Principled. Practical. Proven.

Costello

CONTRIBUTING ZONE PLAN (CZP) Water, Sewer, Drainage and Paving Improvements for Wildspring Phase 1

CITY OF LEANDER, WILLIAMSON COUNTY, TEXAS CI JOB NO. 2021-CLD-01-020 PICP–22-0037 March 2023

Prepared by: Costello, Inc. 2107 CityWest Blvd., 3rd Floor Houston, Texas 77042 Ph: 713.783.7788 / Fax: 713.783.3580 Texas P.E. Board Firm No. 280

Contributing Zone Plan – Table of Contents

I. Edwards Aquifer Application Cover Page (TCEQ-20705)

II. Contributing Zone Plan (TCEQ-10257)

Attachment A - Road Map Attachment B - USGS Map Attachment C - Project Description Attachment D – Factors Affecting Surface Water Quality Attachment E – Volume and Character of Stormwater Attachment F – Suitability Letter from Authorized Agent Attachment G – Alternative Secondary Containment Methods Attachment H – AST Containment Structure Drawings Attachment I – 20% or Less Impervious Cover Declaration Attachment J – BMPs for Upgradient Stormwater Attachment K – BMPs for On-site Stormwater Attachment L – BMPs for Surface Streams Attachment M – Construction Plans Attachment N – Inspection, Maintenance, Repair and Retrofit Plan Attachment O – Pilot-Scale Field Testing Plan Attachment P – Measures for Minimizing Surface Stream Contamination

III. Temporary Stormwater Section (TCEQ-0602)

- Attachment A Spill Response Actions
 Attachment B Potential Sources of Contamination
 Attachment C Sequence of Major Activities
 Attachment D Temporary Best Management Practices and Measures
 Attachment E Request to Temporarily Seal a Feature
 Attachment F Structural Practices
 Attachment G Drainage Area Map
 Attachment H Temporary Sediment Ponds(s) Plans and Calculations
 Attachment I Inspection and Maintenance for BMPs
 Attachment J Schedule of Interim and Permanent
- IV. Copy of Notice of Intent (NOI)
- V. Agent Authorization Form (TCEQ-0599)
- VI. Application Fee Form (TCEQ-0574)
- VII. Core Data Form (TCEQ-10400)

Texas Commission on Environmental Quality Edwards Aquifer Application Cover Page

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with <u>30 TAC 213</u>.

Administrative Review

1. <u>Edwards Aquifer applications</u> must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.

To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: <u>http://www.tceq.texas.gov/field/eapp</u>.

- 2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
- 3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
- 4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.

An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.

- 5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
- 6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the *Instructions to Geologists* (TCEQ-0585 Instructions).

Technical Review

- 1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.
- 2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be

clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.

- 3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or will be denied. Please note that because the technical review is underway, whether the application is withdrawn or denied **the application fee will be forfeited**.
- 4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.

Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "Mid-Review Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available:

- If the technical review has begun your application can be denied/withdrawn, your fees will be forfeited, and the plan will have to be resubmitted.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.

If the application is denied/withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the affected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity Name: Wildspring Phase 1				2. Regulated Entity No.: N/A					
3. Customer Name: Toll Southwest, LLC			4. Cu	4. Customer No.: CN602840076					
5. Project Type: (Please circle/check one)	New	Modification		Extension		Exception			
6. Plan Type: (Please circle/check one)	WPAP	X CZP	SCS	UST	AST	EXP	EXT	Technical Clarification	Optional Enhanced Measures
7. Land Use: (Please circle/check one)	X Resider	ntial	Non-residential		8. Sit		e (acres):	55.14	
9. Application Fee:	\$6,500		10. P	10. Permanent BM			s):	Batch Detentio	n, Vegetative Filter Strips
11. SCS (Linear Ft.):	N/A		12. AST/UST (No			o. Tai	D. Tanks): N/A		
13. County:	William	ison	14. W	14. Watershed:				Brushy Creek	

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:

http://www.tceq.texas.gov/assets/public/compliance/field_ops/eapp/EAPP%20GWCD%20map.pdf

For more detailed boundaries, please contact the conservation district directly.

Austin Region			
County:	Hays	Travis	Williamson
Original (1 req.)	_		_X_
Region (1 req.)	_	_	_X_
County(ies)	_		_X_
Groundwater Conservation District(s)	Edwards Aquifer Authority Barton Springs/ Edwards Aquifer Hays Trinity Plum Creek	Barton Springs/ Edwards Aquifer	NA
City(ies) Jurisdiction	Austin Buda Dripping Springs Kyle Mountain City San Marcos Wimberley Woodcreek	Austin Bee Cave Pflugerville Rollingwood Round Rock Sunset Valley West Lake Hills	Austin Cedar Park Florence Georgetown Jerrell _X_Leander Liberty Hill Pflugerville Round Rock

	Sa	an Antonio Region			
County:	Bexar	Comal	Kinney	Medina	Uvalde
Original (1 req.)					
Region (1 req.)					
County(ies)					
Groundwater Conservation District(s)	Edwards Aquifer Authority Trinity-Glen Rose	Edwards Aquifer Authority	Kinney	EAA Medina	EAA Uvalde
City(ies) Jurisdiction	Castle Hills Fair Oaks Ranch Helotes Hill Country Village Hollywood Park San Antonio (SAWS) Shavano Park	Bulverde Fair Oaks Ranch Garden Ridge New Braunfels Schertz	NA	San Antonio ETJ (SAWS)	NA

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.

Steven Buffum

Print Name of Customer/Authorized Agent

20230420

Signature of Customer/Authorized Agent

Date

FOR TCEQ INTERNAL USE ONL	Y		
Date(s)Reviewed:	Date A	Date Administratively Complete:	
Received From:	Correc	et Number of Copies:	
Received By:	Distrib	oution Date:	
EAPP File Number:	Compl	ex:	
Admin. Review(s) (No.):	No. AF	R Rounds:	
Delinquent Fees (Y/N):	Review	v Time Spent:	
Lat./Long. Verified:	SOS C	ustomer Verification:	
Agent Authorization Complete/Notarized (Y/N):	Fee	Payable to TCEQ (Y/N):	
Core Data Form Complete (Y/N):	Check:	: Signed (Y/N):	
Core Data Form Incomplete Nos.:		Less than 90 days old (Y/N):	

Section II

Contributing Zone Plan (TCEQ-10257)

Contributing Zone Plan Application

Texas Commission on Environmental Quality

for Regulated Activities on the Contributing Zone to the Edwards Aquifer and Relating to 30 TAC §213.24(1), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Contributing Zone Plan Application** is hereby submitted for TCEQ review and Executive Director approval. The application was prepared by:

Print Name of Customer/Agent: Steven Buffum

Date: 3/24/2022

Signature of Customer/Agent:

Regulated Entity Name: Wildspring, Phase 1

Project Information

- 1. County: Williamson
- 2. Stream Basin: Brushy Creek
- 3. Groundwater Conservation District (if applicable): N/A
- 4. Customer (Applicant):

Contact Person: Adrienne DonatucciEntity: Toll Brothers, Inc.Mailing Address: 1320 Arrow Point Dr, Suite 401City, State: Cedar Park, TexasZip: 78613Telephone: 412-780-2312Email Address: adonatucci@tollbrothers.com

TCEQ-10257 (Rev. 02-11-15)

5. Agent/Representative (If any):

Contact Person: Steven BuffumEntity: Costello IncMailing Address: 9050 N Capital of Texas Hwy Bldg 3, Suite 390City, State: Austin, TexasZip: 78759Telephone: 512-646-3463Fax: N/AEmail Address: sbuffum@costelloinc.com

6. Project Location:

 \boxtimes The project site is located inside the city limits of <u>Leander, TX</u>.

- The project site is located outside the city limits but inside the ETJ (extra-territorial jurisdiction) of _____.
- The project site is not located within any city's limits or ETJ.
- 7. The location of the project site is described below. Sufficient detail and clarity has been provided so that the TCEQ's Regional staff can easily locate the project and site boundaries for a field investigation.

Northwest intersection of CR 175 and CR 177 in Leander, Texas, and part of a 111.569 acre tract of land out of the John T. Church Survey and the Milton Hicks Survey.

- 8. Attachment A Road Map. A road map showing directions to and the location of the project site is attached. The map clearly shows the boundary of the project site.
- 9. Attachment B USGS Quadrangle Map. A copy of the official 7 ½ minute USGS Quadrangle Map (Scale: 1" = 2000') is attached. The map(s) clearly show:

Project site boundaries.

- 10. Attachment C Project Narrative. A detailed narrative description of the proposed project is attached. The project description is consistent throughout the application and contains, at a minimum, the following details:
 - Area of the site
 Offsite areas
 Impervious cover
 Permanent BMP(s)
 Proposed site use
 Site history
 Previous development
 - Area(s) to be demolished
- 11. Existing project site conditions are noted below:

Existing commercial site Existing industrial site Existing residential site

Existing paved and/or unpaved roads

Undeveloped (Cleared)

Undeveloped (Undisturbed/Not cleared)

Other:

12. The type of project is:

\times	Residential: # of Lots: <u>148</u>
	Residential: # of Living Unit Equivalents:
	Commercial
	Industrial
	Other:

13. Total project area (size of site): <u>55.14</u> Acres

Total disturbed area: 55.14 Acres

- 14. Estimated projected population: 518
- 15. The amount and type of impervious cover expected after construction is complete is shown below:

Impervious Cover of Proposed Project	Sq. Ft.	Sq. Ft./Acre	Acres
Structures/Rooftops	612,000	÷ 43,560 =	14.05
Parking	0	÷ 43,560 =	0.00
Other paved surfaces	330,620	÷ 43,560 =	7.59
Total Impervious Cover	942,620	÷ 43,560 =	21.64

Table 1 - Impervious Cover

Total Impervious Cover <u>21.64</u> ÷ Total Acreage <u>55.14</u> X **100** = <u>39.25</u>% Impervious Cover

- 16. Attachment D Factors Affecting Surface Water Quality. A detailed description of all factors that could affect surface water quality is attached. If applicable, this includes the location and description of any discharge associated with industrial activity other than construction.
- 17. 🛛 Only inert materials as defined by 30 TAC 330.2 will be used as fill material.

For Road Projects Only

Complete questions 18 - 23 if this application is exclusively for a road project.

🛛 N/A

TCEQ-10257 (Rev. 02-11-15)

18.	Туре	of	project:
-----	------	----	----------

TXDOT road project. County road or roads built to county specifications. City thoroughfare or roads to be dedicated to a municipality. Street or road providing access to private driveways. 19. Type of pavement or road surface to be used: Concrete Asphaltic concrete pavement Other: 20. Right of Way (R.O.W.): Length of R.O.W.: _____ feet. Width of R.O.W.: feet. L x W =_____Ft² ÷ 43,560 Ft²/Acre = _____ acres. 21. Pavement Area: Length of pavement area: _____ feet. Width of pavement area: feet. $L \times W = Ft^2 \div 43,560 Ft^2/Acre = acres.$ Pavement area acres ÷ R.O.W. area acres x 100 = % impervious cover.

22. A rest stop will be included in this project.

A rest stop will not be included in this project.

23. Maintenance and repair of existing roadways that do not require approval from the TCEQ Executive Director. Modifications to existing roadways such as widening roads/adding shoulders totaling more than one-half (1/2) the width of one (1) existing lane require prior approval from the TCEQ.

Stormwater to be generated by the Proposed Project

24. Attachment E - Volume and Character of Stormwater. A detailed description of the volume (quantity) and character (quality) of the stormwater runoff which is expected to occur from the proposed project is attached. The estimates of stormwater runoff quality and quantity are based on area and type of impervious cover. Include the runoff coefficient of the site for both pre-construction and post-construction conditions.

Wastewater to be generated by the Proposed Project

25. Wastewater is to be discharged in the contributing zone. Requirements under 30 TAC §213.6(c) relating to Wastewater Treatment and Disposal Systems have been satisfied.

N/A

26. Wastewater will be disposed of by:

On-Site Sewage Facility (OSSF/Septic Tank):

Attachment F - Suitability Letter from Authorized Agent. An on-site sewage facility
will be used to treat and dispose of the wastewater from this site. The appropriate
licensing authority's (authorized agent) written approval is attached. It states that
the land is suitable for the use of private sewage facilities and will meet or exceed
the requirements for on-site sewage facilities as specified under 30 TAC Chapter 285
relating to On-site Sewage Facilities.
Each lot in this project/development is at least one (1) acre (43,560 square feet) in
size. The system will be designed by a licensed professional engineer or registered
sanitarian and installed by a licensed installer in compliance with 30 TAC Chapter
285.
Sowage Collection System (Sower Lines):

Sewage Collection System (Sewer Lines):

The sewage collection system will convey the wastewater to the <u>BCRWWA (Brushy Creek</u> <u>Regional)</u> (name) Treatment Plant. The treatment facility is:

🔀 Existing.	
Proposed	d.
🖂 N/A	

Permanent Aboveground Storage Tanks(ASTs) ≥ 500 Gallons

Complete questions 27 - 33 if this project includes the installation of AST(s) with volume(s) greater than or equal to 500 gallons.

N/A

27. Tanks and substance stored:

Table 2 - Tanks and Substance Storage

AST Number	Size (Gallons)	Substance to be Stored	Tank Material
1			
2			
3			
4			
5			
		To	otal x 1.5 = Gallons

28. The AST will be placed within a containment structure that is sized to capture one and one-half (1 1/2) times the storage capacity of the system. For facilities with more than

one tank system, the containment structure is sized to capture one and one-half (1 1/2) times the cumulative storage capacity of all systems.

Attachment G - Alternative Secondary Containment Methods. Alternative methods for providing secondary containment are proposed. Specifications showing equivalent protection for the Edwards Aquifer are attached.

29. Inside dimensions and capacity of containment structure(s):

 Table 3 - Secondary Containment

Length (L)(Ft.)	Width(W)(Ft.)	Height (H)(Ft.)	L x W x H = (Ft3)	Gallons

Total: _____ Gallons

30. Piping:

All piping, hoses, and dispensers will be located inside the containment structure.

Some of the piping to dispensers or equipment will extend outside the containment structure.

The piping will be aboveground

The piping will be underground

- 31. The containment area must be constructed of and in a material impervious to the substance(s) being stored. The proposed containment structure will be constructed of:
- 32. Attachment H AST Containment Structure Drawings. A scaled drawing of the containment structure is attached that shows the following:
 - Interior dimensions (length, width, depth and wall and floor thickness).
 - Internal drainage to a point convenient for the collection of any spillage.

Tanks clearly labeled

Piping clearly labeled

Dispenser clearly labeled

33. Any spills must be directed to a point convenient for collection and recovery. Spills from storage tank facilities must be removed from the controlled drainage area for disposal within 24 hours of the spill.

In the event of a spill, any spillage will be removed from the containment structure within 24 hours of the spill and disposed of properly.

In the event of a spill, any spillage will be drained from the containment structure through a drain and valve within 24 hours of the spill and disposed of properly. The drain and valve system are shown in detail on the scaled drawing.

Site Plan Requirements

Items 34 - 46 must be included on the Site Plan.

34. \square The Site Plan must have a minimum scale of 1" = 400'.

Site Plan Scale: 1" = <u>100</u>'.

35. 100-year floodplain boundaries:

Some part(s) of the project site is located within the 100-year floodplain. The floodplain is shown and labeled.

No part of the project site is located within the 100-year floodplain.

The 100-year floodplain boundaries are based on the following specific (including date of material) sources(s): _____.

36. The layout of the development is shown with existing and finished contours at appropriate, but not greater than ten-foot contour intervals. Lots, recreation centers, buildings, roads, etc. are shown on the site plan.

The layout of the development is shown with existing contours at appropriate, but not greater than ten-foot contour intervals. Finished topographic contours will not differ from the existing topographic configuration and are not shown. Lots, recreation centers, buildings, roads, etc. are shown on the site plan.

- 37. \square A drainage plan showing all paths of drainage from the site to surface streams.
- 38. 🖂 The drainage patterns and approximate slopes anticipated after major grading activities.
- 39. \square Areas of soil disturbance and areas which will not be disturbed.
- 40. 🔀 Locations of major structural and nonstructural controls. These are the temporary and permanent best management practices.
- 41. 🔀 Locations where soil stabilization practices are expected to occur.
- 42. Surface waters (including wetlands).

□ N/A

43. 🔀 Locations where stormwater discharges to surface water.

There will be no discharges to surface water.

44. Temporary aboveground storage tank facilities.

Temporary aboveground storage tank facilities will not be located on this site.

45. Permanent aboveground storage tank facilities.

Permanent aboveground storage tank facilities will not be located on this site.

46. \boxtimes Legal boundaries of the site are shown.

Permanent Best Management Practices (BMPs)

Practices and measures that will be used during and after construction is completed.

47. Permanent BMPs and measures must be implemented to control the discharge of pollution from regulated activities after the completion of construction.

🗌 N/A

- 48. These practices and measures have been designed, and will be constructed, operated, and maintained to insure that 80% of the incremental increase in the annual mass loading of total suspended solids (TSS) from the site caused by the regulated activity is removed. These quantities have been calculated in accordance with technical guidance prepared or accepted by the executive director.
 - The TCEQ Technical Guidance Manual (TGM) was used to design permanent BMPs and measures for this site.

A technical guidance other than the TCEQ TGM was used to design permanent BMPs and measures for this site. The complete citation for the technical guidance that was used is: _____.

🗌 N/A

49. Owners must insure that permanent BMPs and measures are constructed and function as designed. A Texas Licensed Professional Engineer must certify in writing that the permanent BMPs or measures were constructed as designed. The certification letter must be submitted to the appropriate regional office within 30 days of site completion.

🗌 N/A

50. Where a site is used for low density single-family residential development and has 20 % or less impervious cover, other permanent BMPs are not required. This exemption from permanent BMPs must be recorded in the county deed records, with a notice that if the percent impervious cover increases above 20% or land use changes, the exemption for the whole site as described in the property boundaries required by 30 TAC §213.4(g) (relating to Application Processing and Approval), may no longer apply and the property owner must notify the appropriate regional office of these changes.

The site will be used for low density single-family residential development and has 20% or less impervious cover.

The site will be used for low density single-family residential development but has more than 20% impervious cover.

The site will not be used for low density single-family residential development.

51.	The executive director may waive the requirement for other permanent BMPs for multi-
	family residential developments, schools, or small business sites where 20% or less
	impervious cover is used at the site. This exemption from permanent BMPs must be
	recorded in the county deed records, with a notice that if the percent impervious cover
	increases above 20% or land use changes, the exemption for the whole site as described in
	the property boundaries required by 30 TAC §213.4(g) (relating to Application Processing
	and Approval), may no longer apply and the property owner must notify the appropriate
	regional office of these changes.

Attachment I - 20% or Less Impervious Cover Waiver. The site will be used for
multi-family residential developments, schools, or small business sites and has 20%
or less impervious cover. A request to waive the requirements for other permanent
BMPs and measures is attached.

The site will be used for multi-family residential developments, schools, or small business sites but has more than 20% impervious cover.

The site will not be used for multi-family residential developments, schools, or small business sites.

52. X Attachment J - BMPs for Upgradient Stormwater.

A description of the BMPs and measures that will be used to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site is attached.

No surface water, groundwater or stormwater originates upgradient from the site and flows across the site, and an explanation is attached.

Permanent BMPs or measures are not required to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site, and an explanation is attached.

53. X Attachment K - BMPs for On-site Stormwater.

A description of the BMPs and measures that will be used to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff from the site is attached.
 Permanent BMPs or measures are not required to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff.

54. Attachment L - BMPs for Surface Streams. A description of the BMPs and measures that prevent pollutants from entering surface streams is attached.

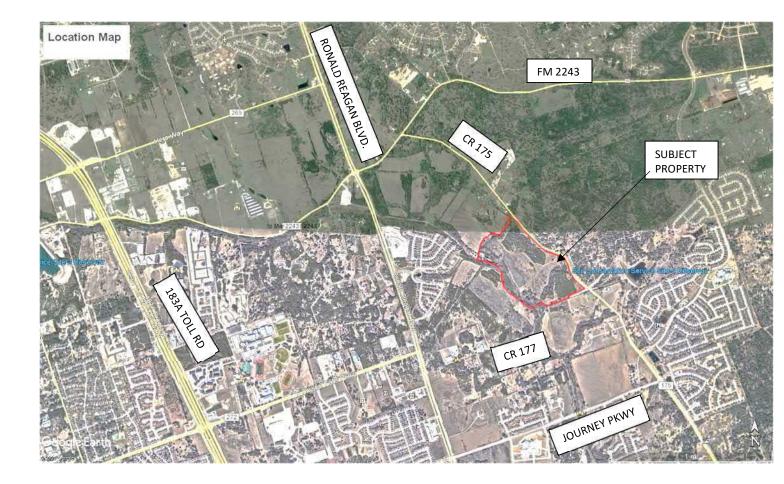
□ N/A

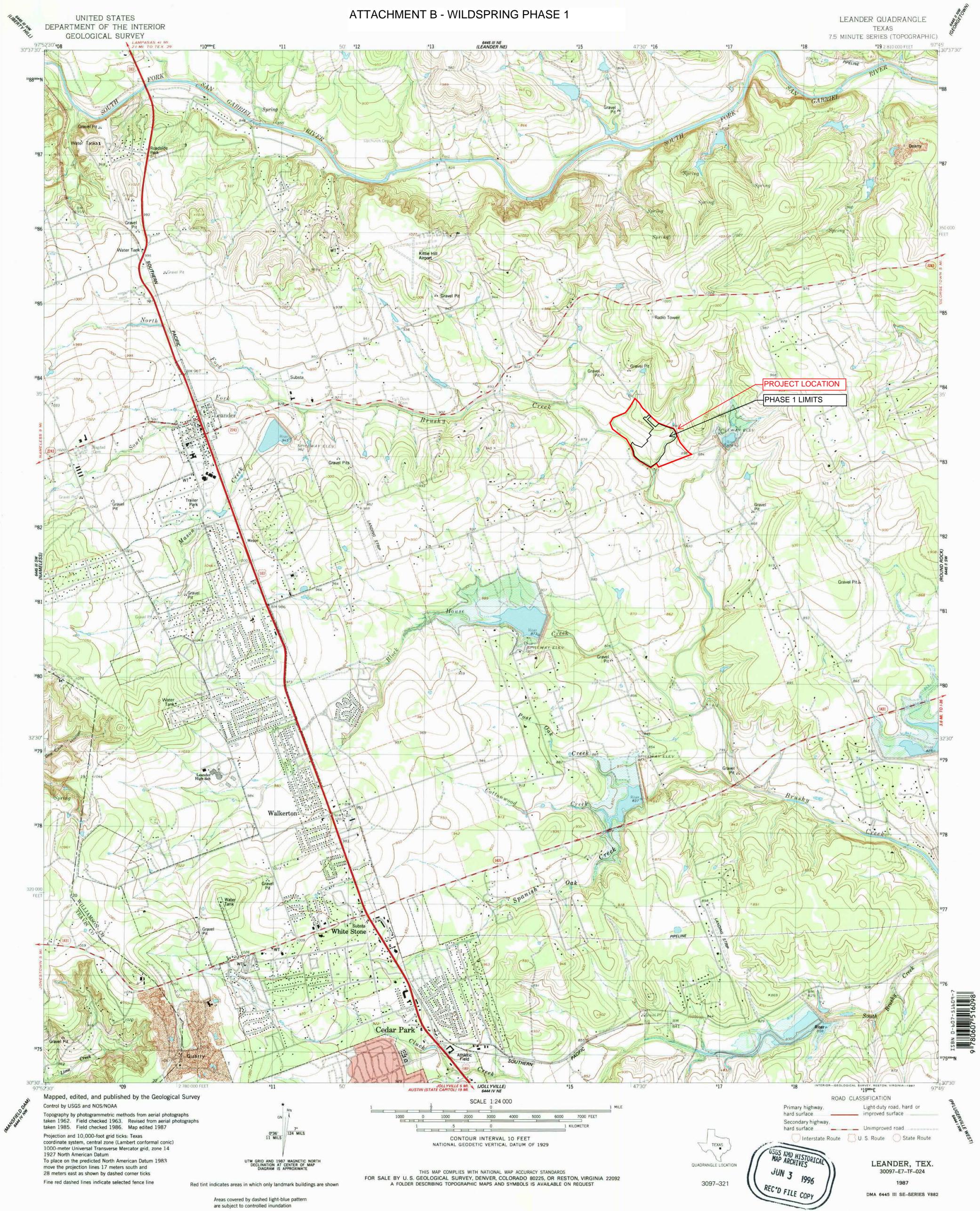
55. Attachment M - Construction Plans. Construction plans and design calculations for the proposed permanent BMPs and measures have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer, and are signed, sealed, and dated. Construction plans for the proposed permanent BMPs and measures are

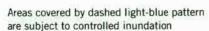
attached and include: Design calculations, TCEQ Construction Notes, all proposed structural plans and specifications, and appropriate details.

N/A

56. Attachment N - Inspection, Maintenance, Repair and Retrofit Plan. A site and BMP specific plan for the inspection, maintenance, repair, and, if necessary, retrofit of the permanent BMPs and measures is attached. The plan fulfills all of the following:
Prepared and certified by the engineer designing the permanent BMPs and measures
 Signed by the owner or responsible party Outlines specific procedures for documenting inspections, maintenance, repairs, and, if necessary, retrofit.
Contains a discussion of record keeping procedures
□ N/A
57. Attachment O - Pilot-Scale Field Testing Plan. Pilot studies for BMPs that are not recognized by the Executive Director require prior approval from the TCEQ. A plan for pilot-scale field testing is attached.
N/A
58. Attachment P - Measures for Minimizing Surface Stream Contamination. A description of the measures that will be used to avoid or minimize surface stream contamination and changes in the way in which water enters a stream as a result of the construction and development is attached. The measures address increased stream flashing, the creation of stronger flows and in-stream velocities, and other in-stream effects caused by the regulated activity, which increase erosion that result in water quality degradation.
□ N/A
Pesnansihility for Maintenance of Permanent RMPs and


Responsibility for Maintenance of Permanent BMPs and Measures after Construction is Complete.


- 59. The applicant is responsible for maintaining the permanent BMPs after construction until such time as the maintenance obligation is either assumed in writing by another entity having ownership or control of the property (such as without limitation, an owner's association, a new property owner or lessee, a district, or municipality) or the ownership of the property is transferred to the entity. Such entity shall then be responsible for maintenance until another entity assumes such obligations in writing or ownership is transferred.
- 60. A copy of the transfer of responsibility must be filed with the executive director at the appropriate regional office within 30 days of the transfer if the site is for use as a multiple single-family residential development, a multi-family residential development,


or a non-residential development such as commercial, industrial, institutional, schools, and other sites where regulated activities occur.

Administrative Information

- 61. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions.
- 62. Any modification of this Contributing Zone Plan may require TCEQ review and Executive Director approval prior to construction, and may require submission of a revised application, with appropriate fees.
- 63. The site description, controls, maintenance, and inspection requirements for the storm water pollution prevention plan (SWPPP) developed under the EPA NPDES general permits for stormwater discharges have been submitted to fulfill paragraphs 30 TAC §213.24(1-5) of the technical report. All requirements of 30 TAC §213.24(1-5) have been met by the SWPPP document.
 - The Temporary Stormwater Section (TCEQ-0602) is included with the application.

TCEQ Contributing Zone Plan Attachment C - Project Narrative Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Wildspring Phase 1 will be the first phase of a three-phase residential development providing housing to the Austin market. The project consists of a 111.569 acre parcel of land located at the northwest intersection of CR 175 and CR 177 in Leander, Williamson County, Texas. Phase 1 of the development will be limited to a 55.17-acre boundary which includes the phase 1 plat boundary as well as roadway improvements for CR-175. Both plan sets are included for reference in Section 2. The subject property is currently an undeveloped ranch, covered with prairie grass and native trees. The property is bordered to the west by Brushy Creek and has a tributary flowing through it, running east to west. A separate Contributing Zone Plan was submitted for the clearing of this project and included BMP's which will also be used in this application (Approved on 12/23/22).

There are 1.48 acres of off-site flow draining into the BMPs on our site, with no impervious cover. There are off-site flows "passing through" Brushy Creek and the tributary described previously, but we are not treating those flows in our water-quality ponds. They are, however, accounted for in the pre- and post-development calculations. This creek will be protected from construction runoff by both temporary and permanent BMP's, which will include silt fence, vegetative filter strips and batch detention basins designed to meet the required TSS removal for this project.

Development of this land into a single-family subdivision will have the following effects on impervious cover: The proposed project consists of 148 single family homes, including all associated water, sewer, drainage and paving infrastructure and site amenities. Concrete access drives, parking, vehicle circulation areas and sidewalk will provide access to the building pads from the proposed Right-of-Way. Additional improvements to the existing CR-175 Roadway are also included in the scope of this application. This will result in a net increase of 21.64 Acres of impervious cover over the Phase 1 impact. Mitigation for development impacts is provided onsite via vegetative filter strips and batch detention ponds, appropriately sized to meet City of Austin and TCEQ pollutant removal criteria. Please see Section "E" for calculations.

TCEQ Contributing Zone Plan Attachment D - Factors Affecting Surface Water Quality Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Water, Sewer Drainage and Paving to serve Wildspring Phase 1 is likely going to have the following factors affecting surface water quality during construction and when completed:

- 1. Sediment
- 2. Runoff
- 3. Trash
- 4. Fuel
- 5. Chemicals

BMP's will be used to minimize the impact of these pollutants and are described in other sections of this application. The project site consists of undeveloped prairie/woodland with slopes on site vary from 0.5% to 9%. The underlying soil in this phase is primarily lean to fat clay over limestone. The site will be developed into a single-family subdivision with an estimated increase of 21.64 acres impervious cover, including sidewalks, roadways, residential driveways and dwellings. The increase in impervious cover will cause the typical increases in the Total Suspended Solids (TSS) from rainfall events. There is also an expectation of consistent traffic and parked vehicles due to the proposed facility residents, therefore there may be an increase in fuels and other chemicals released from vehicles which may also increase the TSS for the site.

TCEQ Contributing Zone Plan Attachment E - Volume and Character of Stormwater Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The volume and character of stormwater at the project site for both existing and post-development conditions are as follows:

Development of Wildspring Phase 1 will result in a net increase of 21.64 Acres of impervious cover. The runoff coefficient of the site will be altered from prairie to single family residential with all associated improvements. On-site impervious cover will consist of new building rooftops, concrete sidewalks and asphalt drive and parking areas. The runoff from the proposed development increases peak runoff and TSS loads. For reference, sheets 9 and 10 of the Wildspring construction plans detail the change in drainage patterns between the existing and proposed conditions, as well as the change in impervious cover.

Mitigation for development impacts is proposed within batch detention ponds and vegetative filter strips. The City of Austin requires pollutant removal rates in excess of the 80% TSS reduction required by the TCEQ. Water Quality Volume (WQV) is used as a basis for the design of the proposed CoA sedimentation and filtration pond is calculated by following CoA guidelines. Calculations showing the pond design meets CoA and TCEQ design targets are attached for both the interim and ultimate conditions.

Please find the Attached Calculations for Sediment Removal.

TSS Removal Calculations - Wildspring Phase 1 and CR 175 Realignment

Loading Calculations				
Site Area:	55.14	ac		
Total Proposed IC:	21.64	ac		
Load Removal Required (L _M):	17,126	lbs/yr		
Load Removal Provided (L _P):	17,579	lbs/yr		
Load Removal Remaining:	-453	lbs/yr		

	Inputs					Outputs			
BMP Calculations	Total On-Site DA to BMP (ac)	Pre-development On- Site IC to BMP (ac)	Post-development On-Site IC to BMP (ac)	Off-Site DA to BMP (ac)	Off-Site IC to BMP (ac)	L _M (Ibs/yr)	L _R (Ibs/yr)	F	Volume (cf)
Pond A	7.44	0.32	4.21	0.00	0.00	3,862	4,291	0.90	21,860
Pond B	10.78	0.00	5.32	0.00	0.00	4,957	5,447	0.91	29,924
Pond C	26.84	0.02	8.59	0.00	0.00	8,051	8,946	0.90	53,334
VFS-H	0.86	0.00	0.33	0.00	0.00	287	287	0.90	-
VFS-I	0.84	0.00	0.48	0.00	0.00	422	422	0.91	-

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

1. The Required Load Reduction for the	e total project:	Calculations fr	om RG-348		Pages 3-27 to 3-30	
Page 3-29 Equation 3.3: L _M = 27.2(A _N x P)						
where:	A _N =	•	n impervious a	area for the project	d development = 80% of increased load	
Predevelopment impervi Total post-development imperv	ad Removal Based on the Entire Project County = Total project area included in plan * = ous area within the limits of the plan* = ious area within the limits of the plan* = relopment impervious cover fraction * = P =	Williamson 55.14 1.96 21.64	acres acres acres acres inches			

lbs.

L_{M TOTAL PROJECT} = 17126

* The values entered in these fields should be for the total project area.

Number of drainage basins / outfalls areas leaving the plan area = 5

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-A	
Total drainage basin/outfall area =	7.44	acres
Predevelopment impervious area within drainage basin/outfall area =	0.32	acres
Post-development impervious area within drainage basin/outfall area =	4.21	acres
Post-development impervious fraction within drainage basin/outfall area =	0.57	
L _{M THIS BASIN} =	3,389	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Detent	ion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L _R = (BMP efficiency) x P x (A ₁ x 34.6 + A _P x 0.54)						
A _i = A _P =	A_c = Total On-Site drainage area in the BMP catchment area A_l = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area L_R = TSS Load removed from this catchment area by the proposed BMP					
A _C = A _i = A _P = L _R =	= <mark>4.21</mark> = 3.23	acres acres acres Ibs				
5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall	<u>l area</u>					
Desired L _{M THIS BASIN}	= 3,862	lbs.				
F	= 0.90					
6. Calculate Capture Volume required by the BMP Type for this drainage b	oasin / outfall a	irea.	Calculations from RG-348	Pages 3-34 to 3-36		
Rainfall Depth : Post Development Runoff Coefficient = On-site Water Quality Volume :	= 0.40	inches cubic feet				
	Calculations	from RG-348	Pages 3-36 to 3-37			
Off-site area draining to BMP = Off-site Impervious cover draining to BMP = Impervious fraction of off-site area = Off-site Runoff Coefficient = Off-site Water Quality Volume =	= 0.00 = 0 = 0.00	acres acres cubic feet				

Storage for Sediment =	3,643	
Total Capture Volume (required water quality volume(s) x 1.20) =	21,860	cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

	PR-B	Drainage Basin/Outfall Area No. =
acres acres	10.78 0.00 5.32 0.49 4,632	Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Detentio	n
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L _R =	(BMP efficien	cy) x P x (A _l >	(34.6 + A _P x 0.54)		
where: A _C =	$A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area				
A ₁ =	Impervious a	ea proposed	in the BMP catchment area		
	•	• •	the BMP catchment area		
		•	his catchment area by the proposed	BMP	
-^					
A _C =	10.78	acres			
A ₁ =	5.32	acres			
A _P =	5.46	acres			
L _R =	5,447	lbs			
5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall a Desired L _{M THIS BASIN} = F = 6. Calculate Capture Volume required by the BMP Type for this drainage ba	4,957 0.91	lbs. rea.	Calculations from RG-348	Pages 3-34 to 3-36	
Rainfall Depth = Post Development Runoff Coefficient =	1.80 0.35	inches			
On-site Water Quality Volume =		cubic feet			
	Calculations f	rom RG-348	Pages 3-36 to 3-37		
Off-site area draining to BMP = Off-site Impervious cover draining to BMP = Impervious fraction of off-site area =	0.00 0	acres acres			
Off-site Runoff Coefficient = Off-site Water Quality Volume =		cubic feet			

Storage for Sediment =	4,987	
Total Capture Volume (required water quality volume(s) x 1.20) =	29,924	cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-C	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	26.84 0.02 8.59 0.32 7.467	acres acres acres lbs.
	.,	100.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Deten	tion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

Total Capture Volume (required water quality volume(s) x 1.20) =

RG-348 Page 3-33 Equation 3.7	: L _R = (E	3MP efficien	cy) x P x (A _l x	: 34.6 + A _P x 0.54)		
where:			•	a in the BMP catchment area		
	A _I = Impervious area proposed in the BMP catchment area					
	$A_P = P$	ervious area	a remaining in	the BMP catchment area		
	L _R = T	SS Load rer	noved from th	is catchment area by the propose	ed BMP	
	A _C =	26.84	acres			
	A1 =	8.59	acres			
	A _P =	18.25	acres			
	L _R =	8,946	lbs			
5. Calculate Fraction of Annual Runoff to Treat the drainage basin / o	outfall are	<u>ea</u>				
Desired L _{M THIS}		8,051	lbs.			
	DAGIN	0,001	100.			
	F =	0.90				
6. Calculate Capture Volume required by the BMP Type for this drain	ano haci	n / outfall a	r03	Calculations from RG-348	Pages 3-34 to 3-36	
o. Calculate Capture Volume required by the DMP Type for this drama	aye basi	n / Outlan a	164.	Calculations from ICG-540	1 ages 3-34 to 3-30	
Rainfall D		1.70	inches			
Post Development Runoff Coeffic		0.27	and the face of			
On-site Water Quality Vol	iume =	44,445	cubic feet			
	C	algulations f	rom BC 349	Pages 3-36 to 3-37		
	U	alculations	10111 KG-346	Fages 3-30 10 3-37		
Off-site area draining to E	BMP =	0.00	acres			
Off-site Impervious cover draining to E		0.00	acres			
Impervious fraction of off-site		0				
Off-site Runoff Coeffic		0.00				
Off-site Water Quality Vol		0	cubic feet			
	iume =	U	cubic leet			
Storage for Sedir		8,889	cubic leet			

53,334

cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-H	
Total drainage basin/outfall area =	0.86	acres
Predevelopment impervious area within drainage basin/outfall area =	0.00	acres
Post-development impervious area within drainage basin/outfall area =	0.33	acres
Post-development impervious fraction within drainage basin/outfall area =	0.39	
L _{M THIS BASIN} =	287	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Vegetated	Filter Strips
Removal efficiency =	85	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

 A_{I} = Impervious area proposed in the BMP catchment area A_{P} = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.86	acres
A _I =	0.33	acres
A _P =	0.53	acres
L _R =	318	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L_{M THIS BASIN} = 287 lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-I	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area =	0.84 0.00	acres acres
Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = $L_{M THIS BASIN}$ =	<mark>0.48</mark> 0.58 422	acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Vegetated	Filter Strips
Removal efficiency =	85	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: $L_R = (BMP \text{ efficiency}) \times P \times (A_1 \times 34.6 + A_P \times 0.54)$

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

- A_I = Impervious area proposed in the BMP catchment area
- A_P = Pervious area remaining in the BMP catchment area L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.84	acres
A _I =	0.48	acres
A _P =	0.36	acres
L _R =	461	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 422$ lbs.

TSS Removal Calculations - Wildspring Development (Ultimate Build-Out)

Loading Calculations				
Site Area:	116.53	ac		
Total Proposed IC:	45.45	ac		
Load Removal Required (L _M):	37,850	lbs/yr		
Load Removal Provided (L _P):	37,918	lbs/yr		
Load Removal Remaining:	-69	lbs/yr		

	Inputs					Outputs			
BMP Calculations	Total On-Site DA to BMP (ac)	Pre-development On- Site IC to BMP (ac)	Post-development On-Site IC to BMP (ac)	Off-Site DA to BMP (ac)	Off-Site IC to BMP (ac)	L _M (Ibs/yr)	L _R (Ibs/yr)	F	Volume (cf)
Pond A	7.44	0.32	4.21	0.00	0.00	3,865	4,294	0.90	21,874
Pond B	10.78	0.00	5.31	0.00	0.00	4,950	5,440	0.91	29,892
Pond C	32.50	0.02	16.66	0.00	0.00	15,332	17,036	0.90	87,735
Pond D	11.51	0.09	5.24	0.00	0.00	4,844	5,382	0.90	28,477
Pond E	16.71	0.25	7.46	0.00	0.00	6,893	7,659	0.90	40,765
VFS-F	1.37	0.00	0.64	0.00	0.00	559	559	0.91	-
VFS-G	1.55	0.00	0.68	0.00	0.00	594	594	0.91	-
VFS-H	0.86	0.00	0.33	0.00	0.00	287	287	0.90	-
VFS-I	0.84	0.00	0.48	0.00	0.00	422	422	0.91	-
VFS-J	0.42	0.00	0.20	0.00	0.00	172	172	0.91	-

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

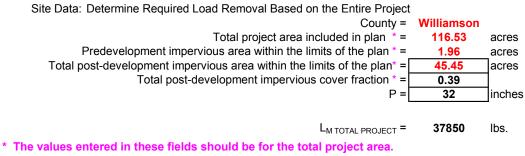
 Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell.

 Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.

 Characters shown in red are data entry fields.

 Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

 1. The Required Load Reduction for the total project:
 Calculations from RG-348


 Page 3-29 Equation 3.3: L_M = 27.2(A_N x P)

 where:
 L_{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load

 A_N = Net increase in impervious area for the project

P = Average annual precipitation, inches

Other Defensions, Demoined Land Demonstral Development and the Entities Device the

Number of drainage basins / outfalls areas leaving the plan area = 10

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond A

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-A	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	7.44 0.32 4.21 0.57 3,392	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch De	tention
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 A_{C} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 $L_{\rm R}$ = TSS Load removed from this catchment area by the proposed BMP

A _C =	7.44	acres
A _I =	4.21	acres
A _P =	3.23	acres
L _R =	4,294	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	=	3,865	lbs.		
F =	=	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage b	basin	<u>n / outfall a</u>	area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =		1.70 0.40	inches		
On-site Water Quality Volume =		18,229	cubic feet		
	Cal	Iculations f	rom RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP = Off-site Impervious cover draining to BMP = Impervious fraction of off-site area = Off-site Runoff Coefficient = Off-site Water Quality Volume =	0.00 0.00 0 0.00 0	acres acres cubic feet
Storage for Sediment = Total Capture Volume (required water quality volume(s) x 1.20) =	3,646 21,874	cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond B

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-B	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	10.78 0.00 5.31 0.49 4,625	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Ba	tch Deter	ntion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

- N	

A _C =	10.78	acres
A _I =	5.31	acres
A _P =	5.47	acres
L _R =	5,440	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	4,950	lbs.		
F =	0.91			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	<u>sin / outfa</u>	ll area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.80 0.35	inches		
On-site Water Quality Volume =	0.35 24,910	cubic feet		
	Calculatior	s from RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP Off-site Impervious cover draining to BMP Impervious fraction of off-site area Off-site Runoff Coefficient Off-site Water Quality Volume	= 0.00 = 0 = 0.00	acres acres cubic feet	
Storage for Sediment		cubic foot	

Total Capture Volume (required water quality volume(s) x 1.20) = 29,892 cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond C

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-C	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	32.50 0.02 16.66 0.51	acres acres acres
L _{M THIS BASIN} =	14,488	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Batch Detention			
Removal efficiency =	91	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A₁ x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

 A_I = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	32.50	acres
A _I =	16.66	acres
A _P =	15.84	acres
L _R =	17,036	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	15,332	lbs.		
F =	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	isin / outfal	area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.70 0.36	inches		
On-site Water Quality Volume =	73,113	cubic feet		
	Calculations	from RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP =	0.00	acres
Off-site Impervious cover draining to BMP =	0.00	acres
Impervious fraction of off-site area =	0	
Off alta Dura off Ca officiant -	0.00	

Off-site Water Quality Volume =	0.00	cubic feet	
Storage for Sediment =	14,623		
Total Capture Volume (required water quality volume(s) x 1.20) =		cubic feet	

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond D

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. = PR-D	
Total drainage basin/outfall area =11.51Predevelopment impervious area within drainage basin/outfall area =0.09Post-development impervious area within drainage basin/outfall area =5.24Post-development impervious fraction within drainage basin/outfall area =0.46L _{M THIS BASIN} =4,482	acres

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Batch Detention			
Removal efficiency =	91	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 A_{C} = Total On-Site drainage area in the BMP catchment area A_I = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 L_{R} = TSS Load removed from this catchment area by the proposed BMP

A _C =	11.51	acres
A _I =	5.24	acres
A _P =	6.26	acres
L _R =	5,382	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	4,844	lbs.		
F =	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage bas	<u>sin / outfall</u>	area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.70 0.33	inches		
On-site Water Quality Volume =	23,731	cubic feet		
с	Calculations	from RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP =	0.00	acres
Off-site Impervious cover draining to BMP =	0.00	acres
Impervious fraction of off-site area =	0	
Off site Dupoff Coofficient -	0 00	

	ite Water Quality Volume =	0.00	cubic feet	
	Storage for Sediment =	4,746		
tal Capture Volume (required water q	uality volume(s) x 1.20) =	28,477	cubic feet	

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond E

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-E	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	16.71 0.25 7.46 0.45 6,277	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Deter	ntion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area

 L_{R} = TSS Load removed from this catchment area by the proposed BMP

A _C =	16.71	acres
A _I =	7.46	acres
A _P =	9.25	acres
L _R =	7,659	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	6,893	lbs.		
F =	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	asin / outfa	l area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.70 0.33	inches		
On-site Water Quality Volume =		cubic feet		
	Calculation	s from RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP = Off-site Impervious cover draining to BMP = Impervious fraction of off-site area = Off-site Runoff Coefficient = Off-site Water Quality Volume =	0.00 0.00 0.00 0.00 0	acres acres cubic feet	
Storage for Sediment = otal Capture Volume (required water quality volume(s) x 1.20) =	6,794 40,765	cubic feet	

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-F

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-F	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	1.37 0.00 0.64 0.47 559	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Ve	• •	· · · · ·	
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

<u>4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.</u>

	RG-348 Page 3-33 Equation 3.7: $L_R = 0$	(BMP efficie	ncy) x P x (A _I x 34.6 + A _P x 0.54)	
where:	$A_1 = 1$	A_{c} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area A_{P} = Pervious area remaining in the BMP catchment area		
	L _R = ⁻	L_R = TSS Load removed from this catchment area by the proposed BMF		
	A _C =	1.37	acres	
	A ₁ =	0.64	acres	
	A _P =	0.72	acres	
	L _R =	615	lbs	

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 559$ lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-G

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-G	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	1.55 0.00 0.68 0.44	acres acres acres
L _{M THIS BASIN} =	594	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Ve	getated F	Filter Strips	
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

	RG-348 Page 3-33 Equation 3.7: $L_R = (BI)$	MP efficie	ncy) x P x (A _I x 34.6 + A _P x 0.54)
where:	A _i = Im	pervious a	e drainage area in the BMP catchment area area proposed in the BMP catchment area
			ea remaining in the BMP catchment area emoved from this catchment area by the proposed BMP
	A _C =	1.55	acres
	A ₁ =	0.68	acres
	A _P =	0.87	acres
	L _R =	655	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 594$ lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-H

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-H	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	0.86 0.00 0.33 0.39	acres acres acres
L _{M THIS BASIN} =	287	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = \ Removal efficiency =	/egetated F 85	Filter Strips percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A₁ x 34.6 + A_P x 0.54) where: A_{C} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area L_R = TSS Load removed from this catchment area by the proposed BMP $A_{\rm C}$ = 0.86 acres A_I = 0.33 acres A_P = 0.53 acres 318 L_R = lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L_{M THIS BASIN} = 287 lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-I

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-I	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	0.84 0.00 0.48 0.58 422	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Vegetated	Filter Strips	
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

<u>4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.</u>

	RG-348 Page 3-33 Equation 3.7: $L_R = (E_R)^2$	MP efficie	ncy) x P x (A ₁ x 34.6 + A _P x 0.54)
where:	A ₁ = In A _P = P	npervious a ervious are	e drainage area in the BMP catchment area area proposed in the BMP catchment area ea remaining in the BMP catchment area emoved from this catchment area by the proposed BMP
	$A_{\rm C} = \\ A_{\rm I} = \\ A_{\rm P} =$	0.84 0.48 0.36	acres acres acres
	L _R =	461	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 422$ lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-J

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-J	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	0.42 0.00 0.20 0.47	acres acres acres
L _{M THIS BASIN} =	172	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Ve	getated F	ilter Strips	
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

	RG-348 Page 3-33 Equation 3.7: L _R = (BMP efficiency)	ciency) x P x (A _I x 34.6 + A _P x 0.54)	
where:	0	Site drainage area in the BMP catchment area	
	A _I = Imperviou	s area proposed in the BMP catchment area	
	$A_{\rm P}$ = Pervious a	area remaining in the BMP catchment area	
	L_R = TSS Load removed from this catchment area by the propo		
	A _C = 0.42	acres	
	A ₁ = 0.20	acres	
	A _P = 0.23	acres	
	L _R = 189	lbs	

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 172$ lbs.

TCEQ Contributing Zone Plan Attachment F- Suitability Letter from Authorized Agent Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

No on-site sewage facilities (OSSF) are proposed on site.

TCEQ Contributing Zone Plan Attachment G - Alternative Secondary Containment Methods Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

No ground storage tanks are proposed in this project.

TCEQ Contributing Zone Plan Attachment H - AST Containment Structure Drawings Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

No ground storage tanks are proposed in this project.

TCEQ Contributing Zone Plan Attachment I - 20% or Less Impervious Cover Waiver Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The site will not be used for multi-family residential developments, schools, or small business sites.

TCEQ Contributing Zone Plan Attachment J - BMPs For Upgradient Stormwater Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Wildspring Phase 1 is receiving 2.01 acres of off-site flow to the site. The following best management practices (BMPs) will be used to prevent pollution of the surface water our site flows into from upgradient stormwater:

- 1. **Batch Detention** Batch Detention ponds for this project will all function for the purposes of sedimentation control and water quality. Ponds shall utilize an automated valve and outflow control structure to slow the flow of stormwater runoff and settle out particulates before discharge. These ponds will be utilized for the removal of suspended solids. Please see section 02 Attachment E for TSS removal and sizing calculations.
- 2. Vegetative Filter Strips-Along the borders of disturbed areas that run off into water ways on the project, Vegetative Filter Strips (VFS) will be planted to reduce sediments and contaminants from entering the surface water adjacent to the project site. Please see section 02 Attachment E for TSS removal and sizing calculations.
- 3. Silt Fence-Installed along the downstream borders of the site and along future ROW lines that run off into water ways on the project, silt fence will be installed to intercept sediment while allowing water to slowly percolate through. This is a temporary measure that will be removed after the disturbed area is re-vegetated.

TCEQ Contributing Zone Plan Attachment K - BMPs For On-Site Stormwater Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The following best management practices (BMPs) will be used to prevent pollution of the surface water from on-site stormwater:

- 1. **Batch Detention** Batch Detention ponds for this project will all function for the purposes of sedimentation control and water quality. Ponds shall utilize an automated valve and outflow control structure to slow the flow of stormwater runoff and settle out particulates before discharge. These ponds will be utilized for the removal of suspended solids. Please see section 02 Attachment E for TSS removal and sizing calculations.
- 2. Vegetative Filter Strips-Along the borders of disturbed areas that run off into water ways on the project, Vegetative Filter Strips (VFS) will be planted to reduce sediments and contaminants from entering the surface water adjacent to the project site. Please see section 02 Attachment E for TSS removal calculations.
- 3. Silt Fence-Installed along the downstream borders of the site and along future ROW lines that run off into water ways on the project, silt fence will be installed to intercept sediment while allowing water to slowly percolate through. This is a temporary measure that will be removed after the disturbed area is re-vegetated.

TCEQ Contributing Zone Plan Attachment L - BMPs For Surface Streams Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The following best management practices (BMPs) will be used to prevent pollution of the existing surface streams from our site flows:

- 1. **Batch Detention** Batch Detention ponds for this project will all function for the purposes of sedimentation control and water quality. Ponds shall utilize an automated valve and outflow control structure to slow the flow of stormwater runoff and settle out particulates before discharge. These ponds will be utilized for the removal of suspended solids. Please see section 02 Attachment E for TSS removal and sizing calculations.
- 2. Vegetative Filter Strips-Along the borders of disturbed areas that run off into water ways on the project, Vegetative Filter Strips (VFS) will be planted to reduce sediments and contaminants from entering the surface water adjacent to the project site. Please see section 02 Attachment E for TSS removal calculations.
- 3. **Silt Fence**-Installed along the downstream borders of the site and along future ROW lines that run off into water ways on the project, silt fence will be installed to intercept sediment while allowing water to slowly percolate through. This is a temporary measure that will be removed after the disturbed area is re-vegetated.

TCEQ Contributing Zone Plan

Attachment M - Construction Plans Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Please find the attached construction plans for Wildspring Phase 1.

APPROVED BY

ROBIN M. GRIFFIN, AICP, EXECUTIVE DIRECTOR OF DEVELOPMENT SERVICES

EMILY TRUMAN, P.E., CFM, CITY ENGINEER

GINA ELLISON, P.E., PUBLIC WORKS DIRECTOR

MARK TUMMONS, CPRP, DIRECTOR OF PARKS AND RECREATION

CHIEF JOSHUA DAVIS, FIRE MARSHAL

SUBMITTAL DATE: DECEMBER 6, 2022

PROJECT NUMBER: PICP-22-0037

ZONING: MASON TRACT - C.R. 175 MINOR PLANNED UNIT DEVELOPMENT P.U.D. (SFC-2-B) & (SFU-2-B) - ORDINANCE NO. 21-091-00

DEVELOPMENT AGREEMENT: CSM MASON FAMILY DATED FEBRUARY 16, 2017 #20170015559

DESCRIPTION OF 111.569 ACRES OF LAND OUT OF THE M. HICKS SURVEY, ABSTRACT NO. 287. WILLIAMSON COUNTY, TEXAS; BEING A PORTION OF A CERTAIN CALLED 121 ACRE FIRST TRACT AND DESCRIBED IN THE DEED TO CAROLYN DAVIS BUSH AND WILLIAM E. BUSH, MARGARET DAVIS CROSLIN AND CHARLES W. CROSLIN, JR OF RECORD IN VOLUME 553, PAGE 233, DEED RECORDS OF WILLIAMSOM COUNTY, TEXAS.

FUTURE LAND USE CATEGORY: NEIGHBORHOOD RESIDENTIAL/ GREENWAY

THE ENGINEER OF RECORD IS SOLELY RESPONSIBLE FOR THE COMPLETENESS, ACCURACY, REGULATORY COMPLIANCE. AND ADEQUACY OF THESE PLANS AND/ OR SPECIFICATIONS WHETHER OR NOT THE PLANS AND/OR SPECIFICATIONS WERE REVIEWED BY THE CITY ENGINEER(S). STORMWATER MANAGEMENT:

ONSITE WATER QUALITY AND DETENTION THROUGH BATCH DETENTION.

FLOODPLAIN:

FLOODPLAIN MODIFICATIONS ARE PROPOSED IN CONJUNCTION WITH THIS DEVELOPMENT PORTIONS OF THIS TRACT ARE WITHIN A FLOOD HAZARD AREA AS SHOWN ON THE FLOOD

INSURANCE RATE MAP PANEL #48491C0460F FOR WILLIAMSON CO., EFFECTIVE 12/20/2019

WATERSHED:

THIS PROJECT IS LOCATED IN THE BRUSHY CREEK WATERSHED.

ENVIRONMENTAL:

THIS PROJECT IS LOCATED IN THE EDWARDS AQUIFER CONTRIBUTING ZONE.

TRAFFIC IMPACT ANALYSIS

SEE REPORT BY COSTELLO, INC. DATED NOVEMBER 2021

TIA PHASE 1 ROADWAY IMPROVEMENTS INCLUDE:

APPROXIMATELY 3,300 LF OF ROADWAY IMPROVEMENTS TO CR 175. IMPROVEMENTS INCLUDE A CONTINUOUS LEFT TURN LANE ADJACENT THE WILDSPRING SUBDIVISION. NO ROADWAY IMPROVEMENTS TO CR 177 ARE REQUIRED FOR THE PHASE 1 DEVELOPMENT CR 175 IMPROVEMENTS ARE PROPOSED IN PICP-23-0052.

FOR EVERY SIX HUNDRED (600) SQUARE FEET OF AREA IN THE LANDSCAPE LOTS (B-17, I-14, 0-39), TWO (2) SHADE TREES (TOW-INCH CALIPER OR LARGER) AND FOUR (4) SHRUBS (FIVE GALLON CONTAINER SIZE OR LARGER) SHALL BE PLANTED AND MAINTAINED. TWO ORNAMENTAL TREES PER SHADE TREE MAY BE SUBSTITUTED FOR UP TO FIFTY PERCENT OF THE SHADE TREES IF DESIRED. A SIX-FOOT PRIVACY FENCE, BU NO HIGHER THAT THREE FEET WITHIN TWENTY FIVE FEET OF AN INTERSECTING STREET. SHALL BE CONSTRUCTED WITH THE SUBDIVISION IMPROVEMENTS AT THE COMMON LOT LINE BETWEEN THE LANDSCAPE LOT AND THE SINGLE-FAMILY OR TWO-FAMILY LOTS. THE FENCE IS REQUIRED TO BE CONSTRUCTED OF ONE OR MORE OF THE FOLLOWING MATERIALS: BRICK, STONE, CAST STONE, STUCCO, FACTORY TINTED (NOT PAINTED) SPLIT-FACED CONCRETE MASONRY UNIT, OR OTHER SIMILAR MATERIAL APPROVED BY THE DIRECTOR OF PLANNING. IN ADDITION TO THE MATERIALS LISTED ABOVE, TEXTURED PRE-CAST CONCRETE (E.G. WOODCRETE) IS ALSO PERMITTED WHEN THE PRIVACY FENCE IS ADJACENT TO COLLECTORS. ALL COLUMNS ARE REQUIRED TO HAVE CONCRETE FOOTINGS. THE LANDSCAPE LOT IS REQUIRED TO BE MAINTAINED BY A PRIVATE ASSOCIATION.

PLAT NOTE:

A PORTION OF THIS TRACT IS WITHIN A FLOOD HAZARD AREA AS SHOWN ON THE FLOOD INSURANCE RATE MAP PANEL # 48491C0460C FOR WILLIAMSON CO., EFFECTIVE DECEMBER 20, 2019.

DEVELOPER HAS PERFORMED A TRAFFIC IMPACT ANALYSIS (T.I.A) TO ACCESS IMPROVEMENTS ON CR175 THAT WILL BE ADDRESSED AT TIME OF CONSTRUCTION PLAN PERMIT.

REVISIONS/CORRECTIONS					
REV NO.	DESCRIPTION	DATE	REVISE (R) ADD (A) VOID (V) SHEET NO.'S	APPROVED BY:	APPROVAL DATE:

_	Ρ	1/		5
_			P	PF
-				С

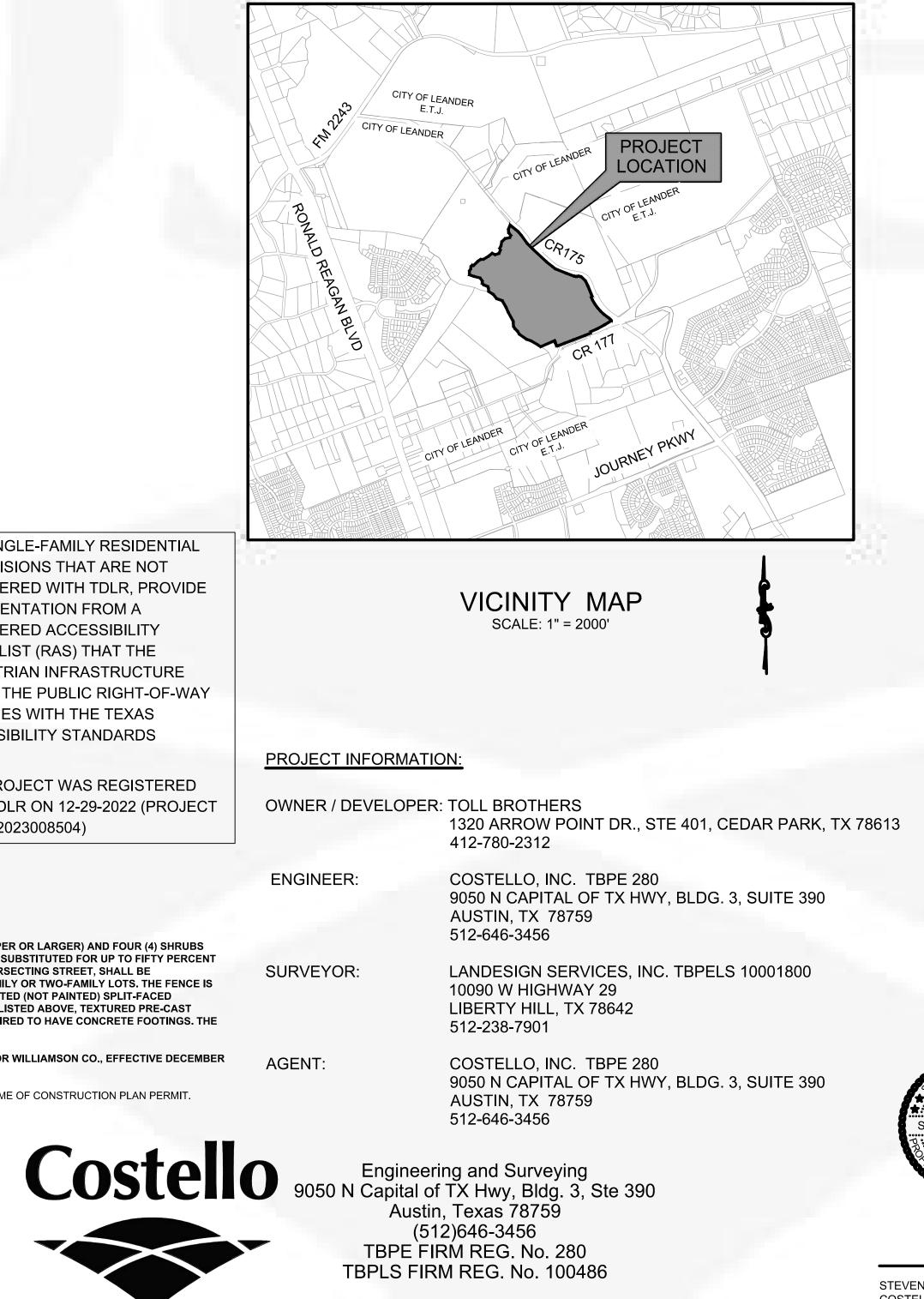
DATE

DATE

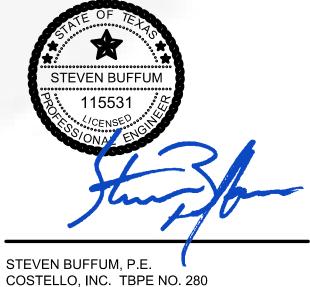
DATE

DATE

DATE


FOR SINGLE-FAMILY RESIDENTIAL SUBDIVISIONS THAT ARE NOT REGISTERED WITH TDLR, PROVIDE DOCUMENTATION FROM A **REGISTERED ACCESSIBILITY** SPECIALIST (RAS) THAT THE PEDESTRIAN INFRASTRUCTURE WITHIN THE PUBLIC RIGHT-OF-WAY COMPLIES WITH THE TEXAS ACCESSIBILITY STANDARDS

THIS PROJECT WAS REGISTERED WITH TDLR ON 12-29-2022 (PROJECT # TABS2023008504)



WILDSPRING **PHASE 1 - CONSTRUCTION PLANS ROJECT NO. PICP-22-0037**

CITY OF LEANDER, WILLIAMSON COUNTY, TEXAS SUBMITTAL DATE: 12/06/2022

	Sheet List	55	WL B C D 1+00 - END
heet	Sheet Title	56	WL F G 1+00 - END
umber		57	WL H K 1+00 - END
1	COVER SHEET	58	WL J 1+00 - 10+00
2	GENERAL NOTES	59	WL N 1+00 - 9+00
3		60	WL N 9+00 - END & WL M 1+00 -END
4	FINAL PLAT (1 OF 2)	61	WASTE WATER PLAN OVERALL
5	FINAL PLAT (2 OF 2)	62	WWL A 1+00 - 9+00
6	EXISTING CONDITIONS (1 OF 2)	63	WWL A 9+00 - 17+50
7	EXISTING CONDITIONS (2 OF 2)	64	WWL A 17+50 - END
8		65	WWL B 1+00 - 10+00
9		66	WWL B 10+00 - 18+50
10		67	WWL B 18+50 - END
11	OVERALL EROSION CONTROL PLAN	68	WWL C 1+00 - END
12	EROSION & SEDIMENTATION CONTROL DETAILS	69	WWL F 1+00 - END
13	STREETS OVERALL	70	WWL D AND J 1+00 - END
14	WHITE MISTFLOWER DR 3+50 TO 12+50	71	WWL G 1+00 - END
15	WHITE MISTFLOWER DR 12+50 TO 21+00	72	WWL K AND M 1+00 - END
16	WHITE MISTFLOWER DR CUL-DE-SAC START TO END	73	DUCT PLAN 1 OF 5
17	WILD JUNIPER 0+50 TO 9+00	74	DUCT PLAN 2 OF 5
18	WILD JUNIPER 9+00 TO 13+75	75	DUCT PLAN 3 OF 5
19	INDIGO BUSH LN 11+00 TO 20+00	76	DUCT PLAN 4 OF 5
20	INDIGO BUSH LN 20+00 TO 21+50 AND INDIGO BUSH TEMP CUL-DE-SAC	77	DUCT PLAN 5 OF 5
21	DESERT MARIGOLD DR 0+50 TO 7+00	78	SIGNAGE & STRIPING PLAN
22	WHITE ROSEMARY RD 0+50 TO 5+50	79	SIGNAGE & STRIPING DETAILS
23	WHITE ROSEMARY CUL DE SAC 4+00 TO 8+00	80	WATER AND WW DETAILS 1
24	DESERT BLOOM DR & PEACH DRIFT DR	81	WATER AND WW DETAILS 2
25	SWEET VIOLET DR 3+00 TO 12+00	82	WATER AND WW DETAILS 3
	SWEET VIOLET DR 12+00 TO 15+00 & CUL DE SAC	83	WATER AND WW DETAILS 4
26	13+25 TO 17+50	84	WATER AND WW DETAILS 5
27	DAYLILIES DR & SENITA DR	85	PAVING AND SIGNAGE DETAILS 1
28	GRADING PLAN (1 OF 3)	86	PAVING AND SIGNAGE DETAILS 2
29	GRADING PLAN (2 OF 3)	87	PAVING AND SIGNAGE DETAILS 3
30	GRADING PLAN (3 OF 3)	88	TRAFFIC CONTROL DETAILS 1
31	INLET DRAINAGE AREA MAP	89	TRAFFIC CONTROL DETAILS 2
32	POND A AND CROSS SECTIONS A AND B	90	LIGHTING DETAILS 1
33	POND B AND CROSS SECTIONS A AND B	91	LIGHTING DETAILS 2
34	POND C AND CROSS SECTION A 1+00 - 10+00	92	LIGHTING DETAILS 3
35	POND C AND CROSS SECTION A 10+00 - 15+00	93	LIGHTING DETAILS 4
36	POND C CROSS SECTIONS B, C, AND D	94	LIGHTING DETAILS 5
37	POND DETAILS	95	LIGHTING DETAILS 6
38	STORMSEWER PLAN OVERALL	96	DRAINAGE DETAILS 1
39	STORMSEWER PLAN & PROFILES - DRAINAGE CALCS	97	
40	STORMSEWER PLAN & PROFILES - STORM LINE A	98	TREE MITIGATION PLAN
41	STORMSEWER PLAN & PROFILES - STORM LINE C03	99	TREE MITIGATION PLAN
		100	TREE MITIGATION PLAN
42	STORMSEWER PLAN & PROFILES - STORM LINE B01	100	PLANTING PLAN
43	STORMSEWER PLAN & PROFILES - STORM LINE B01 (2) & BO2	101	PLANTING PLAN
44	STORMSEWER PLAN & PROFILES - STORM LINE C01	102	PLANTING PLAN
45	STORMSEWER PLAN & PROFILES - STORM LINE C02	103	TRAIL MASTER PLAN
46	STORMSEWER PLAN & PROFILES - STORM LINE C03	104	
47	STORMSEWER LATERALS 1 OF 3	105	LANDSCAPE DETAILS
48	STORMSEWER LATERALS 2 OF 3	106	FENCE PLAN
40	STORMSEWER LATERALS 3 OF 3		
49 50	WATER OVERALL	108	PEDESTRIAN PROTECTION FENCE PLAN
50	WL A 1+00 - 10+00	109	
51	WL A 10+00 - 20+00	110	FENCE ELEVATIONS
52	WL A 19+50 - 28+00		
53	WL A 28+00 - END		

DATE

ALL PUBLIC IMPROVEMENTS INCLUDING WATER, WASTEWATER, AND STORM SEWER WITHIN DEDICATED RIGHT OF WAY AND PUBLIC UTILITY EASEMENTS TO BE OWNED AND MAINTAINED BY THE CITY OF LEANDER. STORM WATER QUALITY PONDS AND SWQ PONDS TO BE MAINTAINED BY THE HOA.

> THE LOCATION OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK HE AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY IS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES

3/22/2023

FOR REGULATORY REVIEW ONLY - NOT FOR CONSTRUCTION

SHEET 1 OF 110

GENERAL NOTES

REVISED JUNE 22, 2022

ANY CHANGES TO THESE NOTES SHOULD BE CLOUDED ON THE PLAN SET.

CITY CONTACTS:

ENGINEERING MAIN LINE:	
PLANNING DEPARTMENT:	
PUBLIC WORKS MAIN LINE:	
STORMWATER INSPECTIONS:	
JTILITIES MAIN LINE:	
JTILITIES ON-CALL:	
JTILITY LOCATE REQUESTS	

512-528-2750 512-259-2640 512-285-0055 512-259-1142 512-690-4760 locates@leandertx.gov

512-528-2766

- 1. THE CONTRACTOR SHALL VERIFY ALL DEPTHS AND LOCATIONS OF EXISTING UTILITIES PRIOR TO ANY CONSTRUCTION. ANY DISCREPANCIES WITH CONSTRUCTION PLANS FOUND IN THE FIELD SHALL BE BROUGHT IMMEDIATELY TO THE ATTENTION OF THE ENGINEER.
- 2. THE CONTRACTOR SHALL CONTACT THE TEXAS EXCAVATION SYSTEM AT 1-800-344-8377 FOR EXISTING UTILITY LOCATIONS 48 HOURS PRIOR TO THE START OF CONSTRUCTION. THE CONTRACTOR SHALL VERIFY THE LOCATIONS OF ALL UTILITIES THAT ARE TO BE EXTENDED, TIED TO, CROSSED, OR ALTERED; OR SUBJECT TO DAMAGE/INCONVENIENCE BY THE CONSTRUCTION OPERATIONS.
- 3. CONTACT THE CITY OF LEANDER PUBLIC WORKS DEPARTMENT FOR EXISTING WATER AND WASTEWATER LOCATIONS 48 HOURS PRIOR TO CONSTRUCTION.
- a. LOCATE REQUESTS MUST INCLUDE A COPY OF YOUR 811 TICKET. THE CITY OF LEANDER IS ALLOWED UP TO 48 HOURS TO COMPLY WITH YOUR REQUEST, EXCLUDING WEEKENDS AND DESIGNATED CITY HOLIDAYS.
- b. REFRESH ALL LOCATES <u>BEFORE</u> 14 DAYS LOCATE REFRESH REQUESTS <u>MUST INCLUDE</u> A COPY OF YOUR 811 TICKET. SUBMIT ALL REQUESTS TO LOCATES@LEANDERTX.GOV. TEXAS PIPELINE DAMAGE PREVENTION LAWS REQUIRE THAT A LOCATE REFRESH REQUEST BE SUBMITTED BEFORE 14 DAYS, OR IF LOCATION MARKERS ARE NO LONGER VISIBLE.
- c. **REPORT PIPELINE DAMAGE IMMEDIATELY** IF YOU WITNESS OR EXPERIENCE PIPELINE EXCAVATION DAMAGE, PLEASE CONTACT THE CITY OF LEANDER BY PHONE AT 512-259-2640.
- 4. ANY CHANGES OR REVISIONS TO THESE PLANS MUST FIRST BE SUBMITTED TO THE CITY BY THE DESIGN ENGINEER FOR REVIEW AND WRITTEN APPROVAL PRIOR TO CONSTRUCTION OF THE REVISION.
- 5. A TRAFFIC CONTROL PLAN, IN ACCORDANCE WITH THE TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, SHALL BE SUBMITTED TO THE CITY FOR REVIEW AND APPROVAL PRIOR TO ANY PARTIAL OR COMPLETE ROADWAY CLOSURES. TRAFFIC CONTROL PLANS SHALL BE SITE SPECIFIC AND SEALED BY A REGISTERED PROFESSIONAL ENGINEER. LANE

CLOSURES ON ARTERIALS AND ANY FULL ROAD CLOSURES REQUIRE MESSAGE BOARDS NOTIFYING THE PUBLIC ONE WEEK PRIOR TO THE CLOSURE.

- 6. NO WORK IS TO BE PERFORMED BETWEEN THE HOURS OF 9:00 P.M. AND 7:00 A.M. THE CITY INSPECTOR RESERVES THE RIGHT TO REQUIRE THE CONTRACTOR TO UNCOVER ALL WORK PERFORMED WITHOUT INSPECTION FURTHER, THERE IS A NOISE ORDINANCE IN EFFECT FOR CONSTRUCTION ACTIVITY BETWEEN THE HOURS OF 9:00 PM AND 7:00 AM. REQUESTS FOR EXCEPTIONS TO THE ORDINANCE MUST BE MADE TO LEANDER CITY COUNCIL.
- 7. CONTACT THE CITY INSPECTOR 4 DAYS PRIOR TO WORK TO SCHEDULE ANY INSPECTIONS ON WEEKENDS OR CITY HOLIDAYS.
- 8. NO STREET LIGHTS OR SIGNS OF ANY KIND ARE TO BE PLACED WITHIN ANY SIDEWALKS.
- NO BLASTING IS ALLOWED.
- 10. ANY EXISTING UTILITIES, PAVEMENT, CURBS, SIDEWALKS, STRUCTURES, TREES, ETC., THAT ARE DAMAGED OR REMOVED SHALL BE REPAIRED OR REPLACED BY THE CONTRACTOR AT NO COST TO THE OWNER.
- 11. THE CONTRACTOR SHALL GIVE THE CITY OF LEANDER 48 HOURS NOTICE BEFORE BEGINNING EACH PHASE OF CONSTRUCTION. CONTACT ASSIGNED CITY INSPECTOR.
- 12. A PRE-CONSTRUCTION CONFERENCE SHALL BE HELD WITH THE CONTRACTOR, DESIGN ENGINEER/PERMIT APPLICANT AND THE CITY OF LEANDER REPRESENTATIVES PRIOR TO INSTALLATION OF EROSION/SEDIMENTATION CONTROLS AND TREE PROTECTION MEASURES AND PRIOR TO BEGINNING ANY WORK. THE CONTRACTOR SHALL NOTIFY THE CITY OF LEANDER PLANNING DEPARTMENT PLANNING COORDINATOR AT LEAST THREE (3) DAYS PRIOR TO THE MEETING DATE.
- 13. THE CONTRACTOR AND ENGINEER SHALL KEEP ACCURATE RECORDS OF ALL CONSTRUCTION THAT DEVIATES FROM THE PLANS. THE ENGINEER SHALL FURNISH THE CITY OF LEANDER ACCURATE "RECORD DRAWINGS" FOLLOWING THE COMPLETION OF ALL CONSTRUCTION. THESE "RECORD DRAWINGS" SHALL MEET THE SATISFACTION OF THE ENGINEERING DEPARTMENTS PRIOR TO FINAL ACCEPTANCE
- 14. WHEN CONSTRUCTION IS BEING CARRIED OUT WITHIN EASEMENTS, THE CONTRACTOR SHALL CONFINE HIS WORK TO WITHIN THE PERMANENT AND TEMPORARY EASEMENTS. PRIOR TO ACCEPTANCE, THE CONTRACTOR SHALL BE RESPONSIBLE FOR REMOVING ALL TRASH AND DEBRIS WITHIN THE PERMANENT EASEMENTS. CLEANUP SHALL BE TO THE SATISFACTION OF THE ENGINEER.
- 15. CONTRACTOR TO LOCATE, PROTECT, AND MAINTAIN BENCHMARKS, MONUMENTS, CONTROL POINTS AND PROJECT ENGINEERING REFERENCE POINTS. RE-ESTABLISH DISTURBED OR DESTROYED ITEMS BY REGISTERED PROFESSIONAL LAND SURVEYOR IN THE STATE OF TEXAS, AT NO ADDITIONAL COST TO OWNER.
- 16. THE CONTRACTOR SHALL PROTECT ALL EXISTING FENCES. IN THE EVENT THAT A FENCE MUST BE REMOVED, THE CONTRACTOR SHALL REPLACE SAID FENCE OR PORTION THEREOF WITH THE SAME TYPE OF FENCING TO A QUALITY OF EQUAL OR BETTER THAN THE ORIGINAL FENCE.
- 17. ALL CONSTRUCTION OPERATIONS SHALL BE ACCOMPLISHED IN ACCORDANCE WITH APPLICABLE REGULATIONS OF THE U.S. OCCUPATIONAL SAFETY AND HEALTH

ADMINISTRATION (OSHA). OSHA STANDARDS MAY BE PURCHASED FROM THE GOVERNMENT PRINTING OFFICE; INFORMATION AND RELATED REFERENCE MATERIALS MAY BE PURCHASED FROM OSHA, 1033 LA POSADA DR. SUITE 375, AUSTIN, TEXAS 78752-3832.

- 18. ALL MATERIALS AND CONSTRUCTION PROCEDURES WITHIN THE SCOPE OF THIS CONTRACT WHERE NOT SPECIFICALLY COVERED IN THE PROJECT SPECIFICATIONS SHALL CONFORM TO ALL CITY OF LEANDER DETAILS AND CITY OF AUSTIN STANDARD SPECIFICATIONS.
- 19. PROJECT SPECIFICATIONS TAKE PRECEDENCE OVER PLANS AND SPECIAL CONDITIONS GOVERN OVER TECHNICAL SPECIFICATIONS.
- 20. HOT MIX ASPHALTIC CONCRETE PAVEMENT SHALL BE MINIMUM THICKNESS OF 2 INCHES WITH NO RECYCLED ASPHALT SHINGLES CONTENT.

- 21. CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER OF ANY QUESTIONS THAT MAY RISE CONCERNING THE INTENT, PLACEMENT, OR LIMITS OF DIMENSIONS O NECESSARY FOR THE CONSTRUCTION OF THIS PROJECT.
- 22. CONTRACTOR SHALL BE RESPONSIBLE FOR ACQUIRING ALL PERMITS, TESTS ACCEPTANCES REQUIRED TO COMPLETE CONSTRUCTION OF THIS PROJECT.
- 23. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL COORDINATION BETWE OTHER CONTRACTORS AND UTILITIES IN THE VICINITY OF THE PROJECT. TH WATER, WASTEWATER, ELECTRICAL, TELEPHONE, CABLE TV AND STREET DF ONCE THE CONTRACTOR BECOMES AWARE OF A POSSIBLE CONFLICT, IT IS CONTRACTOR'S RESPONSIBILITY TO NOTIFY THE ENGINEER WITHIN TWENT HOURS.
- 24. THE CONTRACTOR MUST OBTAIN A CONSTRUCTION WATER METER FOR AL DURING CONSTRUCTION. A COPY OF THIS PERMIT MUST BE CARRIED AT AI WHO USE WATER.
- 25. CONTRACTOR SHALL BE RESPONSIBLE FOR KEEPING ROADS AND DRIVES AD NEAR THE SITE FREE FROM SOIL, SEDIMENT AND DEBRIS. CONTRACTOR W SOIL, SEDIMENT OR DEBRIS FROM ANY AREA OR VEHICLE BY MEANS OF WA SHOVELING AND SWEEPING WILL BE ALLOWED. CONTRACTOR WILL BE RES DUST CONTROL FROM THE SITE.
- 26. THE CITY OF LEANDER SHALL NOT BE PETITIONED FOR ACCEPTANCE UNTIL EASEMENT DOCUMENTS HAVE BEEN SIGNED AND RECORDED.
- 27. AN ENGINEER'S CONCURRENCE LETTER AND RECORD DRAWINGS SHALL BE THE ENGINEERING DEPARTMENT PRIOR TO THE ISSUANCE OF CERTIFICATE OR SUBDIVISION ACCEPTANCE. THE ENGINEER AND CONTRACTOR SHALL V FINAL REVISIONS AND CHANGES HAVE BEEN MADE TO THE DIGITAL COPY I SUBMITTAL. RECORD CONSTRUCTION DRAWINGS, INCLUDING ROADWAY SHALL BE PROVIDED TO THE CITY IN DIGITAL FORMAT AS AUTOCAD ".DWG MICROSTATION ".DGN" FILES OR ESRI ".SHP" FILES ON CD ROM. LINE WEIG AND TEXT SIZE SHALL BE SUCH THAT IF HALF-SIZE PRINTS (11"X17") WERE F PLANS WOULD STILL BE LEGIBLE. ALL REQUIRED DIGITAL FILES SHALL CONT OF TWO CONTROL POINTS REFERENCED TO THE STATE PLANE GRID COORD TEXAS CENTRAL ZONE (4203), IN US SURVEY FEET AND SHALL INCLUDE ROT

INFORMATION AND SCALE FACTOR REQUIRED TO REDUCE SURFACE COORD COORDINATES IN US SURVEY FEET 28. TREES IN EXISTING ROW SHOULD BE PROTECTED OR NOTED IN THE PLANS

CONSTRUCTION SEQUENCE NOTES

1. ... 2. ...

3. ...

EROSION CONTROL NOTES

- 1. THE CONTRACTOR SHALL INSTALL EROSION/SEDIMENTATION CONTROLS AND FENCING PRIOR TO ANY WORK (CLEARING, GRUBBING OR EXCAVATION). COM STORMWATER INSPECTOR FOR ON SITE INSPECTION PRIOR TO BEGINNING CO
- 2. THE CONTRACTOR IS REQUIRED TO INSPECT THE CONTROLS AND FENCES AT AND AFTER SIGNIFICANT RAINFALL EVENTS TO ENSURE THAT THEY ARE FUNCT PROPERLY. THE PERSON(S) RESPONSIBLE FOR MAINTENANCE OF CONTROLS IMMEDIATELY MAKE ANY NECESSARY REPAIRS TO DAMAGED AREAS. SILT ACC CONTROLS MUST BE REMOVED WHEN THE DEPTH REACHES SIX (6) INCHES.
- 3. THE TEMPORARY SPOILS DISPOSAL SITE IS TO BE SHOWN IN THE EROSION COM
- 4. ANY ON-SITE SPOILS DISPOSAL SHALL BE REMOVED PRIOR TO ACCEPTANCE UI SPECIFICALLY SHOWN ON THE PLANS. THE DEPTH OF SPOIL SHALL NOT EXCE AREA.
- 5. ALL AREAS DISTURBED OR EXPOSED DURING CONSTRUCTION SHALL BE RESTO MINIMUM OF 6 INCHES OF TOPSOIL AND COMPOST BLEND. TOPSOIL ON SING MAY BE INSTALLED WITH HOME CONSTRUCTION. THE TOPSOIL AND COMPOS CONSIST OF 75% TOPSOIL AND 25% COMPOST.
- 6. SEEDING FOR REESTABLISHING VEGETATION SHALL COMPLY WITH THE AUSTIN GUIDE OR WILLIAMSON COUNTY'S PROTOCOL FOR SUSTAINABLE ROADSIDES SEEDING FOR EROSION CONTROL). RESEEDING VARIETIES OF BERMUDA SHAL
- 7. STABILIZED CONSTRUCTION ENTRANCE IS REQUIRED AT ALL POINTS WHERE CO TRAFFIC IS EXITING THE PROJECT ONTO EXISTING PAVEMENT. LINEAR CONSTR MAY REQUIRE SPECIAL CONSIDERATION. ROADWAYS SHALL REMAIN CLEAR OF
- 8. TEMPORARY STOP SIGNS SHOULD BE INSTALLED AT ALL CONSTRUCTION ENTR STOP CONDITION DOES NOT ALREADY EXIST.
- 9. IN THE EVENT OF INCLEMENT WEATHER THAT MAY RESULT IN A FLOODING SI CONTRACTOR SHALL REMOVE INLET PROTECTION MEASURES UNTIL SUCH TIM WEATHER EVENT HAS PASSED.

WATER AND WASTEWATER NOTES

- 1. PRESSURE TAPS SHALL BE IN ACCORDANCE WITH CITY OF LEANDER STANDARD THE CONTRACTOR SHALL PERFORM ALL EXCAVATION, ETC. AND SHALL FURNIS AIR TEST THE SLEEVE AND VALVE. A CITY OF LEANDER INSPECTOR MUST BE PR THE CONTRACTOR MAKES A TAP, AND/OR ASSOCIATED TESTS. A MINIMUM O WORKING DAYS NOTICE IS REQUIRED. "SIZE ON SIZE" TAPS WILL NOT BE PERM MADE BY THE USE OF AN APPROVED FULL-CIRCLE GASKETED TAPPING SLEEVE. BLOCKING SHALL BE PLACED BEHIND AND UNDER ALL TAP SLEEVES A MINIMU PRIOR TO THE BRANCH BEING PLACED INTO SERVICE. BLOCKING SHALL BE INSP BACKFILL.
- 2. FIRE HYDRANTS ON MAINS UNDER CONSTRUCTION SHALL BE SECURELY WRAF BLACK POLY WRAP BAG AND TAPED INTO PLACE. THE POLY WRAP SHALL BE RI THE MAINS ARE ACCEPTED AND PLACED INTO SERVICE.
- 3. CURVILINEAR WASTEWATER DESIGN LAYOUT IS NOT PERMITTED. 4. THRUST BLOCKING OR RESTRAINTS SHALL BE IN ACCORDANCE WITH THE CITY OF LEANDER STANDARD SPECIFICATIONS AND REQUIRED AT ALL FITTINGS PER DETAIL OR MANUFACTURER'S
- RECOMMENDATION. ALL FITTINGS SHALL HAVE BOTH THRUST BLOCKING AND RESTRAINTS. 5. MANDREL TESTING WILL BE REQUIRED ON ALL WASTEWATER PIPE. PER TCEQ, THIS TEST MUST BE CONDUCTED AFTER THE FINAL BACKFILL HAS BEEN IN PLACE AT LEAST 30 DAYS.
- 6. ALL NEWLY INSTALLED PIPES AND RELATED PRODUCTS MUST CONFORM TO AMERICAN NATIONAL STANDARDS INSTITUTE/NATIONAL SANITATION FOUNDATION (ANSI/NSF) STANDARD 61 AND MUST BE CERTIFIED BY AND ORGANIZATION ACCREDITED BY ANSI

DR GRADES	<u>FLOODING THE TRENCHES AS DIRECTED BY THE CITY ENGINEER.</u> 8. ALL WATER SERVICE, WASTEWATER SERVICE AND VALVE LOCATIONS SHALL BE APPROPRIATELY	BEDDING FOR WAT
S, APPROVALS AND	STAMPED AS FOLLOWS:	BEDDING STONE, PI MANUFACTURED ST
EEN HIMSELF AND	WATER SERVICE "W" ON TOP OF CURB	MEETING THE FOLL
HIS INCLUDES GAS,	WASTEWATER SERVICE "S" ON TOP OF CURB	SIEVE SIZE
RAINAGE WORK.	VALVE "V" ON TOP OF CURB	
THE IY-FOUR (24)	9. TOOLS FOR STAMPING THE CURBS SHALL BE PROVIDED BY THE CONTRACTOR. OTHER APPROPRIATE MEANS OF STAMPING SERVICE AND VALVE LOCATIONS SHALL BE PROVIDED IN	1/2" 3/8"
	AREAS WITHOUT CURBS. SUCH MEANS OF STAMPING SHALL BE SPECIFIED BY THE ENGINEER	#4
LL WATER USED	AND ACCEPTED BY THE CITY OF LEANDER	#10
ALL TIMES BY ALL	10. ALL PLASTIC PIPES FOR USE IN PUBLIC WATER SYSTEMS MUST BEAR THE NATIONAL SANITATION	36. THE CONTRACTOR IS
DJACENT TO AND	FOUNDATION SEAL OF APPROVAL (NSF-PW) AND HAVE AN ASTM DESIGN PRESSURE RATING OF AT LEAST 200 PSI.	TERMINATING EXIST HOURS ARE USUALL
/ILL NOT REMOVE	11. NO PIPE OR FITTING WHICH HAS BEEN USED FOR ANY PURPOSE OTHER THAN THE CONVEYANCE	6 AM.
ATER. ONLY	OF DRINKING WATER SHALL BE ACCEPTED OR RELOCATED FOR USE IN ANY PUBLIC DRINKING	37. ALL WASTEWATER C
SPONSIBLE FOR	WATER SUPPLY.	ON ENVIRONMENTA
ALL NECESSARY		CHAPTER 217, AS AP CONFLICT, THE MOR
	12. TYPICAL DEPTH OF COVER FOR ALL WASTEWATER LINES SHALL BE 48" MINIMUM, WATER LINES SHALL BE 36" MINIMUM UNDER BOTH PAVEMENT AND NATURAL GROUND. STORM SEWER	38. MANHOLES SHALL B
E SUBMITTED TO	SHALL BE 24" MINIMUM UNDER NATURAL GROUND	39. DENSITY TESTING FO
OF COMPLETION	13. THE HYDROSTATIC LEAKAGE RATE SHALL NOT EXCEED THE AMOUNT ALLOWED OR	TO BE DONE IN 12" L 40. ALL GRAVITY WASTE
PRIOR TO CITY	RECOMMENDED BY AWWA FORMULAS.	CONTRACTOR. CAM
AND ALL UTILITIES	14. ALL WATER MAINS, DISTRIBUTION LINES AND SERVICE LINES SHALL BE INSTALLED IN	PAVING. CONTRACT
5" FILES,	ENCASEMENT PIPE UNDERNEATH EXISTING STREETS AND OTHER PAVED SURFACES UNLESS APPROVED WITH PLANS.	INSPECTION. 41. RECLAIMED AND REC
GHTS, LINE TYPES PRODUCED, THE	15. ALL MECHANICAL RESTRAINTS SHALL BE INSTALLED IN ACCORDANCE WITH THE	RECLAIMED AND REC
TAIN A MINIMUM	MANUFACTURER'S INSTRUCTIONS.	STREET AND DRAINAGE NOT
DINATE SYSTEM –	16. ALL DEAD-END WATER MAINS SHALL HAVE THRUST RESTRAINTS INSTALLED ON THE LAST THREE	
TATION	PIPE-LENGTHS (STANDARD 20' LAYING LENGTH), AT MINIMUM, AND THRUST BLOCKS INSTALLED ON THE PLUG. ADDITIONAL THRUST RESTRAINTS MAY BE REQUIRED BASED UPON	1. ALL SIDEWALKS SHA LEANDER HAS NOT R
	THE MANUFACTURER'S RECOMMENDATIONS AND/OR CALCULATIONS BY THE ENGINEER OF	DISABILITIES ACT, OF
DINATES TO GRID	RECORD.	APPROVE THESE PLA
TO BE REMOVED.	17. WHERE WATER LINES CROSS WASTEWATER LINES AND THERE IS LESS THAN 9 FEET CLEARANCE	2. PRIOR TO ACCEPTAN
TO BE REMOVED.	BETWEEN LINES, THE WASTEWATER LINE SHALL BE PLACED SO THAT THE WASTEWATER PIPE SECTION IS CENTERED ON THE WATER LINE AND CONSTRUCTED IN ACCORDANCE WITH TCEQ	IMPROVEMENTS WE AND ARE IN COMPLI
	CHAPTERS 217.53(b) AND 290.44(e).	3. CONTRACTOR SHALL
	18. PIPE MATERIAL FOR WATER MAINS SHALL BE PVC (AWWA C900-16 MIN. 235 PSI PRESSURE	AND MAINTAINED B
	RATING). WATER SERVICES (2" OR LESS) SHALL BE POLYETHYLENE TUBING (BLACK, 200PSI, SDR-	NOTIFY THE CITY OF HOURS PRIOR TO AN
	(9)). DUCTILE IRON PIPE (AWWA C115/C151, MIN. PRESSURE CLASS 250) MAY BE USED FOR	4. BACKFILL BEHIND TH
	WATER MAINS WITH THE EXPRESS APPROVAL OF CITY OF LEANDER ENGINEERING. 19. PIPE FOR PRESSURE WASTEWATER MAINS SHALL BE PVC (AWWA C900-16), GREEN AND	DENSITY TO WITHIN
	MARKED FOR SEWER. PIPE MATERIAL FOR GRAVITY WASTEWATER MAINS SHALL BE PVC (ASTM	WITH NO ROCKS LAP
	D2241, D3034 MAX. SDR-26 OR PS115 F679) OR FIBERGLASS WITH PIPE STIFFNESS OF 72 PSI PER	CLEAN TOPSOIL FREE 5. A MINIMUM OF 6" C
D TREE PROTECTIVE	COA SPL WW-509.	IN ALL DRAINAGE CH
NTACT ONSTRUCTION.	20. ALL FIRE HYDRANT LEADS SHALL BE DUCTILE IRON PIPE (AWWA C115/C151 PRESSURE CLASS 350).	
WEEKLY INTERVALS	21. INTERIOR SURFACES OF ALL DUCTILE IRON POTABLE OR RECLAIMED WATER PIPE SHALL BE	6. DEPTH OF COVER FOR
TIONING	CEMENT-MORTAR LINED AND SEAL COATED AS REQUIRED BY AWWA C104.	TELEPHONE, CABLE T 7. STREET RIGHT-OF-WA
AND FENCES SHALL	22. ALL IRON PIPE AND FITTINGS SHALL BE WRAPPED WITH MINIMUM 8-MIL POLYETHYLENE.	UNLESS OTHERWISE I
CUMULATION AT	23. THE CONTRACTOR SHALL CONTACT THE ENGINEERING DEPARTMENT INSPECTOR AT 528-2700 AT LEAST 48 HOURS PRIOR TO CONNECTING TO THE EXISTING WATER LINES.	AT ¼" PER FOOT SLOP
NTROL MAP.	24. ALL MANHOLES SHALL BE CONCRETE WITH CAST IRON RING AND COVER. TAPPING OF	GRADING SCHEME IS I DEPARTMENT.
NLESS	FIBERGLASS MANHOLES SHALL NOT BE ALLOWED.	8. BARRICADES BUILT TO
ED 10 FEET IN ANY	25. EXISTING MANHOLES MODIFIED BY CONSTRUCTION ACTIVITY SHALL BE TESTED FOR LEAKAGE	STREETS AND AS NEC
ORED WITH A	BY VACUUM. ANY EXISTING MANHOLE WHICH FAILS TO PASS THE VACUUM TEST SHALL BE CLOSELY EXAMINED BY THE INSPECTOR AND THE CONTRACTOR TO DETERMINE IF THE	 ALL REINFORCED CON O-RING JOINT DESIGN
GLE FAMILY LOTS	MANHOLE CAN BE REPAIRED. THEREAFTER, THE CONTRACTOR SHALL EITHER REPAIR OR	10. THE CONTRACTOR IS
ST BLEND SHALL	REMOVE AND REPLACE THE MANHOLE AS DIRECTED.	FOLLOWING TESTING
	26. PIPE CONNECTIONS TO EXISTING MANHOLES AND JUNCTION BOXES SHALL BE CONSTRUCTED IN	EMBANKMENT, IN-PL OF THIS TESTING MUS
IN GROW GREEN	ACCORDANCE WITH CITY OF AUSTIN SPECIFICATION 506.5.F.	11. THE CONTRACTOR MU
(SPEC 164WC001 LL NOT BE USED.	27. LINE FLUSHING OR ANY ACTIVITY USING A LARGE QUANTITY OF WATER MUST BE COORDINATED WITH THE PUBLIC WORKS DEPARTMENT.	12. AT INTERSECTIONS W
CONSTRUCTION	28. THE CONTRACTOR, AT HIS EXPENSE, SHALL PERFORM STERILIZATION OF ALL CONSTRUCTED	STREETS WILL CULMIN
RUCTION PROJECTS	POTABLE WATER LINES AND SHALL PROVIDE ALL EQUIPMENT (INCLUDING TEST GAUGES),	OTHERWISE NOTED. 13. AT THE INTERSECTION
OF SILT AND MUD.	SUPPLIES (INCLUDING CONCENTRATED CHLORINE DISINFECTING MATERIAL), AND NECESSARY	STREETS WILL CULMIN
RANCES WHERE A	LABOR REQUIRED FOR THE STERILIZATION PROCEDURE. THE STERILIZATION PROCEDURE SHALL BE MONITORED BY CITY OF LEANDER PERSONNEL. WATER SAMPLES WILL BE COLLECTED BY	OTHERWISE NOTED.
ITUATION, THE	THE CITY OF LEANDER TO VERIFY EACH TREATED LINE HAS ATTAINED AN INITIAL CHLORINE	14. A CURB LAYDOWN IS THE CURB.
ME AS THE	CONCENTRATION OF 50 PPM. WHERE MEANS OF FLUSHING IS NECESSARY, THE CONTRACTOR,	15. ALL STRIPING, WITH T
	AT HIS EXPENSE, SHALL PROVIDE FLUSHING DEVICES AND REMOVE SAID DEVICES PRIOR TO	BE TYPE II (WATER BA
	FINAL ACCEPTANCE BY THE CITY OF LEANDER.	THERMOPLASTIC.
	29. SAMPLING TAPS SHALL BE BROUGHT UP TO 3 FEET ABOVE GRADE AND SHALL BE EASILY ACCESSIBLE FOR CITY PERSONNEL. AT THE CONTRACTORS' REQUEST, AND IN HIS PRESENCE,	16. MANHOLE FRAMES, C FINAL PAVEMENT COI
	SAMPLES FOR BACTERIOLOGICAL TESTING WILL BE COLLECTED BY THE CITY OF LEANDER NOT	17. CONTRACTOR SHALL
D SPECIFICATIONS.	LESS THAN 24 HOURS AFTER THE TREATED LINE HAS BEEN FLUSHED OF THE CONCENTRATED	48 HOURS PRIOR TO T
SH, INSTALL AND	CHLORINE SOLUTION AND CHARGED WITH WATER APPROVED BY THE CITY.	EASEMENT OR STREET THE CITY'S ROW MUS
RESENT WHEN DF TWO (2)	30. TESTING SHALL BE PERFORMED FOR ALL WASTEWATER PIPE INSTALLED AND PRESSURE PIPE HYDROSTATIC TESTING OF ALL WATER LINES CONSTRUCTED. THE OWNER'S CONTRACTOR	18. A STOP BAR SHALL BE
MITTED UNLESS	SHALL PROVIDE ALL EQUIPMENT (INCLUDING PUMPS AND GAUGES), SUPPLIES AND LABOR	19. A MINIMUM OF SEVE
. CONCRETE	NECESSARY TO PERFORM THE TESTS. THE CONTRACTOR SHALL NOTIFY THE CITY OF LEANDER	INTRODUCTION OF PU
JM OF 24 HOURS	ENGINEERING DEPARTMENT NO LESS THAN 48 HOURS PRIOR TO PERFORMING STERILIZATION,	20. THE GEOTECHNICAL E DESIGN ASSUMPTION
PECTED PRIOR TO	QUALITY TESTS, OR PRESSURE TESTS. A CITY OF LEANDER INSPECTOR SHALL BE PRESENT FOR ALL TESTS AND SHALL BE PAID FOR BY THE OWNER/CONTRACTOR. THESE SERVICES ARE PAID	ADJUSTMENTS THAT
PPED WITH A	FOR AT THE TIME OF CONSTRUCTION PLAN SUBMITTAL.	
REMOVED WHEN	31. THE CONTRACTOR SHALL NOT OPEN OR CLOSE ANY VALVE UNLESS AUTHORIZED BY THE CITY OF	21. GEOTECHNICAL INVES PROVIDED BY
	LEANDER.	
	32. ALL VALVE BOXES AND COVERS SHALL BE CAST IRON.	

7. DURING PERIODS OF EXTENDED DRY WEATHER, TRENCH BACKFILL MUST BE COMPACTED BY

- b. DUAL, 1" METERS AND BELOW DFW39F-12-1CA, OR EQUAL
 - - DFW1730F-12-1CA, OR EQUAL
- a. SINGLE, 1" METER AND BELOW DFW37F-12-1CA, OR EQUAL
 - DFW65C-14-1CA, OR EQUAL
- c. 1.5" SINGLE METER d. 2" SINGLE METER

34. ALL WATER METER BOXES SHALL BE:

33. ALL WATER VALVE COVERS ARE TO BE PAINTED BLUE.

35	SAND, AS DESCRIBED IN AUSTIN SPECIFICATION ITEM 510 PIPE, SHALL NOT BE USED AS BEDDING FOR WATER AND WASTEWATER LINES. ACCEPTABLE BEDDING MATERIALS ARE PIPE BEDDING STONE, PEA GRAVEL AND IN LIEU OF SAND, A NATURALLY OCCURRING OR MANUFACTURED STONE MATERIAL CONFORMING TO ASTM C33 FOR STONE QUALITY AND MEETING THE FOLLOWING GRADATION SPECIFICATION:		DATE BY	_
	SIEVE SIZE PERCENT RETAINED BY WEIGHT			
	1/2"03/8"0-2#440-85#1095-100		REVISION	
36.	THE CONTRACTOR IS HEREBY NOTIFIED THAT CONNECTING TO, SHUTTING DOWN, OR TERMINATING EXISTING UTILITY LINES MAY HAVE TO OCCUR AT OFF-PEAK HOURS. SUCH HOURS ARE USUALLY OUTSIDE NORMAL WORKING HOURS AND POSSIBLY BETWEEN 12 AM AND			
	6 AM. ALL WASTEWATER CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY (TCEQ) REGULATIONS, 30 TAC CHAPTER 213 AND 30 TAC CHAPTER 217, AS APPLICABLE. WHENEVER TCEQ AND CITY OF LEANDER SPECIFICATION CONFLICT, THE MORE STRINGENT SHALL APPLY.			NÚ.
39.	MANHOLES SHALL BE COATED PER CITY OF AUSTIN SPL WW-511 (RAVEN 405 OR SPRAYWALL). DENSITY TESTING FOR TRENCH BACKFILL LOCATED WITHIN THE LIMITS OF THE PAVED AREA IS TO BE DONE IN 12" LIFTS EVERY 500' AND AT LEAST ONCE PER LINE SEGMENT ALL GRAVITY WASTEWATER MAINS TO BE TESTED BY CAMERA AND PAID FOR BY THE		DATE:	
	CONTRACTOR. CAMERA TESTING FOR WASTEWATER LINES IN ROADWAY SHALL OCCUR BEFORE PAVING. CONTRACTOR SHALL PROVIDE THE CITY WITH A DVD COPY OF THE FULL CAMERA INSPECTION. RECLAIMED AND RECYCLED WATER LINE SHALL BE CONSTRUCTED OF "PURPLE PIPE." ALL	ESIGNED: <u>MRC</u> ESIGN CHECKED: RAWN: <u>MRC</u>	:0G0 CHECKED: :URVEY CHECKED: }A/QC: }A/QC REVISIONS:	
	RECLAIMED AND RECYCLED WATER VALVE COVERS SHALL BE SQUARE AND PAINTED PURPLE.		SUR SUR QA(
1.	AND DRAINAGE NOTES ALL SIDEWALKS SHALL COMPLY WITH THE AMERICANS WITH DISABILITIES ACT. THE CITY OF LEANDER HAS NOT REVIEWED THESE PLANS FOR COMPLIANCE WITH THE AMERICANS WITH DISABILITIES ACT, OR ANY OTHER ACCESSIBILITY LEGISLATION, AND DOES NOT WARRANTY OR APPROVE THESE PLANS FOR ANY ACCESSIBILITY STANDARDS. PRIOR TO ACCEPTANCE THE ENGINEER SHALL SUBMIT DOCUMENTATION THAT THE IMPROVEMENTS WERE INSPECTED BY TDLR OR A REGISTERED ACCESSIBILITY SPECIALIST (RAS)	SURVEYING VY, BLDG 3, SUITE 390 59	514-0315 FAX 280 . 100486	
3.	AND ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE TABA. CONTRACTOR SHALL PROVIDE QUALITY TESTING FOR ALL INFRASTRUCTURES TO BE ACCEPTED AND MAINTAINED BY THE CITY OF LEANDER AFTER COMPLETION. THE CONTRACTOR SHALL	AND SUF L HWY, E 3 78759	No.	
	NOTIFY THE CITY OF LEANDER ENGINEERING DEPARTMENT AT 528-2700 NO LESS THAN 48 HOURS PRIOR TO ANY TESTING.		56 (51 REG. I A REG.	
	BACKFILL BEHIND THE CURB SHALL BE COMPACTED TO OBTAIN A MINIMUM OF 95% MAXIMUM DENSITY TO WITHIN 6" OF TOP OF CURB. MATERIAL USED SHALL BE PRIMARILY GRANULAR WITH NO ROCKS LARGER THAN 6" IN THE GREATEST DIMENSION. THE REMAINING 6" SHALL BE CLEAN TOPSOIL FREE FROM ALL CLODS AND SUITABLE FOR SUSTAINING PLANT LIFE A MINIMUM OF 6" OF TOPSOIL SHALL BE PLACED BETWEEN THE CURB AND RIGHT-OF-WAY AND IN ALL DRAINAGE CHANNELS EXCEPT CHANNELS CUT IN STABLE ROCK.	, TER	(512)646-3456 (5 TBPE FIRM REG TBPLS FIRM REG	
7. 9 () () () () () () () () () (DEPTH OF COVER FOR ALL CROSSINGS UNDER PAVEMENT, INCLUDING GAS, ELECTRIC TELEPHONE, CABLE TV, ETC., SHALL BE A MINIMUM OF 36" BELOW SUBGRADE. STREET RIGHT-OF-WAY SHALL BE GRADED AT A SLOPE OF ¼" PER FOOT TOWARD THE CURB JNLESS OTHERWISE INDICATED. HOWEVER, IN NO CASE SHALL THE WIDTH OF RIGHT-OF-WAY AT ¼" PER FOOT SLOPE BE LESS THAN 10 FEET UNLESS A SPECIFIC REQUEST FOR AN ALTERNATE GRADING SCHEME IS MADE TO AND ACCEPTED BY THE CITY OF LEANDER PUBLIC WORKS DEPARTMENT. BARRICADES BUILT TO THE CITY OF LEANDER STANDARDS SHALL BE ERECTED ON ALL DEAD-END STREETS AND AS NECESSARY DURING CONSTRUCTION TO MAINTAIN JOB AND PUBLIC SAFETY. ALL REINFORCED CONCRETE PIPE SHALL BE MINIMUM CLASS III OF TONGUE AND GROOVE OR	Costello		
10. T I	D-RING JOINT DESIGN. THE CONTRACTOR IS TO NOTIFY THE ENGINEERING INSPECTOR 48 HOURS PRIOR TO THE FOLLOWING TESTING: PROOF ROLLING SUB-GRADE AND EVERY LIFT OF ROADWAY EMBANKMENT, IN-PLACE DENSITY TESTING OF EVERY BASE COURSE, AND ASPHALT CORES. ALL OF THIS TESTING MUST BE WITNESSED BY A CITY OF LEANDER REPRESENTATIVE.			
11. 1 12. / 	THE CONTRACTOR MUST PROVIDE A PNEUMATIC TRUCK PER TXDOT SPEC FOR PROOF ROLLING. AT INTERSECTIONS WHICH HAVE VALLEY DRAINAGE, THE CROWNS OF THE INTERSECTING STREETS WILL CULMINATE IN A DISTANCE OF 40 FEET FROM INTERSECTING CURB LINE UNLESS OTHERWISE NOTED. AT THE INTERSECTION OF TWO 44' STREETS OR LARGER, THE CROWNS OF THE INTERSECTING STREETS WILL CULMINATE IN A DISTANCE OF 40 FEET FROM INTERSECTING CURB LINE UNLESS OTHERWISE NOTED.	HASE 1 S 78641	NOTES	
14. /	A CURB LAYDOWN IS REQUIRED AT ALL POINTS WHERE THE PROPOSED SIDEWALK INTERSECTS THE CURB.	3 - Р 175 ЕХА	Ž	
I	ALL STRIPING, WITH THE EXCEPTION OF STOP BARS, CROSS WALKS, WORDS AND ARROWS, IS TO BE TYPE II (WATER BASED). STOP BARS, CROSS WALKS, WORDS AND ARROWS REQUIRE TYPE I THERMOPLASTIC.	WILDSPRING C.R. LEANDER, T	GENERAL	
I	MANHOLE FRAMES, COVERS, VALVES, CLEAN-OUTS, ETC. SHALL BE RAISED TO GRADE PRIOR TO FINAL PAVEMENT CONSTRUCTION. CONTRACTOR SHALL NOTIFY THE LEANDER ENGINEERING DEPARTMENT AT 528-2700 AT LEAST	WILDSP LEANDE	ENE	
2	48 HOURS PRIOR TO THE INSTALLATION OF ANY DRAINAGE FACILITY WITHIN A DRAINAGE EASEMENT OR STREET ROW. THE METHOD OF PLACEMENT AND COMPACTION OF BACKFILL IN THE CITY'S ROW MUST BE APPROVED PRIOR TO THE START OF BACKFILL OPERATIONS.		Ċ	
18. / 19. / 19. / 1 20. 1	A STOP BAR SHALL BE PLACED AT ALL STOP SIGN LOCATIONS. A MINIMUM OF SEVEN DAYS OF CURE TIME IS REQUIRED FOR HMAC PRIOR TO THE NTRODUCTION OF PUBLIC VEHICULAR TRAFFIC TO ANY STREETS. THE GEOTECHNICAL ENGINEER SHALL INSPECT THE SUBGRADE FOR COMPLIANCE WITH THE DESIGN ASSUMPTIONS MADE DURING PREPARATION OF THE SOILS REPORT. ANY			
(21. (ADJUSTMENTS THAT ARE REQUIRED SHALL BE MADE THROUGH REVISIONS OF THE CONSTRUCTION PLANS. GEOTECHNICAL INVESTIGATION INFORMATION AND PAVEMENT RECOMMENDATIONS WERE PROVIDED BY PAVEMENT RECOMMENDATIONS ARE AS FOLLOWS:	STEVEN	DF TEXAS	1
		8	5531 655 NSED 611 AL FUSE 4/28/2023	E HASE 1

SHEET 🖊 🦳

DF **118** SHEETS

TRENCH SAFETY NOTES

1. TRENCH SAFETY SYSTEMS TO BE UTILIZED FOR THIS PROJECT ARE DESCRIBED IN ITEM 509S "TRENCH SAFETY SYSTEMS" OF THE CITY OF AUSTIN STANDARD SPECIFICATIONS AND SHALL BE IN ACCORDANCE WITH THE LAWS OF THE STATE OF TEXAS AND THE U.S. OCCUPATION SAFETY AND HEALTH ADMINISTRATION REGULATIONS.

GRADING NOTES

- 1. POSITIVE DRAINAGE SHALL BE MAINTAINED ON ALL SURFACE AREAS WITHIN THE SCOPE OF THIS PROJECT. CONTRACTOR SHOULD TAKE PRECAUTIONS NOT TO ALLOW ANY PONDING OF WATER.
- 2. THE CONTRACTOR SHALL CONSTRUCT EARTHEN EMBANKMENTS WITH SLOPES NO STEEPER THAN 3:1 AND COMPACT SOIL TO 95% OF MAXIMUM DENSITY IN ACCORDANCE WITH THE CITY OF AUSTIN STANDARD SPECIFICATIONS.
- 3. AREAS OF SOIL DISTURBANCE ARE LIMITED TO GRADING AND IMPROVEMENTS SHOWN. ALL OTHER AREAS WILL NOT BE DISTURBED.

BENCHMARK NOTES

Control Point Table									
Point #	Northing	Easting	Elevation	Raw Description					
1	10183884.97	3098786.39	898.95	CP IRSC					
2	10184384.63	3098340.11	900.77	CP IRSC					
13	10183386.06	3097860.08	874.68	CP IRSC 1/2					
14	10183631.19	3098472.41	885.27	CP IRSC 1/2					
15	10184948.25	3098131.47	893.11	CP IRSC 1/2					
16	10185128.45	3097457.14	913.47	CP IRSC 1/2					
18	10185502.93	3097056.82	920.08	CP 60D					

Texas Commission on Environmental Quality Contributing Zone Plan General Construction Notes

Edwards Aquifer Protection Program Construction Notes – Legal Disclaimer

The following/listed "construction notes" are intended to be advisory in nature only and do not constitute an approval or conditional approval by the Executive Director (ED), nor do they constitute a comprehensive listing of rules or conditions to be followed during construction. Further actions may be required to achieve compliance with TCEQ regulations found in Title 30, Texas Administrative Code (TAC), Chapters 213 and 217, as well as local ordinances and regulations providing for the protection of water quality. Additionally, nothing contained in the following/listed "construction notes" restricts the powers of the ED, the commission or any other governmental entity to prevent, correct, or curtail activities that result or may result in pollution of the Edwards Aquifer or hydrologically connected surface waters. The holder of any Edwards Aquifer Protection Plan containing "construction notes" is still responsible for compliance with Title 30, TAC, Chapters 213 or any other applicable TCEQ regulation, as well as all conditions of an Edwards Aquifer Protection Plan through all phases of plan implementation Failure to comply with any condition of the ED's approval, whether or not in contradiction of any "construction notes," is a violation of TCEQ regulations and any violation is subject to administrative rules, orders, and penalties as provided under Title 30, TAC § 213.10 (relating to Enforcement). Such violations may also be subject to civil penalties and injunction. The following/listed "construction notes" in no way represent an approved exception by the ED to any part of Title 30 TAC, Chapters 213 and 217, or any other TCEQ applicable regulation

- A written notice of construction must be submitted to the TCEQ regional office at least 48 hours prior to the start of any ground disturbance or construction activities. This notice must include:
 - the name of the approved project; - the activity start date; and
 - the contact information of the prime contractor.
- All contractors conducting regulated activities associated with this project should be provided with complete copies of the approved Contributing Zone Plan (CZP) and the TCEQ letter indicating the specific conditions of its approval. During the course of these regulated activities, the contractor(s) should keep copies of the approved plan and approval letter on-
- No hazardous substance storage tank shall be installed within 150 feet of a water supply source, distribution system, well, or sensitive feature.
- Prior to beginning any construction activity, all temporary erosion and sedimentation (E&S) control measures must be properly installed and maintained in accordance with the manufacturers specifications. If inspections indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations. These controls must remain in place until the disturbed areas have been permanently stabilized.
- Any sediment that escapes the construction site must be collected and properly disposed of before the next rain event to ensure it is not washed into surface streams, sensitive features,
- Sediment must be removed from the sediment traps or sedimentation basins when it occupies 50% of the basin's design capacity.
- Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from being discharged offsite.
- All excavated material that will be stored on-site must have proper E&S controls.

TCEQ-0592A (Rev. July 15, 2015)

If portions of the site will have a cease in construction activity lasting longer than 14 days, soi

Page 1 of 2

stabilization in those areas shall be initiated as soon as possible prior to the 14th day of inactivity. If activity will resume prior to the 21st day, stabilization measures are not required. If drought conditions or inclement weather prevent action by the 14th day, stabilization measures shall be initiated as soon as possible. 10. The following records should be maintained and made available to the TCEQ upon request: the dates when major grading activities occur; - the dates when construction activities temporarily or permanently cease on a portion of the site; and the dates when stabilization measures are initiated. The holder of any approved CZP must notify the appropriate regional office in writing and obtain approval from the executive director prior to initiating any of the following:

۹.	any physical or operational modification of any best management practices (BMPs) or
	structure(s), including but not limited to temporary or permanent ponds, dams, berms,
	silt fences, and diversionary structures;

В.	any change in the nature or char originally approved;	acter of the regulated activity from that which was		LATERAL STUB-OUTS MUST BE INSTALLED AS SHOWN ON THE PLAN AND PROFILE SHEETS ON PLAN SHEET OF AND MARKED AFTER BACKFILLING AS SHOWN IN THE DETAIL ON PLAN SHEET OF		
C. D.	any change that would significantly impact the ability to prevent pollution of the Edwards Aquifer; or any development of land previously identified as undeveloped in the approved contributing zone plan.		13. 14.	RENCHING, BEDDING AND BACKFILL MUST CONFORM WITH 30 TAC §217.54. THE BEDDING AND BACKFILL OR FLEXIBLE PIPE MUST COMPLY WITH THE STANDARDS OF ASTM D-2321, CLASSES IA, IB, II OR III. GID PIPE BEDDING MUST COMPLY WITH THE REQUIREMENTS OF ASTM C 12 (ANSI A 106.2) CLASSES B OR C. EWER LINES MUST BE TESTED FROM MANHOLE TO MANHOLE. WHEN A NEW SEWER LINE IS CONNECTED O AN EXISTING STUB OR CLEAN-OUT, IT MUST BE TESTED FROM EXISTING MANHOLE TO NEW MANHOLE.		
	Austin Regional Office 12100 Park 35 Circle, Building A Austin, Texas 78753-1808 Phone (512) 339-2929 Fax (512) 339-3795	San Antonio Regional Office 14250 Judson Road San Antonio, Texas 78233-4480 Phone (210) 490-3096 Fax (210) 545-4329	15.	15. /	IF A STUB OR CLEAN-OUT IS USED AT THE END OF THE PROPOSED SEWER LINE, NO PRIVATE SERVICE ATTACHMENTS MAY BE CONNECTED BETWEEN THE LAST MANHOLE AND THE CLEANOUT UNLESS IT CAN BE CERTIFIED AS CONFORMING WITH THE PROVISIONS OF 30 TAC §213.5(C)(3)(E). ALL SEWER LINES MUST BE TESTED IN ACCORDANCE WITH 30 TAC §217.57. THE ENGINEER MUST RETAIN COPIES OF ALL TEST RESULTS WHICH MUST BE MADE AVAILABLE TO THE EXECUTIVE DIRECTOR UPON REQUEST. THE ENGINEER MUST CERTIFY IN WRITING THAT ALL WASTEWATER LINES HAVE PASSED ALL REQUIRED TESTING TO THE APPROPRIATE REGIONAL OFFICE WITHIN 30 DAYS OF TEST COMPLETION AND PRIOR TO USE OF THE NEW COLLECTION SYSTEM. TESTING METHOD WILL BE:	(2)
GENERAL CONSTRUCTION NOTES MUST BE INCLUDED ON THE CONSTRUCTION PROVIDED TO THE CONTRACTOR AND ALL SUBCONTRACTORS.				(A) FOR A COLLECTION SYSTEM PIPE THAT WILL TRANSPORT WASTEWATER BY GRAVITY FLOW, THE DESIGN MUST SPECIFY AN INFILTRATION AND EXFILTRATION TEST OR A LOW-PRESSURE AIR TEST. A TEST MUST CONFORM TO THE FOLLOWING REQUIREMENTS:		
COMMISSION ON ENVIRONMENTAL QUALITY ZED SEWAGE COLLECTION SYSTEM			(1)	LOW PRESSURE AIR TEST.		
			(A)	A LOW PRESSURE AIR TEST MUST FOLLOW THE PROCEDURES DESCRIBED IN AMERICAN SOCIETY FOR		

THESE PLANS

TEXAS O

GENERAL CONSTRUCTION NOTES

EDWARDS AQUIFER PROTECTION PROGRAM CONSTRUCTION NOTES – LEGAL DISCLAIMER THE FOLLOWING/LISTED "CONSTRUCTION NOTES" ARE INTENDED TO BE ADVISORY IN NATURE ONLY AND DO NOT CONSTITUTE AN APPROVAL OR CONDITIONAL APPROVAL BY THE EXECUTIVE DIRECTOR, NOR DO THEY CONSTITUTE A COMPREHENSIVE LISTING OF RULES OR CONDITIONS TO BE FOLLOWED DURING CONSTRUCTION. FURTHER ACTIONS MAY BE REQUIRED TO ACHIEVE COMPLIANCE WITH TCEQ REGULATIONS FOUND IN TITLE 30, TEXAS ADMINISTRATIVE CODE, CHAPTERS 213 AND 217, AS WELL AS LOCAL ORDINANCES AND REGULATIONS PROVIDING FOR THE PROTECTION OF WATER QUALITY. ADDITIONALLY, NOTHING CONTAINED IN THE FOLLOWING/LISTED "CONSTRUCTION NOTES" RESTRICTS THE POWERS OF THE EXECUTIVE DIRECTOR, THE COMMISSION OR ANY OTHER GOVERNMENTAL ENTITY TO PREVENT, CORRECT, OR CURTAIL ACTIVITIES THAT RESULT OR MAY RESULT IN POLLUTION OF THE EDWARDS AQUIFER OR HYDROLOGICALLY CONNECTED SURFACE WATERS. THE HOLDER OF ANY EDWARDS AQUIFER PROTECTION PLAN CONTAINING "CONSTRUCTION NOTES" IS STILL RESPONSIBLE FOR COMPLIANCE WITH TITLE 30, TEXAS ADMINISTRATIVE CODE, CHAPTERS 213 OR ANY OTHER APPLICABLE TCEQ REGULATION, AS WELL AS ALL CONDITIONS OF AN EDWARDS AQUIFER PROTECTION PLAN THROUGH ALL PHASES OF PLAN IMPLEMENTATION. FAILURE TO COMPLY WITH ANY CONDITION OF THE EXECUTIVE DIRECTOR'S APPROVAL, WHETHER OR NOT IN CONTRADICTION OF ANY "CONSTRUCTION NOTES," IS A VIOLATION OF TCEQ REGULATIONS AND ANY VIOLATION IS SUBJECT TO ADMINISTRATIVE RULES, ORDERS, AND PENALTIES AS PROVIDED UNDER TITLE 30, TEXAS ADMINISTRATIVE CODE § 213.10 (RELATING TO ENFORCEMENT). SUCH VIOLATIONS MAY ALSO BE SUBJECT TO CIVIL PENALTIES AND INJUNCTION. THE FOLLOWING/LISTED "CONSTRUCTION NOTES" IN NO WAY REPRESENT AN APPROVED EXCEPTION BY THE EXECUTIVE DIRECTOR TO ANY PART OF TITLE 30 TEXAS ADMINISTRATIVE CODE, CHAPTERS 213 AND 217, OR ANY OTHER TCEQ APPLICABLE REGULATION.

- TEXAS ADMINISTRATIVE CODE (TAC) §213.5(C), THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY'S (TCEQ) EDWARDS AQUIFER RULES AND ANY LOCAL GOVERNMENT STANDARD SPECIFICATIONS.
- ALL CONTRACTORS CONDUCTING REGULATED ACTIVITIES ASSOCIATED WITH THIS PROPOSED 2. APPROVAL LETTER.
- THE NAME OF THE APPROVED PROJECT; - THE ACTIVITY START DATE; AND - THE CONTACT INFORMATION OF THE PRIME CONTRACTOR
- ANY MODIFICATION TO THE ACTIVITIES DESCRIBED IN THE REFERENCED SCS APPLICATION FOLLOWING ITS REVIEW AND APPROVAL.
- AREAS HAVE BEEN PERMANENTLY STABILIZED.
- WATER QUALITY WHILE MAINTAINING THE STRUCTURAL INTEGRITY OF THE LINE.
- MINIMUM THICKNESS OF 6 INCHES.
- DAMAGED, THE LINES MUST BE REPAIRED AND RETESTED.
- SIZE RESILIENT CONNECTORS ALLOWING FOR DIFFERENTIAL SETTLEMENT. IF MANHOLES ARE LINE/MANHOLE INVERTS DESCRIBED IN 30 TAC §217.55 ARE INCLUDED ON PLAN SHEET ___ OF BY MEANS OF A PORTABLE LADDER. THE INCLUSION OF STEPS IN A MANHOLE IS PROHIBITED.
- 10. WHERE WATER LINES AND NEW SEWER LINE ARE INSTALLED WITH A SEPARATION DISTANCE CLOSER REQUIREMENTS OF 30 TAC §217.53(D) (PIPE DESIGN) AND 30 TAC §290.44(E) (WATER DISTRIBUTION).
- 11. MANUFACTURER: .IF PIPE FLEXURE IS PROPOSED, THE FOLLOWING METHOD OF PREVENTING §217.54.
- 12. NEW SEWAGE COLLECTION SYSTEM LINES MUST BE CONSTRUCTED WITH STUB OUTS FOR THE

1. THIS ORGANIZED SEWAGE COLLECTION SYSTEM (SCS) MUST BE CONSTRUCTED IN ACCORDANCE WITH 30

REGULATED PROJECT MUST BE PROVIDED WITH COPIES OF THE SCS PLAN AND THE TCEQ LETTER INDICATING THE SPECIFIC CONDITIONS OF ITS APPROVAL. DURING THE COURSE OF THESE REGULATED ACTIVITIES, THE CONTRACTORS MUST BE REQUIRED TO KEEP ON-SITE COPIES OF THE PLAN AND THE

3. A WRITTEN NOTICE OF CONSTRUCTION MUST BE SUBMITTED TO THE PRESIDING TCEQ REGIONAL OFFICE AT LEAST 48 HOURS PRIOR TO THE START OF ANY REGULATED ACTIVITIES. THIS NOTICE MUST INCLUDE:

THE DATE OF APPROVAL MAY REQUIRE THE SUBMITTAL OF AN SCS APPLICATION TO MODIFY THIS APPROVAL, INCLUDING THE PAYMENT OF APPROPRIATE FEES AND ALL INFORMATION NECESSARY FOR

PRIOR TO BEGINNING ANY CONSTRUCTION ACTIVITY, ALL TEMPORARY EROSION AND SEDIMENTATION (E&S) CONTROL MEASURES MUST BE PROPERLY INSTALLED AND MAINTAINED IN ACCORDANCE WITH THE MANUFACTURERS SPECIFICATIONS. THESE CONTROLS MUST REMAIN IN PLACE UNTIL THE DISTURBED

IF ANY SENSITIVE FEATURES ARE DISCOVERED DURING THE WASTEWATER LINE TRENCHING ACTIVITIES. ALL REGULATED ACTIVITIES NEAR THE SENSITIVE FEATURE MUST BE SUSPENDED IMMEDIATELY. THE APPLICANT MUST IMMEDIATELY NOTIFY THE APPROPRIATE REGIONAL OFFICE OF THE TCEQ OF THE FEATURE DISCOVERED. A GEOLOGIST'S ASSESSMENT OF THE LOCATION AND EXTENT OF THE FEATURE DISCOVERED MUST BE REPORTED TO THAT REGIONAL OFFICE IN WRITING AND THE APPLICANT MUST SUBMIT A PLAN FOR ENSURING THE STRUCTURAL INTEGRITY OF THE SEWER LINE OR FOR MODIFYING THE PROPOSED COLLECTION SYSTEM ALIGNMENT AROUND THE FEATURE. THE REGULATED ACTIVITIES NEAR THE SENSITIVE FEATURE MAY NOT PROCEED UNTIL THE TCEQ-0596(REV. JULY 15, 2015) PAGE 1 OF 6 EXECUTIVE DIRECTOR HAS REVIEWED AND APPROVED THE METHODS PROPOSED TO PROTECT THE SENSITIVE FEATURE AND THE EDWARDS AQUIFER FROM ANY POTENTIALLY ADVERSE IMPACTS TO

SEWER LINES LOCATED WITHIN OR CROSSING THE 5-YEAR FLOODPLAIN OF A DRAINAGE WAY WILL BE PROTECTED FROM INUNDATION AND STREAM VELOCITIES WHICH COULD CAUSE EROSION AND SCOURING OF BACKFILL. THE TRENCH MUST BE CAPPED WITH CONCRETE TO PREVENT SCOURING OF BACKFILL, OR THE SEWER LINES MUST BE ENCASED IN CONCRETE. ALL CONCRETE SHALL HAVE A

8. BLASTING PROCEDURES FOR PROTECTION OF EXISTING SEWER LINES AND OTHER UTILITIES WILL BE IN ACCORDANCE WITH THE NATIONAL FIRE PROTECTION ASSOCIATION CRITERIA. SAND IS NOT ALLOWED AS BEDDING OR BACKFILL IN TRENCHES THAT HAVE BEEN BLASTED. IF ANY EXISTING SEWER LINES ARE

ALL MANHOLES CONSTRUCTED OR REHABILITATED ON THIS PROJECT MUST HAVE WATERTIGHT SIZE ON CONSTRUCTED WITHIN THE 100-YEAR FLOODPLAIN, THE COVER MUST HAVE A GASKET AND BE BOLTED TO THE RING. WHERE GASKETED MANHOLE COVERS ARE REQUIRED FOR MORE THAN THREE MANHOLES IN SEQUENCE OR FOR MORE THAN 1500 FEET, ALTERNATE MEANS OF VENTING WILL BE PROVIDED. BRICKS ARE NOT AN ACCEPTABLE CONSTRUCTION MATERIAL FOR ANY PORTION OF THE MANHOLE. THE DIAMETER OF THE MANHOLES MUST BE A MINIMUM OF FOUR FEET AND THE MANHOLE FOR ENTRY MUST HAVE A MINIMUM CLEAR OPENING DIAMETER OF 30 INCHES. THESE DIMENSIONS AND OTHER DETAILS SHOWING COMPLIANCE WITH THE COMMISSION'S RULES CONCERNING MANHOLES AND SEWER IT IS SUGGESTED THAT ENTRANCE INTO MANHOLES IN EXCESS OF FOUR FEET DEEP BE ACCOMPLISHED

THAN NINE FEET (I.E., WATER LINES CROSSING WASTEWATER LINES, WATER LINES PARALLELING WASTEWATER LINES, OR WATER LINES NEXT TO MANHOLES) THE INSTALLATION MUST MEET THE

WHERE SEWERS LINES DEVIATE FROM STRAIGHT ALIGNMENT AND UNIFORM GRADE ALL CURVATURE OF SEWER PIPE MUST BE ACHIEVED BY THE FOLLOWING PROCEDURE WHICH IS RECOMMENDED BY THE PIPE DEFLECTION OF THE JOINT MUST BE USED: .SPECIFIC CARE MUST BE TAKEN TO ENSURE THAT THE JOINT IS PLACED IN THE CENTER OF THE TRENCH AND PROPERLY BEDDED IN ACCORDANCE WITH 30 TAC

CONNECTION OF ANTICIPATED EXTENSIONS. THE LOCATION OF SUCH STUB OUTS MUST BE MARKED ON THE GROUND SUCH THAT THEIR LOCATION CAN BE EASILY DETERMINED AT THE TIME OF CONNECTION OF THE EXTENSIONS. SUCH STUB OUTS MUST BE MANUFACTURED WYES OR TEES THAT ARE COMPATIBLE IN SIZE AND MATERIAL WITH BOTH THE SEWER LINE AND THE EXTENSION. AT THE TIME OF ORIGINAL CONSTRUCTION, NEW STUB-OUTS MUST BE CONSTRUCTED SUFFICIENTLY TO EXTEND BEYOND THE END OF THE STREET PAVEMENT. ALL STUB-OUTS MUST BE SEALED WITH A MANUFACTURED CAP TO PREVENT LEAKAGE. EXTENSIONS THAT WERE NOT ANTICIPATED AT THE TIME OF ORIGINAL CONSTRUCTION OR THAT ARE TO BE CONNECTED TO AN EXISTING SEWER LINE NOT FURNISHED WITH STUB OUTS MUST BE CONNECTED USING A MANUFACTURED SADDLE AND IN ACCORDANCE WITH ACCEPTED PLUMBING TECHNIQUES. IF NO STUB-OUT IS PRESENT AN ALTERNATE METHOD OF JOINING LATERALS IS SHOWN IN THE DETAIL ON PLAN SHEET OF . (FOR POTENTIAL FUTURE LATERALS). THE PRIVATE SERVICE

TESTING AND MATERIALS (ASTM) C-828, ASTM C924, OR ASTM F-1417 OR OTHER PROCEDURE APPROVED BY THE EXECUTIVE DIRECTOR, EXCEPT AS TO TESTING TIMES AS REQUIRED IN TABLE C.3 IN SUBPARAGRAPH (C) OF THIS PARAGRAPH OR EQUATION C.3 IN SUBPARAGRAPH (B)(II) OF THIS PARAGRAPH (B) FOR SECTIONS OF COLLECTION SYSTEM PIPE LESS THAN 36 INCH AVERAGE INSIDE DIAMETER, THE

FOLLOWING PROCEDURE MUST APPLY, UNLESS A PIPE IS TO BE TESTED AS REQUIRED BY PARAGRAPH (2) OF THIS SUBSECTION.

(I) A PIPE MUST BE PRESSURIZED TO 3.5 POUNDS PER SQUARE INCH (PSI) GREATER THAN THE PRESSURE EXERTED BY GROUNDWATER ABOVE THE PIPE.

(II) ONCE THE PRESSURE IS STABILIZED, THE MINIMUM TIME ALLOWABLE FOR THE PRESSURE TO DROP FROM 3.5 PSI GAUGE TO 2.5 PSI GAUGE IS COMPUTED FROM THE FOLLOWING EQUATION:

 $T = \frac{0.085 \times D \times K}{1000}$ Equation C.3 Where

T = time for pressure to drop 1.0 pound per square inch gauge in

K = 0.000419 X D X L, but not less than 1.0 average inside pipe diameter in inches

L = length of line of same size being tested, in feet

rate of loss, 0.0015 cubic feet per minute per square foot internal (C) Since a K value of less than 1.0 may not be used, the minimum testing

Pipe Diameter (inches)	Minimum Time (seconds)	Maximum Length for Minimum Time (feet)	Time for Longer Length (seconds/foot)
6	340	398	0.855
8	454	298	1.520
10	567	239	2.374
12	680	199	3.419
15	850	159	5.342
18	1020	133	7.693
21	1190	114	10.471
24	1360	100	13.676
27	1530	88	17.309
30	1700	80	21.369
33	1870	72	25.856

(D) AN OWNER MAY STOP A TEST IF NO PRESSURE LOSS HAS OCCURRED DURING THE FIRST 25% OF THE CALCULATED TESTING TIME.

- IF ANY PRESSURE LOSS OR LEAKAGE HAS OCCURRED DURING THE FIRST 25% OF A TESTING PERIOD. THEN THE TEST MUST CONTINUE FOR THE ENTIRE TEST DURATION AS OUTLINED ABOVE OR UNTIL FAILURE.
- (F) WASTEWATER COLLECTION SYSTEM PIPES WITH A 27 INCH OR LARGER AVERAGE INSIDE DIAMETER MAY BE AIR TESTED AT EACH JOINT INSTEAD OF FOLLOWING THE PROCEDURE OUTLINED IN THIS SECTION.
- (G) A TESTING PROCEDURE FOR PIPE WITH AN INSIDE DIAMETER GREATER THAN 33 INCHES MUST BE APPROVED BY THE EXECUTIVE DIRECTOR.

(2) INFILTRATION/EXFILTRATION TEST.

(F)

- (A) THE TOTAL EXFILTRATION, AS DETERMINED BY A HYDROSTATIC HEAD TEST, MUST NOT EXCEED 50 GALLONS PER INCH OF DIAMETER PER MILE OF PIPE PER 24 HOURS AT A MINIMUM TEST HEAD OF 2.0 FEET ABOVE THE CROWN OF A PIPE AT AN UPSTREAM MANHOLE
- (B) AN OWNER SHALL USE AN INFILTRATION TEST IN LIEU OF AN EXFILTRATION TEST WHEN PIPES ARE INSTALLED BELOW THE GROUNDWATER LEVEL.
- (C) THE TOTAL EXFILTRATION, AS DETERMINED BY A HYDROSTATIC HEAD TEST, MUST NOT EXCEED 50 GALLONS PER INCH DIAMETER PER MILE OF PIPE PER 24 HOURS AT A MINIMUM TEST HEAD OF TWO FEET ABOVE THE CROWN OF A PIPE AT AN UPSTREAM MANHOLE, OR AT LEAST TWO FEET ABOVE EXISTING GROUNDWATER LEVEL, WHICHEVER IS GREATER.
- FOR CONSTRUCTION WITHIN A 25-YEAR FLOOD PLAIN, THE INFILTRATION OR EXFILTRATION MUST NOT EXCEED 10 GALLONS PER INCH DIAMETER PER MILE OF PIPE PER 24 HOURS AT THE SAME MINIMUM TEST HEAD AS IN SUBPARAGRAPH (C) OF THIS PARAGRAPH.
- (E) IF THE QUANTITY OF INFILTRATION OR EXFILTRATION EXCEEDS THE MAXIMUM QUANTITY SPECIFIED, AN OWNER SHALL UNDERTAKE REMEDIAL ACTION IN ORDER TO REDUCE THE INFILTRATION OR EXFILTRATION TO AN AMOUNT WITHIN THE LIMITS SPECIFIED. AN OWNER SHALL RETEST A PIPE FOLLOWING A REMEDIATION ACTION.
- (B) IF A GRAVITY COLLECTION PIPE IS COMPOSED OF FLEXIBLE PIPE, DEFLECTION TESTING IS ALSO REQUIRED. THE FOLLOWING PROCEDURES MUST BE FOLLOWED:

(1) FOR A COLLECTION PIPE WITH INSIDE DIAMETER LESS THAN 27 INCHES, DEFLECTION MEASUREMENT REQUIRES A RIGID MANDREL.

(A) MANDREL SIZING.

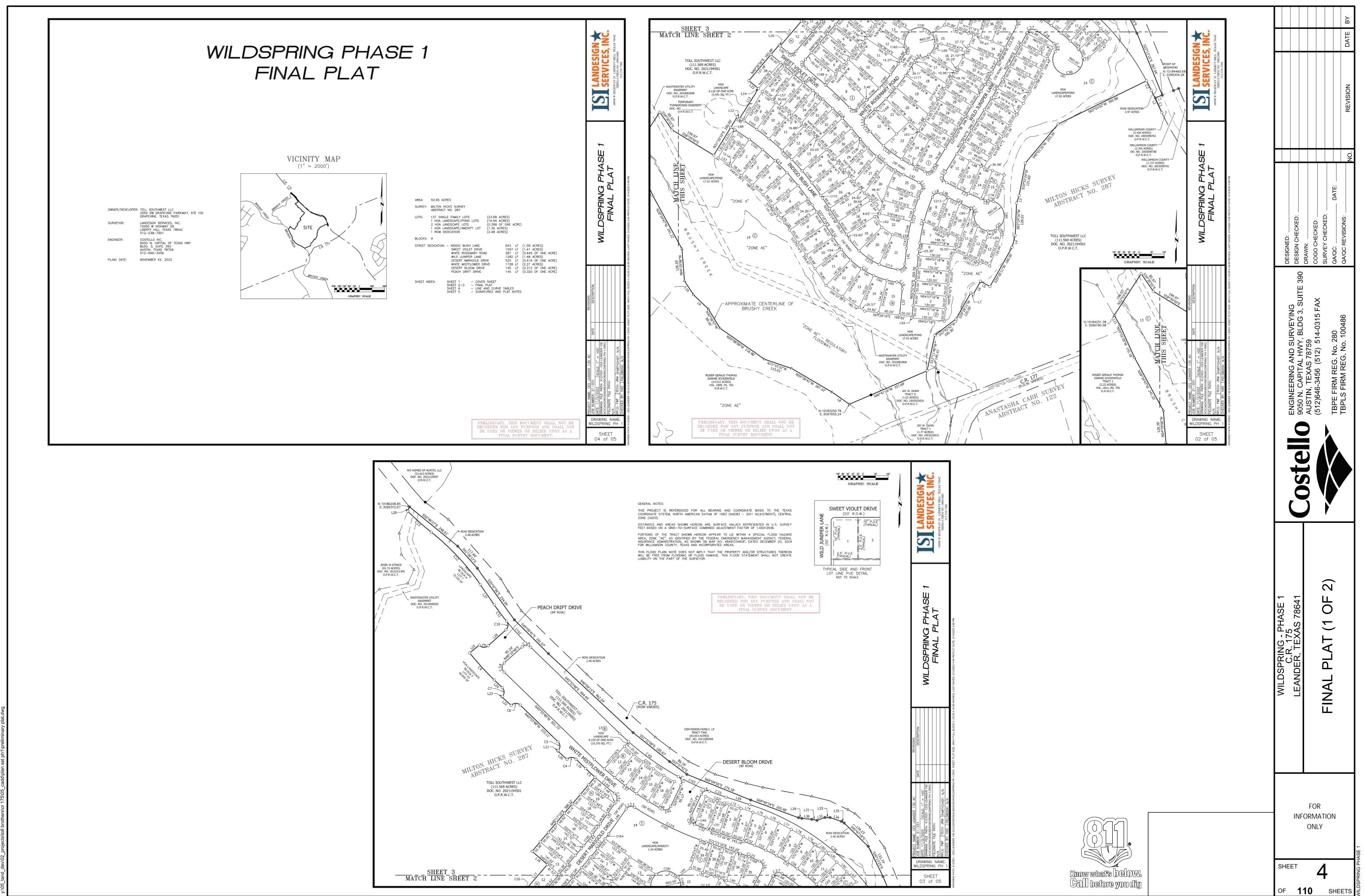
(I) A RIGID MANDREL MUST HAVE AN OUTSIDE DIAMETER (OD) NOT LESS THAN 95% OF THE BASE INSIDE DIAMETER (ID) OR AVERAGE ID OF A PIPE, AS SPECIFIED IN THE APPROPRIATE STANDARD BY THE ASTMS, AMERICAN WATER WORKS ASSOCIATION, UNI-BELL, OR AMERICAN NATIONAL STANDARDS INSTITUTE, OR ANY RELATED APPENDIX.

(II) IF A MANDREL SIZING DIAMETER IS NOT SPECIFIED IN THE APPROPRIATE STANDARD, THE MANDREL MUST HAVE AN OD EQUAL TO 95% OF THE ID OF A PIPE. IN THIS CASE, THE ID OF THE PIPE, FOR THE PURPOSE OF DETERMINING THE OD OF THE MANDREL, MUST EQUAL BE THE AVERAGE OUTSIDE DIAMETER MINUS TWO MINIMUM WALL THICKNESSES FOR OD CONTROLLED PIPE AND THE AVERAGE INSIDE DIAMETER FOR ID CONTROLLED PIPE.

(III) ALL DIMENSIONS MUST MEET THE APPROPRIATE STANDARD.

(B) MANDREL DESIGN.

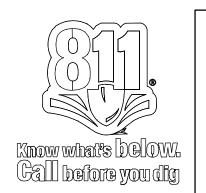
(I) A RIGID MANDREL MUST BE CONSTRUCTED OF A METAL OR A RIGID PLASTIC MATERIAL THAT CAN WITHSTAND 200 PSI WITHOUT BEING DEFORMED.


(II) A MANDREL MUST HAVE NINE OR MORE ODD NUMBER OF RUNNERS OR

I FGS

(III) A BARREL SECTION LENGTH MUST EQUAL AT LEAST 75% OF THE INSIDE

Austin	Regi
12100	Park
Austin,	Tex
Phone	(512
Fax	(512


	DIAMETER OF A PIPE.		
	(IV) EACH SIZE MANDREL MUST USE A SEPARATE PROVING RING. (C) METHOD OPTIONS.		DATE BY
	(I) AN ADJUSTABLE OR FLEXIBLE MANDREL IS PROHIBITED.		DA
	(II) A TEST MAY NOT USE TELEVISION INSPECTION AS A SUBSTITUTE FOR A DEFLECTION TEST.		
	(III) IF REQUESTED, THE EXECUTIVE DIRECTOR MAY APPROVE THE USE OF A DEFLECTOMETER OR A MANDREL WITH REMOVABLE LEGS OR RUNNERS ON A CASE-BY-CASE BASIS.		REVISION
	(2) FOR A GRAVITY COLLECTION SYSTEM PIPE WITH AN INSIDE DIAMETER 27 INCHES AND GREATER, OTHER TEST METHODS MAY BE USED TO DETERMINE VERTICAL DEFLECTION.		RE
	(3) A DEFLECTION TEST METHOD MUST BE ACCURATE TO WITHIN PLUS OR MINUS 0.2% DEFLECTION.		
	(4) AN OWNER SHALL NOT CONDUCT A DEFLECTION TEST UNTIL AT LEAST 30 DAYS AFTER THE FINAL BACKFILL.		
	(5) GRAVITY COLLECTION SYSTEM PIPE DEFLECTION MUST NOT EXCEED FIVE PERCENT (5%).		
	(6) IF A PIPE SECTION FAILS A DEFLECTION TEST, AN OWNER SHALL CORRECT THE PROBLEM AND CONDUCT A SECOND TEST AFTER THE FINAL BACKFILL HAS BEEN IN PLACE AT LEAST 30 DAYS.		DATE:
16.	ALL MANHOLES MUST BE TESTED TO MEET OR EXCEED THE REQUIREMENTS OF 30 TAC §217.58.		
	 (A) ALL MANHOLES MUST PASS A LEAKAGE TEST. (B) AN OWNER SHALL TEST EACH MANHOLE (AFTER ASSEMBLY AND BACKFILLING) FOR LEAKAGE, SEPARATE AND INDEPENDENT OF THE COLLECTION SYSTEM PIPES, BY HYDROSTATIC EXFILTRATION TESTING, VACUUM TESTING, OR OTHER METHOD APPROVED BY THE EXECUTIVE DIRECTOR. 	ESIGNED: <u>MRC</u> ESIGN CHECKED: RAWN: <u>MRC</u>	JGO CHECKED: JRVEY CHECKED: VQC: VQC REVISIONS:
	(1) HYDROSTATIC TESTING. (A) THE MAXIMUM LEAKAGE FOR HYDROSTATIC TESTING OR ANY ALTERNATIVE TEST		
	METHODS IS 0.025 GALLONS PER FOOT DIAMETER PER FOOT OF MANHOLE DEPTH PER HOUR.	ITE 390	
	(B) TO PERFORM A HYDROSTATIC EXFILTRATION TEST, AN OWNER SHALL SEAL ALL WASTEWATER PIPES COMING INTO A MANHOLE WITH AN INTERNAL PIPE PLUG, FILL THE MANHOLE WITH WATER, AND MAINTAIN THE TEST FOR AT LEAST ONE HOUR.	/EYING .DG 3, SUITE	5 FAX 6
	(C) A TEST FOR CONCRETE MANHOLES MAY USE A 24-HOUR WETTING PERIOD BEFORE TESTING TO ALLOW SATURATION OF THE CONCRETE. (2) VACUUM TESTING.	SURVEYI Y, BLDG	12) 514-0315 F No. 280 5. No. 100486
	(A) TO PERFORM A VACUUM TEST, AN OWNER SHALL PLUG ALL LIFT HOLES AND EXTERIOR JOINTS WITH A NON-SHRINK GROUT AND PLUG ALL PIPES ENTERING A MANHOLE.	A A A	5 (512) 5 EG. No. 2 REG. No.
	(B) NO GROUT MUST BE PLACED IN HORIZONTAL JOINTS BEFORE TESTING.	ERING CAPIT/ TEXA	
	(C) STUB-OUTS, MANHOLE BOOTS, AND PIPE PLUGS MUST BE SECURED TO PREVENT MOVEMENT WHILE A VACUUM IS DRAWN.	ENGINE 9050 N. ALISTIN	(512)646 TBPE FI TBPLS F
	(D) AN OWNER SHALL USE A MINIMUM 60 INCH/LB TORQUE WRENCH TO TIGHTEN THE EXTERNAL CLAMPS THAT SECURE A TEST COVER TO THE TOP OF A MANHOLE.	906 007	(51 TB TB
	(E) A TEST HEAD MUST BE PLACED AT THE INSIDE OF THE TOP OF A CONE SECTION, AND THE SEAL INFLATED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.		
	(F) THERE MUST BE A VACUUM OF 10 INCHES OF MERCURY INSIDE A MANHOLE TO PERFORM A VALID TEST.		
	(G) A TEST DOES NOT BEGIN UNTIL AFTER THE VACUUM PUMP IS OFF.	ST	
	(H) A MANHOLE PASSES THE TEST IF AFTER 2.0 MINUTES AND WITH ALL VALVES CLOSED, THE VACUUM IS AT LEAST 9.0 INCHES OF MERCURY.		
17.	ALL PRIVATE SERVICE LATERALS MUST BE INSPECTED AND CERTIFIED IN ACCORDANCE WITH 30 TAC §213.5(C)(3)(I). AFTER INSTALLATION OF AND, PRIOR TO COVERING AND CONNECTING A PRIVATE SERVICE LATERAL TO AN EXISTING ORGANIZED SEWAGE COLLECTION SYSTEM, A TEXAS LICENSED PROFESSIONAL ENGINEER, TEXAS REGISTERED SANITARIAN, OR APPROPRIATE CITY INSPECTOR MUST VISUALLY INSPECT THE PRIVATE SERVICE LATERAL AND THE CONNECTION TO THE SEWAGE COLLECTION SYSTEM, AND CERTIFY THAT IT IS CONSTRUCTED IN CONFORMITY WITH THE APPLICABLE PROVISIONS OF THIS SECTION. THE OWNER OF THE COLLECTION SYSTEM MUST MAINTAIN SUCH CERTIFICATIONS FOR FIVE YEARS AND FORWARD COPIES TO THE APPROPRIATE REGIONAL OFFICE UPON REQUEST. CONNECTIONS MAY ONLY BE MADE TO AN APPROVED SEWAGE COLLECTION SYSTEM.		
	Austin Regional OfficeSan Antonio Regional Office12100 Park 35 Circle, Building A14250 Judson RoadAustin, Texas 78753-1808San Antonio, Texas 78233-4480Phone (512) 339-2929Phone (210) 490-3096		
	Fax (512) 339-3795 Fax (210) 545-4329	SE 1 8641	S
		PHASE 5 (AS 7864	NOTE
			N
		WILDSPRIN(C.R. LEANDER, T	Ŏ
		WILDSF	Ŭ C
		L M	F
			332-
		STATE STATE	OF TEXAS
		STEVE	N BUFFUM
		بلغة، 11 مركبة، 11	5531
		and the second s	AL FUCTO
		SHEET	4/28/2023
		t	3
	FOR REGULATORY REVIEW ONLY - NOT FOR CONSTRUCTION	OF 118	SHEETS

		CU	RVE TABLE					CU	IRVE TABLE					CU	IRVE TABLE					CU	RVE TABLE		
CURVE #	RADIUS	LENGTH	DELTA	CHORD BEARING	CHORD	CURVE #	RADIUS	LENGTH	DELTA	CHORD BEARING	CHORD	CURVE #	RADIUS	LENGTH	DELTA	CHORD BEARING	CHORD	CURVE #	RADIUS	LENGTH	DELTA	CHORD BEARING	CHORD
C1	1121.98'	64.00'	3"16'05"	S23'45'31"E	63.99'	C73	1225.00'	39.91'	1*51'59"	N28'54'49"E	39.90'	C136	25.00'	23.55'	53*58'05"	S06"24'54"W	22.69'	C228	1109.00'	49.12'	2*32'16"	S59*51'11"E	49.11'
C2	984.00'	42.81'	2'29'34"	N26*37'41"W	42.81'	C74	1225.00'	44.53'	2'04'58"	N30'53'17"E	44.53'	C137	725.00'	189.71'	14*59'33"	S40*53'43"W	189.17'	C229	1109.00'	245.59'	12.41'18"	S54*46'40"E	245.09
C3	1279.00'	50.80'	2*16'32"	N47*02'04"W	50.80'	C75	1475.00'	43.36'	1*41'03"	S62'38'07"E	43.36'	C138	25.00'	38.35'	87*53'35"	N87*39'43"W	34.70'	C230	1084.00'	243.30'	12'51'36"	S54'51'49"E	242.79
C4	25.00'	40.07'	91*49'34"	S88"11'25"W	35.91'	C76	1475.00'	53.84'	2*05'28"	S64*31'22"E	53.83'	C139	1335.00'	132.09'	5*40'08"	N46*33'00"W	132.03'	C231	1109.00'	78.84'	4'04'24"	N70"15'29"W	78.83'
C5	25.00'	38.47'	88*10'26"	N01*48'35"W	34.79'	C77	1475.00'	53.72'	2'05'12"	S66'36'42"E	53.71'	C140	1279.00'	101.24'	4*32'07"	S50*26'24"E	101.21'	C232	1109.00'	49.12'	2*32'16"	S69'29'25"E	49.11'
C6	25.00'	40.07*	91*49'34"	S88'11'25"W	35.91'	C78	1475.00'	18.88'	0*44'00"	S68*01'18"E	18.88'	C141	25.00'	38.36'	87*54'38"	S08*45'08"E	34.70'	C233	1109.00'	29.72'	1'32'09"	S71'31'37"E	29.72'
C7	25.00'	38.47'	88*10'26"	N01*48'35"W	34.79'	C79	60.00'	21.21'	20*15'18"	N8413'04"W	21.10'	C143	1175.00'	111.00'	5*24'46"	S37*54'33"W	110.96'	C236	1285.00'	1.74'	0'04'39"	N38'18'36"W	1.74'
C8	1279.00'	146.67'	6'34'14"	N42*36'41"W	146.59'	C80	60.00'	136.52'	130'22'10"	N08'54'20"W	108.92'	C145	25.00'	39.27'	90,00,00	S85*36'56"W	35.36'	C237	975.00'	0.80'	0'02'50"	S58*38'25"E	0.80'
C9	25.00'	40.36'	92*29'38"	S85*34'23"E	36.12'	C81	60.00'	40.78'	38'56'31"	N75*45'01"E	40.00'	C147	775.00'	40.03'	2'57'34"	S07*21'29"W	40.02'						
C10	25.00'	38.09'	87*17'32"	N04*32'02"E	34.51'	C82	60.00'	44.65'	42'38'12"	S63'27'38"E	43.63'	C148	775.00'	68.00'	5'01'37"	S11*21'04"W	67.98'					LINE TABLE	
C11	1084.00'	82.20'	4*20'40"	N36*56'24"W	82.18'	C83	60.00'	50.37'	48'06'09"	S18'05'27"E	48.91'	C149	775.00'	48.44'	3*34'52"	S15*39'19"W	48.43'				LINE #	1	DISTANCE
C12	984.00'	288.03'	16*46'16"	N43'09'12"W	287.00'	C84	25.00'	28.14'	64'28'59"	N26*16'52"W	26.67'	C150	775.00'	48.44'	3*34'52"	S19'14'10"W	48.43'				L64	S58'39'50"E	19.20'
C13	1084.00'	125.07'	6*36'39"	N48"14'01"W	125.00'	C85	25.00'	3.58'	8"12'54"	N62'37'49"W	3.58'	C151	775.00'	33.89'	2*30'20"	S22*16'46"W	33.89'				165	S54*34'03"W	60.66'
C14	975.00'	433.82'	25*29'36"	S45*55'02"E	430.25'	C86	725.00'	104.38'	8'14'55"	S18*53'43"W	104.29'	C152	525.00'	38.91'	4'14'47"	S60*45'40"E	38.90'				L66	N86*28'16"W	25.00'
C15	325.00'	281.45'	49*37'07"	S57'58'48"E	272.74'	C87	725.00'	87.86'	6*56'38"	S11*17'56"W	87.81'	C153	525.00'	45.01'	4'54'44"	S56*10'54"E	45.00'				L68	N33'43'15"W	29.28'
C16	25.00'	38.69'	88*40'03"	S38*27'20"E	34.94'	C88	725.00'	24.66'	1*56'56"	S06*51'10"W	24.66'	C154	525.00'	47.74'	512'38"	S51*07'13"E	47.73'				L69	N05"13'16"E	25.00'
C17	725.00'	216.90'	17*08'29"	N14*26'56"E	216.09'	C89	325.00'	40.82'	7"11'50"	S79"11'26"E	40.80'	C155	525.00'	47.74'	5*12'38"	S45*54'36"E	47.73'				L00	S48*23'29"W	70.00'
C18	25.00'	41.06'	94*05'49"	N70°04'05"E	36.60'	C90	325.00'	55.78'	9*50'03"	S70*40'30"E	55.71'	C156	525.00'	46.12'	5'02'00"	S40*47'17"E	46.10'				L72	N72"17'41"W	70.08
C19	1525.00'	102.56'	3*51'12"	S64*48'40"E	102.54'	C91	325.00'	55.78'	9*50'03"	S60*50'27"E	55.71'	C157	1285.00'	54.45'	2*25'41"	N39*33'46"W	54.45'				L73	N84'04'06"E	25.53
C20	25.00'	31.72'	72*41'54"	S30'23'19"E	29.64'	C92	325.00'	55.78'	9*50'03"	S51'00'23"E	55.71'	C158	1285.00'	54.45'	2*25'41"	N41'59'27"W	54.45'				L74	S72'00'34"E	50.00'
C21	60.00'	293.54'	280"18'20"	N45*48'27"E	76.89'	C93	325.00'	55.78'	9*50'03"	S41*10'20"E	55.71'	C159	1285.00'	54.45'	2*25'41"	N44*25'07"W	54.45'				L75	S69"19'42"E	55.59'
C22	25.00'	11.33'	25*57'25"	N81*22'00"W	11.23'	C94	325.00'	17.50'	3*05'05"	S34*42'46"E	17.49'	C160	1285.00'	54.45'	2*25'41"	N46'50'48"W	54.45'				L76	S65*59'23"E	56.16'
C23	1475.00'	169.78'	6*35'43"	N65'05'26"W	169.69'	C95	975.00'	28.75'	1'41'23"	N34'00'56"W	28.75'	C161	1285.00'	29.69'	1'19'25"	N48'43'21"W	29.69'				L77	S62'38'04"E	56.14'
C24	25.00'	40.59'	93*01'35"	N15*16'48"W	36.28'	C96	975.00'	67.25'	3*57'08"	N36'50'12"W	67.24'	C162	1225.00'	42.11'	1*58'10"	N39*37'52"E	42.10'				L78	S59"16'49"E	56.12
C25	725.00'	8.81'	0'41'47"	N31*34'53"E	8.81'	C97	975.00'	67.25'	3*57'08"	N40'47'20"W	67.24'	C163	1225.00'	49.00'	2'17'31"	N37*30'01"E	49.00'				L79	S55*55'37"E	56.12
C26	1225.00"	84.44'	3*56'58"	N29'57'18"E	84.42*	C98	975.00'	67.25'	3*57'08"	N44'44'27"W	67.24'	C164	1225.00"	24.62	1*09'05"	N35*46'43"E	24.62'				L80	S52*34'25"E	56.12
C27	25.00'	41.39'	94*51'24"	N75'24'31"E	36.82'	C99	975.00'	67.28'	3*57'13"	N48'41'38"W	67.26'	C165	1279.00'	293.97*	13*10'08"	S63*41'13"E	293.32'				L81	S49"13'12"E	56.13
C28	750.00'	88.13'	6*43'57"	S53*47'49"E	88.08'	C100	975.00'	67.23'	3*57'03"	N52'38'46"W	67.22'	C166	1279.00'	24.18'	1'04'59"	S70*48'47"E	24.18'				L82	S45*51'57"E	56.15'
C29	25.00'	36.26'	83'06'24"	S08'52'38"E	33.17'	C101	975.00'	67.99'	3*59'43"	N56'37'09"W	67.97'	C167	750.00'	37.23'	2'50'38"	N69*55'58"W	37.22'				L83	S42'32'39"E	55.02'
C30	60.00'	270.60'	258*23'58"	N83*28'35"E	92.99'	C102	1025.00'	12.50'	0*41'55"	N58*18'53"W	12.50'	C168	750.00'	45.00'	3*26'15"	N66*47'31"W	44.99'				1.84	N28'54'49"E	43.81'
C31	800.00'	381.65'	27*20'01"	N57*41'16"W	378.04'	C103	1025.00'	61.79'	3*27'15"	S56"14'18"E	61.78'	C169	1175.00'	49.78'	2*25'38"	N29"11'38"E	49.77'				L85	N30'53'17"E	48.89'
C32	1229.00'	66.69'	3'06'32"	N69*48'01"W	66.68'	C104	1025.00'	61.50'	3'26'16"	N52*47'33"W	61.49*	C170	1175.00'	31.21'	1*31'19"	N31"10'07"E	31.21'				L86	S68*56'58"E	49.48'
C33	25.00'	40.72'	93*19'59"	N21*34'45"W	36.37'	C105	1025.00'	69.80'	3*54'07"	N49'07'22"W	69.79'	C171	475.00'	35.57'	4*17'26"	S60*44'21"E	35.56'				L87	N68"58'11"W	50.01'
C34	25.00'	37.69'	86*22'52"	N68'16'40"E	34.22'	C106	1025.00'	53.20'	2*58'25"	N45'41'06"W	53.19'	C172	475.00'	91.08'	10*59'12"	S53*06'01"E	90.94'				L88	N64*31'22"W	49.45'
C35	1084.00'	71.20'	3*45'48"	S70°24'47"E	71.18'	C107	1025.00'	61.50'	3*26'16"	N42'28'45"W	61.49'	C173	475.00'	77.40'	9*20'08"	S42*56'21"E	77.31'				L89	N62"14'07"W	58.74'
C36	984.00'	762.88'	44*25'13"	S50'05'05"E	743.91'	C108	1025.00'	61.50'	3'26'16"	N39'02'29"W	61.49'	C174	775.00'	57.48'	4*14`58"	N46*16'00"E	57.47'				L90	N70*26'51"W	49.01'
C37	1229.00'	336.41'	15*41'00"	N53*44'18"W	335.36'	C109	1025.00'	61.50'	3'26'16"	N35'36'13"W	61.49'	C175	775.00'	61.12'	4*31'08"	N41*52'58"E	61.11'				L91	N65'53'05"W	57.73'
C38	25.00'	41.05'	94*04'36"	N01*08'30"E	36.59'	C110	1025.00'	12.78'	0*42'51"	N33'31'40"W	12.78'	C176	775.00'	61.05'	4'30'48"	N37*22'00"E	61.03'				L92	S23*35'36"W	47.76'
C39	25.00'	37.49'	85*55'24"	S88'51'30"E	34.08'	C111	275.00'	60.77'	12*39'39"	S39'30'04"E	60.64'	C177	775.00'	23.14'	1*42'40"	N34"15'16"E	23.14				L93	S26'14'30"W	48.83'
C40	1084.00'	291.30'	15'23'49"	S53*35'43"E	290.43'	C112	275.00'	97.57'	20*19'43"	S55*59'44"E	97.06'	C178	60.00'	36.17'	34*32'22"	N70*05'51"E	35.62'				L94	S28'53'58"W	48.10'
C41	25.00'	37.69'	86*22'52"	S18'06'11"E	34.22'	C113	275.00'	77.26'	16*05'46"	S74*12'29"E	77.00'	C179	60.00'	51.63'	49*17`56"	N28*10'42"E	50.05'				L95	S31'04'25"W	31.21'
C42	25.00'	40.72'	93*20'04"	S71'45'17"W	36.37'	C114	1285.00'	249.24'	11*06'47"	S43'49'40"E	248.84'	C180	60.00'	40.94'	39*05'45"	N16'01'09"W	40.15'				L96	N46*22'38"E	70.79'
C43	1229.00'	54.43'	2*32'16"	S49*42'09"E	54.43'	C115	525.00'	225.53'	24'36'47"	S50'34'40"E	223.80'	C181	60.00'	98.75'	9417'52"	N82*42'57"W	87.97'				L97	N19"14'10"E	56.55'
C44	1229.00'	54.43'	2*32'16"	S52"14'25"E	54.43'	C116	25.00'	37.71'	86*25'00"	S19*40'34"E	34.23'	C182	60.00'	66.37'	63'22'41"	S18*26'46"W	63.04'				L98	N23"19'31"E	72.60'
C45	1229.00'	54.43'	2*32'16"	S54*46'40"E	54.43'	C117	775.00'	238.79'	17'39'15"	S14*42'19"W	237.85'	C183	60.00'	7.67'	719'35"	S16'54'22"E	7.67'				L99	N30"18'20"E	34.73'
C46	1229.00'	54.43'	2*32'16"	S5718'56"E	54.43'	C118	25.00'	40.08'	91'51'56"	S51*48'40"W	35.93'	C184	725.00'	53.39'	4"13'11"	N35*30'32"E	53.38'						
C47	1229.00'	54.43'	2'32'16"	S59'51'11"E	54.43'	C119	275.00'	235.59'	49'05'08"	N57'42'48"W	228.45'	C185	725.00'	70.17'	5'32'45"	N40°23'30"E	70.15'	11.13	UT INSTATAT	V mm	noorae	DAME CHIATE	NOT DE
C48	1229.00'	9.83'	0*27'29"	S61*21'04"E	9.83'	C120	1025.00'	456.07'	25'29'36"	N45'55'02"W	452.31'	C186	725.00'	66.14'	5*13'37"	N45*46'41"E	66.12'					ENT SHALL : SE AND SHA	
C49	25.00'	0.52	111'37"	S67*38'56"E	0.52'	C121	25.00*	39.27	90,00,00,	N04'23'04"W	35.36'	C187	1335.00'	128.24'	5*30'14"	N46*28'03"W	128.19'		USED (DR VIEW	ED OR H	RELIED UPON	
C50	1229.00'	53.91'	2*30'48"	S69'30'09"E	53.91'	C122	1225.00'	115.73'	5*24'46"	N37*54'33"E	115.68'	C188	1335.00'	3.84'	0'09'54"	N49*18'07"W	3.84'	2	Ĩ	inal St	JEVET D	DCUMENT.	
C51	1229.00'	12.77'	0*35'44"	S71*03'25"E	12.77'	C123	25.00'	38.26'	87*41'41"	N79'03'01"E	34.64'	C189	1175.00'	15.28'	0*44'43"	N40"14'35"E	15.28'						
C52	800.00*	43.99'	3'09'01"	N69*46'46"W	43.98'	C124	1279.00'	318.15'	14'15'08"	S64*13'43"E	317.33'	C190	1175.00'	55.50'	2'42'23"	N38'31'02"E	55.50'						
C53	800.00*	48.79'	3'29'39"	N66*27'26"W	48.78'	C125	750.00'	82.22'	6*16'53"	S68*12'50"E	82.18'	C191	1175.00'	40.21'	1*57'39"	N36"11'00"E	40.21'						
C54	800.00*	48.79'	3*29'39"	N62*57*47"W	48.78	C126	25.00*	40.60'	93'03'13"	S18'32'47"E	36.28'	C192	1084.00	128.33'	6*47'00"	S42*30'14"E	128.26'						
C55	800.00'	48.79'	3*29'39"	N59*28'08"W	48.78'	C127	1175.00'	80.99'	3*56'58"	S29*57'18"W	80.98'	C193	1084.00'	136.94'	7°14'16"	S64*54'46"E	136.84'						
C56	800.00'	48.79'	3*29'39"	N55*58'29"W	48.78'	C128	775.04'	16.65'	1"13'50"	S31*18'52"W	16.65'	C196	145.00'	41.45'	16*22'43"	S74*20'57"E	41.31'						
C57	800.00*	48.79'	3.29,39	N52*28'50"W	48.78'	C129	25.00'	37.71'	86'25'00"	S73*54'26"W	34.23'	C211	1525.00'	46.54'	1*44'54"	S65*51'49"E	46.53'						
C58	800.00*	48.79'	3*29'39"	N48*59'11"W	48.78'	C130	475.00'	204.05'	24*36'47"	N50'34'40"W	202.48'	C212	1525.00'	50.22'	1*53'13"	S64*02'45"E	50.22'						
C59	800.00'	44.93'	3"13'05"	N45*37'49"W	44.93'	C131	1335.00'	28.66'	1"13'49"	N38*53'11"W	28.66'	C213	1525.00'	5.80'	0"13'05"	S62*59'36"E	5.80'						
C60	60.00'	36.34'	34*42'10"	N24*41'28"W	35.79'	C132	25.00'	38.35'	87*53'35"	N04*26'42"E	34.70'	C224	1109.00'	49.12'	2*32'16"	S49*42'09"E	49.11'						
C61	60.00'	230.40'	220'00'57"	S77*19'55"E	112.76'	C133	775.00'	202.79'	14*59'33"	N40*53'43"E	202.22'	C225	1109.00'	49.12'	2*32'16"	S52*14'25"E	49.11'						
C62	60.00'	3.85'	3'40'51"	N43'52'59"W	3.85'	C134	25.00'	23.55'	53'58'05"	N60°22'59"E	22.69'	C226	1109.00'	49.12'	2*32'16"	S54*46'40"E	49.11'						

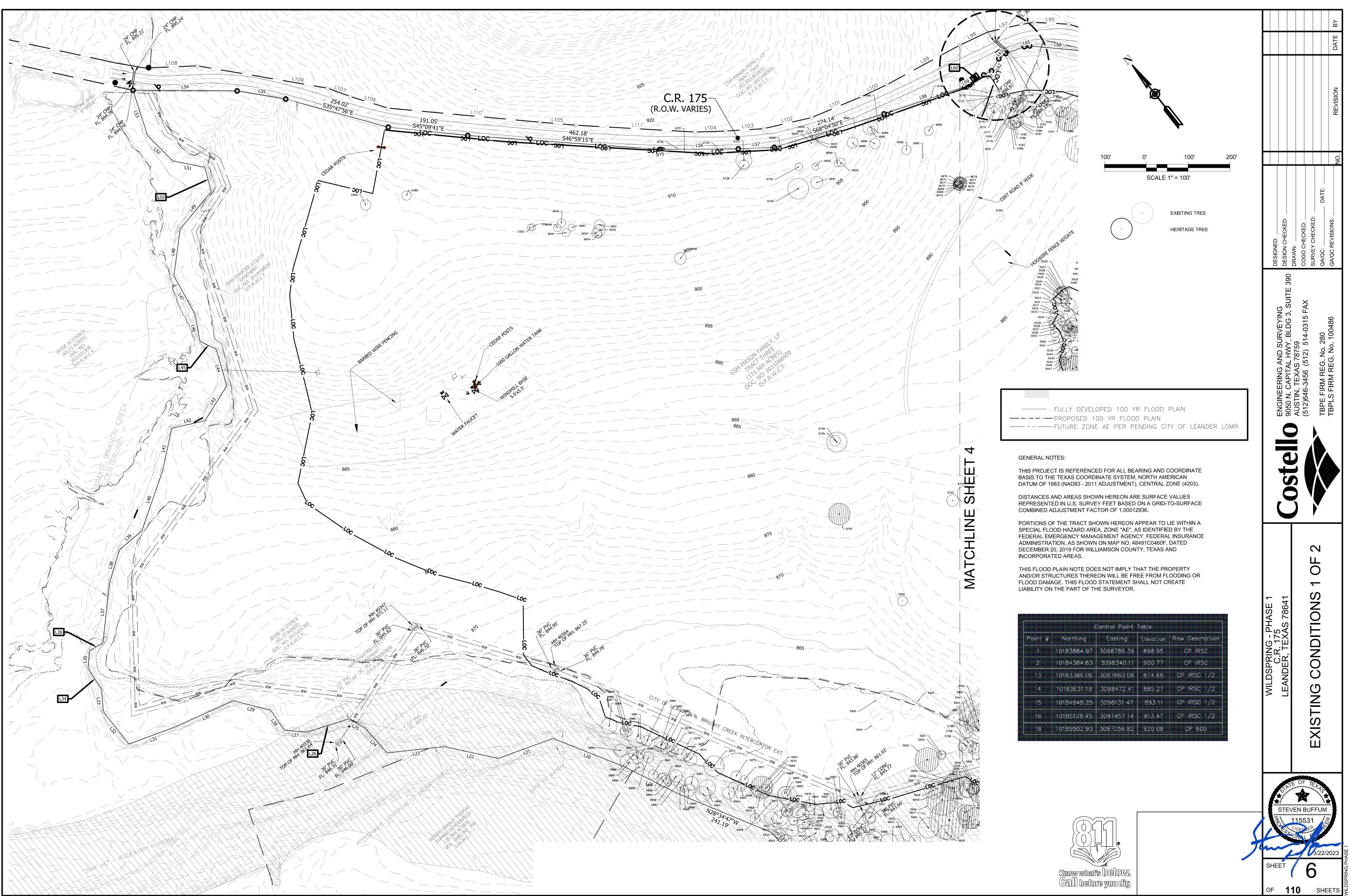
				THE STATE OF TEXAS {}	GENERAL NOTES:
		LINE TABLE		THE COUNTY OF WILLIAMSON {}	1. THIS SUBDIVISION IS WHOLLY CONTAINED WITHIN THE CURRENT CORPORATE LIMITS OF THE CITY OF LEANDER, TEXAS.
IORD	LINE #	BEARING DISTANCE	18642	THAT TOLL SOUTHWEST LLC, AS THE OWNER OF THAT CERTAIN 111.569 ACRE TRACT OF LAND SITUATED IN THE MILTON HICKS SURVEY, ABSTRACT NO. 287, IN MILLIAMSON COUNTY, TEXAS, RECORDED IN DOCUMENT NO. 2021194501, OF, THE OFFICIAL RECORDS OF MILLIAMSON COUNTY, TEXAS DOES HEREBY DEDICATE TO THE PUBLIC	2. NO LOT IN THIS SUBDIVISION SHALL BE OCCUPIED UNTIL CONNECTED TO THE CITY OF LEANDER WATER DISTRIBUTION AND WASTEWATER COLLECTION FACILITIES.
.11' 5.09'	L1 L2	S68'00'51"W 29.73'	X = XX	2021194501, OF THE OFFICIAL RECORDS OF MILLIAMSON COUNTY, TEXAS DOES HEREBY DEDICATE TO THE PUBLIC FOREVER USE OF ALL ADDITIONAL ROW, STREETS, ALLEYS, EASEMENTS, PARKS, AND ALL OTHER LANDS INTENDED	
2.79'	L2 L3	N25'22'54"W 97.75' S18'35'46"W 32.58'		FOREVER USE OF ALL ADDITIONAL ROW, STREETS, ALLEYS, EASEMENTS, DARKS, AND ALL OTHER LANDS INTENDED FOR PUBLIC DEDICATION, OR WHEN THE SUBDIVIDER HAS MADE PROVISION FOR PERFETUAL MAINTENANCE THEREOF, TO THE INHABITANTS OF THE SUBDIVISION AS SHOWN HEREON TO BE KNOWN AS:	SITE IMPROVEMENTS ON ANY LOT IN THIS SUBDIVISION.
.83'	L3 L4	S18 35 46 W 32.36 S14 32'37"W 48.86'		WILDSPRING PHASE 1	 NO BUILDINGS, FENCES, LANDSCAPING OR OTHER STRUCTURES ARE PERMITTED WITHIN DRAINAGE EASEMENTS SHOWN EXCEPT AS APPROVED BY THE CITY OF LEANDER PUBLIC WORKS DEPARTMENT.
.11'	L5	N60'31'49"W 42.62'	No. 10 and 10 an	FINAL PLAT	 PROPERTY OWNER SHALL PROVIDE FOR ACCESS TO DRAINAGE EASEMENTS AS MAY BE NECESSARY AND SHALL NOT PROHIBIT ACCESS BY THE CITY OF LEANDER.
72'	L6	S29'28'11"W 60.00'	SPIRANDE SFIRM NO. 512-38-790		 ALL EASEMENTS ON PRIVATE PROPERTY SHALL BE MAINTAINED BY THE PROPERTY OWNER OR HIS OR HER ASSIGNS.
4'	L7	N60'31'49"W 11.38'		TOLL SOUTHWEST LLC	
30'	L8	N55'00'39"W 84.35'			7. IN ADDITION TO THE EASEMENTS SHOWN HEREON, A TEN (10') FOOT WIDE PUBLIC UTILITY EASEMENT IS DEDICATED ALONG AND ADJACENT TO ALL RIGHT-OF-WAY AND A TWO AND A HALF (2.5') FOOT WIDE PUBLIC UTILITY EASEMENT IS DEDICATED ALONG ALL SIDE LOT LINES.
	L9	N46*21'04"W 81.76'		2555 SW GRAPEVINE PARKWAY, STE 100	8. BUILDING SETBACKS NOT SHOWN HEREON SHALL COMPLY WITH THE MOST CURRENT ZONING ORDINANCE OF THE CITY OF LEANDER. ADDITIONAL RESIDENTIAL GARAGE SETBACKS MAY BE REQUIRED AS LISTED IN THE
	L10	N32*59'03"W 66.49'		GRAPEVINE, TEXAS 76051	CURRENT ZONING ORDINANCE. 9. ALL UTILITY LINES MUST BE LOCATED UNDERGROUND.
ANCE	L11	N29*31'29"W 44.69'			
.20'	L12	S58'39'50"E 11.69'		THE STATE OF TEXAS }}	10. SIDEWALKS SHALL BE INSTALLED ON BOTH SIDES OF INDIGO BUSH LANE, SWEET VIOLET DRIVE, WHITE ROSEMARY ROAD, WILD JUNPER LANE, DESERT MARGOLD DRIVE, WHITE MISTLOWER DRIVE, DESERT BLOOM DRIVE, PEACH DRIFT, AND THE SUBDIVISION SIDE OF C.R. 175. THOSE SIDEWALKS NOT ABUTTING A RESIDENTIAL COMMERCIAL DEI INDISTRIAL LOT (INCLUDING SIDEWALKS AUONG STREFT FRONTAGES OF LOTS)
.66'	L13	N32'10'52"E 140.24'		THE COUNTY OF WILLIAMSON {}	DEVISION DURANCE ANALYSE ANALYSE AND ANALYSE A
.00'	L14 L15	N40'36'56"E 0.28' N51'30'07"W 50.03'		BEFORE ME, THE UNDERSIGNED AUTHORITY, A NOTARY PUBLIC IN AND FOR SAID COUNTY AND STATE, ON THIS THE	
.28'	L16	S49'23'04"E 5.57'		DAY OF, 20, PERSONALLY APPEARED, OF BRYSON MPC HOLDINGS LLC. A DELAWARE LIMITED LIABILITY COMPANY], ON BEHALF OF SAID BRYSON MPC HOLDINGS LLC. A	 THE HOME OWNERS ASSOCIATION (HOA) BYLAWS ARE RECORDED IN THE OFFICIAL PUBLIC RECORDS OF WILLIAMSON COUNTY, TEXAS UNDER DOCUMENT NUMBER
.00'	L17	N40'36'56"E 130.42'		DULY AUTHORIZED AGENT WITH AUTHORITY TO SIGN SAID DOCUMENT, PERSONALLY KNOWN TO ME (AND PROVED TO ME ON THE BASIS OF SATISFACTORY EVIDENCE) TO BE THE PERSON WHOSE NAME IS SUBSCRIBED TO THE	12. THE HOA WILL OWN THE FOLLOWING LOTS: LOT 13, BLOCK C, LOT 17, BLOCK B, AND LOT 14, BLOCK I.
.08'	L18	N49'23'04"W 80.39'	u li	FOREGOING INSTRUMENT, AND ACKNOWLEDGED TO ME THAT (S)HE EXECUTED THE SAME FOR THE PURPOSES AND	13. PORTIONS OF THE TRACT SHOWN HEREON APPEAR TO LIE WITHIN A SPECIAL FLOOD HAZARD AREA, ZONE AE", AS IDENTIFIED BY THE FEDERAL EWERGENCY MANAGEMENT AGENCY, FEDERAL INSURANCE ADMINISTRATION, AS SHOWN ON MAP NO. 48491C0460F, DATED DECEMBER 20, 2019 FOR WILLIAMSON
.53'	L19	N45'53'48"W 53.66'		CONSIDERATION THEREIN EXPRESSED.	COUNTY, TEXAS AND INCORPORATED AREAS.
.00'	L20	N47*43'22"W 50.00'	V V L	GIVEN UNDER MY HAND AND SEAL OF OFFICE ON THIS THE DAY OF 20	 THE HOMEOWNERS ASSOCIATION IS REQUIRED TO MOW AND MAINTAIN LANDSCAPING IN THE OPEN CHANNELS, DETENTION AND WATER QUALITY AREAS.
.59'	L21	N42"16'38"E 3.19'		NOTARY PUBLIC-STATE OF	15. THE CITY ACCEPTS AND MAINTAINS DRAINAGE IMPROVEMENTS CONTAINED IN OPEN CHANNELS AND DETENTION AREAS. THE BATCH DETENTION POND ON LOT 13, BLOCK C WILL BE PRIVATELY MAINTAINED BY THE HOA.
.16'	L22	N47*43'22"W 50.00'		PRINTED NAME:	 THIS PLAT CONFORMS TO THE PRELIMINARY PLAT APPROVED BY THE PLANNING & ZONING COMMISSION ON NOVEMBER 2022.
.14'	L23	N42"16'38"E 3.19'		MY COMMISSION EXPIRES:	17. APPROVAL OF THIS FINAL PLAT DOES NOT CONSTITUTE THE APPROVAL OF VARIANCES OR WAIVERS TO ORDINANCE REQUIREMENTS.
.12'	L24 L25	N45'53'48"W 43.89' N50'40'26"E 50.00'			
.12'	L25	N50'40'26"E 50.00' N48'10'48"E 95.10'			18. NO DRIVEWAY SHALL BE CONSTRUCTED CLOSER THAN 50' OR 60% OF PARCEL FRONTAGE, WHICHEVER IS LESS, TO THE ROW OF AN INTERSECTING LOCAL OR COLLECTOR STREET OR 100' OR 60% OF PARCEL FRONTAGE, WHICHEVER IS LESS, TO THE ROW OF AN INTERSECTING ARTERIAL STREET.
.13'	L27	N34*46'04"W 98.73'	PH		
.15'	L28	N20*58'58"E 18.70'			
.02'	L29	S77*26'53"E 13.91'			
.81'	L30	S84'57'49"E 39.90'	14/202		
.89'	L31	S78'38'19"E 21.01'	WII		
.48'	L32	N69*47'24"E 33.87'	S S		
.01'	L33	S88'43'31"E 20.35'	Sh (
.45'	L34 L35	S71'09'31"E 47.74'	4CH EE		
.74' .01'	L35 L37	S60'06'02"E 12.60' S05'52'42"W 105.31'	11 00 75		
.73'	L38	S62'53'04"E 27.63'	00.	ENGINEER'S CERTIFICATION:	
.76'	L39	S72'17'41"E 98.23'	0	THAT I, STEVEN BUFFMAN, P.E. AM AUTHORIZED UNDER THE LAWS OF THE STATE OF TEXAS TO PRACTICE THE PROFESSION OF ENGINEERING, AND DO HEREBY STATE THAT THIS PLAT CONFORMS WITH THE APPLICABLE	
.83'	L40	N58'39'50"W 7.51'	STEED ON	ORDINANCES OF THE CITY OF LEANDER, TEXAS.	
.10'	L41	S05*52'42"W 63.78'	FULL	PORTIONS OF THE TRACT SHOWN HEREON APPEAR TO LIE WITHIN A SPECIAL FLOOD HAZARD AREA, ZONE "AE", AS IDENTIFIED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY, FEDERAL INSURANCE ADMINISTRATION, AS SHOWN AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	
.21'	L42	S62'53'04"E 67.38'	DESC	ON MAP NO. 48491C0460F, DATED DECEMBER 20, 2019 FOR WILLIAMSON COUNTY, TEXAS AND INCORPORATED AREAS.	
79'	L43	N62'53'04"W 67.38'	SIZE: A		
.55'	L44	N48'23'29"E 49.13'		STEVEN BUFFMAN, P.E. COSTELLO INC.	
.60'	L45 L46	N33*23'56"E 49.25' S33*23'56"W 49.25'		9050 N. CAPITAL OF TEXAS HWY BLDG. J. SUITE 390 AUSTIN, TEXAS 78759	
.73'	L46	S48*23'29"W 49.13'	S8 88	AUSTIN, IEXAS / 8/59 (512) 646-3546 TBPLS FIRM REGISTRATION NO. 100486	
1272	L48	N49*23'04"W 101.16'	H 1.D/		
BE VOT	L49	N35'12'11"E 120.85'	KING N S S S S S S S S S S S S S S S S S S		
Α	L50	N49'23'04"W 36.53'	DER 1 DER 1 LDSPF		
	L51	S35*12'11*W 120.66'	R 130 AC LE: 1" = 10 - CES LEANDE DSPRING PH - DSPRING PH - DSPRING PH -		
	L52	S05*52'42*W 5.65'	130 130 130 130 130 130 130 130	LAND SURVEYOR'S STATEMENT	
	L53	S58'39'50"E 46.81'		THAT I, FRANK F, FUNK, AM AUTHORIZED UNDER THE LAWS OF THE STATE OF TEXAS TO PRACTICE THE PROFESSION OF LAND SURVEYING AND HEREBY STATE THAT I PREPARED THIS PLAT FROM AN ACTUAL AND ACCURATE ON-THE - GROUND SURVEY OF THE LAND AND THAT THE CORNER MONUMENTS SHOWN THEREON WERE	
	L54	S37'58'04"E 24.95'	CES LEANDE 21-031 ATH: K-2003 ATH: K-2003 ATH: K-2003 PATH: PATH: PATH: ACCADIDWOSIS	PROPERLY PLACED UNDER MY PERSONAL SUPERVISION, IN ACCORDANCE WITH ALL CITY OF LEANDER ORDINANCE	
	L55 L56	S33'10'14"E 34.35'		AND CODES, AND THAT ALL EXISTING EASEMENTS OF RECORD AS FOUND ON THE TITLE COMMINENT PROVIDED BY INDEPENDENCE TITLE COMPANY, COMMINENT NO. 2631225-1574, EFFECTIVE APRIL 30, 2021 AND EXECUTED MAY 14, 2021 HAVE BEEN SHOWN OR NOTED HERON.	
	L56	S51'07'25"E 69.87' S51'07'25"E 19.33'		PRELIMINARY, THIS DOCUMENT SHALL NOT BE	
	L57	N15*38'18"E 56.55'	PROJECT NAME: CES LEA JOB NUMEER: 21-031 DATE: 11/2/2022 DRAWING FILE PATH: KC2 DRAWING FILE PATH: KC2 ACACADODYNSISUBDIVISION FIELDNOTE FILE PATH: N/A CHECKED BY: HAS FILE CHECKED BY: HAS FILE CHECKED BY: HAS FILE	RECORDED FOR ANY PURPOSE AND SHALL NOT BE USED OR VIEWED OR RELIED UPON AS A	
	L59	N33"10'14"W 51.18'		FINAL SURVEY DOCUMENT.	
	L60	N55'59'44"W 51.18'	PRC JOB DRV ACU CHE CHE - CE	FRANK F. FUNK, R.P.L.S. NO. 6803 DATE	
	L61	S81'09'44"E 21.93'	DRAWING NAME:	LANDESIGN SERVICES, INC.	
	L62	N58*11'59"E 22.43'	WILDSPRING PH 1	LIBERTY HILL, TEXAS 78642 FIRM REGISTRATION NO. 10001800 (512) 238-7901	
	L63	S11'05'12"E 5.03'	SHEET		
			04 of 05		

FOR REGULATORY REV	IEW ONLY - NOT FOR CONSTRUCTION

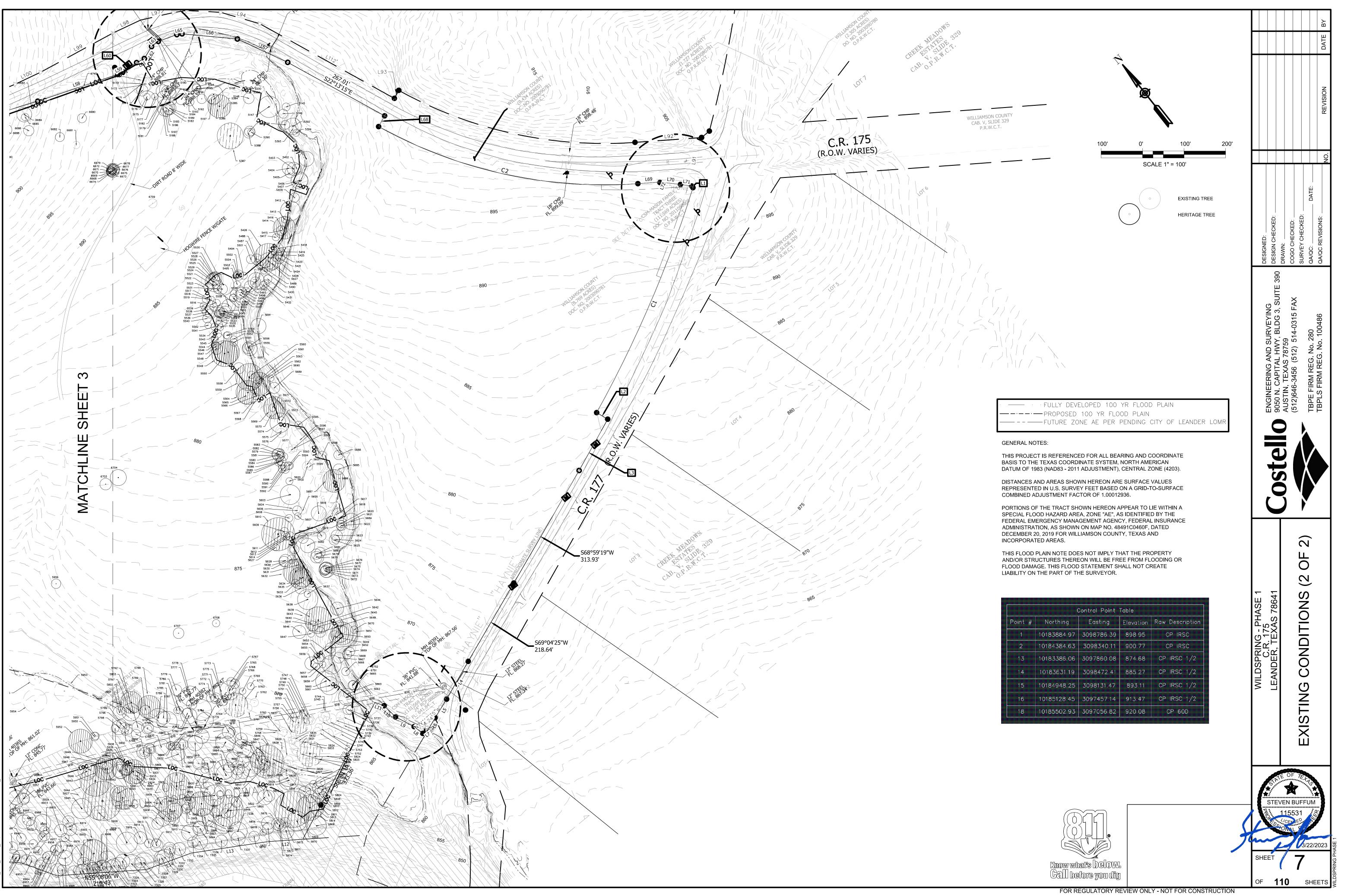
INF	FOR ORMAT	ION
	ONLY	
SHEET	5	•
of 1	10	SHEETS

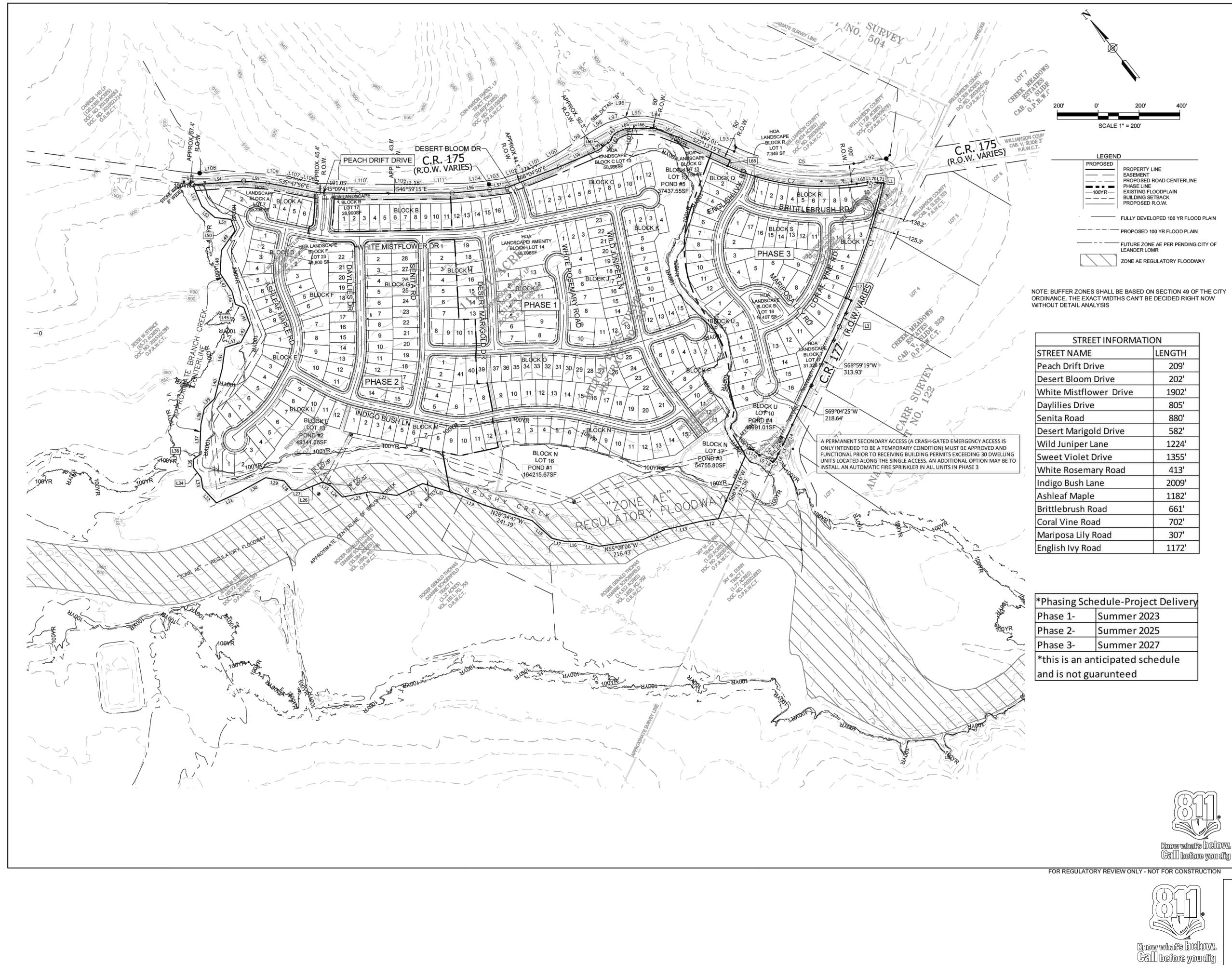
I, NANCY E., RISTER, CL INSTRUMENT IN WRITING, THE DAY OF RECORDED THIS THE OFFICIAL PUBLIC	DAY OF	CATE OF	AUTHENTIC 20,	ATION, WAS FI A.D., AT 20, A.D.	ILED FOR O' AT	CLOCK O'CLO	MY OFFI M., AND CKM., I	DULY
TO CERTIFY WHICH, WITN GEORGETOWN, TEXAS, TH					OF SAID	COUNTY, A	AT MY OFF	ICE IN
NANCY E. RISTER, CLERK OF WILLIAMSON COUNTY,								
BY:			_, DEPUTY	r				

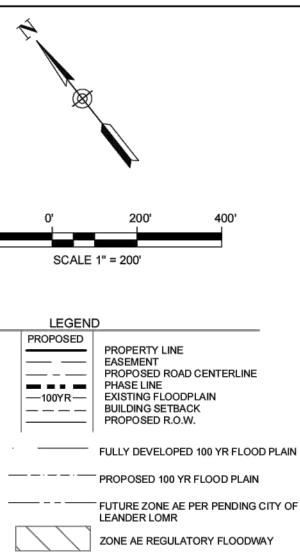
THE STATE OF TEXAS {} KNOW ALL MEN BY THESE PRESENTS THE COUNTY OF WILLIAMSON {} I, NANCY E., RI INSTRUMENT IN THE ______ RECORDED THIS OFFICIAL F ______ TO CERTIFY WHI GEORGETOWN, T BY CERTIFY THAT THE FOREGOING FOR RECORD IN MY OFFICE ON ____O'CLOCK _____M, AND DULY F______O'CLOCK ____M, IN THE IN INSTRUMENT NO.

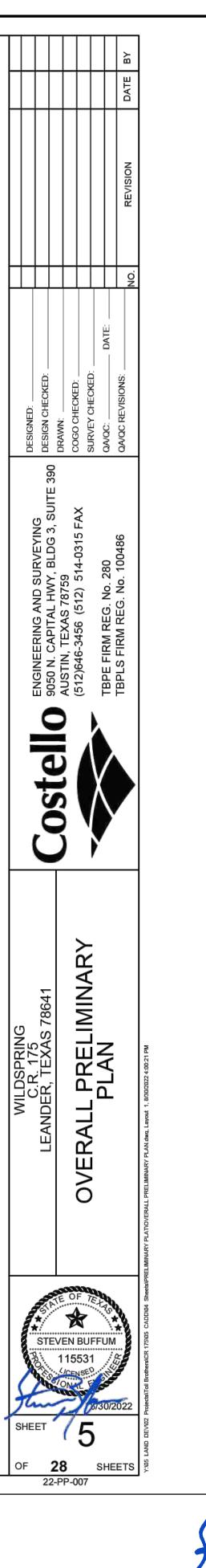

ATTEST:	FOR RECORD BT THE COUNTY CLERK OF	MELIAMISUN COUNTI, TEXAS.
JOHN COSGROVE, CHARMAN ELLEN COUFAL, SECRETARY PLANNING AND ZONING COMMISSION PLANNING AND ZONING COMMISSION CITY OF LEANDER, TEXAS CITY OF LEANDER, TEXAS	COMMISSION	ELLEN COUFAL, SECRETARY PLANNING AND ZONING

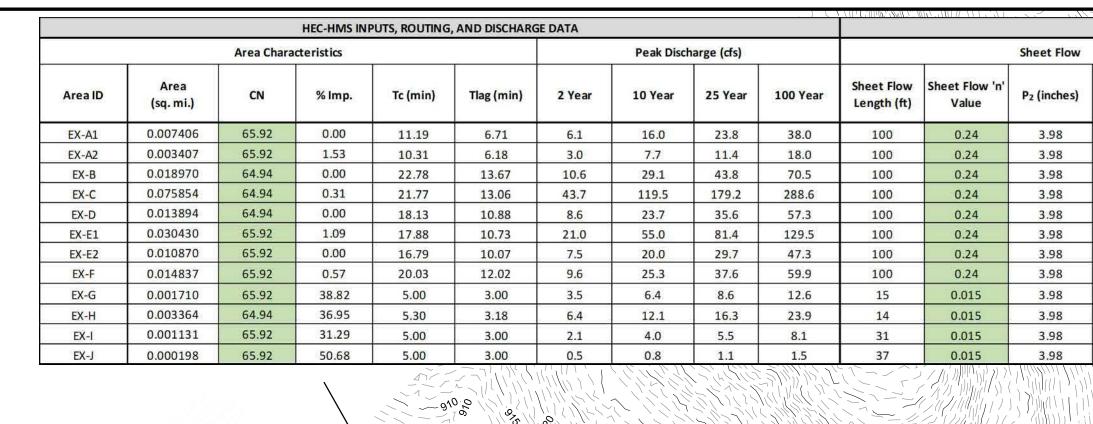
CITY OF LEANDER CERTIFICATION: APPROVED THIS THE ______ DAY OF ______ 20____ A.D., AT A PUBLIC MEETING OF THE PLANNING AND ZONING COMMISSION OF THE CITY OF LEANDER, TEXAS AND AUTHORIZED TO BE FILED FOR RECORD BY THE COUNTY CLERK OF WILLIAMSON COUNTY, TEXAS.

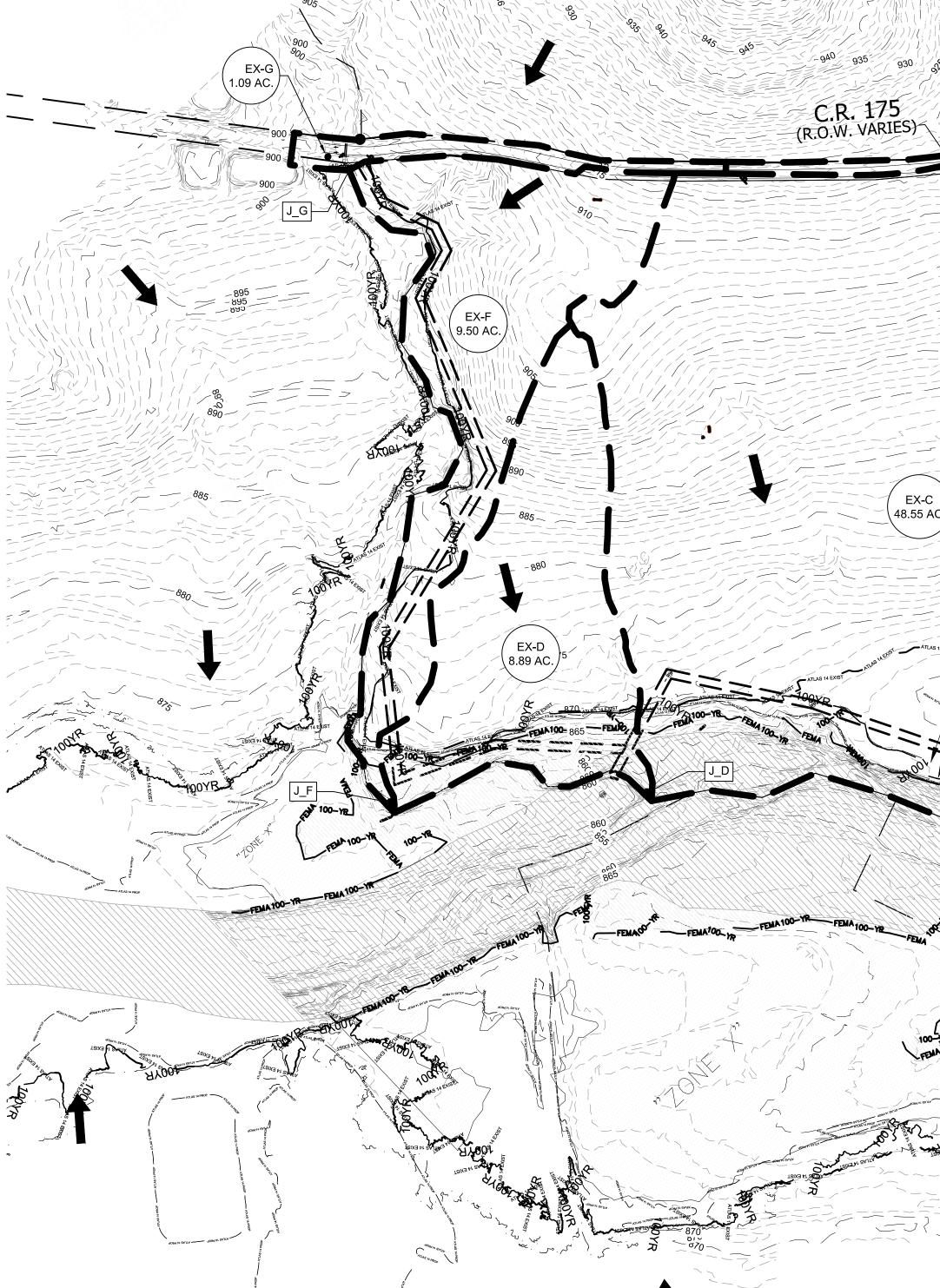

METES AND BOUNDS:



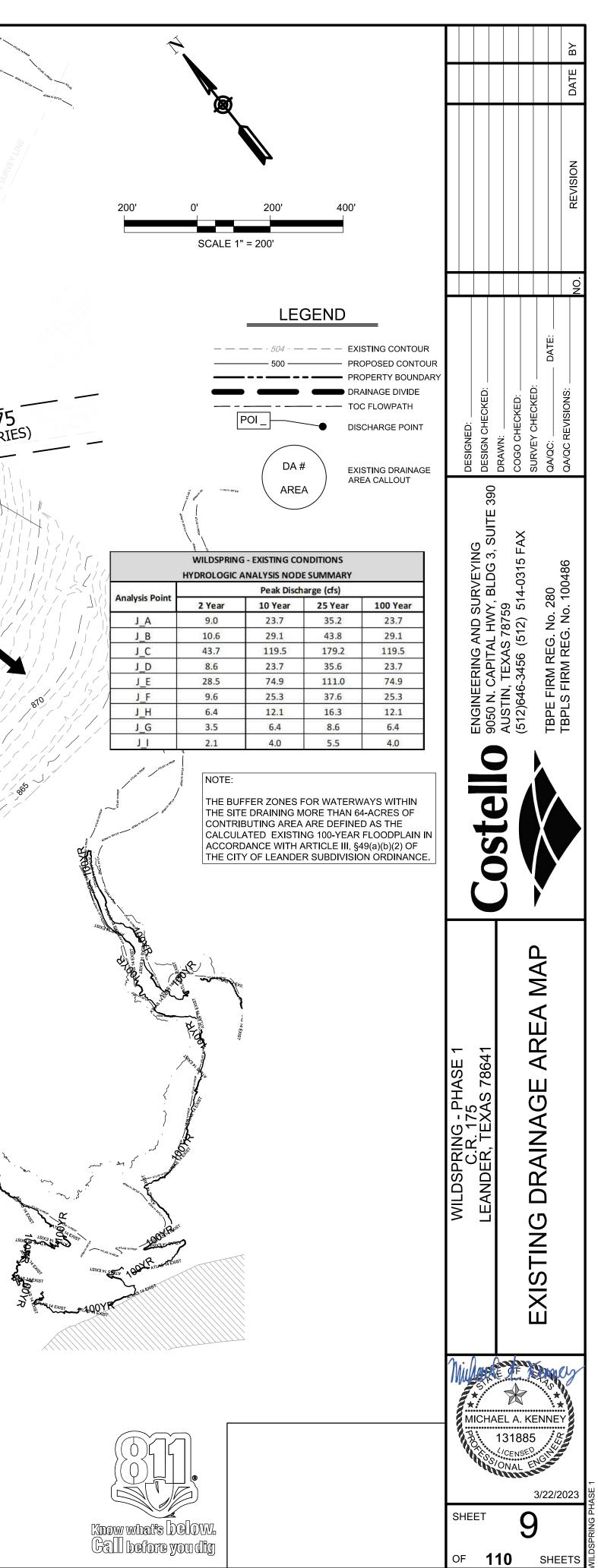


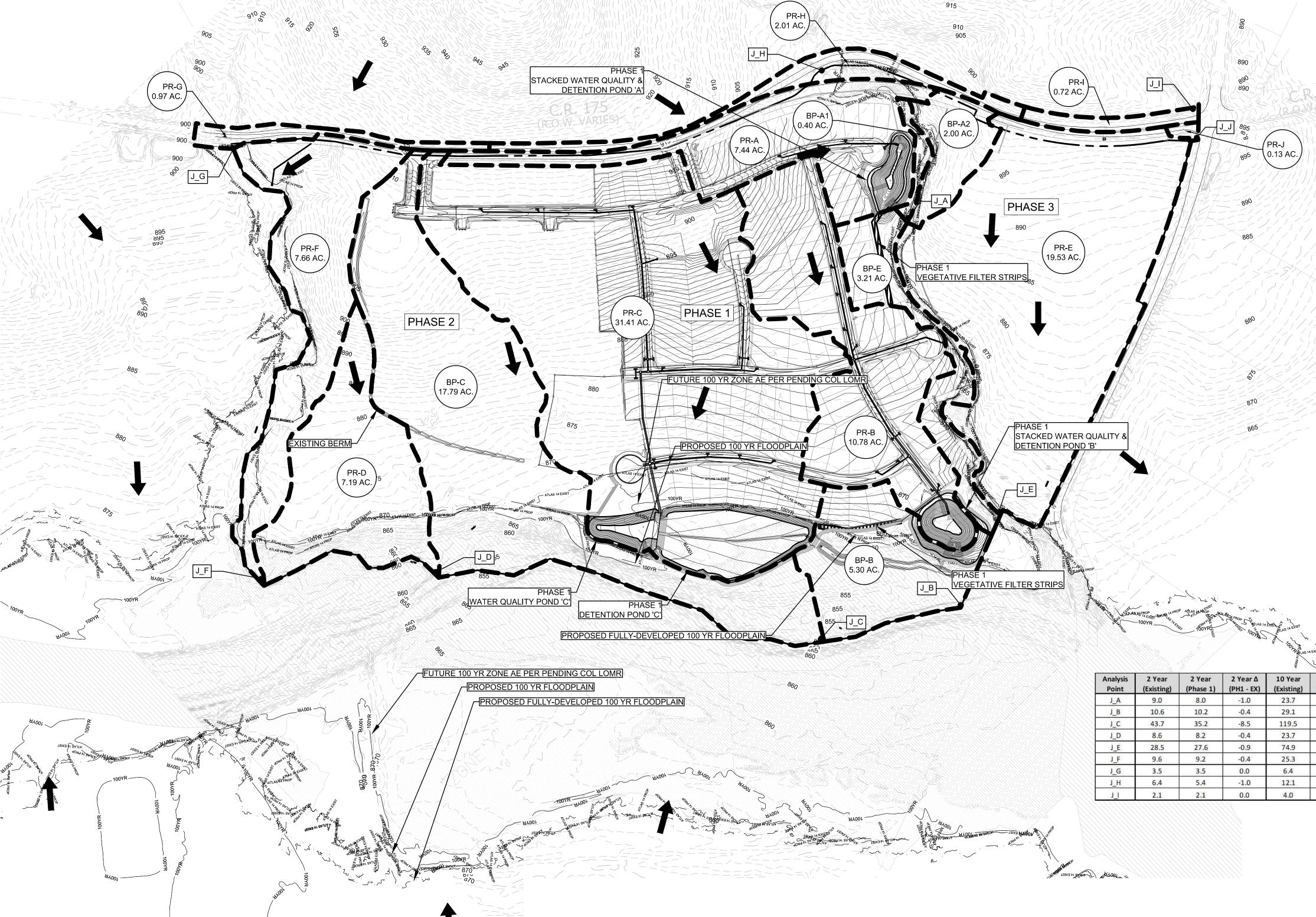

land_dev\02_projects\toll brothers\cr 175\05_cadd\plan set ph1\existing conditions.dw

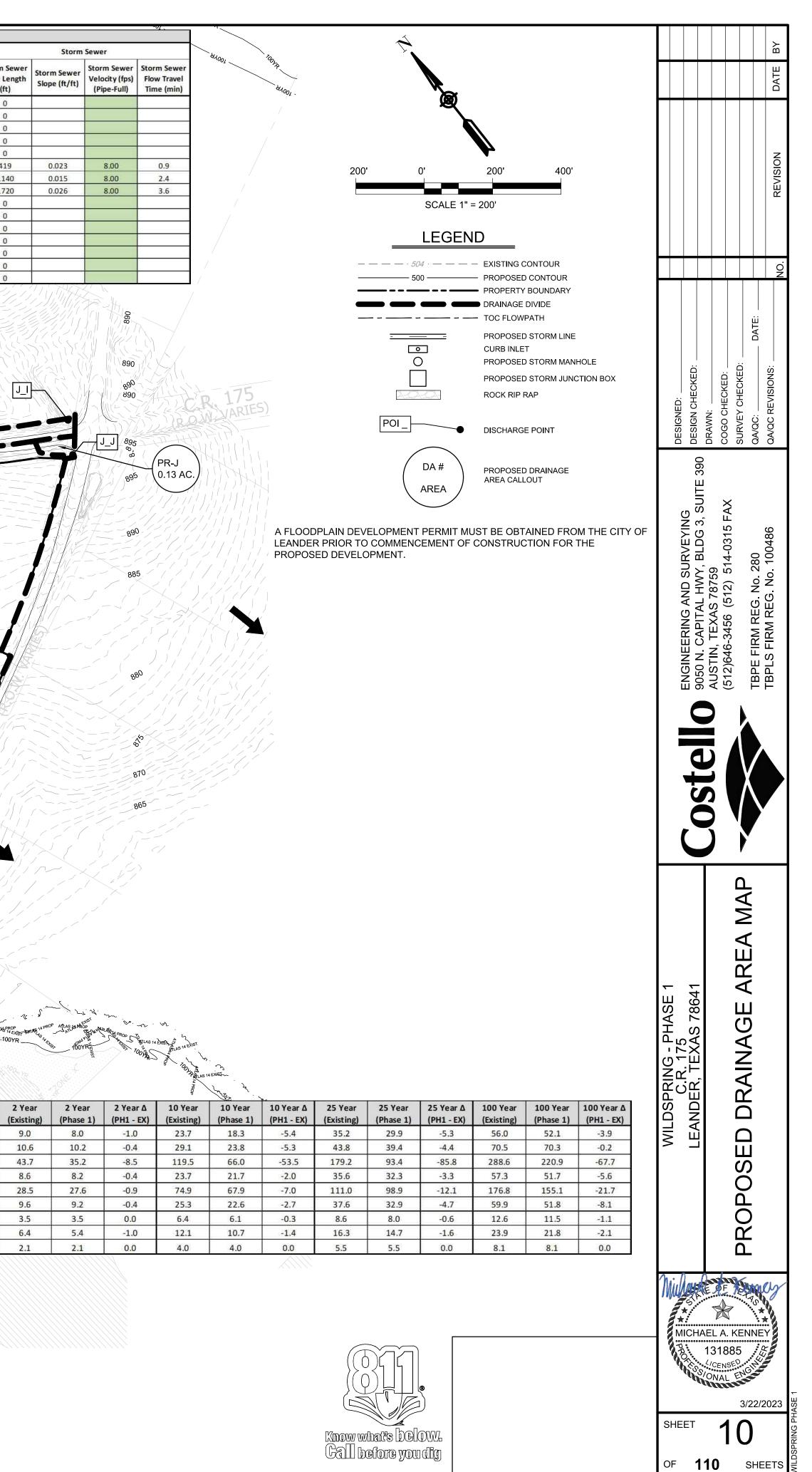


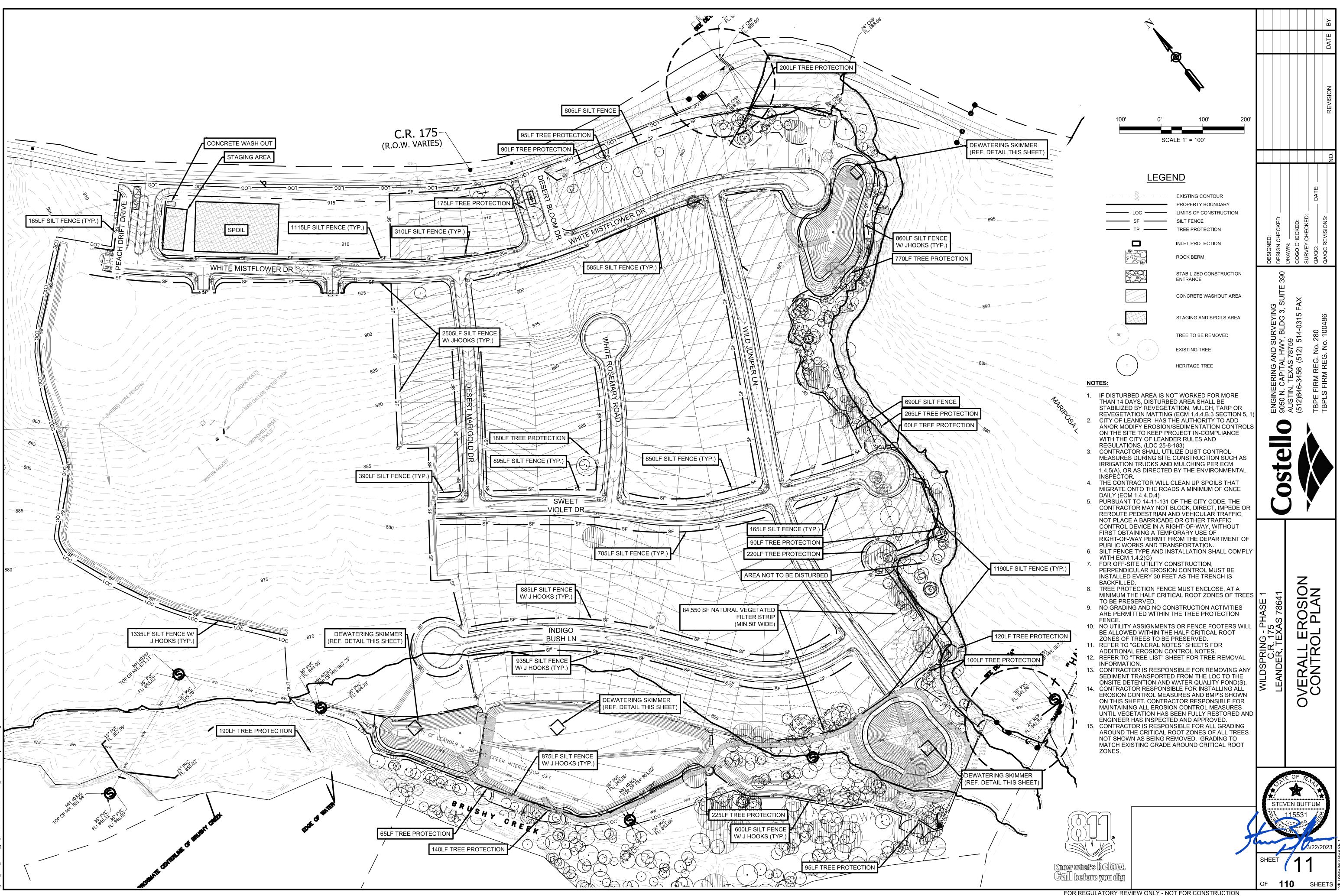


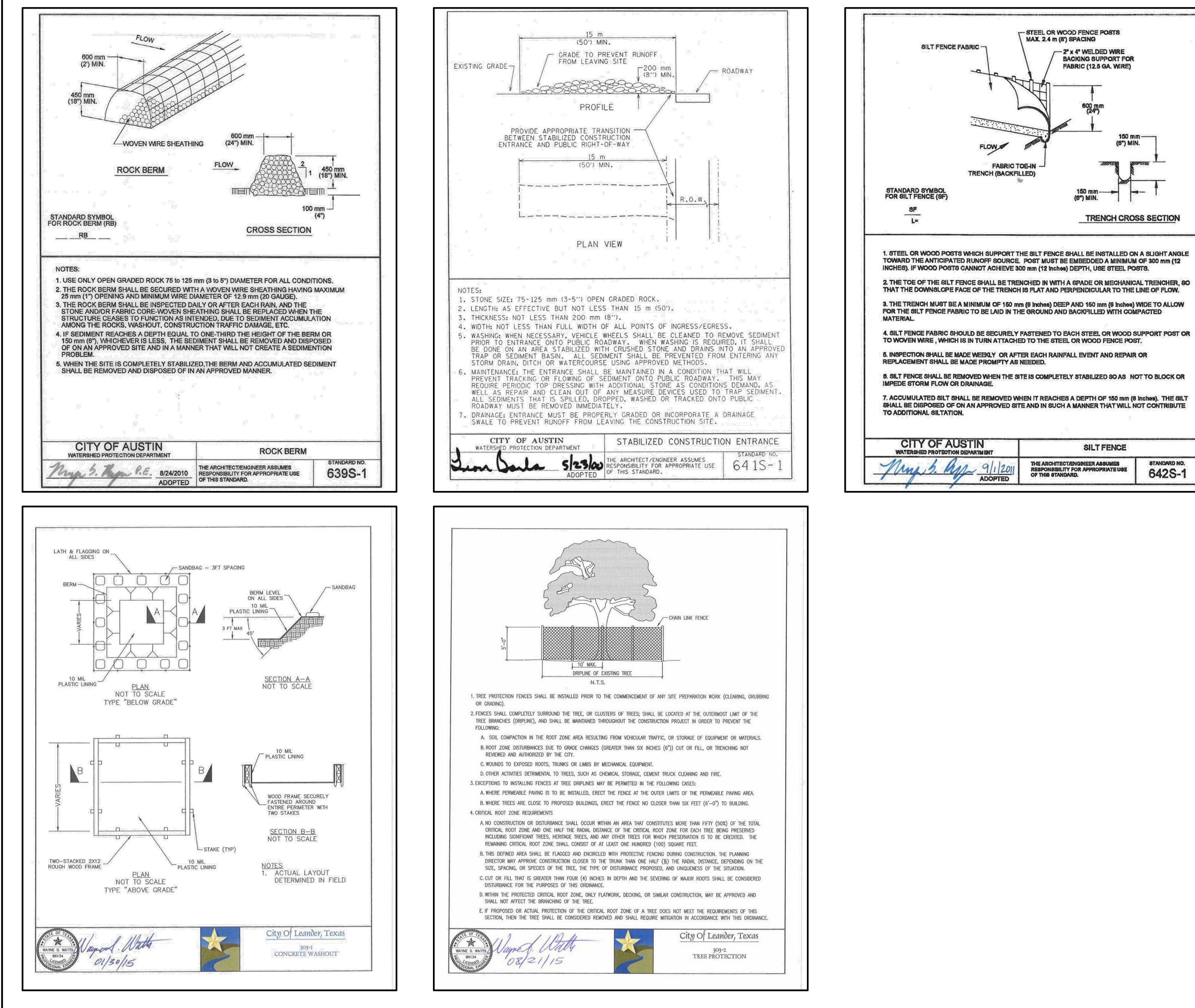
STREET INFORMAT	ΓΙΟΝ
NAME	LENGTH
rift Drive	209'
loom Drive	202'
listflower Drive	1902'
Drive	805'
oad	880'
Aarigold Drive	582'
iper Lane	1224'
iolet Drive	1355'
osemary Road	413'
ush Lane	2009'
Maple	1182'
ush Road	661'
ne Road	702'
a Lily Road	307'
vy Road	1172'





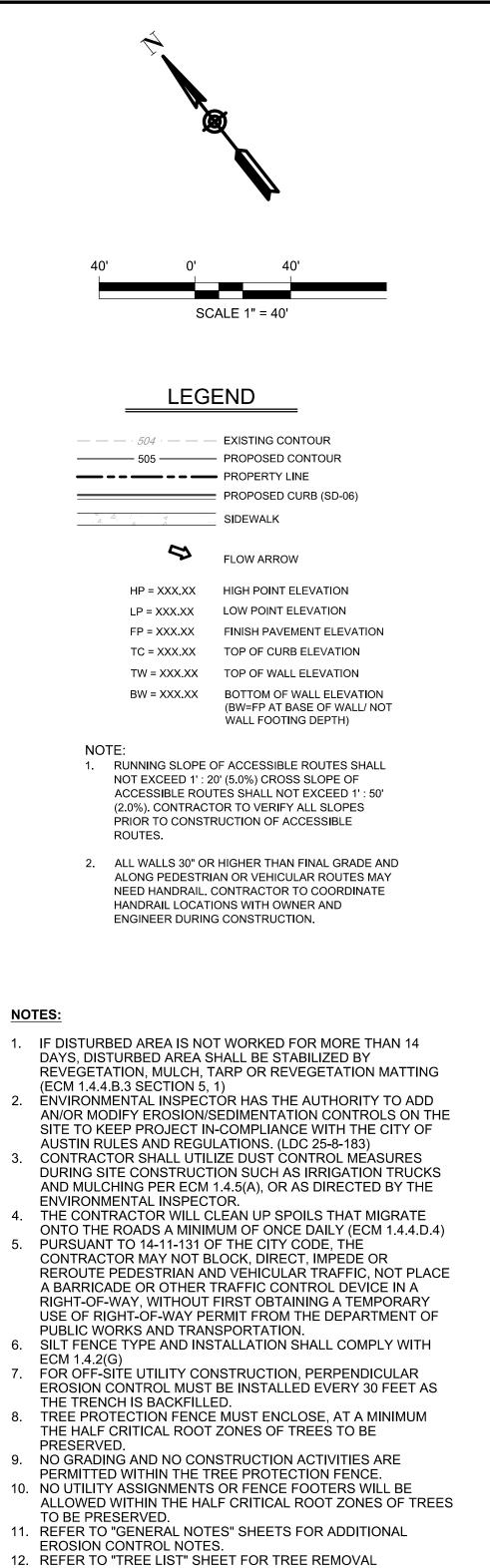

í T					NS (TR-55 METHO			Channe	el Flow	r	adde to Galler adde
	Sheet Flow Slope (ft/ft)	Sheet Flow Travel Time (min)	SCF Length (ft)	SCF Slope (ft/ft)	SCF Velocity (fps)	SCF Travel Time (min)	Channel Flow Length (ft)	Channel Slope (ft/ft)	Channel Velocity (fps) (Bank-Full)	Channel Flow Travel Time (min)	****
	0.078	7.44	685	0.036	3.08	3.71	9	0.046	4.22	0.04	
+	0.053	8.70 13.64	164 1222	0.111 0.025	5.37 2.56	0.51	279 255	0.009	4.22 3.57	1.10 1.19	
1	0.056	8.45	2093	0.028	2.72	12.84	103	0.008	3.57	0.48	
	0.021	12.64 9.77	1034 1265	0.049	3.58 2.82	4.81 7.46	146 163	0.042	3.57 4.22	0.68	SPAN STATISTICS
	0.058 0.046	8.33 9.18	713 657	0.049	3.58 3.05	3.32 3.59	1300 1477	0.013	4.22 3.39	5.13 7.26	SURVE SURVE
	0.040	0.24	0	0.030	5.05	3.33	966	0.026	4.00	4.03	
	0.051	0.20	0				1224 633	0.025	4.00	5.10 2.64	
	0.046	0.44	0				79	0.031	4.00	0.33	
$\frac{1}{2}$					2. 900, 111	11/1/2/12				EX-I	
										72 AC.	
YI.			EX-H		895			EX-A2 2.18 AC.			
		2.15	AC								
S		915	506			FEMA TAS					175
				89	Call societ						E.R. 175 (R.O.W. VARI
Ź					EX-A1						J J
					4.74 AC.				+		
								/		EX-J	
		//////////////////////////////////////		-890	() () () () () () () () () () () () () (0.13 AC.	
								~			
										/	
				Λ	EX-E2				\sim		
					EX-E2 6.96 AC.				EX-E1	· · · · · · · · · · · · · · · · · · ·	
				XX					9.48 AC.		
1				885			(-,) (-,)				
_			////								
					Ser		AVE		\~		
5											
\leq	\ \		880								
C AC		/~								-/	
/					/				· · ·		
				28-			A SE		\ \		
			ZONÉ ÀE PEI JELY-DEVELQ		FLOODPLAIN						
		PROPOSED 1	100 YR FLOOI		/						
LAS 1	14 EXIST ATLAS 14 E										
	IH-		505 MEXIST		EX-E				E	1-1	
year or or	ATLAS HORCO ATLAS	ATLAS STRATE ATLAS	1004	ATLASTAES		- Fill					
<u> </u>	Tacher synthe are and	112	100-YR FE	ATLAS	Heres				A Exter		
7	724		1 AF	1	4 100 - 18 100 YE	100-17 PEN					
		TEMAT	or R JONE				TOOL THE STATES	AND THE MIST			X
M.M.	FEMA	100-YR				<u>11141114</u>	<u> </u>	BO-YR			
L.			60 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -) ////////////////////////////////////	B		FEMA	A L	re ser la re m
											100 Kp 1, 100 Kp 1, 100 Km
Í.		850								A Construction	ATT A LANGE AND A
//						4. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					May 100-12
, 64	1111 Carrie 111	860 860			THÉ ~ 🖻 Q			X			Re to the second of the second
	FEMATOR- VA	FL FL	JTURE 100 YF	R ZONE AE PE		COL LOMR					AS 11 EXIST
	- AL				ULLY-DEVEL	/////×////////////////////////////////		J <1			
/	SPEMA	= 100-1R				Pr					
<u>ل</u>	T 100-1R		$\langle \langle \rangle$	~~~~~.			JPLAIN				
ENA	100-YR	100-YR	FEMATOOL P	/ E	- 12						
	00491 SV114 - 4049 81 SV114	- La - town only - to	FEMA 1	00-184 100 m	7.4		EN CONTRACTOR				
- 1			and a second sec		100-	MA -YR FEMA 100- YR 	, Đ				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100 tom to all	865 C	Lusing and a set	Solution and a solution of the	arrive arrive source of arrive	4084 HI SYLLY HEAL SYLLY	FEMA	100-YR FEMA	100-YR		
			Shire BY 00 Fart		DOYPE		And States	EXTOD FULL STUE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
				CALCULATION OF A	Entre Alton Land						
2							s_ `				
				, \/`,					Televenter		~~~~~





		HEC-H	MS INPUTS,	ROUTING, A	ND DISCHAR	GE DATA									-			TIME OF C	ONCENTRATION	N CALCULATION	S (TR-55 METHO	DOLOGY)								
	Are	ea Characte	ristics				Peak Disc	harge (cfs)				Sheet Flow				Shallow Conc	entrated Flow			Channe	el Flow			Street	Flow			Storm	Sewer	
rea ID	Area (sq. mi.)	CN	% Imp.	Tc (min)	Tlag (min)	2 Year	10 Year	25 Year	100 Year	Sheet Flow Length (ft)	Sheet Flow 'n' Value	P ₂ (inches)	Sheet Flow Slope (ft/ft)	Sheet Flow Travel Time (min)	SCF Length (ft)	SCF Slope (ft/ft)	SCF Velocity (fps)	SCF Travel Time (min)	Channel Flow Length (ft)	Channel Slope (ft/ft)	Channel Velocity (fps) (Bank-Full)	Channel Flow Travel Time (min)	Street Flow Length (ft)		Street Velocity (fps) (Curb-Full)		Storm Sewer Flow Length (ft)	Storm Sewer	Storm Sewer Velocity (fps) (Pipe-Full)	A STORE TO A STORE AND A STORE
BP-A1	0.000618	65.92	0.00	5.0	3.0	0.6	1.7	2.5	4.0	38	0.24	3.98	0.102	3.1	0				466	0.014	4.22	1.8	0				0			
P-A2	0.003124	65.92	13.51	10.3	6.2	3.5	7.9	11.2	17.3	100	0.24	3.98	0.053	8.7	164	0.111	5.4	0.5	279	0.009	4.22	1.1	0				0			
BP-B	0.008274	64.94	8.67	9.5	5.7	8.2	20.0	29.1	45.6	100	0.24	3.98	0.081	7.3	14	0.055	3.8	0.1	457	0.015	3.57	2.1	0				0			
BP-C	0.027797	64.94	3.15	22.8	13.7	16.9	44.2	65.6	104.6	100	0.24	3.98	0.049	8.9	153	0.017	2.1	1.2	2715	0.022	3.57	12.7	0				0			
BP-E	0.005017	65.92	26.99	11.7	7.0	6.8	13.6	18.7	27.9	100	0.24	3.98	0.108	6.5	0				1326	0.013	4.22	5.2	0				0			
PR-A	0.011629	65.92	56.55	7.9	4.7	26.0	44.4	57.7	81.2	55	0.24	3.98	0.051	5.5	117	0.065	4.1	0.5	0				192	0.029	3.00	1.1	419	0.023	8.00	0.9
PR-B	0.016846	64.94	49.36	8.5	5.1	33.5	59.2	78.2	111.8	37	0.24	3.98	0.054	3.8	259	0.025	2.6	1.7	0				103	0.017	3.00	0.6	1140	0.015	8.00	2.4
PR-C	0.049073	64.94	29.78	10.6	6.4	69.6	137.9	189.2	281.2	59	0.24	3.98	0.045	6.0	101	0.036	3.1	0.5	0				88	0.010	3.00	0.5	1720	0.026	8.00	3.
PR-D	0.011228	64.94	2.11	14.4	8.6	8.2	21.7	32.3	51.7	100	0.24	3.98	0.049	9.0	849	0.034	3.0	4.7	146	0.042	3.57	0.7	0				0			
PR-E	0.030515	65.92	3.02	17.9	10.7	22.1	56.2	82.7	130.9	100	0.24	3.98	0.039	9.8	1265	0.031	2.8	7.5	163	0.023	4.22	0.6	0				0			
PR-F	0.011969	65.92	5.56	17.9	10.7	9.2	22.6	32.9	51.8	100	0.24	3.98	0.053	8.7	409	0.047	3.5	1.9	1477	0.017	3.39	7.3	0				0			
PR-G	0.001513	65.92	48.79	5.0	3.0	3.5	6.1	8.0	11.5	15	0.015	3.98	0.040	0.2	0				966	0.026	4.00	4.0	0			1	0			
PR-H	0.003143	64.94	30.10	5.3	3.2	5.4	10.7	14.7	21.8	14	0.015	3.98	0.051	0.2	0				1224	0.025	4.00	5.1	0				0			
PR-I	0.001131	65.92	31.29	5.0	3.0	2.1	4.0	5.5	8.1	31	0.015	3.98	0.176	0.2	0				633	0.009	4.00	2.6	0				0			
PR-J	0.000198	65.92	64.76	5.0	3.0	0.5	0.9	1.1	1.6	37	0.015	3.98	0.046	0.4	0			-	79	0.031	4.00	0.3	0				0			



land_dev\02_projects\toll brothers\cr 175\05_cadd\plan set ph1\pdam.d








-		DATE BY
		REVISION
	DESIGNED:	DKAWN:
	ENGINEERING AND SURVEYING 9050 N. CAPITAL HWY, BLDG 3, SUITE 390	AUSTIN, TEXAS 78759 (512)646-3456(512)514-0315 FAX TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486
	Costello	
	WILDSPRING - PHASE 1 C.R. 175 LEANDER, TEXAS 78641	EROSION & SEDIMENTATION CONTROL DETAILS
	8	OF TELES





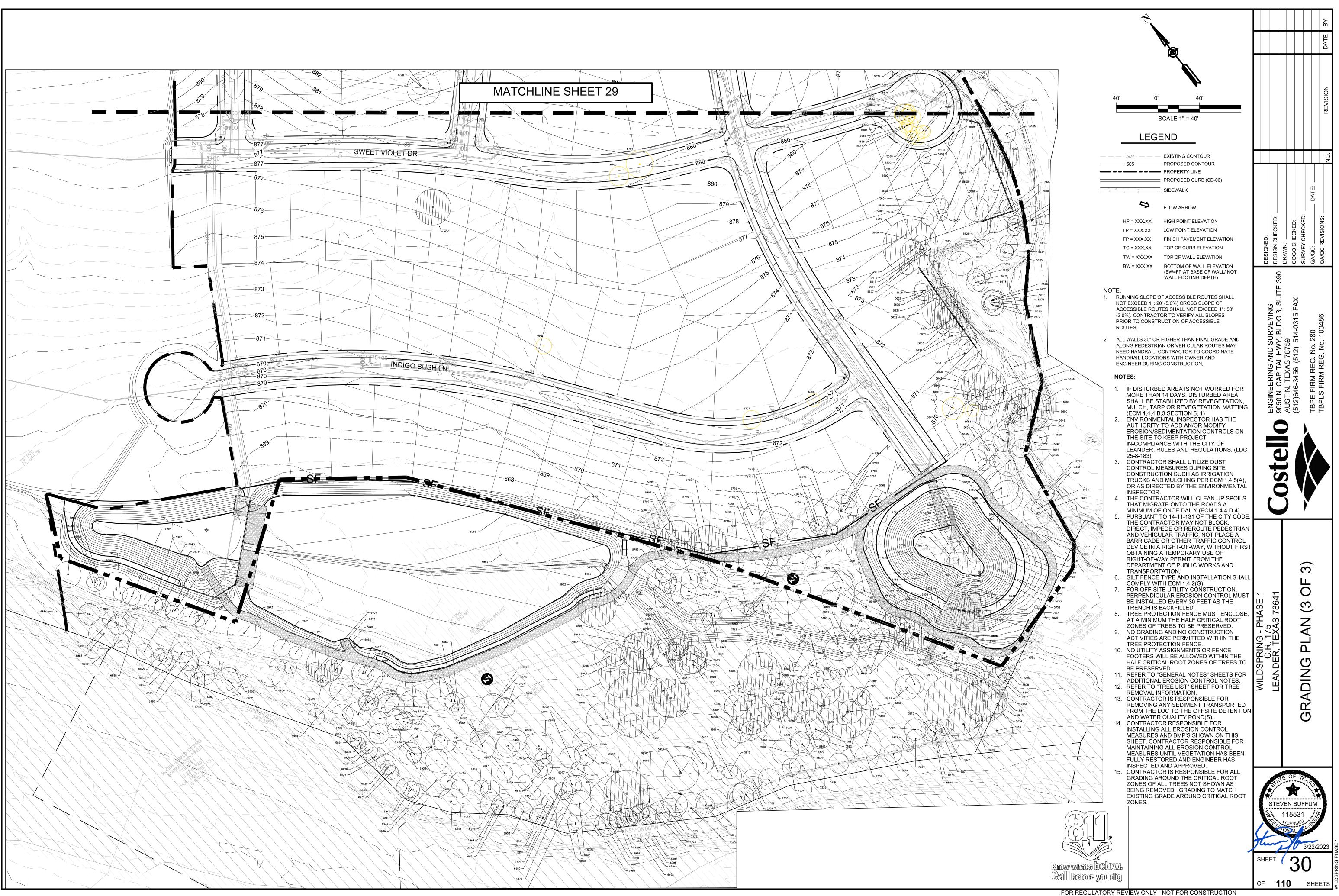
- INFORMATION. 13. CONTRACTOR IS RESPONSIBLE FOR REMOVING ANY SEDIMENT TRANSPORTED FROM THE LOC TO THE OFFSITE
- DETENTION AND WATER QUALITY POND(S). 14. CONTRACTOR RESPONSIBLE FOR INSTALLING ALL EROSION CONTROL MEASURES AND BMP'S SHOWN ON THIS SHEET. CONTRACTOR RESPONSIBLE FOR MAINTAINING ALL EROSION CONTROL MEASURES UNTIL VEGETATION HAS BEEN FULLY RESTORED AND ENGINEER HAS INSPECTED AND APPROVED.
- 15. CONTRACTOR IS RESPONSIBLE FOR ALL GRADING AROUND THE CRITICAL ROOT ZONES OF ALL TREES NOT SHOWN AS BEING REMOVED. GRADING TO MATCH EXISTING GRADE AROUND CRITICAL ROOT ZONES.

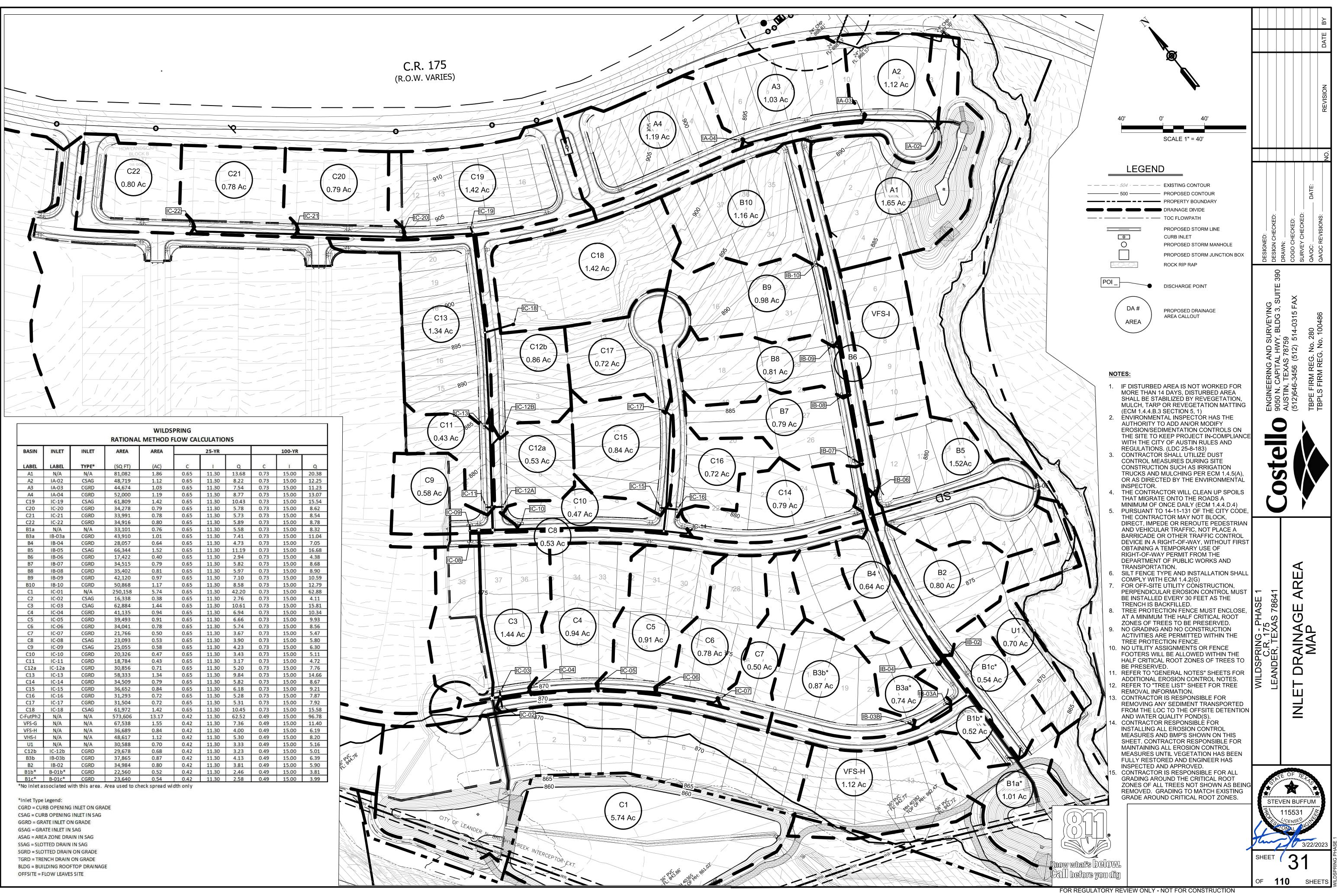


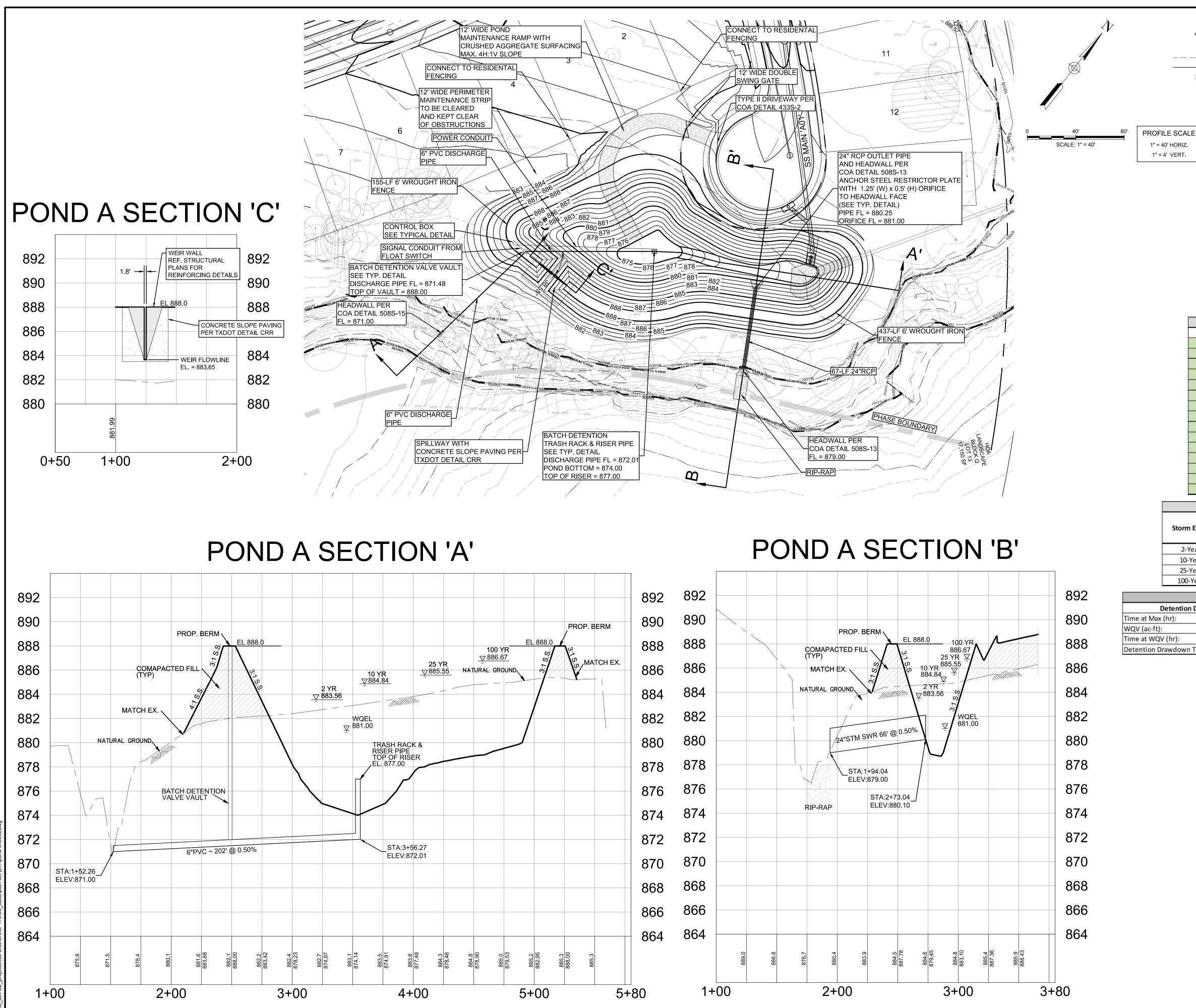
NOTES:

FOR REGULATORY REVIEW ONLY - NOT FOR CONSTRUCTION




OF 110 SHEETS


20


SHEET



ind_dev\02_projects\toll brothers\cr 175\05_cadd\plan set ph1\grading pl







### LEGEND

---- 504  $\cdot--$  EXISTING CONTOUR • Ο

 PROPOSED CONTOUR PROPOSED STORM LINE CURB INLET PROPOSED STORM MANHOLE PROPOSED STORM JUNCTION BOX ROCK RIP RAP

PROFILE LEGEND PROPOSED FINISHED GRADE — EXISTING GRADE (CENTER)

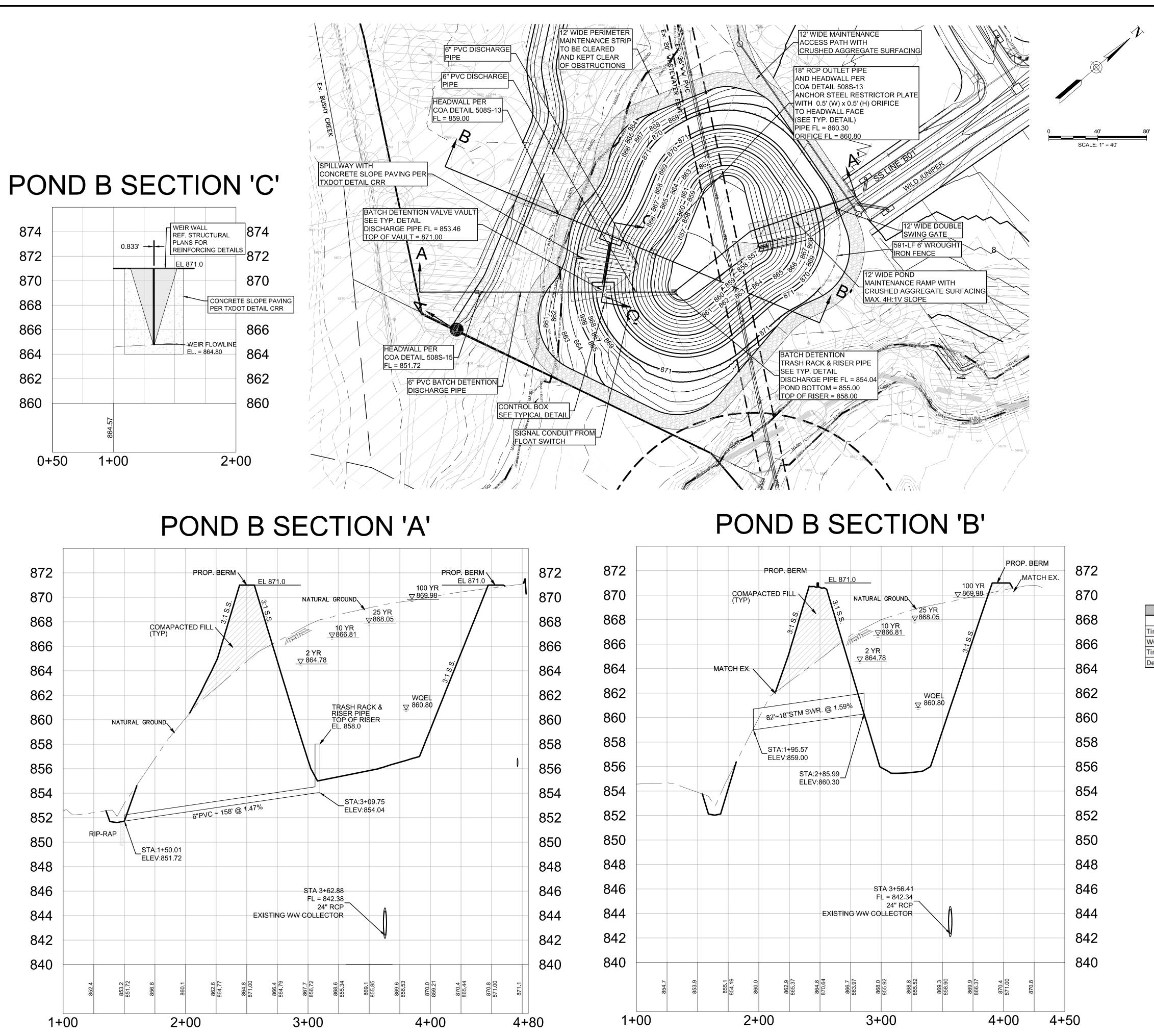
1. ALL FILL AREAS SHALL BE COMPACTED TO 95% PROCTOR DENSITY PRIOR TO INSTALLATION OF UTILITIES. 2. ALL PIPE VELOCITIES ARE CONFIRMED LESS THAN 20 FPS.

ALL FILL AREAS SHALL BE PROOF ROLLED AND BE PLACED IN MAXIMUM 8-INCH LIFTS AND COMPACTED TO A MINIMUM OF 95% OF STANDARD PROCTOR DENSITY AT +/-2 PERCENTAGE POINTS OF OPTIMUM MOISTURE CONTENT.

ALL EXIST. SWALES AND LOW AREAS SHALL BE DE-MUCKED, PROOF ROLLED AND FILLED.

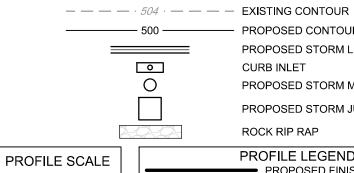
]	Volume (cf)	Area (ac)	Area (sf)	Elevation
	0	0.00000	0	874.00
	313	0.02153	938	875.00
	1,529	0.03483	1,517	876.00
	3,391	0.05119	2,230	877.00
]	6,061	0.07202	3,137	878.00
	9,921	0.10629	4,630	879.00
]	15,489	0.15067	6,563	880.00
wq	22,810	0.18607	8,105	881.00
]	31,712	0.22323	9,724	882.00
	42,268	0.26194	11,410	883.00
	54,544	0.30218	13,163	884.00
	68,609	0.34408	14,988	885.00
	84,534	0.38753	16,881	886.00
	102,377	0.43209	18,822	887.00
1	122,184	0.47769	20,808	888.00

Elevation-Discharge Table - Pond A									
Storm Event		Surface ation	Discha	rge (cfs)					
	Phase 1	Ultimate	Phase 1	Ultimate					
2-Year	883.56	883.56	4.8-cfs	4.8-cfs					
10-Year	884.84	884.83	13.5-cfs	13.4-cfs					
25-Year	885.55	885.54	21.7-cfs	21.5-cfs					
100-Year	886.67	886.64	37.6-cfs	37.1-cfs					


Pond A Drawdown Calculations							
etention Drawdown		Water Quality Drawdown					
hr):	12.22	Time at Max (hr):					
	0.53	Time at 0.0 ac-ft (hr):	7.3				
(hr):	30.07	Water Quality Drawdown Time (hrs):	7.3				
awdown Time (hrs):	17.85						

SS MAIN 'A01' Outfall Rip-Rap Calculations  $D_{50} = 0.0105 V^{2.06}$ 2.5 ft Outfall Dia./Span 12.5 ft. W x 25 ft. L Rip-rap Area = 6.5 ft/s 5.96 in.  $D_{50} =$ 1 Class 12 in.  $D_{100} =$ 12 in. (D₁₀₀ or 1.5D₅₀) Min. Depth = 35-SY CLASS I ROCK RIP-RAP MIN. 12" DEPTH

CR175 System	Outfall Rip-Rap Calculations							
$D_{50} = 0.0105 V^{2.06}$								
Outfall Dia./Span	2 ft							
Rip-rap Area =	10 ft. W x 20 ft. L							
V ₁₀₀ =	9.5 ft/s							
D ₅₀ =	13.02 in.							
Class:	III							
D ₁₀₀ =	24 in.							
Min. Depth =	24 in. (D ₁₀₀ or 1.5D ₅₀ )							
22-SY CLASS III ROCK RIP-I	RAP							
MIN. 24" DEPTH								








Time at M WQV (ac-Time at W Detentio

#### LEGEND



1" = 40' HORIZ. 1" = 4' VERT. PROPOSED CONTOUR PROPOSED STORM LINE CURB INLET PROPOSED STORM MANHOLE PROPOSED STORM JUNCTION BOX ROCK RIP RAP PROFILE LEGEND PROPOSED FINISHED GRADE

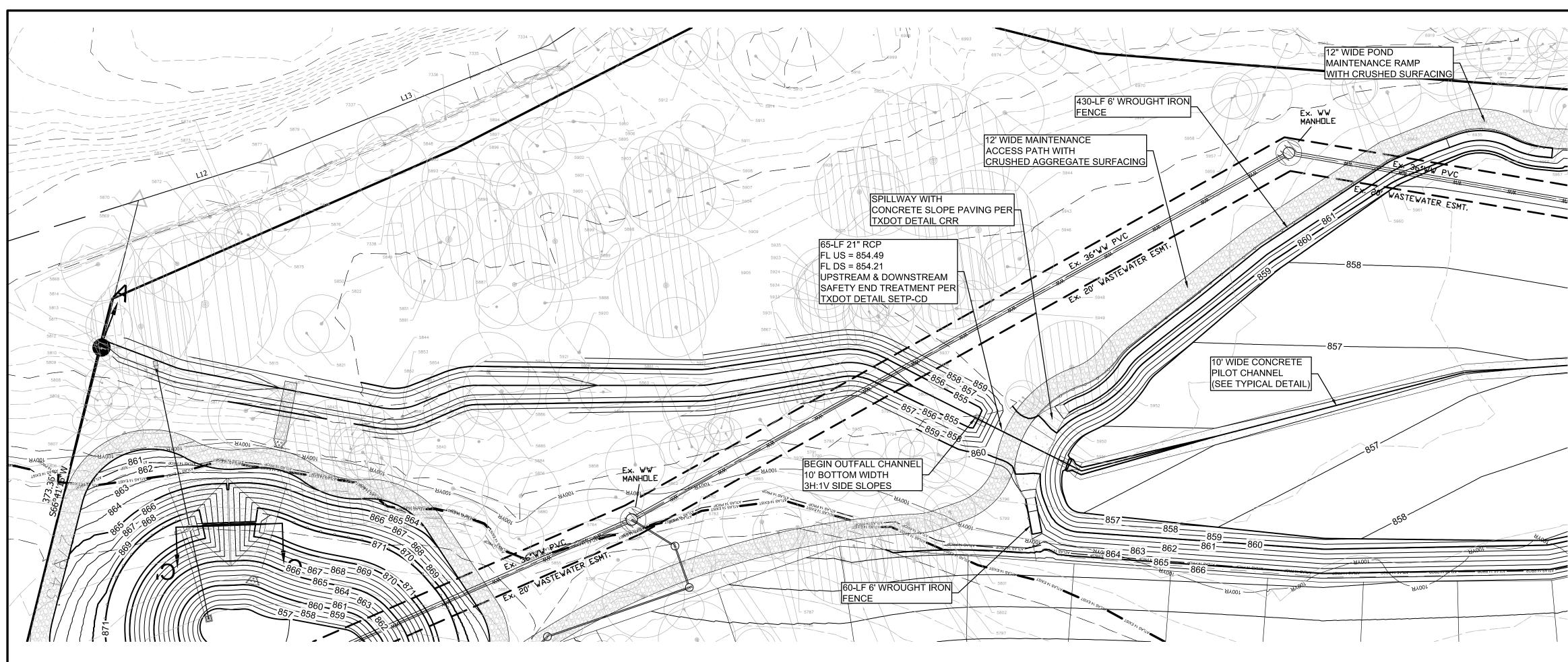
## — — — EXISTING GRADE (CENTER)

NOTE: 1. ALL FILL AREAS SHALL BE COMPACTED TO 95% PROCTOR DENSITY PRIOR TO INSTALLATION OF UTILITIES. 2. ALL PIPE VELOCITIES ARE CONFIRMED LESS THAN 20 FPS

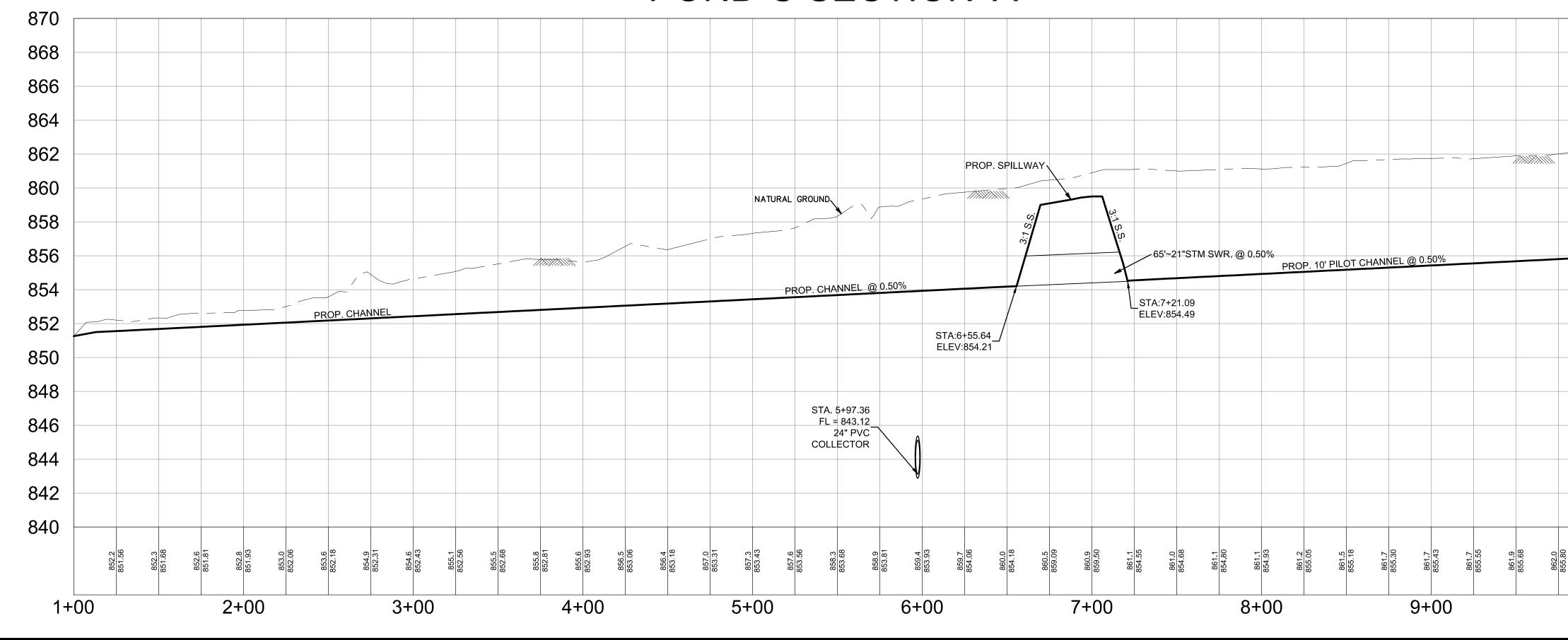
ALL FILL AREAS SHALL BE PROOF ROLLED AND BE PLACED IN MAXIMUM 8-INCH LIFTS AND COMPACTED TO A MINIMUM OF 95% OF STANDARD PROCTOR DENSITY AT +/-2 PERCENTAGE POINTS OF OPTIMUM MOISTURE CONTENT.

ALL EXIST. SWALES AND LOW AREAS SHALL BE DE-MUCKED PROOF ROLLED AND FILLED.

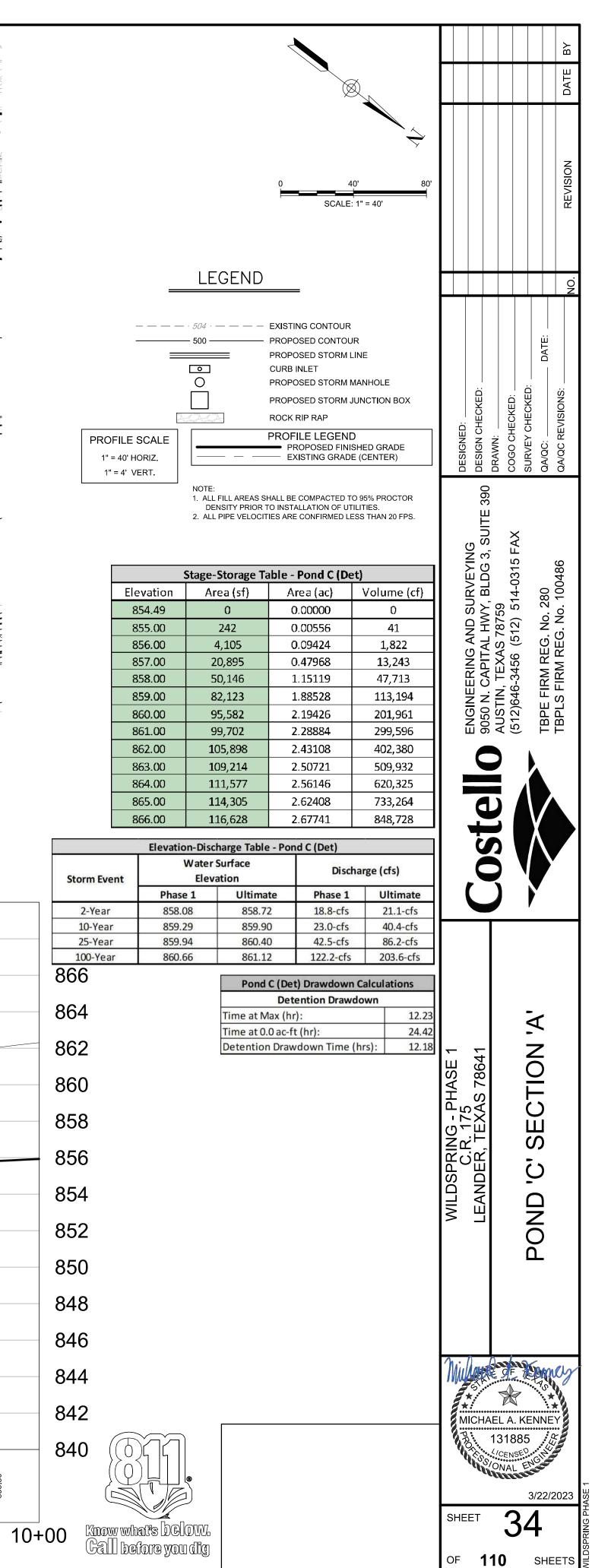
	Stage-Storage	Table - Pond B		
Elevation	Area (sf)	Area (ac)	Volume (cf)	
855.00	0	0.00000	0	
856.00	1,901	0.04364	634	]
857.00	4,934	0.11327	3,933	
858.00	5,978	0.13724	9,381	
859.00	6,977	0.16017	15,852	1
860.00	8,034	0.18444	23,351	1
860.80	8,925	0.20489	30,128	wqv
861.00	9,148	0.21001	31,936	]
862.00	10,321	0.23694	41,664	1
863.00	11,551	0.26517	52,595	
864.00	12,839	0.29474	64,784	
865.00	14,185	0.32564	78,290	]
866.00	15,623	0.35865	93,189	]
867.00	17,088	0.39229	109,539	]
868.00	18,611	0.42725	127,383	]
869.00	20,215	0.46407	146,790	]
870.00	21,860	0.50184	167,822	
871.00	23,559	0.54084	190,527	

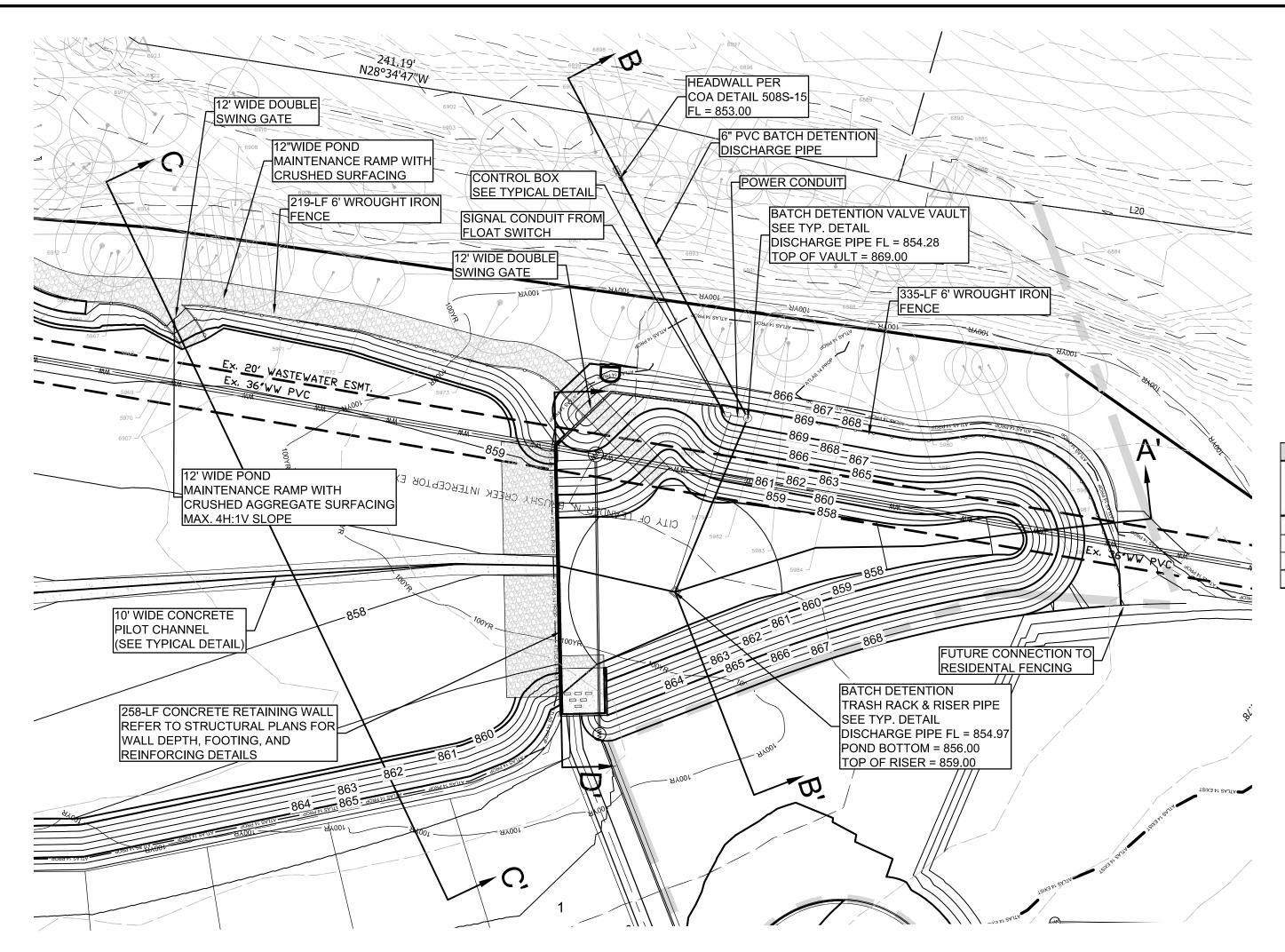

	Elevation-D	)ischarge Table - I	Pond B	Ø
Storm Event		Surface ation	Discha	rge (cfs)
	Phase 1	Ultimate	Phase 1	Ultimate
2-Year	864.78	864.78	2.5-cfs	2.5-cfs
10-Year	866.81	866.81	10.8-cfs	10.8-cfs
25-Year	868.05	868.05	19.1-cfs	19.1-cfs
100-Year	869.98	869.98	35.4-cfs	35.4-cfs

Pone	B Drawd	lown Calculations	
<b>Detention Drawdown</b>		Water Quality Drawdown	
Max (hr):	12.32	Time at Max (hr):	
c-ft):	0.70	Time at 0.0 ac-ft (hr):	12.9
WQV (hr):	44.73	Water Quality Drawdown Time (hrs):	<b>1</b> 2.9
on Drawdown Time (hrs):	32.42		

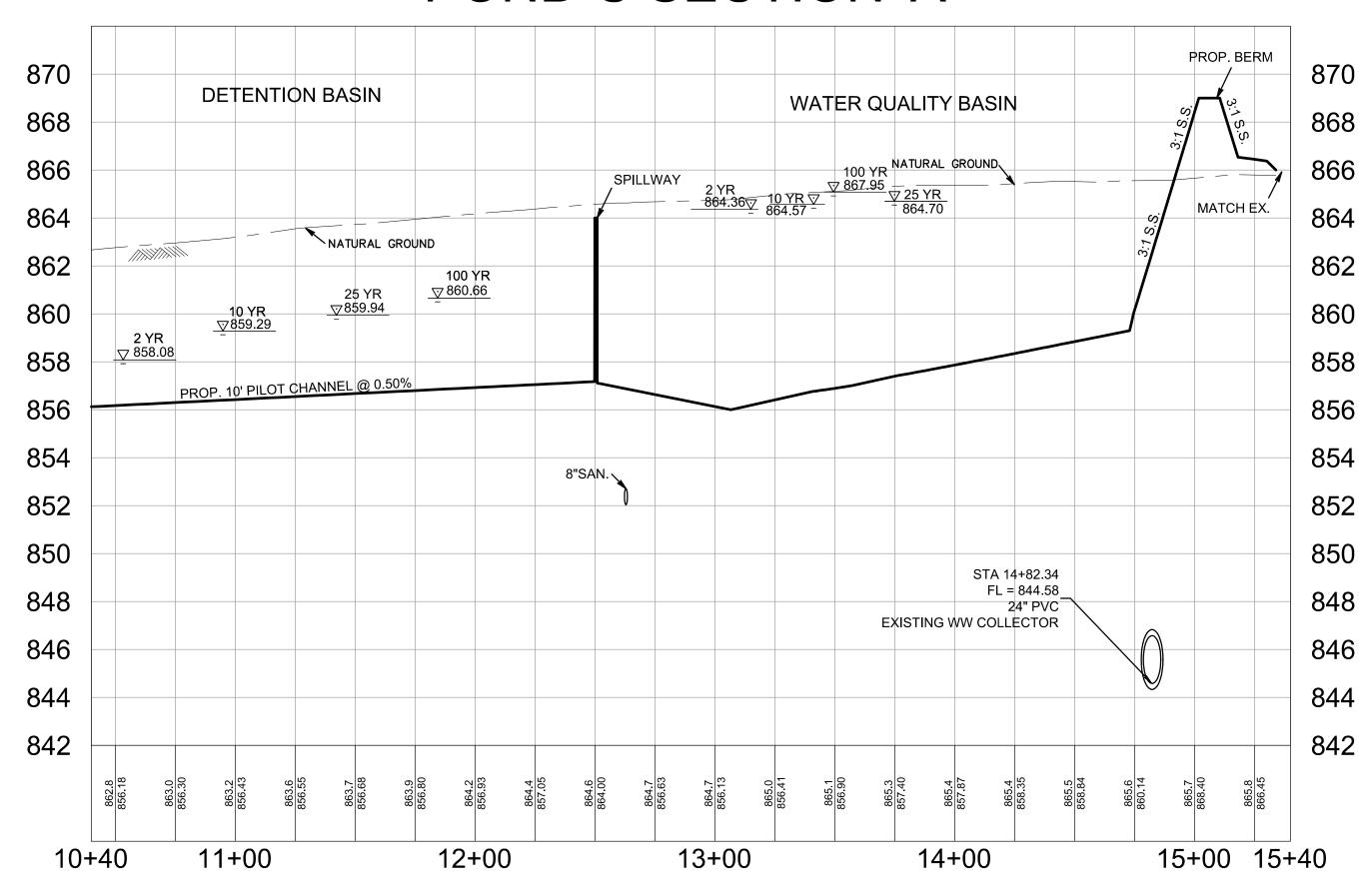

SS LINE 'B01' O	utfall Rip-Rap Calculations
Ds	$_{0} = 0.0105 V^{2.06}$
Outfall Dia./Span	4 ft
Rip-rap Area =	20 ft. W x 40 ft. L
V ₁₀₀ =	7 ft/s
D ₅₀ =	6.94 in.
Class:	1
D ₁₀₀ =	12 in.
Min. Depth =	12 in. (D ₁₀₀ or 1.5D ₅₀ )
89-SY CLASS I ROCK RIP-RA MIN. 12" DEPTH	P







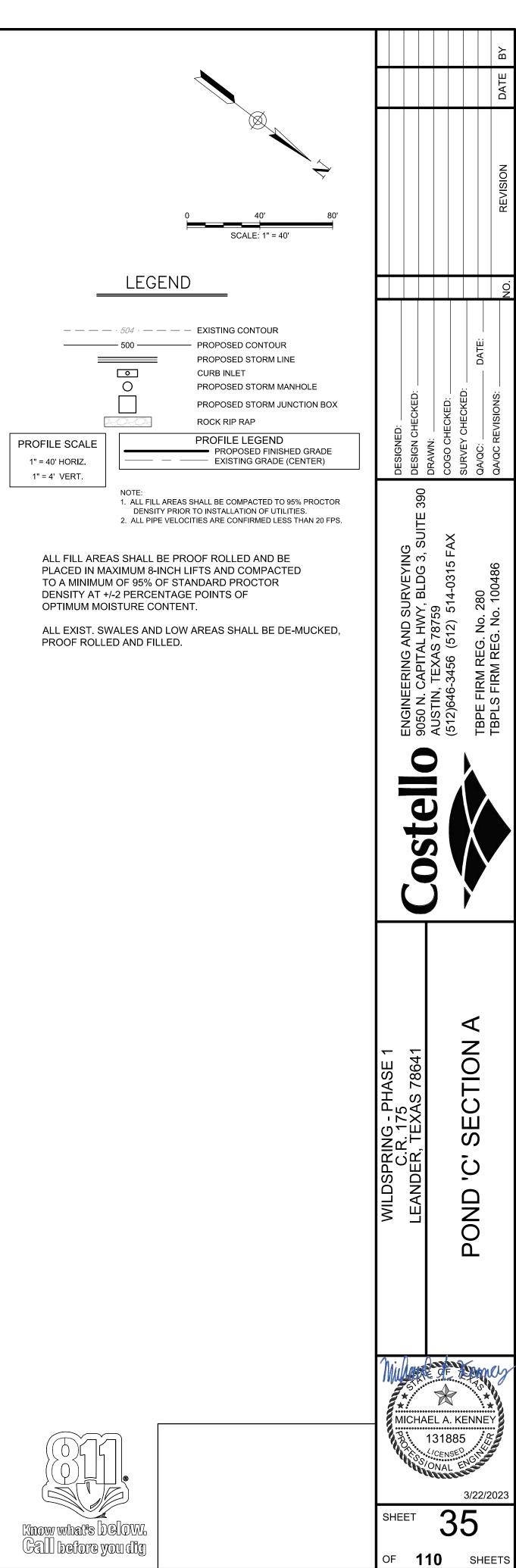

# POND C SECTION 'A'

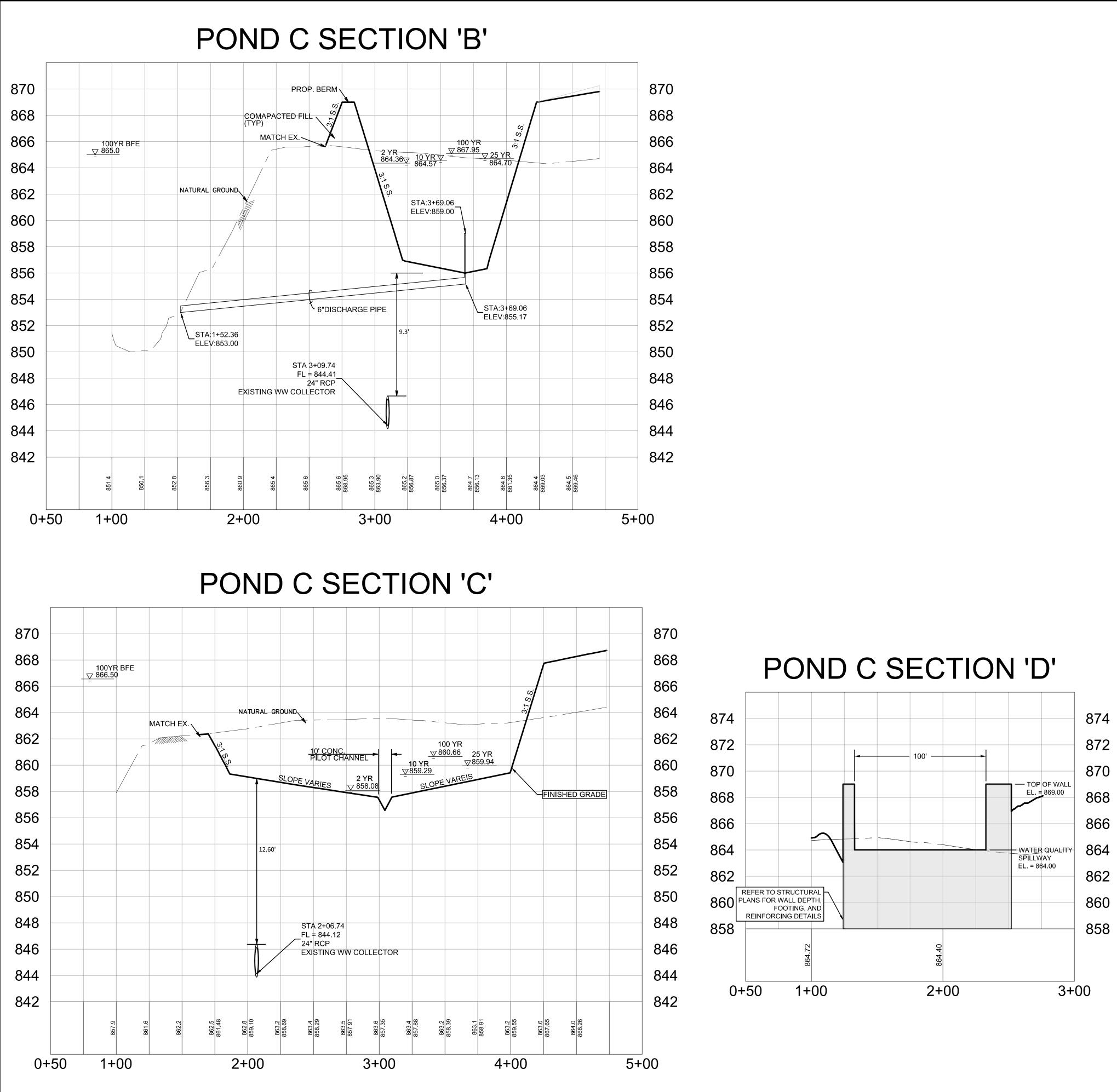




# POND C SECTION 'A'



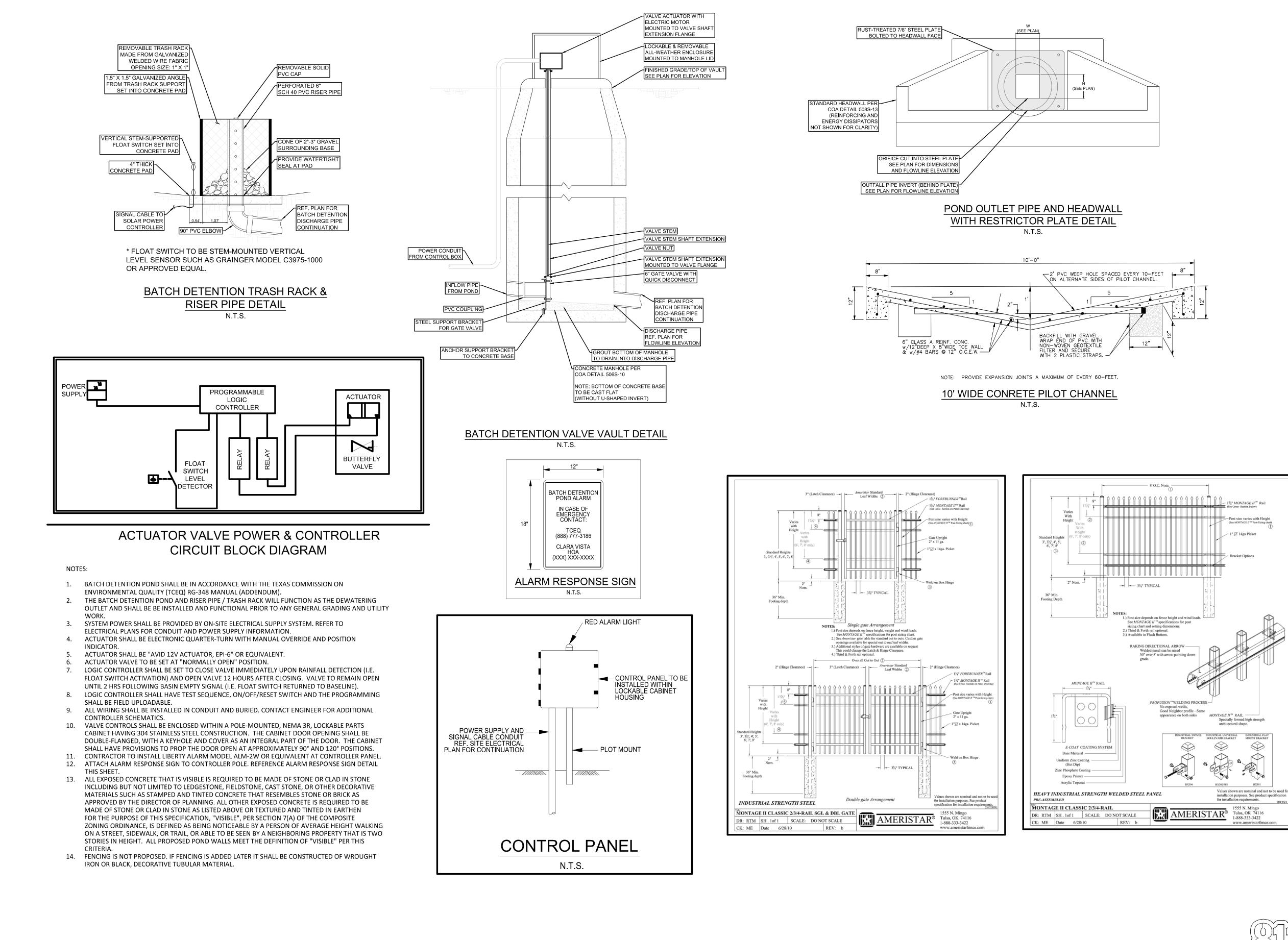

	(Q)	ble - Pond C (W	tage-Storage Ta	S
	Volume (cf)	Area (ac)	Area (sf)	Elevation
	0	0.00000	0	856.00
	932	0.06421	2,797	857.00
	6,955	0.22927	9,987	858.00
	17,621	0.26074	11,358	859.00
7	29,672	0.29291	12,759	860.00
7	43,140	0.32576	14,190	861.00
1	58,055	0.35930	15,651	862.00
	74,446	0.39355	17,143	863.00
WQ	92,345	0.42851	18,666	864.00
	111,798	0.46485	20,249	865.00
	133,043	0.51095	22,257	866.00
	155,609	0.54190	23,605	867.00
	180,253	0.57346	24,980	868.00
	205,931	0.60565	26,382	869.00


Storm Event		Surface ation	Dischar	ge (cfs)
	Phase 1	Ultimate	Phase 1	Ultimate
2-Year	864.36	864.47	68.2-cfs	102.3-cfs
10-Year	864.57	864.69	136.1-cfs	183.5-cfs
25-Year	864.70	864.83	186.9-cfs	243.9-cfs
100-Year	864.91	865.06	279.5-cfs	350.9-cfs


Pond C (WQ) Drawdown Calculatio	ons
Water Quality Drawdown	
Time at Max (hr):	0
Time at 0.0 ac-ft (hr):	32.13
Water Quality Drawdown Time (hrs):	32.13

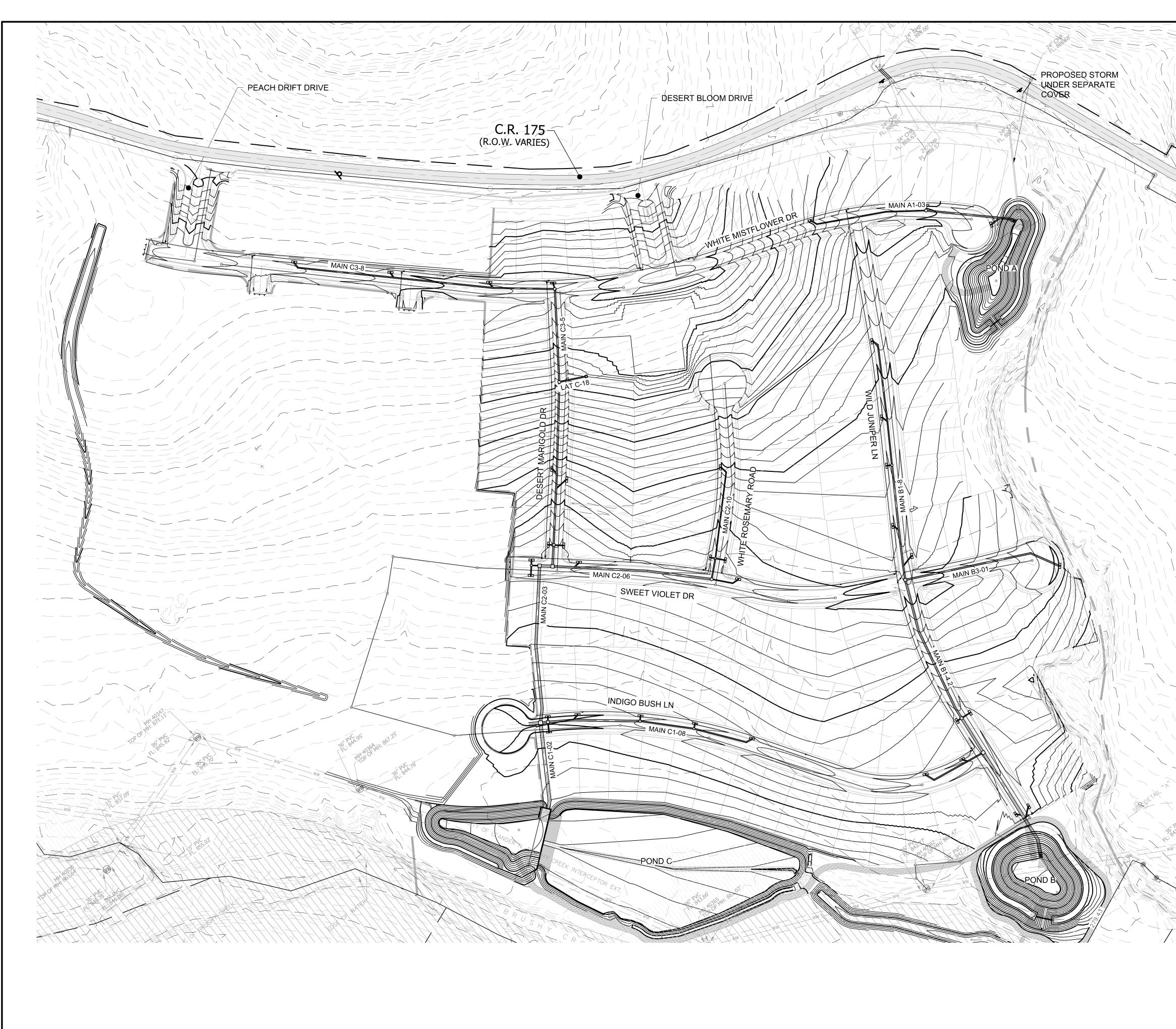
#### FOR CROSS SECTION B, C & D SEE SHEET 39

D ₅₀	$0 = 0.0105 V^{2.06}$
Outfall Dia./Span	5 ft
Rip-rap Area =	25 ft. W x 50 ft. L
V ₁₀₀ =	11.5 ft/s
D ₅₀ =	19.29 in.
Class:	V
D ₁₀₀ =	36 in.
Min. Depth =	36 in. (D ₁₀₀ or 1.5D ₅₀ )

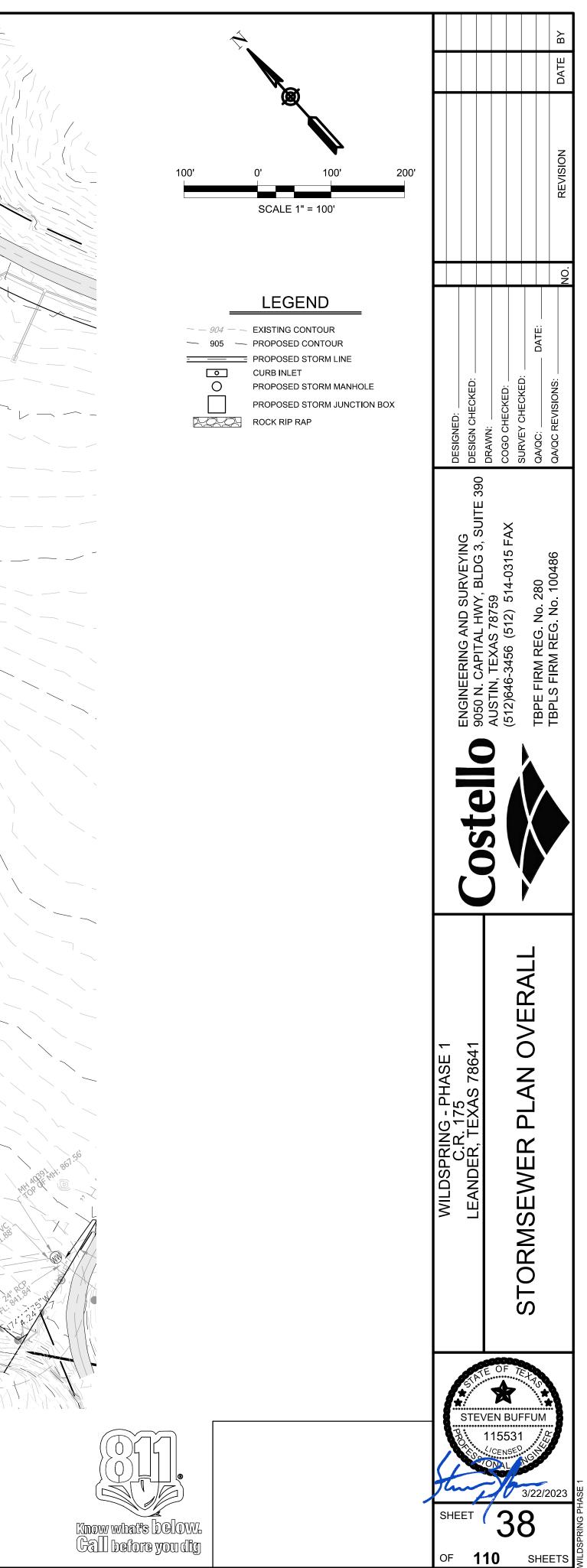








C	5	1								Т
)F	SHE					DESIGNED:				
	ET	ICH	I FANDER TEXAS 78641		ENGINEERING AND SURVEYING	DESIGN CHECKED:				
11		IAE 13		ヨリンクノー	9050 N. CAPITAL HWY, BLDG 3, SUITE 390	DRAWN:				
0		3F L A 318								
		K 88			(212)040-3420 (212) CAA					
SHE	22/	م م ر NNE			TBPE FIRM REG. No. 280	QA/QC: DATE:				
EE	20:	× Y			TBPLS FIRM REG. No. 100486	0A/0C REVISIONS:				
TS	23						NO.	REVISION	DATE BY	ВҮ
WI DSPR	DSPRING PHASE 1	v								



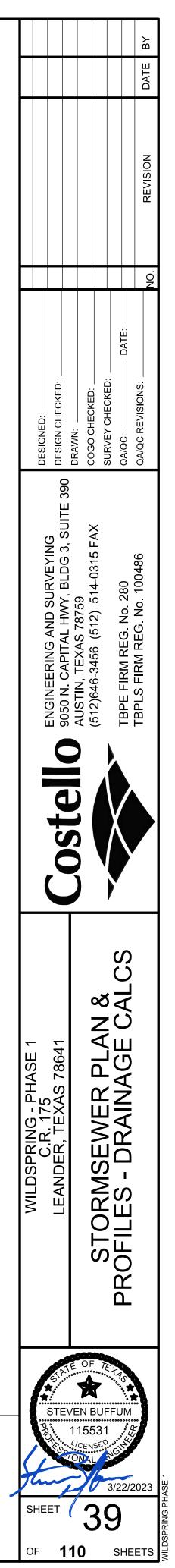



С	s	1	WII DSPRING - DHASE 1						
F	HE	Million + Million			DESIGNED:				
	ET		I FANDER TEXAS 78641		DESIGN CHECKED:				
11					DRAWN				
0		318		AUSTIN, TEXAS /8/59					
	ISE			(512)646-3456 (512) 514-0315 FAX					
					SURVEY CHECKED:				
SHE	122/ 7			TBPE FIRM REG. No. 280	QA/QC: DATE:				
ΞE٦	202			TBPLS FIRM REG. No. 100486	QA/QC REVISIONS:				
ſS	23	2				NO.	KEVISION	UAIE BY	
WILDSP	LDSPRING PHASE 1								





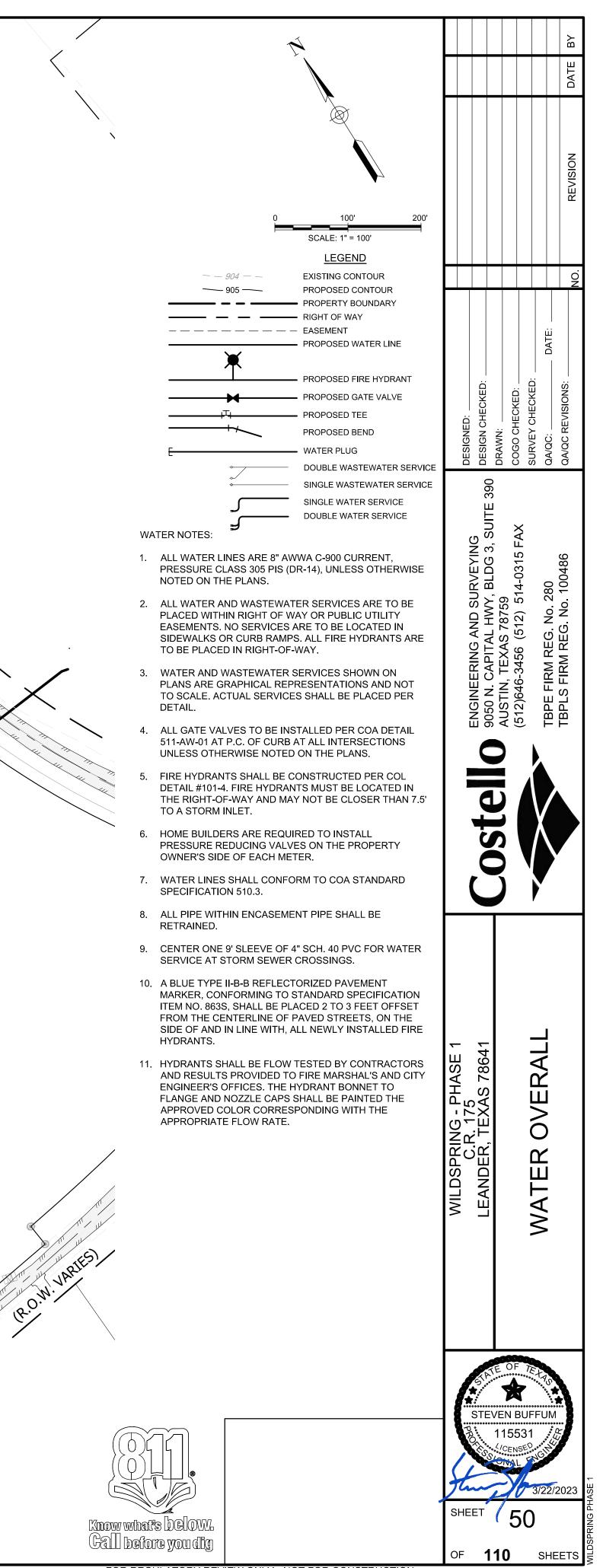
land_dev\02_projects\toll brothers\cr 175\05_cadd\plan set ph1\stormsewer plan overall.d

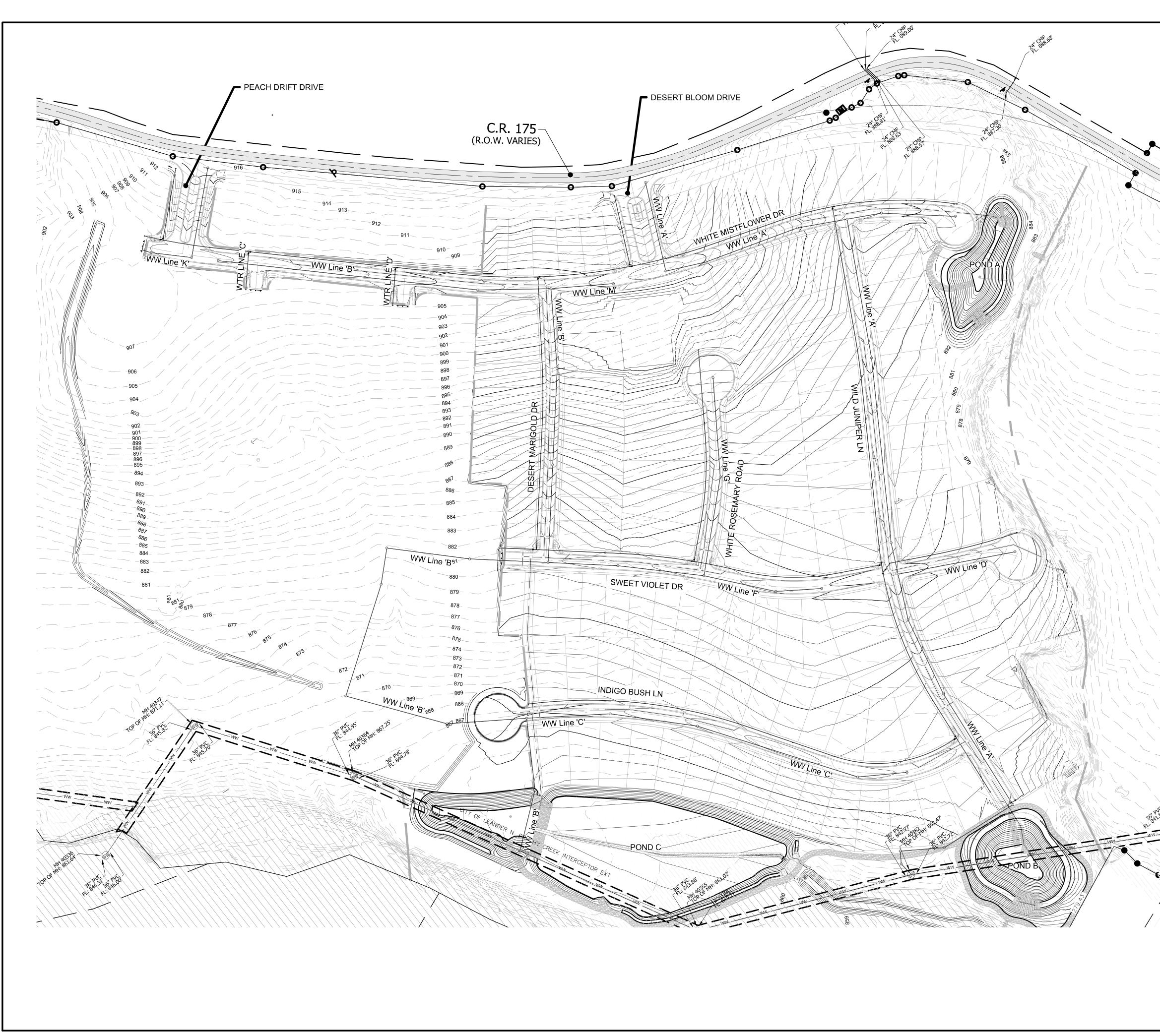


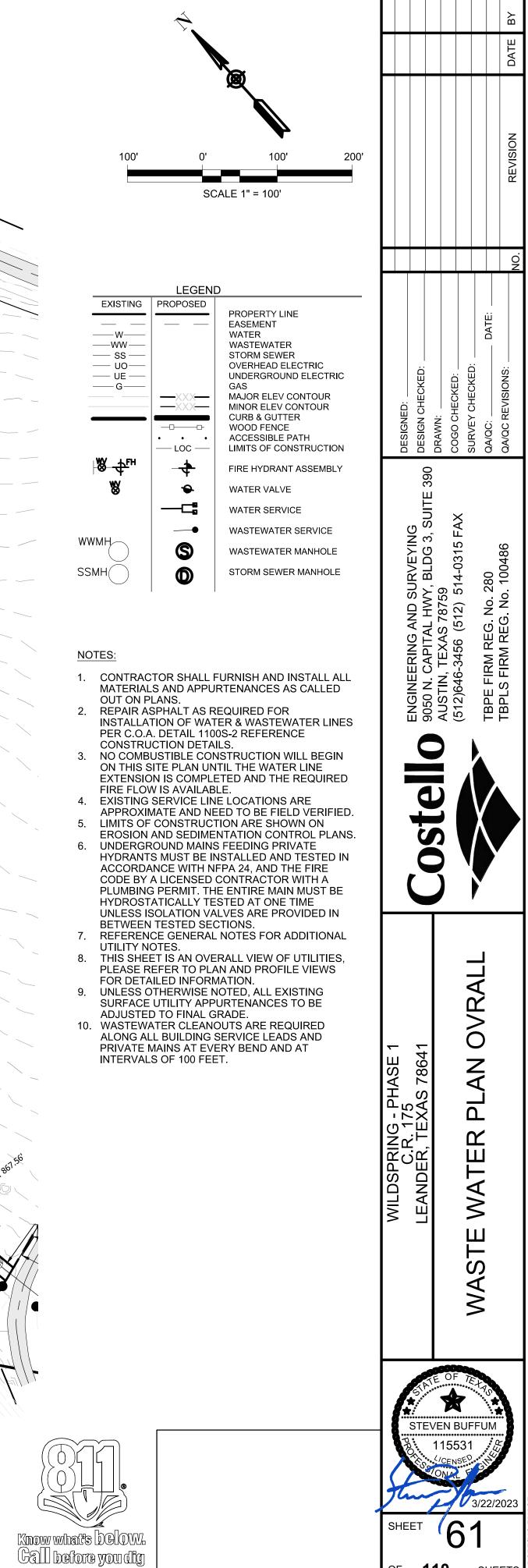

								I		Cui	b Inlets (	On Grade C	alculatio	on Summa	ry: 25 yea	ar										
rainag Area No.	Inlet No.	Q ₂₅ (cfs)	Q _{pass} (cfs)	Q _{total} (cfs)	Slope (%)	n	Ku	Street Width (ft)	Crown Height (ft)	Inlet Depression, a (ft)	ко	K1	K2	y0 (ft)	а	b	Flow Spread, T (ft)	H1 (ft)	H2 (ft)	Qa/La (cfs/ft)	Length (ft)	Qa	Q _{pass} (cfs)	% Captured	Bypas s to Inlet	Flow Captu by In (cfs
A3	IA-03	7.54	0.00	7.54	2.1%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.42	0.0714	0.0026	8.49	0.84	0.42	0.88	10.00	8.83		100%	IA2	7.5
A4	IA-04	8.77	0.00	8.77	5.0%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.38	0.0714	0.0026	7.28	0.80	0.42	0.84	10.00	8.42	0.35	96%	IA3	8.4
C20	IC-20	5.78	0.00	5.78	5.2%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.33	0.0714	0.0026	5.92	0.75	0.42	0.79	10.00	7.88	-	100%	IC19	5.
C21 C22	IC-21 IC-22	5.73 5.89	0.00	5.73 5.89	0.5%	0.020	0.560	28.00 28.00	0.500	0.42	2.85	0.50	3.03 3.03	0.49	0.0714	0.0026	11.94 10.39	0.91	0.42	0.96	10.00	9.57 9.32		100%	IC20 IC21	5.
B3a	IB-03a	7.41	0.00	7.41	0.9%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.47	0.0714	0.0026	11.42	0.90	0.42	0.95	10.00	9.50		100%	1021	7.4
B4	1B-04	4.73	0.00	4.73	0.6%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.45	0.0714	0.0026	9.38	0.86	0.42	0.91	10.00	9.08		100%		4.1
B6	IB-06	2.94	0.00	2.94	1.2%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.34	0.0714	0.0026	6.07	0.76	0.42	0.79	10.00	7.94		100%		2.
B7	IB-07	5.82	0.00	5.82	0.8%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.46	0.0714	0.0026	10.03	0.88	0.42	0.92	10.00	9.24		100%	IB4	5.8
B8 B9	1B-08 1B-09	5.97 7.10	0.00	5.97 7.10	0.8%	0.020	0.560	28.00 28.00	0.500	0.42	2.85	0.50	3.03 3.03	0.46	0.0714	0.0026	9.98 10.47	0.88	0.42	0.92	10.00	9.23 9.34		100% 100%	IB7 IB8	5.9
B10	IB-10	8.58	0.00	8.58	1.6%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.46	0.0714	0.0026	10.47	0.88	0.42	0.93	10.00	9.26		100%	IB9	8.5
C4	IC-04	6.94	0.00	6.94	0.8%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.48	0.0714	0.0026	11.35	0.90	0.42	0.95	10.00	9.49		100%	IC3	6.9
C5	IC-05	6.66	0.00	6.66	0.8%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.48	0.0714	0.0026	10.91	0.89	0.42	0.94	10.00	9.42		100%	IC4	6.6
C6	IC-06	5.74	0.00	5.74	0.8%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.45	0.0714	0.0026	9.70	0.87	0.42	0.92	10.00	9.17	-	100%	IC5	5.7
C7 C10	IC-07 IC-10	3.67 3.43	0.00	3.67 3.43	0.8%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03 3.03	0.39	0.0714	0.0026	7.45 8.15	0.81	0.42	0.85	10.00	8.49 8.73		100%	IC6 IC9	3.6
C10	IC-10	3.45	0.00	3.45	3.0%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.41	0.0714	0.0026	5.13	0.85	0.42	0.87	10.00	7.52		100%	109	3.1
C12a	IC-12a	5.20	0.00	5.20	3.0%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.35	0.0714	0.0026	6.40	0.77	0.42	0.81	10.00	8.08		100%	109	5.2
C13	IC-13	9.84	0.00	9.84	6.2%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.39	0.0714	0.0026	7.31	0.80	0.42	0.84	10.00	8.43	1.41	86%	IC11	8.4
C14	IC-14	5.82	0.00	5.82	0.5%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.49	0.0714	0.0026	12.18	0.91	0.42	0.96	10.00	9.60		100%	IC10	5.8
C15	IC-15	6.18	0.00	6.18	2.3%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.39	0.0714	0.0026	7.43	0.81	0.42	0.85	10.00	8.48	-	100%	IC10	6.1
C16 C17	IC-16 IC-17	5.28 5.31	0.00	5.28 5.31	2.3% 4.9%	0.016	0.560	28.00	0.500	0.42	2.85	0.50	3.03 3.03	0.37	0.0714	0.0026	6.86 5.77	0.79	0.42	0.83	10.00	8.26 7.81		100%	IC10 IC15	5.2
C12b	IC-12b	3.23	0.00	3.23	6.2%	0.010	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.27	0.0714	0.0026	4.45	0.68	0.42	0.78	10.00	7.20		100%	IC12a	3.2
B3b	IB-03b	4.13	0.00	4.13	0.9%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.40	0.0714	0.0026	7.68	0.81	0.42	0.86	10.00	8.57		100%		4.1
B2	IB-02	3.81	0.00	3.81	0.5%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.43	0.0714	0.0026	8.67	0.84	0.42	0.89	10.00	8.89		100%		3.8
	B-01b*	2.46	0.00	2.46	0.5%	0.020	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.37	0.0714	0.0026	6.86	0.79	0.42	0.83	10.00	8.26	-	100%	ļ/	2,4
B1b*	P 01c*	2 50	0.00	2 50	0 5%		0.560	28.00	0.500	0.42	2 95	0.50	2.02		0.0714	0.0026	7.02	0.70	0.42	0.02	10.00	0 22		100%		25
17	B-01c*	2.58	0.00	2.58	0.5%	0.020	0.560	28.00	0.500	0.42 Cur	2.85 b Inlets C	0.50 On Grade Ca	3.03 alculatio	0.38	0.0714 <b>ry: 100 ye</b>	0.0026 ar	7.02	0.79	0.42	0.83	10.00	8.32		100%		2.5
B1c*							0.560	Street	Crown	Cur	b Inlets C		at the treat	0.38 n Summa			Flow					8.32	Quarte		Bypas	Flo
B1c*	B-01c*	2.58 Q ₁₀₀ (cfs)	0.00 Q _{pass} (cfs)	2.58 Q _{total} (cfs)	0.5% Slope (%)		0.560 Ku	Street Width	Crown Height	Cur Inlet Depression, a			at the treat	0.38 n Summar y0			Flow Spread, T	H1	H2	Qa/La	Length (ft)	8.32 Qa	Q _{pass}	100% % Captured	sto	Flo Capto by Ir
B1c* Drainag e Area No.	Inlet No.	Q ₁₀₀ (cfs)	Q _{pass} (cfs)	Q _{total} (cfs)	Slope (%)	0.020 n	Ku	Street Width (ft)	Crown Height (ft)	Cur Inlet Depression, a (ft)	b Inlets C KO	On Grade Ca K1	K2	0.38 on Summar y0 (ft)	r <b>y: 100 ye</b> a	ar b	Flow Spread, T (ft)	H1 (ft)	H2 (ft)	Qa/La (cfs/ft)	Length (ft)	Qa	(cfs)	% Captured	s to Inlet	Flo Captu by Ir (cf
B1c* Drainag e Area No. A3	Inlet	Q ₁₀₀	Q _{pass} (cfs) 0.00	Q _{total} (cfs) 11.23	Slope	0.020 n		Street Width	Crown Height	Cur Inlet Depression, a	b Inlets C	On Grade Ca	K2 3.03	0.38 n Summar y0 (ft) 0.48	y: 100 ye	ar b 0.0026	Flow Spread, T	H1	H2	Qa/La	Length (ft) 10.00		A desire	% Capture d 85%	s to	Flo Captu by Ir (cf 9.4
B1c* Drainag e Area No.	Inlet No. IA-03	Q ₁₀₀ (cfs) 11.23	Q _{pass} (cfs)	Q _{total} (cfs)	Slope (%) 2.1%	0.020 n	Ku 0.560	Street Width (ft) 28.00	Crown Height (ft) 0.500	Cur Inlet Depression, a (ft) 0.42	<b>b Inlets С</b> КО 2.85	On Grade Ca K1 0.50	K2	0.38 on Summar y0 (ft)	r <b>y: 100 ye</b> a 0.0714	ar b	Flow Spread, T (ft) 11.33	H1 (ft) 0.90	H2 (ft) 0.42	Qa/La (cfs/ft) 0.95	Length (ft)	Qa 9.49	(cfs) 1.74	% Captured	s to Inlet IA2	Flo Captu by Ir (cf 9,4
B1c* Prainag e Area No. A3 A4	Inlet No. IA-03 IA-04 IC-20 IC-21	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54	Q _{pass} (cfs) 0.00 0.00 0.00 0.00	Q _{total} (cfs) 11.23 13.07 8.62 8.54	Slope (%) 2.1% 5.0% 5.2% 0.5%	0.020 n 0.016 0.016 0.016 0.020	Ku 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85	On Grade Ca K1 0.50 0.50	K2 3.03 3.03 3.03 3.03	0.38 on Summar y0 (ft) 0.48 0.44	a 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00	H1 (ft) 0.90 0.86	H2 (ft) 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90	Length (ft) 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69	(cfs) 1.74 4.06	% Capture d 85% 69% 97% 100%	s to Inlet IA2 IA3 IC19 IC20	Flc Captu by Ir (cf 9,4 9,0 8,3 8,5
B1c* Drainag e Area No. A3 A4 C20 C21 C22	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7%	0.020 n 0.016 0.016 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85	0n Grade Ca K1 0.50 0.50 0.50 0.50 0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03	0.38 on Summar y0 (ft) 0.48 0.44 0.38 Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714	ar b 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92	H2 (ft) 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69	(cfs) 1.74 4.06 0.24	% Captured 85% 69% 97% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21	Flc Captu by Ir (cf 9,4 9,0 8,3 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.5% 0.7% 0.9%	0.020 n 0.016 0.016 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	On Grade Ca K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03	0.38 on Summar y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97	Length (ft) 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69	(cfs) 1.74 4.06	% Capture d 85% 69% 97% 100% 100% 88%	s to Inlet IA2 IA3 IC19 IC20 IC21 0	Flo Captu by Ir 9.4 9.0 8.3 8.5 8.5 9.6
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6%	0.020 n 0.016 0.016 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85	0n Grade Ca K1 0.50 0.50 0.50 0.50 0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03	0.38 on Summary y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92	H2 (ft) 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97	Length (ft) 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69	(cfs) 1.74 4.06 0.24	% Captured 85% 69% 97% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21	Flo Captu by Ir (cf 9,4 9,6 8,5 8,5 9,6 7,6
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.5% 0.7% 0.9%	0.020 n 0.016 0.016 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	0n Grade Ca K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03	0.38 on Summar y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97	Length (ft) 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69	(cfs) 1.74 4.06 0.24	% Capture d 85% 69% 97% 100% 100% 88% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0	Flo Captu by Ir (cf 9,4 9,0 8,3 8,5 8,5 9,6 7,0 7,0 4,3
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-06 IB-07 IB-08	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.5% 0.7% 0.6% 1.2% 0.8%	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	N Grade C K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03	0.38 on Summar y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow 0.39	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 7.35 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.84 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 8.45 9.69 9.69	(cfs) 1.74 4.06 0.24 1.34	% Capture d 85% 69% 97% 100% 100% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 IB4 IB7	Flo Captu by Ir (cf 9,4 9,0 8,3 8,5 8,5 7,0 4,3 8,6 8,6 8,6 8,6 8,6
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-06 IB-07 IB-08 IB-09	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 1.0%	0.020 n 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	Nn Grade Ca K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 on Summary y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 8.45 9.69 9.69 9.69 9.69	(cfs) 1.74 4.06 0.24 1.34 0.89	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 92%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 IB4 IB7 IB8	Flo Captu by Ir (cf 9,4 9,0 8,3 8,5 8,5 9,6 7,0 7,0 7,0 7,0 8,5 8,6 8,5 9,6 8,5 9,6
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-06 IB-07 IB-08 IB-09 IB-10	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 1.0% 1.6%	0.020 n 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	0n Grade Ca K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 v0 Summary v0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.84 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09	% Capture d 85% 69% 97% 100% 100% 88% 100% 100% 100% 100% 92% 76%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 IB4 IB7 IB8 IB9	Flc Captu by Ir (cf 9,4 9,0 8,3 8,5 9,0 7,0 7,0 7,0 7,0 7,0 7,0 9,0 9,0 9,0
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-06 IB-07 IB-08 IB-09 IB-10 IC-04	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 1.0% 1.6% 0.8%	0.020 n 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.016 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	On Grade Ca           K1           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 on Summary y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 8.45 9.69 9.69 9.69 9.69 9.69	(cfs) 1.74 4.06 0.24 1.34 1.34 0.89 3.09 0.65	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 92% 76% 94%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 1B4 IB7 IB8 IB9 IC3	Flo Captu by Ir (cf 9,4 9,6 8,3 8,5 9,6 7,0 7,0 7,0 7,0 7,0 9,6 9,6 9,6 9,6
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-06 IB-07 IB-08 IB-09 IB-10	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 1.0% 1.6%	0.020 n 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	0n Grade Ca K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 v0 Summar v0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.84 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09	% Capture d 85% 69% 97% 100% 100% 88% 100% 100% 100% 100% 92% 76%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 IB4 IB7 IB8 IB9	Flo Captu by Ir (cf 9,4 9,0 8,3 8,5 9,6 7,0 4,3 8,6 9,6 9,6 9,6 9,6
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-06 IB-07 IB-08 IB-09 IB-10 IC-04 IC-05	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 1.0% 1.6% 0.8%	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.016 0.020 0.016 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 on Summary y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9,49 9,01 8,37 9,69 9,69 9,69 9,69 9,69 9,69 9,69 9,6	(cfs) 1.74 4.06 0.24 1.34 1.34 0.89 3.09 0.65	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 100% 92% 76% 94% 98%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 1B4 IB7 IB8 IB9 IC3 IC4	Flo Captu by Ir (cf 9,4 9,0 8,3 8,5 7,0 7,0 7,0 4,3 8,6 9,6 9,6 9,6 9,6 9,6 8,5
B1c* Prainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6	Inlet No. IA-03 IA-04 IC-20 IC-21 IB-03a IB-04 IB-06 IB-07 IB-08 IB-09 IB-10 IC-04 IC-05 IC-06 IC-07 IC-10	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11	Slope (%) 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 1.0% 1.6% 0.8% 0.8% 0.8% 0.8% 0.8%	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 n Summar y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 1.34 0.89 3.09 0.65	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 IC21 0 0 IC21 0 IC21 IC21 IC21 IC21 IC21 IC21 IC21 IC21	Flc Captr by Ir (cf 9, 9, 9, 8, 8, 8, 9, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 7, 1, 7, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
B1c* Prainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-21 IB-03a IB-04 IB-06 IB-07 IB-08 IB-07 IB-08 IB-09 IB-10 IC-04 IC-05 IC-06 IC-07 IC-10 IC-11	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.016 0.020 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 vy0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 1.34 0.89 3.09 0.65	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 1B4 IB7 IB8 IB9 IC3 IC4 IC5 IC6 IC9 IC9	Flc Captr by Ir (cf 9, 9, 9, 8, 8, 9, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1, 7, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
B1c* Prainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-03 IB-04 IB-06 IB-07 IB-08 IB-09 IB-10 IC-04 IC-05 IC-06 IC-07 IC-10 IC-112	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 vy0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9,49 9,01 8,37 9,69 9,69 9,69 9,69 9,69 9,69 9,69 9,6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09 0.65 0.23 0.23	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 0 0 1B4 IB7 IB8 IB9 IC3 IC4 IC5 IC6 IC9 IC9 IC9	Flc Captu by Ir (cf 9,4 9,1 8,1 8,1 8,1 7,1 9,1 9,1 9,1 9,1 9,1 9,1 9,1 9,1 9,1 9
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a C13	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-04 IB-06 IB-07 IB-08 IB-09 IB-10 IC-04 IC-05 IC-06 IC-07 IC-10 IC-11 IC-12a IC-13	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Stre et Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 on Summary y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 10.62 6.11 7.80 9.16	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9,49 9,01 8,37 9,69 9,69 9,69 9,69 9,69 9,69 9,69 9,6	(cfs) 1.74 4.06 0.24 1.34 1.34 0.89 3.09 0.65	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flc Capti by li (cf 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-03 IB-04 IB-06 IB-07 IB-08 IB-09 IB-10 IC-04 IC-05 IC-06 IC-07 IC-10 IC-112	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50           0.50	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 vy0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9,49 9,01 8,37 9,69 9,69 9,69 9,69 9,69 9,69 9,69 9,6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09 0.65 0.23 0.23	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 0 0 1B4 IB7 IB8 IB9 IC3 IC4 IC5 IC6 IC9 IC9 IC9	Flc Capti by li (cf 9, 9, 9, 8, 8, 8, 8, 7, 4, 8, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 7, 1, 7, 1, 8, 1, 8, 1, 7, 1, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a C13 C14	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-04 IB-04 IB-06 IB-07 IB-08 IB-09 IB-10 IC-04 IC-05 IC-04 IC-05 IC-06 IC-07 IC-100 IC-111 IC-12a IC-12a IC-13 IC-14	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.5% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Stre et Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 on Summary y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09 0.65 0.23 0.23 5.64	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flc Capti by In (cf 9, 9, 9, 8, 8, 7, 4, 8, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 1, 7, 7, 1, 8, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a C13 C14 C15	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-21 IB-03a IB-04 IB-06 IB-07 IB-08 IB-07 IB-08 IB-07 IB-08 IB-07 IC-04 IC-05 IC-06 IC-07 IC-06 IC-07 IC-10 IC-11 IC-12a IC-13 IC-14 IC-15 IC-16 IC-16 IC-17	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21 7.87 7.92	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020  n  0.016  0.016  0.016  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.020  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016  0.016	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Stre et Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 on Summan y0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 9.39 10.62 6.11 7.80 9.34 8.47 6.95	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09 0.65 0.23 0.23 5.64	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 IB4 IB7 IB8 IB9 IC3 IC4 IC5 IC6 IC5 IC6 IC9 IC9 IC9 IC11 IC10 IC10 IC10 IC10	Flc Capt by In (cf 9, 9, 9, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
B1c* Prainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a C13 C14 C15 C16 C17 C12 C12 C12 C12 C13 C14 C15 C16 C17 C12 C12 C12 C12 C12 C12 C12 C12	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-21 IB-03a IB-04 IB-06 IB-07 IB-08 IB-07 IB-08 IB-07 IB-08 IB-07 IB-08 IB-07 IC-05 IC-07 IC-05 IC-06 IC-07 IC-12a IC-11 IC-12a IC-15 IC-16 IC-17 IC-12b	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21 7.87 7.92 5.01	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21 7.87 7.92 5.01	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	k0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.	K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 v0 Summat v0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 10.62 6.11 7.80 9.34 8.47 6.95 5.34	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09 0.65 0.23 0.23 5.64	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 92% 76% 94% 92% 76% 94% 98% 100% 100% 100% 100% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flc Captu by Ir (cf 9,4 9,0 8,3 8,5 9,0 7,0 7,0 7,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9
B1c*  Drainag e Area No.  A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a C13 C14 C15 C16 C17 C12b B3b	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-22 IB-03a IB-04 IB-04 IB-04 IB-06 IB-07 IB-08 IB-09 IB-00 IC-04 IC-05 IC-06 IC-07 IC-10 IC-12 IC-12 IC-12 IC-12 IC-12 IC-15 IC-16 IC-17 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 IC-12 I	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21 7.87 7.92 5.01 6.39	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21 7.87 7.92 5.01 6.39	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 0.020 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.020 0.020 0.016 0.016 0.016 0.016 0.016 0.020 0.020 0.016 0.016 0.016 0.016 0.020 0.020 0.016 0.016 0.016 0.020 0.020 0.016 0.020 0.020 0.016 0.016 0.020 0.020 0.020 0.016 0.020 0.020 0.016 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Stre et Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	b Inlets C K0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.0	0.38 v0 (ft) 0.48 0.44 0.38 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0verflow 0.44 0.42 0.37 0.31 0.46	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 10.62 6.11 7.80 9.34 8.47 6.95 5.34 10.04	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9,49 9,01 8,37 9,69 9,69 9,69 9,69 9,69 9,69 9,69 9,6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09 0.65 0.23 0.23 5.64	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 100% 92% 76% 94% 98% 100% 100% 100% 100% 100% 100% 100% 10	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flo Captu by In (cfs 9,4 9,6 7,0 4,3 8,5 7,0 4,3 8,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9,6 9
B1c* Drainag e Area No. A3 A4 C20 C21 C22 B3a B4 B6 B7 B8 B9 B10 C4 C5 C6 C7 C10 C11 C12a C13 C14 C15 C16 C17 C12 C15 C16 C17 C12 C12 C12 C12 C12 C13 C14 C15 C16 C17 C12 C12 C12 C12 C12 C12 C12 C12	Inlet No. IA-03 IA-04 IC-20 IC-21 IC-21 IB-03a IB-04 IB-06 IB-07 IB-08 IB-07 IB-08 IB-07 IB-08 IB-07 IB-08 IB-07 IC-05 IC-07 IC-05 IC-06 IC-07 IC-12a IC-11 IC-12a IC-15 IC-16 IC-17 IC-12b	Q ₁₀₀ (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21 7.87 7.92 5.01	Q _{pass} (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Q _{total} (cfs) 11.23 13.07 8.62 8.54 8.78 11.04 7.05 4.38 8.68 8.90 10.59 12.79 10.34 9.93 8.56 5.47 5.11 4.72 7.76 14.66 8.67 9.21 7.87 7.92 5.01	Slope (%) 2.1% 5.0% 5.2% 0.5% 0.7% 0.9% 0.6% 1.2% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8	0.020 n 0.016 0.016 0.016 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016	Ku 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Street Width (ft) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00	Crown Height (ft) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Cur Inlet Depression, a (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	k0 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.	K1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.	K2 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.	0.38 v0 Summat v0 (ft) 0.48 0.44 0.38 Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow Overflow O	a 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714	b 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026	Flow Spread, T (ft) 11.33 9.11 7.15 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 10.62 6.11 7.80 9.34 8.47 6.95 5.34	H1 (ft) 0.90 0.86 0.80 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	H2 (ft) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	Qa/La (cfs/ft) 0.95 0.90 0.84 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Le ngth (ft) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Qa 9.49 9.01 8.37 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.6	(cfs) 1.74 4.06 0.24 1.34 0.89 3.09 0.65 0.23 0.23 5.64	% Capture d 85% 69% 97% 100% 100% 100% 100% 100% 92% 76% 94% 92% 76% 94% 98% 100% 100% 100% 100% 100% 100% 100%	s to Inlet IA2 IA3 IC19 IC20 IC21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5 Flov Captu by In (cfs 9.4 9.0 8.3 8.5 8.7 9.6 7.0 4.3 8.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9

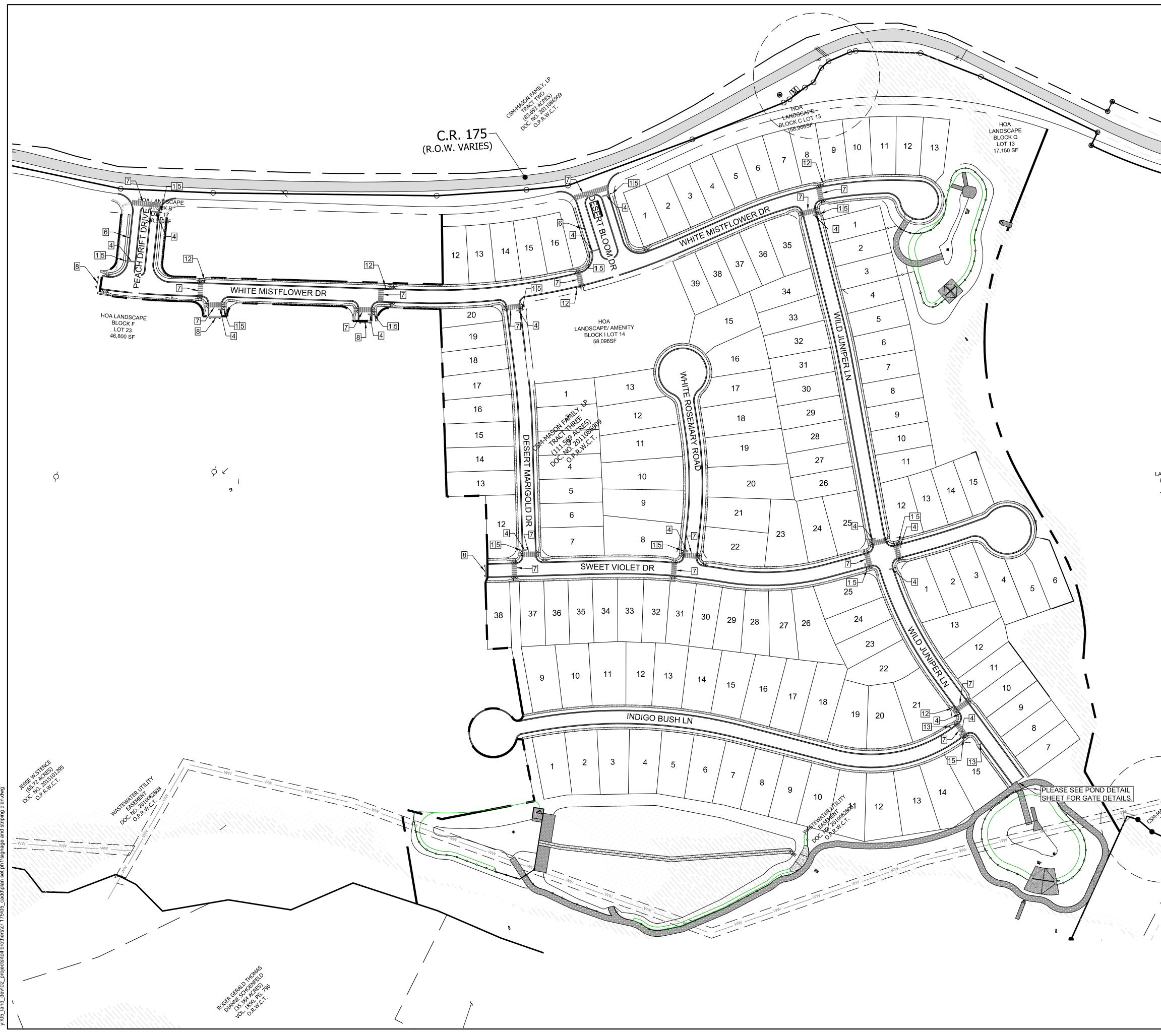
							Curb In	lets in Sump C	alculation Sum	mary: 25 ye	ear						
Drainage Area <mark>N</mark> o.	Inlet No.	Q ₂₅ (cfs)	Qpass (cfs)	Qtotal (cfs)	W (ft)	Inlet Depression, a (ft)	Curb opening height, h (ft)	Street Width (ft)	Crown Height (%)	Clogging Factor (%)	Inlet Length (ft)	d _{weir} Above S _x (ft)	d _{orifice} above S _x (ft)	а	b	Depth of Ponding over S _x , y0 (ft)	Ponded Width (ft)
A2	IA-02	8.22	0.00	8.22	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.43	0.00	0.07	0.00	0.31	5.35
C19	IC-19	10.43	0.00	10.43	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.50	0.00	0.07	0.00	0.31	5.35
B5	IB-05	11.19	0.00	11.19	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.53	0.00	0.07	0.00	0.31	5.35
C2	IC-02	2.76	0.00	2.76	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.21	0.00	0.07	0.00	0.21	3.29
G	IC-03	10.61	0.00	10.61	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.51	0.00	0.07	0.00	0.31	5.35
C8	IC-08	3.90	0.00	3.90	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.26	0.00	0.07	0.00	0.26	4.32
C9	IC-09	4.23	0.00	4.23	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.28	0.00	0.07	0.00	0.28	4.62
C18	IC-18	10.45	0.00	10.45	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.50	0.00	0.07	0.00	0.31	5.35

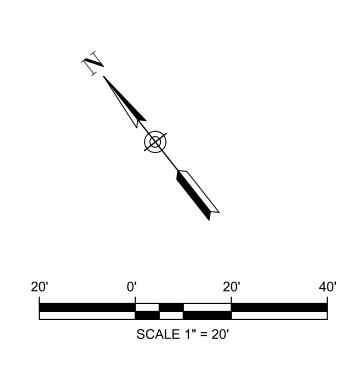
							Curb In	lets in Sump C	alculation Sum	mary: 100 y	ear						
Drainage Area No.	Inlet No.	Q ₁₀₀ (cfs)	Qpass (cfs)	Qtotal (cfs)	W (ft)	Inlet Depression, a (ft)	Curb opening height, h (ft)	Street Width (ft)	Crown Height (%)	Clogging Factor (%)	Inlet Length (ft)	d _{weir} Above S _x (ft)	d _{orifice} above S _x (ft)	a	b	Depth of Ponding over S _x , d (ft)	Ponded Width (ft)
A2	IA-02	12.25	0.00	12.25	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.56	0.03	0.07	0.00	0.31	5.35
C19	IC-19	15.54	0.00	15.54	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.66	0.15	0.07	0.00	0.31	5.35
B5	IB-05	16.68	0.00	16.68	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.69	0.20	0.07	0.00	0.31	5.35
C2	IC-02	4.11	0.00	4.11	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.27	0.00	0.07	0.00	0.27	4.51
C3	IC-03	15.81	0.00	15.81	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.66	0.16	0.07	0.00	0.31	5.35
C8	IC-08	5.80	0.00	5.80	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.34	0.00	0.07	0.00	0.31	5.35
C9	IC-09	6.30	0.00	6.30	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.36	0.00	0.07	0.00	0.31	5.35
C18	IC-18	15.58	0.00	15.58	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.66	0.15	0.07	0.00	0.31	5.35


						Storm	CAD Mo	odel Drair	lage Sytem Ex	•							
			Pipe Condit	ions						ow Cha	racteristics				low Charact		
Conduit	Diameter	Length	Start Node	Stop Nodo	Invert	Invert	Slope	Velocit	Capacity Full Flow	Flow	HGL	HGL	Velocity	Capacity	Flow (ofc)	HGL	HGL
Label	(in)	(ft)	Start Note	Stop Node	Start (ft)	Stop (ft)	(ft/ft)	y (ft/s)	(cfs)	(cfs)	(ft)	Downstream (ft)	(ft/s)	(cfs)	Flow (cfs)	(ft)	am (ft)
MAIN A1-01	30	32.7	WYE A-2	A-OUT	880.52		0.02	31.98	51.72	6.52	886.95	886.75	5.21	51.72	25.58	885.73	885.
MAIN A1-02	30	153.3	MH A-1	WYE A-2	882.98	880.52	0.02	19.39	51.96	3.95	888.04	887.70	3.47	51.96	17.01	886.44	886.1
MAIN A1-03	18		B A-1	MH A-1	885.95		0.02	9.69	16.16	5.49	888.84	888.13	9.26	16.16	8.48	887.08	886.5
MAIN A1-04	18		B A1-4	BA-1	889.39	885.95	0.02	9.69	16.19	9.57	890.59	888.89	9.27	16.19	8.48	890.52	887.2
LAT A-02 LAT A-03	24 18		IA-01 IA-03	WYE A-2 MH A-1		881.02 883.98	0.02 0.09	12.59 9.69	32.26	4.01 5.49	887.75 888.21	887.69 888.13	2.73 4.83	32.26 30.64	8.57 8.53	886.25 886.57	886.2 886.5
LAT A-03	18		IA-03	B A1-4	889.71		0.03		16.18		890.91	890.91	9.26	16.18	8.48	890.84	890.7
MAIN B1-1			B B-1	B-OUT	858.23		0.04	76.82	301.92	6.11	869.91	869.83			57.33	867.94	867.
MAIN B1-1 MAIN B1-2	48 48		JUNCTION B1-2	B B-1	863.63		0.04	76.82	223.10		870.62	869.98	4.56 4.56	223.1	57.33	868.3	867.9
MAIN B1-3	36		JUNCTION B1-3	WYE B-4		864.67	0.01	59.11	53.03	8.36	871.73	871.02	6.14	53.03	43.4	868.92	868.5
MAIN B1-4	36	174.7	JUNCTION B1-4	JUNCTION B1-3	866.35	865.25	0.01	59.11	53.03	8.36	873.32	871.95	6.14	53.03	43.4	869.78	869.0
MAIN B1-5	36		JUNCTION B1-5	JUNCTION B1-4	867.04		0.01	59.11	53.03	8.36	874.29	873.43	6.14	53.03	43.4	870.25	869.7
MAIN B1-6	30		JUNCTION B1-6	JUNCTION B1-5		875.65	0.01	41.96	37.73	8.55	878.20	877.82	8.61	37.73	31.73	877.81	877.4
MAIN B1-7 MAIN B1-8	30		WYE B1-7 JUNCTION B1-8	JUNCTION B1-6 WYE B1-7		876.39 877.03	0.01 0.01	37.46 28.54	37.73 20.81	8.76 9.08		878.42 879.99	8.46	37.73 20.81	28.66 22.59	878.85 880.9	878.0 879.6
MAIN B1-8 MAIN B1-9	24 24		WYE B1-9	JUNCTION B1-8	879.44		0.01	19.39	20.81	6.17	881.99 884.04	879.99	7.19 5.21	20.81	16.36	880.9	879.6
MAIN B1-10	18		B B1-10	WYE B1-9		879.44	0.01	9.69	9.66		885.93	884.57	5.07	9.66	8.95	883.7	882.5
MAIN B2-01	30	264.5	JUNCTION B2.01	JUNCTION B1-5	869.37	868.04	0.01	17.15	29.00	3.49	876.14	875.68	5.59	29	11.67	871.3	871.1
MAIN B2-02	30		IB-05	JUNCTION B2.01		869.37	0.01	17.15	28.69	3.49	876.30	876.19	5.54	28.69	11.67	871.35	871.3
LAT B-03	18		IB-03	JUNCTION B1-2	868.12		0.07	8.02	27.87	4.54	871.33	871.16	12.24	27.87	5.46	869.02	868.6
LAT B-04	18		IB-04 IB-06	WYE B-4	868.21		0.14	9.69	39.67	5.49	871.51 879.34	871.39	17.85	39.67	8.47 3.07	869.34 879.19	868.6 878.7
LAT B-06 LAT B-07	18 18		IB-07	JUNCTION B1-6 WYE B1-7	878.52 878.85		0.06 0.11	4.50 8.92	25.66	10.93 5.05	879.34	879.32 880.52	9.79 3.44	25.66 34.23	6.07	879.19	8/8./
LAT B-08	18		IB-08	JUNCTION B1-8		878.46	0.08		29.04	5.18		883.41	3.53	29.04	6.23	881.87	881.8
LAT B-09	18		IB-09	WYE B1-9	880.00		0.04	9.69	21.40	5.49	884.68	884.57	4.19	21.4	7.41	882.68	
LAT B-10	18		IB-10	B B1-10	880.90		0.01	9.69	9.66	5.49	886.16	886.05	5.07	9.66	8.95	883.8	883.
LAT B03.1	48	6.9	WYE B-4	JUNCTION B1-2	864.67	864.63	0.01	68.80	114.21	5.48	871.09	871.08	8.87	114.21	51.87	868.56	868.5
MAIN C1-01	72 x72	72.6	BEND C1-1	C-OUT	858.36	858.00	0.01	294.01	381.27	8.17	868.17	867.95	5.77	381.27	207.75	867.69	867.5
MAIN C1-02	72 x72		WYE C1-2	BEND C1-1		858.36	0.01	294.01	381.27	8.17	868.94	868.53	5.77	381.27	207.75	868	867.7
MAIN C1-03	72 x72		WYE C1-2	MH C1-1	859.05		-0.01	289.87	381.27	8.05	869.65	869.58	5.69	381.27	204.93	868.35	868.3
MAIN C1-05 MAIN C1-06	36 36		WYE C1-3 WYE C1-4	MH C1-1 WYE C1-3	864.70 865.13	864.61 864.70	0.01	55.03 38.78	56.28 59.07	7.79 5.49	870.78 871.91	870.69 871.73	5.64 4.08	56.28 59.07	39.9 28.83	868.9 869.49	868.8 869.3
MAIN C1-00 MAIN C1-07	36		MH C1-2	WYE C1-4		865.13	0.01	29.08	58.41	4.11	872.63	872.37	4.08	59.07	20.05	870.03	869.6
MAIN C1-08	30		WYE C-06	MH C1-2		866.69	0.01	19.39	35.93	3.95	873.08	872.87	2.98	35.93	14.65	870.51	870.3
MAIN C1-09	24	127.1	B C1-7	WYE C-06	868.91	867.93	0.01	9.69	19.86	3.09	873.56	873.33	2.45	19.86	7.7	870.79	870.6
LAT C-02	18		IC-2	WYE C1-2	863.85		0.05	4.14	23.65	2.34	870.14	870.13	1.6	23.65	2.82	868.6	868.5
LAT C-03	48		IC-03	WYE C1-3	867.44	866.82	0.05	16.25	311.59	1.29	871.99	871.99	6.26	311.59	11.07	869.32	869.1
LAT-C-04 LAT C-05	18		IC-04 IC-05	WYE C1-4	867.58	867.04 867.61	0.04	9.69 9.69	20.94 26.43	5.49 5.49	872.36 872.81	872.24 872.73	4.1	20.94 26.43	7.24 6.95	869.73 870.37	869.6 870.3
LAT C-05	18 18		IC-06	MH C1-2 WYE C-06	868.77	868.02	0.06	9.69	19.08	5.49	873.33	872.73	3.93	19.08	6.95	870.57	870.5
LAT C-07	24		IC-07	B C1-7	869.01	868.91	0.01	9.69	19.00	3.09		873.56	2.45	19.00	7.7	870.8	870.7
MAIN C2-01	48		J B C2-1	MH C1-1	864.05		0.02	135.20	173.04	10.76	1	870.18	7.94	173.04	99.74	868.71	868.5
MAIN C2-01 MAIN C2-02	48		JUNCTION C2-01		866.22			135.20	175.04			870.18	15.05	175.04	99.74	869.94	869.3
MAIN C2-03	48		JUNCTION C2-02			866.22	0.02		185.26			871.96	15.02	185.26	99.74	871.36	869.9
MAIN C2-04	48	38	JUNCTION C2-04	JUNCTION C2-02	869.09	868.33	0.02	129.23	203.61	10.28	875.07	874.77	7.61	203.61	95.67	873.74	873.5
MAIN C2-05	36		JUNCTION C2-05		870.31	870.09	0.01	39.88	46.70	5.64	877.48	877.32	3.84	46.7	27.15	875.07	87
MAIN C2-06	36		JUNCTION C2-06			870.31	0.01	34.62	52.80	4.90		877.60	3.33	52.8	23.57	875.32	875.1
MAIN C2-07	36 24		UNCTION C2-07 WYE C2-16	JUNCTION C2-06		871.26 872.95	0.01	34.62 25.70	47.90	4.90 8.18	878.41 878.71	878.05 878.41	3.33 5.57	47.9 35.67	23.57 17.5	875.49 875.63	875.3 875.4
MAIN C2-08 MAIN C2-09	24		WYE C2-18	JUNCTION C2-07 WYE C2-16		873.54	0.03	17.62	35.67	5.61	879.85	879.78	3.82	35.67	11.99	876.16	875.4
MAIN C2-10	18		B C2-17	WYE C2-15	878.90		0.03	8.14	16.56	4.61	881.43	880.32	8.44	16.56	5.54	879.81	876.3
LAT C-08	18	17.9	IC-08	JUNCTION C2-02	871.32	870.83	0.03	5.97	17.34	3.38	875.70	875.64	2.3	17.34	4.06	874.09	874.0
LAT C-09.1	18	34.5	JUNCTION C2-04	B LAT C9	871.59	872.58	-0.03	6.45	17.72	3.65	877.62	877.49	3.36	17.72	5.94	875.14	875.0
LAT C-09.2	18		IC-09	B LAT C9		872.58	0.03	6.45	18.60	3.65	877.72	877.67	3.36	18.6	5.94	875.19	875.1
LAT C-10	18		IC-10 IC-15	JUNCTION C2-05	872.65		0.06	5.25	25.99	2.97	877.87	877.84	2.02	25.99	3.58	875.26	875.2
LAT C-15 LAT C-16	18 18		IC-15	WYE C2-15 WYE C2-16		874.32 874.04	0.09 0.05		30.86 22.83	5.36 4.58		880.25 879.88	13.81 10.63	30.86 22.83	6.45 5.51	876.36 876.29	876.3 876.1
LAT C-10	18		IC-17	B C2-17		878.90				4.61			8.44				
			WYE C2-12					· · ·		1							
MAIN C3-1 MAIN C3-2	36 36		WYE C2-12 WYE C2-11	JUNCTION C2-04 WYE C2-12		870.09 870.34	0.01	82.91 73.21		11.73 10.36		876.33 878.34	8.85 7.57		62.58 53.49	874.62 875.67	874.4 875.
MAIN C3-2 MAIN C3-3	30		WYE C2-11	WYE C2-12 WYE C2-11		871.44	0.01			13.93		878.68	18.27	87.49	48.37	873.07	
MAIN C3-4	30		MH C3-1	WYE C2-13		878.60	0.06		103.04		892.95	885.48	19.66		39.94	892.7	882.3
MAIN C3-5	30	192.2	MH C3-2	MH C3-1	897.98	890.57	0.04	42.65	80.54	16.64	900.16	895.41	15.07	80.54	29.03	899.82	894.3
MAIN C3-6	24		WYE C3-20	MH C3-2		897.98	0.01	26.67	17.30			902.02	5.78		18.16	902.2	901.3
MAIN C3-7	24		WYE C3-21	WYE C3-20		898.72	0.01	17.81	17.34			905.00	3.86				902.7
MAIN C3-8	18		B C3-17	WYE C3-21		900.43	0.01	9.02	8.05		908.19 880.45	906.71 880.42	3.48			904.23	903.9 876.0
_AT C-11 _AT C-12	18 18		IC-11 IC-12	WYE C2-11 WYE C2-12		871.94 871.84	0.14		39.00 28.02			880.42	2.89 5.15		5.11 9.09	876.71 876.1	876.0
LAT C-12 LAT C-13	18		IC-12	WYE C2-12 WYE C2-13		879.10	0.07		25.19			886.53	4.77	28.02		882.83	882.7
LAT C-14.1	18		WYE C2-14	JUNCTION C2-07		873.45	0.04		20.66			878.80	11.1	20.66		876.59	
LAT C-14.2	18		IC-14	WYE C2-14		875.16			20.10			879.22	3.44	20.1	6.07	877.28	
LAT C-18	24		IC-18	MH C3-1	890.95	890.57	0.01	16.02	18.51	5.10		895.87	3.47		10.9	894.66	
LAT C-19	18	117	IC-19	MH C3-2	800 61	898.48	0.10	15.98	33.10	9.04	902.20	901.93	6.15	33.1	10.88	901.46	901.3



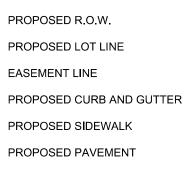





and_dev\02_projects\toll brothers\cr 175\05_cadd\plan set ph1\water sheet












#### LEGEND

 		_
	t de ta san er an	<u>, , , , , , , , , , , , , , , , , , , </u>



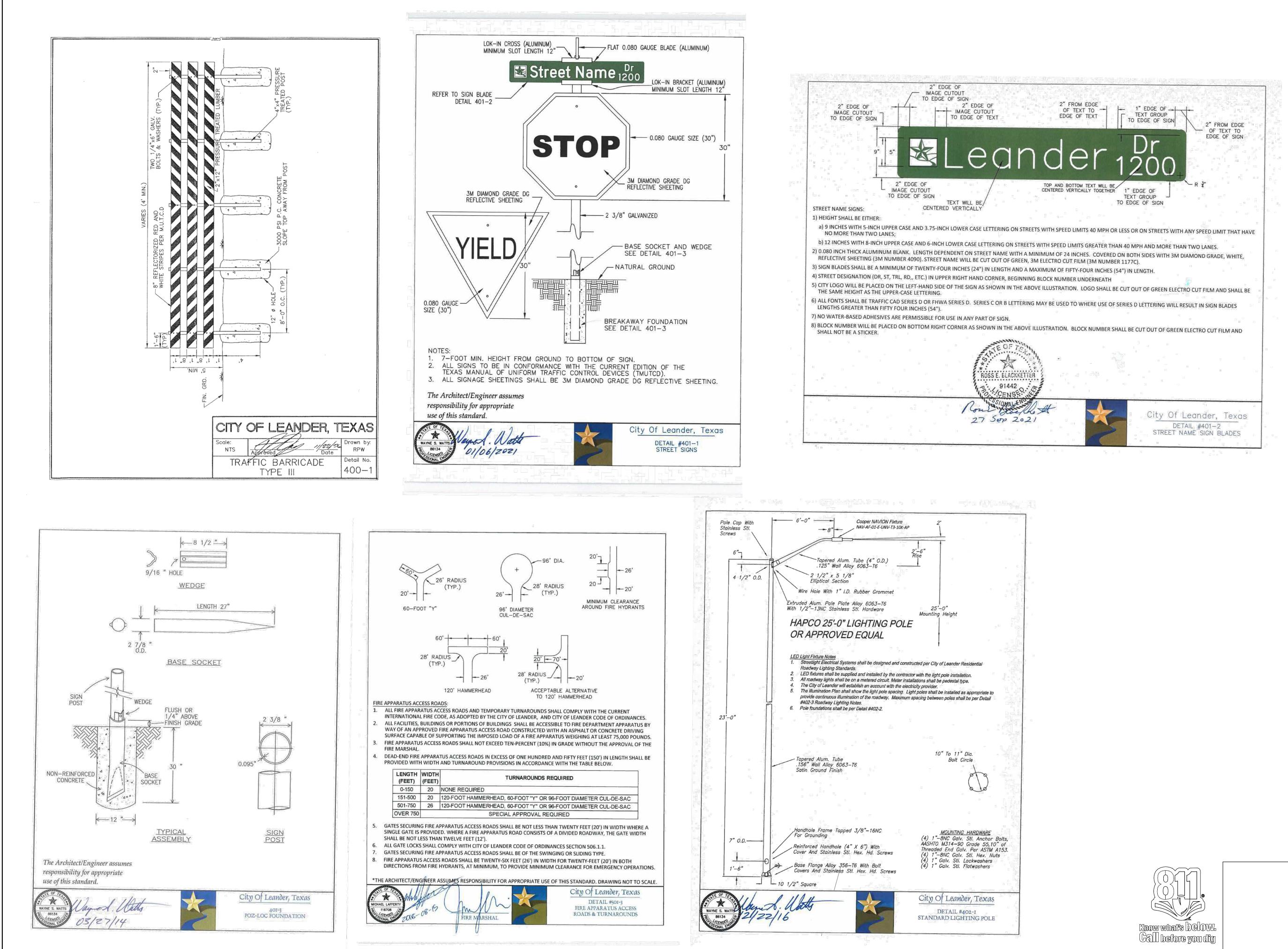
	TRAF	FIC CONTROL	SIGNAGE	
	SYMBOL	TYPE	SIZE	<u>TOTAL</u>
1		STOP	24" x 24"	15
4	-	REFLECTIVE STO REF STANDARD DETAIL 871S-1-SI		15
5	• 	STREET SIGN, RI STANDARD DET# 824S-2-SM		13
6	SPEED LIMIT	SPEED LIMIT	24" x 30"	2
7		STRIPED CROSS REF STANDARD DETAIL 871S-1-SI	,	19
8	0000	BARRICADE, REF DETAIL 803S-1-SI		4
12		YIELD HERE TO PEDESTRIAN	36" x 36"	2
13	NO CUTLET <=	NO OUTLET	36" x 8"	1



OF 110 SHEETS

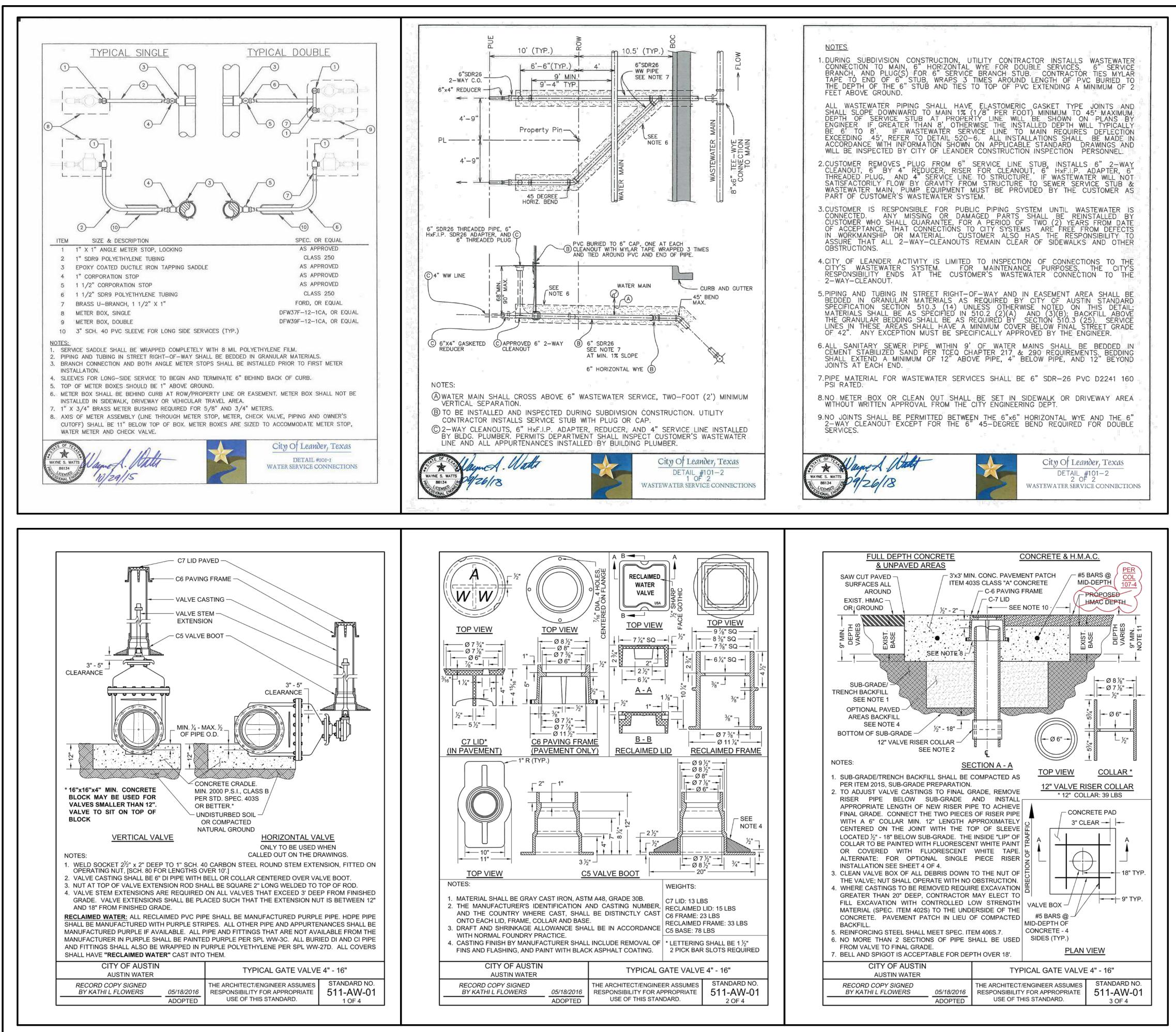


FOR REGULATORY REVIEW ONLY - NOT FOR CONSTRUCTION

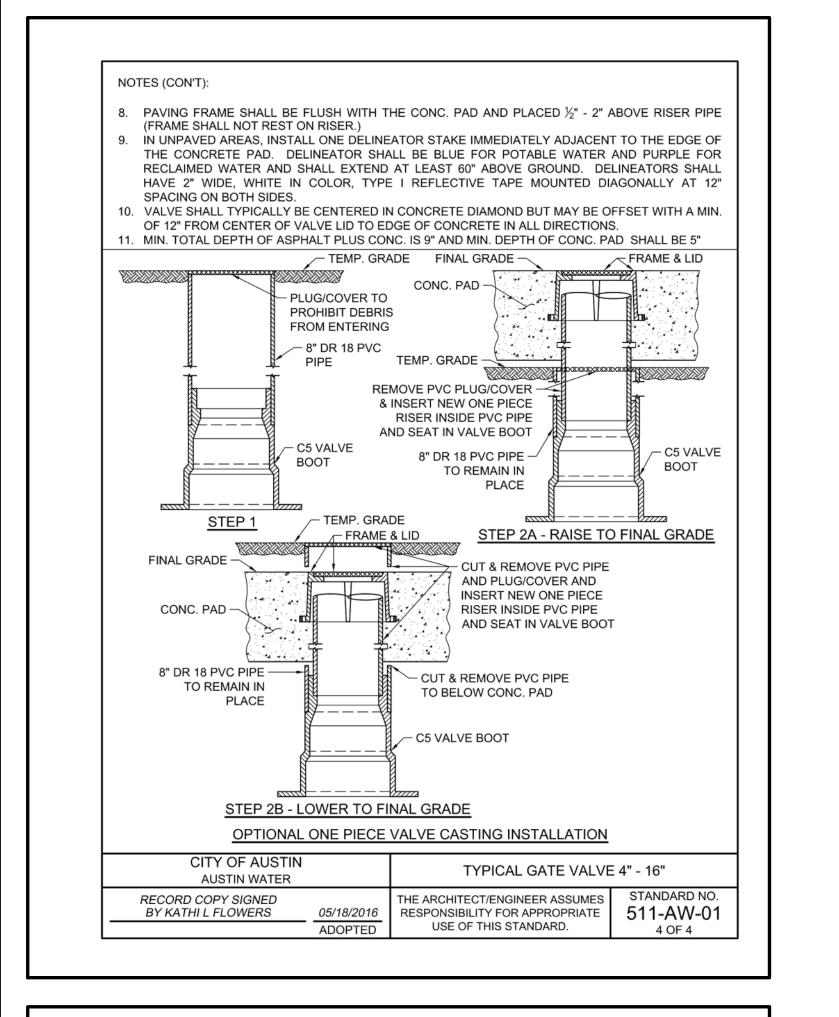

NOTES: 1. CONTRACTOR SHALL COMPLY WITH GEOTECHNICAL REPORT PREPARED BY MLA LABS, INC. DATED

CONTRACTOR SHALL VERIFY EXISTING STREETLIGHTS, SIGNS AND STRIPING.
 ALL SIDEWALKS FRONTING SINGLE FAMILY LOTS

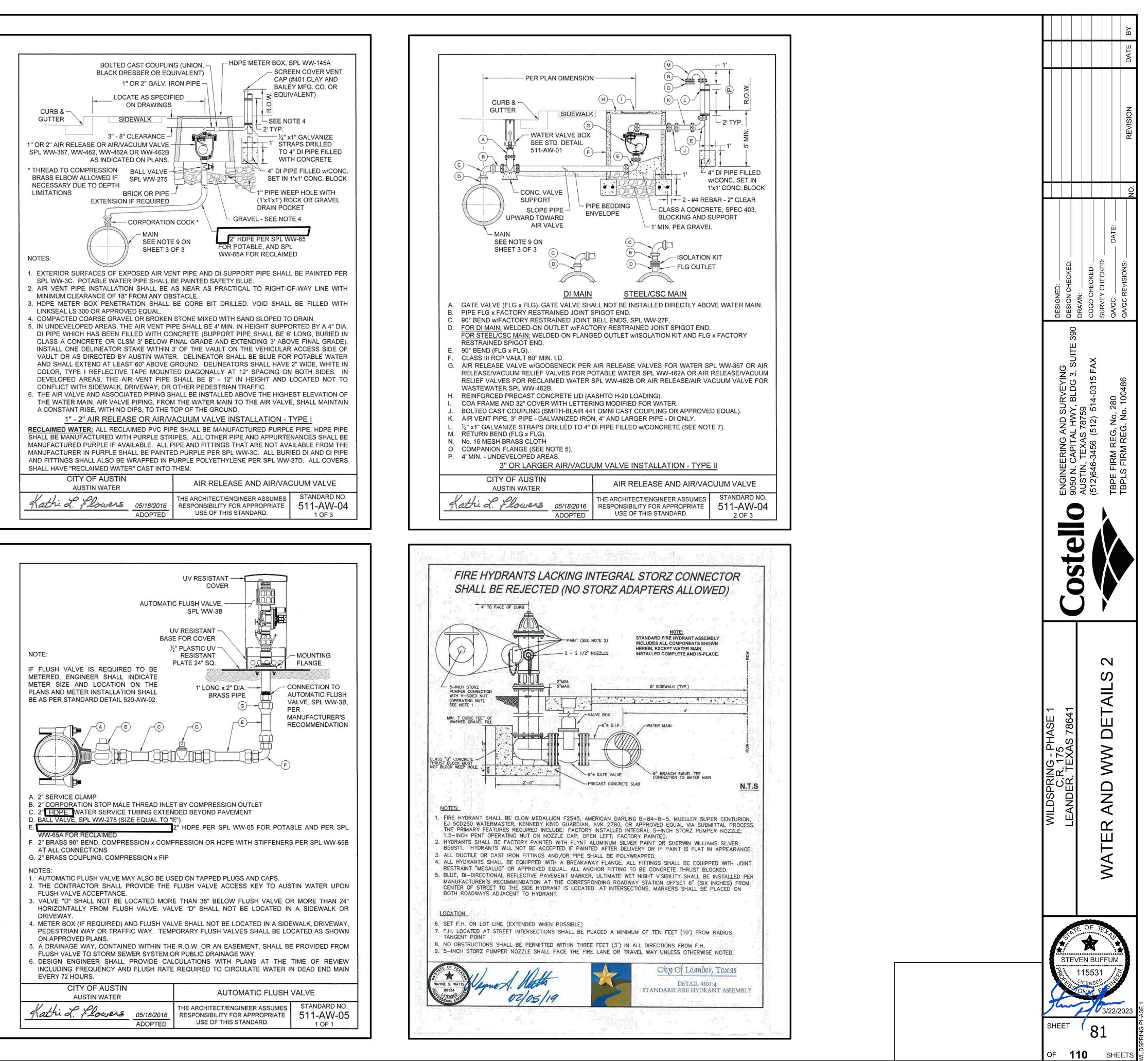
OTHER SIDEWALKS WILL BE CONSTRUCTED BY DEVELOPER REFERENCE PLANS AND LEGEND.


WILL BE CONSTRUCTED BY HOMEBUILDERS, AND ALL

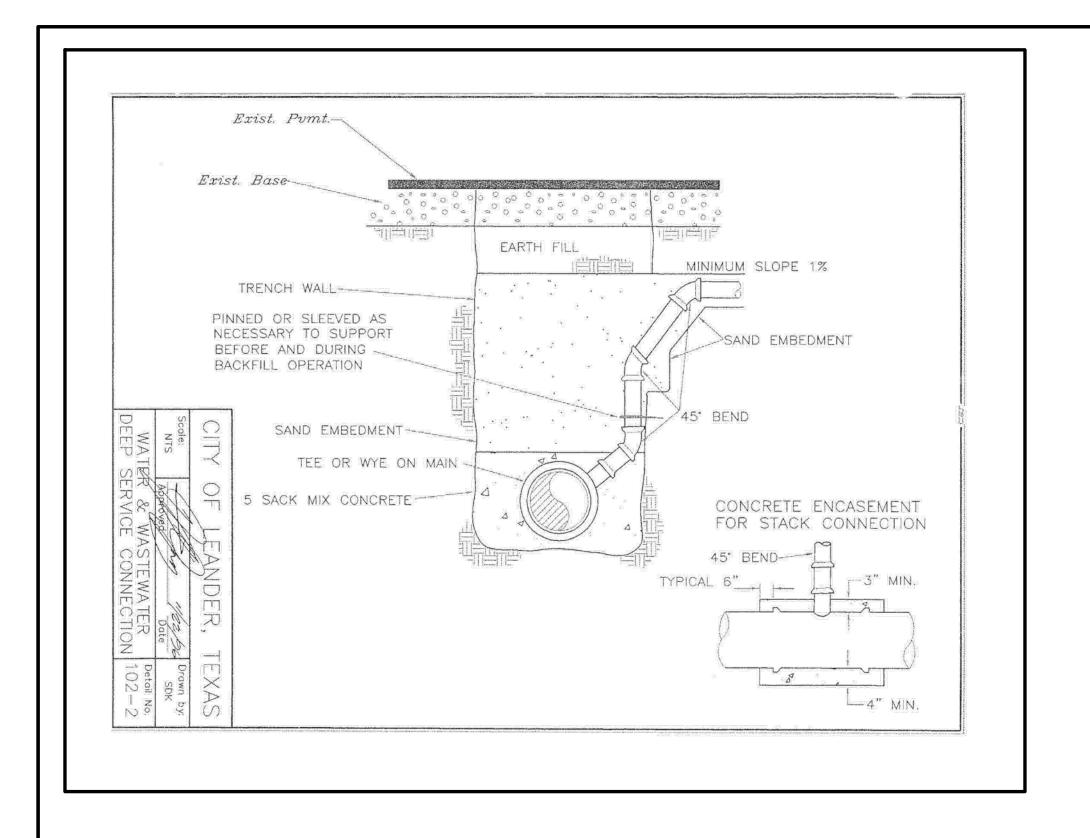
HOA LANDSCAPE BLOCK S LOT 18 16,407 SF

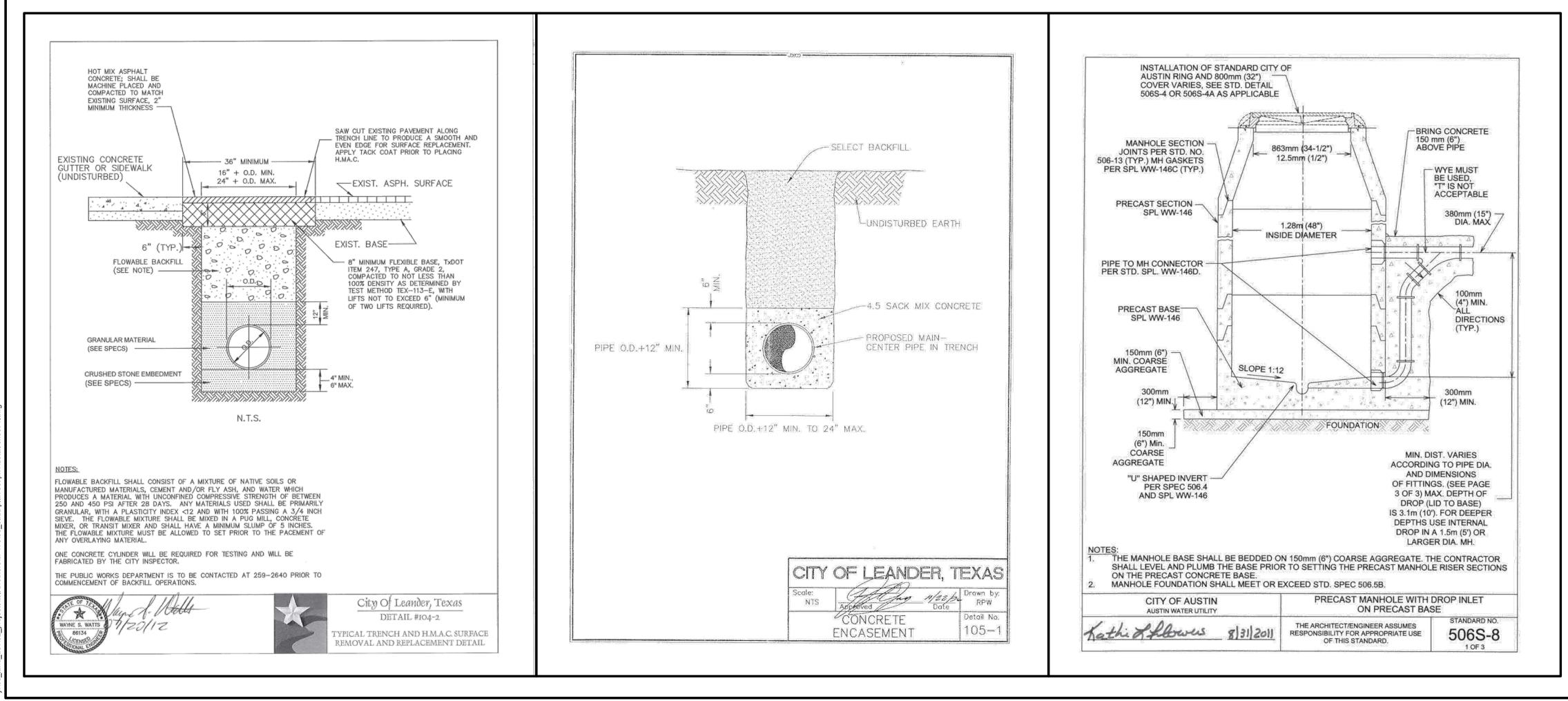



land_dev\02_projects\toll brothers\cr 175\05_cadd\plan set ph1\s&s details.dwg

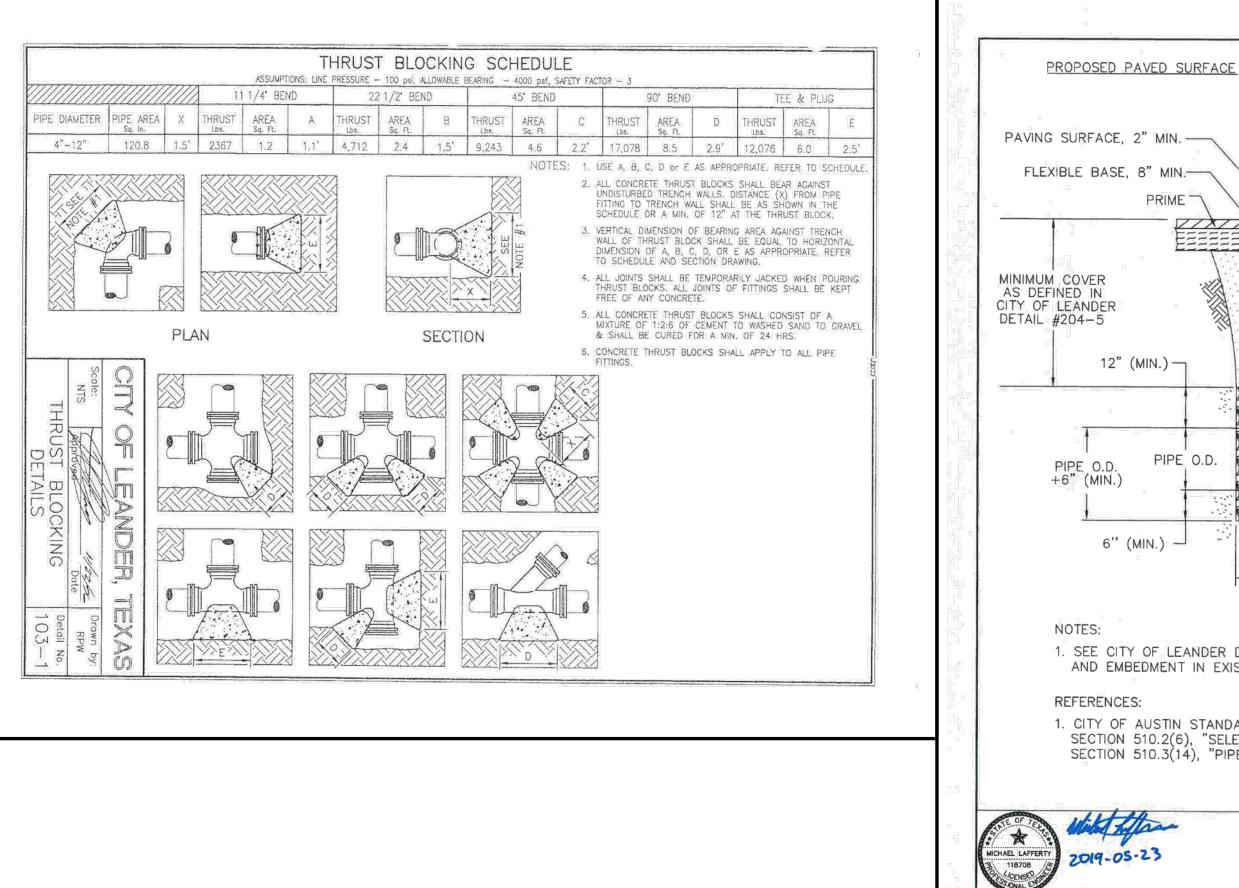


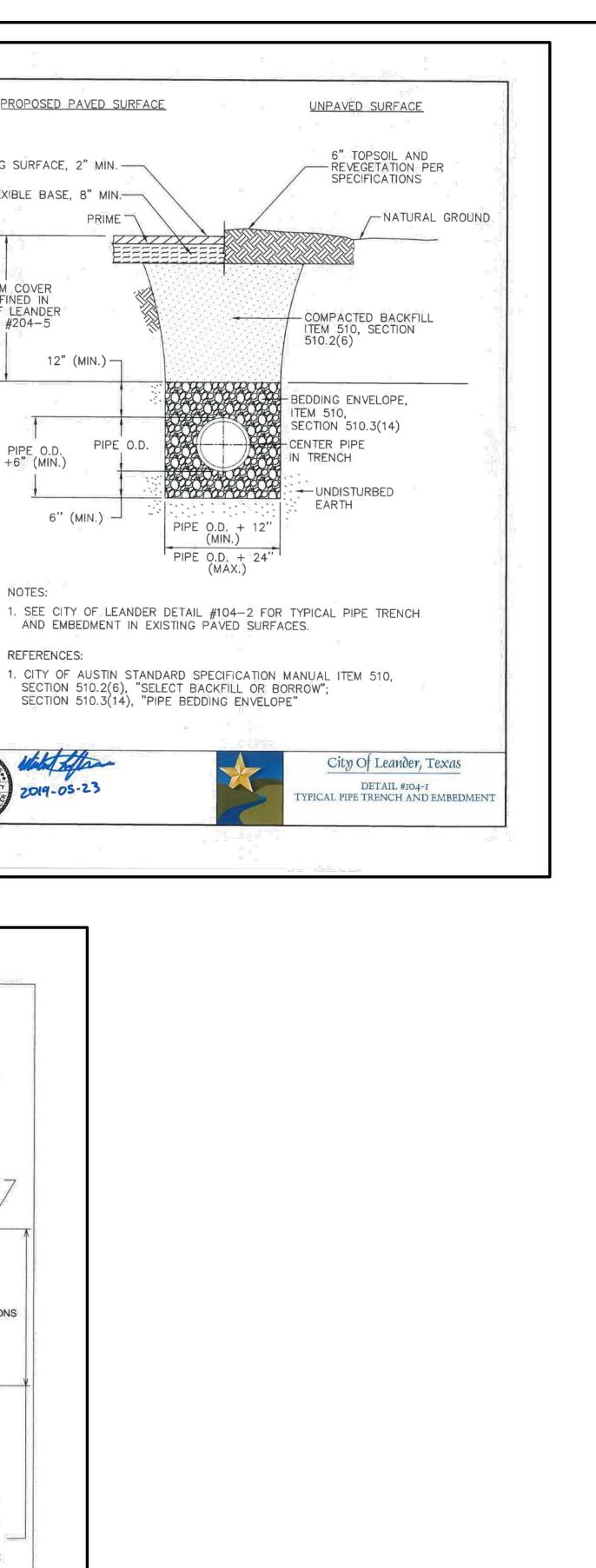



10	TES:		
۱.	ON 10" AND LARGER TWO PIECE COMBINA VALVE SHALL BE VENTED WITHIN THE VAU		NG OF THE SMALL
2.	AIR VENT PIPE 6" AND LARGER SHALL E EXTERIOR SURFACES OF ALL EXPOSED WATER PIPE SHALL BE PAINTED SAFETY MANUFACTURER'S REQUIREMENTS.	PIPE SHALL BE PAINTED PER SPL \	NW-3C. POTABLE
3.	ENTIRE AIR VENT ASSEMBLY SHALL BE LOO	CATED WITHIN EASEMENT OR R.O.W.	
4.	CONCRETE PIPE PENETRATIONS SHALL w/LINKSEAL LS 300 OR APPROVED EQUAL.	BE CORE BIT DRILLED. VOID S	HALL BE SEALED
5.	CROSS SECTIONAL AREA OF OPENING TO AREA OF AIR VENT PIPE.	BE EQUAL TO OR GREATER THAN C	ROSS SECTIONAL
3.	AIR/VACUUM VALVE SHALL BE INSTALLE ASSEMBLY WITHOUT REMOVAL OF PRECAS		OW REMOVAL OF
7.	IN UNDEVELOPED AREAS, THE AIR VENT I DIA. DI PIPE WHICH HAS BEEN FILLED WITH IN CLASS A CONCRETE OR CLSM 3' BEI GRADE). INSTALL ONE DELINEATOR STAKI SIDE OF VAULT OR AS DIRECTED BY AUST WATER AND SHALL EXTEND AT LEAST 60" WHITE IN COLOR, TYPE I REFLECTIVE TA SIDES. IN DEVELOPED AREAS, THE AIR V SIDEWALK, DRIVEWAY, OR OTHER PEDEST	I CONCRETE (SUPPORT PIPE SHALL B LOW FINAL GRADE AND EXTENDING E WITHIN 3' OF THE VAULT ON THE VE IN WATER. DELINEATOR SHALL BE BI ABOVE GROUND. DELINEATORS SH PE MOUNTED DIAGONALLY AT 12" S ENT PIPE SHALL BE LOCATED NOT T	E 6' LONG, BURIED 3' ABOVE FINAL EHICULAR ACCESS LUE FOR POTABLE ALL HAVE 2" WIDE, PACING ON BOTH
Β.	GATE VALVE, PIPE, AND FITTINGS FROM M. VALVE EXCEPT 3" ARV SHALL HAVE 4" FITT AND FITTINGS ON THE OUTLET SIDE OF TH OF THE ARV. VAULTS SHALL BE 5' DIAM VALVES; AND 7' DIAMETER FOR 10" AND 12'	TINGS AND A 4"x3" REDUCER AT THE A HE ARV SHALL BE EQUAL TO THE SIZ IETER FOR 3" VALVE; 6' DIAMETER A	ARV, AND ALL PIPE
9.	FOR 24" AND LARGER MAINS, AN 18" OU CONNECTION OF ARV.	UTLET WITH BLIND FLANGE SHALL	BE INSTALLED AT
	3" OR LARGER AIR/VACUL	JM VALVE INSTALLATION - TYPE	<u>= 11</u>
SH MA MA	<b>CLAIMED WATER:</b> ALL RECLAIMED PVC PIP ALL BE MANUFACTURED WITH PURPLE STRI NUFACTURED PURPLE IF AVAILABLE. ALL P NUFACTURER IN PURPLE SHALL BE PAINTEI D FITTINGS SHALL ALSO BE WRAPPED IN PU ALL HAVE "RECLAIMED WATER" CAST INTO T	PES. ALL OTHER PIPE AND APPURTE IPE AND FITTINGS THAT ARE NOT AV/ D PURPLE PER SPL WW-3C. ALL BUR URPLE POLYETHYLENE PER SPL WW-	NANCES SHALL BE AILABLE FROM THE IED DI AND CI PIPE
	CITY OF AUSTIN AUSTIN WATER	AIR RELEASE AND AIR/VAC	CUUM VALVE
1	athid. flowers 05/18/2016	THE ARCHITECT/ENGINEER ASSUMES RESPONSIBILITY FOR APPROPRIATE	STANDARD NO. 511-AW-04

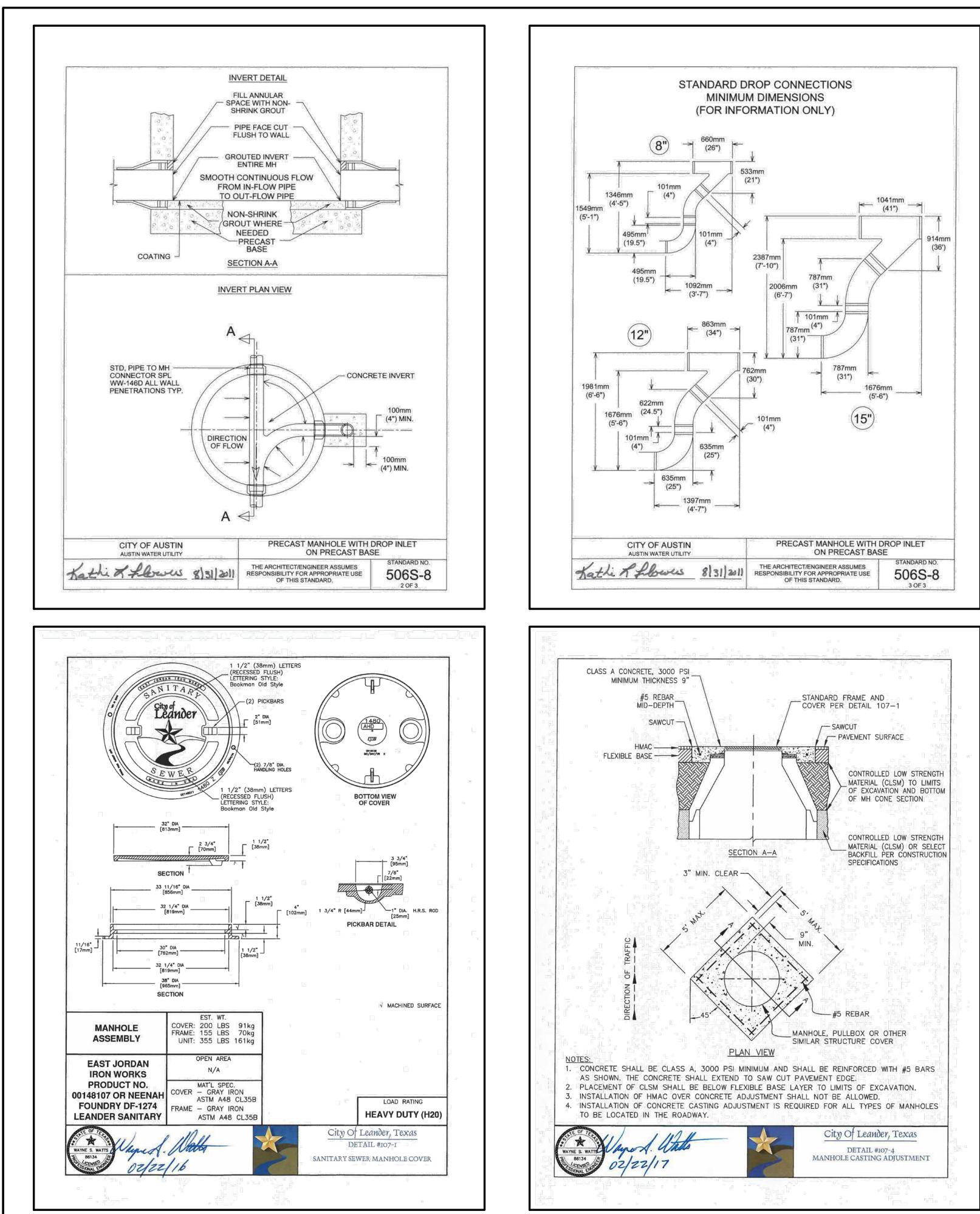




FOR REGULATORY REVIEW ONLY - NOT FOR CONSTRUCTION

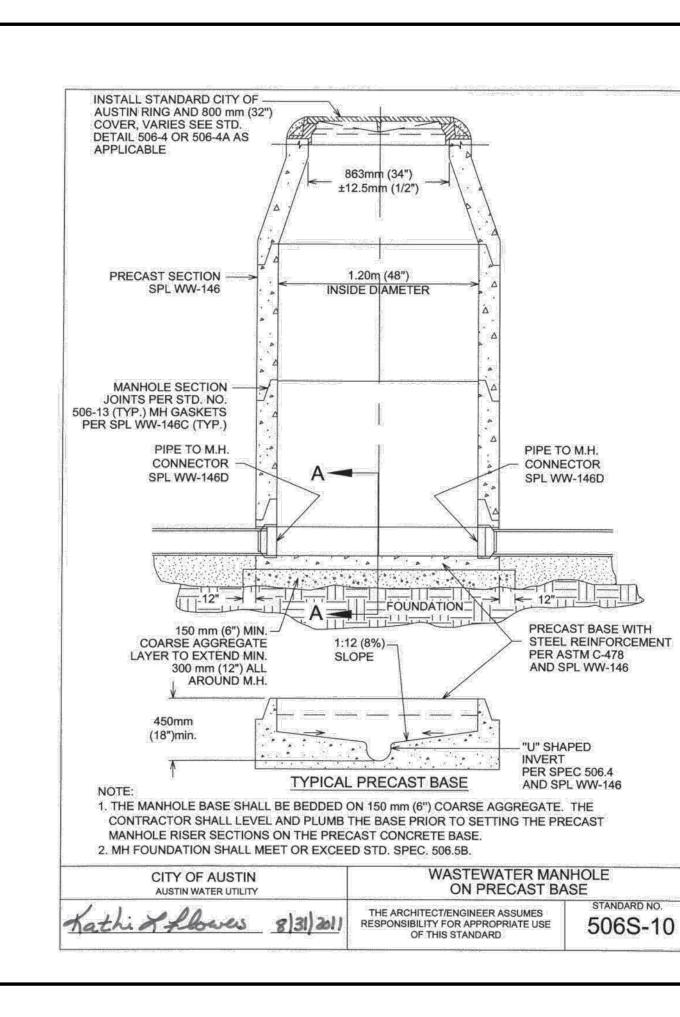


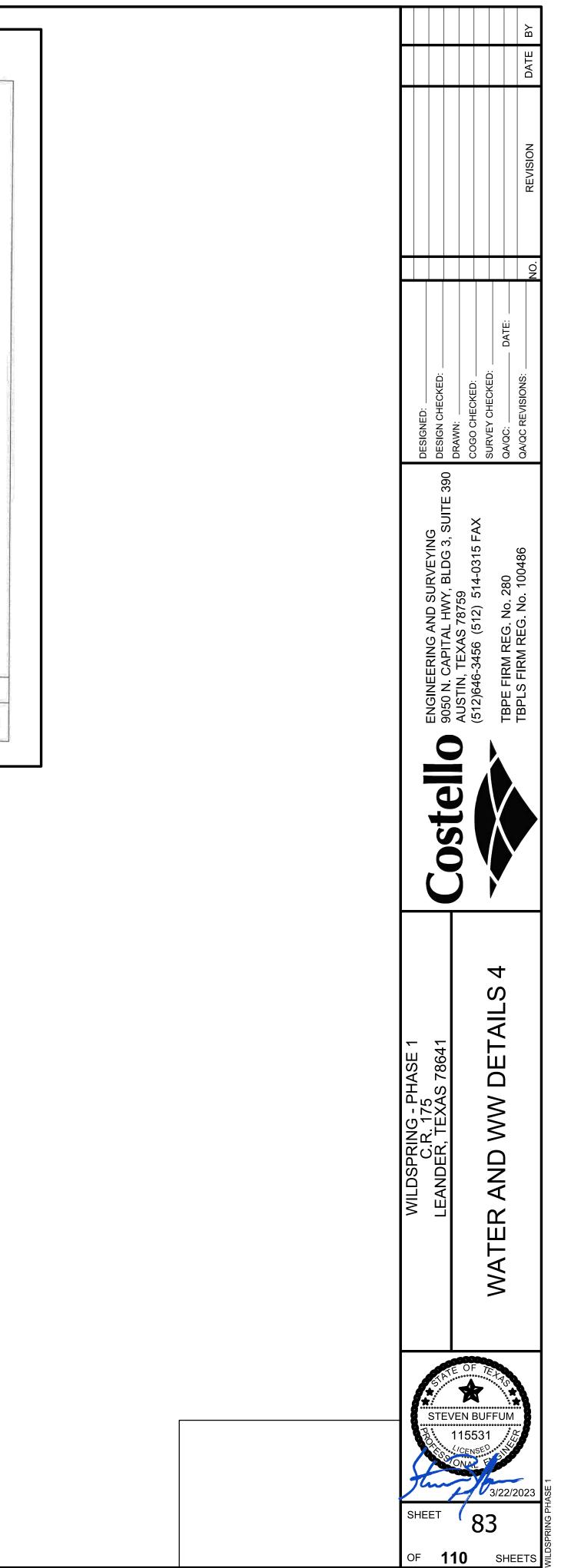


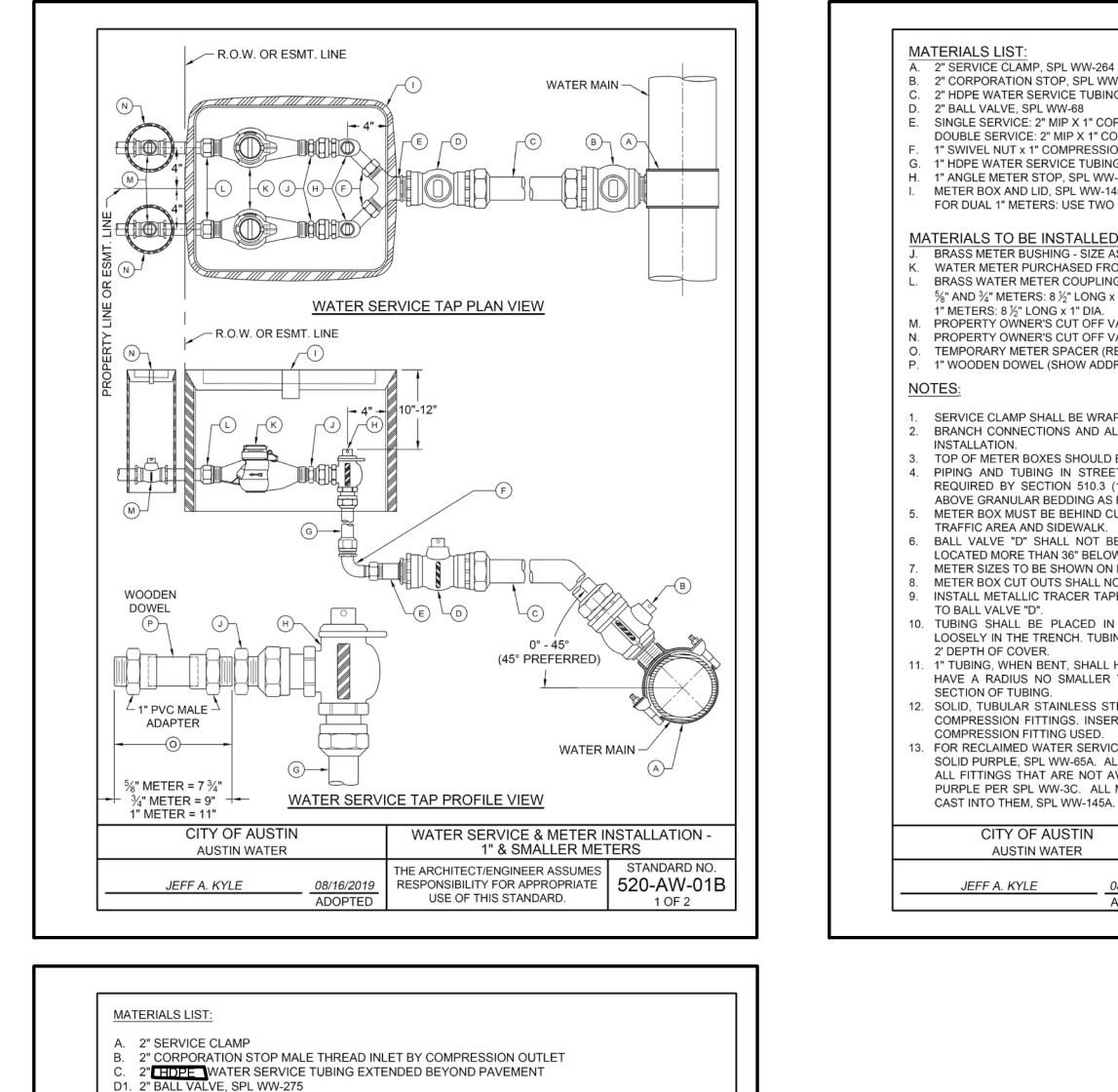
5 land dev/02 projects/toll brothers/cr 175/05 cadd/plan set ph1/detail sheet 1.d







110


SHEETS



5_land_dev\02_projects\toll brothers\cr 175\05_cadd\plan set ph1\detail sheet 1.dwg

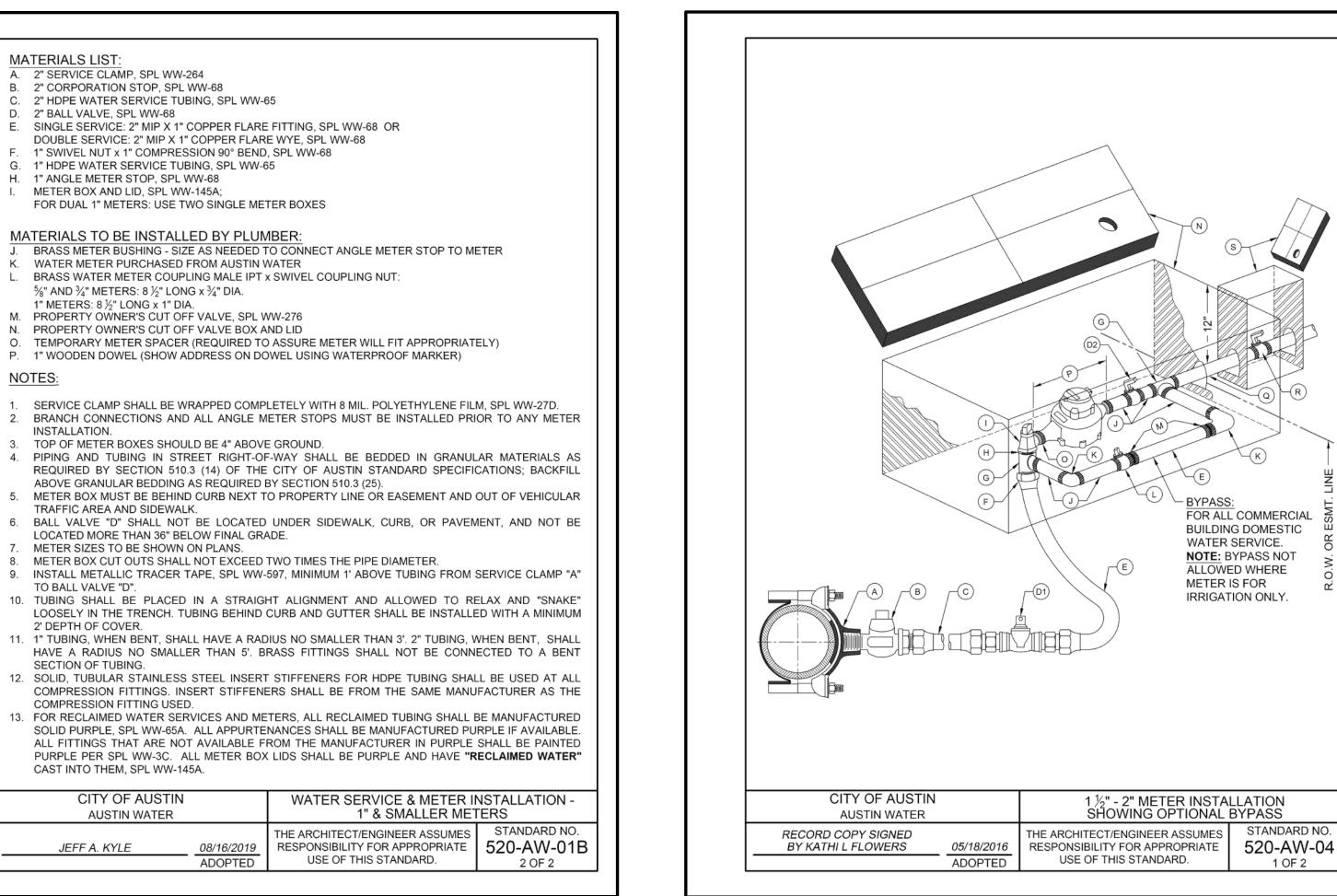


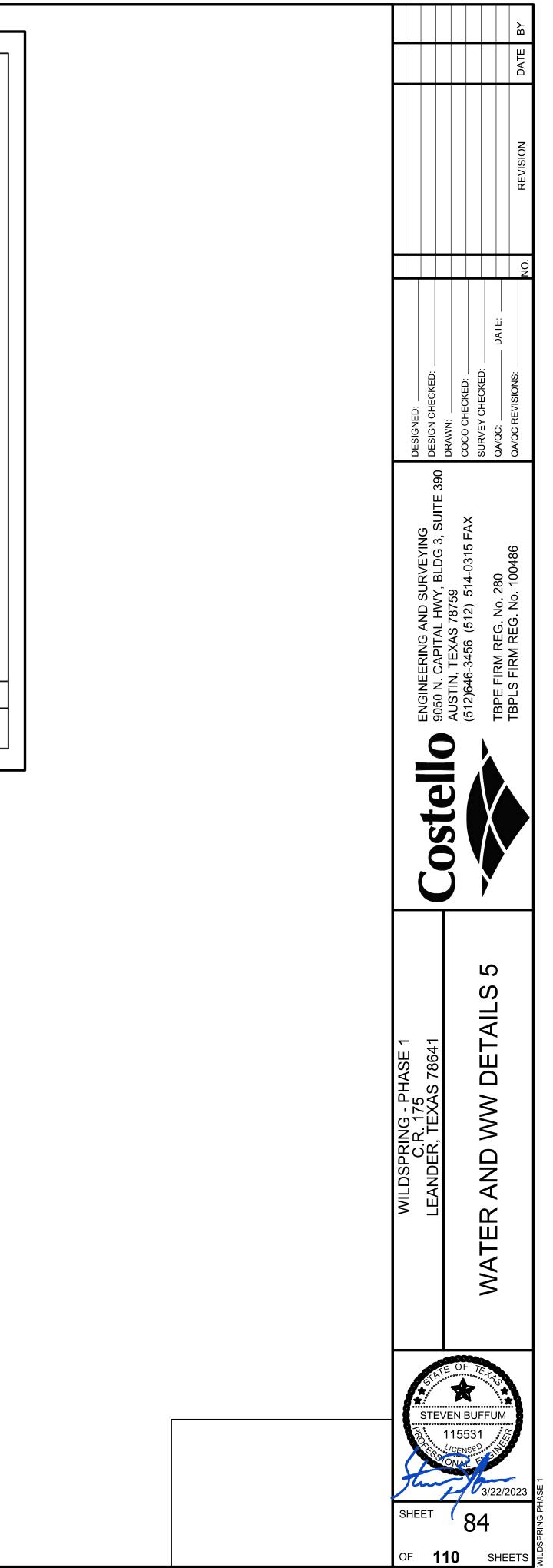


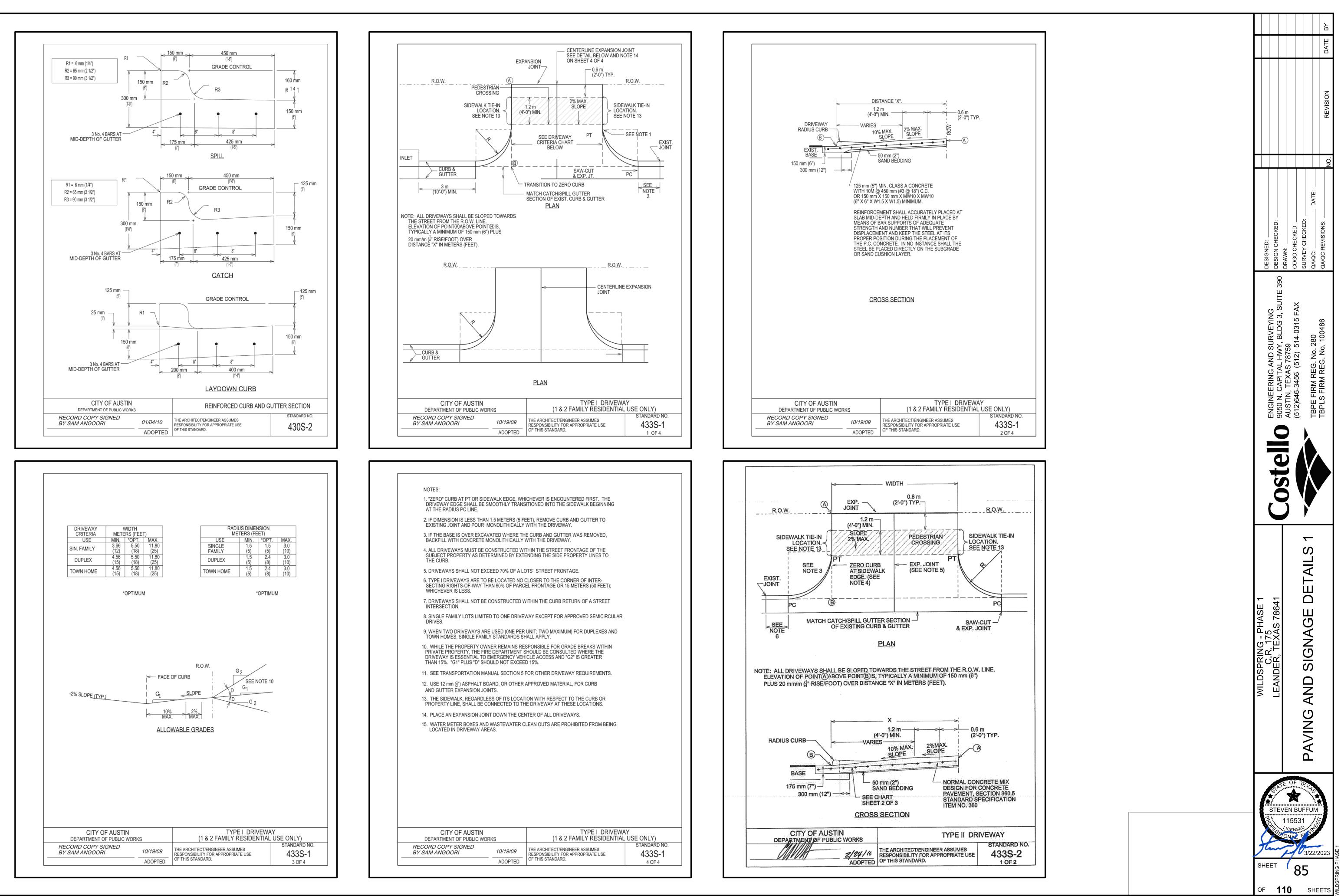


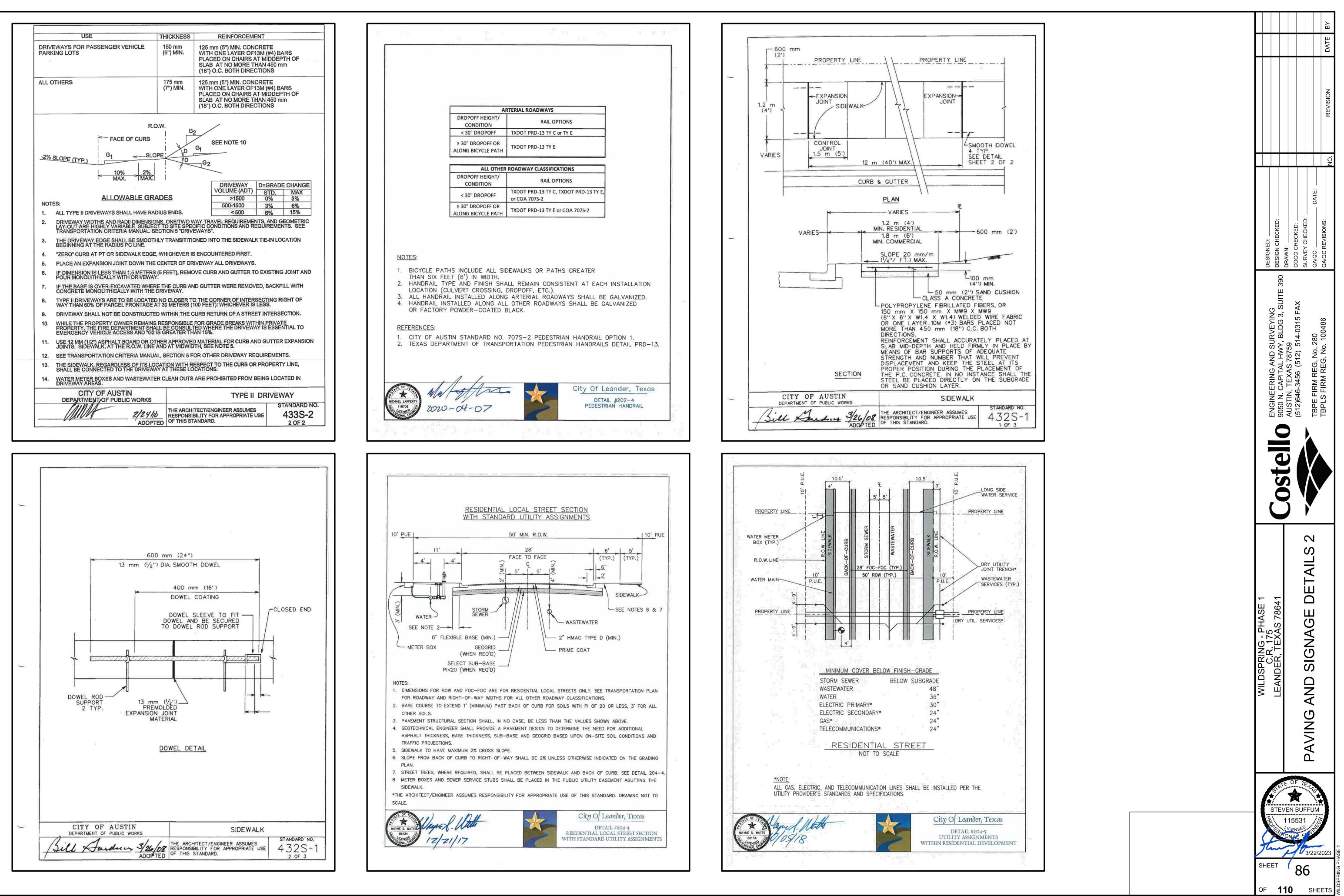
- D2. 2" BALL VALVE, SPL WW-275
- Z. Z. BRACK HIGH SERVICE TUBING
   F. 2" BRASS COUPLING COMPRESSION TO MALE IPT
- G. 2" BRASS TEE
- H. 2" BRASS CLOSE-NIPPLE
- I. 2" ANGLE METER STOP; SERVICE TUBING INLET x FLANGED OUTLET J. 2" BRASS NIPPLE
- K. 2" BRASS ELBOW
- L. 2" LOCKABLE CURB STOP FEMALE IPT INLET BY COMPRESSION OUTLET
- M. 2" BRASS COUPLING SERVICE TUBING TO MALE IPT
- N. RECTANGULAR METER BOX AND COVER, SPL WW-145A
- O. BRASS ADAPTER (2" x 1  $\frac{1}{2}$ ") FOR 1  $\frac{1}{2}$ " METER ONLY
- P. WATER METER. LENGTH 13", (PURCHASED FROM AUSTIN WATER)
- Q. 2" HDPE SERVICE TUBING (PRIVATE PLUMBING PER CODE) R. CUSTOMER CUT-OFF VALVE
- S. CUSTOMER VALVE BOX AND LID

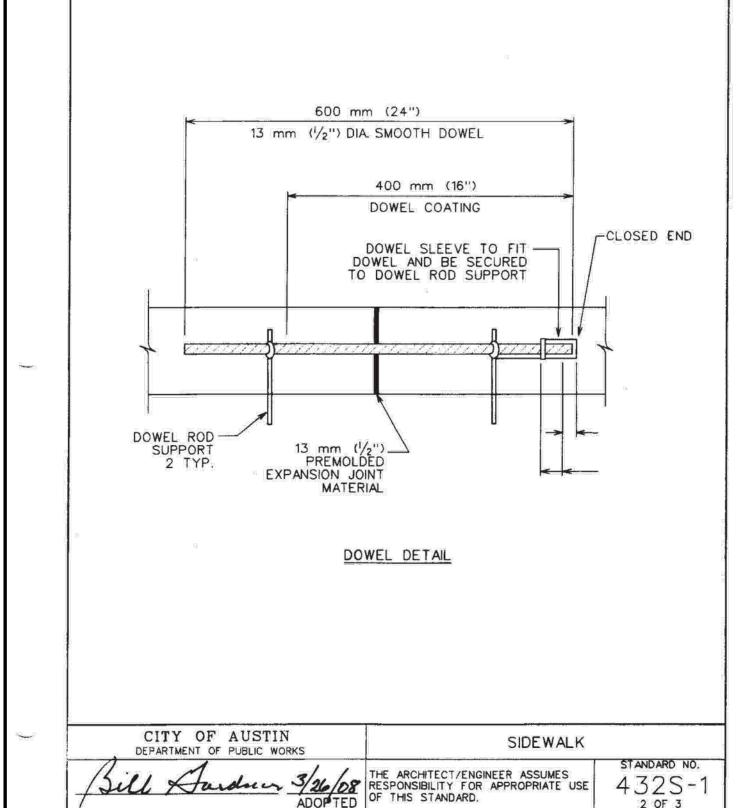
#### NOTES:

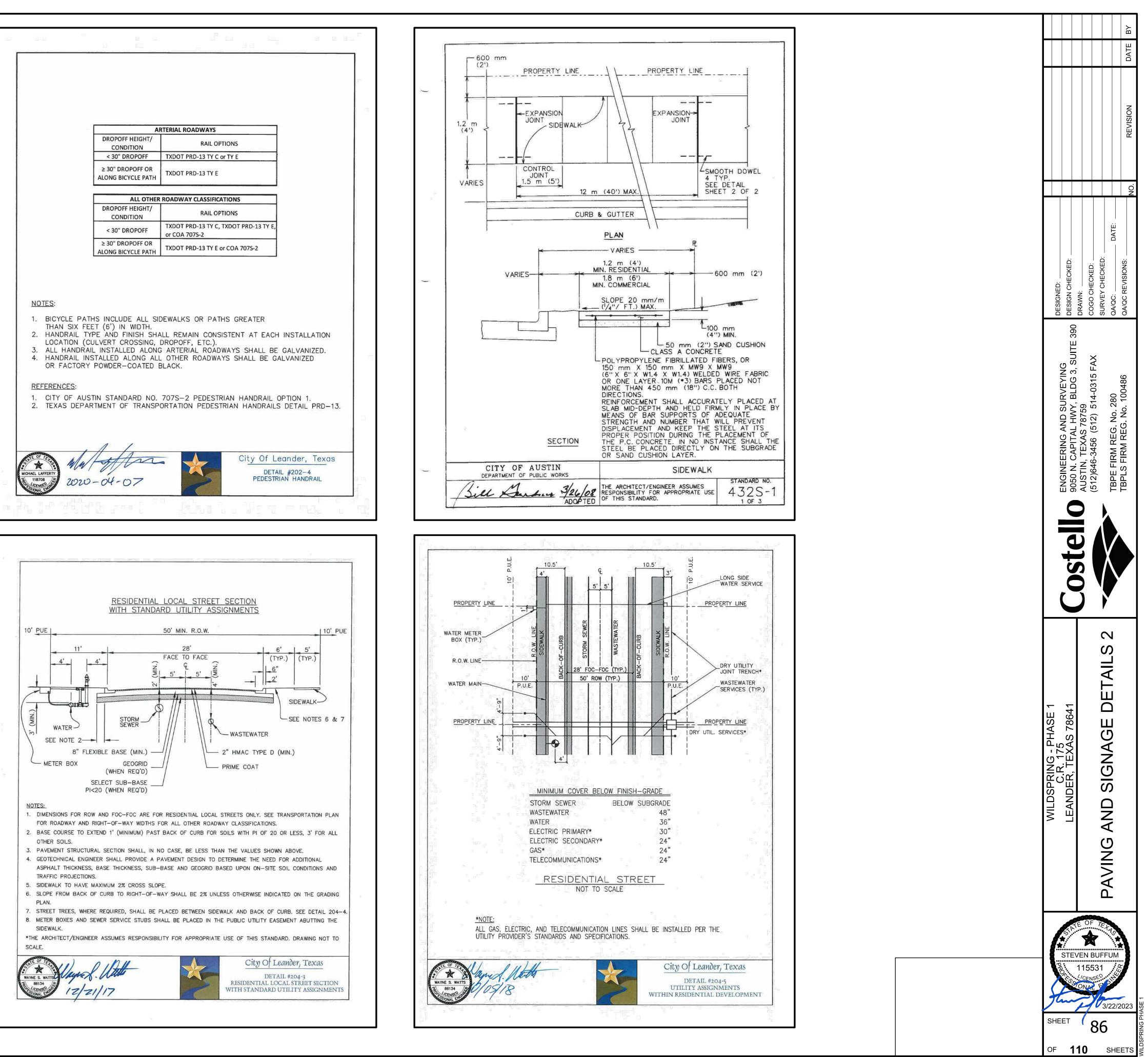

- 1. SERVICE CLAMP SHALL BE WRAPPED COMPLETELY WITH 8 MIL. POLYETHYLENE FILM. 2. BRANCH CONNECTIONS AND ALL ANGLE METER STOPS MUST BE INSTALLED PRIOR TO ANY METER INSTALLATION.
- 3. TOP OF BOXES SHOULD BE 1" ABOVE GROUND.
- 4. PIPING AND TUBING IN STREET RIGHT-OF-WAY SHALL BE BEDDED IN GRANULAR MATERIALS AS REQUIRED BY SECTION 510.3 (14) OF THE CITY OF AUSTIN STANDARD SPECIFICATIONS; BACKFILL ABOVE GRANULAR BEDDING AS REQUIRED BY SECTION 510.3 (25). 5. BOX MUST BE BEHIND CURB NEXT TO PROPERTY LINE OR EASEMENT AND OUT OF VEHICULAR
- TRAFFIC AREA AND SIDEWALK.
- 6. BALL VALVE "D1" SHALL NOT BE LOCATED UNDER SIDEWALK, CURB, OR PAVEMENT, AND NOT BE LOCATED MORE THAN 24" HORIZONTALLY FROM METER BOX OR 36" BELOW FINAL GRADE.
- 7. COPPER SERVICE SHALL BE COPPER TUBING SIZE ANNEALED SEAMLESS TYPE "K" MEETING ASTM B88 WITH NO SWEAT OR SOLDERED JOINTS.


RECLAIMED WATER:			
PURPLE TUBING. ALL OTHER T AVAILABLE. ALL TUBING AND PURPLE SHALL BE PAINTED PU	UBING AND A FITTINGS THA JRPLE PER SF URPLE POLYE	ERS, ALL RECLAIMED TUBING SHALL B PPURTENANCES SHALL BE MANUFAC AT ARE NOT AVAILABLE FROM THE M PL WW-3C. ALL BURIED DI AND CI F THYLENE PER SPL WW-27D. ALL CO	TURED PURPLE IF MANUFACTURER IN PIPE AND FITTINGS
CITY OF AUSTIN AUSTIN WATER		1 ½" - 2" METER INSTA SHOWING OPTIONAL	LLATION BYPASS
RECORD COPY SIGNED BY KATHI L FLOWERS	05/18/2016	THE ARCHITECT/ENGINEER ASSUMES RESPONSIBILITY FOR APPROPRIATE	STANDARD NO. 520-AW-04
	ADOPTED	USE OF THIS STANDARD.	2 OF 2


с. D. E. F. G. H. I.	2" BALL VALVE, SPL WW-68 SINGLE SERVICE: 2" MIP X 1" COP DOUBLE SERVICE: 2" MIP X 1" CO 1" SWIVEL NUT x 1" COMPRESSIO 1" HDPE WATER SERVICE TUBING 1" ANGLE METER STOP, SPL WW- METER BOX AND LID, SPL WW-144 FOR DUAL 1" METERS: USE TWO
MA	TERIALS TO BE INSTALLED
J.	BRASS METER BUSHING - SIZE AS
K. L.	WATER METER PURCHASED FRO BRASS WATER METER COUPLING
L.	5/8" AND 3/4" METERS: 8 1/2" LONG x
	1" METERS: 8 ½" LONG x 1" DIA.
Μ.	PROPERTY OWNER'S CUT OFF VA
N.	PROPERTY OWNER'S CUT OFF VA
0. P.	TEMPORARY METER SPACER (RE 1" WOODEN DOWEL (SHOW ADDR
NO	OTES:
1.	SERVICE CLAMP SHALL BE WRAP
2.	BRANCH CONNECTIONS AND AL
	INSTALLATION.
3.	TOP OF METER BOXES SHOULD E
4.	PIPING AND TUBING IN STREET REQUIRED BY SECTION 510.3 (1
	ABOVE GRANULAR BEDDING AS F
5.	METER BOX MUST BE BEHIND CL
	TRAFFIC AREA AND SIDEWALK.
6.	BALL VALVE "D" SHALL NOT BE
_	LOCATED MORE THAN 36" BELOW
7.	METER SIZES TO BE SHOWN ON I
8. 9.	METER BOX CUT OUTS SHALL NO INSTALL METALLIC TRACER TAPE
0.	TO BALL VALVE "D".
10.	TUBING SHALL BE PLACED IN
	LOOSELY IN THE TRENCH. TUBIN
	2' DEPTH OF COVER.
11.	1" TUBING, WHEN BENT, SHALL F
	HAVE A RADIUS NO SMALLER " SECTION OF TUBING.
12.	SOLID, TUBULAR STAINLESS STE
	COMPRESSION FITTINGS. INSER
	COMPRESSION FITTING USED.
13.	FOR RECLAIMED WATER SERVIC
	SOLID PURPLE, SPL WW-65A. AL
	ALL FITTINGS THAT ARE NOT AN PURPLE PER SPL WW-3C. ALL M
	CAST INTO THEM, SPL WW-145A.
	5. 51 HT 6 HTEM, OF E HTT 140A.


CITY OF AUSTIN


JEFF A. KYLE

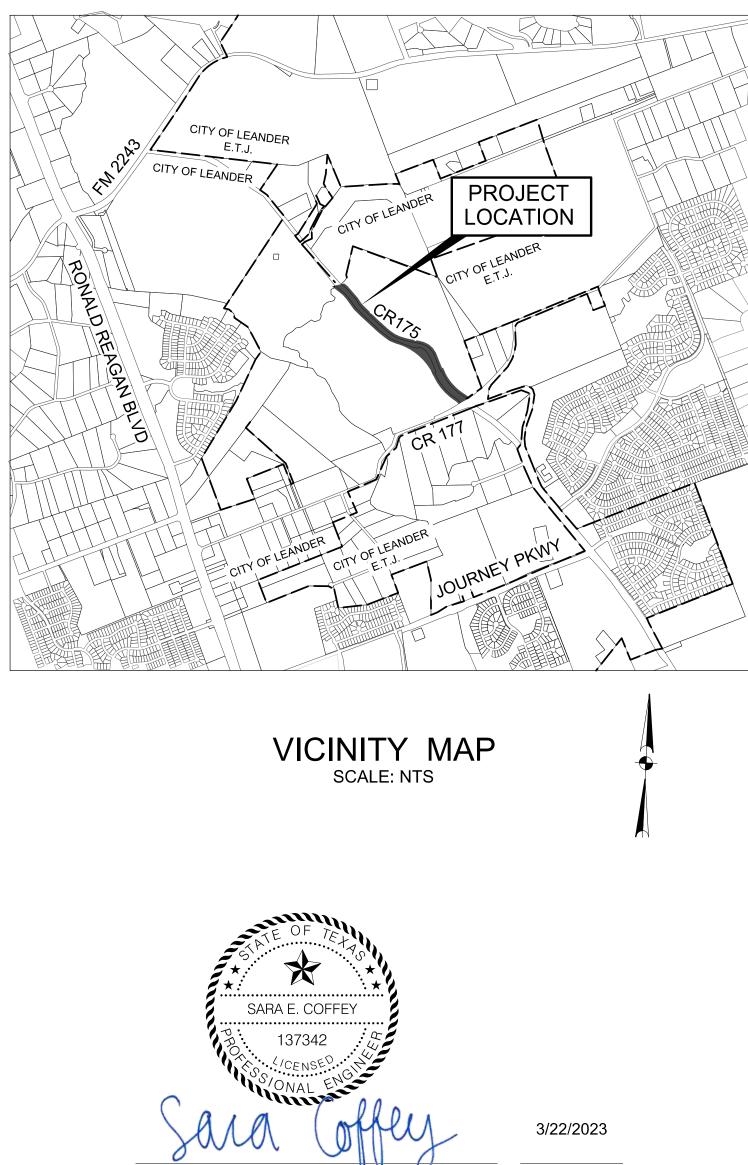











FOR REGULATORY REVIEW ONLY - NOT FOR CONSTRUCTION

	BIN M. GRIFFIN, AICP, E	XECUTIVE DIREC	TOR OF DEVE	ELOPMENT SER	VICES D	ATE	
EMIL	_Y TRUMAN, P.E., CFM	, CITY ENGINEER			D	ATE	
GIN/	A ELLISON, P.E., PUBLI	C WORKS DIRECT	OR		D	ATE	
MAR	RK TUMMONS, CPRP, D	IRECTOR OF PAR	KS AND RECI	REATION	D	ATE	
CHIE	EF JOSHUA DAVIS, FIR	E MARSHAL			D	ATE	
DE\	/ELOPER INFORM	ATION:					
OW	NER / DEVELOPEF		POINT DR	., STE 401, C	EDAR PARK, ⁻	TX 78613	
EN	GINEER:	COSTELLO, I 9050 N CAPI ⁻ AUSTIN, TX 512-646-3456	INC. TBPE TAL OF TX   78759		3, SUITE 390		
SUF	RVEYOR:	LANDESIGN 10090 W HIG LIBERTY HIL 512-238-7901	HWAY 29 L, TX 78642		S 10001800		
AGE	ENT:	COSTELLO, 1 9050 N CAPI ⁻ AUSTIN, TX 512-646-3456	TAL OF TX   78759		3, SUITE 390		
ONS BAT FLC FLC DEV PO	DRMWATER MANA SITE WATER QUAL TCH DETENTION. DODPLAIN: DODPLAIN MODIFIC VELOPMENT RTIONS OF THIS T SURANCE RATE MA ATERSHED: IS PROJECT IS LOO	ITY AND DETE CATIONS ARE F RACT ARE WIT	PROPOSED THIN A FLOO <u>91C0460F</u> F	OIN CONJUN OD HAZARD FOR WILLIAM	AREA AS SHC ISON CO., EFF	OWN ON THE	
TH <u>EN</u> TH <u>TR</u>	VIRONMENTAL: IS PROJECT IS LOO AFFIC IMPACT AN/ E REPORT BY COS	<u>ALYSIS:</u> STELLO, INC. D	ATED NOV	EMBER 2021	ONTRIBUTING	ZONE.	
THI EN' THI TR	IS PROJECT IS LO	<u>ALYSIS:</u> STELLO, INC. D		EMBER 2021	DNTRIBUTING	ZONE.	

# CR 175 **JADWAY IMPROVEMENTS** PROJECT NO.

CITY OF LEANDER, WILLIAMSON COUNTY, TEXAS



SARA COFFEY, P.E. COSTELLO, INC. TBPE NO. 280

DATE

Know what's Delow. Call before you dig



ENGINEERING AND SURVEYING 9050 N. CAPITAL HWY, BLDG 3. SUITE 390 AUSTIN, TEXAS 78759 (512)646-3456 (512)514-0315, FAX TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486

THE LOCATION OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK. HE/SHE AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES

#### DESCRIPTION SHEET NO. COVER SHEET GENERAL NOTES 2 - 3 PROJECT LAYOUT TREE MITIGATION 5 - 6 EROSION & SEDIMENTATION CONTROL PLAN LAYOUT 7 - 8 EXISTING TYPICAL SECTIONS 9 10 PROPOSED TYPICAL SECTIONS 11 HORIZONTAL ALIGNMENT DATA 12 - 19 CR 175 PLAN & PROFILE DRAINAGE AREA MAP 20 21 EXISTING DRAINAGE AREA MAP 22 OVERALL DRAINAGE AREA MAP 23 DRAINAGE CALCULATIONS 24 - 25 GRADING LAYOUT CULVERT LAYOUT 26 27 CULVERT PLAN & PROFILE 28 DRAINAGE LATERALS

INDEX OF SHEETS

SIGNING AND PAVEMENT MARKING LAYOUT 29 - 30 STREET LIGHT DI ANI

31	STREET LIGHT PLAN
32 - 33	TRAFFIC CONTROL PLAN PHASE 1
34 - 35	TRAFFIC CONTROL PLAN PHASE 2
36	EROSION CONTROL DETAILS
37	PAVING DETAILS
38	DRAINAGE DETAILS
39	CULVERT DETAILS
40	PAVEMENT MARKING DETAILS
41 - 43	TRAFFIC CONTROL DETAILS
44 - 47	STREET LIGHT PLAN DETAILS

LANSCAPE PLAN 48

DESIGN SPEED = 45 MPH





GENERAL NOTES REVISED JUNE 22, 2022 ANY CHANGES TO THESE NOTES SHOULD BE CLOUDED ON THE PLAN SET. CITY CONTACTS: ENGINEERING MAIN LINE: 512-528-2766 PLANNING DEPARTMENT: 512-528-2750 PUBLIC WORKS MAIN LINE: 512-259-2640 STORMWATER INSPECTIONS: 512-285-0055 UTILITIES MAIN LINE: 512-259-1142 UTILITIES ON-CALL: 512-690-4760 UTILITY LOCATE REQUESTS locates@leandertx.gov 1. THE CONTRACTOR SHALL VERIFY ALL DEPTHS AND LOCATIONS OF EXISTING UTILITIES PRIOR TO ANY CONSTRUCTION. ANY DISCREPANCIES WITH CONSTRUCTION PLANS FOUND IN THE FIELD SHALL BE BROUGHT IMMEDIATELY TO THE ATTENTION OF THE ENGINEER. 2. THE CONTRACTOR SHALL CONTACT THE TEXAS EXCAVATION SYSTEM AT 1-800-344-8377 FOR EXISTING UTILITY LOCATIONS 48 HOURS PRIOR TO THE START OF CONSTRUCTION. THE CONTRACTOR SHALL VERIFY THE LOCATIONS OF ALL UTILITIES THAT ARE TO BE EXTENDED, TIED TO, CROSSED, OR ALTERED; OR SUBJECT TO DAMAGE/INCONVENIENCE BY THE CONSTRUCTION OPERATIONS. 3. CONTACT THE CITY OF LEANDER PUBLIC WORKS DEPARTMENT FOR EXISTING WATER AND WASTEWATER LOCATIONS 48 HOURS PRIOR TO CONSTRUCTION. a. LOCATE REQUESTS MUST INCLUDE A COPY OF YOUR 811 TICKET. THE CITY OF LEANDER IS ALLOWED UP TO 48 HOURS TO COMPLY WITH YOUR REQUEST, EXCLUDING WEEKENDS AND DESIGNATED CITY HOLIDAYS.

b. REFRESH ALL LOCATES BEFORE 14 DAYS – LOCATE REFRESH REQUESTS MUST INCLUDE A COPY OF YOUR 811 TICKET. SUBMIT ALL REQUESTS TO LOCATES@LEANDERTX.GOV. TEXAS PIPELINE DAMAGE PREVENTION LAWS REQUIRE THAT A LOCATE REFRESH REQUEST BE SUBMITTED BEFORE 14 DAYS, OR IF LOCATION MARKERS ARE NO LONGER VISIBLE. c. REPORT PIPELINE DAMAGE IMMEDIATELY – IF YOU WITNESS OR EXPERIENCE PIPELINE

EXCAVATION DAMAGE, PLEASE CONTACT THE CITY OF LEANDER BY PHONE AT 512-259-2640. 4. ANY CHANGES OR REVISIONS TO THESE PLANS MUST FIRST BE SUBMITTED TO THE CITY BY THE DESIGN ENGINEER FOR REVIEW AND WRITTEN APPROVAL PRIOR TO CONSTRUCTION OF THE REVISION.

5. A TRAFFIC CONTROL PLAN, IN ACCORDANCE WITH THE TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, SHALL BE SUBMITTED TO THE CITY FOR REVIEW AND APPROVAL PRIOR TO ANY PARTIAL OR COMPLETE ROADWAY CLOSURES. TRAFFIC CONTROL PLANS SHALL BE SITE SPECIFIC AND SEALED BY A REGISTERED PROFESSIONAL ENGINEER. LANE CLOSURES ON ARTERIALS AND ANY FULL ROAD CLOSURES REQUIRE MESSAGE BOARDS NOTIFYING THE PUBLIC ONE WEEK PRIOR TO THE CLOSURE.

6. NO WORK IS TO BE PERFORMED BETWEEN THE HOURS OF 9:00 P.M. AND 7:00 A.M. THE CITY INSPECTOR RESERVES THE RIGHT TO REQUIRE THE CONTRACTOR TO UNCOVER ALL WORK PERFORMED WITHOUT INSPECTION. FURTHER, THERE IS A NOISE ORDINANCE IN EFFECT FOR CONSTRUCTION ACTIVITY BETWEEN THE HOURS OF 9:00 PM AND 7:00 AM. REQUESTS FOR EXCEPTIONS TO THE ORDINANCE MUST BE MADE TO LEANDER CITY COUNCIL. 7. CONTACT THE CITY INSPECTOR 4 DAYS PRIOR TO WORK TO SCHEDULE ANY INSPECTIONS ON WEEKENDS OR CITY HOLIDAYS.

8. NO STREET LIGHTS OR SIGNS OF ANY KIND ARE TO BE PLACED WITHIN ANY SIDEWALKS. 9. NO BLASTING IS ALLOWED.

10. ANY EXISTING UTILITIES, PAVEMENT, CURBS, SIDEWALKS, STRUCTURES, TREES, ETC., THAT ARE DAMAGED OR REMOVED SHALL BE REPAIRED OR REPLACED BY THE CONTRACTOR AT NO COST TO THE OWNER.

11. THE CONTRACTOR SHALL GIVE THE CITY OF LEANDER 48 HOURS NOTICE BEFORE BEGINNING EACH PHASE OF CONSTRUCTION. CONTACT ASSIGNED CITY INSPECTOR.

12. A PRE-CONSTRUCTION CONFERENCE SHALL BE HELD WITH THE CONTRACTOR, DESIGN ENGINEER/PERMIT APPLICANT AND THE CITY OF LEANDER REPRESENTATIVES PRIOR TO INSTALLATION OF EROSION/SEDIMENTATION CONTROLS AND TREE PROTECTION MEASURES AND PRIOR TO BEGINNING ANY WORK. THE CONTRACTOR SHALL NOTIFY THE CITY OF LEANDER PLANNING DEPARTMENT PLANNING COORDINATOR AT LEAST THREE (3) DAYS PRIOR TO THE MEETING DATE.

13. THE CONTRACTOR AND ENGINEER SHALL KEEP ACCURATE RECORDS OF ALL CONSTRUCTION THAT DEVIATES FROM THE PLANS. THE ENGINEER SHALL FURNISH THE CITY OF LEANDER ACCURATE "RECORD DRAWINGS" FOLLOWING THE COMPLETION OF ALL CONSTRUCTION. THESE "RECORD DRAWINGS" SHALL MEET THE SATISFACTION OF THE ENGINEERING DEPARTMENTS PRIOR TO FINAL ACCEPTANCE.

14. WHEN CONSTRUCTION IS BEING CARRIED OUT WITHIN EASEMENTS, THE CONTRACTOR SHALL CONFINE HIS WORK TO WITHIN THE PERMANENT AND TEMPORARY EASEMENTS. PRIOR TO ACCEPTANCE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REMOVING ALL TRASH AND DEBRIS WITHIN THE PERMANENT EASEMENTS. CLEANUP SHALL BE TO THE SATISFACTION OF THE ENGINEER.

15. CONTRACTOR TO LOCATE, PROTECT, AND MAINTAIN BENCHMARKS, MONUMENTS, CONTROL POINTS AND PROJECT ENGINEERING REFERENCE POINTS. RE-ESTABLISH DISTURBED OR DESTROYED ITEMS BY REGISTERED PROFESSIONAL LAND SURVEYOR IN THE STATE OF TEXAS, AT NO ADDITIONAL COST TO OWNER.

16. THE CONTRACTOR SHALL PROTECT ALL EXISTING FENCES. IN THE EVENT THAT A FENCE MUST BE REMOVED, THE CONTRACTOR SHALL REPLACE SAID FENCE OR PORTION THEREOF WITH THE SAME TYPE OF FENCING TO A QUALITY OF EQUAL OR BETTER THAN THE ORIGINAL FENCE. 17. ALL CONSTRUCTION OPERATIONS SHALL BE ACCOMPLISHED IN ACCORDANCE WITH APPLICABLE REGULATIONS OF THE U.S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA). OSHA STANDARDS MAY BE PURCHASED FROM THE GOVERNMENT

PRINTING OFFICE; INFORMATION AND RELATED REFERENCE MATERIALS MAY BE PURCHASED FROM OSHA, 1033 LA POSADA DR. SUITE 375, AUSTIN, TEXAS 78752-3832. 18. ALL MATERIALS AND CONSTRUCTION PROCEDURES WITHIN THE SCOPE OF THIS CONTRACT

WHERE NOT SPECIFICALLY COVERED IN THE PROJECT SPECIFICATIONS SHALL CONFORM TO ALL CITY OF LEANDER DETAILS AND CITY OF AUSTIN STANDARD SPECIFICATIONS. 19. PROJECT SPECIFICATIONS TAKE PRECEDENCE OVER PLANS AND SPECIAL CONDITIONS GOVERN OVER TECHNICAL SPECIFICATIONS.

20. HOT MIX ASPHALTIC CONCRETE PAVEMENT SHALL BE MINIMUM THICKNESS OF 2 INCHES WITH NO RECYCLED ASPHALT SHINGLES CONTENT.

21. CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER OF ANY QUESTIONS THAT MAY RISE CONCERNING THE INTENT, PLACEMENT, OR LIMITS OF DIMENSIONS OR GRADES NECESSARY FOR THE CONSTRUCTION OF THIS PROJECT.

22. CONTRACTOR SHALL BE RESPONSIBLE FOR ACQUIRING ALL PERMITS, TESTS, APPROVALS AND ACCEPTANCES REQUIRED TO COMPLETE CONSTRUCTION OF THIS PROJECT.

(CONT.) 23. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL COORDINATION BETWEEN HIMSELF AND OTHER CONTRACTORS AND UTILITIES IN THE VICINITY OF THE PROJECT. THIS INCLUDES GAS, WATER, WASTEWATER, ELECTRICAL, TELEPHONE, CABLE TV AND STREET DRAINAGE WORK. ONCE THE CONTRACTOR BECOMES AWARE OF A POSSIBLE CONFLICT, IT IS THE CONTRACTOR'S RESPONSIBILITY TO NOTIFY THE ENGINEER WITHIN TWENTY-FOUR (24) HOURS. 24. THE CONTRACTOR MUST OBTAIN A CONSTRUCTION WATER METER FOR ALL WATER USED DURING CONSTRUCTION. A COPY OF THIS PERMIT MUST BE CARRIED AT ALL TIMES BY ALL WHO USE WATER. 25. CONTRACTOR SHALL BE RESPONSIBLE FOR KEEPING ROADS AND DRIVES ADJACENT TO AND NEAR THE SITE FREE FROM SOIL, SEDIMENT AND DEBRIS. CONTRACTOR WILL NOT REMOVE SOIL, SEDIMENT OR DEBRIS FROM ANY AREA OR VEHICLE BY MEANS OF WATER. ONLY SHOVELING AND SWEEPING WILL BE ALLOWED. CONTRACTOR WILL BE RESPONSIBLE FOR DUST CONTROL FROM THE SITE. 26. THE CITY OF LEANDER SHALL NOT BE PETITIONED FOR ACCEPTANCE UNTIL ALL NECESSARY EASEMENT DOCUMENTS HAVE BEEN SIGNED AND RECORDED. 27. AN ENGINEER'S CONCURRENCE LETTER AND RECORD DRAWINGS SHALL BE SUBMITTED TO THE ENGINEERING DEPARTMENT PRIOR TO THE ISSUANCE OF CERTIFICATE OF COMPLETION OR SUBDIVISION ACCEPTANCE. THE ENGINEER AND CONTRACTOR SHALL VERIFY THAT ALL FINAL REVISIONS AND CHANGES HAVE BEEN MADE TO THE DIGITAL COPY PRIOR TO CITY SUBMITTAL. RECORD CONSTRUCTION DRAWINGS, INCLUDING ROADWAY AND ALL UTILITIES SHALL BE PROVIDED TO THE CITY IN DIGITAL FORMAT AS AUTOCAD ".DWG" FILES. MICROSTATION ".DGN" FILES OR ESRI ".SHP" FILES ON CD ROM. LINE WEIGHTS, LINE TYPES AND TEXT SIZE SHALL BE SUCH THAT IF HALF-SIZE PRINTS (11"X17") WERE PRODUCED, THE PLANS WOULD STILL BE LEGIBLE. ALL REQUIRED DIGITAL FILES SHALL CONTAIN A MINIMUM OF TWO CONTROL POINTS REFERENCED TO THE STATE PLANE GRID COORDINATE SYSTEM -TEXAS CENTRAL ZONE (4203), IN US SURVEY FEET AND SHALL INCLUDE ROTATION INFORMATION AND SCALE FACTOR REQUIRED TO REDUCE SURFACE COORDINATES TO GRID COORDINATES IN US SURVEY FEET 28. TREES IN EXISTING ROW SHOULD BE PROTECTED OR NOTED IN THE PLANS TO BE REMOVED.

### **EROSION CONTROL NOTES**

AREA.

## TRENCH SAFETY NOTES

1. TRENCH SAFETY SYSTEMS TO BE UTILIZED FOR THIS PROJECT ARE DESCRIBED IN ITEM 509S "TRENCH SAFETY SYSTEMS" OF THE CITY OF AUSTIN STANDARD SPECIFICATIONS AND SHALL BE IN ACCORDANCE WITH THE LAWS OF THE STATE OF TEXAS AND THE U.S. OCCUPATION SAFETY AND HEALTH ADMINISTRATION REGULATIONS.

## **GRADING NOTES**

WATER.

# **BENCHMARK NOTES**

THE PROJECT IS REFERENCED FOR ALL BEARING AND COORDINATE BASIS TO THE TEXAS COORDINATE SYSTEM, NORTH AMERICAN DATUM OF 1983 (NAD83- 2011 ADJUSTMENT), CENTRAL ZONE (4203).

DISTANCES AND AREAS SHOWN HEREON ARE SURFACE VALUES REPRESENTED IN US SURVEY FEET BASED ON A GRID-TO-SURFACE COMBINED ADJUSTMENT FACTOR OF 1.00012936.

PORTIONS OF THE TRACT SHOWN HEREON APPEAR TO LIE WITHIN A SPECIAL FLOOD HAZARD AREA. ZONE "AE", AS IDENTIFIED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY, FEDERAL INSURANCE ADMINISTRATION, AS SHOWN ON MAP NO. 48491C0460F, DATED DECEMBER 20, 2019 FOR WILLIAMSON COUNTY, TEXAS AND INCORPORATED AREAS.

1. THE CONTRACTOR SHALL INSTALL EROSION/SEDIMENTATION CONTROLS AND TREE PROTECTIVE FENCING PRIOR TO ANY WORK (CLEARING, GRUBBING OR EXCAVATION). CONTACT STORMWATER INSPECTOR FOR ON SITE INSPECTION PRIOR TO BEGINNING CONSTRUCTION. 2. THE CONTRACTOR IS REQUIRED TO INSPECT THE CONTROLS AND FENCES AT WEEKLY INTERVALS AND AFTER SIGNIFICANT RAINFALL EVENTS TO ENSURE THAT THEY ARE FUNCTIONING PROPERLY. THE PERSON(S) RESPONSIBLE FOR MAINTENANCE OF CONTROLS AND FENCES SHALL IMMEDIATELY MAKE ANY NECESSARY REPAIRS TO DAMAGED AREAS. SILT ACCUMULATION AT CONTROLS MUST BE REMOVED WHEN THE DEPTH REACHES SIX (6) INCHES. 3. THE TEMPORARY SPOILS DISPOSAL SITE IS TO BE SHOWN IN THE EROSION CONTROL MAP. 4. ANY ON-SITE SPOILS DISPOSAL SHALL BE REMOVED PRIOR TO ACCEPTANCE UNLESS SPECIFICALLY SHOWN ON THE PLANS. THE DEPTH OF SPOIL SHALL NOT EXCEED 10 FEET IN ANY

5. ALL AREAS DISTURBED OR EXPOSED DURING CONSTRUCTION SHALL BE RESTORED WITH A MINIMUM OF 6 INCHES OF TOPSOIL AND COMPOST BLEND. TOPSOIL ON SINGLE FAMILY LOTS MAY BE INSTALLED WITH HOME CONSTRUCTION. THE TOPSOIL AND COMPOST BLEND SHALL CONSIST OF 75% TOPSOIL AND 25% COMPOST.

6. SEEDING FOR REESTABLISHING VEGETATION SHALL COMPLY WITH THE AUSTIN GROW GREEN GUIDE OR WILLIAMSON COUNTY'S PROTOCOL FOR SUSTAINABLE ROADSIDES (SPEC 164--WC001 SEEDING FOR EROSION CONTROL). RESEEDING VARIETIES OF BERMUDA SHALL NOT BE USED. 7. STABILIZED CONSTRUCTION ENTRANCE IS REQUIRED AT ALL POINTS WHERE CONSTRUCTION TRAFFIC IS EXITING THE PROJECT ONTO EXISTING PAVEMENT. LINEAR CONSTRUCTION PROJECTS MAY REQUIRE SPECIAL CONSIDERATION. ROADWAYS SHALL REMAIN CLEAR OF SILT AND MUD. 8. TEMPORARY STOP SIGNS SHOULD BE INSTALLED AT ALL CONSTRUCTION ENTRANCES WHERE A STOP CONDITION DOES NOT ALREADY EXIST.

9. IN THE EVENT OF INCLEMENT WEATHER THAT MAY RESULT IN A FLOODING SITUATION, THE CONTRACTOR SHALL REMOVE INLET PROTECTION MEASURES UNTIL SUCH TIME AS THE WEATHER EVENT HAS PASSED.

1. POSITIVE DRAINAGE SHALL BE MAINTAINED ON ALL SURFACE AREAS WITHIN THE SCOPE OF THIS PROJECT. CONTRACTOR SHOULD TAKE PRECAUTIONS NOT TO ALLOW ANY POUNDING OF

2. THE CONTRACTOR SHALL CONSTRUCT EARTHEN EMBANKMENTS WITH SLOPES NO STEEPER THAN 3:1 AND COMPACT SOIL TO 95% OF MAXIMUM DENSITY IN ACCORDANCE WITH THE CITY OF AUSTIN STANDARD SPECIFICATIONS.

3. AREAS OF SOIL DISTURBANCE ARE LIMITED TO GRADING AND IMPROVEMENTS SHOWN, ALL OTHER AREAS WILL NOT BE DISTURBED.

THIS FLOOD PLAIN NOTE DOES NOT IMPLY THAT THE PROPERTY AND/PR STRUCTURES THEREON WILL BE FREE FROM FLOODING OR FLOOD DAMAGE. THIS FLOOD STATEMENT SHALL NOT CREATE LIABILITY ON THE PART OF THE SURVEYOR.

#### STREET AND DRAINAGE NOTES

1. ALL SIDEWALKS SHALL COMPLY WITH THE LEANDER HAS NOT REVIEWED THESE PLANS DISABILITIES ACT, OR ANY OTHER ACCESSIBI APPROVE THESE PLANS FOR ANY ACCESSIB 2. PRIOR TO ACCEPTANCE THE ENGINEER SH IMPROVEMENTS WERE INSPECTED BY TDLR AND ARE IN COMPLIANCE WITH THE REQUIR 3. CONTRACTOR SHALL PROVIDE QUALITY TE AND MAINTAINED BY THE CITY OF LEANDER . NOTIFY THE CITY OF LEANDER ENGINEERING HOURS PRIOR TO ANY TESTING.

4. BACKFILL BEHIND THE CURB SHALL BE COI DENSITY TO WITHIN 6" OF TOP OF CURB. MAT WITH NO ROCKS LARGER THAN 6" IN THE GR CLEAN TOPSOIL FREE FROM ALL CLODS AND 5. A MINIMUM OF 6" OF TOPSOIL SHALL BE PL IN ALL DRAINAGE CHANNELS EXCEPT CHANN 6. DEPTH OF COVER FOR ALL CROSSINGS UN TELEPHONE. CABLE TV. ETC., SHALL BE A MII

7. STREET RIGHT-OF-WAY SHALL BE GRADED UNLESS OTHERWISE INDICATED. HOWEVER, AT 1/4" PER FOOT SLOPE BE LESS THAN 10 FE GRADING SCHEME IS MADE TO AND ACCEPTI DEPARTMENT.

8. BARRICADES BUILT TO THE CITY OF LEAND STREETS AND AS NECESSARY DURING CONS 9. ALL REINFORCED CONCRETE PIPE SHALL O-RING JOINT DESIGN.

10. THE CONTRACTOR IS TO NOTIFY THE ENG FOLLOWING TESTING: PROOF ROLLING SUB-EMBANKMENT, IN-PLACE DENSITY TESTING O OF THIS TESTING MUST BE WITNESSED BY A 11. THE CONTRACTOR MUST PROVIDE A PNEU **12. AT INTERSECTIONS WHICH HAVE VALLEY** STREETS WILL CULMINATE IN A DISTANCE OI OTHERWISE NOTED.

13. AT THE INTERSECTION OF TWO 44' STREE STREETS WILL CULMINATE IN A DISTANCE OF OTHERWISE NOTED.

14. A CURB LAYDOWN IS REQUIRED AT ALL PO THE CURB.

15. ALL STRIPING, WITH THE EXCEPTION OF S BE TYPE II (WATER BASED). STOP BARS, CRO THERMOPLASTIC.

16. MANHOLE FRAMES, COVERS, VALVES, CL FINAL PAVEMENT CONSTRUCTION.

**17. CONTRACTOR SHALL NOTIFY THE LEANDE** 48 HOURS PRIOR TO THE INSTALLATION OF A EASEMENT OR STREET ROW. THE METHOD ( THE CITY'S ROW MUST BE APPROVED PRIOR 18. A STOP BAR SHALL BE PLACED AT ALL ST 19. A MINIMUM OF SEVEN DAYS OF CURE TIM INTRODUCTION OF PUBLIC VEHICULAR TRAF 20. THE GEOTECHNICAL ENGINEER SHALL IN DESIGN ASSUMPTIONS MADE DURING PREPA ADJUSTMENTS THAT ARE REQUIRED SHALL CONSTRUCTION PLANS.

21. GEOTECHNICAL INVESTIGATION INFORM PROVIDED BY ALPHA TESTING. PAVEMENT RE **3" HMAC TY D SURFACE COURSE** 

**5" HMAC TY B BASE** 

13" FLEXIBLE GRANULAR BASE **8" LIME STABILIZED SUBGRADE** 

		DATE BY
E AMERICANS WITH DISABILITIES ACT. THE CITY OF S FOR COMPLIANCE WITH THE AMERICANS WITH BILITY LEGISLATION, AND DOES NOT WARRANTY OR		
BILITY STANDARDS. SHALL SUBMIT DOCUMENTATION THAT THE R OR A REGISTERED ACCESSIBLITY SPECIALIST (RAS) REMENTS OF THE TABA. TESTING FOR ALL INFRASTRUCTURES TO BE ACCEPTED R AFTER COMPLETION. THE CONTRACTOR SHALL		REVISION
IG DEPARTMENT AT 528-2700 NO LESS THAN 48 OMPACTED TO OBTAIN A MINIMUM OF 95% MAXIMUM ATERIAL USED SHALL BE PRIMARILY GRANULAR REATEST DIMENSION. THE REMAINING 6" SHALL BE ID SUITABLE FOR SUSTAINING PLANT LIFE PLACED BETWEEN THE CURB AND RIGHT-OF-WAY AND INELS CUT IN STABLE ROCK. JNDER PAVEMENT, INCLUDING GAS, ELECTRIC 11NIMUM OF 36" BELOW SUBGRADE. ED AT A SLOPE OF 1/4" PER FOOT TOWARD THE CURB R, IN NO CASE SHALL THE WIDTH OF RIGHT-OF-WAY EET UNLESS A SPECIFIC REQUEST FOR AN ALTERNATE TED BY THE CITY OF LEANDER PUBLIC WORKS	DESIGNED:	DRAWIN
IDER STANDARDS SHALL BE ERECTED ON ALL DEAD-END ISTRUCTION TO MAINTAIN JOB AND PUBLIC SAFETY. . BE MINIMUM CLASS III OF TONGUE AND GROOVE OR	390	
IGINEERING INSPECTOR 48 HOURS PRIOR TO THE 3-GRADE AND EVERY LIFT OF ROADWAY OF EVERY BASE COURSE, AND ASPHALT CORES. ALL A CITY OF LEANDER REPRESENTATIVE. EUMATIC TRUCK PER TXDOT SPEC FOR PROOF ROLLING. Y DRAINAGE, THE CROWNS OF THE INTERSECTING OF 40 FEET FROM INTERSECTING CURB LINE UNLESS	3 AND SURVEYING AL HWY, BLDG 3, SUITE	IN, TEXAS 78759 46-3456 (512) 514-0315 FAX FIRM REG. No. 280 S FIRM REG. No. 100486
ETS OR LARGER, THE CROWNS OF THE INTERSECTING OF 40 FEET FROM INTERSECTING CURB LINE UNLESS	EERING	AUSTIN, TEXAS 78759 (512)646-3456(512)5 TBPE FIRM REG. No. 2 TBPLS FIRM REG. No.
POINTS WHERE THE PROPOSED SIDEWALK INTERSECTS STOP BARS, CROSS WALKS, WORDS AND ARROWS, IS TO	ENGINE 9050 N. 6	AUSTIN (512)64( TBPE FI TBPLS I
OSS WALKS, WORDS AND ARROWS REQUIRE TYPE I		
DER ENGINEERING DEPARTMENT AT 528-2700 AT LEAST ANY DRAINAGE FACILITY WITHIN A DRAINAGE OF PLACEMENT AND COMPACTION OF BACKFILL IN R TO THE START OF BACKFILL OPERATIONS. TOP SIGN LOCATIONS. ME IS REQUIRED FOR HMAC PRIOR TO THE FFIC TO ANY STREETS. NSPECT THE SUBGRADE FOR COMPLIANCE WITH THE PARATION OF THE SOILS REPORT. ANY . BE MADE THROUGH REVISIONS OF THE	Costal	
ATION AND PAVEMENT RECOMMENDATIONS WERE RECOMMENDATIONS ARE AS FOLLOWS:		
	CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	<b>GENERAL NOTES</b>
		OF 7E 75 A E. COFFEY 137342 CENSER ONAL ENGLISH 3/22/2023
	OF <b>4</b>	Z 8 SHEETS

WATER AND WASTEWATER NOTES

1. PRESSURE TAPS SHALL BE IN ACCORDANCE WITH CITY OF LEANDER STANDARD SPECIFICATIONS. THE CONTRACTOR SHALL PERFORM ALL EXCAVATION, ETC. AND SHALL FURNISH, INSTALL AND AIR TEST THE SLEEVE AND VALVE. A CITY OF LEANDER INSPECTOR MUST BE PRESENT WHEN THE CONTRACTOR MAKES A TAP, AND/OR ASSOCIATED TESTS. A MINIMUM OF TWO (2) WORKING DAYS NOTICE IS REQUIRED. "SIZE ON SIZE" TAPS WILL NOT BE PERMITTED UNLESS MADE BY THE USE OF AN APPROVED FULL-CIRCLE GASKETED TAPPING SLEEVE. CONCRETE BLOCKING SHALL BE PLACED BEHIND AND UNDER ALL TAP SLEEVES A MINIMUM OF 24 HOURS PRIOR TO THE BRANCH BEING PLACED INTO SERVICE. BLOCKING SHALL BE INSPECTED PRIOR TO BACKFILL

2. FIRE HYDRANTS ON MAINS UNDER CONSTRUCTION SHALL BE SECURELY WRAPPED WITH A BLACK POLY WRAP BAG AND TAPED INTO PLACE. THE POLY WRAP SHALL BE REMOVED WHEN THE MAINS ARE ACCEPTED AND PLACED INTO SERVICE.

3. CURVILINEAR WASTEWATER DESIGN LAYOUT IS NOT PERMITTED.

4. THRUST BLOCKING OR RESTRAINTS SHALL BE IN ACCORDANCE WITH THE CITY OF LEANDER STANDARD SPECIFICATIONS AND REQUIRED AT ALL FITTINGS PER DETAIL OR MANUFACTURER'S RECOMMENDATION. ALL FITTINGS SHALL HAVE BOTH THRUST BLOCKING AND RESTRAINTS. 5. MANDREL TESTING WILL BE REQUIRED ON ALL WASTEWATER PIPE. PER TCEQ, THIS TEST MUST BE CONDUCTED AFTER THE FINAL BACKFILL HAS BEEN IN PLACE AT LEAST 30 DAYS. 6. ALL NEWLY INSTALLED PIPES AND RELATED PRODUCTS MUST CONFORM TO AMERICAN NATIONAL STANDARDS INSTITUTE/NATIONAL SANITATION FOUNDATION (ANSI/NSF) STANDARD 61 AND MUST BE CERTIFIED BY AND ORGANIZATION ACCREDITED BY ANSI

7. DURING PERIODS OF EXTENDED DRY WEATHER. TRENCH BACKFILL MUST BE COMPACTED BY FLOODING THE TRENCHES AS DIRECTED BY THE CITY ENGINEER.

8. ALL WATER SERVICE, WASTEWATER SERVICE AND VALVE LOCATIONS SHALL BE APPROPRIATELY STAMPED AS FOLLOWS:

WATER SERVICE "W" ON TOP OF CURB

WASTEWATER SERVICE "S" ON TOP OF CURB

VALVE "V" ON TOP OF CURB

9. TOOLS FOR STAMPING THE CURBS SHALL BE PROVIDED BY THE CONTRACTOR. OTHER APPROPRIATE MEANS OF STAMPING SERVICE AND VALVE LOCATIONS SHALL BE PROVIDED IN AREAS WITHOUT CURBS. SUCH MEANS OF STAMPING SHALL BE SPECIFIED BY THE ENGINEER AND ACCEPTED BY THE CITY OF LEANDER

10. ALL PLASTIC PIPES FOR USE IN PUBLIC WATER SYSTEMS MUST BEAR THE NATIONAL SANITATION FOUNDATION SEAL OF APPROVAL (NSF-PW) AND HAVE AN ASTM DESIGN PRESSURE RATING OF AT LEAST 200 PSI.

11. NO PIPE OR FITTING WHICH HAS BEEN USED FOR ANY PURPOSE OTHER THAN THE CONVEYANCE OF DRINKING WATER SHALL BE ACCEPTED OR RELOCATED FOR USE IN ANY PUBLIC DRINKING WATER SUPPLY.

12. TYPICAL DEPTH OF COVER FOR ALL WASTEWATER LINES SHALL BE 48" MINIMUM, WATER LINES SHALL BE 36" MINIMUM UNDER BOTH PAVEMENT AND NATURAL GROUND. STORM SEWER SHALL BE 24" MINIMUM UNDER NATURAL GROUND

13. THE HYDROSTATIC LEAKAGE RATE SHALL NOT EXCEED THE AMOUNT ALLOWED OR **RECOMMENDED BY AWWA FORMULAS.** 

14. ALL WATER MAINS, DISTRIBUTION LINES AND SERVICE LINES SHALL BE INSTALLED IN ENCASEMENT PIPE UNDERNEATH EXISTING STREETS AND OTHER PAVED SURFACES UNLESS APPROVED WITH PLANS.

15. ALL MECHANICAL RESTRAINTS SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS.

16. ALL DEAD-END WATER MAINS SHALL HAVE THRUST RESTRAINTS INSTALLED ON THE LAST THREE PIPE-LENGTHS (STANDARD 20' LAYING LENGTH), AT MINIMUM, AND THRUST BLOCKS INSTALLED ON THE PLUG. ADDITIONAL THRUST RESTRAINTS MAY BE REQUIRED BASED UPON THE MANUFACTURER'S RECOMMENDATIONS AND/OR CALCULATIONS BY THE ENGINEER OF RECORD.

17. WHERE WATER LINES CROSS WASTEWATER LINES AND THERE IS LESS THAN 9 FEET CLEARANCE BETWEEN LINES, THE WASTEWATER LINE SHALL BE PLACED SO THAT THE WASTEWATER PIPE SECTION IS CENTERED ON THE WATER LINE AND CONSTRUCTED IN ACCORDANCE WITH TCEQ CHAPTERS 217.53(b) AND 290.44(e).

18. PIPE MATERIAL FOR WATER MAINS SHALL BE PVC (AWWA C900-16 MIN. 235 PSI PRESSURE RATING). WATER SERVICES (2" OR LESS) SHALL BE POLYETHYLENE TUBING (BLACK, 200PSI, SDR-(9)). DUCTILE IRON PIPE (AWWA C115/C151, MIN. PRESSURE CLASS 250) MAY BE USED FOR WATER MAINS WITH THE EXPRESS APPROVAL OF CITY OF LEANDER ENGINEERING.

19. PIPE FOR PRESSURE WASTEWATER MAINS SHALL BE PVC (AWWA C900-16), GREEN AND MARKED FOR SEWER. PIPE MATERIAL FOR GRAVITY WASTEWATER MAINS SHALL BE PVC (ASTM D2241, D3034 MAX. SDR-26 OR PS115 F679) OR FIBERGLASS WITH PIPE STIFFNESS OF 72 PSI PER COA SPL WW-509.

20. ALL FIRE HYDRANT LEADS SHALL BE DUCTILE IRON PIPE (AWWA C115/C151 PRESSURE CLASS 350).

21. INTERIOR SURFACES OF ALL DUCTILE IRON POTABLE OR RECLAIMED WATER PIPE SHALL BE CEMENT-MORTAR LINED AND SEAL COATED AS REQUIRED BY AWWA C104.

22. ALL IRON PIPE AND FITTINGS SHALL BE WRAPPED WITH MINIMUM 8-MIL POLYETHYLENE. 23. THE CONTRACTOR SHALL CONTACT THE ENGINEERING DEPARTMENT INSPECTOR AT 528-2700 AT LEAST 48 HOURS PRIOR TO CONNECTING TO THE EXISTING WATER LINES.

24. ALL MANHOLES SHALL BE CONCRETE WITH CAST IRON RING AND COVER. TAPPING OF FIBERGLASS MANHOLES SHALL NOT BE ALLOWED.

25. EXISTING MANHOLES MODIFIED BY CONSTRUCTION ACTIVITY SHALL BE TESTED FOR LEAKAGE BY VACUUM. ANY EXISTING MANHOLE WHICH FAILS TO PASS THE VACUUM TEST SHALL BE CLOSELY EXAMINED BY THE INSPECTOR AND THE CONTRACTOR TO DETERMINE IF THE MANHOLE CAN BE REPAIRED. THEREAFTER, THE CONTRACTOR SHALL EITHER REPAIR OR REMOVE AND REPLACE THE MANHOLE AS DIRECTED.

26. PIPE CONNECTIONS TO EXISTING MANHOLES AND JUNCTION BOXES SHALL BE CONSTRUCTED IN ACCORDANCE WITH CITY OF AUSTIN SPECIFICATION 506.5.F.

27. LINE FLUSHING OR ANY ACTIVITY USING A LARGE QUANTITY OF WATER MUST BE COORDINATED WITH THE PUBLIC WORKS DEPARTMENT.

28. THE CONTRACTOR, AT HIS EXPENSE, SHALL PERFORM STERILIZATION OF ALL CONSTRUCTED POTABLE WATER LINES AND SHALL PROVIDE ALL EQUIPMENT (INCLUDING TEST GAUGES), SUPPLIES (INCLUDING CONCENTRATED CHLORINE DISINFECTING MATERIAL), AND NECESSARY LABOR REQUIRED FOR THE STERILIZATION PROCEDURE. THE STERILIZATION PROCEDURE SHALL BE MONITORED BY CITY OF LEANDER PERSONNEL. WATER SAMPLES WILL BE COLLECTED BY THE CITY OF LEANDER TO VERIFY EACH TREATED LINE HAS ATTAINED AN INITIAL CHLORINE CONCENTRATION OF 50 PPM. WHERE MEANS OF FLUSHING IS NECESSARY, THE CONTRACTOR, AT HIS EXPENSE, SHALL PROVIDE FLUSHING DEVICES AND REMOVE SAID DEVICES PRIOR TO FINAL ACCEPTANCE BY THE CITY OF LEANDER.

(CONT.) LEANDER.

6 AM. INSPECTION.

0 N GEN 29. SAMPLING TAPS SHALL BE BROUGHT UP TO 3 FEET ABOVE GRADE AND SHALL BE EASILY ACCESSIBLE FOR CITY PERSONNEL. AT THE CONTRACTORS' REQUEST, AND IN HIS PRESENCE, SAMPLES FOR BACTERIOLOGICAL TESTING WILL BE COLLECTED BY THE CITY OF LEANDER NOT LESS THAN 24 HOURS AFTER THE TREATED LINE HAS BEEN FLUSHED OF THE CONCENTRATED CHLORINE SOLUTION AND CHARGED WITH WATER APPROVED BY THE CITY.

30. TESTING SHALL BE PERFORMED FOR ALL WASTEWATER PIPE INSTALLED AND PRESSURE PIPE HYDROSTATIC TESTING OF ALL WATER LINES CONSTRUCTED. THE OWNER'S CONTRACTOR SHALL PROVIDE ALL EQUIPMENT (INCLUDING PUMPS AND GAUGES), SUPPLIES AND LABOR NECESSARY TO PERFORM THE TESTS. THE CONTRACTOR SHALL NOTIFY THE CITY OF LEANDER ENGINEERING DEPARTMENT NO LESS THAN 48 HOURS PRIOR TO PERFORMING STERILIZATION, QUALITY TESTS, OR PRESSURE TESTS. A CITY OF LEANDER INSPECTOR SHALL BE PRESENT FOR ALL TESTS AND SHALL BE PAID FOR BY THE OWNER/CONTRACTOR. THESE SERVICES ARE PAID FOR AT THE TIME OF CONSTRUCTION PLAN SUBMITTAL.

31. THE CONTRACTOR SHALL NOT OPEN OR CLOSE ANY VALVE UNLESS AUTHORIZED BY THE CITY OF

32. ALL VALVE BOXES AND COVERS SHALL BE CAST IRON. 33. ALL WATER VALVE COVERS ARE TO BE PAINTED BLUE.

34. ALL WATER METER BOXES SHALL BE:

a. SINGLE, 1" METER AND BELOW DFW37F-12-1CA, OR EQUAL b. DUAL, 1" METERS AND BELOW DFW39F-12-1CA, OR EQUAL

c. 1.5" SINGLE METER

DFW65C-14-1CA, OR EQUAL d. 2" SINGLE METER DFW1730F-12-1CA, OR EQUAL

35. SAND, AS DESCRIBED IN AUSTIN SPECIFICATION ITEM 510 PIPE, SHALL NOT BE USED AS BEDDING FOR WATER AND WASTEWATER LINES. ACCEPTABLE BEDDING MATERIALS ARE PIPE BEDDING STONE, PEA GRAVEL AND IN LIEU OF SAND, A NATURALLY OCCURRING OR

MANUFACTURED STONE MATERIAL CONFORMING TO ASTM C33 FOR STONE QUALITY AND MEETING THE FOLLOWING GRADATION SPECIFICATION:

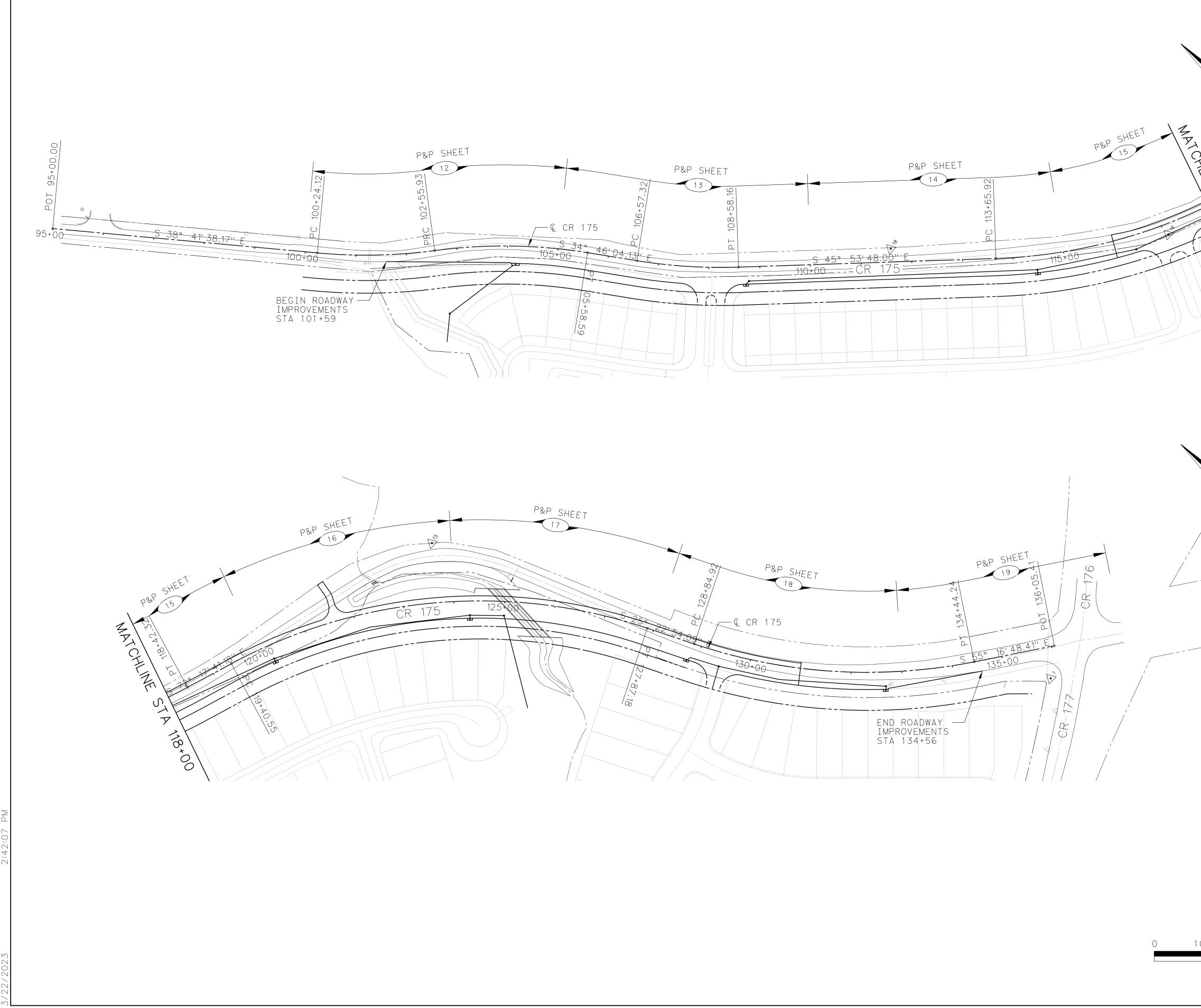
SIEVE SIZE PERCENT RETAINED BY WEIGHT

0-2

1/2" 3/8" #4

40-85 95-100

36. THE CONTRACTOR IS HEREBY NOTIFIED THAT CONNECTING TO, SHUTTING DOWN, OR TERMINATING EXISTING UTILITY LINES MAY HAVE TO OCCUR AT OFF-PEAK HOURS. SUCH HOURS ARE USUALLY OUTSIDE NORMAL WORKING HOURS AND POSSIBLY BETWEEN 12 AM AND


37. ALL WASTEWATER CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY (TCEQ) REGULATIONS, 30 TAC CHAPTER 213 AND 30 TAC CHAPTER 217, AS APPLICABLE. WHENEVER TCEQ AND CITY OF LEANDER SPECIFICATION CONFLICT, THE MORE STRINGENT SHALL APPLY.

38. MANHOLES SHALL BE COATED PER CITY OF AUSTIN SPL WW-511 (RAVEN 405 OR SPRAYWALL). 39. DENSITY TESTING FOR TRENCH BACKFILL LOCATED WITHIN THE LIMITS OF THE PAVED AREA IS TO BE DONE IN 12" LIFTS EVERY 500' AND AT LEAST ONCE PER LINE SEGMENT

40. ALL GRAVITY WASTEWATER MAINS TO BE TESTED BY CAMERA AND PAID FOR BY THE CONTRACTOR. CAMERA TESTING FOR WASTEWATER LINES IN ROADWAY SHALL OCCUR BEFORE PAVING. CONTRACTOR SHALL PROVIDE THE CITY WITH A DVD COPY OF THE FULL CAMERA

41. RECLAIMED AND RECYCLED WATER LINE SHALL BE CONSTRUCTED OF "PURPLE PIPE." ALL RECLAIMED AND RECYCLED WATER VALVE COVERS SHALL BE SQUARE AND PAINTED PURPLE.

	DATE BY
	REVISION
DESIGNED:	DRAWN:
ENGINEERING AND SURVEYING	AUSTIN, TEXAS 78759 (512)646-3456 (512) 514-0315 FAX TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486
CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	GENERAL NOTES
تحد	E OF TETA
	ENGINEERING AND SURVEYING 9050 N. CAPITAL HWY, BLDG 3, SUITE 390



 $\vdash$ ΠO

 $\stackrel{\forall}{\prec}$ 

 $\supset$ 

S

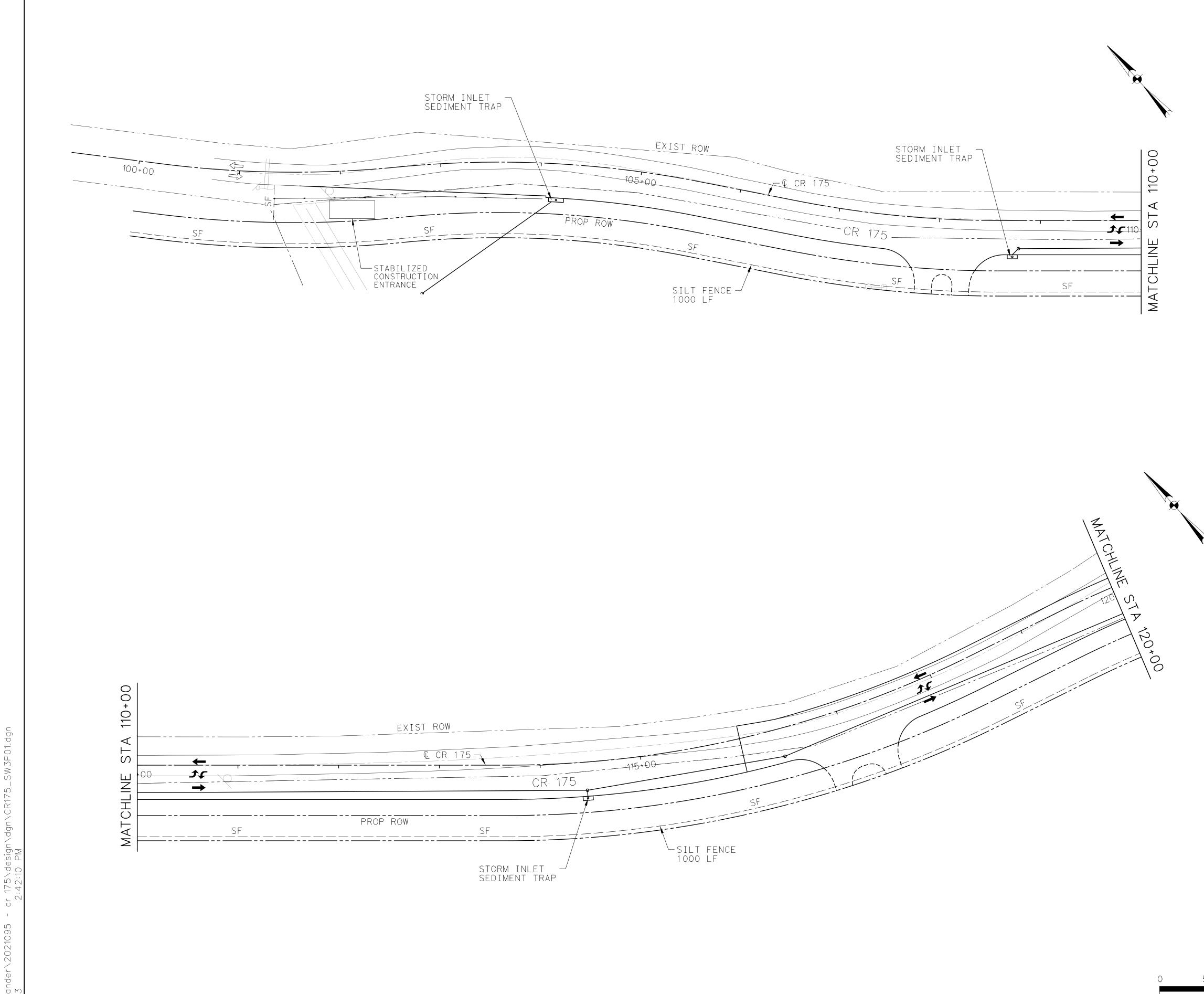
					DATE BY
					REVISION
					NO.
DESIGNED:	DESIGN CHECKED:				QA/QC REVISIONS:
	DCTD 9050 N. CAPITAL HWY, BLDG 3, SUITE 390		XA1 C12-040-3400 (212) C40-3400 (212)	IBPE FIRM REG. NO. 280	TBPLS FIRM REG. No. 100486
CR 175 ROAD IMPROVEMENTS	DER, TEXAS				
CR 175 ROAD IN	LEAN				
CR 175 ROAD IN	SAR	OF A.E. (C 1373 (/CEN ONA)	TE COFF 42 SEO	***	23

BENCHMARK NOTES:

00

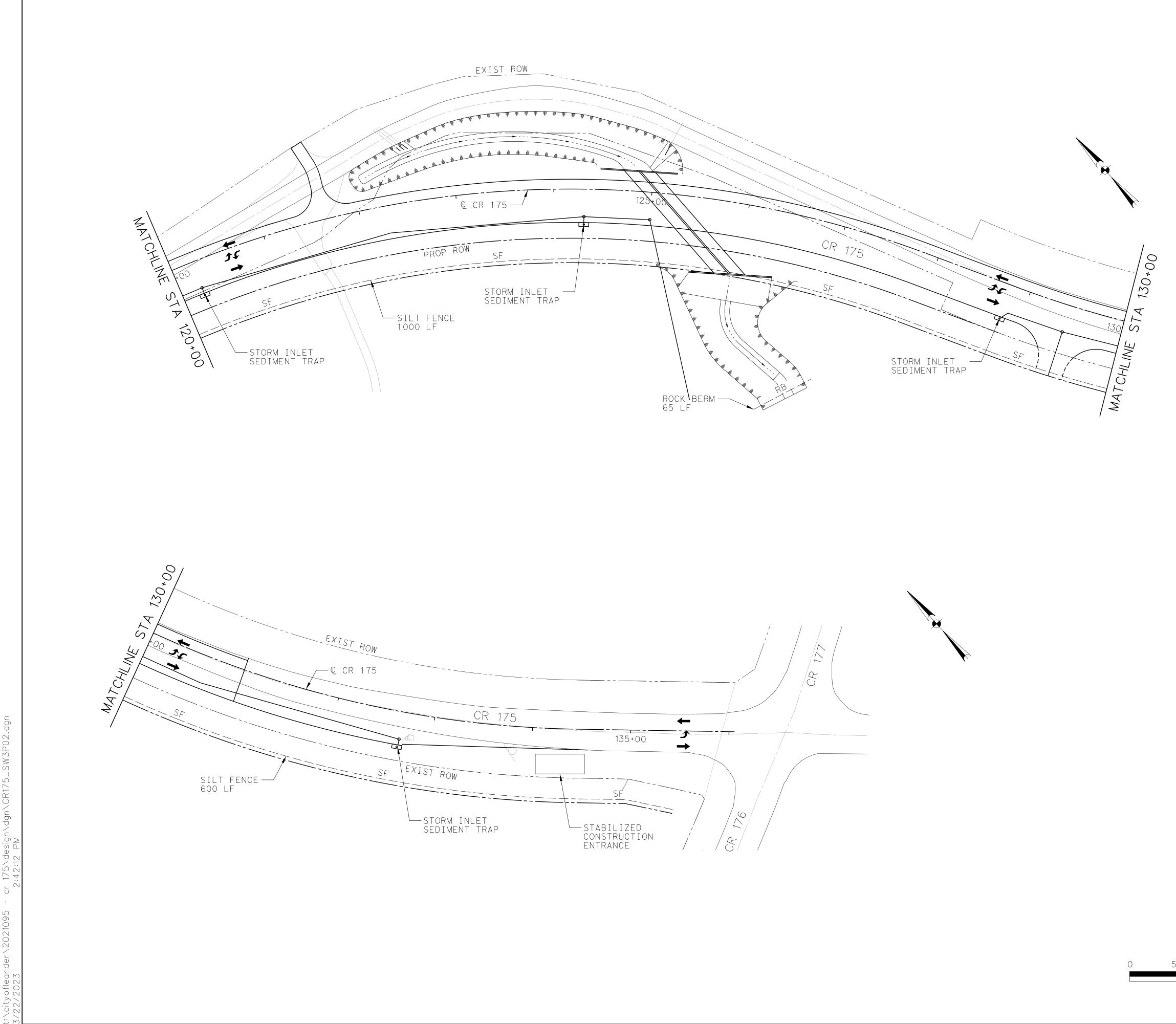
THE PROJECT IS REFERENCED FOR ALL BEARING AND COORDINATE BASIS TO THE TEXAS COORDINATE SYSTEM, NORTH AMERICAN DATUM OF 1983 (NAD83- 2011 ADJUSTMENT), CENTRAL ZONE (4203).

DISTANCES AND AREAS SHOWN HEREON ARE SURFACE VALUES REPRESENTED IN US SURVEY FEET BASED ON A GRID-TO-SURFACE COMBINED ADJUSTMENT FACTOR OF 1.00012936.


PORTIONS OF THE TRACT SHOWN HEREON APPEAR TO LIE WITHIN A SPECIAL FLOOD HAZARD AREA, ZONE "AE", AS IDENTIFIED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY, FEDERAL INSURANCE ADMINISTRATION, AS SHOWN ON MAP NO. 48491CO46OF, DATED DECEMBER 20, 2019 FOR WILLIAMSON COUNTY, TEXAS AND INCORPORATED AREAS.

THIS FLOOD PLAIN NOTE DOES NOT IMPLY THAT THE PROPERTY AND/PR STRUCTURES THEREON WILL BE FREE FROM FLOODING OR FLOOD DAMAGE. THIS FLOOD STATEMENT SHALL NOT CREATE LIABILITY ON THE PART OF THE SURVEYOR.

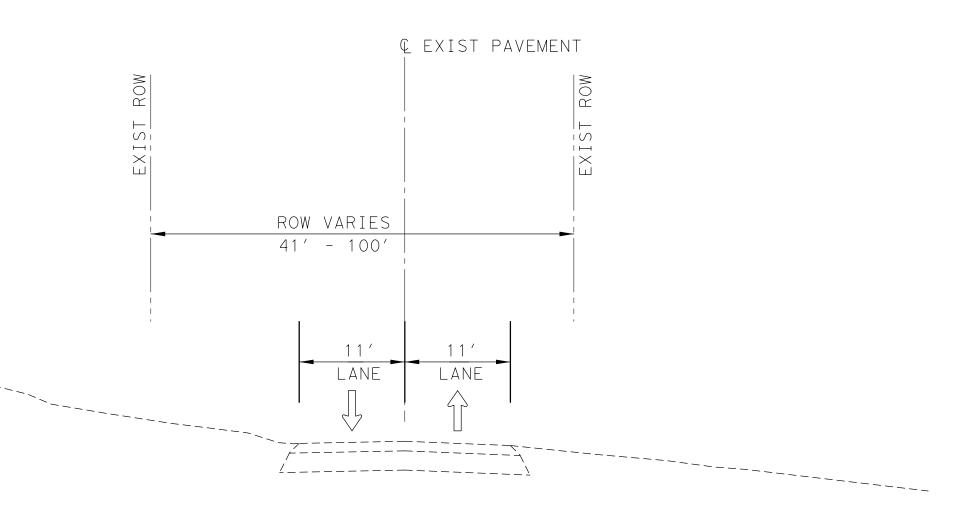
Control Point Table						
Point #	Northing	Easting	Elevation	Raw Description		
1	10183884.97	3098786.39	898.95	CP IRSC		
15	10184948.25	3098131.47	893.11	CP IRSC 1/2		
16	10185128.45	3097457.14	913.47	CP IRSC 1/2		
18	10185502.93	3097056.82	920.08	CP 60D		


100 200 300 1 '' = 1 00'

400



					DATE BY
					REVISION
DESIGNED:	DRAWN: COGO CHECKED:				QA/QC REVISIONS:NO.
ENGINEERING AND SURVEYING 9050 N. CAPITAL HWY, BLDG 3, SUITE 390	AUSTIN, TEXAS 78759	(212)040-3430 (212) 214-0313 FAX		_	TBPLS FIRM REG. No. 100486
CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	5		CONTROL LAYOUT		
CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	5	COFF 42 SEP	+ × s	***	Annull .


50	100		150	200
	1 "=50′	Η		



							DATE BY
							REVISION
							NO.
DESIGNED:	DESIGN CHECKED:	DRAWN.		SURVEY CHECKED:		OA/OC REVISIONS:	
		9050 N. CAPITAL HWY, BLDG 3, SUITE 390	(512)646-3456 (512) 514-0315 FAX		TEREFIEM FOUND 380	TBPLS FIRM REG. No. 100486	
		レアニ、ノ					

50	100		150	200
	1 "=50′	Η		

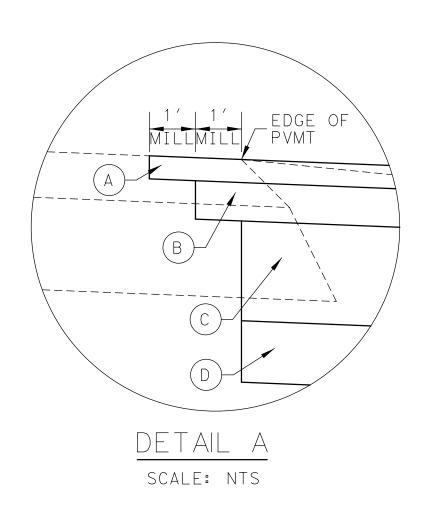
_EXIS⁻ SECT

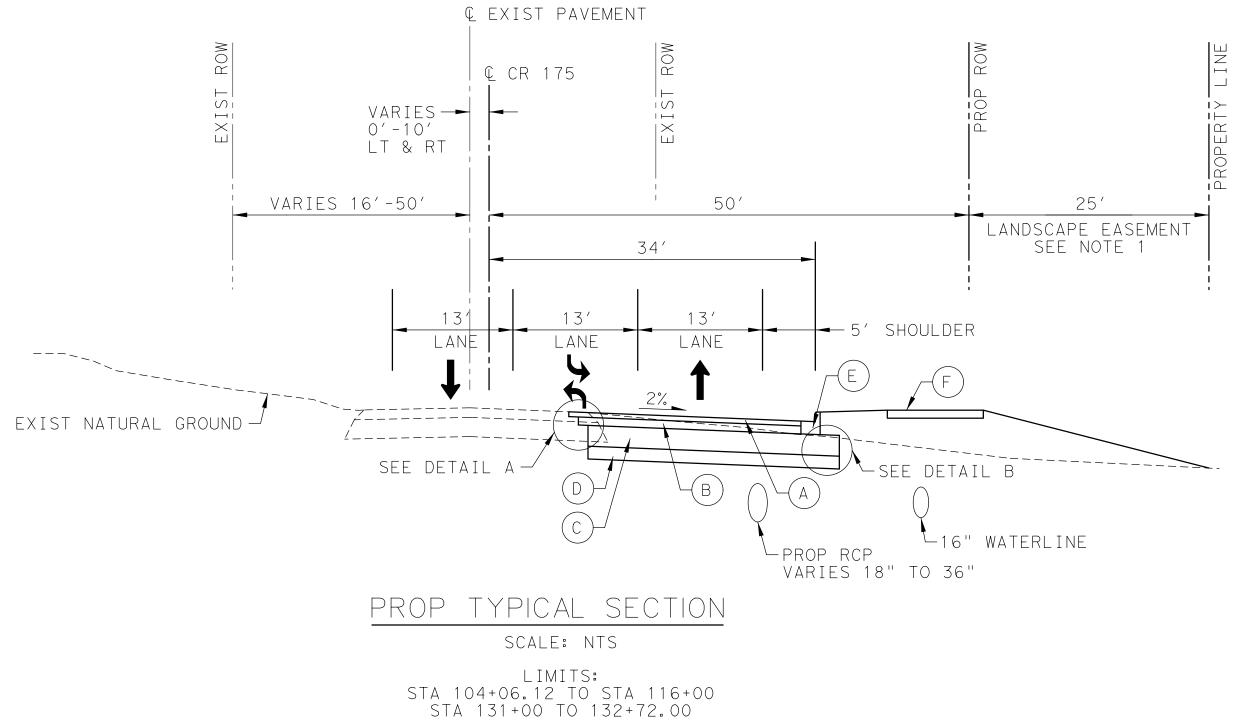


## EXIST TYPICAL SECTION SCALE: NTS

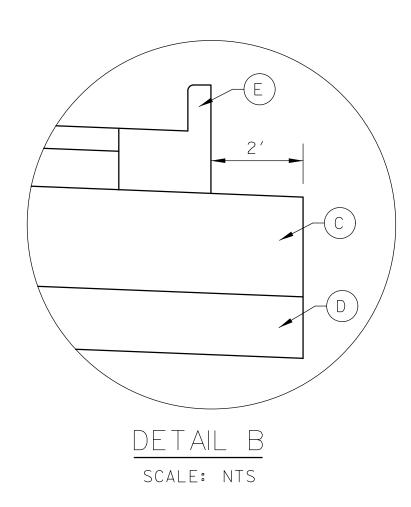
ROW

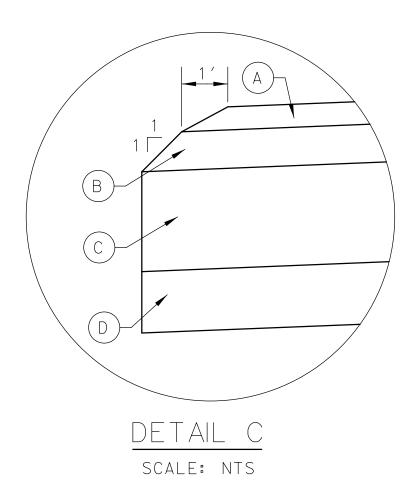
EXIST

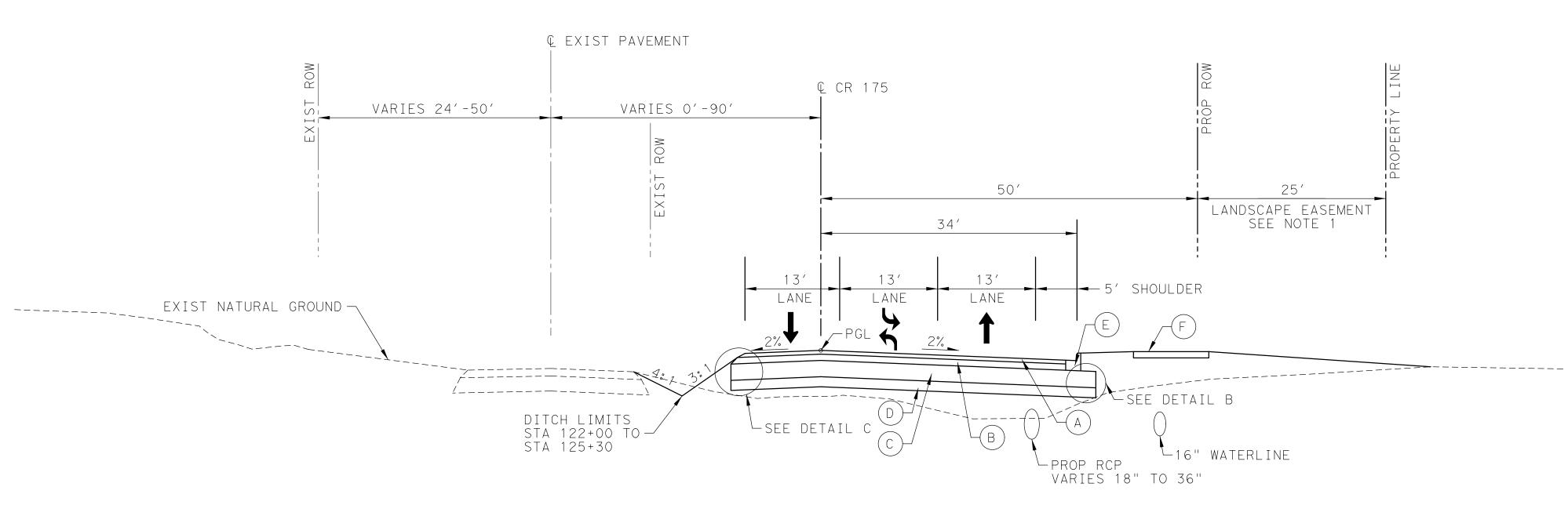

---\.


CR 175

HE F		CR 175 ROAD IMPROVEMENTS		DESIGNED:		
ET	M	LEANDER, TEXAS		DESIGN CHECKED:		
48	1 ز کر کر					
3	OF E. C 373 CEN NAI					
Ĉ	COFI		(512)040-3450 (512) 514-0315 FAX			
<b>)</b> S	NG Y	EXIVE FRICAL DECTION				
SHE			TBPE FIRM REG. No. 280			
ETS	223		TBPLS FIRM REG. No. 100486	QA/QC REVISIONS:	NO. REVISION	DATE BY


LEGEND


EXISTING LANE

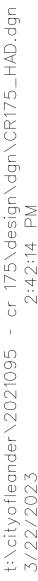










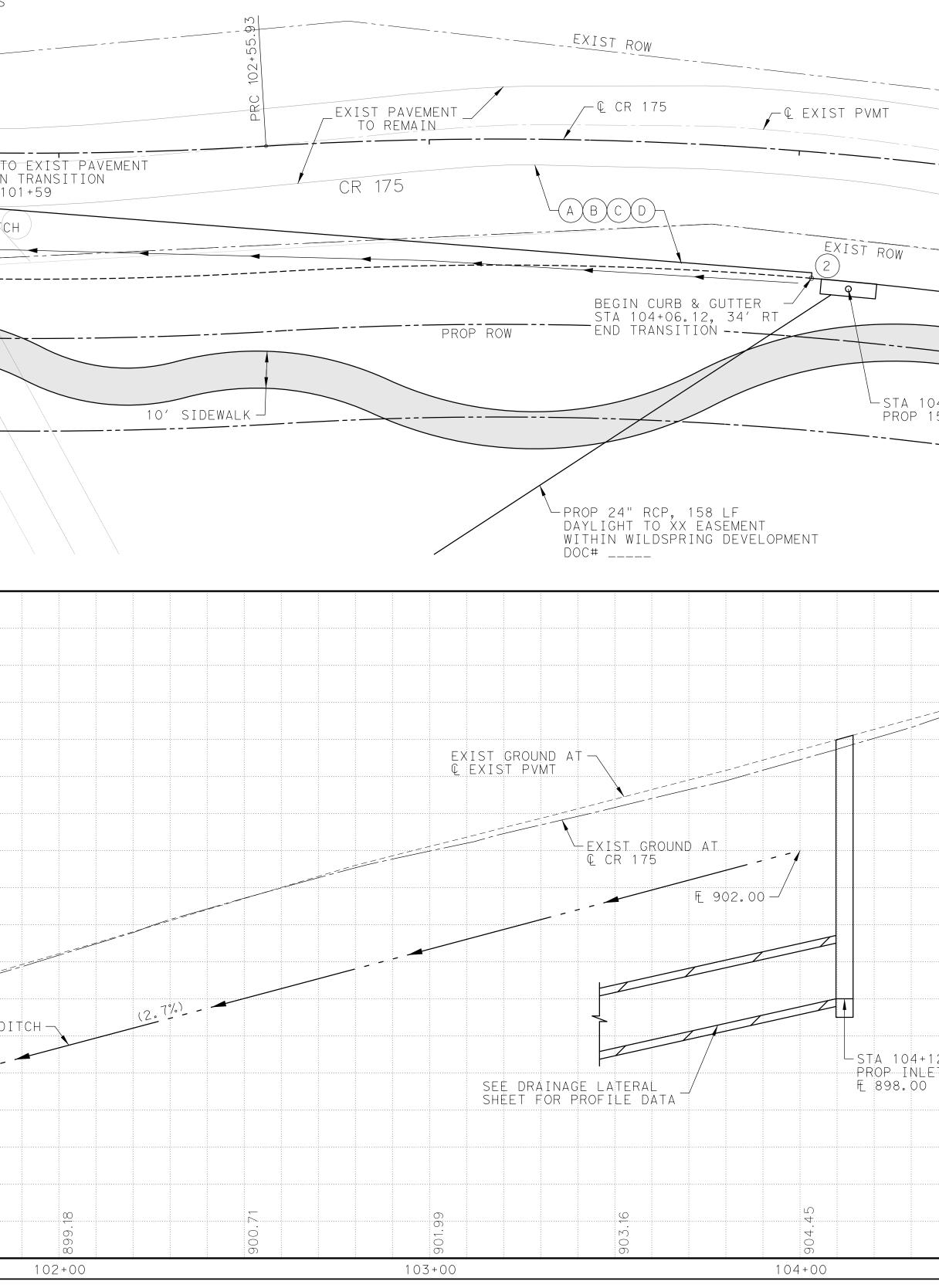



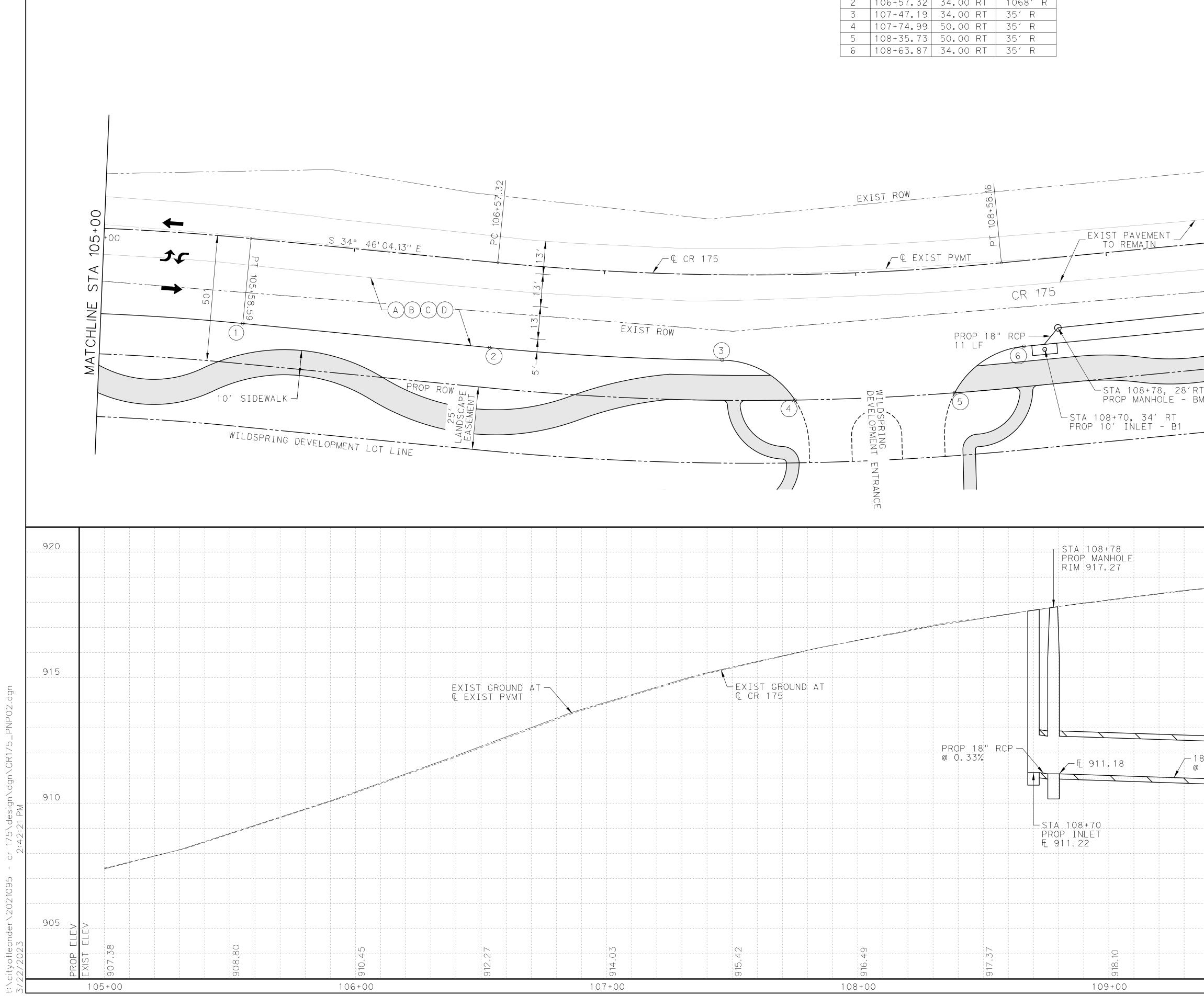





A 3" ASPHALT SURFACE		DATE BY
<ul> <li>(B) 5" ASPHALT BASE</li> <li>(C) 13" FLEXIBLE BASE</li> <li>(D) 8" LIME STABILIZED SUBGRADE</li> <li>(E) CONCRETE CURB &amp; GUTTER</li> <li>(F) 10' SIDEWALK</li> <li>✓ PROPOSED LANE</li> </ul>		REVISION
<ul> <li>EXISTING LANE</li> <li>NOTES</li> <li>LANDSCAPE EASEMENT TO BE MAINTAINED AND GRADED TO DRAIN FOR WILDSPRING DEVELOPMENT.</li> </ul>	DESIGNED:	DRAWN:COGO CHECKED:COGO CHECKED:DATE:DATE:NONO.
	RVEYING BLDG 3, SUITE 390	AUSTIN, TEXAS 78759 (512)646-3456 (512) 514-0315 FAX TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486
	CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	PROPOSED TYPICAL SECTION
	SAR SAR SAR SHEET	A E. COFFEY 137342 C/CENSED 0NAL 100 3/22/2023 10 8 SHEETS

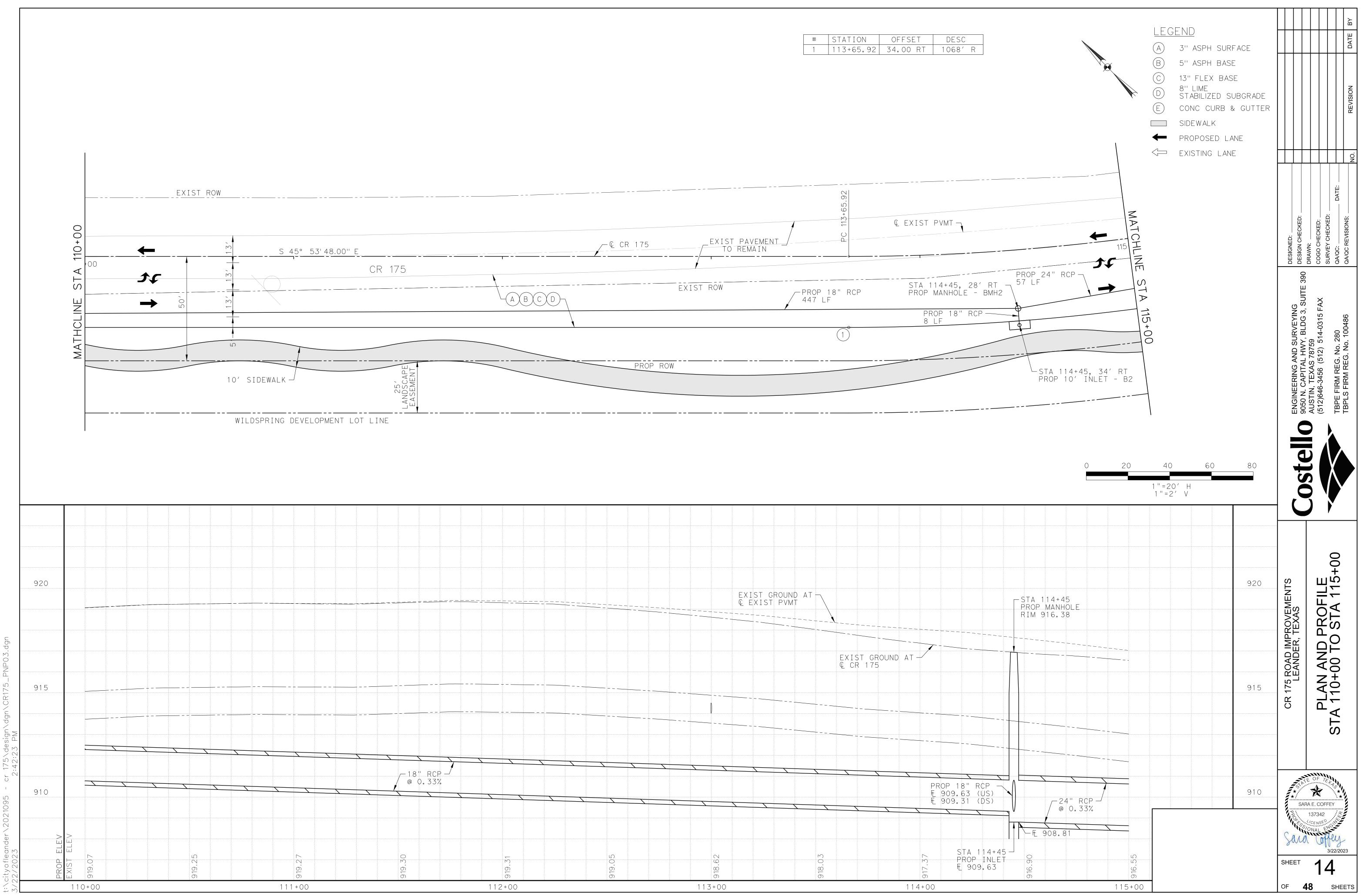
oint ALIGN01	N 10,185,	402.34 E	3,095,537.99 Sta	95+00.00
Course from ALIGN	01 to PC CR1751 S	538°41′	38.17" E Dist 524.12	
		Curve D *		
Curve CR1751 P.I. Station Pelta = Pegree = angent = ength = Radius = External = ong Chord =	101+40.51 12°50′42.21″ 5°32′28.24″ 116.39 231.81 1,034.00 6.53 231.33		10,184,902.42 E	3,095,938.4
lid. Ord. = P.C. Station P.T. Station P.C. Back = S	6.49 100+24.12 102+55.93 38° 41′ 38.17″ E 51° 32′ 20.38″ E	N N N	10,184,993.27 E 10,184,830.03 E 10,185,639.68 E	3,095,865.6 3,096,029.5 3,096,672.6
		Curve D *		
Curve CR1752 I. Station Delta = Degree = Tangent = Length = Radius =	104+08.35 16°46′16.25" 5°32′28.24" 152.42 302.66 1,034.00 11.17		10,184,735.23 E	3,096,148.9
ong Chord = lid. Ord. = c. Station c. T. Station c. C. Back = S chead = S chord Bear = S	301.59 11.05 102+55.93 105+58.59 51° 32′ 20.38″ E 34° 46′ 04.13″ E 43° 09′ 12.25″ E	N N N	10,184,830.03 E 10,184,610.01 E 10,184,020.37 E	3,096,029.5 3,096,235.8 3,095,386.4
Course from PT CR	1752 to PC CR1753	S 34° 4 Curve D	6′ 04.13" E Dist 98.73	
Curve CR1753 P.I. Station Pelta = Pegree = Tangent = Rength = Radius = External = Long Chord =	107+58.06 11°07′43.87″ 5°32′28.24″ 100.74 200.84 1,034.00 4.90 200.52	*	* 10,184,446.16 E	3,096,349.5
lid. Ord. = 2.C. Station 2.T. Station 2.C. Back = S head = S	4.87 106+57.32 108+58.16 34° 46′ 04.13″ E 45° 53′ 48.00″ E 40° 19′ 56.06″ E	N N N	10,184,528.91 E 10,184,376.05 E 10,185,118.55 E	3,096,292. 3,096,421.9 3,097,141.9
Course from PT CR	1753 to PC CR1754	S 45° 5 Curve D	3′ 48.00" E Dist 507.76 ata	)
Curve CR1754		*	<b>*</b>	
P.I. Station Pelta = Pegree = Tangent = Length = Radius = External = Long Chord =	116+08.42 26°23′53.18″ 5°32′28.24″ 242.50 476.40 1,034.00 28.06 472.20		10,183,853.90 E	3,096,960.6
head = S	27.32 113+65.92 118+42.32 45° 53′ 48.00″ E 72° 17′ 41.18″ E 59° 05′ 44.59″ E	N N N	10,184,022.68 E 10,183,780.15 E 10,184,765.18 E	3,096,786.5 3,097,191.6 3,097,506.1



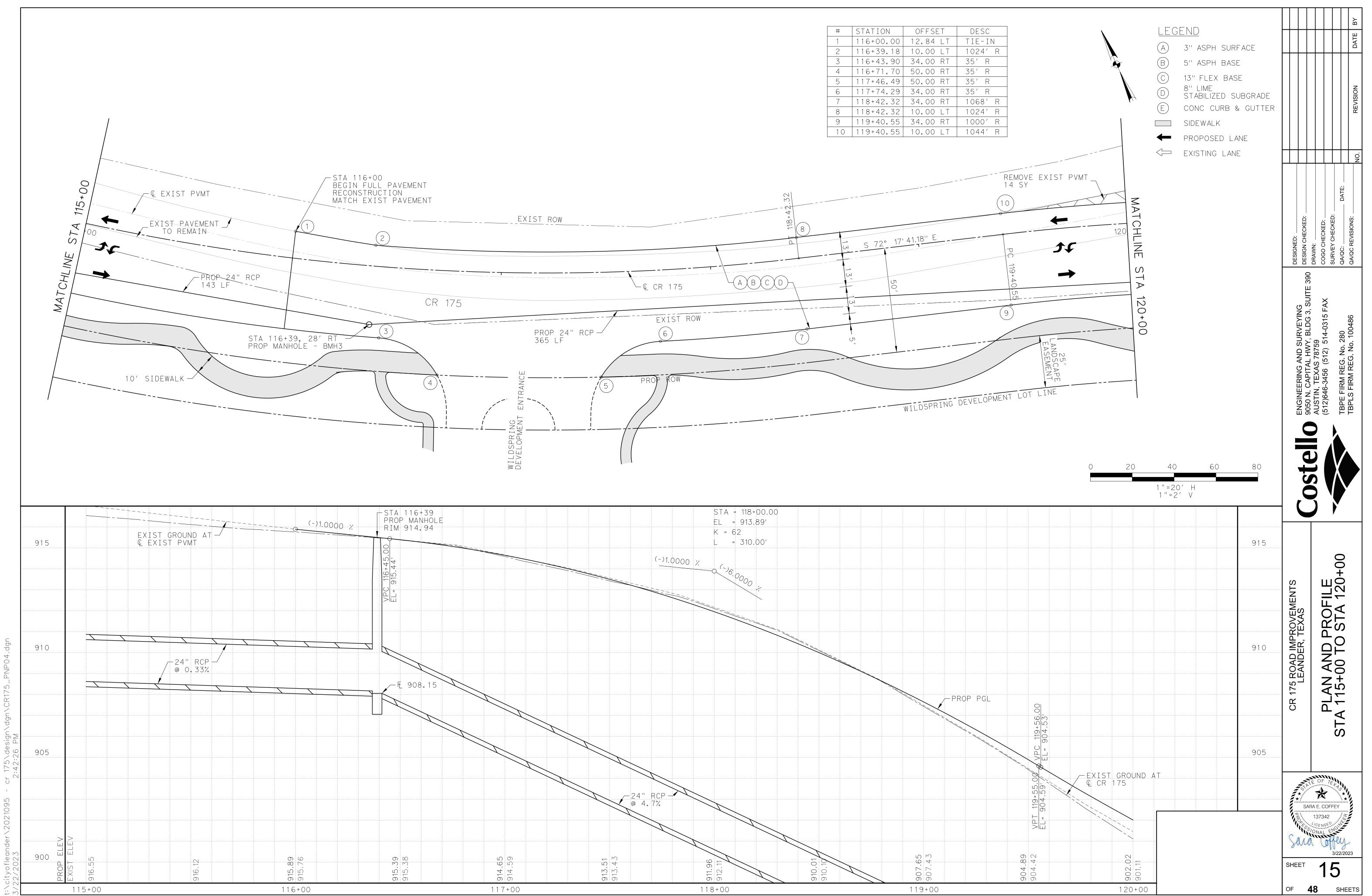


	Curve [ *	)ata *	
Curve CR1755P.I. Station123+89.21Delta=Degree=5° 32' 28.24"Tangent=448.66Length=846.63Radius=1,034.00External=93.14	N (RT)	10,183,613.83 E	3,097,712.66
Long Chord = 823.17 Mid. Ord. = 85.45 P.C. Station 119+40.55 P.T. Station 127+87.18 C.C. Back = S 72° 17′ 41.18″ E Ahead = S 25° 22′ 54.09″ E Chord Bear = S 48° 50′ 17.64″ E	N N N	10,183,750.28 E 10,183,208.48 E 10,182,765.26 E	3,097,285.25 3,097,904.98 3,096,970.79
Course from PT CR1755 to PC CR1756	6 S 25° 2	2′ 54.09" E Dist 97.75	
	Curve [ *	)ata *	
Curve CR1756P.I. Station131+71.10Delta=29° 53′ 54.31"Degree=5° 20′ 43.85"Tangent=286.18Length=59.32Radius=1,071.85External=		10,182,861.61 E	3,098,069.55
Long Chord =       552.99         Mid. Ord. =       36.28         P.C. Station       128+84.92         P.T. Station       134+44.24         C.C.       Back = S       25°       22′       54.09" E         Ahead = S       55°       16′       48.40" E         Chord Bear = S       40°       19′       51.25" E	N N N	10,183,120.16 E 10,182,698.61 E 10,183,579.61 E	3,097,946.88 3,098,304.78 3,098,915.26
Course from PT CR1756 to ALIGNO2 S	5 55° 16′	48.41" E Dist 161.17	
Point ALIGNO2 N 10,182,	606.81 E	3,098,437.25 Sta	136+05.41
	= = = = = = = = = =		============

	DATE BY
	REVISION
DESIGNED:	DRAWN:
COCTOL BOSO N. CAPITAL HWY, BLDG 3, SUITE 390	AUSTIN, TEXAS 78759 (512)646-3456 (512) 514-0315 FAX TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486
CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	HORIZONTAL ALIGNMENT DATA
CR 175 ROAD LEANDE	HORIZONTAL A

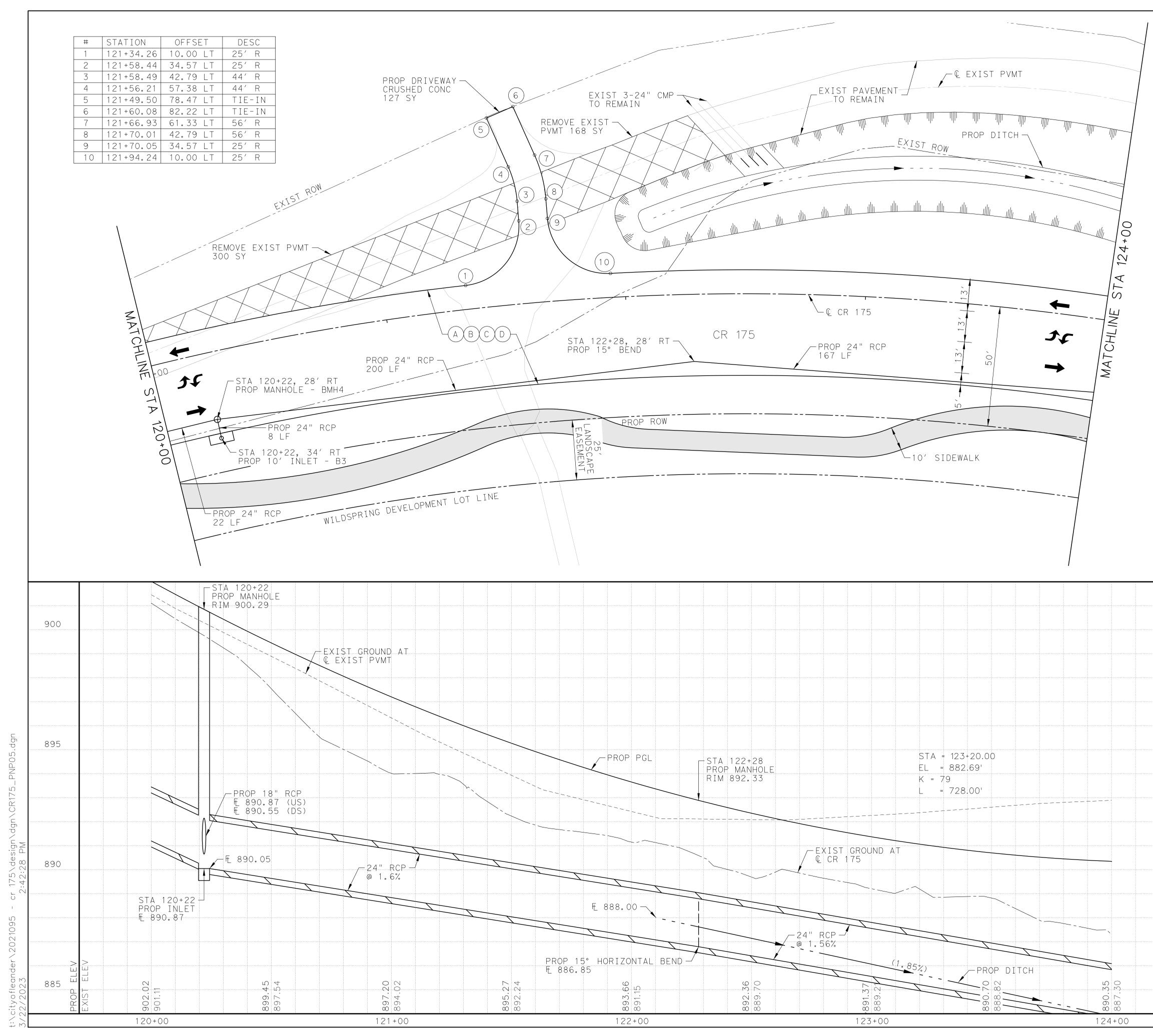
PC 100+24				-EXIST 2-2	24" CULVI
+00	FUTURE FACE OF	F CURB			PROP
	WILDSPR:	ING DEVELOF	MENT LOL TINE		
905					
900	· · · · · · · · · · · · · · · · · · ·		F 894 80 -		PR(
895 A B B B B B B B B B B B B B B B B B B B			F 894.80	898.02	


#       STATION       OFFS         1       101+59.62       13.64         2       104+06.12       34.00	4 RT TIE-IN	S		LEGEND         A       3" ASPH SU         B       5" ASPH BA         C       13" FLEX BA         C       13" FLEX BA         B       5" LIME         STABILIZED       E         CONC CURB       SIDEWALK         ←       PROPOSED         ←       EXISTING LA	ASE ASE SUBGRADE & GUTTER LANE		DATE:
175 © EXIS		SHINCET-A1	MATCHLINE STA 105+00				AUSTIN, TEXAS 78759 (512)646-3456 (512) 514-0315 FAX SURVEY CHECKED:
RCP, 158 LF TO XX EASEMENT LDSPRING DEVELOPMENT 			0 20	40 60 1 "=20' H 1 "=2' V	80	Costallo	
GROUND AT 75 E 902.00					905	175 ROAD IMPROVEMENTS LEANDER, TEXAS	AN AND PROFILE OJECT TO STA 105+00
AL DATA	STA 104+12 PROP INLET E 898.00				895	CR	A E. COFFEY 137342
104+00 104+00		905.95	8 2 0 0 105+00			SHEET	NAL ENGLACIONAL 3/22/2023 12 8 SHEETS

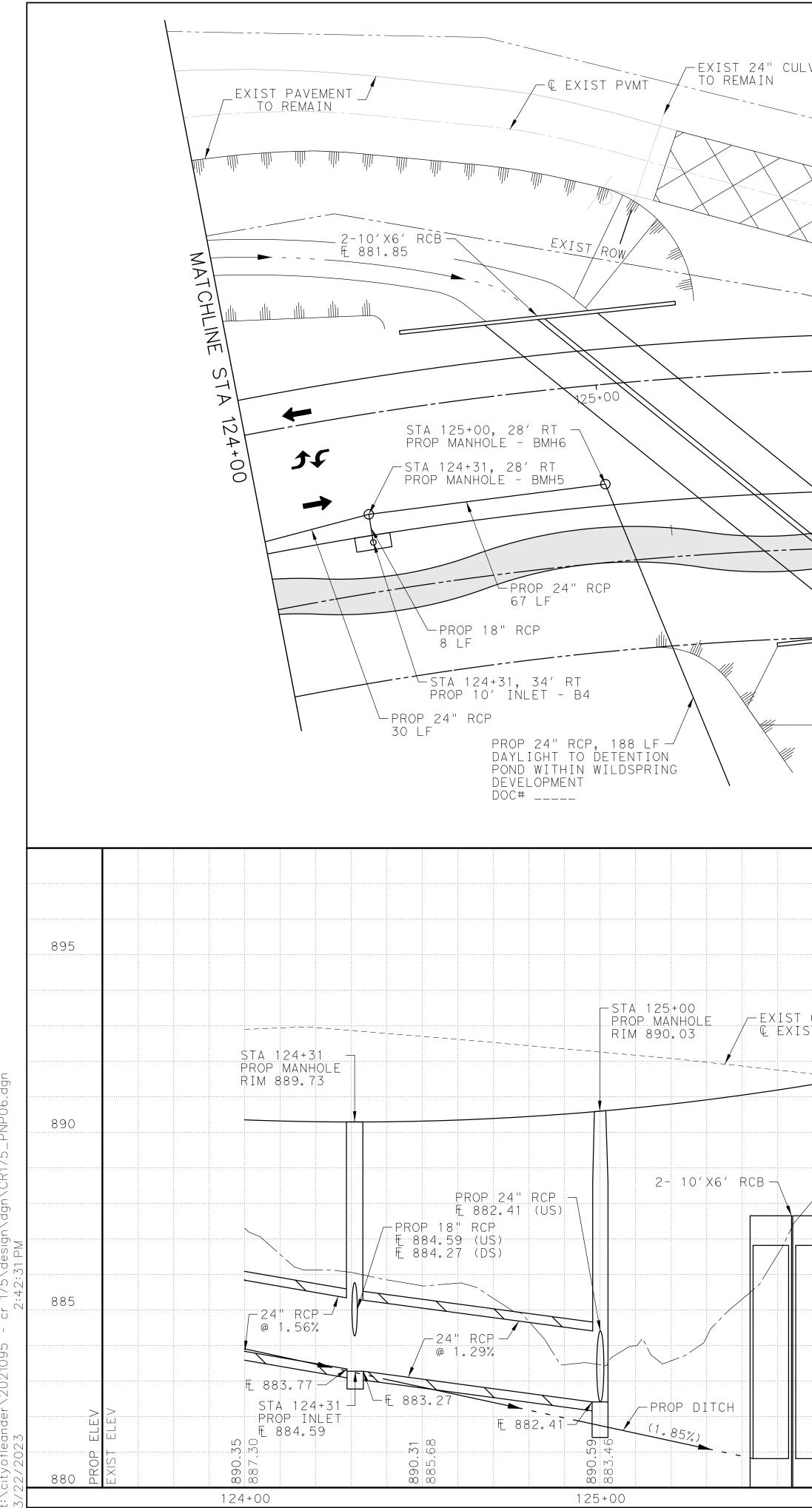





STATION	OFFSET	DESC
105+58.59	34.00 RT	1000′ R
106+57.32	34.00 RT	1068′ R
107+47.19	34.00 RT	35′ R
107+74.99	50.00 RT	35′ R
108+35.73	50.00 RT	35′ R
108+63.87	34.00 RT	35′ R
	106+57.32 107+47.19 107+74.99 108+35.73	105+58.59       34.00 RT         106+57.32       34.00 RT         107+47.19       34.00 RT         107+74.99       50.00 RT         108+35.73       50.00 RT

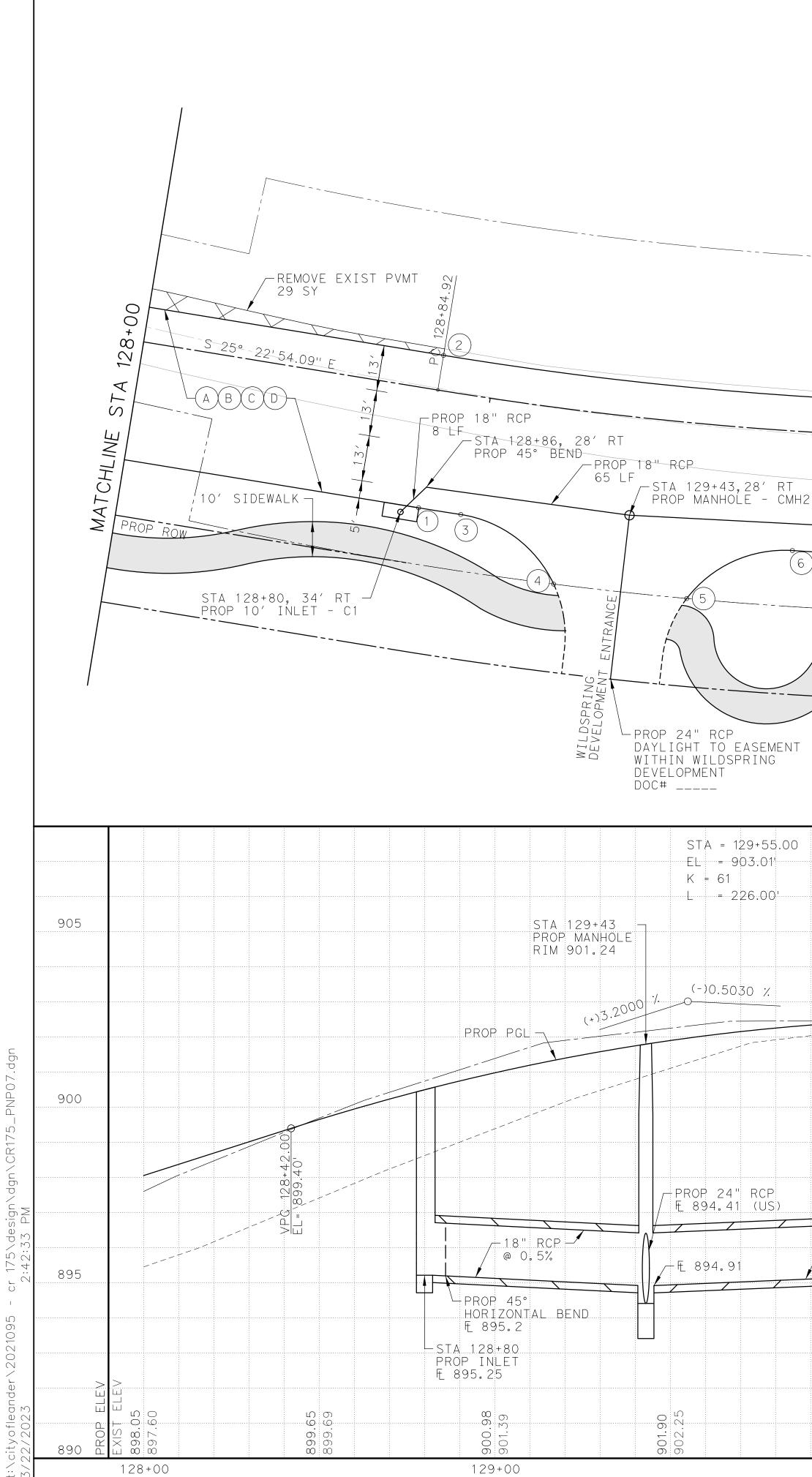

						5" AS 13" FL 8" LIN STABIL CONC SIDEW PROPC	LIZED SI	E JBGRADE & GUTTER		NO. BY DATE BY
ст. ЗМН 1		- PROP 1 1 30 LF	■ → 18" R(	MATHCLINE STA 110+00						AUSTIN, TEXAS 78759 (512)646-3456 (512) 514-0315 FAX SURVEY CHECKED: SURVEY CHECKED: SURVEY CHECKED: AA/QC: DATE: TBPLS FIRM REG. No. 100486 QA/QC REVISIONS:DATE:
			0	20	40 1 " = 2 1 " = 2		60	80		
8" RCP 0.33%								915 910	CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	PLAN AND PROFILE STA 105+00 TO STA 110+00
	918.68			L0.616 110+00					SAR SAR SAR SHEET	A E. COFFEY 137342 CICENSE 0NAL 3/22/2023 133 8 SHEETS




ſ	#	STATION	OFFSET	DESC
	1	113+65.92	34.00 RT	1068′ R



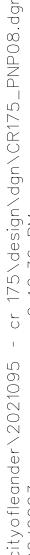
#	STATION	OFFSET	DESC
1	116+00.00	12.84 LT	TIE-IN
2	116+39.18	10.00 LT	1024′ R
3	116+43.90	34.00 RT	35′ R
4	116+71.70	50.00 RT	35′ R
5	117+46.49	50.00 RT	35′ R
6	117+74.29	34.00 RT	35′ R
7	118+42.32	34.00 RT	1068′ R
8	118+42.32	10.00 LT	1024′ R
9	119+40.55	34.00 RT	1000' R
10	119+40.55	10.00 LT	1044′ R



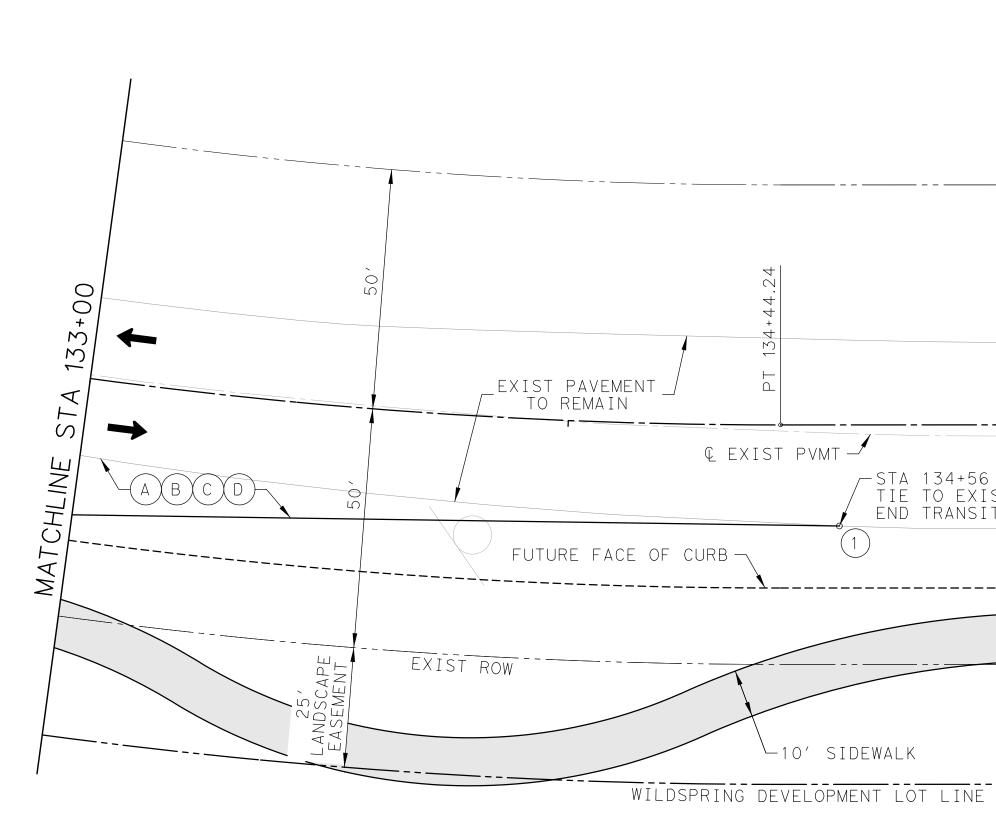

							5'' 13'' STA CON SIDE PRC	ASPH ASPH FLEX LIME BILIZE	BASE BASE D SU RB & D LAI	E BGRADE GUTTER NE		AUSTIN, TEXAS 78759       DRAWN:
CR 175 ROAD IMPROVEMENTS STA 120+00 TO STA 124+00			•	D 	20	)		60		80	Costello	
890 SARA E. COFFEY 137342 SARA E. COFFEY 137342 SARA E. COFFEY 137242 SARA E. COFFEY 3J22/2023	 									900		00
890 SARA E. COFFEY 137342 SARA E. COFFEY 137342 SARA E. COFFEY 137242 SARA E. COFFEY 3J22/2023	 										ROVEMENTS EXAS	PROFILE STA 124+(
890 SARA E. COFFEY 137342 SARA E. COFFEY 137342 SARA E. COFFEY 137242 SARA E. COFFEY 3J22/2023										895	(175 ROAD IMPF LEANDER, T	-AN AND F 20+00 TO
137342 (State Solution of the second										890	CR	PI STA 1
											SAF	A E. COFFEY
	 										SALO SALO	3/22/2023

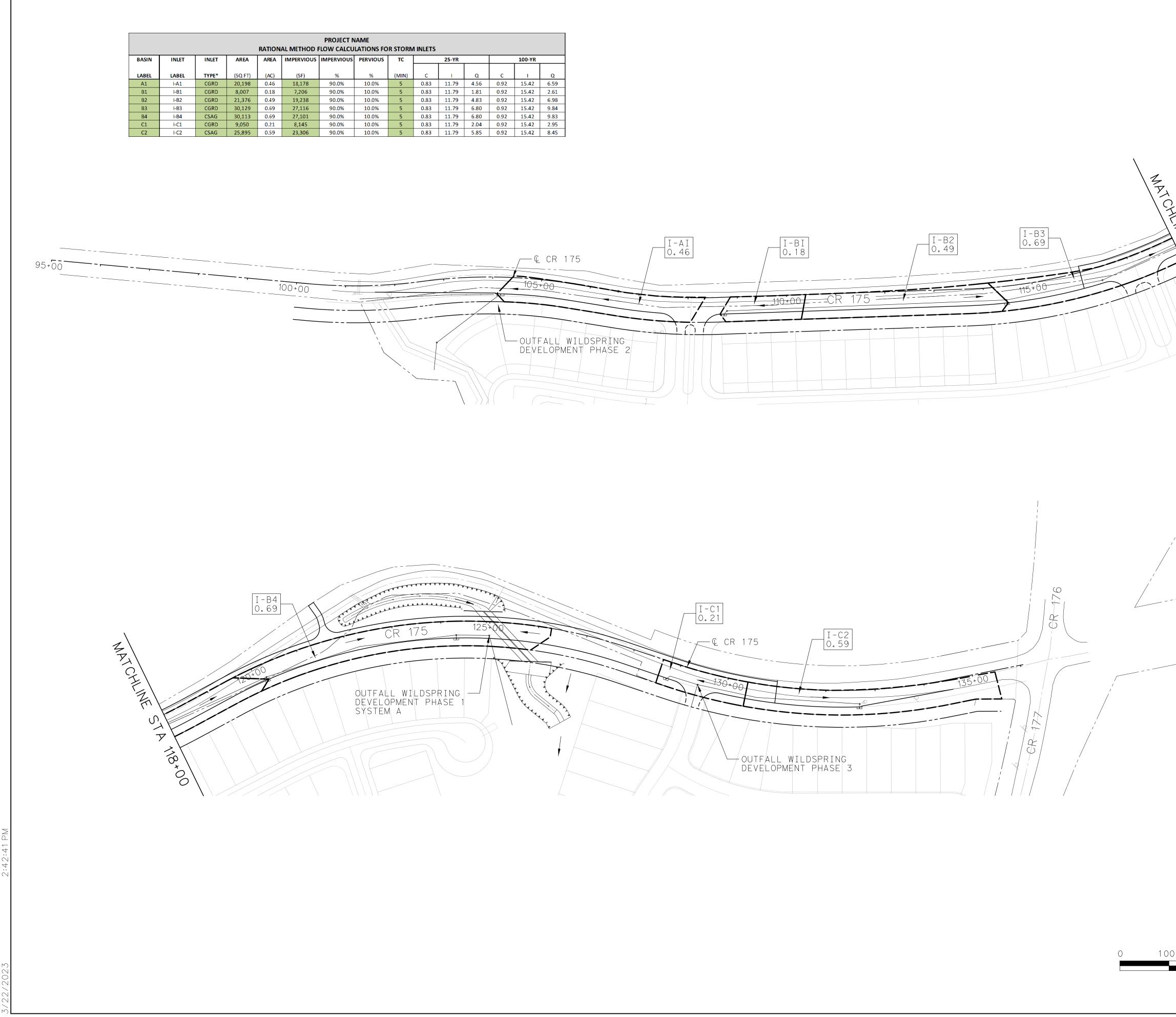


R17 175, с ( I. 2021095

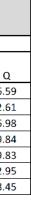

		ERT
D AT PROP T OR T IST GROUND AT CR 175	-¢ CR 175	REMOVE
PGL	EXIST PVMT	EXIST PVMT
		# 1 2
	ING DEVELOPMENT LOT LINE	127+87.18 34.00 RT
	MATCHLINE STA 128+00	DESC 1000' R 1044' R
		LE (A) (B) (C)
40 60 = 20' H = 2' V	8'' LIME STABILIZED S CONC CURB & SIDEWALK	
80	UBGRADE & GUTTER ANE	E
	390	
	AUSTIN, TEXAS 78759 (512)646-3456 (512) 514-0315 FAX TBPE FIRM REG No. 280 TBPLS FIRM REG No. 100486	DATE BY



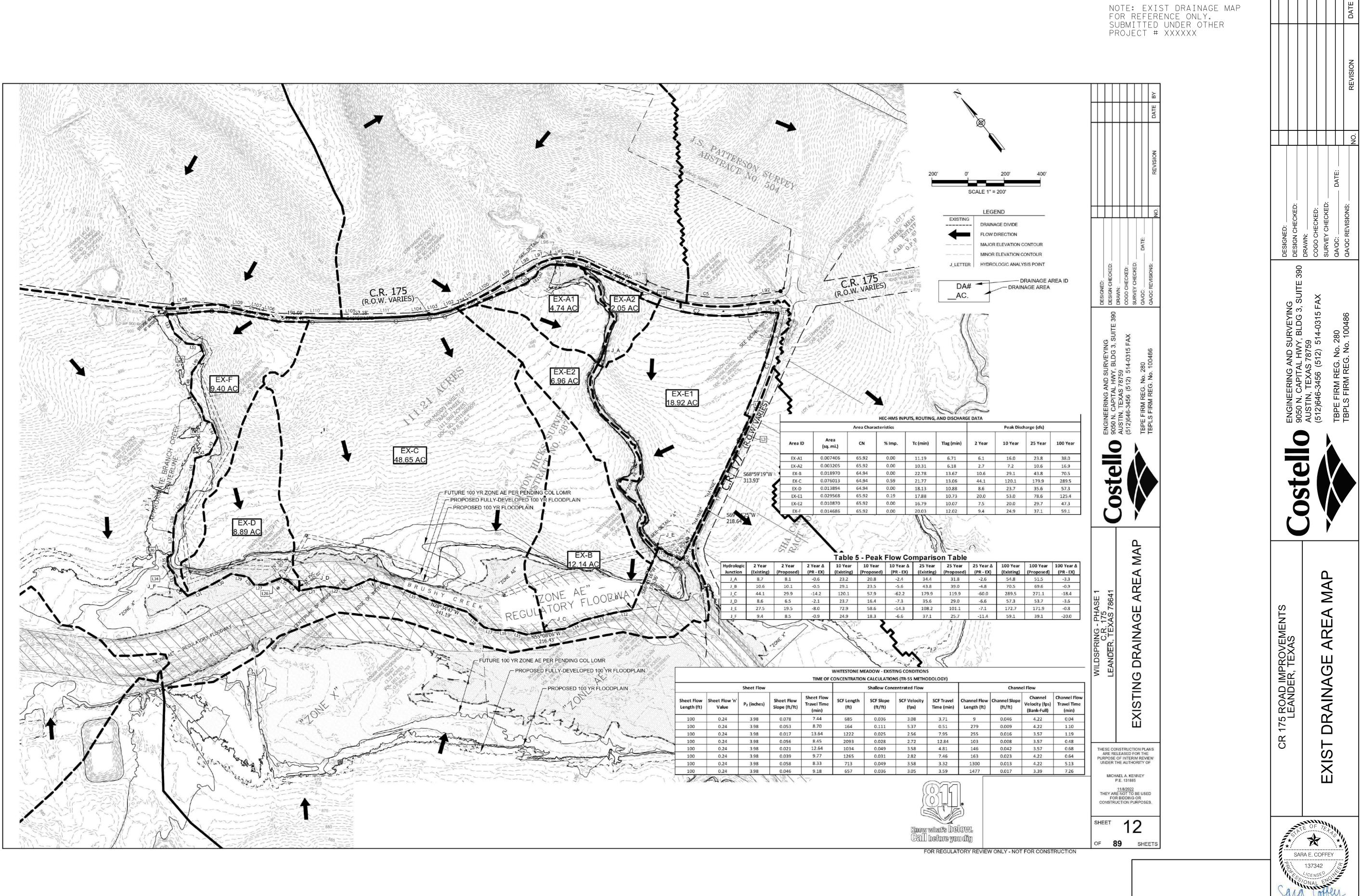

CR175. I -\2021095


#	STATION	OFFSET	DESC
1	128+84.92	34.00 RT	1105.85′ R
2	128+84.92	10.00 LT	1061.85′ R
3	128+96.71	34.00 RT	35′ R
4	129+24.55	50.00 RT	35′ R
5	129+60.97	50.00 RT	35′ R
6	129+88.81	34.00 RT	35′ R
7	131+00.00	10.00 LT	TIE-IN
8	132+72.00	34.00 RT	1105.85′ R

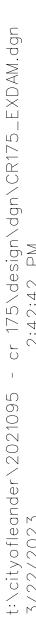
				#       STATION         1       128+84.         2       128+84.         3       128+96.         4       129+24.         5       129+60.         6       129+88.         7       131+00.         8       132+72.	92 34.00 RT 92 10.00 LT 71 34.00 RT 55 50.00 RT 97 50.00 RT 81 34.00 RT 00 10.00 LT 00 34.00 RT	1061.85′ 35′ R 35′ R 35′ R 35′ R 35′ R TIE-IN	R			A 3" ASPH SURFACE B 5" ASPH BASE C 13" FLEX BASE 0 13" FLEX BASE 8" LIME D STABILIZED SUBGE CONC CURB & GU SIDEWALK PROPOSED LANE EXISTING LANE	RADE	
PR	RECONSTR	RUCTION (IST PAVEMENT N <b>A</b>	PRC 210 EASEMEN	OP 18" RCP O LF		AVEMENT	STA 132+68, PROP MANHOI PROP MANHOI	© EXIST PVMT	С 20			OSTELIOBUGINEEKING AND SUKVEYING0050 N. CAPITAL HWY, BLDG 3, SUITE 390DESIGN CHECKED:9050 N. CAPITAL HWY, BLDG 3, SUITE 3, SUITE
) 		VPT 130+68.00 EL-902.45	- EXIST GROUN Q EXIST PVN	ND AT /Τ /Τ - 18" RCP @ 0. 42%		EXIST ( Q CR 1	GROUND AT	STA 132+68 PROP MANHOLE RIM 900.88	-PROP 24" RCP E 896.35 (US) E 896.31 (DS)		CR 175 ROAD IMPROVEMENTS	PLAN AND PROFILE STA 128+00 TO STA 133+00
0.42% 0.42% 005.41 002.42%	24	PROP 45° E 895.43	602.20 601.94 601.04		901.76	901.78		901.53 901.46	STA 132+68 PROP INLET E 896.35			SARA E. COFFEY




	HLINE STA 133+00	È CI EXIST	EXIST PAV TO REMA FUTURE F	/EMENT AIN ¢	EXIST PVMT -	- STA 134+56 TIE TO EXIS END TRANSI )	<u>S 55</u> 135+00 ST PAVEMENT TION	EXIST ROW	POT 136+05.41	E EXIST CR	175		<ul> <li>B</li> <li>5"</li> <li>C</li> <li>13"</li> <li>D</li> <li>8"</li> <li>ST</li> <li>E</li> <li>CO</li> <li>SID</li> <li>↓</li> <li>PR</li> </ul>	ASPH SURFA ASPH BASE FLEX BASE LIME ABILIZED SUB NC CURB & (	GRADE GUTTER
												0 20	0 40 1 " = 20' + 1 " = 2' V		
905															905
)				Ţ_ĒXI ÇĒ	ST GROUND AT XIST PVMT										
2:42:36															





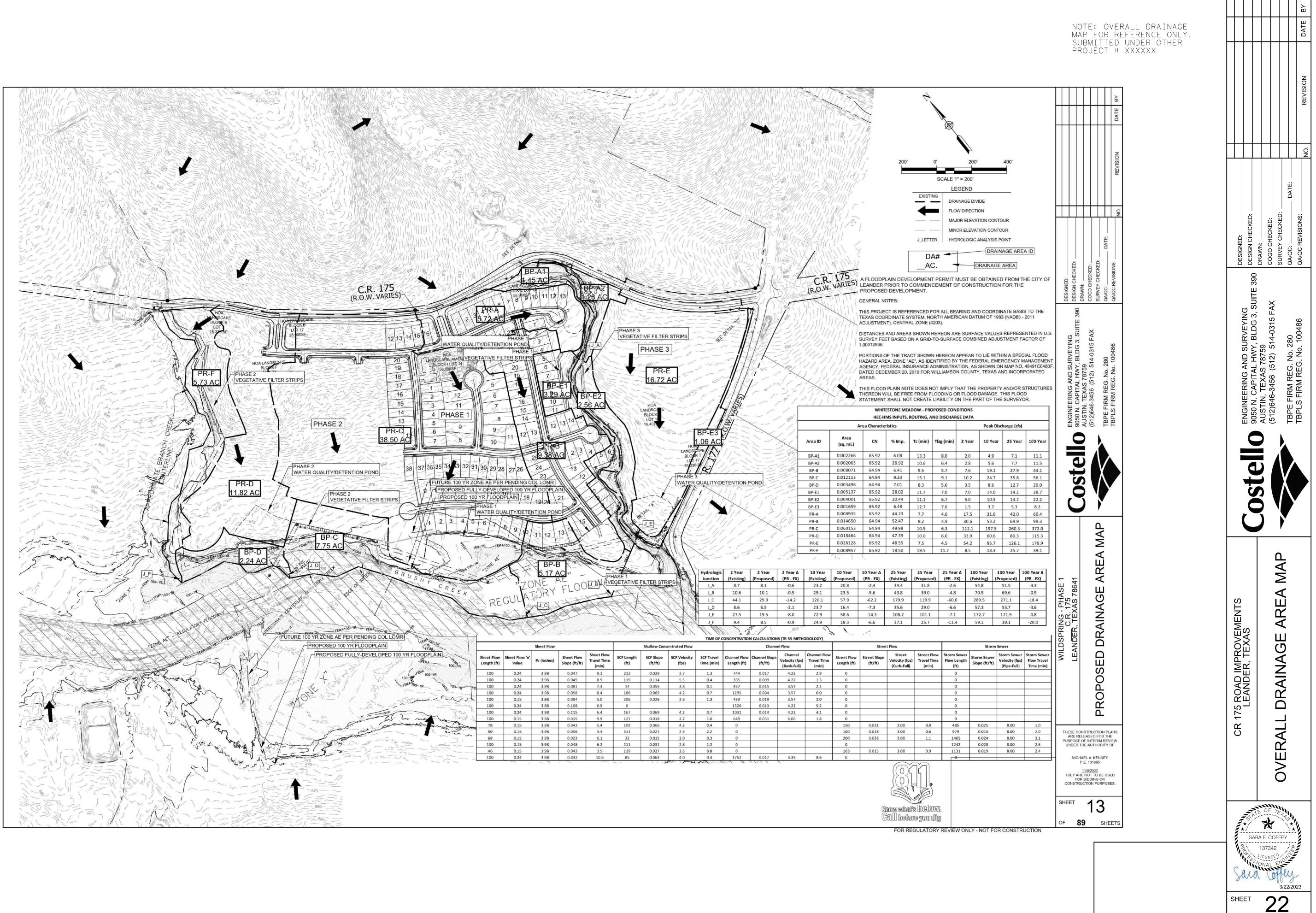


S ப



	<u>LE(</u>  I-XX 0.00	<u>GEND</u> drainage boundary flow direction drainage area acreage		REVISION DATE BY
The second secon	DRAIN	SEE OVERALL AGE MAP FOR SRING DEVELOPMENT R 175	DESIGNED:	COGO CHECKED:
				AUSTIN, TEXAS 78759 (512)646-3456 (512) 514-0315 FAX TBPE FIRM REG. No. 280 TBPLS FIRM REG. No. 100486
			CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	DRAINAGE AREA MAP
) 200 300 1 '' = 1 00 '	400			OF TEHY AE. COFFEY 137342 CENSED MAL ENGINE 3/22/2023 20 8 SHEETS








3/22/2023

**1** 

OF **48** SHEETS

SHEET





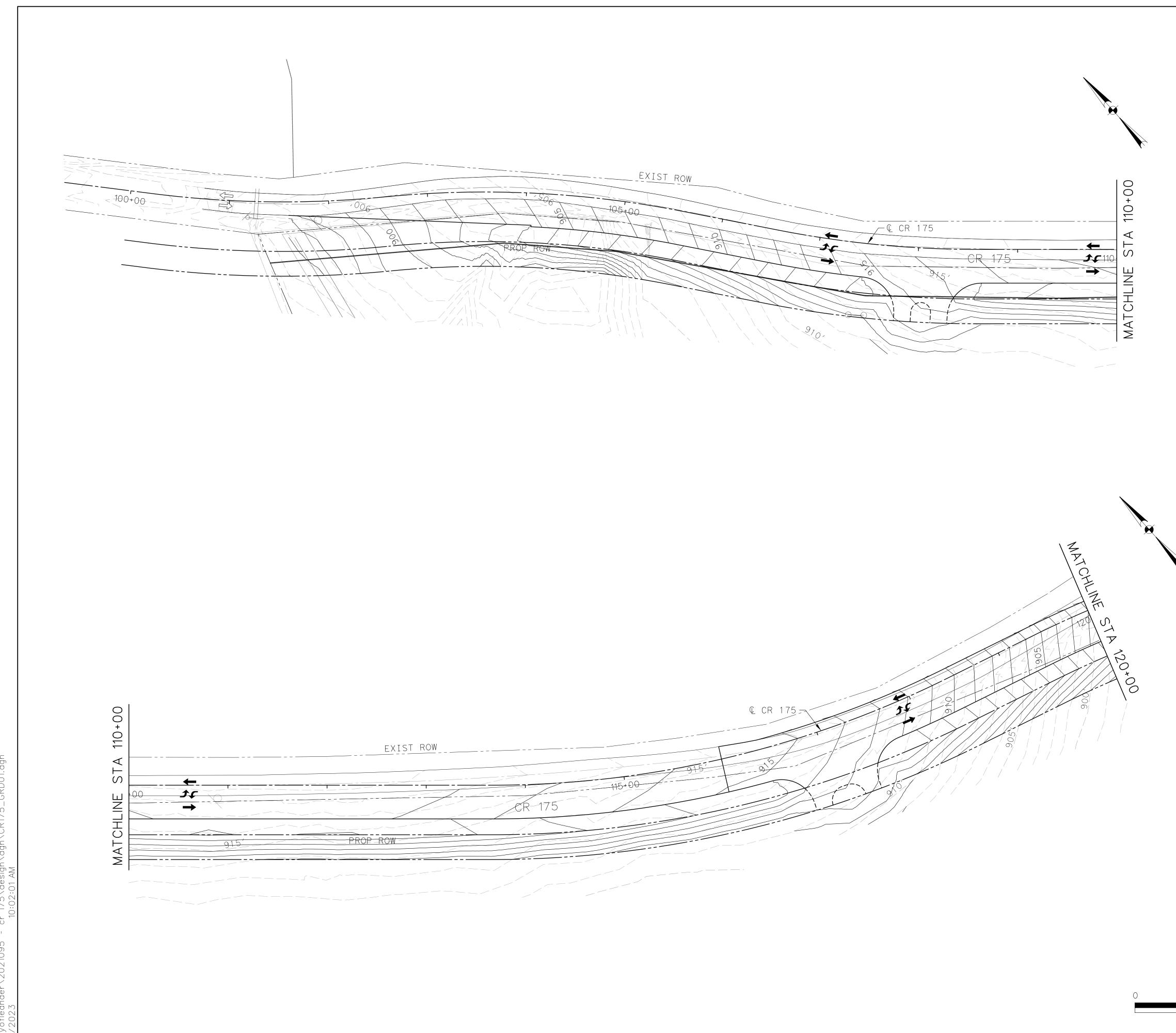
OF **48** SHEETS

				RATION	AL METHOD	PROJECT N		R STORM	1 INLETS						COA C-Valu	ues	2	10	25	100
BASIN	INLET	INLET	AREA	AREA	IMPERVIOUS	IMPERVIOUS	PERVIOUS	тс		25-YR			100-YR		Imperviou	-	0.75	0.8	0.88	0.97
															Perviou	IS (	0.33	0.38	0.42	0.49
LABEL	LABEL	TYPE*	(SQ FT)	(AC)	(SF)	%	%	(MIN)	С	I	Q	С	I	Q						
A1	I-A1	CGRD	20,198	0.46	18,178	90.0%	10.0%	5	0.83	11.79	4.56	0.92	15.42	6.59						
B1	I-B1	CGRD	8,007	0.18	7,206	90.0%	10.0%	5	0.83	11.79	1.81	0.92	15.42	2.61	COA	IDF Cur	ve Values			
B2	I-B2	CGRD	21,376	0.49	19,238	90.0%	10.0%	5	0.83	11.79	4.83	0.92	15.42	6.98	Y	ear	а	b	6	:
B3	I-B3	CGRD	30,129	0.69	27,116	90.0%	10.0%	5	0.83	11.79	6.80	0.92	15.42	9.84		2	45.24	9.339	0.73	899
B4	I-B4	CSAG	30,113	0.69	27,101	90.0%	10.0%	5	0.83	11.79	6.80	0.92	15.42	9.83		10	61.25	8.352	0.71	L <b>47</b>
C1	I-C1	CGRD	9,050	0.21	8,145	90.0%	10.0%	5	0.83	11.79	2.04	0.92	15.42	2.95		25	69.96	7.941	0.69	954
C2	I-C2	CSAG	25,895	0.59	23,306	90.0%	10.0%	5	0.83	11.79	5.85	0.92	15.42	8.45	1	00	77.31	6.832	0.65	524

								·	·							Curb Inl	ets On Gr	ade Calculation S	Summary: 1	LOO year															
Drair Area	age No.	Inlet No.	Q ₁₀₀ (cfs)	Q _{pass} (cfs)	, Q _{total} (cfs)	Slope (%)	n	Ku	Street Width (ft)	Sx (%)	Crown Height (above gutter FL) (ft)	Curb Depression, a' (ft)	Inlet Depression, a (ft)	W (ft)	Gutter slope, Sw (%)	Z	Sw/Sx	Depressed Gutter Slope, S' _w (%)	Reduction Factor	Q _s (Assumed) (cfs)	Eo	T/W	Ponded Width,T (ft)	Width in Street, Ts (ft)	Q _{s, calculated} (cfs)	Error	S _e (ft/ft)	y0 (ft)	L _T (ft) (ft)	Length (ft)	L/L _T	Q _{pass} (cfs)	% Captured	(Bypass to Inlet #)	Flow Captured by Inlet (cfs)
А	L	I-A1	6.59	0	6.59	1.30%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	4.47	0.32	9.0	13.6	12.1	4.47	0%	0.11	0.32	16.22	15.00	0.92	0.06	99%	0	6.53
B	-	I-B1	2.61	0	2.61	1.20%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	1.41	0.46	6.30	945%	795%	141%	0%	0.15	0.24	8.99	10.00	1.11		100%	Al	2.61
B	2	I-B2	6.98	0	6.98	0.70%	0.020	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	5.20	0.25	11.38	1707%	1557%	520%	0%	0.09	0.39	13.52	10.00	0.74	0.62	91%	B3	6.36
B	5	I-B3	9.84	0	9.84	5.40%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	6.24	0.37	7.97	1196%	1046%	624%	0%	0.12	0.29	27.65	10.00	0.36	4.38	55%	B4	5.45
C		I-C1	2.95	0	2.95	2.50%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	1.46	0.50	5.68	852%	702%	146%	0%	0.16	0.22	11.22	10.00	0.89	0.05	98%	0	2.90

															Curb Ir	lets On O	Grade Calculation	Summary:	25 year															
Drainage Area No.	Inlet No.	Q ₂₅ (cfs)	Q _{pass} (cfs)	Q _{total} (cfs)	Slope (%)	n	Ки	Street Width (ft)	Sx (%)	Crown Height (above gutter FL) (ft)	Curb Depression, a' (ft)	Inlet Depression, a (ft)	W (ft)	Gutter slope, Sw (%)	z	Sw/Sx	Depressed Gutter Slope, S' _w (%)	Reduction Factor	Q _s (Assumed) (cfs)	Ε _ο	T/W	Ponded Width,T (ft)	Width in Street, Ts (ft)	Q _{s, calculated} (cfs)	Error	S _e (ft/ft)	y0 (ft)	L _T (ft) (ft)	Length (ft)	L/L _T	Q _{pass} (cfs)	% Captured	(Bypass to Inlet #)	Flow C (Only c by Inl all inp are fir
A1	I-A1	4.56	0	4.56	1.30%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	2.86	0.37	7.8	11.7	10.2	2.86	0%	0.12	0.29	12.91	15.00	1.16		100.0%		4.56
B1	I-B1	1.81	0	1.81	1.20%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	0.85	0.53	5.38	8.07	6.57	0.85	0%	0.17	0.21	7.14	10.00	1.40		100.0%	A1	1.81
B2	I-B2	4.83	0	4.83	0.70%	0.020	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	3.40	0.29	9.86	14.79	13.29	3.40	0%	0.10	0.35	10.79	10.00	0.93	0.04	99.1%	B3	4.78
B3	I-B3	6.80	0	6.80	5.40%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	3.92	0.42	6.86	10.29	8.79	3.92	0%	0.14	0.26	21.98	10.00	0.45	2.28	66.5%	B4	4.52
C1	I-C1	2.04	0	2.04	2.50%	0.016	0.560	34.00	2.00%	0.423	0.083	0.42	1.50	7.53%	50.00	3.77	27.78%	1.0	0.86	0.58	4.83	7.24	5.74	0.86	0%	0.18	0.20	8.91	10.00	1.12		100.0%		2.04

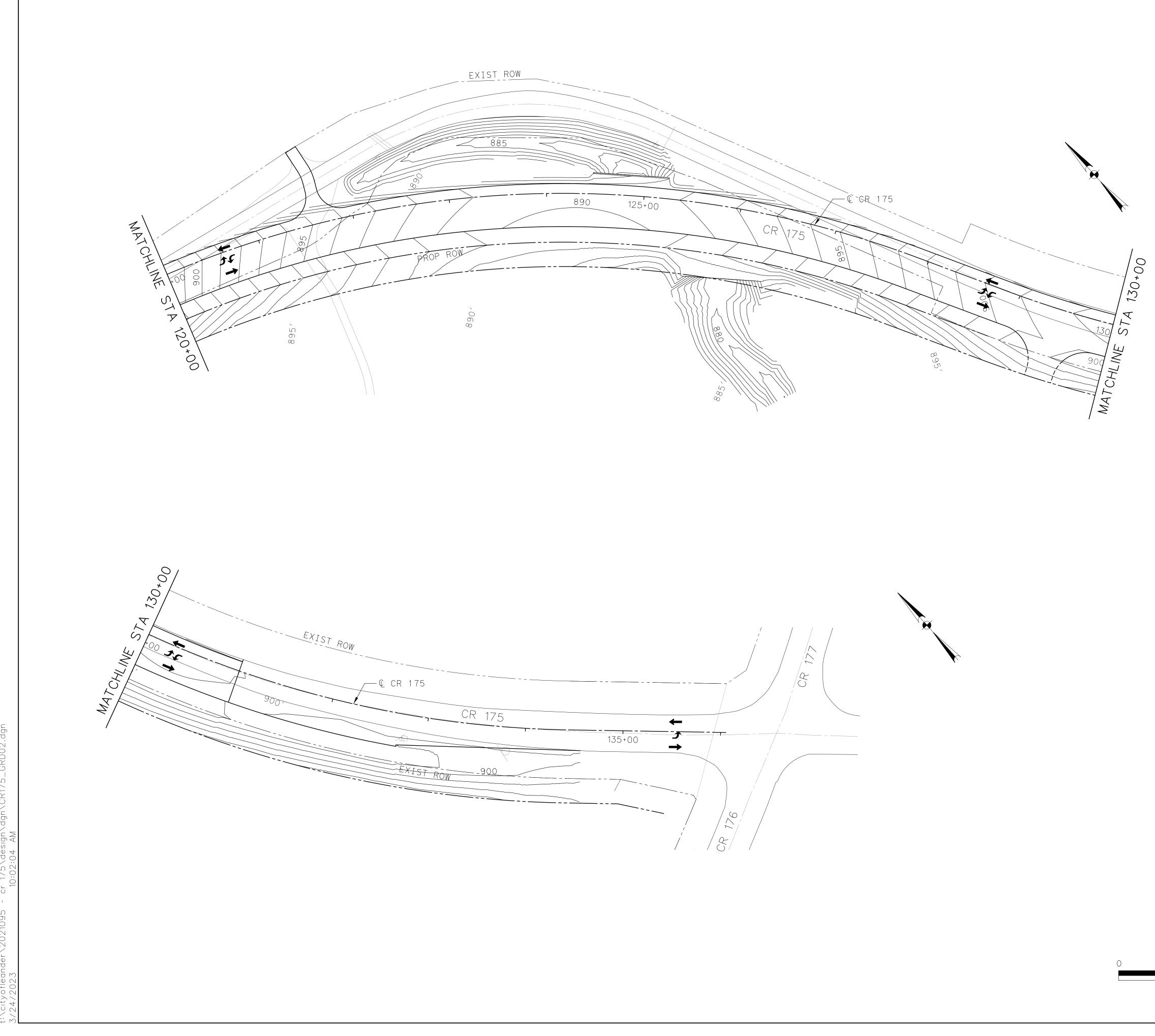
						Curb Inlets	in Sump Calcu	lation Summ	nary: 25 ye	ear		·			
Drainage Area No.	I INIET NO I	Q ₂₅ (cfs)	Qpass (cfs)	Qtotal (cfs)	W (ft)	Inlet Depression, a (ft)	Curb opening height, h (ft)	Reduction Factor	Length (ft)	d _{weir} Above S _x (ft)	d _{orifice} above S _x (ft)	Depth of Ponding over S _x , d (ft)	S _x (%)	z	Ponded Width (ft)
B4	I-B4	6.80	0.00	6.80	1.50	0.42	0.52	1.00	10.00	0.38	0.00	0.31	2.00%	50.00	15.46
C2	I-C2	5.85	0.00	5.85	1.50	0.42	0.52	1.00	10.00	0.34	0.00	0.31	2.00%	50.00	15.46


						Curb Inlets i	in Sump Calcul	ation Summ	a <b>ry: 100 y</b>	ear					
Drainage Area No.	Inlet No.	Q ₁₀₀ (cfs)	Qpass (cfs)	Qtotal (cfs)	W (ft)	Inlet Depression, a (ft)	Curb opening height, h (ft)	Reduction Factor	Length (ft)	d _{weir} Above S _x (ft)	d _{orifice} above S _x (ft)	Depth of Ponding over S _x , d (ft)	S _x (%)	z	Ponded Width (ft)
B4	I-B4	9.83	0.00	9.83	1.50	0.42	0.52	1.00	10.00	0.48	0.00	0.31	2.00%	50.00	15.46
C2	I-C2	8.45	0.00	8.45	1.50	0.42	0.52	1.00	10.00	0.44	0.00	0.31	2.00%	50.00	15.46

					Storm	AD Mod	el Drain	age Syten	n Exports								
			Pipe Conditio	ns							25yr Flow	<b>Characteristi</b>	CS	10	0 yr Flow C	haracterist	tics
Conduit Label	Start Node	Stop Node	Invert Start (ft)	Invert Stop (ft)	Length (ft)	Slope (ft/ft)	Manni ng's n	Diamet er (in)	Capacity Full Flow (cfs)	Flow (cfs)	Velocity (ft/s)	HGL Upstream (ft)	HGL Downstre am (ft)	Flow (cfs)	Velocity (ft/s)	HGL Upstream (ft)	HGL Downstre am (ft)
CR175-A1.1	CR175-IA1	CR175-AB1	898	894.5	157.2	0.022	0.013	24	33.76	4.56	7.5	898.75	895.27	6.59	8.33	898.91	895.43
CR175-A1.2	CR175-AB1	CR175-AOUT	894.5	893.37	50.6	0.022	0.013	24	33.81	4.56	7.51	895.25	895.37	6.59	8.34	895.41	895.37
CR175-B1.1	CR175-IB1	CR175-BMH1	911.22	911.18	11.4	0.003	0.013	18	6.03	1.81	2.98	911.83	911.82	2.61	3.29	911.98	911.96
CR175-B1.2	CR175-BMH1	CR175-BMH2	911.18	909.31	569	0.003	0.013	18	6.03	1.81	2.98	911.75	910.25	2.61	3.29	911.87	910.63
CR175-B1.3	CR175-BMH2	CR175-BMH3	908.81	908.15	199	0.003	0.013	24	12.99	6.64	4.16	909.82	909.32	9.59	4.53	910.09	909.58
CR175-B1.4	CR175-BMH3	CR175-BMH4	908.16	890.05	385.6	0.047	0.013	24	48.99	6.64	10.89	909.07	892.49	9.59	12.1	909.26	893.92
CR175-B1.5	CR175-BMH4	CR175-BB1	890.05	886.85	200.1	0.016	0.013	24	28.6	13.44	8.96	891.37	890.04	19.43	6.18	893.07	891.59
CR175-B1.6	CR175-BB1	CR175-BMH5	886.85	883.77	197.2	0.016	0.013	24	28.27	13.44	4.28	889.85	889.15	19.43	6.18	891.19	889.73
CR175-B1.7	CR175-BMH5	CR175-BMH6	883.27	882.41	67.1	0.013	0.013	24	25.69	20.24	6.44	888.38	887.84	29.26	9.31	891.16	890.03
CR175-B1.8	CR175-BMH6	CR175-BOUT	882.41	880	188.1	0.013	0.013	24	25.58	20.24	6.44	887.11	885.6	29.26	9.31	889.9	886.75
CR175-BLAT2	CR175-IB2	CR175-BMH2	909.63	909.31	8	0.04	0.013	18	21	4.83	9.66	910.47	909.92	6.98	10.68	910.65	910.49
CR175-BLAT3	CR175-IB3	CR175-BMH4	890.87	890.55	8	0.04	0.013	18	21	6.8	3.85	892.43	892.39	9.84	5.57	893.79	893.72
CR175-BLAT4	CR175-IB4	CR175-BMH5	884.59	884.27	8	0.04	0.013	18	21	6.8	3.85	889.22	889.18	9.83	5.56	889.8	889.73
CR175-C1.1	CR175-IC2	CR175-CMH1	896.35	896.31	8	0.004	0.013	18	6.82	5.85	3.31	897.96	897.94	8.45	4.78	899.27	899.22
CR175-C1.2	CR175-CMH1	CR175-CB1	896.31	895.43	210.1	0.004	0.013	18	6.82	5.85	4.34	897.4	896.81	8.45	4.78	898.79	897.43
CR175-C1.3	CR175-CB1	CR175-CMH2	895.43	894.91	123	0.004	0.013	18	6.82	5.85	4.34	896.54	896.2	8.45	4.78	897.2	896.4
CR175-C1.4	CR175-CMH2	CR175-COUT	894.41	894	97	0.004	0.013	24	14.69	7.89	4.76	896.09	896	11.4	5.17	896.2	896
CR175-CLAT2.2	CR175-IC1	CR175-CB2	895.25	895.2	10.2	0.005	0.013	18	7.43	2.04	3.59	896.32	896.32	2.95	3.96	896.65	896.65
CR175-CLAT2.1	CR175-CB2	CR175-CMH2	895.2	894.91	58.4	0.005	0.013	18	7.43	2.04	3.59	896.31	896.29	2.95	3.96	896.63	896.59

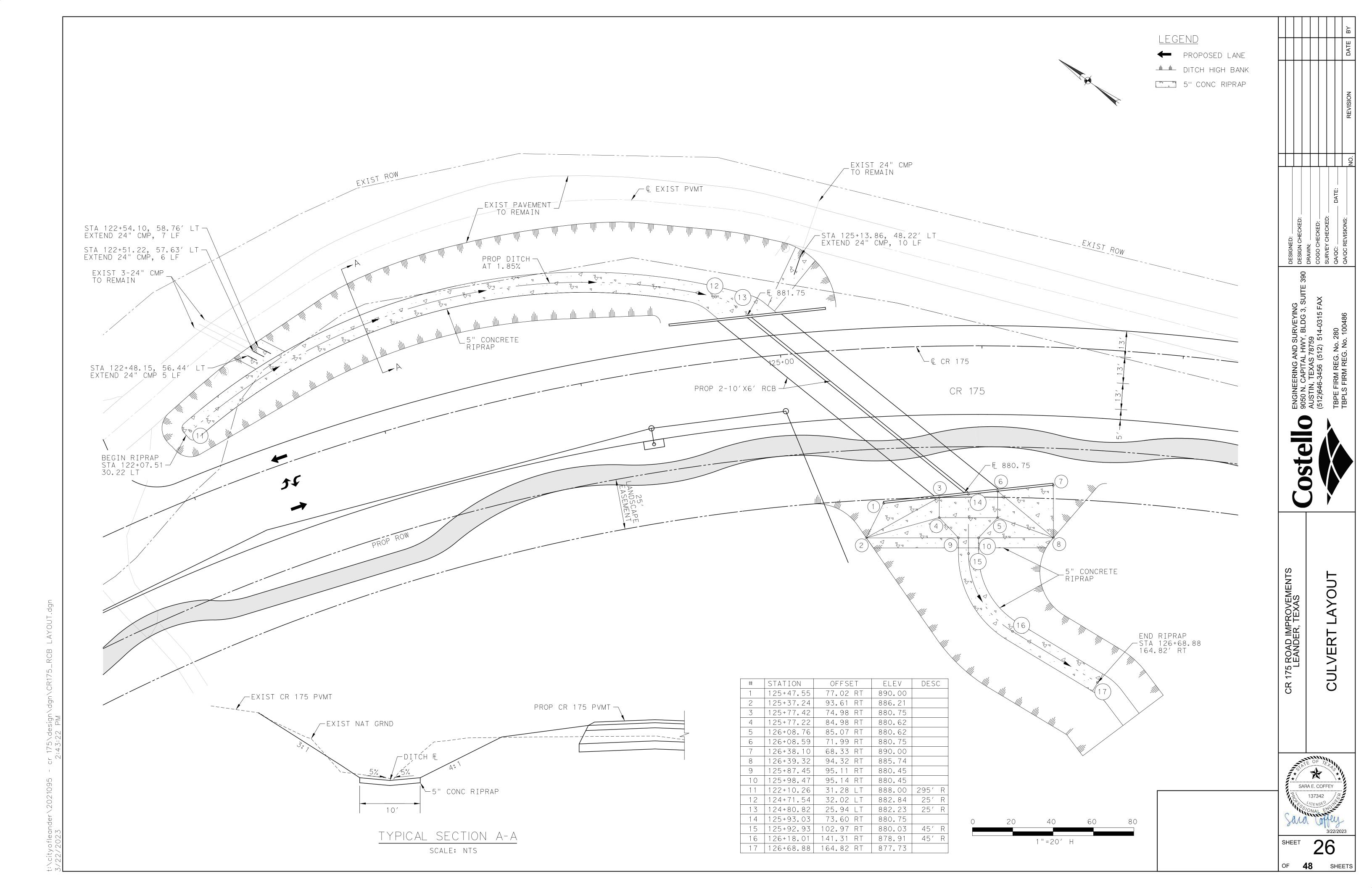
COA C-Values	6			
	2	10	25	100
Impervious	0.75	0.8	0.88	0.97
Pervious	0.33	0.38	0.42	0.49

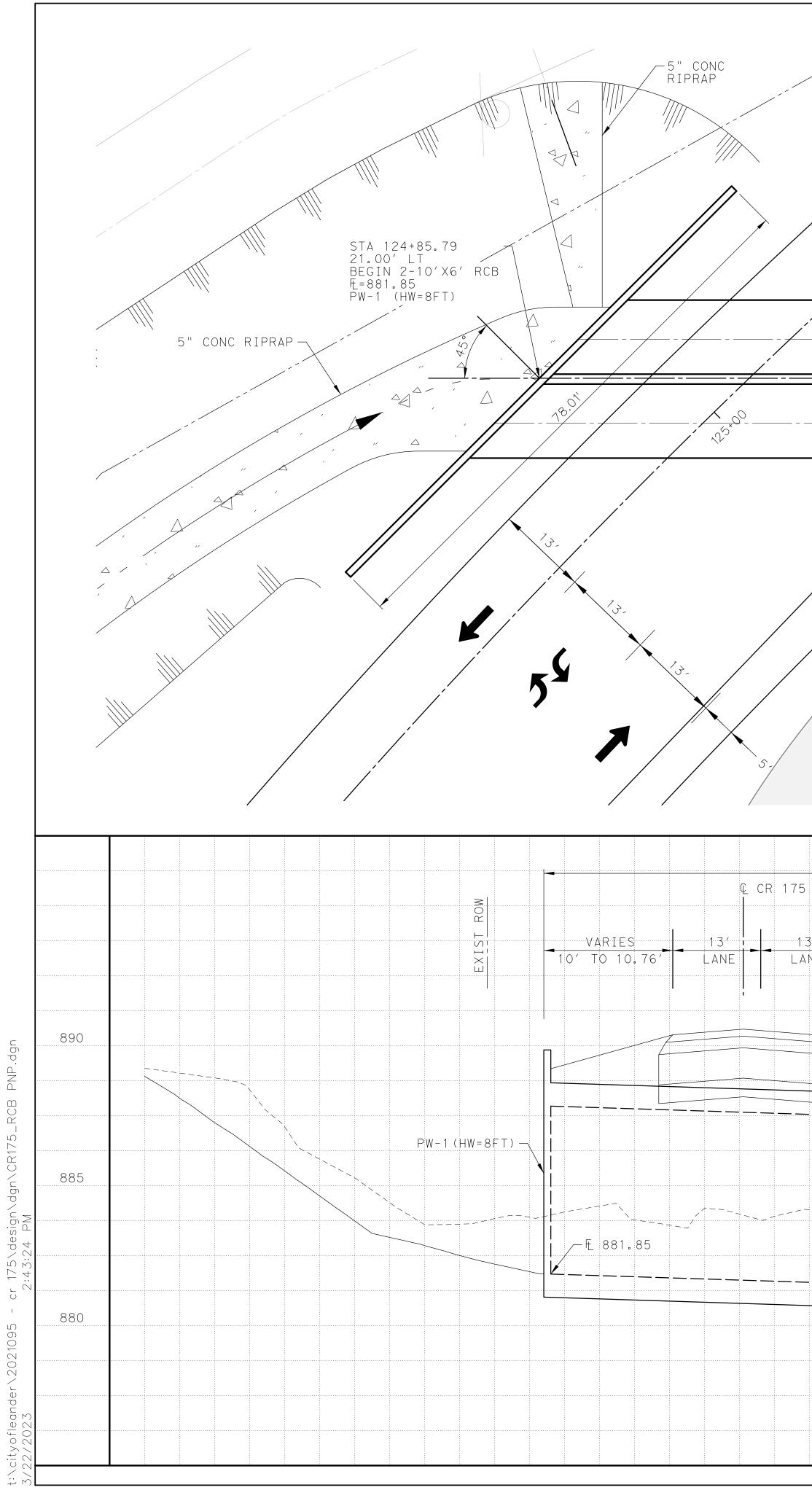
COA IDF Cur	ve Values		
Year	а	b	с
2	45.24	9.339	0.7399
10	61.25	8.352	0.7147
25	69.96	7.941	0.6954
100	77.31	6.832	0.6524


								DN DATE BY
								NO. REVISION
	DESIGNED:	DESIGN CHECKED:	DRAWN.					QA/QC REVISIONS:
					(212)040-3430 (212) CH-040-3430 (212)		TBPE FIRM REG. No. 280	TBPLS FIRM REG. No. 100486
		LEANDER, IEXAS						
SH			1	OF E. C 373 CEN NAI	42 SED	AGIN P		23
							,	

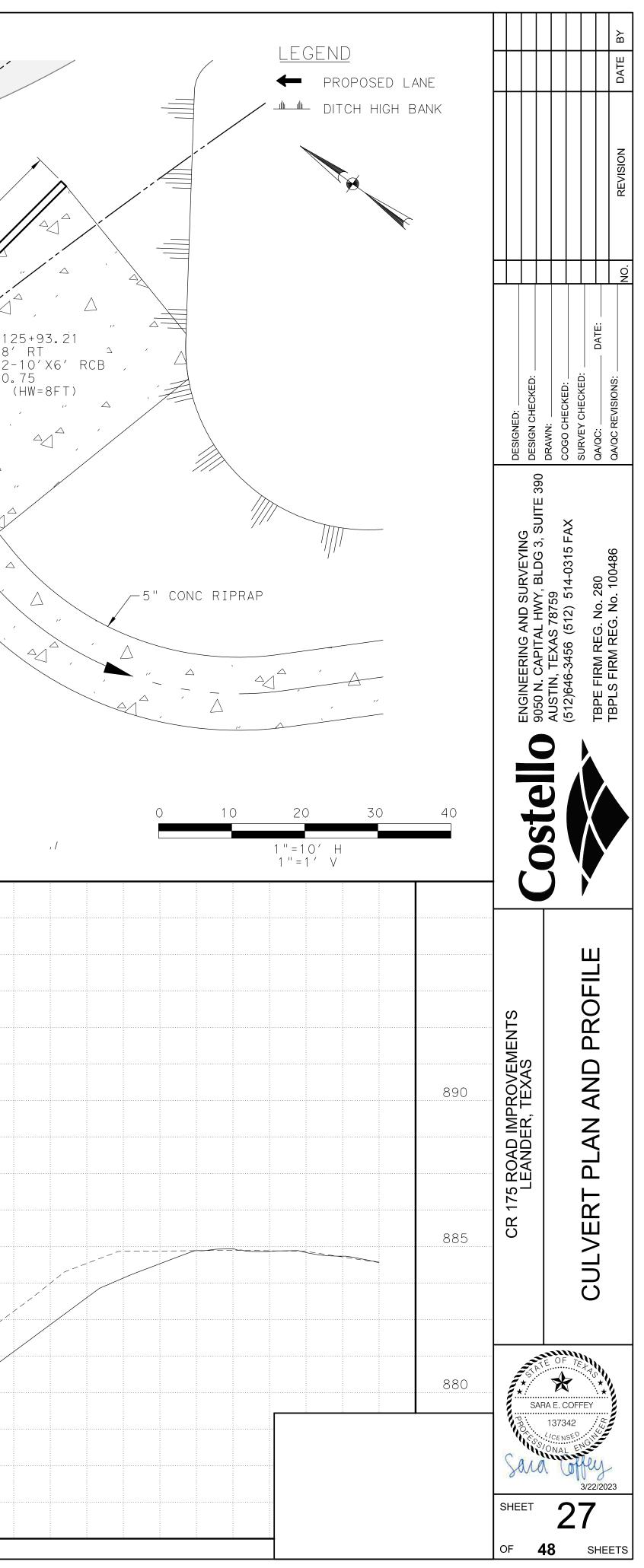


Ć  $\square$ GRI

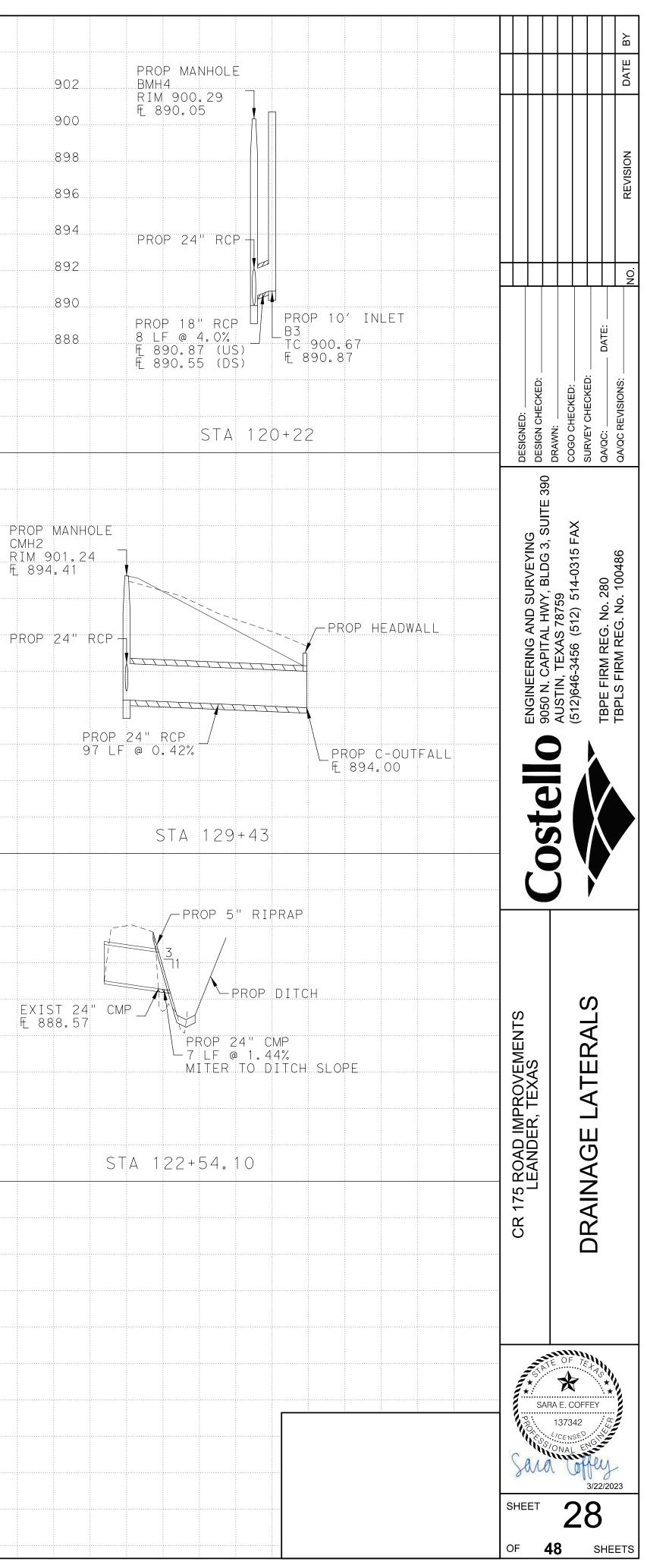

				DATE BY
				REVISION
DESIGNED:	DRAWN:			QA/QC REVISIONS:NO.
ENGINEERING AND SURVEYING	TE 390	(512)646-3456 (512) 514-0315 FAX		TBPLS FIRM REG. No. 100486
CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS		CRADING LAVOUT	BEG FRUJECT TO STATZU+UU	
	ATE O	F TE	<u>.</u>	

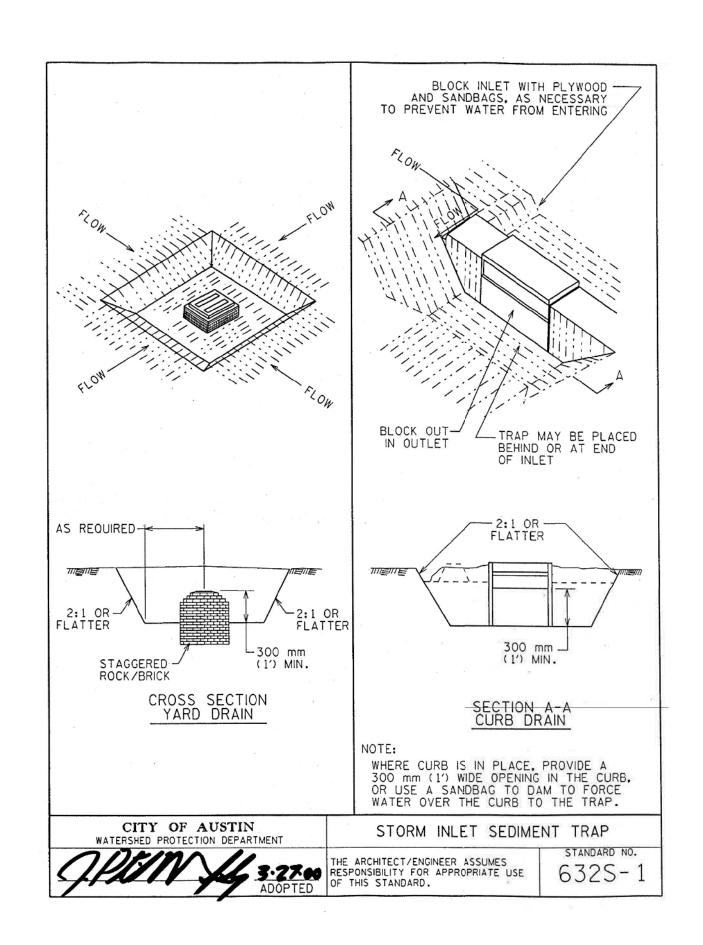

50	100		150	200
		1.1		
	1 "=50′	Η		

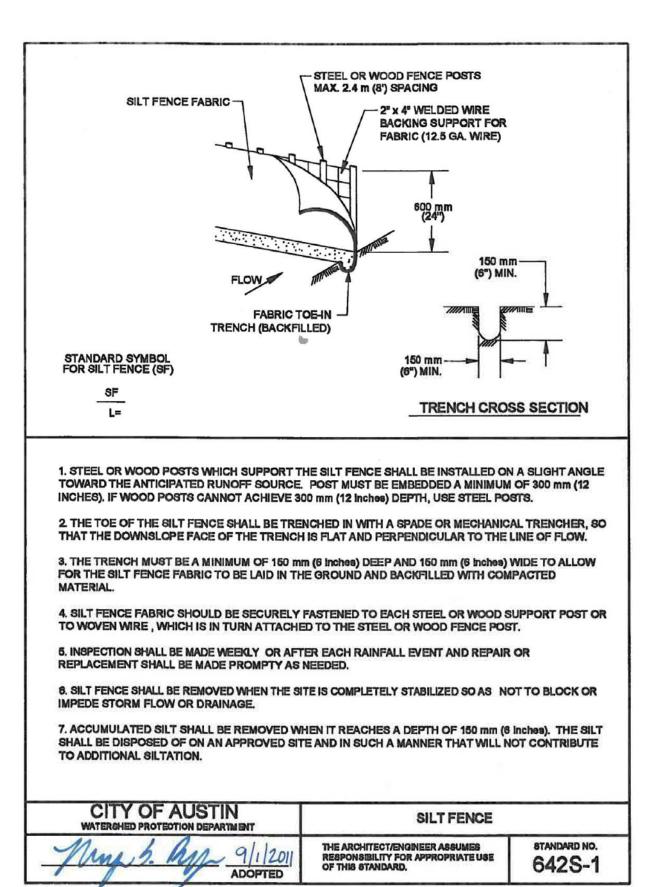


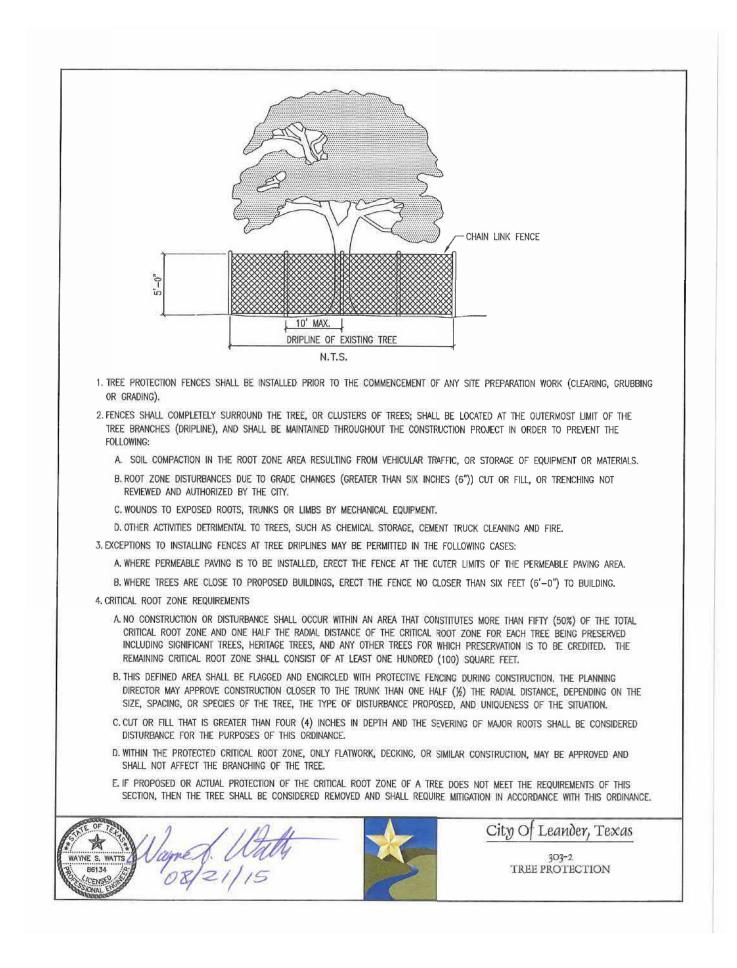

				DATE BY
				REVISION
DESIGNED:	DRAWN:	COGO CHECKED:		QA/QC REVISIONS: NO.
	COUCIE AUSTIN, TEXAS 78759	(512)646-3456 (512) 514-0315 FAX	IBPE FIKIM KEG. NO. 280	TBPLS FIRM REG. No. 100486
ENTS		F		
CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS			SIA 120+00 IO END P	

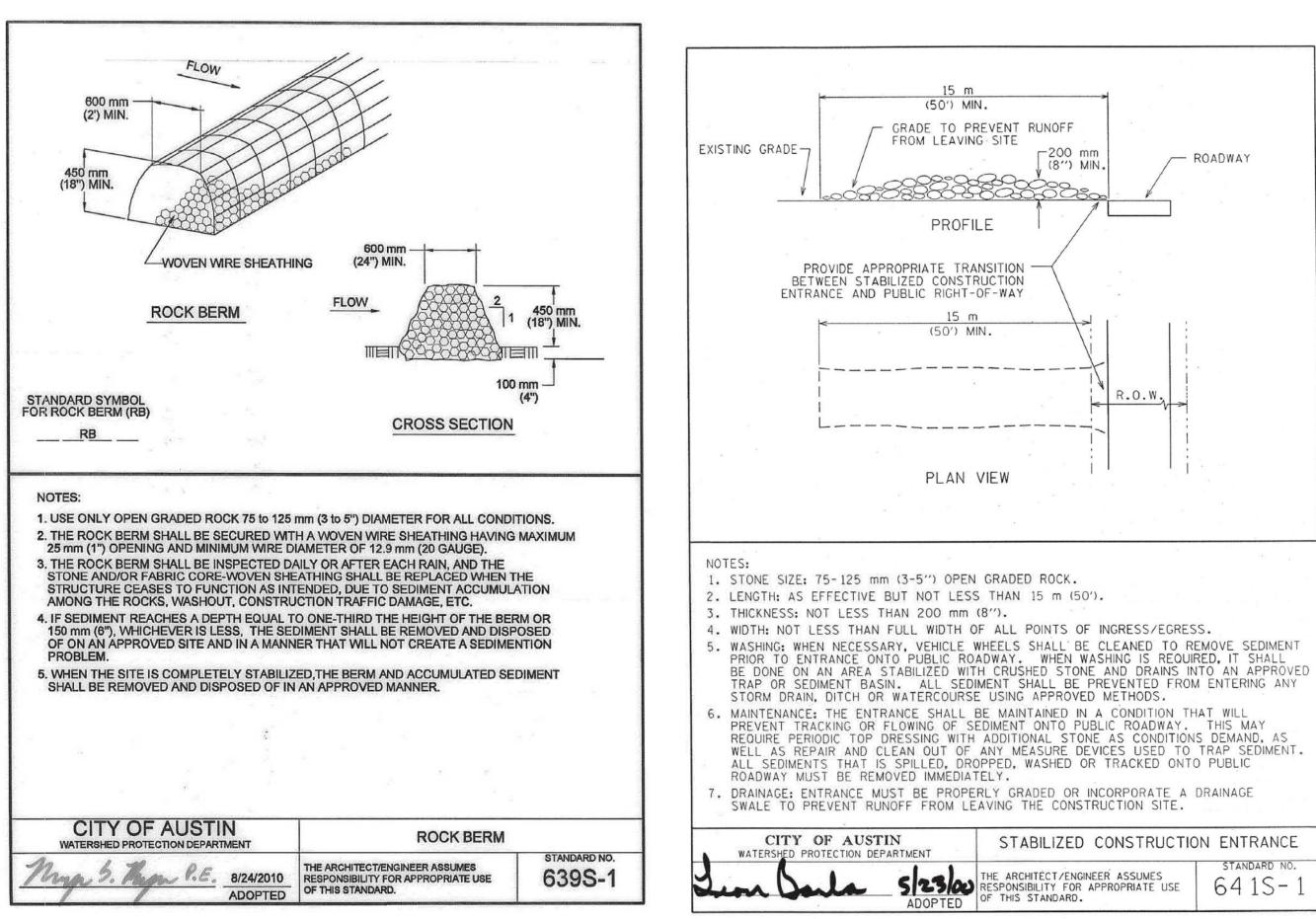
50	100		150	200
	1 "=50′	Η		



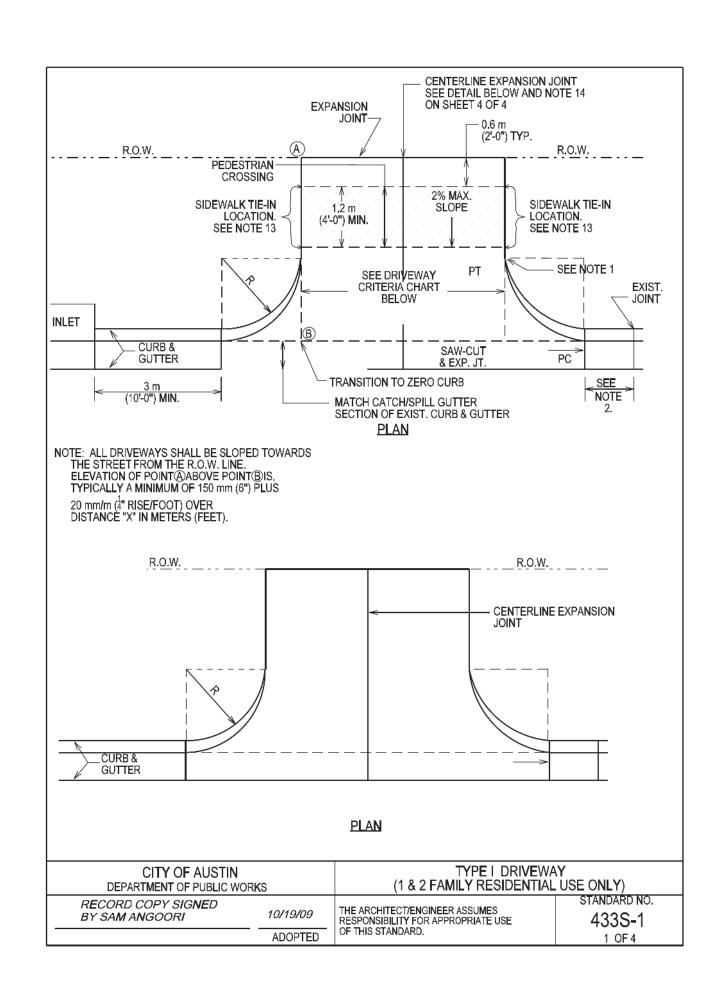


F	QROPSED 2-10'X6'		 STA 1 73.58 END 2 E=880 PW-1
3'5' NE LANE 5' 		VARIES 33. 34'	PW-1 (HW=8FT)

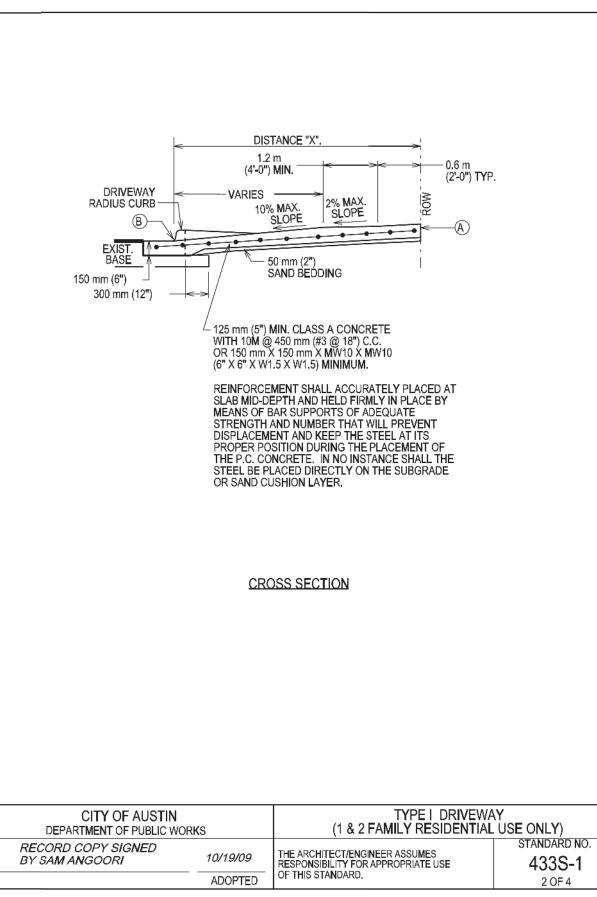


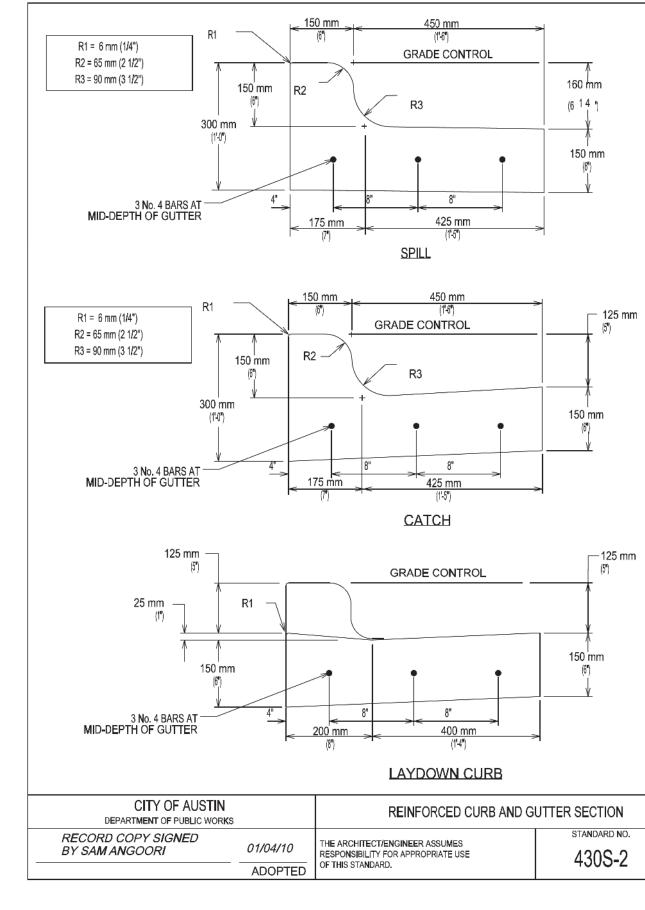


			PROP MANHOLE				
 906			BMH1 RIM 917.27 E 911.18		PROP MANI	HOI F	
 904		918			918 BMH2 RIM 916. E 908.81		
 902	24" RCP	916			916		
 900 157 LF	24" RCP	91.4	PROP 18" RCP		9.1.4		
 898 PROP HEADWALL		912			912 PROP 24"		
 896 PROP A-OUTFALL	PROP 15' INLET	910 PROP 10	INLET   PROP 18" RCP		910		
894       F. 893.37       /       PROP 45°         892       PROP 24" RCP       HORIZONTAL         892       F. 894.5	A1	908 _{T.C}	INLET       PROP 18" RCP         B1_       11 LF @ 0.33%         917.51       E 911.22 (US)         911.22       E 911.18 (DS)		908 PROP 18" 8 LF @ 4. 906 Æ 909.63 Æ 909.31	RCP PROP 10' INLET	
 892 PROP 24" RCP / E 894.5 51 LF @ 2.23%		906			906	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
 STA 104+12			STA 108+70		ς	TA 114+45	
	PROP MANHOLE BMH6 RIM 890.03 7						904
 892 PROP MANHOLE BMH5 RIM 889,73 7	RIM 890.03 E 882.41			9.0.2			902
 E 883.27 ↓	8.8.8.			900	PROP 8 LF	18" RCP @ 0.5%	900
 8.8.8	886 PROP 24" RCP			898	E 895	@ 0, 5% . 25 (US) . 20 (DS)	898
886 PROP 24" RCP	8.8.4	P	ROP HEADWALL	8.9.6			896
	8.8.2			894 PROP 1 C1	O INLET	45°	894
 882 PROP 18" RCP B4 8 LF @ 4.0% J TC 890.11 ₱ 884.59 (US) ₱ 884.59 ₱ 884.27 (DS)	880 PROP 24" F 188 LF @ 1			892 TC 90C F 895.	.32 HOR120 25	45° ONTAL BEND .2	892
E 884.27 (D\$) E 884.59	8.7.8	• 20/• E	OP B-OUTFALL _/ 880.00				
 STA 124+31		STA 125+00			STA 128+80	Э — — — — — — — — — — — — — — — — — — —	
 904 PROP MANHOLE CMH1 902 RIM 900.88							
 902 RIM 900.88 E 896.31	892		8.92				892
 900 PROP 24" RCP	890		8.9.0				890
 8.9.8	888 EXIST 24" CMP _ Æ 888.81	PROP DITCH	8.8.8	EXIST 24" CMP Æ 888.63	PROP DITO	Э.Н.	888
 896 Prop 10' Inlet	886 1 888.81	│		12 000.00	PROP 24" CMP		886
 894 PROP 18" RCP / C2 8 LF @ 0.42% / TC 901.26 E 896.35 (US) E 896.35	8.8.4	└──5 LF @ 0.34% MITER TO DITCH S	OPE 884		└─6 LF @ 1.16% MITER TO DITCH	I SLOPE	884
 892 Ē 896. 31 (DS)							
 STA 132+68	STA 1	22+48.15		ST	A 122+51.22		
 8.92	RAP						
 8.9.0							
 888 886 FXIST 24" CMP							
 E 887.30	DITCH						
 88.4							
 882 - 10 LF @ 4.8 MITER TO DI	P 5% TCH SLOPE						
 STA 125+13.86							







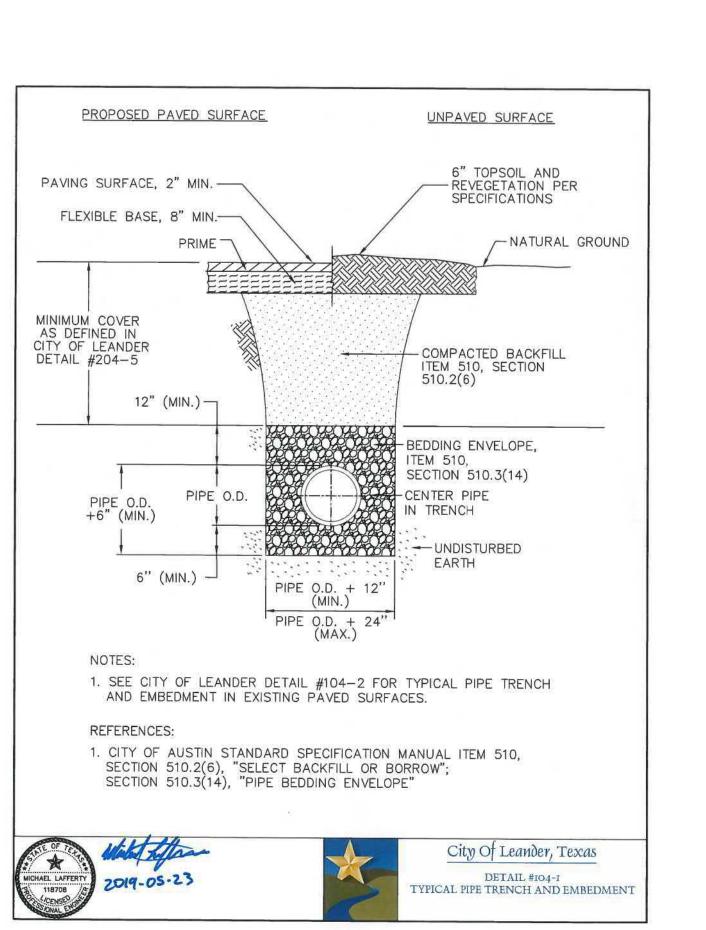

ROTECTION DEPARTMENT	STABILIZED CONSTRUCTIO	STABILIZED CONSTRUCTION ENTRANCE					
La SI236	THE ARCHITECT/ENGINEER ASSUMES RESPONSIBILITY FOR APPROPRIATE USE OF THIS STANDARD.	standard no. 6415-1					

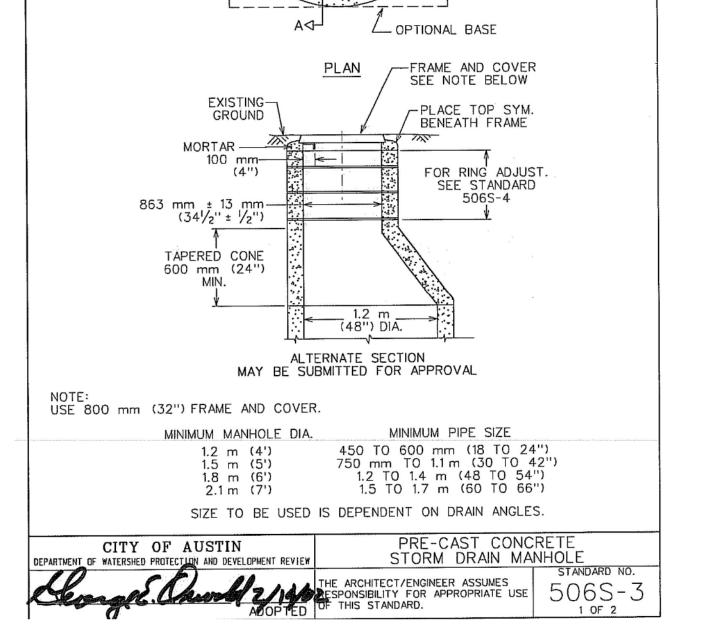
								DATE BY
								REVISION
								NO
DESIGNED:			COGO CHECKED.			QA/QC: DATE:		
				(212)040-3430 (212) 044-0313 FAX		IBPE FIRM REG. No. 280	TRDI S FIRM REG. No. 100/86	
			)))					
CR 175 ROAD IMPROVEMENTS	LEANDER, TEXAS							
"In the second s	S.	•••••	OF E. C 373	COFI	EY			
^V (		Sic	CEN NAL		NG ¹		شج	
SHE	en Et	a		3	3/22 6	9	02:	3







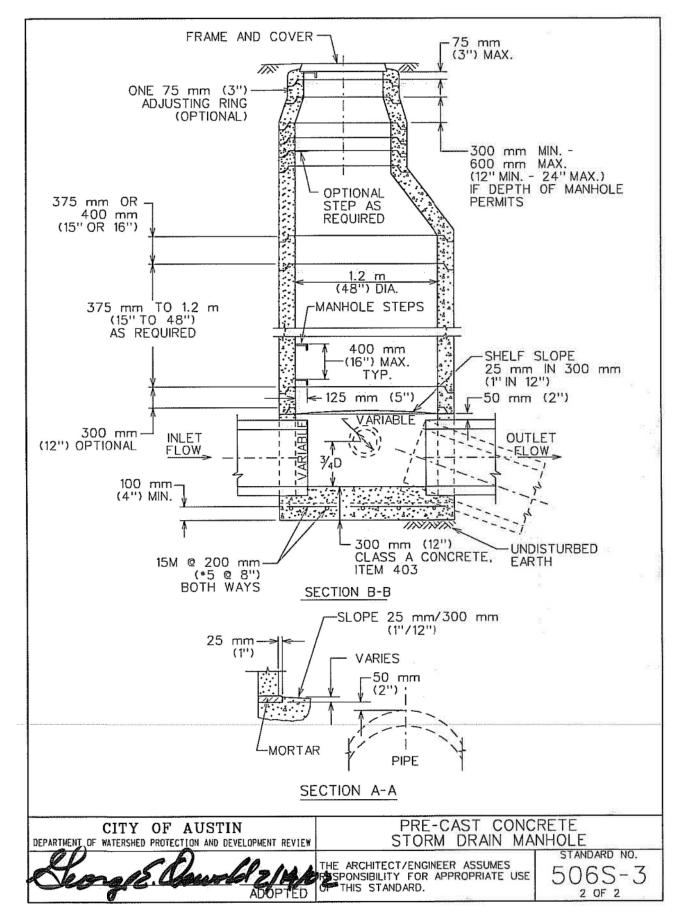


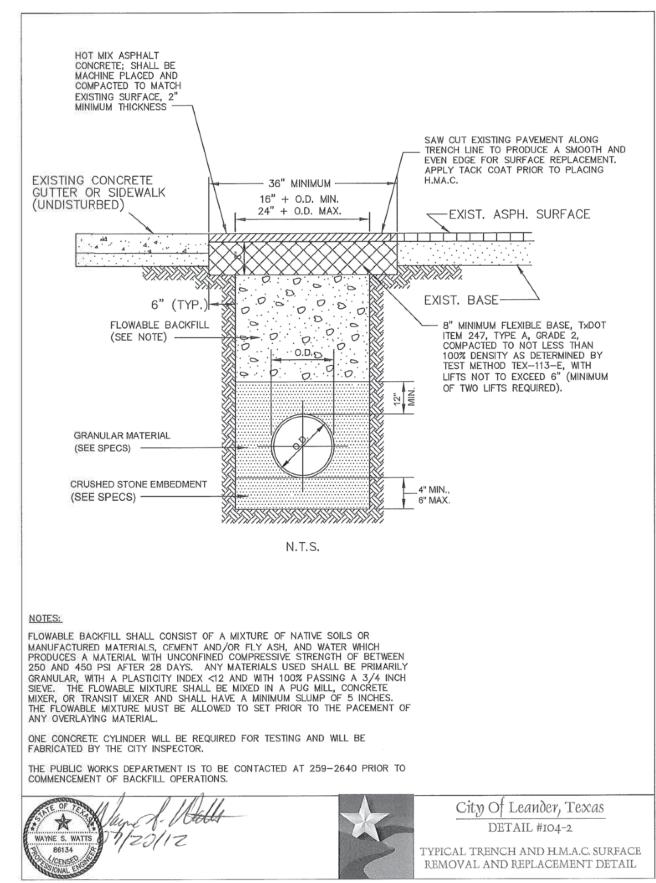


DRIVEWAY CRITERIA         WIDTH METERS (FEET)           USE         MIN.         *OPT.         MAX.           SIN. FAMILY         3.66         5.50         11.80           OUPLEX         4.56         5.50         11.80           DUPLEX         (15)         (18)         (25)           TOWN HOME         4.56         5.50         11.80	RADIUS DIMENSION METERS (FEET)           USE         MIN.         *OPT.         MAX           SINGLE         1.5         1.5         3.0           FAMILY         (5)         (5)         (10)           DUPLEX         1.5         2.4         3.0           TOWN HOME         1.5         2.4         3.0	4. ALL DRIVEWAY SUBJECT PROPE THE CURB. 5. DRIVEWAYS SH
-2% SLOP <u>E (TYP.)</u> = 10% MAX		SECTING RIGHT WHICHEVER IS L 7. DRIVEWAYS SHINTERSECTION. 8. SINGLE FAMILY DRIVES. 9. WHEN TWO DR TOWN HOMES, S 10. WHILE THE PR PRIVATE PROPE DRIVEWAY IS ES THAN 15%. "G1" 11. SEE TRANSPO 12. USE 12 mm (‡") AND GUTTER EX 13. THE SIDEWALL PROPERTY LINE, 14. PLACE AN EXF 15. WATER METEF LOCATED IN DI
CITY OF AUSTIN DEPARTMENT OF PUBLIC WORKS	TYPE I DRIVEWAY (1 & 2 FAMILY RESIDENTIAL USE O	NLY) CITY OF
RECORD COPY SIGNED BY SAM ANGOORI10/19/09ADOPTED		NDARD NO. 33S-1 3 OF 4 RECORD COPY SIG BY SAM ANGOORI

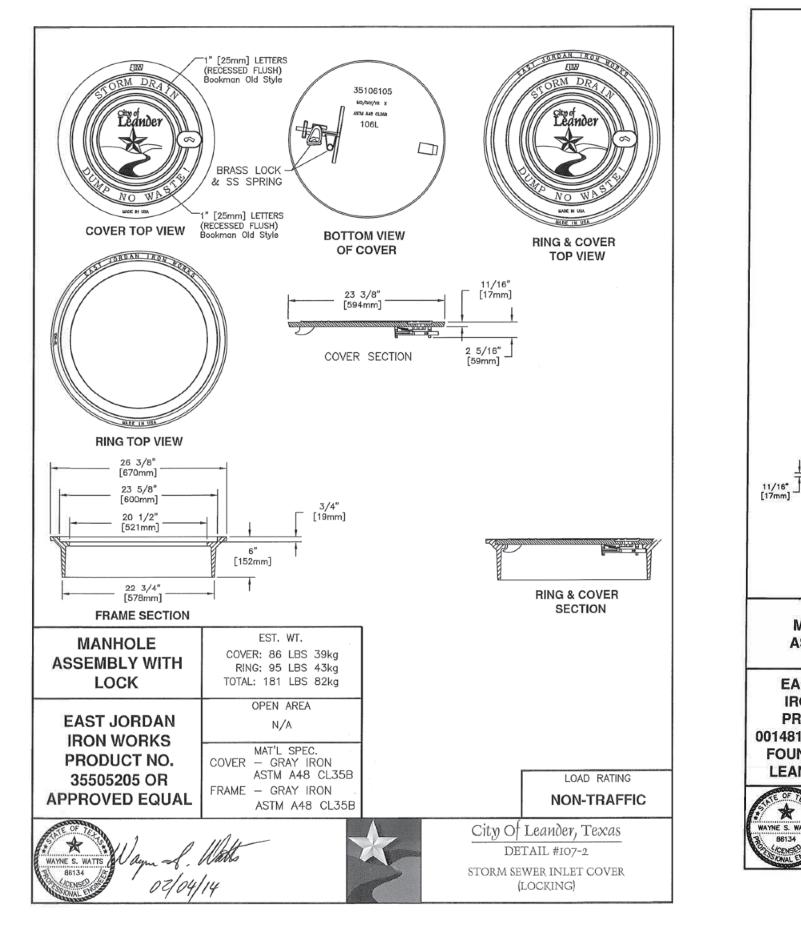
TYPE I DRIVEWAY (1 & 2 FAMILY RESIDENTIAL USE ONLY)								
 THE ARCHITECT/ENGINEER ASSUMES RESPONSIBILITY FOR APPROPRIATE USE OF THIS STANDARD.	STANDARD NO. 433S-1 2 OF 4							

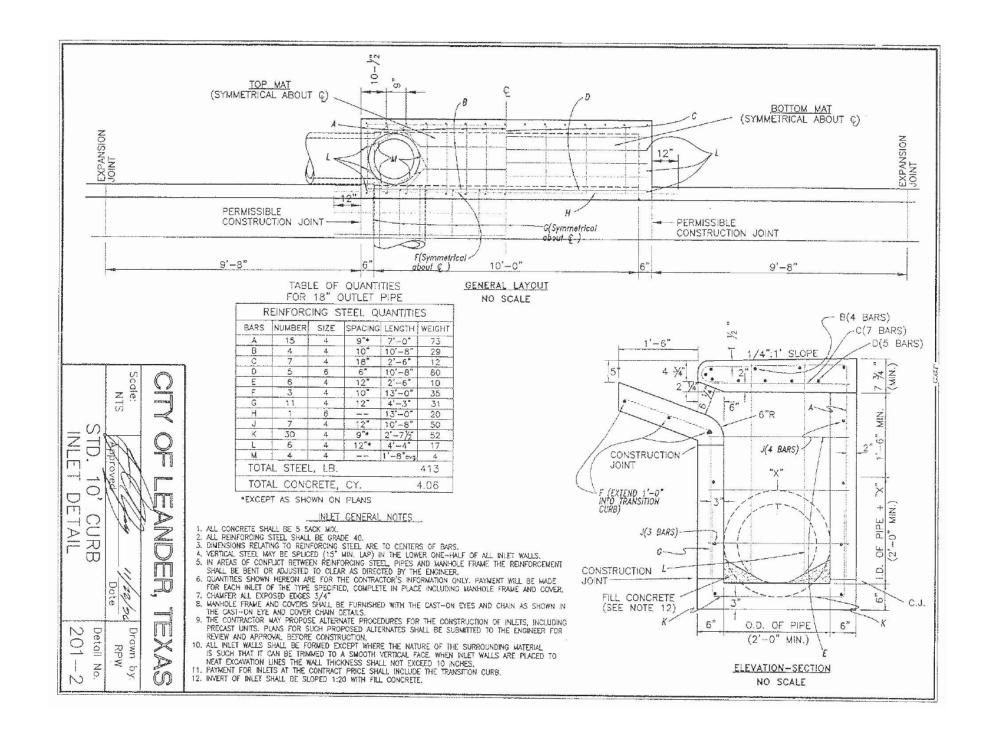
				DATE BY
NOTES: 1. "ZERO" CURB AT PT OR SIDEWALK EDGE DRIVEWAY EDGE SHALL BE SMOOTHLY TF AT THE RADIUS PC LINE. 2. IF DIMENSION IS LESS THAN 1.5 METERS EXISTING JOINT AND POUR MONOLITHICA 3. IF THE BASE IS OVER EXCAVATED WHER BACKFILL WITH CONCRETE MONOLITHICA	THE CURB AND GUTTER WAS REMOVED,			REVISION
THE CURB. 5. DRIVEWAYS SHALL NOT EXCEED 70% OF 6. TYPE I DRIVEWAYS ARE TO BE LOCATED SECTING RIGHTS-OF-WAY THAN 60% OF P WHICHEVER IS LESS.	EXTENDING THE SIDE PROPERTY LINES TO A LOTS' STREET FRONTAGE. NO CLOSER TO THE CORNER OF INTER- ARCEL FRONTAGE OR 15 METERS (50 FEET);			<u> </u>
DRIVES.	IVEWAY EXCEPT FOR APPROVED SEMICIRCULAR PER UNIT; TWO MAXIMUM) FOR DUPLEXES AND S SHALL APPLY. RESPONSIBLE FOR GRADE BREAKS WITHIN NT SHOULD BE CONSULTED WHERE THE VEHICLE ACCESS AND "G2" IS GREATER CEED 15%. N 5 FOR OTHER DRIVEWAY REQUIREMENTS.		DESIGNED:	COGO CHECKED: DATE: DATE: DATE: DATE: DATE:
<ol> <li>THE SIDEWALK, REGARDLESS OF ITS LC PROPERTY LINE, SHALL BE CONNECTED T</li> <li>PLACE AN EXPANSION JOINT DOWN THE</li> <li>WATER METER BOXES AND WASTEWATI LOCATED IN DRIVEWAY AREAS.</li> </ol>			AND SURVEYING L HWY, BLDG 3, SUITE 390	I, IEXAS /8/59 6-3456(512)514-0315 FAX IRM REG. No. 280 FIRM REG. No. 100486
CITY OF AUSTIN DEPARTMENT OF PUBLIC WORKS RECORD COPY SIGNED BY SAM ANGOORI 10/19/09 ADOPTE		E ONLY) STANDARD NO. 433S-1 4 OF 4	<b>Costello</b> engine	TBPE TBPE
			CR 175 ROAD IMPROVEMENTS LEANDER, TEXAS	PAVING DETAILS
			5.ATE	OF TE TO TE TO TE COFFEY 37342 SHEETS OF TE TO TO TO TO TE TO TO TE TO TO TO TE TO TO TE TO TE TO

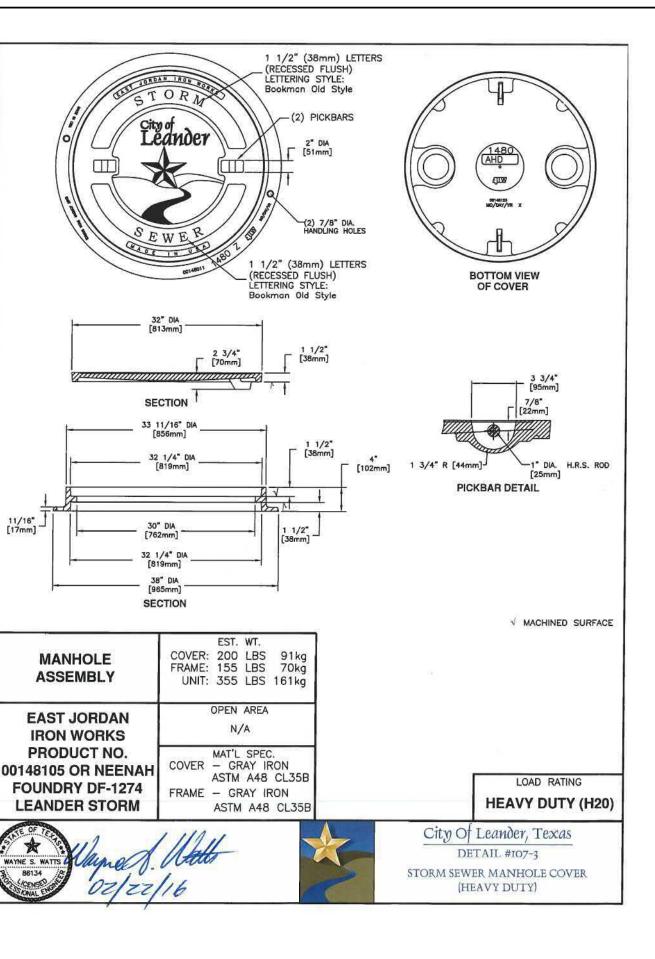




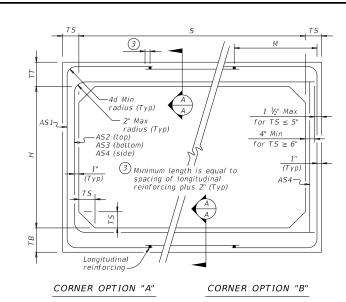


FLOW


INLE

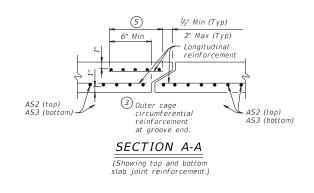

OUTLET



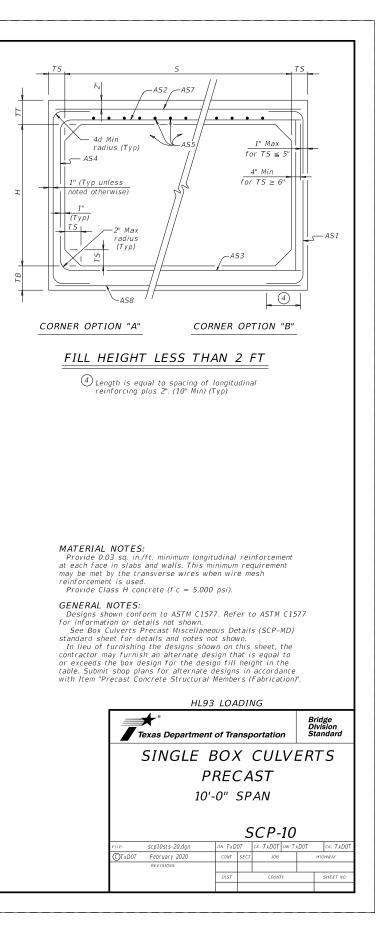


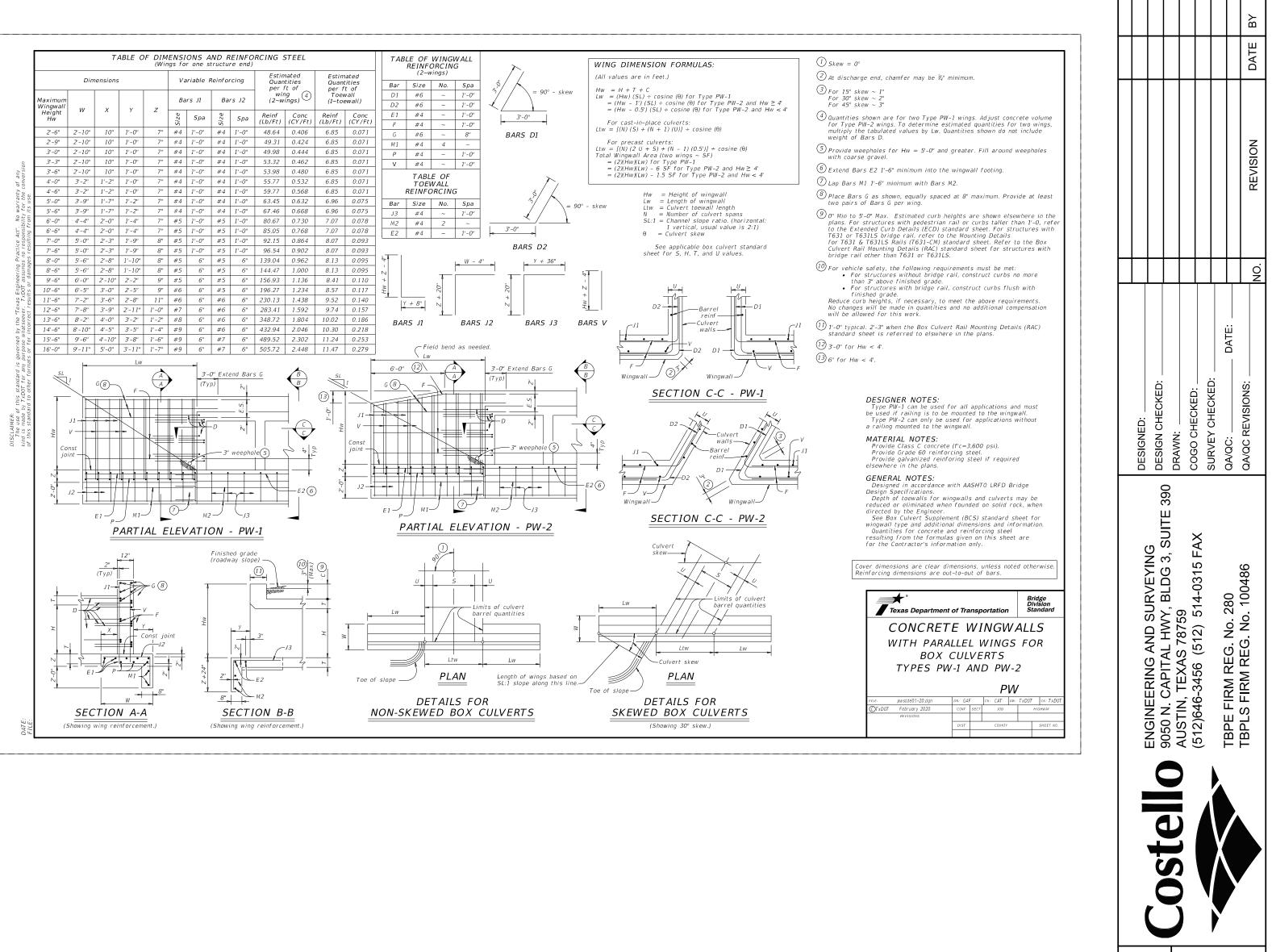


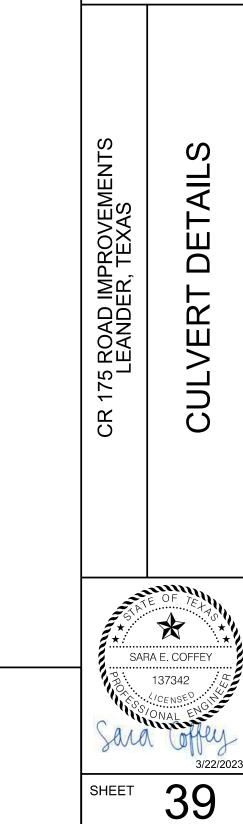






1	SECTIO	ON DIME	NSIONS		Fill	м		RE	INFORC	NG (sq.	in. / ft	)2		(1) Lift
5 (ft.)	Н (ft.)	TT (in.)	TB (in.)	T S (in.)	Height (ft.)	(Min) (in.)	AS1	A52	AS3	AS4	AS5	AS7	A58	Weigi (tons
10	4	10	10	10	< 2	-	0.33	0.34	0.27	0.24	0.24	0.24	0.24	16.5
10	4	10	10	10	2 < 3	58	0.38	0.35	0.30	0.24	-	-	-	16.5
10	4	10	10	10	3 - 5	53	0.31	0.28	0.27	0.24	-	-	-	16.
10	4	10	10	10	10	52	0.36	0.32	0.33	0.24	-	-	-	16.5
10	4	10	10	10	15	52	0.47	0.42	0.43	0.24	-	-	-	16.5
10 10	4	10 10	10 10	10 10	20 25	52 52	0.61 0.75	0.54 0.67	0.55 0.68	0.24 0.24	-	-	-	16.: 16.:
10		10	10	10	25	52	0.75	0.07	0.00	0.24	-		_	10
10	5	10	10	10	< 2	-	0.30	0.36	0.30	0.24	0.24	0.24	0.24	17.
10	5	10	10	10	2 < 3	58	0.35	0.39	0.34	0.24	-	-	-	17.:
10	5	10	10	10	3 - 5	52	0.28	0.31	0.30	0.24	-	-	-	17.:
10	5	10	10	10	10	52	0.33	0.35	0.36	0.24	-	-	-	17.:
10	5	10	10	10	15	47	0.42	0.46	0.47	0.24	-	-	-	17.
10 10	5	10 10	10 10	10 10	20 25	47	0.55 0.68	0.59	0.61 0.75	0.24 0.24	-	-	-	17.:
10		10	10	10	23	4/	0.00	0.75	0.75	0.24	-	-	-	17
10	6	10	10	10	< 2	-	0.28	0.38	0.33	0.24	0.24	0.24	0.24	18.:
10	6	10	10	10	2 < 3	58	0.32	0.42	0.37	0.24	-	-	-	18.
10	6	10	10	10	3 - 5	53	0.26	0.34	0.33	0.24	-	-	-	18.:
10	6	10	10	10	10	52	0.30	0.38	0.39	0.24	-	-	-	18.
10	6	10	10	10	15	47	0.39	0.49	0.51	0.24	-	-	-	18.:
10	6	10	10	10	20	47	0.50	0.63	0.65	0.24	-	-	-	18.
10	6	10	10	10	25	47	0.61	0.78	0.80	0.24	-	-	-	18
10	7	10	10	10	< 2	-	0.25	0.40	0.36	0.24	0.24	0.24	0.24	19
10	7	10	10	10	2 < 3	58	0.30	0.45	0.40	0.24	-	-	-	19.
10	7	10	10	10	3 - 5	58	0.24	0.36	0.35	0.24	-	-	-	19.:
10	7	10	10	10	10	52	0.28	0.40	0.42	0.24	-	-	-	19.
10	7	10	10	10	15	47	0.36	0.52	0.54	0.24	-	-	-	19.
10	7	10	10	10	20	47	0.46	0.67	0.69	0.24	-	-	-	19
10	7	10	10	10	25	47	0.56	0.82	0.85	0.24	-	-	-	19
10	8	10	10	10	< 2	-	0.24	0.41	0.38	0.24	0.24	0.24	0.24	20.
10	8	10	10	10	2 < 3	64	0.27	0.47	0.43	0.24	-	-	-	20.
10	8	10	10	10	3 - 5	58	0.24	0.38	0.38	0.24	-	-	-	20
10	8	10	10	10	10	52	0.26	0.42	0.44	0.24	-	-	-	20
10	8	10	10	10	15	47	0.34	0.54	0.57	0.24	-	-	-	20
10	8	10	10	10	20	47	0.43	0.69	0.72	0.24	-	-	-	20.:
10	9	10	10	10	< 2		0.24	0.42	0.41	0.24	0.24	0.24	0.24	21.:
10	9	10	10	10	< 2 2 < 3	- 70	0.24	0.42	0.41	0.24	- 0.24	- 0.24	- 0.24	21.
10	9	10	10	10	3 - 5	64	0.24	0.40	0.40	0.24	-	-	-	21.
10	9	10	10	10	10	58	0.25	0.43	0.46	0.24	-	-	-	21.:
10	9	10	10	10	15	52	0.32	0.56	0.59	0.24	-	-	-	21.
10	9	10	10	10	20	47	0.40	0.71	0.75	0.24	-	-	-	21.:
10	10	10	10	10			0.24	0.44	0.44	0.24	0.24	0.24	0.24	
10 10	10	10 10	10 10	10 10	< 2 2 < 3	- 79	0.24	0.44 0.52	0.44 0.48	0.24 0.24	0.24	0.24	0.24	22.:
10	10	10	10	10	2 < 5	79	0.23	0.32	0.48	0.24	-	-	-	22
10	10	10	10	10	10	64	0.24	0.44	0.48	0.24	-	-	-	22.
10	10	10	10	10	15	52	0.30	0.57	0.61	0.24	-	-	-	22.:
10	10	10	10	10	20	52	0.38	0.73	0.77	0.24	-	-	-	22





FILL HEIGHT 2 FT AND GREATER











OF **48** 

SHEETS

## TCEQ Contributing Zone Plan Attachment N - Inspection, Maintenance, Repair, and Retrofit Plan Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The following are recommended maintenance procedures as outlined in the TCEQ's Edwards Aquifer Technical Guidance Manual:

### **Batch Detention:**

- Inspection should be at a minimum of twice a year. One inspection should take place during wet weather to determine if the basin is meeting the target time of 12 hours and a drawdown time of no more than 48 hours. Remaining inspections should occur between storm events so that the manual operation of the valve and controller can be verified. The level sensor in the basin should be inspected and any debris or sediment in the area should be removed. The outlet structure and trash screen should be cleared of any debris. Check embankment, spillways and outlet for erosion damage, and inspect the embankment for piping and settlement. Repair should be made promptly as needed by the contractor.
- Trash and other debris should be collected and removed at least twice a year to prevent clogging of the outlet structure.
- Accumulated silt should be removed, at least every 5 years, or when the sediment depth exceeds 6 inches, or when the sediment interferes with the level sensor.
- Grass areas in and around the detention basin must be mowed at least twice a year to limit vegetation height to 18 inches.
- The logic controller should be inspected as part of the twice-yearly inspections. Verify that the external indicators are operating properly by turning the controller off and on, and by initiating a cycle by triggering the level sensor in the basin. The valve should be manually opened and closed using the open/close switch to verify valve operation. The controller and all other circuitry and wiring should be inspected for signs of corrosion, damage from insects, water leaks or other damage. At the end of the inspection, the controller should be reset.

### **Vegetative Buffers:**

- The need for routine maintenance such as mowing, fertilizing, irrigating and weed and pest control will depend on the species of plants and trees, soil types, location and climatic conditions. County agricultural extension agencies are a good source of this type of information.
- Check for damage and loss of vegetative cover. Any damaged sections should be re-seeded with a mix of erosion resistant, soil binding species.
- Trash and other debris should be removed to prevent runoff to downstream waterways.

### Silt Fence:

- Inspection should be made weekly and after each rainfall.
- Sediment should be removed when buildup reaches 6 inches in depth.
- Replace any torn fabric or install a second line of fencing parallel to the torn section.

- Replace or repair any sections crushed or collapsed in the course of construction activity. If a section of fence is obstructing vehicular access, consider relocating it to a spot where it will provide equal protection, but will not obstruct vehicles. A triangular filter dike may be preferable to a silt fence at common vehicle access points.
- When construction is complete, the sediment should be disposed of in a manner that will not cause additional siltation and the prior location of the silt fence should be revegetated. The fence itself should be disposed of in an approved landfill.

### **Final Turf Establishment:**

- After construction activity, disturbed areas should be reseeded using an approved seed mix.
- Irrigation may be required during periods of dry weather, until the turf is well established.
- Additional applications of seed and/or fertilizer may be required to achieve required coverage.

### **Inspection Procedures and Record Keeping:**

- Inspections shall be conducted by qualified representatives of the contractor acting on behalf of the owner or a designated party if hired separately by the owner. Each operator must delegate authority to the specifically described position or person performing inspections, as provided by 30 TAC 305.128, as an authorized person for signing reports and performing certain activities requested by the director or required by the TPDES general permit. This delegation of authority must be provided to the director of TCEQ in writing and a copy shall be kept along with the signed effective copy of the SW3P.
- The authorized party shall inspect all disturbed areas of the site, areas used for storage of materials that are exposed to precipitation, structural control measures, and locations where vehicles enter or exit the site.
- Disturbed areas and areas used for storage of materials that are exposed to precipitation or within limits of the 1% annual chance (100 year) floodplain must be inspected for evidence of, or the potential for, pollutants entering runoff from the site. Erosion and sediment control measures identified in the plan must be observed to ensure that they are operating correctly. Observations can be made during wet or dry weather conditions. Where discharge locations or points are accessible, they must be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters. This can be done by inspecting receiving waters to see whether any signs or erosion or sediment are associated with the discharge location. Locations where vehicles enter or exit the site must be inspected for evidence of off-site sediment tracking.
- An inspection report that summarizes the scope of the inspection, name(s) and qualifications of inspection personnel, the date of the inspection, and major observations relating to the implementation of the SW3P shall be provided for each inspection. Major observations shall include, at minimum: location of discharges of sediment or other pollutants from the site, locations of BMPs that need to undergo maintenance, locations of BMPs that have failed or have provided inadequate, and locations where BMPs are needed.
- Should the inspection reveal any inadequacies, the site description and the pollution prevention measures identified in the plan must be revised as soon as possible. The inspection and plan review process must provide for implementation of any changes to the plan within 7 calendar days of the inspection.
- Actions taken as a result of the inspections must be described within, and retained as part of, the SW3P. Reports must identify any incidents of non-compliance. Where a report does not identify any incidents of non-compliance, the report must contain a certification that the facility or site is in compliance with the SW3P and the TPDES general permit. The report must be signed by the authorized representative delegated by the operators in accordance with TAC 305.128.

This document was prepared by Costello Inc. on behalf of Toll Southwest LLC (Owner) in accordance with the requirements of the TCEQ Contributing Zone Plan.

Engineer Signature: Millaul & Kemer MICHAEL A. KENNE 131885

Date: <u>3/24/2023</u>

## TCEQ Contributing Zone Plan Attachment O - Pilot Scale Field Testing Plan Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

No innovative or unrecognized BMPs are proposed in this plan.

Section not applicable to this project

## TCEQ Contributing Zone Plan Attachment P - Measures for Minimizing Surface Stream Contamination Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

In order to minimize surface stream contamination on the Brushy Creek and Tributary the following measures will be implemented.

- 1. **Silt Fence** Installed upstream of the creek, along the edges of disturbance. Silt fence will be installed to intercept sediment before it can enter the stream while allowing water to slowly percolate through. This is a temporary measure that will be removed after the disturbed area is revegetated.
- 2. **Green Belt** Existing trees and natural vegetation near the existing creek and tributary will be largely preserved for future park space and landscape buffers. These trees will be protected from construction activities, not only by a silt fence barrier (described previously), but also tree protection fencing to discourage disturbances under the dripline of these trees.
- 3. Vegetative Filter Strips- Along the borders of disturbed areas that run off into water ways on the project, Vegetative Filter Strips (VFS) will be planted to reduce sediments and contaminants from entering the surface water adjacent to the project site.
- 4. **Batch Detention / Sedimentation Basin-** Batch detention ponds for this project will be located between the development and the existing streams to intercept natural runoff from the site. Ponds will be rough cut and function as sedimentation ponds in the interim conditions during the construction phase and will be fitted with temporary dewatering skimmers prior to completion of the batch detention elements. The temporary dewatering skimmers will be removed when the batch detention comes online.

Section III

Temporary Stormwater Section (TCEQ-0602)

# **Temporary Stormwater Section**

**Texas Commission on Environmental Quality** 

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

### Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Temporary Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

Print Name of Customer/Agent: Steven Buffum

Date: 3/24/2023

Signature of Customer/Agent:

Regulated Entity Name: Wildspring, Phase 1

## **Project Information**

## Potential Sources of Contamination

*Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.* 

1. Fuels for construction equipment and hazardous substances which will be used during construction:

The following fuels and/or hazardous substances will be stored on the site: <u>Diesel</u>, <u>Gasoline</u>

These fuels and/or hazardous substances will be stored in:

Aboveground storage tanks with a cumulative storage capacity of less than 250 gallons will be stored on the site for less than one (1) year.

TCEQ-0602 (Rev. 02-11-15)

Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year.
 Aboveground storage tanks with a cumulative storage capacity of 500 gallons or more will be stored on the site. An Aboveground Storage Tank Facility Plan

application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.

] Fuels and hazardous substances will not be stored on the site.

- 2. Attachment A Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
- 3. Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
- 4. Attachment B Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.

### Sequence of Construction

5. Attachment C - Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.

For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given.

For each activity described, include a description of appropriate temporary control measures and the general timing (or sequence) during the construction process that the measures will be implemented.

6. Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: <u>Brushy Creek</u>

## Temporary Best Management Practices (TBMPs)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.

7. Attachment D – Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

		A description of how BMPs and measures will prevent pollution of surface water, groundwater or stormwater that originates upgradient from the site and flows across the site.
		A description of how BMPs and measures will prevent pollution of surface water or groundwater that originates on-site or flows off site, including pollution caused by contaminated stormwater runoff from the site.
		A description of how BMPs and measures will prevent pollutants from entering surface streams, sensitive features, or the aquifer.
		A description of how, to the maximum extent practicable, BMPs and measures will maintain flow to naturally-occurring sensitive features identified in either the geologic assessment, TCEQ inspections, or during excavation, blasting, or construction.
8.		The temporary sealing of a naturally-occurring sensitive feature which accepts recharge to the Edwards Aquifer as a temporary pollution abatement measure during active construction should be avoided.
		Attachment E - Request to Temporarily Seal a Feature. A request to temporarily seal a feature is attached. The request includes justification as to why no reasonable and practicable alternative exists for each feature.
		There will be no temporary sealing of naturally-occurring sensitive features on the site.
9.		Attachment F - Structural Practices. A description of the structural practices that will be used to divert flows away from exposed soils, to store flows, or to otherwise limit runoff discharge of pollutants from exposed areas of the site is attached. Placement of structural practices in floodplains has been avoided.
10.	$\boxtimes$	Attachment G - Drainage Area Map. A drainage area map supporting the following requirements is attached:
		For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin will be provided.
		For areas that will have more than 10 acres within a common drainage area disturbed at one time, a smaller sediment basin and/or sediment trap(s) will be used.
		For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin or other equivalent controls are not attainable, but other TBMPs and measures will be used in combination to protect
		down slope and side slope boundaries of the construction area. There are no areas greater than 10 acres within a common drainage area that will be
		disturbed at one time. A smaller sediment basin and/or sediment trap(s) will be used in combination with other erosion and sediment controls within each disturbed drainage area.

There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. Erosion and sediment controls other than sediment basins or sediment traps within each disturbed drainage area will be used.

- 11. Attachment H Temporary Sediment Pond(s) Plans and Calculations. Temporary sediment pond or basin construction plans and design calculations for a proposed temporary BMP or measure have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer. All construction plans and design information must be signed, sealed, and dated by the Texas Licensed Professional Engineer. Construction plans for the proposed temporary BMPs and measures are attached.
  - 🗌 N/A
- 12. Attachment I Inspection and Maintenance for BMPs. A plan for the inspection of each temporary BMP(s) and measure(s) and for their timely maintenance, repairs, and, if necessary, retrofit is attached. A description of the documentation procedures, recordkeeping practices, and inspection frequency are included in the plan and are specific to the site and/or BMP.
- 13. All control measures must be properly selected, installed, and maintained in accordance with the manufacturer's specifications and good engineering practices. If periodic inspections by the applicant or the executive director, or other information indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations.
- 14. If sediment escapes the construction site, off-site accumulations of sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality (e.g., fugitive sediment in street being washed into surface streams or sensitive features by the next rain).
- 15. Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50%. A permanent stake will be provided that can indicate when the sediment occupies 50% of the basin volume.
- 16. 🖂 Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from becoming a pollutant source for stormwater discharges (e.g., screening outfalls, picked up daily).

## Soil Stabilization Practices

*Examples:* establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, or preservation of mature vegetation.

17. Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices. A schedule of the interim and permanent soil stabilization practices for the site is attached.

- 18. Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 19. Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

### Administrative Information

- 20.  $\square$  All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
- 21. If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
- 22. Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

## TCEQ Temporary Stormwater Section Attachment A - Spill Response Actions Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The following measures will be taken to contain any spill of hydrocarbons on the site:

- 1. **Emergency Measures** As an immediate precautionary measure, isolate spill or leak area for at least 150 feet in all directions. Consider wind direction. Secure all ignition sources (flame, spark, hot work, hot metal, etc.) from area. Evaluate the direction of product travel to confirm spill areas. Do not touch or walk-through spilled material.
- 2. **Personal Precautions-** Due to high vapor density, flammable / toxic vapors may be present in low lying areas, dikes, pits, drains, or trenches. Vapors may accumulate in low lying areas and reach ignitable concentrations. Use of non-sparking tools and intrinsically safe equipment is recommended. Potential for flammable atmosphere should be monitored using a combustible gas indicator positioned downwind of the spill area. Use appropriate personal protective equipment to prevent eye/skin contact and absorption. Use NIOSH approved respiratory protection, if warranted, to prevent exposures above permissible limits. Contaminated clothing should not be near sources of ignition.
- 3. Environmental Precautions- Stop the spill to prevent environmental release if it can be done safely. Product is toxic to aquatic life. Take action to isolate environmental receptors including drains, storm sewers and natural water bodies. Keep on impervious surface if at all possible. Use water sparingly to prevent product from spreading. Foam and absorbents may be used to reduce / prevent airborne release. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact. Follow federal, state or local requirements for reporting environmental release where necessary.
- 4. **Containment & Clean-Up-** Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking absorbents, or absorbent boom, if possible. Take up with dry earth, sand or other non-combustible, inert oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container with clean, non-sparking tools for reclamation or disposal. Response and cleanup crews must be properly trained and must utilize proper protective equipment.

Reporting Requirements for Significant/Hazardous Spills:

- Notify the TCEQ by telephone as soon as possible and within 24 hours at 512-339-2929 (Austin) or 210-490-3096 (San Antonio) between 8AM and 5PM. After hours, contact the Environmental Release Hotline at 1-800-832-8224. It is the contractor's responsibility to have all emergency phone numbers at the construction site. Additionally, in the event of a hazardous material spill, local Travis County and/or Austin police, fire, and potentially EMS personnel should be contacted in order to handle the event and form a response team.
- 2. For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110, 119, and 302, the contractor should notify the National Response Center at (800)-424-8802.
- 3. Notification should first be made by telephone and followed up with a written report. One copy of the report is to be kept onsite in the report binder and one copy provided to the TCEQ.
- 4. The services of a spills contractor or a hazmat team should be obtained immediately. Construction personnel should not attempt the cleanup until directed by the appropriate and qualified staff.

More information on the rules and appropriate responses to spills is available on the TCEQ website at http://www.tceq.state.tx.us/response/spills.html.

## TCEQ Temporary Stormwater Section Attachment B - Potential Sources of Contamination Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

No particular activity or process during the facility's construction is anticipated to present a significant risk for contamination or pollution. However, regular construction operations do create situations where contamination may occur. The contractor shall manage the following activities and prevent the resultant possible contamination using the guidelines set forth in Attachment D – Temporary Best Management Practices and Measures:

### Potential sources of sediment to stormwater runoff:

- Grading and excavation
- Vehicle tracking
- Topsoil stripping and stockpiling
- Landscaping

### Potential pollutant sources to stormwater runoff:

- Combined Staging Area small fueling, minor equipment maintenance, sanitary facility
- Materials Storage Area Chip & haul stockpiles, trash
- Construction Activity Areas paving, concrete pouring
- Concrete washout area

### **Potential onsite pollutants:**

- Fertilizer
- Concrete
- Glue, Adhesives
- Gasoline, diesel fuel, hydraulic fluids, antifreeze
- Sanitary facilities

## TCEQ Temporary Stormwater Section Attachment C - Sequence of Major Activities Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The sequence of activities for the Wildspring Phase 1 Water, Sewer, Drainage and Paving improvements will be as follows:

- 1. **Perimeter SWPPP Controls & Tree Protection** Prior to commencement of primary construction activities temporary erosion and sedimentation controls shall be installed as indicated on the approved plans and in accordance with the stormwater pollution prevention plan. Tree protection fencing shall also be installed prior to mobilization. Estimated Impact = 1.00 Acre. SWPPP Controls will be revised as needed to comply with city inspector's directives and revisions as needed during the construction process.
- 2. **Detention Excavation** Mass grading operations will begin with rough cutting the ponds. In the interim conditions these ponds will function as sedimentation basins and will include dewatering skimmers for the treatment of stormwater runoff. Estimated Impact = 7.0 Acres. This installation will minimize the impacts of later phases of construction.
- 3. **Mass Grading Operations -** Upon completion of the detention ponds, grading operations will expand to the rest of the site. Re-grading is required to meet ADA grading requirements and fall within the allowable pavement slopes. Estimated Impact = 55.14 Acres. Impacts from this activity are to be minimized by existing SWPPP Controls listed above.
- 4. Underground Utility Improvements Installation of water, sewer and drainage improvements will follow mass grading operations. Estimated Impact = 6.00 Acres. Impacts from this activity are to be minimized by existing SWPPP Controls listed above.
- 5. **Paving Improvements -** Installation of paving improvements will follow mass grading operations. Estimated Impact = 6.36 Acres. Impacts from this activity are to be minimized by existing SWPPP Controls listed above.
- 6. **Turf Establishment & Revegetation** All disturbed areas shall be re-seeded within 14 days of the end of construction activity. Construction activity shall not be considered complete until revegetation is complete. Estimated Impact = 55.14 Acres. No additional controls are proposed for this phase, and all temporary SWPPP Controls are to be removed after re-vegetation is complete.
- 7. **Final Inspection** Upon completion of the construction and site revegetation, the design engineer shall submit an engineer's letter of concurrence to the city of Leander indicating that the construction, including revegetation, is complete and in substantial conformity with the approved plans. After receiving this letter, a final inspection will be scheduled by the appropriate city inspector.

Activity	Approximate Acreage	Temporary BMPs Proposed	Estimated Duration		
Perimeter SWPPP Controls	1.00	1.00 Silt Fence, Tree Protection, Vegetative filter strips			
Rough Detention Excavation	7.00	Sedimentation Basin	8 weeks		
Mass Grading Operations	55.14	55.14 Silt Fence, Vegetative filter strips			
Underground Utility Improvements	6.00	Silt Fence	8 weeks		
Paving Improvements	6.36	Silt Fence	8 weeks		

## TCEQ Temporary Stormwater Section Attachment D - Temporary Best Management Practices Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Wildspring Phase 1 will utilize the following TBMP's (Temporary Best Management Practices):

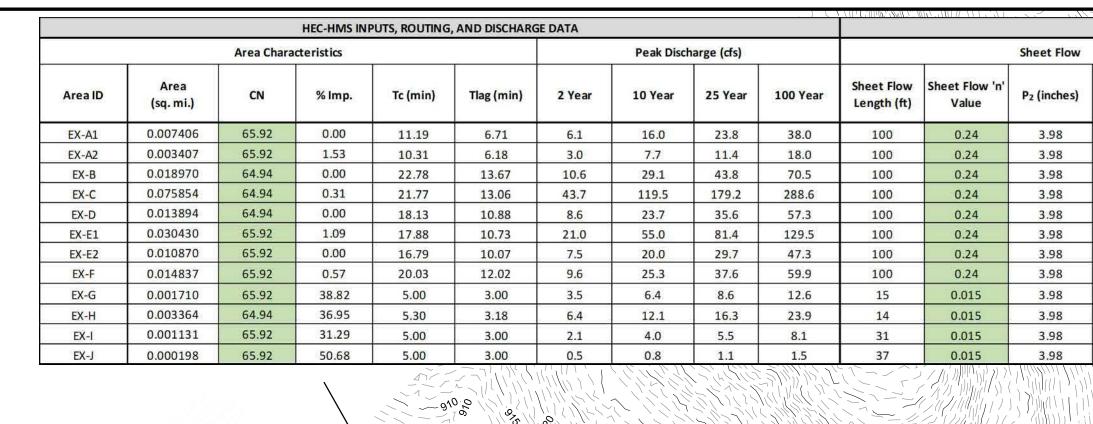
- 1. **Tree Protection/Vegetative Buffers-** Several areas near the creek have been preserved as a buffer zone and will have tree protection installed prior to construction. By preserving these trees and the natural vegetation beneath them, we are minimizing the amount of disturbed area which could generate sediment during rain events. Preservation of these areas adjacent to the creek also helps prevent erosion by maintaining a healthy root structure and vegetative cover over the existing high bank, reducing stormwater runoff rates and minimizing the potential for erosion.
- 2. **Stabilized Construction Exit-** A temporary gravel construction entrance will be provided to minimize or eliminate the tracking of sediment onto adjacent public rights of way.
- 3. Silt Fence- Installed along the downstream borders of the site and along future ROW lines that run off into water ways on the project, silt fence will be installed to intercept sediment while allowing water to slowly percolate through. This is a temporary measure that will be removed after the disturbed area is re-vegetated.
- 4. Sedimentation Basins The sedimentation basins for this project will function for the purposes of sedimentation control and water quality. Ponds shall utilize of low flow pipe and a dewatering skimmer to slow the flow of stormwater runoff and settle out particulates before discharge. These ponds will be utilized as sedimentation basins in the interim condition for the removal of suspended solids before being converted to batch detention basins. Sizing and TSS removal calculations are included elsewhere.
- 5. **Turf Establishment/Broadcast Seeding** All disturbed areas shall be re-seeded after construction to reduce erosion and runoff from the soil.

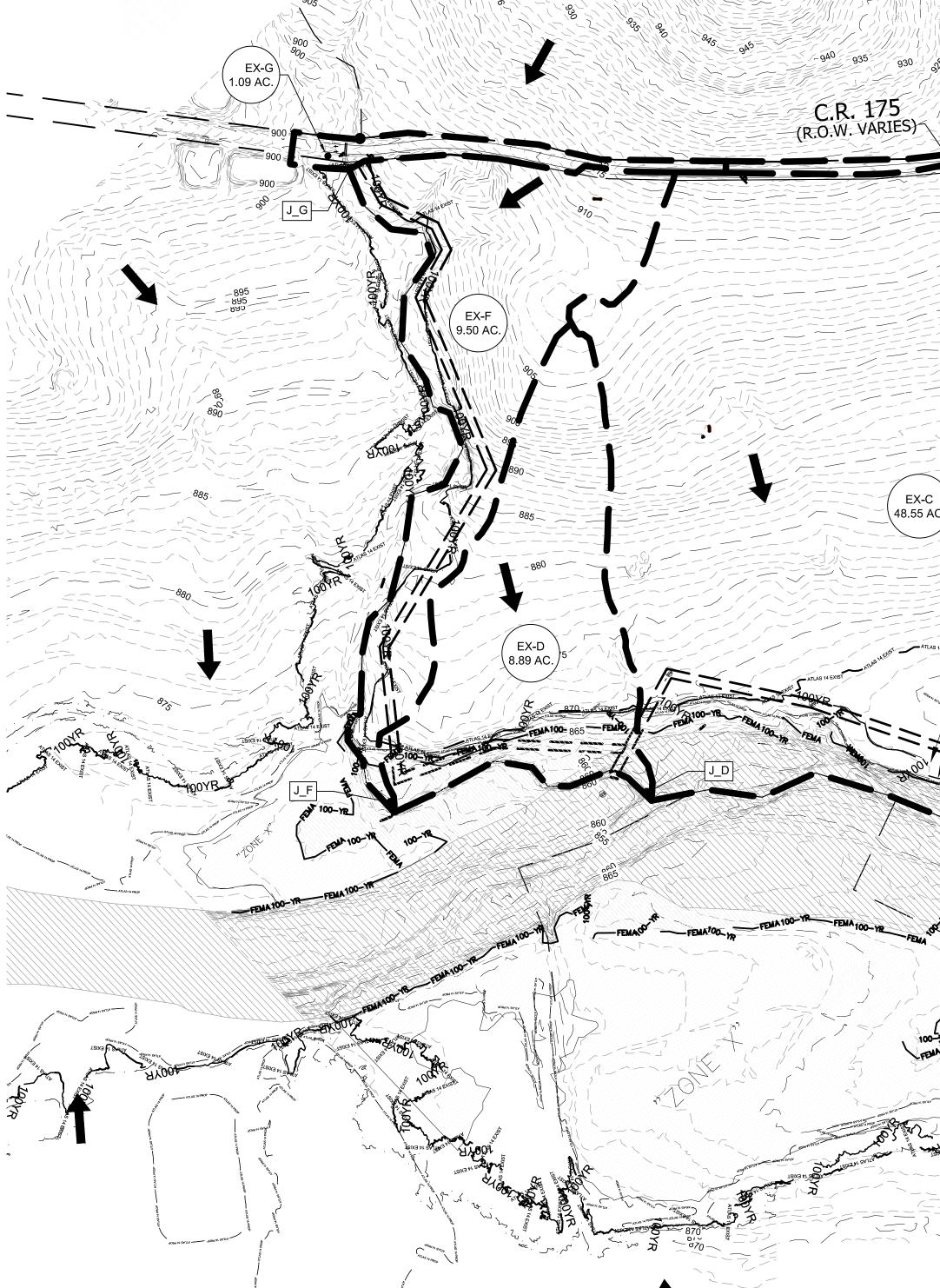
Each of these controls is to be installed and maintained as outlined in the TCEQ's Edwards Aquifer Technical Guidance Manual.

## TCEQ Temporary Stormwater Section Attachment E - Request to Temporarily Seal a Feature Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

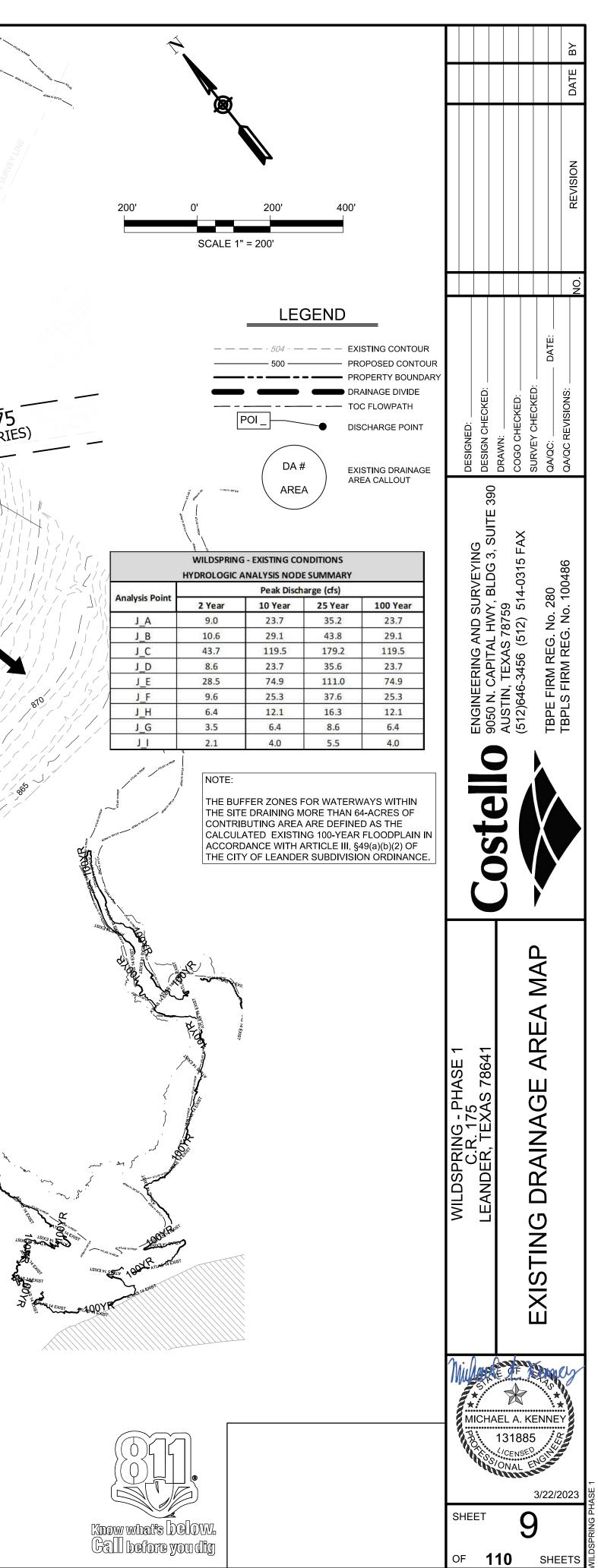
There will be no temporary sealing of a naturally-occurring sensitive features on the site.

Section not applicable to this project


## TCEQ Temporary Stormwater Section Attachment F - Structural Practices Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1


Wildspring Phase 1 will utilize the following Structural Practices to reduce pollutant runoff:

- 1. Sedimentation Basin Development Runoff within the site will be diverted to the interim sedimentation basins for treatment. Ponds shall utilize a low flow pipe and a dewatering skimmer to slow the flow of stormwater runoff and settle out particulates before discharge. These basins will be converted to batch detention at final completion but will function as sedimentation basins during most of the construction phase. Sizing calculations are included in Attachment H.
- 2. Vegetative Filter Strips Areas near the creek have been preserved as a buffer zone and will have tree protection installed prior to construction. By preserving these trees and the natural vegetation beneath them, we are minimizing the amount of disturbed area which could generate sediment during rain events. Preservation of these areas adjacent to the creek also helps prevent erosion by maintaining a healthy root structure and vegetative cover over the existing high bank, reducing stormwater runoff rates and minimizing the potential for erosion.


## TCEQ Temporary Stormwater Section Attachment G - Drainage Area Map Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Please find the attached drainage area map for Wildspring Phase 1.





í T					NS (TR-55 METHO			Channe	el Flow	r	adde to Galler adde
	Sheet Flow Slope (ft/ft)	Sheet Flow Travel Time (min)	SCF Length (ft)	SCF Slope (ft/ft)	SCF Velocity (fps)	SCF Travel Time (min)	Channel Flow Length (ft)	Channel Slope (ft/ft)	Channel Velocity (fps) (Bank-Full)	Channel Flow Travel Time (min)	****
	0.078	7.44	685	0.036	3.08	3.71	9	0.046	4.22	0.04	
+	0.053	8.70 13.64	164 1222	0.111 0.025	5.37 2.56	0.51	279 255	0.009	4.22 3.57	1.10 1.19	
1	0.056	8.45	2093	0.028	2.72	12.84	103	0.008	3.57	0.48	
	0.021	12.64 9.77	1034 1265	0.049	3.58 2.82	4.81 7.46	146 163	0.042	3.57 4.22	0.68	SPAN STATISTICS
	0.058 0.046	8.33 9.18	713 657	0.049	3.58 3.05	3.32 3.59	1300 1477	0.013	4.22 3.39	5.13 7.26	SURVE SURVE
	0.040	0.24	0	0.030	5.05	3.33	966	0.026	4.00	4.03	
	0.051	0.20	0				1224 633	0.025	4.00	5.10 2.64	
	0.046	0.44	0				79	0.031	4.00	0.33	
$\frac{1}{2}$					2. 900, 111	11/1/2/12				EX-I	
										72 AC.	
YI.			EX-H		895			EX-A2 2.18 AC.			
		2.15	AC								
S		915	506			FEMA TAS					175
				89	Call societ						E.R. 175 (R.O.W. VARI
Ź					EX-A1						J J
					4.74 AC.				+		
								/		EX-J	
		//////////////////////////////////////		-890	() () () () () () () () () () () () () (					0.13 AC.	
								~			
										/	
				$\Lambda$	EX-E2				$\sim$		
					EX-E2 6.96 AC.				EX-E1	· · · · · · · · · · · · · · · · · · ·	
				XX					9.48 AC.		
1				885			(-, ) (-, )				
_			////								
					Ser		AVE		\~		
5											
$\leq$	\ \		880								
C AC		/~								-/	
/					/				· · ·		
				28-					\ \		
			ZONÉ ÀE PEI JELY-DEVELQ		FLOODPLAIN						
		PROPOSED 1	100 YR FLOOI		/						
LAS 1	14 EXIST ATLAS 14 E										
	IH-		505 MEXIST		EX-E				E	1-1	
year or or	ATLAS HORCO ATLAS	ATLAS STRATE ATLAS	1004	ATLASTARS		- Fill					
<u> </u>	Tacher synthe are and	112	100-YR FE	ATLAS	Heres				A Exter		
7	724		1 AF	1	4 100 - 18 100 YE	100-17 PEN					
		TEMAT	or R JONE				TOOL THE STATES	AND THE MIST			X
M.M.	FEMA	100-YR				<u>11141114</u>	<u> </u>	BO-YR			
L.			60 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			) ////////////////////////////////////	B		FEMA	A L	re ser la re m
											100 Kp 1, 100 Kp 1, 100 Km
Ø.		850								A Construction	ATT A LANGE AND A
//						4. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					May 100-12
<b>,</b> 64	1111 CON 111	860 860			THÉ ~ 🖻 Q			X			Re to the second of the second
	FEMATOR- VA	FL FL	JTURE 100 YF	R ZONE AE PE		COL LOMR					AS 11 EXIST
	- AL				ULLY-DEVEL	/////×////////////////////////////////		J <1			
/	SPEMA	= 100-1R				Pr					
<u>ل</u>	<b>T</b> 100-1R		$\langle \langle \rangle$	~~~~~.			JPLAIN				
ENA	100-YR	100-YR	FEMA TOOL P	/ <b>E</b>	- 12						
	00491 SV114 - 4049 81 SV114	- La - town only - to	FEMA 1	00-184 100 m	7.4		EN CONTRACTOR				
- 1			and a second sec		100-	MA -YR FEMA 100- YR 	, Đ				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100 tom to all	865 C	Lusing and a set	Solution and a solution of the	arrive and a strike and a strike	4084 HI SVUY (44, 572, 6	FEMA	100-YR FEMA	100-YR		
			Shire BY 00 Fart		DOYPAN		And States	EXTOOL STILL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
				CALCULATION OF A	Entre Alton Land						
2							s_ `				
				, \/`,					Televenter		~~~~~

FOR REGULATORY REVIEW ONLY - NOT FOR CONSTRUCTION

TCEQ Temporary Stormwater Section Attachment H - Temporary Sediment Ponds Plans and Calculations Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

The attached calculations detail sediment removal for the Wildspring Phase 1, Per the TCEQ Technical Guidance Manual (TGM). These calculations cover all three Basins as well as the Vegetative Filter Strips.

Please find the Attached Calculations for Sediment Removal.

TSS Removal Calculations - Wildspring Phase 1 and CR 175 Realignment

Loading Calculations										
Site Area:	55.14	ac								
Total Proposed IC:	21.64	ac								
Load Removal Required (L _M):	17,126	lbs/yr								
Load Removal Provided (L _P):	17,579	lbs/yr								
Load Removal Remaining:	-453	lbs/yr								

	Inputs				Outputs				
BMP Calculations	Total On-Site DA to BMP (ac)	Pre-development On- Site IC to BMP (ac)	Post-development On-Site IC to BMP (ac)	Off-Site DA to BMP (ac)	Off-Site IC to BMP (ac)	L _M (Ibs/yr)	L _R (Ibs/yr)	F	Volume (cf)
Pond A	7.44	0.32	4.21	0.00	0.00	3,862	4,291	0.90	21,860
Pond B	10.78	0.00	5.32	0.00	0.00	4,957	5,447	0.91	29,924
Pond C	26.84	0.02	8.59	0.00	0.00	8,051	8,946	0.90	53,334
VFS-H	0.86	0.00	0.33	0.00	0.00	287	287	0.90	-
VFS-I	0.84	0.00	0.48	0.00	0.00	422	422	0.91	-

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

P =

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

1. The Required Load R	eduction for the total project:	Calculations fr	om RG-348	Pages 3-27 to 3-30
	Page 3-29 Equation 3.3: L_{M} =	27.2(A _N x P)		
where:	L _{M TOTAL PROJECT} =	Required TSS	removal resu	ulting from the proposed development = 80% of increased load
	A _N =	Net increase in	impervious a	area for the project
	P =	Average annua	al precipitatio	on, inches
Site Data: Determir	ne Required Load Removal Based on the Entire Project			
	County =	Williamson		
	Total project area included in plan * =	55.14	acres	
Predevelo	opment impervious area within the limits of the plan * =	1.96	acres	
Total post-devel	opment impervious area within the limits of the plan* =	21.64	acres	
	Total post-development impervious cover fraction * =	0.39]	
	_			

32

17126

inches

lbs.

L_{M TOTAL PROJECT} = * The values entered in these fields should be for the total project area.

Number of drainage basins / outfalls areas leaving the plan area = 5

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-A	
Total drainage basin/outfall area =	7.44	acres
Predevelopment impervious area within drainage basin/outfall area =	0.32	acres
Post-development impervious area within drainage basin/outfall area =	4.21	acres
Post-development impervious fraction within drainage basin/outfall area =	0.57	
L _{M THIS BASIN} =	3,389	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Detenti	ion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L _R =	(BMP efficien	cy) x P x (A _l x	(34.6 + A _P x 0.54)	
where: $\begin{array}{c} A_{C} = \\ A_{I} = \\ A_{P} = \\ L_{R} = \\ A_{C} = \\ A_{I} = \\ A_{P} = \\ A_$	Total On-Site Impervious area Pervious area TSS Load ren 7.44 4.21 3.23	drainage area ea proposed remaining in noved from th acres acres acres acres	a in the BMP catchment area in the BMP catchment area the BMP catchment area nis catchment area by the proposed	BMP
L_R = <u>5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall a</u> Desired L_M THIS BASIN = F = <u>6. Calculate Capture Volume required by the BMP Type for this drainage ba</u>	<u>area</u> 3,862 0.90	lbs. Ibs.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient = On-site Water Quality Volume =	0.40 18,217	inches cubic feet	Pages 3-36 to 3-37	
Off-site area draining to BMP = Off-site Impervious cover draining to BMP = Impervious fraction of off-site area = Off-site Runoff Coefficient = Off-site Water Quality Volume =	0.00 0.00 0 0.00	acres acres cubic feet		

Storage for Sediment =	= 3,643	
Total Capture Volume (required water quality volume(s) x 1.20) =	= 21,860	cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-B	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	10.78 0.00 5.32 0.49 4,632	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Detention	
Removal efficiency =	91 perce	nt

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: $L_R = 0$	(BMP efficier	ncy) x P x (A _l x	x 34.6 + A _P x 0.54)		
where: $A_{\rm C} = 1$	$A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area				
A ₁ =	A_{l} = Impervious area proposed in the BMP catchment area				
	•		the BMP catchment area		
		•	nis catchment area by the proposed	BMP	
			is outerment area by the proposed		
A _C =	10.78	acres			
A ₁ =	5.32	acres			
A _P =	5.46	acres			
L _B =	5,447	lbs			
K	-,				
5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall a	irea				
Desired L _{M THIS BASIN} =	4,957	lbs.			
F =	0.91				
6. Calculate Capture Volume required by the BMP Type for this drainage bas	sin / outfall a	area.	Calculations from RG-348	Pages 3-34 to 3-36	
Rainfall Depth =	1.80	inches			
Post Development Runoff Coefficient =	0.35				
On-site Water Quality Volume =	24,937	cubic feet			
	Calculations	from RG-348	Pages 3-36 to 3-37		
Off-site area draining to BMP =	0.00	acres			
Off-site Impervious cover draining to BMP =	0.00	acres			
Impervious fraction of off-site area =	0				
Off-site Runoff Coefficient =	0.00				
Off-site Water Quality Volume =	0	cubic feet			

Storage for Sediment =	4,987	
Total Capture Volume (required water quality volume(s) x 1.20) =	29,924	cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-C	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	26.84 0.02 8.59 0.32 7.467	acres acres acres lbs.
	,	

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Detent	ion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L _R =	(BMP efficier	ncy) x P x (A _l >	(34.6 + A _P x 0.54)			
where: A _C =	$A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area					
A ₁ =	Impervious a	rea proposed	in the BMP catchment area			
	•	• •	the BMP catchment area			
		-				
-R	L_R = TSS Load removed from this catchment area by the proposed BMP					
A _C =	26.84	acres				
A ₁ =	8.59	acres				
A _P =	18.25	acres				
L _R =	8,946	lbs				
-n	0,010					
C. Oslandata Faratian of Annual Duroff to Tarat the designed basis (astfold						
5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall a	area					
Desired $L_{M THIS BASIN}$ =	8,051	lbs.				
F =	0.90					
6. Calculate Capture Volume required by the BMP Type for this drainage ba	asin / outfall a	area.	Calculations from RG-348	Pages 3-34 to 3-36		
······································						
Rainfall Depth =	1.70	inches				
Post Development Runoff Coefficient =	0.27	inches				
On-site Water Quality Volume =		cubic feet				
	Calculations	from RG-348	Pages 3-36 to 3-37			
Off-site area draining to BMP =		acres				
Off-site Impervious cover draining to BMP =		acres				
Impervious fraction of off-site area =						
Off-site Runoff Coefficient =						
Off-site Water Quality Volume =	0	cubic feet				

8,889

53,334

cubic feet

Storage for Sediment =

Total Capture Volume (required water quality volume(s) x 1.20) =

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-H	
Total drainage basin/outfall area =	0.86	acres
Predevelopment impervious area within drainage basin/outfall area =	0.00	acres
Post-development impervious area within drainage basin/outfall area =	0.33	acres
Post-development impervious fraction within drainage basin/outfall area =	0.39	
L _{M THIS BASIN} =	287	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Vegetated	Filter Strips
Removal efficiency =	85	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 A_{C} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area

 $A_{\rm P}$ = Pervious area remaining in the BMP catchment area

 L_{R} = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.86	acres
A _I =	0.33	acres
A _P =	0.53	acres
L _R =	318	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L_{M THIS BASIN} = 287 lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Phase 1 and CR 175 Realignment Date Prepared: 3/21/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-I	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area =	0.84 0.00 0.48	acres acres acres
Post-development impervious fraction within drainage basin/outfall area = $L_{M THIS BASIN} =$	0.58 422	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Vegetated	Filter Strips
Removal efficiency =	85	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 A_{C} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area

 $A_{\rm P}$ = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	0.84	acres
A _I =	0.48	acres
A _P =	0.36	acres
L _R =	461	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 422$ lbs.

TSS Removal Calculations - Wildspring Development (Ultimate Build-Out)

Loading Calculations				
Site Area:	116.53	ac		
Total Proposed IC:	45.45	ac		
Load Removal Required (L _M):	37,850	lbs/yr		
Load Removal Provided (L _P):	37,918	lbs/yr		
Load Removal Remaining:	-69	lbs/yr		

	Inputs				Outputs				
BMP Calculations	Total On-Site DA to BMP (ac)	Pre-development On- Site IC to BMP (ac)	Post-development On-Site IC to BMP (ac)	Off-Site DA to BMP (ac)	Off-Site IC to BMP (ac)	L _M (Ibs/yr)	L _R (Ibs/yr)	F	Volume (cf)
Pond A	7.44	0.32	4.21	0.00	0.00	3,865	4,294	0.90	21,874
Pond B	10.78	0.00	5.31	0.00	0.00	4,950	5,440	0.91	29,892
Pond C	32.50	0.02	16.66	0.00	0.00	15,332	17,036	0.90	87,735
Pond D	11.51	0.09	5.24	0.00	0.00	4,844	5,382	0.90	28,477
Pond E	16.71	0.25	7.46	0.00	0.00	6,893	7,659	0.90	40,765
VFS-F	1.37	0.00	0.64	0.00	0.00	559	559	0.91	-
VFS-G	1.55	0.00	0.68	0.00	0.00	594	594	0.91	-
VFS-H	0.86	0.00	0.33	0.00	0.00	287	287	0.90	-
VFS-I	0.84	0.00	0.48	0.00	0.00	422	422	0.91	-
VFS-J	0.42	0.00	0.20	0.00	0.00	172	172	0.91	-

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

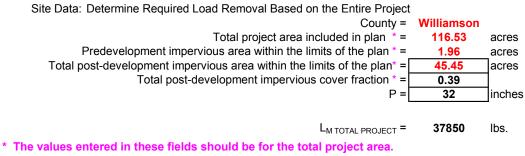
 Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell.

 Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.

 Characters shown in red are data entry fields.

 Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

 1. The Required Load Reduction for the total project:
 Calculations from RG-348


 Page 3-29 Equation 3.3: L_M = 27.2(A_N x P)

 where:
 L_{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load

 A_N = Net increase in impervious area for the project

P = Average annual precipitation, inches

Other Defensions, Demoined Land Demonstral Development and the Entities Device the

Number of drainage basins / outfalls areas leaving the plan area = 10

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond A

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-A	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	7.44 0.32 4.21 0.57 3,392	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch De	tention
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 A_{C} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area

 A_P = Pervious area remaining in the BMP catchment area

 $L_{\rm R}$ = TSS Load removed from this catchment area by the proposed BMP

A _C =	7.44	acres
A _I =	4.21	acres
A _P =	3.23	acres
L _R =	4,294	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	=	3,865	lbs.		
F =	=	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage b	basin	<u>n / outfall a</u>	area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =		1.70 0.40	inches		
On-site Water Quality Volume =		18,229	cubic feet		
	Cal	Iculations f	rom RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP = Off-site Impervious cover draining to BMP = Impervious fraction of off-site area = Off-site Runoff Coefficient = Off-site Water Quality Volume =	0.00 0.00 0 0.00 0	acres acres cubic feet
Storage for Sediment = Total Capture Volume (required water quality volume(s) x 1.20) =	3,646 21,874	cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond B

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-B	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	10.78 0.00 5.31 0.49 4,625	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Ba	tch Deter	ntion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

- N	

A _C =	10.78	acres
A _I =	5.31	acres
A _P =	5.47	acres
L _R =	5,440	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	4,950	lbs.		
F =	0.91			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	<u>sin / outfa</u>	ll area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.80 0.35	inches		
On-site Water Quality Volume =	0.35 24,910	cubic feet		
	Calculatior	s from RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP Off-site Impervious cover draining to BMP Impervious fraction of off-site area Off-site Runoff Coefficient Off-site Water Quality Volume	= 0.00 = 0 = 0.00	acres acres cubic feet	
Storage for Sediment		cubic foot	

Total Capture Volume (required water quality volume(s) x 1.20) = 29,892 cubic feet

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond C

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-C	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	32.50 0.02 16.66 0.51	acres acres acres
L _{M THIS BASIN} =	14,488	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Batch Detention					
Removal efficiency =	91	percent			

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A₁ x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

 A_I = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area

 L_R = TSS Load removed from this catchment area by the proposed BMP

A _C =	32.50	acres
A _I =	16.66	acres
A _P =	15.84	acres
L _R =	17,036	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	15,332	lbs.		
F =	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	isin / outfal	area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.70 0.36	inches		
On-site Water Quality Volume =	73,113	cubic feet		
	Calculations	from RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP =	0.00	acres
Off-site Impervious cover draining to BMP =	0.00	acres
Impervious fraction of off-site area =	0	
Off alta Dura off Ca officiant -	0.00	

Off-site Water Quality Volume =	0.00	cubic feet	
Storage for Sediment =	14,623		
Total Capture Volume (required water quality volume(s) x 1.20) =	87,735	cubic feet	

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond D

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-D	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	11.51 0.09 5.24 0.46 4,482	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Batch Detention					
Removal efficiency =	91	percent			

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area

 L_{R} = TSS Load removed from this catchment area by the proposed BMP

A _C =	11.51	acres
A _I =	5.24	acres
A _P =	6.26	acres
L _R =	5,382	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	4,84	4 lbs.			
F =	0.9	0			
6. Calculate Capture Volume required by the BMP Type for this drainage b	asin / ou	fall area.		Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.7 0.3		es		
On-site Water Quality Volume =			c feet		
	Calculati	ons from RC	G-348	Pages 3-36 to 3-37	

Off-site area draining to BMP =	0.00	acres
5	••••	
Off-site Impervious cover draining to BMP =	0.00	acres
Impervious fraction of off-site area =	0	
Off site Dunoff Coefficient -	0 00	

	ite Water Quality Volume =	0.00	cubic feet	
	Storage for Sediment =	4,746		
tal Capture Volume (required water q	uality volume(s) x 1.20) =	28,477	cubic feet	

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

Pond E

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	PR-E	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	16.71 0.25 7.46 0.45 6,277	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Batch Deter	ntion
Removal efficiency =	91	percent

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A_I x 34.6 + A_P x 0.54)

where:

 $A_{\rm C}$ = Total On-Site drainage area in the BMP catchment area

A_I = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area

 L_{R} = TSS Load removed from this catchment area by the proposed BMP

A _C =	16.71	acres
A _I =	7.46	acres
A _P =	9.25	acres
L _R =	7,659	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L _{M THIS BASIN} =	6,893	lbs.		
F =	0.90			
6. Calculate Capture Volume required by the BMP Type for this drainage ba	asin / outfa	l area.	Calculations from RG-348	Pages 3-34 to 3-36
Rainfall Depth = Post Development Runoff Coefficient =	1.70 0.33	inches		
On-site Water Quality Volume =		cubic feet		
	Calculation	s from RG-348	Pages 3-36 to 3-37	

Off-site area draining to BMP = Off-site Impervious cover draining to BMP = Impervious fraction of off-site area = Off-site Runoff Coefficient = Off-site Water Quality Volume =	0.00 0.00 0.00 0.00 0	acres acres cubic feet	
Storage for Sediment = otal Capture Volume (required water quality volume(s) x 1.20) =	6,794 40,765	cubic feet	

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-F

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-F	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	1.37 0.00 0.64 0.47 559	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Ve	• •	· · · · ·	
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

<u>4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.</u>

	RG-348 Page 3-33 Equation 3.7: $L_R = 0$	(BMP efficie	ncy) x P x (A _I x 34.6 + A _P x 0.54)	
where:	$A_1 = 1$	A_{c} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area A_{P} = Pervious area remaining in the BMP catchment area		
	L _R = ⁻	L_R = TSS Load removed from this catchment area by the proposed BMF		
	A _C =	1.37	acres	
	A ₁ =	0.64	acres	
	A _P =	0.72	acres	
	L _R =	615	lbs	

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 559$ lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-G

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-G	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	1.55 0.00 0.68 0.44	acres acres acres
L _{M THIS BASIN} =	594	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Ve	getated F	Filter Strips	
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

	RG-348 Page 3-33 Equation 3.7: $L_R = (BI)$	MP efficie	ncy) x P x (A _I x 34.6 + A _P x 0.54)
where:	A _i = Im	pervious a	e drainage area in the BMP catchment area area proposed in the BMP catchment area
			ea remaining in the BMP catchment area emoved from this catchment area by the proposed BMP
	A _C =	1.55	acres
	A ₁ =	0.68	acres
	A _P =	0.87	acres
	L _R =	655	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 594$ lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-H

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-H	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	0.86 0.00 0.33 0.39	acres acres acres
L _{M THIS BASIN} =	287	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent			

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: L_R = (BMP efficiency) x P x (A₁ x 34.6 + A_P x 0.54) where: A_{C} = Total On-Site drainage area in the BMP catchment area A_{I} = Impervious area proposed in the BMP catchment area A_P = Pervious area remaining in the BMP catchment area L_R = TSS Load removed from this catchment area by the proposed BMP $A_{\rm C}$ = 0.86 acres A_I = 0.33 acres A_P = 0.53 acres 318 L_R = lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired L_{M THIS BASIN} = 287 lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-I

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-I	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area = L _{M THIS BASIN} =	0.84 0.00 0.48 0.58 422	acres acres acres lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP =	Vegetated	Filter Strips	
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

<u>4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.</u>

	RG-348 Page 3-33 Equation 3.7: $L_R = (E_R)^2$	MP efficie	ncy) x P x (A ₁ x 34.6 + A _P x 0.54)
where:	A ₁ = In A _P = P	npervious a ervious are	e drainage area in the BMP catchment area area proposed in the BMP catchment area ea remaining in the BMP catchment area emoved from this catchment area by the proposed BMP
	$A_{\rm C} = \\ A_{\rm I} = \\ A_{\rm P} =$	0.84 0.48 0.36	acres acres acres
	L _R =	461	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 422$ lbs.

TSS Removal Calculations 04-20-2009

Project Name: Wildspring - Ultimate Development Date Prepared: 3/21/2023

VFS-J

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348. Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. =	VFS-J	
Total drainage basin/outfall area = Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area = Post-development impervious fraction within drainage basin/outfall area =	0.42 0.00 0.20 0.47	acres acres acres
L _{M THIS BASIN} =	172	lbs.

3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Vegetated Filter Strips			
Removal efficiency =	85	percent	

Aqualogic Cartridge Filter Bioretention Contech StormFilter Constructed Wetland Extended Detention Grassy Swale Retention / Irrigation Sand Filter Stormceptor Vegetated Filter Strips Vortechs Wet Basin Wet Vault

4. Calculate Maximum TSS Load Removed (L_R) for this Drainage Basin by the selected BMP Type.

	RG-348 Page 3-33 Equation 3.7: L _R = (BMP efficiency)	ciency) x P x (A _I x 34.6 + A _P x 0.54)
where:	0	Site drainage area in the BMP catchment area
	A _I = Imperviou	s area proposed in the BMP catchment area
	$A_{\rm P}$ = Pervious a	area remaining in the BMP catchment area
	L _R = TSS Load	I removed from this catchment area by the proposed BMP
	A _C = 0.42	acres
	A ₁ = 0.20	acres
	A _P = 0.23	acres
	L _R = 189	lbs

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M THIS BASIN} = 172$ lbs.

TCEQ Temporary Stormwater Section Attachment I - Inspection and Maintenance for BMP's Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Wildspring Phase 1 utilizes a variety of BMP controls which require periodic inspection and maintenance to perform as designed. In general, all temporary erosion control features should be inspected weekly and after each rainfall. A site visit report should be created for each inspection noting all items of maintenance, repair or replacement required during each visit. Please see below for additional information on each control.

- 1. **Tree Protection/Vegetative Buffers-** Damaged fencing shall be replaced as needed and parking under preserved trees is to be discouraged. The need for routine maintenance such as mowing, fertilizing, irrigating and weed and pest control will depend on the species of plants and trees, soil types, location and climatic conditions.
- 2. **Stabilized Construction Exit-** To maintain the entrance in good working condition, occasional top dressing with additional stone may be required, and any silt or debris found in the adjacent ROW should be removed. The contractor shall keep the adjacent street clean at all times.
- 3. Silt Fence- Sediment depth in excess of 6 inches shall be removed and any ripped or torn material is to be replaced. After construction is complete, and the construction area has been revegetated, the silt fence shall be removed.
- 4. Sedimentation Basins- At each inspection, the embankment, spillways and outlet should be checked for erosion damage. Trash and debris should be removed from the structure to prevent clogging, and accumulated silt should be removed after the capacity of the basin has been reduced by 25%. The basin should be routinely checked for settlement or signs of piping.
- 5. **Turf Establishment/Broadcast Seeding** Seeding locations should be inspected weekly and after each rain event to locate and repair any erosion. Any areas requiring repair, or areas with less than 80% cover should repaired and re-seeded. Watering may be required for seed to start during dry weather.

The inspection and maintenance of temporary BMPs will be made according to TCEQ RG-348, <u>Complying</u> with the Edwards Aquifer Rules Technical Guidance on Best Management Practices, Revised July 2005.

Inspection Personnel:

Inspections shall be conducted by qualified representatives of the contractor acting on behalf of the owner or a designated party if hired separately by the owner. Each operator must delegate authority to the specifically described position or person performing inspections, as provided by 30 TAC 305.128, as an authorized person for signing reports and performing certain activities requested by the director or required by the TPDES general permit. This delegation of authority must be provided to the director of TCEQ in writing and a copy shall be kept along with the signed effective copy of the SW3P.

Inspection Schedule and Procedures:

Inspections must comply with the following:

• An inspection shall occur weekly and after any rain event.

- The authorized party shall inspect all disturbed areas of the site, areas used for storage of materials that are exposed to precipitation, structural control measures, and locations where vehicles enter or exit the site.
- Disturbed areas and areas used for storage of materials that are exposed to precipitation or within limits of the 1% annual chance (100 year) floodplain must be inspected for evidence of, or the potential for, pollutants entering runoff from the site. Erosion and sediment control measures identified in the plan must be observed to ensure that they are operating correctly. Observations can be made during wet or dry weather conditions. Where discharge locations or points are accessible, they must be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters. This can be done by inspecting receiving waters to see whether any signs or erosion or sediment are associated with the discharge location. Locations where vehicles enter or exit the site must be inspected for evidence of off-site sediment tracking.
- Should the inspection reveal any inadequacies, the site description and the pollution prevention measures identified in the plan must be revised as soon as possible. The inspection and plan review process must provide for implementation of any changes to the plan within 7 calendar days of the inspection.
- An inspection report that summarizes the scope of the inspection, name(s) and qualifications of inspection personnel, the date of the inspection, and major observations relating to the implementation of the SW3P. Major observations shall include, at minimum: location of discharges of sediment or other pollutants from the site, locations of BMPs that need to undergo maintenance, locations of BMPs that have failed or have provided inadequate, and locations where BMPs are needed.
- Actions taken as a result of the inspections must be described within, and retained as part of, the SW3P. Reports must identify any incidents of non-compliance. Where a report does not identify any incidents of non-compliance, the report must contain a certification that the facility or site is in compliance with the SW3P and the TPDES general permit. The report must be signed by the authorized representative delegated by the operators in accordance with TAC 305.128.

Maintenance and Corrective Actions:

Maintenance of erosion control facilities shall consist of the following minimum requirements:

- In ongoing construction areas, inspect erosion control improvements to confirm facilities are in place and operable. Where facilities have been temporarily set aside or damaged due to construction activity, place facilities in service before leaving the job site.
- If the weather forecast predicts the possibility of rain, check all facilities throughout the site to ensure they are in place and operable. If job site weather conditions indicate high probability of rain, make special inspection of erosion control facilities.
- After rainfall events review erosion control facilities as soon as the site is accessible. Clean rock berms, berm/swales, and other structural facilities. Determine where additional facilities or alternative techniques are needed to control sediment leaving the site.
- After portions of the site have been seeded, review these areas on a regular basis (in accordance with project specifications) to ensure proper watering until grass is established. Re-seed areas where grass is not well established.
- Spills are to be handled as specified by the product manufacturer in a safe and timely manner by construction personnel. The site superintendent will be responsible for coordinating spill prevention and cleanup operations. See also <u>Attachment A-Spill Response Actions</u>.
- Concrete trucks will discharge extra concrete or wash out their drums only at an approved location on site. Residual product shall be properly disposed of.
- Inspect vehicle entrances and exits for evidence of off-site tracking and correct as needed.

- Remove sediment from traps/ponds as soon as the sediment load has been reduced to 50% of the design capacity.
- The contractor, where feasible and where access is available, shall collect and remove sedimentation material that escapes the site, using appropriate non-damaging methods. The contractor shall also correct the condition that allowed the sediment to escape.
- If inspections or other information sources reveal a control has been used incorrectly, or that a control is performing inadequately, the contractor must replace, correct, or modify the control as soon as is practical after discovery of the deficiency.

TCEQ Temporary Stormwater Section Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices Water, Sewer, Drainage and Paving to Serve Wildspring Phase 1

Wildspring Phase 1 shall establish Interim and Permanent Soil Stabilization in the following order:

- 1. **Tree Protection/Vegetative Buffers: Day 1** Protected greenspace is to be identified and preserved prior to mobilization of heavy equipment.
- 2. **Turf Establishment for Siltation Ponds: Day 30** Siltation ponds shall be constructed and seeded as soon as practical in order to minimize runoff from the site, after they have been cut to final grade. There will be a slight lag time on this item as it requires completion of excavation and grading operations.
- 3. **Final Turf Establishment: Day 45-150** Final seeding may occur as soon as an area has been fully cleared and is no longer actively being worked by construction equipment. Seeding shall occur no later than 14 days after construction activities have ceased.

Temporary erosion and sedimentation control structures shall be maintained at all times during construction, and shall be inspected on a weekly basis and after rain events.

Bare soils should be seeded or otherwise stabilized within 14 calendar days after final grading or where construction activity has temporarily ceased for more than 21 days.

After the entire site is stabilized, any sediment that has accumulated will be removed and hauled off-site for disposal. Construction debris, trash, sanitary toilets, material storage, and temporary BMPs including silt fences will also be removed and any areas disturbed during the removal process will be seeded or reseeded immediately.

See also Attachment C for sequence of major activities.

Section IV

Copy of Notice of Intent (NOI)

TCEQOffice Use Only Permit No: CN: RN:

Notice of Intent (NOI) for an Authorization for Stormwater Discharges Associated with Construction Activity under TPDES General Permit TXR150000

IMPORTANT INFORMATION

Please read and use the General Information and Instructions prior to filling out each question in the NOI form.

Use the NOI Checklist to ensure all required information is completed correctly. **Incomplete applications delay approval or result in automatic denial.**

Once processed your permit authorization can be viewed by entering the following link into your internet browser: http://www2.tceq.texas.gov/wq_dpa/index.cfm or you can contact TCEQ Stormwater Processing Center at 512-239-3700.

ePERMITS

Effective September 1, 2018, this paper form must be submitted to TCEQ with a completed electronic reporting waiver form (TCEQ-20754).

To submit an NOI electronically, enter the following web address into your internet browser and follow the instructions: https://www3.tceq.texas.gov/steers/index.cfm

APPLICATION FEE AND PAYMENT

The application fee for submitting a paper NOI is \$325. The application fee for electronic submittal of a NOI through the TCEQ ePermits system (STEERS) is \$225.

Payment of the application fee can be submitted by mail or through the TCEQ ePay system. The payment and the NOI must be mailed to separate addresses. To access the TCEQ ePay system enter the following web address into your internet browser: http://www.tceq.texas.gov/epay.

Provide your payment information for verification of payment:

- If payment was mailed to TCEQ, provide the following:
 - Check/Money Order Number: N/A
 - Name printed on Check: N/A
- If payment was made via ePay, provide the following:
 - ✓ Voucher Number: TBD*
 - $\circ~$ A copy of the payment voucher is attached to this paper NOI form.

*Account created in STEERS as a placeholder for NOI.

Is this NOI for a renewal of an existing authorization? 🗆 Yes 🗹 No

If Yes, provide the authorization number here: TXR15 N/A

NOTE: If an authorization number is not provided, a new number will be assigned.

SECTION 1. OPERATOR (APPLICANT)

a) If the applicant is currently a customer with TCEQ, what is the Customer Number (CN) issued to this entity? CN 602840076

(Refer to Section 1.a) of the Instructions)

b) What is the Legal Name of the entity (applicant) applying for this permit? (The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal document forming the entity.)

Toll Southwest LLC dba Toll Brothers Inc

c) What is the contact information for the Operator (Responsible Authority)?

Prefix (Mr. Ms. Miss): Ms.

First and Last Name: Adrienne Donatucci Suffix:

Title: Land Development Manager Credentials:

Phone Number: 412-780-2312	Fax Number: 512-528-5036
----------------------------	--------------------------

 $E\text{-mail:} \verb"adonatucci@tollbrothers.com"$

Mailing Address: 1320 Arrow Point Drive, Ste 401

City, State, and Zip Code: Cedar Park, TX 78613

Mailing Information if outside USA:

Territory: N/A

Country Code: N/A P

Postal Code: N/A

d) Indicate the type of customer:

🗆 Individual	🗆 Federal Government
🗆 Limited Partnership	County Government
🗆 General Partnership	🗖 State Government
🗆 Trust	City Government
🗖 Sole Proprietorship (D.B.A.)	Other Government
Image: Corporation	□ Other:
🗆 Estate	
Is the applicant an independent operator?	🗆 Yes 🛛 🗹 No

TCEQ-20022	(2/6)	(2018)
ICEQ-20022	(3/0)	2010)

e)

Notice of Intent for Construction Stormwater Discharges under TXR150000

(If a governmental entity, a subsidiary, or part of a larger corporation, check No.)

- f) Number of Employees. Select the range applicable to your company.
 - □ 0-20
 - 1 1 0 0

□ 251-500

□ 21-100

⊠ 501 or higher

- □ 101-250
- g) Customer Business Tax and Filing Numbers: (**Required** for Corporations and Limited Partnerships. **Not Required** for Individuals, Government, or Sole Proprietors.)

State Franchise Tax ID Number: 32050842304

Federal Tax ID: 47-2582910

Texas Secretary of State Charter (filing) Number: 0801775669

DUNS Number (if known): ---

SECTION 2. APPLICATION CONTACT

Is the application contact the same as the applicant identified above?

□ Yes, go to Section 3

☑ No, complete this section

Prefix (Mr. Ms. Miss):	Mr.
------------------------	-----

First and Last Name: Steven Buffum Suffix:

Title: Partner/Project Manager Credential: P.E.

Organization Name: Costello Inc

Phone Number: 512-646-3463 Fax Number: N/A

E-mail: sbuffum@costelloinc.com

Mailing Address: 9050 N. Capital of Texas Hwy, Bldg. 3, Ste 390

Internal Routing (Mail Code, Etc.): N/A

City, State, and Zip Code: Austin, TX 78759

Mailing information if outside USA:

Territory: N/A

Country Code: N/A

Postal Code: N/A

SECTION 3. REGULATED ENTITY (RE) INFORMATION ON PROJECT OR SITE

a) If this is an existing permitted site, what is the Regulated Entity Number (RN) issued to this site? RN N/A

(Refer to Section 3.a) of the Instructions)

- b) Name of project or site (the name known by the community where it's located): Wildspring Phase 1
- c) In your own words, briefly describe the type of construction occurring at the regulated site (residential, industrial, commercial, or other): Single family residential development, including associated water, sewer, drainage and paving.
- d) County or Counties (if located in more than one): Williamson
- e) Latitude: 30° 34' 36.14" Longitude: 97° 47' 11.18"
- f) Site Address/Location

If the site has a physical address such as 12100 Park 35 Circle, Austin, TX 78753, complete *Section A*.

If the site does not have a physical address, provide a location description in *Section B*. Example: located on the north side of FM 123, 2 miles west of the intersection of FM 123 and Highway 1.

Section A:

Street Number and Name: N/A

City, State, and Zip Code: N/A

Section B:

Location Description: Northwest Intersection of CR 175 & CR 177

City (or city nearest to) where the site is located: Leander

Zip Code where the site is located: 78641

SECTION 4. GENERAL CHARACTERISTICS

a) Is the project or site located on Indian Country Lands?

⊠′No

- b) Is your construction activity associated with a facility that, when completed, would be associated with the exploration, development, or production of oil or gas or geothermal resources?
 - Yes. Note: The construction stormwater runoff may be under jurisdiction of the Railroad Commission of Texas and may need to obtain authorization through EPA Region 6.

⊠No

- c) What is the Primary Standard Industrial Classification (SIC) Code that best describes the construction activity being conducted at the site? 1629 Heavy Construction
- d) What is the Secondary SIC Code(s), if applicable? 1623 Water, Sewer, Pipeline
- e) What is the total number of acres to be disturbed? 55.14 Acres
- f) Is the project part of a larger common plan of development or sale?

TCEQ-20022(3/6/2018)

Yes, do not submit this form. You must obtain authorization through EPA Region 6.

⊠Yes

- □ No. The total number of acres disturbed, provided in e) above, must be 5 or more. If the total number of acres disturbed is less than 5, do not submit this form. See the requirements in the general permit for small construction sites.
- g) What is the estimated start date of the project? November 2023
- h) What is the estimated end date of the project? July 2024
- j) What is the name of the first water body(ies) to receive the stormwater runoff or potential runoff from the site? Brushy Creek
- k) What is the segment number(s) of the classified water body(ies) that the discharge will eventually reach? 1244A
- 1) Is the discharge into a Municipal Separate Storm Sewer System (MS4)?

□ Yes ☑ No

If Yes, provide the name of the MS4 operator: N/A

Note: The general permit requires you to send a copy of this NOI form to the MS4 operator.

m) Is the discharge or potential discharge from the site within the Recharge Zone, Contributing Zone, or Contributing Zone within the Transition Zone of the Edwards Aquifer, as defined in 30 TAC Chapter 213?

☑ Yes, complete the certification below.

□ No, go to Section 5

I certify that the copy of the TCEQ-approved Plan required by the Edward's Aquifer Rule (30 TAC Chapter 213) that is included or referenced in the Stormwater Pollution Prevention Plan will be implemented.

SECTION 5. NOI CERTIFICATION

- a) I certify that I have obtained a copy and understand the terms and conditions of the Construction General Permit (TXR150000).
- c) I understand that a Notice of Termination (NOT) must be submitted when this authorization is no longer needed.
- d) I certify that a Stormwater Pollution Prevention Plan has been developed, will be implemented prior to construction and to the best of my knowledge and belief is compliant with any applicable local sediment and erosion control plans, as required in the Construction General Permit (TXR150000).

Note: For multiple operators who prepare a shared SWP3, the confirmation of an operator may be limited to its obligations under the SWP3, provided all obligations are confirmed by at least one operator.

SECTION 6. APPLICANT CERTIFICATION SIGNATURE

Operator Signatory Name: Steven Buffum

Operator Signatory Title: Partner / Project Manager

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code §305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signature (use blue ink): _Date: 03/24/2023

NOTICE OF INTENT CHECKLIST (TXR150000)

Did you complete everything? Use this checklist to be sure!

Are you ready to mail your form to TCEQ? Go to the General Information Section of the Instructions for mailing addresses.

Confirm each item (or applicable item) in this form is complete. This checklist is for use by the applicant to ensure a complete application is being submitted. **Missing information may result in denial of coverage under the general permit.** (See NOI process description in the General Information and Instructions.)

APPLICATION FEE

If paying by check:

Check was mailed **separately** to the TCEQs Cashier's Office. (See Instructions for Cashier's address and Application address.)

Check number and name on check is provided in this application.

If using ePay:

☑ The voucher number is provided in this application and a copy of the voucher is attached.

RENEWAL

□ If this application is for renewal of an existing authorization, the authorization number is provided.

OPERATOR INFORMATION

☑ Customer Number (CN) issued by TCEQ Central Registry

☑ Legal name as filed to do business in Texas. (Call TX SOS 512-463-5555 to verify.)

☑ Name and title of responsible authority signing the application.

☑ Phone number and e-mail address

☑ Mailing address is complete & verifiable with USPS. <u>www.usps.com</u>

☑ Type of operator (entity type). Is applicant an independent operator?

☑ Number of employees.

 \mathbf{Y} For corporations or limited partnerships – Tax ID and SOS filing numbers.

Application contact and address is complete & verifiable with USPS. <u>http://www.usps.com</u>

REGULATED ENTITY (RE) INFORMATION ON PROJECT OR SITE

☑ Regulated Entity Number (RN) (if site is already regulated by TCEQ)

Site/project name and construction activity description

✓ County

☑ Latitude and longitude <u>http://www.tceq.texas.gov/gis/sqmaview.html</u>

☑ Site Address/Location. Do not use a rural route or post office box.

GENERAL CHARACTERISTICS

☑ Indian Country Lands – the facility is not on Indian Country Lands.

☑ Construction activity related to facility associated to oil, gas, or geothermal resources

☑ Primary SIC Code that best describes the construction activity being conducted at the site. <u>www.osha.gov/oshstats/sicser.html</u>

 \square Estimated starting and ending dates of the project.

 $\mathbf{\Sigma}$ Confirmation of concrete truck washout.

☑ Acres disturbed is provided and qualifies for coverage through a NOI.

☑ Common plan of development or sale.

☑ Receiving water body or water bodies.

☑ Segment number or numbers.

⊠ MS4 operator.

 \blacksquare Edwards Aquifer rule.

CERTIFICATION

☑ Certification statements have been checked indicating Yes.

Signature meets 30 Texas Administrative Code (TAC) §305.44 and is original.

Instructions for Notice of Intent (NOI) for Stormwater Discharges Associated with Construction Activity under TPDES General Permit (TXR150000)

GENERAL INFORMATION

Where to Send the Notice of Intent (NOI):

By Regular Mail: TCEQ Stormwater Processing Center (MC228) P.O. Box 13087 Austin, Texas 78711-3087 By Overnight or Express Mail: TCEQ Stormwater Processing Center (MC228) 12100 Park 35 Circle Austin, TX

Application Fee:

The application fee of \$325 is required to be paid at the time the NOI is submitted. Failure to submit payment at the time the application is filed will cause delays in acknowledgment or denial of coverage under the general permit. Payment of the fee may be made by check or money order, payable to TCEQ, or through EPAY (electronic payment through the web).

Mailed Payments:

Use the attached General Permit Payment Submittal Form. The application fee is submitted to a different address than the NOI. Read the General Permit Payment Submittal Form for further instructions, including the address to send the payment.

ePAY Electronic Payment: http://www.tceq.texas.gov/epay

When making the payment you must select Water Quality, and then select the fee category "General Permit Construction Storm Water Discharge NOI Application". You must include a copy of the payment voucher with your NOI. Your NOI will not be considered complete without the payment voucher.

TCEQ Contact List:

•	
Application – status and form questions:	512-239-3700, swpermit@tceq.texas.gov
Technical questions:	512-239-4671, swgp@tceq.texas.gov
Environmental Law Division:	512-239-0600
Records Management - obtain copies of forms:	512-239-0900
Reports from databases (as available):	512-239-DATA (3282)
Cashier's office:	512-239-0357 or 512-239-0187

Notice of Intent Process:

When your NOI is received by the program, the form will be processed as follows:

• Administrative Review: Each item on the form will be reviewed for a complete response. In addition, the operator's legal name must be verified with Texas Secretary of State as valid and active (if applicable). The address(es) on the form must be verified with the US Postal service as receiving regular mail delivery. Do not give an overnight/express mailing address.

- Notice of Deficiency: If an item is incomplete or not verifiable as indicated above, a notice of deficiency (NOD) will be mailed to the operator. The operator will have 30 days to respond to the NOD. The response will be reviewed for completeness.
- Acknowledgment of Coverage: An Acknowledgment Certificate will be mailed to the operator. This certificate acknowledges coverage under the general permit.

or

Denial of Coverage: If the operator fails to respond to the NOD or the response is inadequate, coverage under the general permit may be denied. If coverage is denied, the operator will be notified.

General Permit (Your Permit)

For NOIs submitted **electronically** through ePermits, provisional coverage under the general permit begins immediately following confirmation of receipt of the NOI form by the TCEQ.

For **paper** NOIs, provisional coverage under the general permit begins **7 days after a completed NOI is postmarked for delivery** to the TCEQ.

You should have a copy of your general permit when submitting your application. You may view and print your permit for which you are seeking coverage, on the TCEQ web site <u>http://www.tceq.texas.gov</u>. Search using keyword TXR150000.

Change in Operator

An authorization under the general permit is not transferable. If the operator of the regulated project or site changes, the present permittee must submit a Notice of Termination and the new operator must submit a Notice of Intent. The NOT and NOI must be submitted no later than 10 days prior to the change in Operator status.

TCEQ Central Registry Core Data Form

The Core Data Form has been incorporated into this form. Do not send a Core Data Form to TCEQ. After final acknowledgment of coverage under the general permit, the program will assign a Customer Number and Regulated Entity Number, if one has not already been assigned to this customer or site.

For existing customers and sites, you can find the Customer Number and Regulated Entity Number by entering the following web address into your internet browser. http://www15.tceq.texas.gov/crpub/ or you can contact the TCEQ Stormwater Processing Center at 512-239-3700 for assistance. On the website, you can search by your permit number, the Regulated Entity (RN) number, or the Customer Number (CN). If you do not know these numbers, you can select "Advanced Search" to search by permittee name, site address, etc.

The Customer (Permittee) is responsible for providing consistent information to the TCEQ, and for updating all CN and RN data for all authorizations as changes occur. For this permit, a Notice of Change form must be submitted to the program area.

INSTRUCTIONS FOR FILLING OUT THE NOI FORM

Renewal of General Permit. Dischargers holding active authorizations under the expired General Permit are required to submit a NOI to continue coverage. The existing permit number is required. If the permit number is not provided or has been terminated, expired, or denied, a new permit number will be issued.

Section 1. OPERATOR (APPLICANT)

a) Customer Number (CN)

TCEQ's Central Registry will assign each customer a number that begins with CN, followed by nine digits. **This is not a permit number, registration number, or license number**.

If the applicant is an existing TCEQ customer, the Customer Number is available at the following website: <u>http://www15.tceq.texas.gov/crpub/</u>. If the applicant is not an existing TCEQ customer, leave the space for CN blank.

b) Legal Name of Applicant

Provide the current legal name of the applicant. The name must be provided exactly as filed with the Texas Secretary of State (SOS), or on other legal documents forming the entity, as filed in the county. You may contact the SOS at 512-463-5555, for more information related to filing in Texas. If filed in the county, provide a copy of the legal documents showing the legal name.

c) Contact Information for the Applicant (Responsible Authority)

Provide information for the person signing the application in the Certification section. This person is also referred to as the Responsible Authority.

Provide a complete mailing address for receiving mail from the TCEQ. The mailing address must be recognized by the US Postal Service. You may verify the address on the following website: <u>https://tools.usps.com/go/ZipLookupAction!input.action</u>.

The phone number should provide contact to the applicant.

The fax number and e-mail address are optional and should correspond to the applicant.

d) Type of Customer (Entity Type)

Check only one box that identifies the type of entity. Use the descriptions below to identify the appropriate entity type. Note that the selected entity type also indicates the name that must be provided as an applicant for an authorization.

Individual

An individual is a customer who has not established a business, but conducts an activity that needs to be regulated by the TCEQ.

<u>Partnership</u>

A customer that is established as a partnership as defined by the Texas Secretary of State Office (TX SOS). If the customer is a 'General Partnership' or 'Joint Venture' filed in the county (not filed with TX SOS), the legal name of each partner forming the 'General Partnership' or 'Joint Venture' must be provided. Each 'legal entity' must apply as a co-applicant.

Trust or Estate

A trust and an estate are fiduciary relationships governing the trustee/executor with respect to the trust/estate property.

Sole Proprietorship (DBA)

A sole proprietorship is a customer that is owned by only one person and has not been incorporated. This business may:

- 1. be under the person's name
- 2. have its own name (doing business as or DBA)
- 3. have any number of employees.

If the customer is a Sole Proprietorship or DBA, the 'legal name' of the individual business 'owner' must be provided. The DBA name is not recognized as the 'legal name' of the entity. The DBA name may be used for the site name (regulated entity).

Corporation

A customer that meets all of these conditions:

- 1. is a legally incorporated entity under the laws of any state or country
- 2. is recognized as a corporation by the Texas Secretary of State
- 3. has proper operating authority to operate in Texas

The corporation's 'legal name' as filed with the Texas Secretary of State must be provided as applicant. An 'assumed' name of a corporation is not recognized as the 'legal name' of the entity.

Government

Federal, state, county, or city government (as appropriate)

The customer is either an agency of one of these levels of government or the governmental body itself. The government agency's 'legal name' must be provided as the applicant. A department name or other description of the organization is not recognized as the 'legal name'.

<u>Other</u>

This may include a utility district, water district, tribal government, college district, council of governments, or river authority. Provide the specific type of government.

e) Independent Entity

Check No if this customer is a subsidiary, part of a larger company, or is a governmental entity. Otherwise, check Yes.

f) Number of Employees

Check one box to show the number of employees for this customer's entire company, at all locations. This is not necessarily the number of employees at the site named in the application.

g) Customer Business Tax and Filing Numbers

These are required for Corporations and Limited Partnerships. These are not required for Individuals, Government, and Sole Proprietors.

State Franchise Tax ID Number

Corporations and limited liability companies that operate in Texas are issued a franchise tax identification number. If this customer is a corporation or limited liability company, enter the Tax ID number.

Federal Tax ID

All businesses, except for some small sole proprietors, individuals, or general partnerships should have a federal taxpayer identification number (TIN). Enter this number here. Use no prefixes, dashes, or hyphens. Sole proprietors, individuals, or general partnerships do not need to provide a federal tax ID.

TX SOS Charter (filing) Number

Corporations and Limited Partnerships required to register with the Texas Secretary of State are issued a charter or filing number. You may obtain further information by calling SOS at 512-463-5555.

DUNS Number

Most businesses have a DUNS (Data Universal Numbering System) number issued by Dun and Bradstreet Corp. If this customer has one, enter it here.

Section 2. APPLICATION CONTACT

Provide the name and contact information for the person that TCEQ can contact for additional information regarding this application.

Section 3. REGULATED ENTITY (RE) INFORMATION ON PROJECT OR SITE

a) Regulated Entity Number (RN)

The RN is issued by TCEQ's Central Registry to sites where an activity is regulated by TCEQ. This is not a permit number, registration number, or license number. Search TCEQ's Central Registry to see if the site has an assigned RN at http://www15.tceq.texas.gov/crpub/. If this regulated entity has not been assigned an RN, leave this space blank.

If the site of your business is part of a larger business site, an RN may already be assigned for the larger site. Use the RN assigned for the larger site.

If the site is found, provide the assigned RN and provide the information for the site to be authorized through this application. The site information for this authorization may vary from the larger site information.

An example is a chemical plant where a unit is owned or operated by a separate corporation that is accessible by the same physical address of your unit or facility. Other examples include industrial parks identified by one common address but different corporations have control of defined areas within the site. In both cases, an RN would be assigned for the physical address location and the permitted sites would be identified separately under the same RN.

b) Name of the Project or Site

Provide the name of the site or project as known by the public in the area where the site is located. The name you provide on this application will be used in the TCEQ Central Registry as the Regulated Entity name.

c) Description of Activity Regulated

In your own words, briefly describe the primary business that you are doing that requires this authorization. Do not repeat the SIC Code description.

d) County

Provide the name of the county where the site or project is located. If the site or project is located in more than one county, provide the county names as secondary.

e) Latitude and Longitude

Enter the latitude and longitude of the site in degrees, minutes, and seconds or decimal form. For help obtaining the latitude and longitude, go to: <u>http://www.tceq.texas.gov/gis/sqmaview.html</u>.

f) Site Address/Location

If a site has an address that includes a street number and street name, enter the complete address for the site in *Section A*. If the physical address is not recognized as a USPS delivery address, you may need to validate the address with your local police (911 service) or through an online map site used to locate a site. Please confirm this to be a complete and valid address. Do not use a rural route or post office box for a site location.

If a site does not have an address that includes a street number and street name, provide a complete written location description in *Section B*. For example: "The site is located on the north side of FM 123, 2 miles west of the intersection of FM 123 and Highway 1."

Provide the city (or nearest city) and zip code of the site location.

Section 4. GENERAL CHARACTERISTICS

a) Indian Country Lands

If your site is located on Indian Country Lands, the TCEQ does not have authority to process your application. You must obtain authorization through EPA Region 6, Dallas. Do not submit this form to TCEQ.

b) Construction activity associated with facility associated with exploration, development, or production of oil, gas, or geothermal resources

If your activity is associated with oil and gas exploration, development, or production, you may be under jurisdiction of the Railroad Commission of Texas (RRC) and may need to obtain authorization from EPA Region 6.

Construction activities associated with a facility related to oil, gas or geothermal resources may include the construction of a well site; treatment or storage facility; underground hydrocarbon or natural gas storage facility; reclamation plant; gas processing facility; compressor station; terminal facility where crude oil is stored prior to refining and at which refined products are stored solely for use at the facility; a

carbon dioxide geologic storage facility; and a gathering, transmission, or distribution pipeline that will transport crude oil or natural gas, including natural gas liquids, prior to refining of such oil or the use of the natural gas in any manufacturing process or as a residential or industrial fuel.

Where required by federal law, discharges of stormwater associated with construction activities under the RRC's jurisdiction must be authorized by the EPA and the RRC, as applicable. Activities under RRC jurisdiction include construction of a facility that, when completed, would be associated with the exploration, development, or production of oil or gas or geothermal resources, such as a well site; treatment or storage facility; underground hydrocarbon or natural gas storage facility; reclamation plant; gas processing facility; compressor station; terminal facility where crude oil is stored prior to refining and at which refined products are stored solely for use at the facility; a carbon dioxide geologic storage facility under the jurisdiction of the RRC; and a gathering, transmission, or distribution pipeline that will transport crude oil or natural gas, including natural gas liquids, prior to refining of such oil or the use of the natural gas in any manufacturing process or as a residential or industrial fuel. The RRC also has jurisdiction over stormwater from land disturbance associated with a site survey that is conducted prior to construction of a facility that would be regulated by the RRC. Under 33 U.S.C. §1342(l)(2) and §1362(24), EPA cannot require a permit for discharges of stormwater from field activities or operations associated with {oil and gas} exploration, production, processing, or treatment operations, or transmission facilities, including activities necessary to prepare a site for drilling and for the movement and placement of drilling equipment, whether or not such field activities or operations may be considered to be construction activities unless the discharge is contaminated by contact with any overburden, raw material, intermediate product, finished product, byproduct, or waste product located on the site of the facility. Under §3.8 of this title (relating to Water Protection), the RRC prohibits operators from causing or allowing pollution of surface or subsurface water. Operators are encouraged to implement and maintain best management practices (BMPs) to minimize discharges of pollutants, including sediment, in stormwater during construction activities to help ensure protection of surface water quality during storm events.

For more information about the jurisdictions of the RRC and the TCEQ, read the Memorandum of Understanding (MOU) between the RRC and TCEQ at 16 Texas Administrative Code, Part 1, Chapter 3, Rule 3.30, by entering the following link into an internet browser:

http://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=R&app=9&p_dir=&p_rloc= &p_tloc=&p_ploc=&pg=1&p_tac=&ti=16&pt=1&ch=3&rl=30 or contact the TCEQ Stormwater Team at 512-239-4671 for additional information.

c) Primary Standard Industrial Classification (SIC) Code

Provide the SIC Code that best describes the construction activity being conducted at this site.

Common SIC Codes related to construction activities include:

- 1521 Construction of Single Family Homes
- 1522 Construction of Residential Buildings Other than Single Family Homes
- 1541 Construction of Industrial Buildings and Warehouses

- 1542 Construction of Non-residential Buildings, other than Industrial Buildings and Warehouses
- 1611 Highway and Street Construction, except Highway Construction
- 1622 Bridge, Tunnel, and Elevated Highway Construction
- 1623 Water, Sewer, Pipeline and Communications, and Power Line Construction

For help with SIC Codes, enter the following link into your internet browser: <u>http://www.osha.gov/pls/imis/sicsearch.html</u> or you can contact the TCEQ Small Business and Local Government Assistance Section at 800-447-2827 for assistance.

d) Secondary SIC Code

Secondary SIC Code(s) may be provided. Leave this blank if not applicable. For help with SIC Codes, enter the following link into your internet browser: <u>http://www.osha.gov/pls/imis/sicsearch.html</u> or you can contact the TCEQ Small Business and Environmental Assistance Section at 800-447-2827 for assistance.

e) Total Number of Acres Disturbed

Provide the approximate number of acres that the construction site will disturb. Construction activities that disturb less than one acre, unless they are part of a larger common plan that disturbs more than one acre, do not require permit coverage. Construction activities that disturb between one and five acres, unless they are part of a common plan that disturbs more than five acres, do not require submission of an NOI. Therefore, the estimated area of land disturbed should not be less than five, unless the project is part of a larger common plan that disturbs five or more acres. Disturbed means any clearing, grading, excavating, or other similar activities.

If you have any questions about this item, please contact the stormwater technical staff by phone at 512-239-4671 or by email at swgp@tceq.texas.gov.

f) Common Plan of Development

Construction activities that disturb less than five acres do not require submission of an NOI unless they are part of a common plan of development or for sale where the area disturbed is five or more acres. Therefore, the estimated area of land disturbed should not be less than five, unless the project is part of a larger common plan that disturbs five or more acres. Disturbed means any clearing, grading, excavating, or other similar activities.

For more information on what a common plan of development is, refer to the definition of "Common Plan of Development" in the Definitions section of the general permit or enter the following link into your internet browser: www.tceq.texas.gov/permitting/stormwater/common_plan_of_development_steps.html

For further information, go to the TCEQ stormwater construction webpage enter the following link into your internet browser: <u>www.tceq.texas.gov/goto/construction</u> and search for "Additional Guidance and Quick Links". If you have any further questions about the Common Plan of Development you can contact the TCEQ Stormwater Team at 512-239-4671 or the TCEQ Small Business and Environmental Assistance at 800-447-2827.

g) Estimated Start Date of the Project

This is the date that any construction activity or construction support activity is initiated at the site. If renewing the permit provide the original start date of when construction activity for this project began.

h) Estimated End Date of the Project

This is the date that any construction activity or construction support activity will end and final stabilization will be achieved at the site.

i) Will concrete truck washout be performed at the site?

Indicate if you expect that operators of concrete trucks will washout concrete trucks at the construction site.

j) Identify the water body(s) receiving stormwater runoff

The stormwater may be discharged directly to a receiving stream or through a MS4 from your site. It eventually reaches a receiving water body such as a local stream or lake, possibly via a drainage ditch. You must provide the name of the water body that receives the discharge from the site (a local stream or lake).

If your site has more than one outfall you need to include the name of the first water body for each outfall, if they are different.

k) Identify the segment number(s) of the classified water body(s)

Identify the classified segment number(s) receiving a discharge directly or indirectly. Enter the following link into your internet browser to find the segment number of the classified water body where stormwater will flow from the site: <u>www.tceq.texas.gov/waterquality/monitoring/viewer.html</u> or by contacting the TCEQ Water Quality Division at (512) 239-4671 for assistance.

You may also find the segment number in TCEQ publication GI-316 by entering the following link into your internet browser: <u>www.tceq.texas.gov/publications/gi/gi-316</u> or by contacting the TCEQ Water Quality Division at (512) 239-4671 for assistance.

If the discharge is into an unclassified receiving water and then crosses state lines prior to entering a classified segment, select the appropriate watershed:

- 0100 (Canadian River Basin)
- 0200 (Red River Basin)
- 0300 (Sulfur River Basin)
- 0400 (Cypress Creek Basin)
- 0500 (Sabine River Basin)

Call the Water Quality Assessments section at 512-239-4671 for further assistance.

l) Discharge into MS4 - Identify the MS4 Operator

The discharge may initially be into a municipal separate storm sewer system (MS4). If the stormwater discharge is into an MS4, provide the name of the entity that operates the MS4 where the stormwater discharges. An MS4 operator is often a city, town, county, or utility district, but possibly can be another form of government. Please note that the Construction General Permit requires the Operator to supply the MS4 with a copy of the NOI submitted to TCEQ. For assistance, you may call the technical staff at 512-239-4671.

m) Discharges to the Edwards Aquifer Recharge Zone and Certification

The general permit requires the approved Contributing Zone Plan or Water Pollution Abatement Plan to be included or referenced as a part of the Stormwater Pollution Prevention Plan.

See maps on the TCEQ website to determine if the site is located within the Recharge Zone, Contributing Zone, or Contributing Zone within the Transition Zone of the Edwards Aquifer by entering the following link into an internet browser: <u>www.tceq.texas.gov/field/eapp/viewer.html</u> or by contacting the TCEQ Water Quality Division at 512-239-4671 for assistance.

If the discharge or potential discharge is within the Recharge Zone, Contributing Zone, or Contributing Zone within the Transition Zone of the Edwards Aquifer, a site-specific authorization approved by the Executive Director under the Edwards Aquifer Protection Program (30 TAC Chapter 213) is required before construction can begin.

For questions regarding the Edward's Aquifer Protection Program, contact the appropriate TCEQ Regional Office. For projects in Hays, Travis and Williamson Counties: Austin Regional Office, 12100 Park 35 Circle, Austin, TX 78753, 512-339-2929. For Projects in Bexar, Comal, Kinney, Medina and Uvalde Counties: TCEQ San Antonio Regional Office, 14250 Judson Rd., San Antonio, TX 78233-4480, 210-490-3096.

Section 5. NOI CERTIFICATION

Note: Failure to indicate Yes to all of the certification items may result in denial of coverage under the general permit.

a) Certification of Understanding the Terms and Conditions of Construction General Permit (TXR1 50000)

Provisional coverage under the Construction General Permit (TXR150000) begins 7 days after the completed paper NOI is postmarked for delivery to the TCEQ. Electronic applications submitted through ePermits have immediate provisional coverage. You must obtain a copy and read the Construction General Permit before submitting your application. You may view and print the Construction General Permit for which you are seeking coverage at the TCEQ web site by entering the following link into an internet browser: www.tceq.texas.gov/goto/construction or you may contact the TCEQ Stormwater processing Center at 512-239-3700 for assistance.

b) Certification of Legal Name

The full legal name of the applicant as authorized to do business in Texas is required. The name must be provided exactly as filed with the Texas Secretary of State (SOS), or on other legal documents forming the entity, that is filed in the county where doing business. You may contact the SOS at 512-463 5555, for more information related to filing in Texas.

c) Understanding of Notice of Termination

A permittee shall terminate coverage under the Construction General Permit through the submittal of a NOT when the operator of the facility changes, final stabilization has been reached, the discharge becomes authorized under an individual permit, or the construction activity never began at this site.

d) Certification of Stormwater Pollution Prevention Plan

The SWP3 identifies the areas and activities that could produce contaminated runoff at your site and then tells how you will ensure that this contamination is mitigated. For example, in describing your mitigation measures, your site's plan might identify the devices that collect and filter stormwater, tell how those devices are to be maintained, and tell how frequently that maintenance is to be carried out. You must develop this plan in accordance with the TCEQ general permit requirements. This plan must be developed and implemented before you complete this NOI. The SWP3 must be available for a TCEQ investigator to review on request.

Section 6. APPLICANT CERTIFICATION SIGNATURE

The certification must bear an original signature of a person meeting the signatory requirements specified under 30 Texas Administrative Code (TAC) §305.44.

If you are a corporation:

The regulation that controls who may sign an NOI or similar form is 30 Texas Administrative Code §305.44(a)(1) (see below). According to this code provision, any corporate representative may sign an NOI or similar form so long as the authority to sign such a document has been delegated to that person in accordance with corporate procedures. By signing the NOI or similar form, you are certifying that such authority has been delegated to you. The TCEQ may request documentation evidencing such authority.

If you are a municipality or other government entity:

The regulation that controls who may sign an NOI or similar form is 30 Texas Administrative Code §305.44(a)(3) (see below). According to this code provision, only a ranking elected official or principal executive officer may sign an NOI or similar form. Persons such as the City Mayor or County Commissioner will be considered ranking elected officials. In order to identify the principal executive officer of your government entity, it may be beneficial to consult your city charter, county or city ordinances, or the Texas statute(s) under which your government entity was formed. An NOI or similar document that is signed by a government official who is not a ranking elected official or principal executive officer does not conform to §305.44(a)(3). The signatory requirement may not be delegated to a government representative other than those identified in the regulation. By signing the NOI or similar form, you are certifying that you are either a ranking elected official or principal executive officer as required by the administrative code. Documentation demonstrating your position as a ranking elected official or principal executive officer may be requested by the TCEQ.

If you have any questions or need additional information concerning the signatory requirements discussed above, please contact the TCEQ's Environmental Law Division at 512-239-0600.

30 Texas Administrative Code

§305.44. Signatories to Applications

(a) All applications shall be signed as follows.

(1) For a corporation, the application shall be signed by a responsible corporate officer. For purposes of this paragraph, a responsible corporate officer means a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the

corporation; or the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures. Corporate procedures governing authority to sign permit or post-closure order applications may provide for assignment or delegation to applicable corporate positions rather than to specific individuals.

(2) For a partnership or sole proprietorship, the application shall be signed by a general partner or the proprietor, respectively.

(3) For a municipality, state, federal, or other public agency, the application shall be signed by either a principal executive officer or a ranking elected official. For purposes of this paragraph, a principal executive officer of a federal agency includes the chief executive officer of the agency, or a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., regional administrator of the EPA).

Texas Commission on Environmental Quality General Permit Payment Submittal Form

Use this form to submit your Application Fee only if you are mailing your payment.

Instructions:

- Complete items 1 through 5 below:
- Staple your check in the space provided at the bottom of this document.
- Do not mail this form with your NOI form.
- Do not mail this form to the same address as your NOI.

Mail this form and your check to either of the following:

By Regular U.S. Mail	By Overnight or Express Mail
Texas Commission on Environmental Quality	Texas Commission on Environmental Quality
Financial Administration Division	Financial Administration Division
Cashier's Office, MC-214	Cashier's Office, MC-214
P.O. Box 13088	12100 Park 35 Circle
Austin, TX 78711-3088	Austin, TX 78753

Fee Code: GPA General Permit: TXR150000

- 1. Check or Money Order No:
- 2. Amount of Check/Money Order:
- 3. Date of Check or Money Order.
- 4. Name on Check or Money Order:
- 5. NOI Information:

If the check is for more than one NOI, list each Project or Site (RE) Name and Physical Address exactly as provided on the NOI. **Do not submit a copy of the NOI with this form, as it could cause duplicate permit application entries!**

If there is not enough space on the form to list all of the projects or sites the authorization will cover, then attach a list of the additional sites.

Project/Site (RE) Name:

Project/Site (RE) Physical Address:

Staple the check or money order to this form in this space.

Section V

Agent Authorization Form (TCEQ-0599)

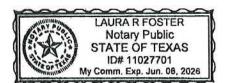
	Agent Authorization Form For Required Signature Edwards Aquifer Protection Program Relating to 30 TAC Chapter 213 Effective June 1, 1999
l	Brandon Cooper, Print Name
	Print Name
	Division President
	Title - Owner/President/Other
of	Toll Southwest LLC
	Corporation/Partnership/Entity Name
have authorized	Steven Buffum
	Steven Buffum Print Name of Agent/Engineer
of	Costello Inc.
	Print Name of Firm
to represent and a	at on the hehelf of the choice named Correction Devineration or Enti

to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:


Applicant's Signature

4/24/23 Date

THE STATE OF TEXAS § County of Williamsons

BEFORE ME, the undersigned authority, on this day personally appeared <u>Brandon Loope</u>known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this 24 day of April ,2023

Typed or Printed Name of Notary

MY COMMISSION EXPIRES: 6/6/2026

Section VI

Application Fee Form (TCEQ-0574)

Application Fee Form

Texas Commission on Environmental Quality Name of Proposed Regulated Entity: <u>Wildspring, Phase 1</u>								
Regulated Entity Location: <u>CR 175 & CR 177, Leander TX 78641</u>								
Name of Customer: <u>Toll Bros., Inc.</u>								
Contact Person: <u>Adrienne Donatuc</u> Customer Reference Number (if iss		e: <u>412-780-2312</u>						
Regulated Entity Reference Number	·							
Austin Regional Office (3373)								
_	□ - .							
Hays San Antonio Regional Office (3362	Travis	⊠ Wil	liamson					
		—						
Bexar	Medina	Uva	lde					
Comal	Kinney							
Application fees must be paid by ch	neck, certified check, or	money order, payable	e to the Texas					
Commission on Environmental Qu	•	•	•					
form must be submitted with your	r fee payment . This pa	yment is being submit	ted to:					
🔀 Austin Regional Office	🗌 Sa	n Antonio Regional Of	fice					
Mailed to: TCEQ - Cashier	Ov	vernight Delivery to: TCEQ - Cashier						
Revenues Section	12	2100 Park 35 Circle						
Mail Code 214	Bu	uilding A, 3rd Floor						
P.O. Box 13088		istin, TX 78753						
Austin, TX 78711-3088		12)239-0357						
Site Location (Check All That Apply	y):							
Recharge Zone	🔀 Contributing Zone	🗌 Transiti	ion Zone					
Type of Pla	n	Size	Fee Due					
Water Pollution Abatement Plan,	Contributing Zone							
Plan: One Single Family Residentia	al Dwelling	Acres	\$					
Water Pollution Abatement Plan,	Contributing Zone							
Plan: Multiple Single Family Resid	ential and Parks	55.14 Acres	\$ 6 <i>,</i> 500					
Water Pollution Abatement Plan,	Contributing Zone							
Plan: Non-residential	Acres	\$						
Sewage Collection System	L.F.	\$						
Lift Stations without sewer lines	Acres	\$						
Underground or Aboveground Sto	orage Tank Facility	Tanks	\$					
Piping System(s)(only)		Each	\$					
Exception		Each	\$					
Extension of Time		Each	\$					
		(\mathbf{R})						

Signature:

Application Fee Schedule

Texas Commission on Environmental Quality

Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)

Water Pollution Abatement Plans and Modifications

Contributing Zone Plans and Modifications

Project	Project Area in Acres	Fee
One Single Family Residential Dwelling	< 5	\$650
Multiple Single Family Residential and Parks	< 5	\$1,500
	5 < 10	\$3,000
	10 < 40	\$4,000
	40 < 100	\$6,500
	100 < 500	\$8,000
	≥ 500	\$10,000
Non-residential (Commercial, industrial,	< 1	\$3,000
institutional, multi-family residential, schools, and	1 < 5	\$4,000
other sites where regulated activities will occur)	5 < 10	\$5,000
	10 < 40	\$6,500
	40 < 100	\$8,000
	≥ 100	\$10,000

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee
Sewage Collection Systems	\$0.50	\$650 - \$6,500

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	\$650	\$650 - \$6,500

Exception Requests

Project	Fee
Exception Request	\$500

Extension of Time Requests

Project	Fee
Extension of Time Request	\$150

Section VII

Core Data Form (TCEQ-10400)

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)													
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)													
Renewal (Core Data Form should be submitted with the renewal form						l form))		Other				
2. Customer	Reference	Number <i>(if i</i> ss	ued)		this line			3. Reg	gulated	Entity R	eference	e Number <i>(i</i>	f issued)
CN 6028	40076				<u>or RN r</u> ntral Re			RN N/A					
SECTION	SECTION II: Customer Information												
4. General C	ustomer Inf	ormation	5. Effective	Date f	or Cus	tomer	Inforr	nation	Updat	es (mm/d	d/yyyy)	2/16/2	.006
New Cust		e (Verifiable with		Update					roller of		•	Regulated E	ntity Ownership
-	•										,	rent and	active with the
		State (SOS)	-	-				-				i ont una	
	•	e (If an individual		-					•	,	ator provi	ous Custome	or bolow:
0. Customer	Leyal Nallie		, print last ham	e msi. e	y. Doe, .	JUIII)		<u> </u>	new Cu	Slomer, er	iter previ	Sus Cusionie	
Toll South													
7. TX SOS/CI	PA Filing Nu	umber		Tax ID (11 digits)			9. Federal Tax ID (9 digits) 10. DUNS Number (if ap			S Number (if applicable)			
08017756	69		3205084	2304			4	7-258	2910				
11. Type of C	Customer:	🛛 🖂 Corporati	on	Individual Pa			Pa	artnership: 🔲 General 🔲 Limited					
Government:	🗌 City 🔲 Co	unty 🗌 Federal 🗌] State 🗌 Other	r	Sole Proprietorship Other:								
12. Number of				13. Independently Owned and Operated? ⊠ 501 and higher □ Yes ⊠ No			ted?						
	21-100	101-250	251-500			•		<u> L</u>	Yes		🖂 No		
	r Role (Prop	osed or Actual) –	as it relates to	the Reg					m. Plea	se check o	ne of the	following	
		Operat				vner &	•				41		
		·	nsible Party			luntary	/ Clear	nup Ap	plicant		ther:		
45 14 11	1320 Ar	row Point I	Drive, Suit	e 401									
15. Mailing Address:													
City Cedar Park			S	State TX Z		ZIP 78613		ZIP + 4					
16. Country I	Mailing Info	rmation (if outsid	le USA)				17. E	-Mail A	Addres	S (if applica	able)		
	adonatucci@tollbrothers.com												
18. Telephone Number				19. Extension or Code 20. Fax Number (if applicable)			ole)						
(412)780-2312 () -													

SECTION III: Regulated Entity Information

 21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)

 New Regulated Entity
 Update to Regulated Entity Name

 Update to Regulated Entity
 Update to Regulated Entity Name

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC).

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Wildspring Phase 1

23. Street Address of the Regulated Entity:										
(No PO Boxes)	City	Leander	State	TZ	X	ZIP	7864	1	ZIP + 4	
24. County	Willian	nson			·				·	
Enter Physical Location Description if no street address is provided.										
25. Description to Physical Location:	Northwest of intersection of CR 175 and CR 177									
26. Nearest City							State		Nea	rest ZIP Code
Leander							ΤХ		78	541
27. Latitude (N) In Decin	nal:				28. Lo	ngitude (W) In De	cimal:		
Degrees	Minutes		Seconds		Degrees	6		/linutes		Seconds
30	30 34					97		4	47 11.18	
29. Primary SIC Code (4 digits) 30. Secondary SIC Code (4 digits) 31. Primary NAICS Code (5 or 6 digits) 33.							32. Secondary NAICS Code (5 or 6 digits)			
1521	N	/A	236115 N/A							
33. What is the Primary	Business o	of this entity?	(Do not repeat the SI	C or NAI	ICS descri	iption.)				
Residential Constru	ction an	d Home sales	s, including la	and d	levelo	pment.				
34. Mailing Address:										
Address.	City			State					ZIP + 4	
35. E-Mail Address		·	•	-					·	
36. Telepho	one Numbe	er	on or	Code		38	. Fax Nur	nber <i>(if appl</i>	icable)	
()						() -			
39. TCEQ Programs and ID form. See the Core Data Form i	Numbers	Check all Program or additional guidar	s and write in the ponce.	ermits/r	egistratio	on numbers	that will b	e affected	by the updates	submitted on this
Dam Safety	Distric	ts	Edwards Aq	uifer		Emissions Inventory Air			Industria	I Hazardous Waste
						Detectory Otomers Tauly				

Municipal Solid Waste	New Source Review Air	OSSF OSSF	Petroleum Storage Tank	PWS
Sludge	ludge 🛛 Storm Water 🗌 Title V Air		Tires	Used Oil
Voluntary Cleanup	Waste Water	Wastewater Agriculture	Water Rights	Other:

SECTION IV: Preparer Information

40. Name:	Steven Buf	fum		41. Title:	Engineer	
42. Telephone Number 43. Ext./Code 44. Fax Number			44. Fax Number	45. E-Mail Address		
(512) 646-3463		() -	sbuffum	@costelloinc.com		

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Costello Inc	Job Title:	Partner / Project Manager		
Name (In Print):	Steven Buffum			Phone:	(512) 646- 3463
Signature:	this for			Date:	20230324