Appendix D: Example FAR

FILTER ASSESSMENT REPORT FOR INDIVIDUAL FILTERS FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER THAT ARE REQUIRED TO CONDUCT AN INDIVIDUAL FILTER ASSSESSMENT PUBLIC WATER PLANT NAME SYSTEM NAME: **TCEQ WSC** OR NUMBER: PDWS Water Treatment Plant FILTER PWS ID No .: 1234567 NUMBER: Filter No. 5 First Event: December 24, 2015 Second Event: January 6, 2016 Third Event: February 12, 2016 DESIGN SPECIFICATIONS FILTER TYPE OPERATING MOD Gravity Constant Rate/Variable Leve Diameter (ft) Length (ft) Width (ft) Surface Area (ft²) Freeboard (ft) Max Head Loss (ft) MEDIA BED DIMENSIONS MEDIA TYPE Multiple Media MEDIA SPECS Material Min. Size (mm) Specific Gravity Depth (inches) Max. Size (mm) 1.60 1.40 Layer 1 Material Anthracite Layer 2 Material Unknown Layer 3 Material Garnet 3.00 0.20 1.40 Unknown TOTAL DEPTH (inches) 1206.4 L/D RATIO Type-S with gravel No. of Grades UNDERDRAIN TYPE Min. Size (in) Max. Size (in) Total Depth (in) SUPPORT GRAVEL TROUGHS SUPPL. BACKWASH Air Scour (retrofit) Number FILTER-TO-WASTE Separation (inches) 39.00 Regulatory Std Design During Backwash Typical Maximum App'd Exception FILTER FLOW RATE (gpm) 1833 None LOADING RATE (gpm/ft²) 3.86 4.63 BW FLOW RATE (gpm) 5000 3800 BW LOADING RATE (gpm/ft²) 12.5 - 21.817.36 13 19 17.36 Source Meter Controller Turbidimeter LOHG FILTER INFLUENT Fix. weir Split Proportiona FILTER EFFLUENT None Hach 1720D Water Lvl Indicator BACKWASH WATER Filters & Pump ADDITIONAL REMARKS: There flow distribution to the filter is controlled with a fixed-weir splitter box and a valve that is completely opened when the filter is online and is completely closed when the filter is out of service during backwash and the subsequent idle period **OPERATING PROCEDURES** Flow Meter Backwash Meter Mech. ROFO CALIBRATION NTU (Primary) NTU (Secondary) Method Frequency Annual Annual Quarterly Weekly June 13, 201 Date of Last January 24, 2016 ebruary 14, 2016 NTU Meter Display DATA CONSISTENCY Frequency and Span Date SCADA Display Data Recorder Grab Sample every 5 min, 0.00 - 5.00 02/19/2016 14:35 Test Data 0.271 0.29 0.269 BACKWASH Turbidity (NTU) LOH (ft) Run Time (hr) Run Volume (gal) Filtration Rate Criteria NA NA Monitoring Interval 5 min 8 hrs Each Shift WRITTEN SOPs ADDITIONAL REMARKS: We are creating a Filter Inspection SOP as part of this Filter Assessment. Complete Filter Start-up Plant Shutdown Partial Filter Shutdown Partial Filter Backwash Complete Filter Inspection I certify that I am familiar with the information contained in this report and that, to the best of my knowledge, the information

January 2021 253

FILTER ASSESSMENT REPORT FOR INDIVIDUAL FILTERS

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER THAT ARE REQUIRED TO CONDUCT AN INDIVIDUAL FILTER ASSSESSMENT

PUBLIC WATER PLANT NAME

SYSTEM NAME: TCEQ WSC OR NUMBER: PDWS Water Treatment Plant

PWS ID No.: 1234567 FILTER NUMBER:

Filter No. 5

		CURRENT C	ONDITIONS			
DATE	TIME	TURBIDITY (NTU)	LOH (ft)	FLOW RATE (gpm)	RUN TIME (hr)	RUN VOLUME (gal)
February 17, 2002	6:00 AM	0.32	7.00	1,100	18.75	Unknown
PHYSICAL CONDITION		ADDITIONAL REI	MARKS: Some of th	e indicator marks on th	e LOHG ruler are no	ot legible.
Walls	Good					
Troughs	Minor Damage					
Suppl. Backwash	Fully Operational					
Flow Meter						
ROFC	Fully Operational					
Flow Control Valve	Fully Operational					
Turbidimeter	Fully Operational					
LOHG	Slight Malfunction					

		MEDIA SURF	ACE CONDITIONS		
	Before BW	After BW		Before BW	After BW
MOUNDS			RETRACTION		
Number	3	1	Number	1	0
Length (inches)	6 - 12	12	Length (inches)	18	
Width (inches)	6 - 9	12	Width (inches)	1	
Height (inches)	1 - 2.5	1.0	Depth (inches)	1.5	
DEPRESSIONS			CRACKS		
Number	6	0	Number	6	0
Length (inches)	18 - 36		Length (inches)	6 - 15	
Width (inches)	5 - 6		Width (inches)	0 - 0.5	
Depth (inches)	1.5 -3.75		Depth (inches)	0 - 0.5	
ACCUMULATED FLOC			MUDBALLS		
Thickness (inches)	0 - 0.25	Minimal	No. per ft ²	>10	0
Distribution	Uniform	Uniform	Size (inches)	0.25 - 0.75	
			Distribution	Localized	

ADDITIONAL REMARKS: The largest depressions are located adjacent to the backwash troughs. With the exception of one slight mound in the southwest corner of the filter, all of the anomalies were eliminated by the backwash cycle.B269

BW FLOW RATE (gpm)	2800
RISE RATE (inches/minute)	15.60
LOADING RATE (gpm/ft ²)	9.72
DURATION (minutes)	12.00
TOTAL VOLUME (gallons)	39,200
TROUGHS	
Levelness	Slighly Unlevel
Flooding	None
SUPPL. BACKWASH	
Duration (minutes)	5.0
Effectiveness	Adequate
JETTING	
No. of Sites	2
Severity	Moderate
BW WATER DISTRIBUTION	Even/Uniform
SPENT BWW TURBIDITY	2.98
EXPANSION (inches)	12.00
EXPANSION (percent)	35.29411765
YIELD (percent)	Unknown

BACKWASH CONDITIONS

ADDITIONAL REMARKS: In one area of the filter, a severe jet was observed but we classified it as moderate because it did not seem to affect the backwash effectiveness in other parts of the filter.

254 January 2021

FILTER ASSESSMENT REPORT FOR INDIVIDUAL FILTERS

FOR PUBLIC WATER SYSTEMS THAT ARE USING SURFACE WATER SOURCES OR GROUND WATER SOURCES UNDER THE INFLUENCE OF SURFACE WATER THAT ARE REQUIRED TO CONDUCT AN INDIVIDUAL FILTER ASSSESSMENT

FILTER PROBE

PUBLIC WATER PLANT NAME

SYSTEM NAME: TCEQ WSC OR NUMBER:

PDWS Water Treatment Plant

 FILTER

 PWS ID No.:
 1234567
 NUMBE

NUMBER: Filter No. 5

NUMBER OF SITES	121
MEDIA	
Max. Thickness (inches)	37.00
Min. Thickness (inches)	26.00
Typ. Thickness (inches)	34.00
SUPPORT MATERIAL	
Max. Elevation	70.00
Min. Elevation	77.00
Typ. Elevation	75.00

ADDITIONAL REMARKS: One relatively large gravel mound was detected in the northeast corner of the filter.

		FILTER EX	CAVATION			
	REFERENCE	SITE 2	SITE 3	SITE 4	SITE 5	SITE 6
SITE CHARACTERISTIC	Normal	Normal	Normal	Media Mound	Gravel Mound	Crack
LAYER 1 (Top Layer)	18.00	19.00	18.00	21.00	14.00	18.00
INTERFACE 1	2.50	2.00	2.00	1.50	1.25	2.50
LAYER 2	11.00	12.00	11.00	11.00	10.00	12.00
INTERFACE 2	0.75	0.50	0.75	0.50	0.50	
LAYER 3	4.00	4.00	3.75	3.00	0.00	
INTERFACE 3						
LAYER 4						
MUDBALLS	Few	None	None	Few	None	Few
Max. Size (inches)	0.75			0.50		0.50
Min. Size (inches)	0.25			0.13		0.25
Max. Depth (inches)	4.00			5.00		3.00
	SITE 7	SITE 8	SITE 9	SITE 10	SITE 11	SITE 12
SITE CHARACTERISTIC	Retraction	Jetting				
LAYER 1 (Top Layer)	18.00	18.00				
INTERFACE 1	2.00	4.75				
LAYER 2	12.00	8.00				
INTERFACE 2	1.00	2.50				
LAYER 3	3.00	2.00				
INTERFACE 3						
LAYER 4						
MUDBALLS	Several	None				
Max. Size (inches)	0.75					

 MEDIA CONDITION

 Sharpness
 Good

 Encrustation
 Slight

 Uniformity
 Marginal

7.00

14

0.8%

Min. Size (inches)

Max. Depth (inches)

Mudball Volume (ml)

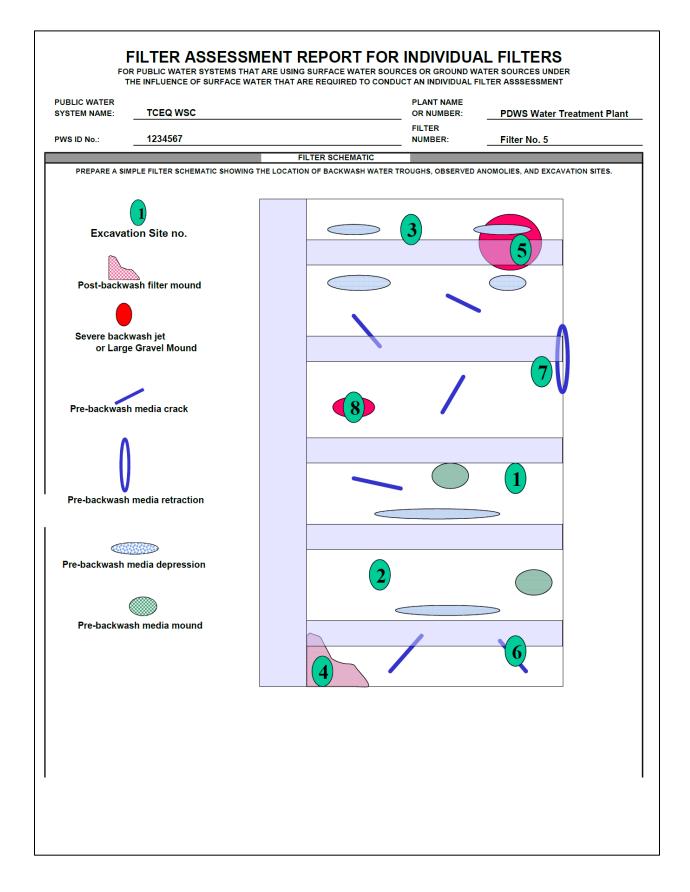
% Mudballs

ADDITIONAL REMARKS: The sand and garnet seemed in very good shape. The anthracite seemed slightly worn and encrusted. The anthracite grains did not seem very uniform in shape or size.

ADDITIONAL REMARKS: Several of the mudballs were placed in a chlorine solution (200 ppm, pH=4.5) for 12 hours and the mudballs dissolved. A representative sample of filter media was dried in an oven, weighed, and then placed in the acidified chlorine solution. After 12 hours, the media was removed, rinsed several times, dried and reweighed. The media lost 12% of its mass. The chlorine solution had a brownish tint so we neutralized the chlorine with thiosulfate and ran iron and manganese tests on the material. The manganese result was 0.55 mg/L and the iron result was 0.2 mg/L.

CONCLUSIONS

ADDITIONAL STUDIES


CONCLUSIONS: We have lost 5-6 inches of our anthracite and the anthracite that remains seems to no longer meet manufacturer's specifications. There is also a large gravel mound in one area of the filter. The presence of the severe backwash jet and the degree that the media layers were intermixed suggests that there is some underdrain damage in that part of the filter. The filter profile that was run on February 19th suggests that the performance of Filter No. 5 is adversely affected by sudden flow rate changes.

CORRECTIVE ACTION PLAN ATTACHED?

Yes

WOULD YOU LIKE SOME TECHNICAL ASSISTANCE FROM THE TCEQ?

January 2021 255

256 January 2021

SYSTEM NAME: TCEQWSC OR NUMBER: PDWS Water Treatment Pic PWS ID No.: 1234567 NARRATIVE DESCRIPTION OF FILTER PROFILE DESCRIBE THE FILTER PROFILE, INCLUDING THE CAUSE OF ANY TURBIDITY SPIKES GREATER THAN 0.1 NTU AND ANY INTERRUPTION IN THE DATA See Attached Excel Graph	PUBLIC WATER SYSTEM NAME:	TCEQ WSC	PLANT NAME	PDWS Water Treatment Plant
PWS ID No.: 1234567 NUMBER: Filter No. 5 NARRATIVE DESCRIPTION OF FILTER PROFILE DESCRIBE THE FILTER PROFILE, INCLUDING THE CAUSE OF ANY TURBIDITY SPIKES GREATER THAN 0.1 NTU AND ANY INTERRUPTION IN THE DATA	STSTEW NAME.	TOEW WSC		PDWS Water Treatment Plant
DESCRIBE THE FILTER PROFILE, INCLUDING THE CAUSE OF ANY TURBIDITY SPIKES GREATER THAN 0.1 NTU AND ANY INTERRUPTION IN THE DATA	PWS ID No.:	1234567		Filter No. 5
		NARRATIVE DESCRIPTION	ON OF FILTER PROFILE	
ise Attached Excel Graph	DESCRIBE TH	E FILTER PROFILE, INCLUDING THE CAUSE OF	ANY TURBIDITY SPIKES GREATER THAN 0.1 NTU A	ND ANY INTERRUPTION IN THE DATA
	See Attached Excel Gra	aph		
	EQ - 10277 (02-15-	47)	PAGE 5	Filter Assessment Re

January 2021 257

		ER SYSTEMS THAT ARE USIN OF SURFACE WATER THAT			
UBLIC WATER YSTEM NAME:	TCEQ WS	С		PLANT NAME OR NUMBER:	PDWS Water Treatment Plant
WS ID No.:	1234567			FILTER NUMBER:	Filter No. 5
		CORRECTIV	VE ACTION PLAN (OPTIONAL	-)	
DESCRIBE TH	HE CORRECTIVE	ACTIONS THE SYSTEM WILL TA	AKE, INCLUDING THE PROPOSE	ED COMPLETION DATA	A FOR EACH CORRECTIVE ACTION
roposed Completion I May 1, 2016 July 12, 2016 July 15, 2016 July 18, 2016 July 22, 2016	Orde Ren Insta Sub	posed Action er replacement media for Filter No nove media from Filter No. 5 and ir all new media, backwash, and sup- mit coliform samples to the lab urn the Filter No. 5 to service	nspect support gravel layer and un	derdrain system for evid	ence of damage
ote: This action plan prective actions.	is subject to dela	ys if the filter underdrain is dam	naged. In this case, we plan on	having our engineering	g firm evaluate potential
					e: February 23, 2016

258 January 2021