, those 12 sources accounted for nearly 287,000 tons per year of SO₂ –nearly 85% of Texas's total emissions.²⁶

D. <u>Texas Must Comply with the Data Requirements Rule for All Sources that Emit More the 2,000 TPY Threshold</u>

As an initial matter, TCEQ incorrectly suggests that it need not include in its monitoring plan any of the facilities subject to EPA's designation consent decree. The final DRR provides that for:

each source area subject to requirements for air quality characterization, the air agency shall notify the EPA by July 1, 2016, whether it has chosen to characterize peak 1- hour SO2 concentrations in such area through ambient air quality monitoring; characterize peak 1-hour SO2 concentrations in such area through air quality modeling techniques; or provide federally enforceable emission limitations by January 13, 2017 that limit emissions of applicable sources to less than 2,000 tpy, in accordance with paragraph (e) of this section, or provide documentation that the applicable source has permanently shut down.

²² TAD at 16 ("The primary objective is to place monitoring sites at the location or locations of expected peak concentrations.").

http://www.epa.gov/airquality/sulfurdioxide/designations/pdfs/sourceareas.pdf.

²¹ TAD at 2.

²³ 2016 Annual Monitoring Network Plan at 6-7.

²⁴ EPA, Air Designations for the 2010 SO2 National Ambient Air Quality Standard to be Completed by July 2, 2016, available at

²⁵ See TCEQ 2016 Monitoring Netork Plan at 6-7.

²⁶ https://ampd.epa.gov/ampd/.

40 C.F.R. § 51.1203. If the state fails to meet those deadlines for demonstrating attainment through monitoring, the state must demonstrate attainment through modeling. Accordingly, if TCEQ wishes to demonstrate attainment through monitoring for any of the 11 sources subject to EPA's consent decree, it must still meet the deadlines set out in the DRR. TCEQ should not, and cannot, simply wait for EPA to make a designation decision before the state decides how to comply with the rule.

This is critically important because, as noted, if TCEQ fails to provide information establishing an adequate monitoring plan for a source subject to the rule, the state must demonstrate attainment through modeling. Air dispersion modeling recently conducted by Wingra Engineering, S.C. on behalf of the Sierra Club demonstrates that sulfur dioxide ("SO₂") emissions from the Big Brown Steam Electric Station, Limestone Electric Generating Station, Martin Lake Generating Station, Monticello Steam Electric Station, and the W.A. Parish Electric Generating Station in Texas have each caused downwind SO₂ ambient air concentrations to exceed the 75 parts per billion NAAQS, which translates to 196.2 micrograms per cubic meter ("µg/m³"). Using the most recent emissions data for each facility, the modeling shows:

- Big Brown causes concentrations as high as 454 μg/m³
- Limestone causes concentrations as high as 249 µg/m³
- Martin Lake causes concentrations as high as 347 μg/m³
- Monticello causes concentrations as high as 329 μg/m³
- W.A. Parish causes concentrations as high as 394 μg/m³

The modeling also demonstrates that the exceedances in the areas surrounding these facilities are even greater when nearby sources of SO_2 are taken into account. The modeling analyses submitted by Sierra Club also demonstrated that even adjusting certain emissions and stack parameter assumptions, as suggested by TCEQ, these facilities still cause significant exceedances of the 1-hour standard in the surrounding areas.

Consistent with Sierra Club's recommendation, and as supported by the Wingra Engineering modeling, EPA proposed to designate the areas around Big Brown, Monticello, and Martin Lake as nonattainment. *See* 81 Fed. Reg. 10563. While TCEQ may dispute that designation, the agency's failure to develop a monitoring plan for those sources effectively precludes it from attempting to demonstrate attainment through monitoring. Moreover, even if EPA were to reverse course and designate those sources as unclassifiable, Big Brown, Monticello, and Martin Lake would still be subject to potential designation using modeling in 2017. Similarly, although EPA proposed to designate the areas surrounding Limestone and W.A. Parish as unclassifiable, TCEQ's failure to develop a monitoring plan for those facilities means that those sources may still be designated as nonattainment in 2017, using modeling. By failing to develop an attainment demonstration plan for any of the 11 largest sources of SO₂ in Texas, TCEQ is unnecessarily risking both public health and regulatory certainty.

E. Monitors Alone Cannot Accurately Evaluate Compliance with the SO₂ NAAQS

As EPA explained in the final 2010 SO₂ NAAQS Rule, "even if monitoring does not show a violation," that absence of data is not determinative of attainment status absent modeling,

and that monitoring in general is "less appropriate, more expensive, and slower to establish." TCEQ's plan to deploy a more extensive monitoring network as part of the NAAQS implementation process suffers from a number of drawbacks that render this approach too slow, too impractical, and too ineffective for monitoring to replace modeling as the primary means of implementing the 1-hr SO₂ NAAQS.

First, a single monitor may not be sufficient to characterize SO_2 air quality or to determine compliance with the 1-hr SO_2 standard. For any area with fewer than three SO_2 monitors positioned to capture peak concentrations from a large SO_2 source, monitoring will be inadequate to establish 1-hr SO_2 compliance. If only one monitor is located near a large source, that source has a clear invitation to game the system by, for example, slightly adjusting its stack or operating parameters to ensure that high impacts will not occur at the one monitor.

Second, even if TCEQ were to have the resources to deploy a sufficient number of monitors, the state may not be able to locate a monitor where the modeling indicates the highest impacts are likely to occur for technical reasons, such as an inability to gain physical or legal access to the site, or lack of access to power supply.²⁹

Third, even if a sufficiently extensive monitoring network were established, full implementation of the NAAQS through monitoring would likely take up to a decade, which Sierra Club submits is an unacceptable amount of time given that the implementation of the 2010 SO₂ NAAQS has already been delayed for more than five year, and given the grave health risks associated with SO₂ exposure. Not only would this delay be a disservice to the public, it would also be a disservice to the regulated entities, especially owners of coal-fired power plants, which must make critical decisions now about future operations. Many of these sources are already in distress due to a number of factors, including low natural gas prices, declining demand for energy, an increasing availability of zero- or low- SO₂ generating sources, and the age of the existing coal-fired power plant fleet. Evaluating and achieving compliance through more expeditious and cost-effective air dispersion modeling can thus provide the regulatory clarity needed to make prudent decisions about those plants now that reliance on increased monitoring alone cannot.

Finally, EPA itself has acknowledged that, for medium to large sources, monitoring is "less appropriate, more expensive, and slower to establish." This has been EPA's position for decades. For example, in 1994, EPA explained:

²⁸ See, e.g., Andrew Gray, Gray Sky Solutions, "Review of Missouri's 2014 SO₂ Ambient Air Monitoring Network," June 24, 2014, at 1, attached as Ex. 1.

²⁷ 75 Fed. Reg. at 35551.

An inability to place monitors at appropriate locations is another argument in favor of a modeling approach, as EPA has long recognized: "Although siting criteria may preclude the placement of ambient monitors at certain locations, this does not preclude the placement of model receptors at these sites." U.S. EPA 1994 SO2 Guideline Document at 2-6, available at http://www.epa.gov/ttn/naaqs/aqmguide/collection/cp2/19940201_oaqps_epa-452_r-94-008_so2_guideline.pdf [hereinafter, "1994 SO2 Guideline Document"].

30 75 Fed. Reg. at 35570.

A small number of ambient SO₂ monitors usually is not representative of the air quality for an area. Typically, modeling estimates of maximum ambient concentration are based on a fairly infrequent combination of meteorological and source operating conditions. To capture such results on a monitor would normally require a prohibitively large and expensive network. Therefore, dispersion modeling will generally be necessary to evaluate comprehensively a source's impacts and to determine the areas expected high concentrations.[] Air quality modeling results would be especially important if sources were not emitting at their maximum level during the monitoring period or if the monitoring period did not coincide with potentially worst-case meteorological conditions.³¹

EPA has also explained:

Monitoring is not more accurate than computer modeling, except for determining ambient concentrations under real-time conditions at a discrete location. Monitoring is limited in time as well as space. Monitoring can only measure pollutant concentrations as they occur; it cannot predict future concentrations when emission levels and meteorological conditions may differ from present conditions. Computer modeling, on the other hand, can analyze all possible conditions to predict concentrations that may not have occurred yet but could occur in the future.³²

The cost of modeling compliance with the SO₂ NAAQS is modest, particularly in comparison to the costs of installing and operating an adequate SO₂ monitoring network. This is particularly true where, as here, the vast majority of SO₂ pollution comes from a relatively small group of very large sources. If TCEQ does not have sufficient in-house modeling resources, the agency would incur some costs charged by third-party modelers, but even these costs are comparatively nominal. Independent third-party modelers could conduct AERMOD time series modeling for SO₂ for less than \$5,000 per source, and in most instances less than \$3,000. In stark contrast, simply purchasing and installing a single monitor can cost upwards of \$100,000 per site. By focusing on modeling the sources subject to the DRR, TCEQ could ensure that the protections promised by the NAAQS are met in a cost-effective and expeditious manner.

F. <u>TCEQ's Proposed SO₂ Monitoring Network is Inadequate to Determine Whether Some of</u> the Largest Pollution Sources are Causing Unhealthy Levels of SO₂

In 2012 the 17 Texas coal-fired power plants subject to the DRR emitted nearly 330,000 tons of sulfur dioxide—more than all of the sources in Oklahoma, Arkansas, Louisiana, New Mexico, and Mississippi combined.³³ This is due primarily to the fact that Texas's aging coal plants lack the type of cost-effective, modern pollution controls installed at many other plants

³¹ 1994 SO₂ Guideline Document at 2-5 to 2-6 (emphasis added).

³² 67 Fed. Reg. 22,168, 22,185 (May 2, 2002) (emphasis added).

³³ See https://ampd.epa.gov/ampd/.

around the country. 34 In fact, the 12 power plants subject to EPA's consent decree, and which must be designated by July 2016, accounted for approximately 85% of the state's total SO_2 pollution.

Despite the massive amount of SO₂ emitted by the 25 Texas sources subject to the DRR, TCEQ proposes to operate only twelve SO₂ ambient air monitors in the state. Remarkably, even though the EPA consent decree facilities are without a doubt the largest emitters of SO₂ in the state, TCEQ proposes to install a monitor near only one of those facilities (Sandow 4). And that appears to be because Sandow 5 is also located at the same facility. Instead, TCEQ proposes to install monitors near the only the Pirkey, Welsh, Sandow 4 & 5, Oak Grove, and Harrington Plants—which collectively account for approximately 35,000 tpy SO₂. Or, approximately 12% of the total emissions from the 12 sources subject to EPA's consent decree. Instead of providing the public with helpful data about SO2 pollution in Texas, as required by EPA's regulations, the TCEQ monitoring plan serves only to distort and minimize the true extent of SO2 pollution in Texas. By focusing on a subset of sources that is responsible for only a fraction of Texas's staggering SO2 emissions, TCEQ undermines the core purposes of EPA's monitoring regulations: provide the public with accurate data on air pollution³⁵

Even if TCEQ's monitoring plan accurately represented Texas SO₂ emissions (which it does not), the agency's monitoring plan fails to demonstrate that the proposed SO₂ monitors are placed in a location and manner that captures the peak predicted emissions concentrations from the few plants TCEQ does intend to monitor. By way of example, air dispersion modeling conducted by Wingra Engineering on behalf of Sierra Club demonstrates that TCEQ's proposed monitoring placements for the Harrington and Sandow power plants do not capture peak predicted impacts from the major sources subject to the DRR. Instead, the modeling demonstrates that the best location for a single monitor to identify the highest SO₂ concentrations caused by emissions from each of those major sources should be in significantly different locations. *Compare* Ex. 2 at 1-2 *with* 2016 Air Monitoring Plan App'x E at E-205 to E-207. Indeed, air dispersion modeling conducted by Wingra Engineering indicates that location of peak impacts from the Harrington coal plant is more than a half mile from TCEQ's proposed location.

Similarly, air dispersion modeling conducted by Wingra Engineering demonstrates that the location of peak impacts for the Sandow power plant is 1.75 northwest of TCEQ's proposed monitor location. *Compare* Ex. 2 at 3-4 *with* 2016 Air Monitoring Plan App'x E at E-130 to E-133. This is significant because while TCEQ proposes to monitor SO2 concentrations right outside the Sandow fence line, air dispersion modeling demonstrates that the high impacts are actually nearly two miles away on private property.

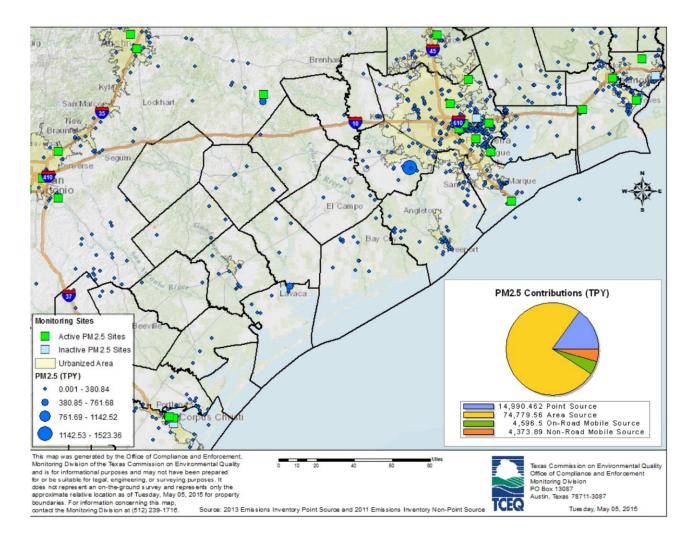
As explained in the reports attached as Exhibit 2, this modeling was conducted according to EPA protocol, using recent actual emissions. The recommended monitor sites attached in Exhibit 3, and the modeling reports attached in Exhibit 2, represent the beginning of what Sierra

³⁴ See NRDC, Benchmarking Air Emissions of the 100 Largest Electric Power Producers in the *U.S.*, 2014, available at http://www.nrdc.org/air/pollution/benchmarking/. ³⁵ 40 C.F.R. § 58 App. D, § 1.1 (2011).

Club hopes will eventually be a robust monitoring network—informed and supplemented by air quality modeling—that will ensure that Texas is able to identify, address, and prevent SO_2 NAAQS exceedances.

Sierra Club urges TCEQ to reevaluate its proposed monitoring placement to ensure that the agency's proposed monitoring network captures peak SO_2 impacts, as required by the DRR. Sierra Club also urges TCEQ to reevaluate its decision to forego characterization of ambient air quality near the 12 coal plants subject to EPA's consent decree deadline. If TCEQ fails to submit an approvable plan for evaluating SO_2 emissions near those facilities, EPA may designate those facilities based on modeling information.

II. THE MONITORING NETWORK IS NOT ADEQUATE TO ASSESS THEAIR IMPACTS OF THE STATE'S LARGEST POLLUTERS, MANY OF WHICH ARE LOCATED OUTSIDE URBAN AREAS.


As noted, monitoring network plans must achieve three objectives: (1) provide the public with data on air pollution; (2) provide supporting data for air pollution research; and (3) "support compliance with ambient air quality standards and emissions strategy development." Additionally, a network must also incorporate "a variety of types of monitoring sites." Monitoring sites must be capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, *and air pollution levels near specific sources*.

Texas' existing monitoring network fails to ensure health protections for citizens of non-urban areas near highly polluting sources. This is true not only for SO_2 , as discussed above, but also $PM_{2.5}$, NOx, and other pollutants. Indeed, the 2016 Annual Monitoring Network Plan makes clear that many of the largest sources of SO_2 , NOx, and $PM_{2.5}$ are in areas with no representative monitor. TCEQ fails to explain why there is no need to monitor air quality near these sources. In particular, there are insufficient $PM_{2.5}$ monitors to capture the local or area impacts of any of the following large sources: W.A. Parish, Big Brown, Martin Lake, or Fayette, each by far largest point sources of $PM_{2.5}$ in their respective regions. See e.g., 2016 Annual Monitoring Network Plan at App'x I (no listed monitors near those sources; see also Five Year Assessment, at 58 and pasted below (large blue circle representing PM2.5 emissions in the location of W.A. Parish plant); 111 (large blue circles representing PM2.5 emissions in location of Fayette and Big Brown plants); 153 (large blue circles representing PM2.5 emissions in location of Fayette and Big Brown plants).

³⁶ 40 C.F.R. § 58 App. D, § 1.1.

³⁷ *Id.* §1.1.1. The regulations specify "six general site types:

⁽a) Sites located to determine the highest concentrations expected to occur in the area covered by the network. (b) Sites located to measure typical concentrations in areas of high population density. (c) Sites located to determine the impact of significant sources or source categories on air quality. (d) Sites located to determine general background concentration levels. (e) Sites located to determine the extent of regional pollutant transport among populated areas; and in support of secondary standards. (f) Sites located to measure air pollution impacts on visibility, vegetation damage, or other welfare-based impacts."

Although population levels are one metric by which states must consider where to place monitor, EPA has also indicated that "[s]tates may also propose, and EPA would be inclined to approve, the placement of PM2.5 monitors in populated areas too small to be subject to the requirements regarding minimum numbers of monitors, *if there is reason to believe PM2.5 concentrations are of concern.*" 39

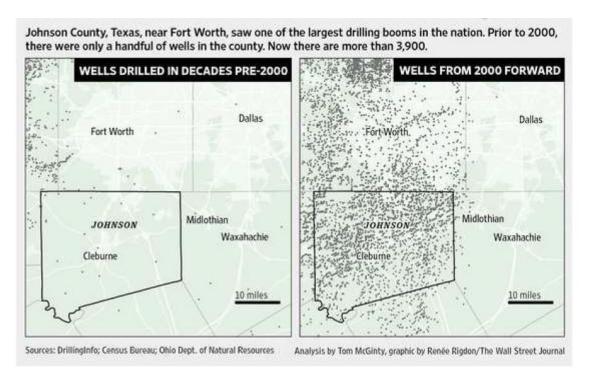
Beyond the sheer volume of PM_{2.5} being emitted by some sources outside urban areas, there is also "reason to believe PM_{2.5} concentrations are of concern" because some sources, such as Luminant's Sandow 4, Martin Lake, Big Brown, and Monticello coal-fired power plants, routinely exceed the 30% opacity limit in the Texas SIP, as demonstrated in exceedance reports submitted to TCEQ. Opacity (a measure of how much light is blocked by a plume of smoke) is a proxy for particulate matter pollution and is often the only metric used to establish compliance with PM2.5 emissions limits in the plants' permits. At times, these plants will measure opacity at 70, 80, 90, or even 100% for hours on end. TCEQ has exempted such exceedances for enforcement purposes because they regularly occur during plant startups and shutdowns, periods during which the plants do not run their particulate matter controls.

³⁹ Revisions to Ambient Air Monitoring Regulations, 71 Fed. Reg. 61236, 61264 (Oct. 17, 2006).

Setting aside EPA's Startup, Shutdown, and Maintenance SIP Call—in which EPA concluded that TCEQ's approach to SSM events is inconsistent with the Clean Air Act⁴⁰—TCEQ's refusal to monitor and account for these events results in the emission of enormous amounts of particulate matter each time one of these plants starts up and does not run its PM controls. For example, Big Brown reported to TCEQ in 2011 that 19% of its total annual PM2.5 pollution from Unit 1 is released during non-routine operations. ⁴¹ Given that these startup/shutdown or exceptional event periods occur during only a small percentage (about 2%) of the plant's operating time, the particulate matter released during those periods must be many orders of magnitude higher than during routine operations. It is no wonder that opacity readings are often upwards of 75% during these times. If TCEQ will not require the plants experiencing these regular exceedances, the agency should at a minimum provide for some air monitoring to evaluate the impact of these events on the surrounding communities' air. Although they are located outside urban areas, people do live within the vicinity of these plants, and their health should be protected. On behalf of its members living outside urban centers, Sierra Club urges TCEQ to more thoroughly evaluate the need for monitors near large, highly polluting sources in less populated areas.

III. THE MONITORING NETWORK IS CURRENTLY INADEQUATE TO ASSESS FRACKING POLLUTION ACROSS THE STATE.

The Texas fracking boom presents significant challenges for maintaining healthy air quality in Texas. A growing body of studies have documented emissions of airborne pollutants from fracking sites that are known to cause cancer and harm the nervous, respiratory, and immune systems. Documented pollutants from fracking include toxics, Diesel PM, PM2.5, NOx, and others. Unhealthy spikes in ozone levels also have been found to occur in areas of increased drilling activity. Unhealthy spikes in ozone levels also have been found to occur in areas of increased drilling activity.


⁴⁰ State Implementation Plans: Response to Petition for Rulemaking; Restatement and Update of EPA's SSM Policy Applicable to SIPs; Findings of Substantial Inadequacy; and SIP Calls To Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown and Malfunction; Final Rule, 80 Fed. Reg. 33840 (June 12, 2015).

⁴¹ See, e.g., Exhibits 4 (PM, PM10, and PM2.5 emissions from top 100 sources in Texas); & 4 (Comparison of routine and non-routine PM, PM10, and PM2.5 emissions from the Big Brown Plant). Through its state permitting program for "planned" maintenance, startup, and shutdown events, TCEQ has allowed Luminant to stop reporting its plants' opacity exceedances during these periods. However, Luminant has made no changes in its operations, so we have every reason to believe that they continue.

⁴² Natural Resources Defense Council, *Fracking Fumes: Air Pollution from Hydraulic Fracturing Threatens Public Health and Communities* (attached as Exhibit 5).
⁴³ *Id.* at 9-10.

⁴⁴ *Id.* at 2.

Both the extraction and processing of shale gas produces harmful pollutants in areas not adequately covered by the existing monitoring network. In fact, the 2016 plan fails to even mention of this issue, let alone identify how to ensure that air quality in shale gas processing areas meets federal standards. The following image gives a sense of the massive increase in new pollution sources in Texas since 2000 (but is not intended to represent the only areas affected).

While Sierra Club recognizes that there are air monitors near relatively large population centers, such as the north/west Dallas area, the monitoring plan does not adequately account for hotspots of drilling activity across the state. ⁴⁵ Given the documented air pollution impacts of fracking (discussed in more detail in Exhibit 5), TCEQ must explain whether it plans to similarly expand air monitoring to protect communities living in and around other Texas shale plays, such as the Eagle Ford shale, and the Haynesville-Bossier shale, and the eastern or southern portions of the Barnett shale.

IV. CONCLUSION

For the reasons discussed above, TCEQ's monitoring plan is inadequate because the monitoring network will not properly characterize peak concentrations from TCEQ must also consider adding source-oriented monitors in other locations, as described in the attached air dispersion modeling, to ensure that peak concentrations from other medium and large SO2 sources are caught throughout the state. Further, TCEQ must conduct further dispersion modeling to comply with the 1-hour SO2 standard. Finally, in order to protect the health of

⁴⁵ See TCEQ, Texas Active Oil and Gas Wells, at http://www.tceq.state.tx.us/assets/public/implementation/barnett_shale/bs_images/txOilGasWells.png

Texas citizens, TCEQ must assess the impacts of air pollution on rural areas and account for the boom in Texas fracking.

Thank you for the opportunity to comment.

Respectfully submitted,

Joshua Smith

Staff Attorney

Sierra Club

2101 Webster Street, Suite 1300

Oakland, CA 94612