Edwards Aquifer Contributing Zone Plan

CSJ: 0914-33-097
North of Lewis Mountain Road to South of Towering Cedar Drive.

May 2023

Prepared For:

Texas Department of Transportation
7901 N. I-35
Austin, TX 78753

Edwards Aquifer Protection Program Roadway Checklist

- Edwards Aquifer Application Cover Page (TCEQ-20705)
- Edwards Aquifer Protection Program Roadway Application (TCEQ-20872)

Attachment A - Road Map
Attachment B - USGS Quadrangle
Attachment C - Project Description
Attachment D - Factors Affecting Surface Water Quality
Attachment E - BMPs for Upgradient (Offsite) Stormwater N/A
Attachment F - BMPs for On-site Stormwater
Attachment G - Construction Plans
Attachment H - Inspection, Maintenance, Repair and Retrofit Plan
Attachment I - Pilot-Scale Field Testing Plan N/A
Attachment J - Measures for Minimizing Surface Stream Contamination
Attachment K - Volume and Character of Stormwater

- Geologic Assessment Form (TCEQ-0585) N/A
- Required for site over the Recharge zone

Attachment A - Geologic Assessment Table (TCEQ-0585-Table)
Attachment B - Stratigraphic Column
Attachment C - Site Geology
Attachment D - Site Geologic Map(s)

- Temporary Stormwater Section (TCEQ-0602) N/A
- Review Item 37 on Roadway Application for applicability

Attachment A - Spill Response Actions
Attachment B-Potential Sources of Contamination
Attachment C - Sequence of Major Activities
Attachment D - Temporary Best Management Practices and Measures
Attachment E - Request to Temporarily Seal a Feature (if requested)
Attachment F - Structural Practices
Attachment G - Drainage Area Map
Attachment H - Temporary Sediment Pond(s) Plans and Calculations
Attachment I - Inspection and Maintenance for BMPs
Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices

- Agent Authorization Form (TCEQ-0599)
- Only if application is submitted by an authorized agent
- Application Fee Form (TCEQ-0574) N/A
- Do not submit for TxDOT roadways

- Core Data Form (TCEQ-10400)

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:
http://www.tceq.texas.gov/assets/public/compliance/field ops/eapp/EAPP\%20GWCD\%20map.pdf
For more detailed boundaries, please contact the conservation district directly.

Austin Region			
County:	Hays	Travis	Williamson
Original (1 req.)	X	$\underline{\mathrm{X}}$	-
Region (1 req.)	$\underline{\mathrm{X}}$	$\underline{\mathrm{X}}$	-
County(ies)	-	-	-
Groundwater Conservation District(s)	__Edwards Aquifer Authority __Barton Springs// \quad Edwards Aquifer X_Hays Trinity __Plum Creek	_Barton Springs/ Edwards Aquifer X Southwestern Travis	NA
City(ies) Jurisdiction	X Austin \square Buda X_Dripping Springs Kyle Mountain City San Marcos Wimberley \qquad Woodcreek	X Austin __Bee Cave __Pflugerville __Rollingwood __Round Rock __Sunset Valley __West Lake Hills	__Austin __Cedar Park __Florence __Georgetown __Jerrell __Leander __Liberty Hill _-_Pflugerville _Round Rock

San Antonio Region					
County:	Bexar	Comal	Kinney	Medina	Uvalde
Original (1 req.)	-	-	-	-	-
Region (1 req.)	-	-	-	-	-
County(ies)	-	-	-	-	-
Groundwater Conservation District(s)	\qquad Edwards Aquifer Authority _Trinity-Glen Rose	__Edwards Aquifer Authority	_Kinney	__EAA	_ EAA
City(ies) Jurisdiction	__Castle Hills __Fair Oaks Ranch __Helotes __Hill Country Village __Hollywood Park __San Antonio (SAWS) __Shavano Park	Bulverde Fair Oaks Ranch Garden Ridge New Braunfels Schertz	NA	$\begin{aligned} & \quad \text { San } \\ & \text { Antonio ETJ } \\ & \text { (SAWS) } \end{aligned}$	NA

clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.
3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or will be denied. Please note that because the technical review is underway, whether the application is withdrawn or denied the application fee will be forfeited.
4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.
Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "MidReview Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.
If you are proposing a Mid-Review Modification, two options are available:

- If the technical review has begun your application can be denied/withdrawn, your fees will be forfeited, and the plan will have to be resubmitted.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.
If the application is denied/withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the affected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096
Please fill out all required fields below and submit with your application.

1. Regulated Entity Name: RM 1826 from Lewis Mountain Dr to Towering Cedar Dr in Hays and Travis County					2. Regulated Entity No.:			
3. Customer Name: TxDOT					4. Customer No.: 600803456			
5. Project Type: (Please circle/check one)	New	Modification			Extension		Exception	
6. Plan Type: (Please circle/check one)	WPAP CZP	SCS	UST	AST	EXP	EXT	Technical Clarification	Optional Enhanced Measures
$\begin{array}{\|l} \hline \text { 7. Land Use: } \\ \text { (Please circle/check one) } \end{array}$	Residential	Non-residential				8. Site (acres):		78.60
9. Application Fee:	N/A	10. Permanent BMP(s):					Vegetative Filter Strips	
11. SCS (Linear Ft.):	N/A	12. AST/UST (No. Tanks):					N/A	
13. County:	$\begin{aligned} & \hline \text { Hays \& } \\ & \text { Travis } \end{aligned}$	14. Watershed:					Onion Creek-Colorado River	

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:
http://www.tceq.texas.gov/assets/public/compliance/field ops/eapp/EAPP\%20GWCD\%20map.pdf
For more detailed boundaries, please contact the conservation district directly.

Austin Region			
County:	Hays	Travis	Williamson
Original (1 req.)	X	$\underline{\mathrm{X}}$	-
Region (1 req.)	$\underline{\mathrm{X}}$	$\underline{\mathrm{X}}$	-
County(ies)	-	-	-
Groundwater Conservation District(s)	__Edwards Aquifer Authority __Barton Springs// \quad Edwards Aquifer X_Hays Trinity __Plum Creek	_Barton Springs/ Edwards Aquifer X Southwestern Travis	NA
City(ies) Jurisdiction	X Austin \square Buda X_Dripping Springs Kyle Mountain City San Marcos Wimberley \qquad Woodcreek	X Austin __Bee Cave __Pflugerville __Rollingwood __Round Rock __Sunset Valley __West Lake Hills	__Austin __Cedar Park __Florence __Georgetown __Jerrell __Leander __Liberty Hill _-_Pflugerville _Round Rock

San Antonio Region					
County:	Bexar	Comal	Kinney	Medina	Uvalde
Original (1 req.)	-	-	-	-	-
Region (1 req.)	-	-	-	-	-
County(ies)	-	-	-	-	-
Groundwater Conservation District(s)	\qquad Edwards Aquifer Authority _Trinity-Glen Rose	__Edwards Aquifer Authority	_Kinney	__EAA	_ EAA
City(ies) Jurisdiction	__Castle Hills __Fair Oaks Ranch __Helotes __Hill Country Village __Hollywood Park __San Antonio (SAWS) __Shavano Park	Bulverde Fair Oaks Ranch Garden Ridge New Braunfels Schertz	NA	$\begin{aligned} & \quad \text { San } \\ & \text { Antonio ETJ } \\ & \text { (SAWS) } \end{aligned}$	NA

| I certify that to the best of my knowledge, that the application is complete and accurate. This
 application is hereby submitted to TCEQ for administrative review and technical review. |
| :--- | :--- |
| Stephanie L. Russell, PE | | Print Name of Customer/Authorized Agent
 \&tephemis Runcll | 19 May 2023 |
| :--- | :--- |
| Signature of Customer/Authorized Agent | Date |

FOR TCEQ INTERNAL USE ONLY				
Date(s)Reviewed:	Date Administratively Complete:			
Received From:	Correct Number of Copies:			
Received By:	Distribution Date:			
EAPP File Number:	Complex:			
Admin. Review(s) (No.):	No. AR Rounds:			
Delinquent Fees (Y/N):	Review Time Spent:			
Lat./Long. Verified:	SOS Customer Verification:			
Agent Authorization Complete/Notarized (Y/N):	Fee Check:	Payable to TCEQ (Y/N):		
Core Data Form Complete (Y/N):		Signed (Y/N):		
Core Data Form Incomplete Nos.:		Less than 90 days old (Y/N):		

Edwards Aquifer Protection Program Roadway Application

Texas Commission on Environmental Quality

This application is intended only for projects which a major roadway is designed for construction, such as State highways, County roads, and City thoroughfares.

Designed for Regulated Activities on the Contributing Zone to the Edwards Aquifer in relation to 30 TAC §213.24, Regulated Activities on the Edwards Aquifer Recharge Zone, in relation to 30 TAC §213.5(b), Effective June 1, 1999.

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer.

The application was prepared by:
Print Name of Customer/Agent: Stephanie L. Russell, PE
Date: 2023 May 19
Signature of Customer/Agent:

Project Information

1. Regulated Entity (Project) Name: RM 1826 from Lewis Mountain Dr to Towering Cedar Dr. in Hays and Travis County
2. County: Hays County and Travis County
3. Stream Basin(s): Colorado River Basin
4. Groundwater Conservation District (if applicable): Hays Trinity GCD and Southwestern Travis Countr GCD
5. Customer (Applicant):

Contact Person: Shane Rotter
Entity: Texas Department of Transportation
Mailing Address: P.O. Drawer 15426
City, State: Austin, TX Zip: 78761
Telephone: 512-415-8257
Email Address: Shane.Rotter@txdot.gov
6. Agent (Representative):

Contact Person: Stephanie L. Russell, PE
Entity: Garver LLC
Mailing Address: 285 SE Inner Loop Suite \#110
City, State: Georgetown, TX Zip: 78626
Telephone: 512-539-1998
Email Address: slrussell@garverusa.com
7. Landowner of R.O.W. (Right of Way)

Person or entity responsible for maintenance of water quality Best Management Practices (BMPs), if not applicant.

Contact Person: \qquad
Entity: \qquad
Mailing Address: \qquad
City, State: \qquad
\qquad
Telephone: \qquad
Email Address: \qquad
8. \square The TCEQ must be able to inspect the project site or the application will be returned.

Sufficient survey marking is provided on the project to allow TCEQ regional staff to locate the boundaries and alignment of any regulated activities and the geologic or manmade features noted in the Geologic Assessment.

Survey marking will be completed by this date:

N/A-Existing ROW boundary delineated by fencing and overhead utilities.
9. \boxtimes Attachment A - Road Map. A road map showing directions to and the location of the project site is attached. The map clearly shows the boundary of the project site.
10. \triangle Attachment B - USGS Quadrangle. A copy of the official $71 / 2$ minute USGS Quadrangle Map (Scale: $1^{\prime \prime}=2000^{\prime}$) is attached. The map(s) clearly show:

XProject site boundaries
Z USGS Quadrangle Name(s)
All drainage paths from site to surface waters
11. \boxtimes This project extends into (Check all that apply):
\square Recharge Zone (RZ)
\boxtimes Contributing Zone (CZ)
Transition Zone (TZ)
\square Contributing Zone within
Transition Zone (CZ/TZ)
\square Zone not regulated by EAPP
12. \boxtimes Attachment C - Project Description. A detailed narrative description of the proposed project is attached. The project description is consistent throughout the application and contains, at a minimum, the following details:
© Complete site area [Acres]
Offsite upgradient stormwater areas to be captured
】Impervious area [Acres]
区 Permanent BMP(s)
\boxtimes Proposed site use
\boxtimes Existing roadway (paved and/or unpaved)
\boxtimes Structures to be demolished [Include demo phase]
\boxtimes Major interim phases
13. Existing project site conditions are noted below:

14. \boxtimes Attachment D - Factors Affecting Surface Water Quality. A detailed description of all factors that could affect surface water quality is attached.
15. \boxtimes Only inert materials as defined by 30 TAC $\S 330.3$ will be used as fill material.
16. Type of pavement or road surface to be used:ConcreteAsphaltic concrete pavement
Permeable Friction Course (PFC)
Other: \qquad
17. Right of Way (R.O.W.) and Pavement Area:
R.O.W. for project: 78.60 (ac.)

Length: $42,800 \mathrm{ft}$.
Width: varies from $\underline{80} \mathrm{ft}$. to $\underline{80} \mathrm{ft}$.
Impervious cover (IC): 37.86 (ac.)
Total of Pavement area $\underline{37.86}$ (ac.) \div R.O.W. area $\underline{78.60}$ (ac.) $\times 100=\underline{48.17 \%}$ IC.
\boxtimes CAD program was used to determine areas.
X Number of travel lanes: proposed: Varies 3-4, existing: $\underline{2}$
X Typical widths of lanes: 11 (ft.)
X Are intersections also being improved? (Y/N) Y

Site Plan Requirements

Items 18-28 must be included on the Site Plan.

18. \boxtimes The Site Plan must have a minimum scale of $1^{\prime \prime}=400$ '.

Site Plan Scale: 1" = $\underline{50}$
19. 100-year floodplain boundaries:
\square Some part(s) of the project site is located within the 100-year floodplain. The floodplain is shown and labeled. The 100-year floodplain boundaries are based on the following specific (including date of material) source(s): \qquad .
\boxtimes No part of the project site is located within the 100-year floodplain.
20. A layout of the development with existing and finished contours at appropriate, but not greater than ten-foot contour intervals is shown. Sensitive features, lots, wells, buildings, roads, culverts, etc. are shown on the site plan.
21. \boxtimes A figure (map) indicating all paths of drainage from the site to surface waters.Name all stream crossings: \qquad Drainage patterns and approximate slopes.
There will be no discharge to surface waters.
22. Distinguish between areas of soil disturbance and areas which will not be disturbed.
23. Show locations of major structural and nonstructural controls. These are the temporary and permanent best management practices. Include the following:
\square Show design and location of any hazardous materials traps. N/A
Z Show design at outfalls of major control structures and conveyances.
\boxtimes A description of the BMPs and measures that prevent pollutants from entering surface streams.
24. Show locations of staging areas or project specific locations (PSL). Are they:
\square Onsite, within project R.O.W.
Offsite.
Not yet determined. (Requires future authorization)
25. \boxtimes Show locations where soil stabilization practices are expected to occur.
26. \boxtimes Show surface waters (including wetlands).
27. Temporary aboveground storage tank facilities:
\square Temporary aboveground storage tank facilities will be located on this site. Show on site plan.
Temporary aboveground storage tank facilities will not be located on this site.
28. \triangle Plan(s) also include:Sidewalks
Related turn lanes
Demolition plans
Shared-use paths
Off-site improvements and staging areas
Other improved areas: \qquad

Permanent Best Management Practices (BMPs)

Description of practices and measures that will be used after construction is completed.
29. \boxtimes Permanent BMPs and measures have been designed, and will be constructed, operated, and maintained to ensure that 80% of the incremental increase in the annual mass loading of total suspended solids (TSS) from the site caused by the regulated activity is removed. These quantities have been calculated in accordance with technical guidance accepted by the executive director.

The TCEQ Technical Guidance Manual (TGM) was used to design permanent BMPs and measures for this site.
\square A technical guidance other than the TCEQ TGM was used to design permanent BMPs and measures for this site. The complete citation for the technical guidance that was used:
30. \square Attachment E-BMPs for Upgradient (Offsite) Stormwater.
\square A description of the BMPs and measures that will be used to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site is attached.No surface water, groundwater or stormwater originates upgradient from the site and flows across the site, and an explanation is attached.Permanent BMPs or measures are not required to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site, and an explanation is attached.
31. \triangle Attachment F - BMPs for On-site Stormwater.

A description of the BMPs and measures that will be used to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff from the site is attached.Permanent BMPs or measures are not required to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff, and an explanation is attached.
32. \boxtimes Attachment G - Construction Plans. Construction plans and design calculations for the proposed permanent BMPs and measures have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer, and are signed, sealed, and dated. Construction plans for the proposed permanent BMPs and measures are attached and include all proposed structural plans and specifications, and appropriate details.

Major bridge cross-sections, and roadway plan and profiles

Z BMP plans and details
E Erosion control
【 SW3P

Design calculations
X TCEQ Construction Notes
【 EPIC, as necessary
33. \triangle Attachment H - Inspection, Maintenance, Repair and Retrofit Plan. A site and BMP specific plan for the inspection, maintenance, repair, and, if necessary, retrofit of the permanent BMPs and measures is attached. The plan fulfills all the following:
\measuredangle Prepared and certified by the engineer designing the permanent BMPs and measures. Signed by the owner or responsible party.
Outlines specific procedures for documenting inspections, maintenance, repairs, and, if necessary, retrofit.
【 Contains a discussion of recordkeeping procedures.
34.Attachment I - Pilot-Scale Field Testing Plan. Pilot studies for BMPs that are not recognized by the Executive Director require prior approval from the TCEQ. A plan for pilotscale field testing is attached.

】 N/A
35. \boxtimes Attachment J - Measures for Minimizing Surface Stream Contamination. A description of the measures that will be used to avoid or minimize surface stream contamination and changes in the way in which water enters a stream as a result of the construction and development is attached. The measures address increased stream flashing, the creation of stronger flows, and in-stream effects caused by the regulated activity which increase erosion or may result in water quality degradation.

Ø Include permanent spill measures used to contain hydrocarbons or hazardous substances by way of traps, or response contingencies.
36. The applicant is responsible for maintaining the permanent BMPs after construction until such time as the maintenance obligation is either assumed in writing by another entity.

If the applicant intends to transfer responsibility, check the box below.

```
        Yes
```

A copy of the transfer of responsibility must be filed with the executive director at the appropriate regional office within 30 days.

Stormwater to be generated by the Proposed Project

Description of practices and measures that will be used during construction.
37. \boxtimes The site description, controls, maintenance, and inspection requirements for the Storm Water Pollution Prevention Plan (SWPPP or SW3P) developed under the Texas Pollutant Discharge Elimination System (TPDES) general permits for stormwater discharges have been submitted to fulfill paragraphs 30 TAC §213.24(1-5) \& §213.5(b) of the technical report.

The Temporary Stormwater Section (TCEQ-0602) is included with the application. The SWPPP (SW3P) will serve as the Temporary Stormwater Section (TCEQ-0602).
38. \boxtimes Attachment K - Volume and Character of Stormwater. A detailed description of the volume (quantity) and character (quality) of the stormwater runoff expected to occur from the proposed project is attached. The estimates of stormwater runoff quality and quantity are based on area and type of impervious cover.

Ø Include the pre-construction runoff coefficient.
\boxtimes Include the post-construction runoff coefficient.

Administrative Information

39. \boxtimes Submit one (1) original and one (1) copy of the application, plus one electronic copy as needed, for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ is required to distribute the additional copies to these jurisdictions.
40. The fee for the plan(s) is based on:The total R.O.W. (as in Item 17).
【 TxDOT roadway project.

ATTACHMENT A - ROAD MAP

Attached following this page.
ATTACHMENT B - USGS/EDWARDS AQUIFER RECHARGE ZONE MAP
Attached following this page.

ATTACHMENT C - PROJECT DESCRIPTION

The Texas Department of Transportation (TxDOT) Austin District is proposing roadway improvements to RM 1826 from north of Lewis Mountain Drive to south of Towering Cedar Drive specifically near the intersections of Lewis Mountain Drive, Zyle Road, Appaloosa Run, Oso Creek Road, Woodland Drive, Shelf Rock Road, and Towering Cedar Drive.

Within the project limits, RM 1826 consists typically of 2-11' lanes (one lane in each direction) with outside shoulders that vary between 3^{\prime} to 11.5^{\prime}. The existing right-of-way (ROW) is 80^{\prime} wide (usual).

The proposed project will consist of a TOM overlay of the existing pavement and widening to include 11' turn lanes in each direction at multiple intersections. Additionally, the project will consist of grading and improvements to drainage structures.

Drainage

Existing culverts have been lengthened to convey the drainage through the project as well as the use of a stormwater system. The project incorporates post construction total suspended solids (TSS) controls that have been created in compliance with the Edwards Aquifer Rules (30 TAC 213) such as vegetative filter strips and soil retention blankets. The amount of TSS treated is based on the amount of impervious area added to the project. All controls will be located within existing ROW.

The complete site area is 78.60 acres. The project will add 1.78 acres of impervious cover (calculated by measuring design drawings). Resulting in 37.86 acres of total impervious cover post-construction (calculated by measuring design drawings).

Right-of-Way and Easements
It is expected that proposed work will be done within existing ROW.

\square
\square
Project Area
Edwards Aquifer
Contributing Zone
Contributing within the Transition Zone
Recharge Zone
\square
Edwards Aquifer Transition Zone

RM 1826 USGS/Edwards Aquifer
Zone Map
Attachment B

ATTACHMENT D - FACTORS AFFECTING SURFACE WATER QUALITY

Pre-Construction

Prior to construction, the primary factors that have an impact on water quality are the exhaust fumes from the daily vehicular traffic and deposits and gas leaks from vehicles. As well as the potential for any other associated materials released from commercial traffic.

During Construction

Once construction commences, there is a possibility of heightened exhaust fumes resulting from increased traffic congestion and the usage of construction equipment. Additionally, there is potential for residuals from material used during the construction process such as sealants and paving materials that can adversely impact the project's surrounding area. Also, excavation during construction may lead to an increased movement of sediments, which increases the likelihood of solids carried downstream to local surface water bodies.

Post Construction

After construction is completed, water quality impacts will result from daily vehicle traffic and the increase of impervious cover. RM 1826 improvements will increase the runoff coefficient which will allow for the possibility of an increase of solids transporting to water bodies.

ATTACHMENT E - BMPS FOR UPGRADIENT (OFFSITE) STORM WATER

There is no offsite storm water runoff upgradient of the project.

ATTACHMENT F- BMPS FOR ON-SITE STORMWATER

Eighteen areas of vegetative filter strips were designed in compliance with TCEQ technical guidance. Design calculations are attached. Additionally, silt fence has been proposed on the downstream side of each project site, temporary rock filter dam (Ty 4) has been proposed on the upstream side of driveway culverts, and temporary rock filter dam (Ty 2) has been proposed on the downstream end of the roadside ditches prior to cross drainage structures.

ATTACHMENT G - CONSTRUCTION PLANS

Attached.

ATTACHMENT I - PILOT-SCALE FIELD TESTING PLAN

Not Applicable.

ATTACHMENT J - MEASURES FOR MINIMIZING SURFACE STREAM CONTAMINATION

Vegetative filter strips will be used at locations throughout the project to minimize the number of contaminants that could drain within the project area. Rock filter dams are placed upstream of drainage structures, silt fences are placed along the ROW on the downstream side of project sites, and soil retention blankets are placed within the limits of seeding. These measures are expected to lessen the impacts of increased impervious cover, such as erosion and stream scour.

ATTACHMENT K - VOLUME AND CHARACTER OF STORMWATER

Based on the amount of new impervious cover created by the improvements to RM 1826 in Hays County (0.84 acres) and an annual rainfall of 33 inches, approximately 2.31 acre-feet of additional runoff will be generated per year in Hays County.

Based on the amount of new impervious cover created by the improvements to RM 1826 in Travis County (0.94 acres) and an annual rainfall of 32 inches, approximately 2.51 acre-feet of additional runoff will be generated per year in Travis County.

The total impervious cover (1.78 acres) created by the improvements to RM 1826 will approximately generate 4.82 acre-feet of additional runoff.

The pre-construction runoff coefficient is 0.59 and post-construction runoff coefficient is 0.61 for the portion of the project within Hays County.

The pre-construction runoff coefficient is 0.57 and post-construction runoff coefficient is 0.58 for the portion of the project within Travis County.

The overall project pre-construction runoff coefficient is 0.58 and post-construction runoff coefficient is 0.59 .

ATTACHMENT H

INSPECTION, MAINTENANCE, REPAIR AND RETROFIT PLAN RM 1826
North of Lewis Mountain Road to South of Towering Cedar Drive.
Hays County, Texas
Travis County, Texas
0914-33-097, etc

These maintenance guidelines were prepared at the request of the Texas Commission of Environmental Quality (TCEQ) with regard to their approval of an Edwards Aquifer Protection Plan for the above referenced project. These guidelines apply to the permanent storm water controls constructed for this project.

Pest management: Any vegetated areas that have noxious vegetation, insects, or other pests will be remedied with the mimimum amount of selective pesticide necessary to control the pest. All chemicals are EPA labeled, registered, and approved. Personnel licensed and or trained according to Texas Department of Agriculture (TDA) laws and regulations will apply pesticides. Records are kepi for each application in accordance with TDA laws and regulations.

Seasonal mowing and vegetation management: Right-of-Way areas, which includes the vegetative filter strip BMP for this project, will be mowed by contract. The cutting height is usually 5-7 inches for all areas.

Inspection cycles: Maintenance forces will review roadways and roadsides at least nwice per year. Any problem areas are duly noted particularly if there is an absence of vegetation, awy accumulation of brush, debris or litter, and or any areas of significant erosion. These items will then be scheduled for repair on priority basis.

Debris and litter removal: Litter, debris and brush accumulation is assessed not only for aesthetic reasons but also for the tendency to clog drainage paths or impede the intended flow of a structure's hydraulic design. Areas are cleaned periodically by state forces or by outside contractor. Areas documented as trouble spots are scheduled on a priority basis.

Sediment removal: During inspections if sediment has accumulated to a depth that hinders original design characteristics it will be removed. Excessive sedimentation, or a significant load of silt, does not normally occur in filter strip areas, grassy swale areas, or in permanent pond strucfures after project completion, but it may occur from other drainage areas or construction underway beyond State right-of-way.

Maintenance Contact

The contact for questions or concerns pertaining to maintenance of the facility is listed below.

Mr. Ronald Switzer
TxDOT Department of Transportation
12315 US 290 W.
Austin, Texas
Tel: (512) 288-4761

[^0]TSS Removal Calculations 04-20-2009
Project Name: RM 1826 Date Prepared: 5/31/2023

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell. Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.

Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

1. The Required Load Reduction for the total project: \quad Calculations from RG-348 \quad Pages 3-27 to 3-30

Page 3-29 Equation 3.3: $\mathrm{L}_{\mathrm{M}}=27.2\left(\mathrm{~A}_{\mathrm{N}} \times \mathrm{P}\right)$
where
$\mathrm{L}_{\text {M TOTAL PROJECT }}=$ Required TSS removal resulting from the proposed development $=80 \%$ of increased load $A_{N}=$ Net increase in impervious area for the project
$\mathrm{P}=$ Average annual precipitation, inches
Site Data: Determine Required Load Removal Based on the Entire Project

County =	Travis
Total project area included in plan *	55.65
Predevelopment impervious area within the limits of the plan *	25.04
Total post-development impervious area within the limits of the plan*	25.98
Total post-development impervious cover fraction	0.47
P =	32

$$
\mathrm{L}_{\mathrm{M} \text { TOTAL PROJECT }}=\mathbf{8 1 6} \quad \mathrm{lbs}
$$

* The values entered in these fields should be for the total project area.

Number of drainage basins / outfalls areas leaving the plan area $=1$
2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. $=1$
Total drainage basin/outfall area $=55.65$ acres
Predevelopment impervious area within drainage basin/outfall area $=25.04$ acres
Post-development impervious area within drainage basin/outfall area $=25.98$ acres
Post-development impervious fraction within drainage basin/outfall area $=0.47$
$L_{\text {M this basin }}=817$ lbs.
3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent

Total Capture Volume (required water quality volume(s) $\mathbf{x} 1.20$) $=2626$ cubic feet
The following sections are used to calculate the required water quality volume(s) for the selected BMP.
The values for BMP Types not selected in cell C 45 will show NA.

7. Retention/Irrigation System

Designed as Required in RG-348
Pages 3-42 to 3-46
Required Water Quality Volume for retention basin $=\quad$ NA cubic feet
Irrigation Area Calculations

Soil infiltration/permeability rate $=$	0.1	in/hr	Enter determined permeability rate or assumed value of 0.1
Irrigation area $=$	NA	square feet	

8. Extended Detention Basin System

Required Water Quality Volume for extended detention basin =
9. Filter area for Sand Filters

9A. Full Sedimentation and Filtration System

Water Quality Volume for sedimentation basin =
Minimum filter basin area $=$
Maximum sedimentation basin area $=$ Minimum sedimentation basin area $=$

Designed as Required in RG-348
NA cubic feet

Designed as Required in RG-348
Pages 3-58 to 3-63

NA cubic feet
NA square feet
NA square feet For minimum water depth of 2 feet NA square feet For maximum water depth of 8 feet

9B. Partial Sedimentation and Filtration System

Water Quality Volume for combined basins =
Minimum filter basin area $=$
Maximum sedimentation basin area $=$ Minimum sedimentation basin area $=$

NA cubic feet
NA square feet
NA square feet For minimum water depth of 2 feet NA square feet For maximum water depth of 8 feet
10. Bioretention System

Required Water Quality Volume for Bioretention Basin =

Designed as Required in RG-348
Pages 3-63 to 3-65
11. Wet Basins
12. Constructed Wetlands

NA cubic feet

Designed as Required in RG-348
Pages 3-66 to 3-71

NA cubic feet Permanent Pool Capacity is 1.20 times the WQV
NA cubic feet Total Capacity should be the Permanent Pool Capacity plus a second WQV

Designed as Required in RG-348
** 2005 Technical Guidance Manual (RG-348) does not exempt the required 20% increase with maintenance contract with AquaLogic ${ }^{\mathrm{TM}}$.

Required Sedimentation chamber capacity $=$ Filter canisters (FCs) to treat WQV = Filter basin area $\left(\right.$ RIA $\left._{F}\right)=$

NA cubic feet cartridges square feet

14. Stormwater Management StormFilter® by CONTEC

Required Water Quality Volume for Contech StormFilter System
NA
cubic feet

15. Grassy Swales

Designed as Required in RG-348
Pages 3-51 to 3-54

Design parameters for the swale:

Drainage Area to be Treated by the Swale $=\mathrm{A}=$	8.00 acres
Impervious Cover in Drainage Area =	4.00 acres
Rainfall intensity $=\mathrm{i}=$	$1.1 \mathrm{in} / \mathrm{hr}$
Swale Slope =	$0.01 \mathrm{ft} / \mathrm{ft}$
Side Slope (z) =	3
Design Water Depth $=\mathrm{y}=$	0.33 ft
Weighted Runoff Coefficient $=\mathrm{C}=$	0.54
$\mathrm{A}_{\text {CS }}=$ cross-sectional area of flow in Swale $=$	13.17 sf
$\mathrm{P}_{\mathrm{W}}=$ Wetted Perimeter $=$	40.62 feet
$\mathrm{R}_{\mathrm{H}}=$ hydraulic radius of flow cross-section $=\mathrm{A}_{\text {CS }} / \mathrm{P}_{\mathrm{W}}=$	0.32 feet
$\mathrm{n}=$ Manning's roughness coefficient $=$	0.2

> 8.00 acres 4.00 acres $1.1 \mathrm{in} / \mathrm{hr}$ $0.01 \mathrm{ft} / \mathrm{ft}$ 3 0.33 ft 0.54 13.17 sf 40.62 feet 0.32 feet 0.2

15A. Using the Method Described in the RG-348

$$
\text { Manning's Equation: } \quad \mathrm{Q}=\underline{1.49} \mathrm{~A}_{\mathrm{cs}} \mathrm{R}_{\mathrm{H}}^{2 / 3} \mathrm{~S}^{0.5}
$$

n

$$
\begin{array}{rrr}
\mathrm{b}=\frac{0.134 \times \mathrm{Q}}{\mathrm{y}^{.67}}-\mathrm{zy} & = & 38.51 \mathrm{feet} \\
\mathrm{~S} \\
\mathbf{Q}=\mathrm{CiA} & = & 4.71 \mathrm{cfs}
\end{array}
$$

To calculate the flow velocity in the swale:

$$
\mathrm{V} \text { (Velocity of Flow in the swale })=\mathrm{Q} / \mathrm{A}_{\mathrm{cs}}=
$$

$0.36 \mathrm{ft} / \mathrm{sec}$
To calculate the resulting swale length:

$$
\mathrm{L}=\text { Minimum Swale Length }=\mathrm{V}(\mathrm{ft} / \mathrm{sec}) * 300(\mathrm{sec})=\quad 107.24 \text { feet }
$$

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver rerun.

15B. Alternative Method using Excel Solver

Design $\mathbf{Q}=\mathbf{C i A}=$	4.71 cfs		
Manning's Equation $\mathrm{Q}=$	0.76 cfs	Error 1 $=$	3.95
Swale Width $=$	6.00 ft		

Instructions are provided to the right (green comments).

Flow Velocity $\quad 0.36 \mathrm{ft} / \mathrm{s}$
Minimum Length $=\quad 107.24 \mathrm{ft}$

Instructions are provided to the right (blue comments)

Design Width $=$
Design Discharge =
Design Depth
Flow Velocity =
Minimum Length $=$

6 ft
0.33
0.32 cfs
97.48 ft

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips
 Designed as Required in RG-348
 Pages 3-55 to 3-57

There are no calculations required for determining the load or size of vegetative filter strips
The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and
the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or
across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%.
If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348.

Texas Commission on Environmental Quality

TSS Removal Calculations 04-20-2009	Project Name: RM 1826
Date Prepared: $5 / 30 / 2023$	

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell.
Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.
Characters shown in red are data entry fields.

Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spre

1. The Required Load Reduction for the total project:

Calculations from RG-348
Pages 3-27 to 3-30
Page 3-29 Equation 3.3: $\mathrm{L}_{\mathrm{M}}=27.2\left(\mathrm{~A}_{\mathrm{N}} \times \mathrm{P}\right)$
where
$\mathrm{L}_{\text {M TOTAL PROJECT }}=$ Required TSS removal resulting from the proposed development $=80 \%$ of ir $A_{N}=$ Net increase in impervious area for the project
$P=$ Average annual precipitation, inches
Site Data: Determine Required Load Removal Based on the Entire Project

County =	Hays	
Total project area included in plan * $=$	22.96	acres
Predevelopment impervious area within the limits of the plan * $=$	11.05	acres
Total post-development impervious area within the limits of the plan* $=$	11.88	acres
Total post-development impervious cover fraction * =	0.52	
$\mathrm{P}=$	33	inches

* The values entered in these fields should be for the total project area.

Number of drainage basins / outfalls areas leaving the plan area $=\quad 1$
2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No. $=1$
Total drainage basin/outfall area $=22.96$ acres
Predevelopment impervious area within drainage basin/outfall area $=11.05 \quad$ acres
Post-development impervious area within drainage basin/outfall area $=11.88 \quad$ acres
Post-development impervious fraction within drainage basin/outfall area $=\mathbf{0 . 5 2}$
$L_{\text {MTHIS BASIN }}=745$ lbs.
3. Indicate the proposed BMP Code for this basin.

Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent

Total Capture Volume (required water quality volume(s) $\mathbf{x} \mathbf{1 . 2 0}$) $\mathbf{=} 2171$ cubic feet
The following sections are used to calculate the required water quality volume(s) for the selected BMP.
The values for BMP Types not selected in cell C 45 will show NA.

7. Retention/Irrigation System

Designed as Required in RG-348
Pages 3-42 to 3-46
Required Water Quality Volume for retention basin $=\quad$ NA cubic feet
Irrigation Area Calculations

Soil infiltration/permeability rate $=$	0.1	in/hr	Enter determined permeability rate or assur
Irrigation area $=$	NA	square feet	

8. Extended Detention Basin System

Required Water Quality Volume for extended detention basin =
9. Filter area for Sand Filters

9A. Full Sedimentation and Filtration System

Water Quality Volume for sedimentation basin =
Minimum filter basin area $=$
Maximum sedimentation basin area $=$ Minimum sedimentation basin area $=$

Designed as Required in RG-348
NA cubic feet

Designed as Required in RG-348
Pages 3-58 to 3-63

NA square feet
NA square feet For minimum water depth of 2 feet NA square feet For maximum water depth of 8 feet

9B. Partial Sedimentation and Filtration System

Water Quality Volume for combined basins =
Minimum filter basin area $=$
Maximum sedimentation basin area $=$ Minimum sedimentation basin area $=$

NA cubic feet
NA square feet
NA square feet For minimum water depth of 2 feet NA square feet For maximum water depth of 8 feet
10. Bioretention System

Required Water Quality Volume for Bioretention Basin =

Designed as Required in RG-348
Pages 3-63 to 3-65
11. Wet Basins
12. Constructed Wetlands

NA cubic feet

Designed as Required in RG-348
Pages 3-66 to 3-71
Required capacity of Permanent Pool $=$
Required capacity at WQV Elevation $=$

NA cubic feet Permanent Pool Capacity is 1.20 times the NA cubic feet Total Capacity should be the Permanent Po plus a second WQV

Designed as Required in RG-348
Pages 3-71 to 3-73
** 2005 Technical Guidance Manual (RG-348) does not exempt the required 20% increase with maintenance contract with AquaLogic ${ }^{\mathrm{TM}}$.

Required Sedimentation chamber capacity $=$ Filter canisters (FCs) to treat WQV Filter basin area $\left(\right.$ RIA $\left._{F}\right)=$

NA cubic feet cartridges square feet

14. Stormwater Management StormFilter® by CONTECH

Required Water Quality Volume for Contech StormFilter System
NA
cubic feet

15. Grassy Swales

Designed as Required in RG-348
Pages 3-51 to 3-54

Design parameters for the swale:

Drainage Area to be Treated by the Swale $=\mathrm{A}=$	8.00 acres
Impervious Cover in Drainage Area $=$	4.00 acres
Rainfall intensity $=\mathrm{i}=$	$1.1 \mathrm{in} / \mathrm{hr}$
Swale Slope $=$	$0.01 \mathrm{ft} / \mathrm{ft}$
Side Slope $(\mathrm{z})=$	3
Design Water Depth $=\mathrm{y}=$	0.33 ft
Weighted Runoff Coefficient $=\mathrm{C}=$	0.54
$\mathrm{~A}_{\mathrm{CS}}=$ cross-sectional area of flow in Swale $=$	13.17 sf
$\mathrm{P}_{\mathrm{W}}=$ Wetted Perimeter $=$	40.62 feet
$\mathrm{R}_{\mathrm{H}}=$ hydraulic radius of flow cross-section $=\mathrm{A}_{\mathrm{CS}} / \mathrm{P}_{\mathrm{W}}=$	0.32 feet
$\mathrm{n}=$ Manning's roughness coefficient $=$	0.2

> 8.00 acres 4.00 acres $1.1 \mathrm{in} / \mathrm{hr}$ $0.01 \mathrm{ft} / \mathrm{ft}$ 3 0.33 ft 0.54 13.17 sf 40.62 feet 0.32 feet 0.2

15A. Using the Method Described in the RG-348

$$
\text { Manning's Equation: } \quad \mathrm{Q}=\underline{1.49} \mathrm{~A}_{\mathrm{cs}} \mathrm{R}_{\mathrm{H}}^{2 / 3} \mathrm{~S}^{0.5}
$$

n

$$
\begin{array}{rrr}
\mathrm{b}=\frac{0.134 \times \mathrm{Q}}{\mathrm{y}^{.67}}-\mathrm{zy} & = & 38.51 \mathrm{feet} \\
\mathrm{~S} \\
\mathbf{Q}=\mathrm{CiA} & = & 4.71 \mathrm{cfs}
\end{array}
$$

To calculate the flow velocity in the swale:

$$
\mathrm{V} \text { (Velocity of Flow in the swale })=\mathrm{Q} / \mathrm{A}_{\mathrm{cs}}=
$$

$0.36 \mathrm{ft} / \mathrm{sec}$
To calculate the resulting swale length:

$$
\mathrm{L}=\text { Minimum Swale Length }=\mathrm{V}(\mathrm{ft} / \mathrm{sec}) * 300(\mathrm{sec})=\quad 107.24 \text { feet }
$$

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters must be modified and the solver

15B. Alternative Method using Excel Solve

Design $\mathbf{Q}=\mathbf{C i A}=$	4.71 cfs		
Manning's Equation $\mathrm{Q}=$	0.76 cfs	Error 1 $=$	3.95
Swale Width $=$	6.00 ft		

Instructions are provided to the right (green comments).

Flow Velocity	
Minimum Length $=$	$0.36 \mathrm{ft} / \mathrm{s}$
	107.24 ft

Instructions are provided to the right (blue comments).

Design Width $=$	6 ft		
esign Discharge	$=$	Error 2 $=$	3.95
Design Depth $=$	0.76 cfs		
Flow Velocity	0.33 ft		
Minimum Length $=$	0.32 cfs		

If any of the resulting values do not meet the design requirement set forth in RG-348, the design parameters may be modified and the solver rerun. If any of the resulting values still do not meet the design requirement set forth in RG-348, widening the swale bottom value may not be possible.

16. Vegetated Filter Strips
 Designed as Required in RG-348
 Pages 3-55 to 3-57

There are no calculations required for determining the load or size of vegetative filter strips
The 80% removal is provided when the contributing drainage area does not exceed 72 feet (direction of flow) and
the sheet flow leaving the impervious cover is directed across 15 feet of engineered filter strips with maximum slope of 20% or
across 50 feet of natural vegetation with a maximum slope of 10%. There can be a break in grade as long as no slope exceeds 20%.
If vegetative filter strips are proposed for an interim permanent BMP, they may be sized as described on Page 3-56 of RG-348.

Agent Authorization Form
For Required Signature Edwards Aquifer Protection Program
Relating to 30 TAC Chapter 213
Effective June 1, 1999

Water Quality Program SME
Title - Owner/President/Other
of
Texas Department of Transportation
Corporation/Partnership/Entity Name
have authorized
Stephanie L. Russell, PE
Print Name of Agent/Engineer
of \qquad
Print Name of Firm
to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to $\$ 10,000$ per day per violation.
2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

County of Travis \S
BEFORE ME, the undersigned authority, on this day personally appeared \qquad Shane Rotter known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this \qquad day of \qquad -.

Typed or Printed Name of Notary MY COMMISSION EXPIRES:

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)		
凹 New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)		
\square Renewal (Core Data Form should be submi	newal form)	\square Other
2. Customer Reference Number (if issued)	Follow this link to search	3. Regulated Entity Reference Number (if issued)
CN 600803456	Central Registry**	RN

SECTION II: Customer Information

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)										
\boxtimes New Regulated Entity $\quad \square$ Update to Regulated Entity Name $\quad \square$ Update to Regulated Entity Information										
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).										
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)										
RM 1826 from Lewis Mountain Dr to Towering Cedar Dr. in Hays and Travis County										
23. Street Address of the Regulated Entity: (No PO Boxes)										
						City	State	ZIP	ZIP + 4	
24. County										

If no Street Address is provided, fields 25-28 are required.

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

\square Dam Safety	\square Districts	区 Edwards Aquifer	\square Emissions Inventory Air	\square Industrial Hazardous Waste
		11-15062401		
\square Municipal Solid Waste	New Source Review Air	\square OSSF	\square Petroleum Storage Tank	\square PWS
\square Sludge	\square storm Water	\square Title V Air	\square Tires	\square Used Oil
\square Voluntary Cleanup	\square Wastewater	\square Wastewater Agriculture	\square Water Rights	Q Other: Water Quality Non Permitted
				R11106912066

SECTION IV: Preparer Information

| 40. Name: | Stephanie L. Russell, PE | 41. Title: | Project Manager |
| :--- | :--- | :--- | :--- | :--- |
| 42. Telephone Number | 43. Ext./Code | 44. Fax Number | 45. E-Mail Address |
| (512) $539-1998$ | | $(1)-$ | slrussell@garverusa.com |

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Texas Department of Transportation	Job Title:	Project Manager		
Name (In Print):	Shane Rotter		Phone:	(512) 415-8257	
Signature:				Date:	$5 / 1 / 2 / 3$

STATE OF TEXAS

DEPARTMENT OF TRANSPORTATION

 $\frac{\text { DESIGN SPEED: }}{\text { Mainlane: } 50 \text { MPH }}$ Mainlane::
cross street:
SPH
35 MPH

FINAL PLANS

DATE CONTRACTOR BEGAN WORK:
date work was completed \& accepted
FINAL Contract cost: \$

I Certiry That Thr project was
CONSTRUCTED IN SUBSTANTIAL COMPLIANCE ONSTRUCTED IN SUBSTANTIAL COMPLIAALE
TTH THE FTNAL AS-BUILT PLANS AND
\qquad P.E. $工$

Registered Accessibility Specialist (RAS) Inspection Required

TDLR No. EABPRJ \qquad

ATTACHMENT NO. TO SPECTAL AGREMMENT FOR CONSTRUCTTON, MAINTENANCE, AND OPERATTINS OF Construction, Maintenacce, and operation responsibilities shall be As heretofore acrem
\qquad

[^1]STP () HES
letting date

CONTRACTOR: specifications.

PLANS OF PROPOSED

STATE HIGHWAY IMPROVEMENT
FEDERAL AID PROJECT NUMBER
CSJs: 0914-33-097, 1754-02-030
RM 1826
$\overline{T R} \overline{A V I S}$ COUNTY A $\overline{N D} \overline{H A} \overline{Y S} \overline{C O U N T Y}$

TOTAL LENGTH $=11,418.00 \mathrm{FT}=2.163 \mathrm{MI}$
MITS: FROM NORTH OF LEWIS MOUNTAIN ROAD
FOR THE CONSTRUCTION OF TURN LANES

SUbMItTED
For Letting:

APPROUED
FOR LETTING
bailboad crossings: nowe
$\xrightarrow{\square}$
Texas Department of Transportation
as Department of Transportation

EXISTING RM 1826 TYPICAL SECTION

PAVEMENT STRUCTURE DETAIL

(1) MATCH EXISTING PAVEMENT GRADE.
 SEE CROSS SECTIONS FOR FORESLOPE AND
$\stackrel{\text { © }}{\text { © }}$ SEE PAVEMENT STRUCTURE DETALL CROSS-SECTIONS FOR MORE N NFORMATION. PLACE
TOPSOI AND SEDN OPSOIL AND SEEDING ON ALL DISTURBED AR
BETWEENTHE PROPOSED EDGE OF PAVEMENT AND EXITTMG GROUND.

NOTE: UNDERGGOUND UTILTIES IN OITCH WILL NOT BE RELOCATED.
CONTRACTOR SHALL POTHOLE AND LOCATE UTLLTIES. CONTRACTOR SHAL POTHOLE AND LOCATE UTLITIES.
WORK SHALL PROGRESS AROUND AND VERY CLOSE TO LIVE UTLLTITES. TXDOT TAY ADJUST THICKNESS PAVEMENT SECTTIONTO TO PROVIID M MIIMUM OF 6 INCHES IISTANCE FROM UTLLTIESS. EXCAVATION AND EMBANKMENT WORK MAY BE ADUSTED TO PROVIDE
MINMUM OF 3 INCHES OF
OISTANCE FROM UTLITES.

Texas Department of Transportation			
RM 1826			
PROPOSED TYPICALSECTIONS			
SHEET 1 OF 3			
cowr	ster	${ }_{108}^{108}$	Hecruar
0914	33	097, ETC.	RM 1826
- ${ }_{\text {Oist }}$		counr	${ }_{\text {ster w }}$

(1) MATCH EXISTING PAVEMENT GRADE.
MAX FORESLOPE IS S 3:1 WITHOUT MBGE MAX BACKSLOPE IS 2:1 OUTSIDE OF CLEAR ZONE SEE CROSS SECTIONS FOR FO
BACKSLOP

 TOPSOLL AND SEEDING ON ALL DISTURBED AREA
BETWEN TE PROPOSED EDGE OF PAVEMENT
AND EXITTNG GROOND.

(1) MATCH EXITTNG PAVEMENT GRADE. MAX FORESLOPE IS 3:1 WTHOUT MBGF,
MAX BACKSLOPE IS IS 1 OUTSIDE OE CLEAR SEE CROSS SECTIONS FOR FORESLOPE AND
$\stackrel{\oplus}{\oplus}$
IMITS OF TOPSOIL \& SEEDING VARY. SEE CROSS-SECTIONS FOR MORE INFORMATION. PLACE
TOPSOIL ANO SEEDNG OR E TOPSOIL AND SEEDING ON ALL DISTURBED AREA
BETWEEN THE PROPOSED EDGE OF PAVEMENT BETWEEN THE PROPOSED
AND EXISTING GROUND.

DISTRICT	COUNTY	CCSJ	SHEET
Austin	Hays	$0914-33-097$	17

DISTRICT	COUNTY	CCSJ	SHEET
Austin	Hays	$0914-33-097$	17 A

Estimate \& Quantity Sheet

IStrict Austin

county Hays

Higway RM 1826, Various

CONTROL SECTION JOB				0914-33-097		1754-02-030		TOTAL EST.	TOTAL FINAL
PROJECT ID				A00184594		A00184595			
				Hays		Hays			
HIGHWAY				Various		RM 1826			
ALT	BID CODE	DESCRIPTION	UNIT	EST.	FINAL	EST.	FINAL		
	666-6318	RE PM W/RET REQ TY I (Y)6"(BRK)(100MIL)	LF			2,833.000		2,833.000	
	666-6321	RE PM W/RET REQ TY I (Y)6"(SLD)(100MIL)	LF	33,582.000		7,857.000		41,439.000	
	672-6007	REFL PAV MRKR TY I-C	EA	184.000		8.000		192.000	
	672-6009	REFL PAV MRKR TY II-A-A	EA	1,362.000		730.000		2,092.000	
	677-6001	ELIM EXT PAV MRK \& MRKS (4")	LF	18,904.000		2,854.000		21,758.000	
	730-6107	FULL - WIDTH MOWING	CYC	2.000				2.000	
	734-6002	LITER REMOVAL	CYC	2.000				2.000	
	3076-6001	D-GR HMA TY-B PG64-22	TON	2,891.000		1,024.000		3,915.000	
	3076-6050	D-GR HMA TY-D SAC-B PG76-22	TON	1,181.000		415.000		1,596.000	
	3076-6051	D-GR HMA TY-D PG76-22 (LEVEL-UP)	TON	200.000		65.000		265.000	
	3081-6008	TOM-C PG76-22 SAC-B	TON	1,997.000		653.000		2,650.000	
	3084-6001	Bonding Course	GAL	4,144.000		1,379.000		5,523.000	
	6001-6002	PORTABLE CHANGEABLE MESSAGE SIGN	EA	2.000				2.000	
	6185-6002	TMA (STATIONARY)	DAY	524.000		80.000		604.000	
	6185-6003	TMA (MOBILE OPERATION)	HR	90.000		14.000		104.000	
	7251-6001	Subsurface Util Locate (Outside Rdbed)	EA	8.000		2.000		10.000	
	7251-6002	Subsurface Util Locate (Within Rdbed)	EA	4.000		1.000		5.000	
	08	CONTRACTOR FORCE ACCOUNT SAFETY CONTINGENCY (NON-PARTICIPATING)	LS	1.000				1.000	
		CONTRACTOR FORCE ACCOUNT LAW ENFORCEMENT (NON-PARTICIPATING)	LS	1.000				1.000	
		CONTRACTOR FORCE ACCOUNT EROSION CONTROL MAINTENANCE (NON-PARTICIPATING)	LS	1.000				1.000	

DISTRICT	COUNTY	CCSJ	SHEET
Austin	Hays	$0914-33-097$	17 B

SHEET No.	locaton	${ }_{\substack{500 \\ 600}}$	${ }_{\text {cos }}^{502}$	${ }_{6004}^{662}$	${ }_{6034}^{662}$	${ }_{6063}^{662}$	${ }_{6262}^{662}$	${ }_{6}^{677}$	${ }_{6002}^{6002}$	${ }_{600}^{6185}$	${ }_{6003}^{6185}$
		мовицаттом							$\begin{aligned} & \text { PORTABLE } \\ & \text { CHANGEABLE } \\ & \text { MESSAGE SIGN } \end{aligned}$	${ }_{\text {(STATOAARA }}^{\text {TM }}$	
		$\stackrel{1}{ }$	mo	${ }^{\text {LF }}$	${ }^{\text {LF }}$	${ }^{\text {LF }}$	EA	$\stackrel{\text { LF }}{ }$	EA	Dar	нR
LEWIS MOUNTAAN DRVE O914.33.997											
${ }_{\text {SHEET I OF } 4}$				${ }_{10}^{668}$	${ }_{1108}^{668}$	${ }_{\substack{334 \\ 550}}$	67 110	${ }_{21336}^{1320}$			
SHEET 3 OF 4	STA $142+00$ To STA St $47+$ +50			11700	11700	${ }_{550}$	${ }_{170} 17$	2200			
SHEET A OF 4	STA 147 +50 TO ENO			770	770	${ }_{385}$	77	1540			
	SUBTotal	0	0	3638	3638	1819	364	${ }^{2276}$	0	0	0
EXE RD O914.33.097											
${ }_{\text {SHEET }}^{\text {SHET } 2 \text { OF }}$ - 4				${ }_{134}^{51100}$	${ }_{134}^{51100}$	${ }_{492}$	${ }_{\substack{68 \\ 110}}$	${ }_{22088}^{1068}$			
StEET 3 of 4				1100 1220	1100 1220	550 285	${ }_{1}^{110}$	${ }_{2200}^{2200}$			
	SUBTotal	0	\bigcirc	3954	${ }_{3954}$	${ }_{1327}^{285}$	${ }_{345}$	${ }_{7908}$	0	0	0
APPALOOSARUN O914-33-097											
SHEET 10F4				${ }_{5}^{295}$			59 110	${ }_{5}^{295}$			
				${ }_{550}^{550}$				${ }_{550}^{550}$			
$S_{\text {SHEET }}$ OFF 4	STA ST $245+5$ T TO ENO						92	${ }_{460}$			
	SUBTotal	0	0	1885	0	0	371	1885	0	0	0
OSO CREEK RD O914.33-097											
${ }_{\text {SHEET IOF } 3}$							${ }_{10}^{90}$				
SHEET 3 Of 3	STA $283+$ +o To ENO										
	SUBTotal	0	0	0	0	0	260	0	0	0	0
${ }_{\text {SHEET IOF }}$ StET 2 OF 6				${ }_{5}^{360}$			${ }_{12}^{72}$	${ }_{5}^{360}$			
SHEET 3 OF 6	STA $513+00$ Oo STA $518+50$			550			110	550			
SHEET 4OF 6	STA S S18+50 To Sta St $524+00$			${ }_{550}^{550}$			110				
SthET G of 6	${ }_{\text {STA }}$			${ }_{250}^{594}$			${ }_{59}$	${ }_{250}^{590}$			
	SUBTOTAL	0	0	2854	0	0	571	2854	0	0	0
TOWERNG CEDAR DR O914.33-997											
SHEET 1OF 4				${ }_{\substack{380 \\ 550}}$			${ }_{110}^{76}$	${ }_{\substack{380 \\ 550}}$			
				${ }_{5}^{550}$			${ }_{170}^{170}$	${ }_{5}^{550}$			
	Sta Sutitiotaeno	0	0	${ }_{1885}$	0	0	${ }_{373}$	1865	0	0	0
	CS 1754020.330	1	0	2854	0	0	571	2854	0	80	14
	Prolect totals	2	14	19166	7592	3146	2284	2775	2	604	104

SUMMARY OF ROADWAY QUANTITIES

Sheit no．	locaton		${ }_{\text {cor }}^{1004}$	${ }_{\text {cose }}^{1054}$	${ }_{\text {ckior }}^{10}$	${ }^{1120} 600$	${ }_{6003}^{132}$	${ }_{\text {c }}^{1387}$（047			${ }_{\text {cois }}^{351}$	${ }_{\substack{354 \\ 604}}$	${ }_{6002}^{432} 6$	${ }_{6045}^{438}$	${ }_{6}^{530} 6$	${ }_{\text {coos }}^{50}$	${ }_{6001}^{500}$	${ }_{\text {S }}^{5033}$	${ }_{6001}^{542}$	${ }_{\text {coin }}^{5001}$	${ }_{\text {coid }}^{5003}$	${ }_{560}^{5011}$			
			$\xrightarrow{\text { RENOYM }}$ CONC（PAV）			EXCAVATION （ROADWAY）			$\underset{\substack{\text { BaCKFLIL } \\(T)}}{ }$	$\begin{array}{\|c} \text { PRME COAT } \\ \text { OPITON } \end{array}$						${ }_{\text {drememars }}^{\text {dacel }}$								$\underset{\substack{\text { LTTER } \\ \text { REMOVAL }}}{ }$	
		STA	sr	$\stackrel{L}{ }$	${ }^{5 r}$	cr	cr	cr	STA	GAL	${ }^{\text {sr }}$	${ }_{\text {sr }}$	cr	cr	${ }^{\text {sr }}$	${ }^{\text {sr }}$	${ }^{\text {LF }}$	EA	${ }^{\text {LF }}$	EA	${ }_{\text {EA }}$	${ }_{\text {EA }}$	crc	crc	ton
${ }_{\text {SHEET 1OF } 4 \text { Lews }}$																									
			7							（1017 $\begin{gathered}189 \\ 187\end{gathered}$		${ }_{1}^{59}$											2	2	
	STA $142+00$ OTO STA $147+50$	5.5 4			${ }^{285}$			197 73	5.5 4	${ }_{66}^{177}$	${ }_{1226}^{221}$	${ }^{62}$				${ }^{80}$									${ }_{7} 7$
	subtotal	18.5	7	0	506	0	0	704	18.5	633	${ }_{757}$	269	0	0	0	${ }^{80}$	0	0	0	0	0	0	2	2	773
	ZUE RD O914．33．097																								
SHEET IOF 4		3.5 5.5	73		141			$\stackrel{0}{242}$	${ }_{\substack{3.5 \\ 5.5}}^{\text {c }}$	$\stackrel{0}{217}$	${ }^{166}$	${ }^{110}$	8		59	${ }^{64}$						1			
SHEET 3 OF 4		5.5 .5			${ }_{53}^{245}$			249 70	${ }^{\frac{5}{3} 5}$	${ }_{6}^{224}$	${ }^{228}$	${ }_{46}^{122}$				${ }^{175}$									
	SUḂotal	17.5	73	0	439	0	0	561	17.5	504	${ }_{738}$	${ }^{278}$	${ }^{8}$	0	59	${ }_{27}$	0	0	0	0	0	4	0	0	${ }_{593}$
	Ppaloosa Run O914．33－097																								
SteET 1oF 4		5．5			${ }^{38} 101$			${ }_{182}^{47}$	${ }_{5}^{3.5}$	${ }_{164}^{43}$	${ }^{102}$	33 61													${ }_{203}^{47}$
	${ }_{\text {Sta }}$ STA $24+$＋oco	${ }_{5}^{5.5}$			${ }_{130}^{130}$			${ }_{1} 197$	${ }_{5.5}^{5.5}$	${ }_{1}^{177}$	${ }_{2}^{225}$	${ }_{61}^{61}$				${ }^{35}$									
		5	。	0	39 290	0	0	${ }_{562}^{96}$	5 19	年 86	154 712	${ }_{206}^{51}$	0	0	0	${ }^{35}$	0	0	0	0	0	0	0	0	99 571
	OSO CREEK RD O914－33－097																								
${ }_{\text {SHEET 10F }}{ }_{\text {SHEET } 20 F 3}$		4.5 5.5			${ }_{22}{ }^{268}$			${ }_{\substack{88 \\ 182}}$	${ }_{4}^{4.5}$	${ }_{19}{ }_{19}$	${ }^{199}$	100 120 1													
		3.9 3		${ }_{305}^{202}$	${ }^{268}$				${ }^{3} 8$		${ }_{1248}^{218}$	${ }_{34}^{120}$		$\frac{7}{6}$		100	${ }^{38}$		${ }_{259}^{43}$	1	$\frac{1}{1}$				
	subrotal	${ }^{13}$	0	507	320	0	0	361	${ }^{13}$	${ }^{325}$	614		0		0	100	${ }^{63}$	0				0	0	0	${ }^{354}$
SHEET 1OF 6		¢ .5 .5			81 56 5			74 192 192	¢ 5.5 .5	¢67 173 120	${ }^{123}$	${ }_{6}^{40}$													78 275 215 25
SHEET OFF 6		5.5 5.5 5.5	${ }^{24}$		53 159			200	5.5 5.5 5.5	180 200 200	225 236	${ }_{61}^{61}$		${ }^{17}$			75	1		2					
－		5.5 5.5	24		138 184 18			¢ 189	5.5 5	${ }_{164}^{1206}$	238 26 26	61 63 3													${ }_{206}^{206}$
SHEET G OF 6		3	${ }^{24}$	0	${ }^{34} 5$	0	0	${ }_{921}^{49}$	3 29	${ }_{830}^{44}$	${ }_{1265}^{96}$	${ }_{331}^{33}$	\bigcirc	${ }_{17}$	0	0	75	1	0	2	0	0	0	0	${ }_{1024}^{49}$
	NEENG CEEAAR DR O914－33－977																								
SteET 1OF 4	SEGINTO STA Stat 5 So	${ }_{5.5}^{4 .}$			${ }_{84}^{43}$			75 192	${ }_{5.5}^{4}$		${ }^{129}$	${ }_{6}^{43}$													78 215
SHEEE 3 OF 4		5.5 4	20		${ }_{19}^{203}$			206 72	5.5 4	${ }_{1}^{185}$	${ }_{1298}^{228}$	${ }^{61}$													233 74
	subiotal	19	20	0	349	0	0	545	19	491	709	208	0	0	0	0	0	0	0	0	0	0	0	0	600
		${ }^{87}$	${ }_{24}^{100}$	507	${ }_{5}^{1913}$	3004 629	${ }_{9}^{1769}$	${ }_{921}^{2693}$	87 29	${ }_{\text {2433 }}^{243}$	$\underset{\substack{3530 \\ 1155}}{ }$	${ }_{317}^{1215}$	$\stackrel{8}{0}$	${ }_{17}^{13}$	59 0	$\stackrel{492}{0}$	${ }_{75}^{63}$	$\stackrel{0}{1}$	$\stackrel{302}{0}$	${ }_{2}^{2}$	－	${ }_{0}^{4}$	。	$\stackrel{2}{0}$	${ }_{\text {20291 }}^{1024}$
	Prookect totals						2764																		

SUMMARY OF ROADWAY QUANTITIES

SUMMARY OF EARTHWORK QUANTITIES

PROJECT	station	$\begin{aligned} & 110 \\ & 6001 \end{aligned}$	132 6004
		EXCAVATION (ROADWAY	
		Cr	Cr
OSO CREEK RD	271+00.00	0	0
	272+00.00	23	0
	273+00.00	22	0
	274+00.00	21	1
	$275+00.00$	26	1
	276+00.00	29	4
	277+00.00	79	3
	$278+00.00$	94	0
	279+00.00	83	10
	$280+00.00$	125	10
	281+00.00	110	9
	282+00.00	69	8
	283+00.00	57	2
	$284+00.00$	32	2
TOWERING CEDAR DR	$536+70.00$	0	0
	$537+00.00$	3	4
	$538+00.00$	13	12
	$539+00.00$	16	16
	$540+00.00$	19	17
	$541+00.00$	22	18
	$542+00.00$	23	24
	$543+00.00$	20	19
	$544+00.00$	20	9
	$545+00.00$	32	8
	$546+00.00$	41	5
	$547+00.00$	41	1
	$548+00.00$	46	0
	$549+00.00$	42	2
	$550+00.00$	28	6
	551+00.00	24	6
	$552+00.00$	31	8
	$553+00.00$	30	9
	$554+00.00$	23	4
	$555+00.00$	22	5
	$555+35.00$	7	2

PROECT	station	$\begin{aligned} & 1100 \\ & 6001 \end{aligned}$	$\begin{aligned} & 132 \\ & 6004 \end{aligned}$
		EXCAVATION (ROADWAY	$\begin{aligned} & \text { EMBANKMENT } \\ & \text { (FINAL)(DENS } \\ & C \text { CNT)(TY B) } \end{aligned}$
		Cr	Cr
C5: 1754-02-030	504+00.00	1	2
WOODLAND / SHELF ROCK RD	$503+90.00$	0	0
	$504+00.00$	1	2
	$505+00.00$	11	26
	$506+00.00$	15	41
	$507+00.00$	19	54
	$508+00.00$	16	58
	$509+0.00$	13	54
	$510+00.00$	13	40
	$511+00.00$	15	22
	$512+00.00$	15	17
	$513+00.00$	13	35
	$514+00.00$	14	33
	$515+00.00$	10	70
	$516+00.00$	8	76
	$517+00.00$	14	43
	$518+00.00$	22	50
	$519+0.00$	28	40
	$520+00.00$	24	27
	$521+00.00$	38	13
	$522+00.00$	40	17
	$523+00.00$	25	30
	$524+00.00$	32	32
	$525+00.00$	26	22
	$526+00.00$	12	42
	$527+00.00$	10	62
	$528+00.00$	27	42
	$529+00.00$	44	23
	$530+00.00$	49	11
	$531+00.00$	47	7
	$532+00.00$	25	6
	$532+44.00$		1
CSI: 0914-33-997 TOTAL		3004	1765
CS: 1754-02-030 TOTAL		629	999
PROJECT TOTALS		3,633	2,764

[^2]

SHEET No.	locaton	${ }_{6003}^{160}$	${ }_{6035}^{164}$	${ }_{6071}^{164}$	${ }_{6001}^{168}$	${ }_{6001}^{169}$	${ }_{5006}^{5002}$	${ }_{5006}^{5004}$	${ }_{6011}^{506}$	${ }_{5020}^{5000}$	${ }_{5024}^{5064}$	${ }_{\substack{\text { S0\% } \\ 608}}$	${ }_{\text {cois }}^{5065}$	${ }_{5041}^{5064}$	${ }_{6043}^{506}$
					VEgeratic										
		sr	sr	${ }^{5 r}$	mG	sr	${ }^{\text {LF }}$	${ }^{\text {LF }}$	${ }^{\text {LF }}$	sr	sr	$\stackrel{L}{ }$	${ }^{\text {LF }}$	${ }^{\text {LF }}$	LF
	LEWIS MOUNTAN DR-CS O914.33-097														
SHEET 10F 2		${ }^{3482}$	3882	${ }^{3482}$	58	3482		52	52	${ }_{224}^{224}$	${ }_{224}^{224}$	${ }_{5}^{575}$	${ }_{5}^{57}$	30	30
roi		${ }_{\substack{3933 \\ 7415}}$	${ }_{\substack{3933 \\ 7415}}$		${ }_{\substack{66 \\ 124}}$	¢3933 7415	0	52	52	${ }_{\text {cke }}^{\substack{248 \\ 448}}$	${ }_{\substack{224 \\ 448}}^{24}$	705 1262	$\xrightarrow{705} 1$	${ }^{30}$	${ }^{30}$
	0914-33-097 BEGIN TO STA 191+00 STA 191+00 TO END														
		${ }_{2}^{19971}$	${ }^{1992}$	${ }_{2}^{19971}$	${ }_{4}^{33}$	${ }_{2792}^{19971}$		${ }_{42}^{36}$	${ }_{42}^{36}$	${ }^{224}$	224	${ }_{\text {cher }}^{738}$	${ }_{\text {l }}^{\text {738 }}$		
subro	OTAL	4763	4763	4763	80	4763	0	78	78	${ }^{224}$	${ }^{224}$	2240	2240	0	
	CSI 0914-33-097														
A APPALOOSA RUN-		${ }_{283}^{2823}$	${ }_{2023}^{2823}$	${ }_{283}^{2823}$	${ }_{3}^{49}$	${ }_{2023}^{283}$				${ }^{224}$	${ }^{224}$	${ }_{1715}$	${ }_{1715}^{1715}$		
SHEET 2 OF 2 SUBTOTAL STA 4 4 + +00 TO STA END		${ }_{4736}$	${ }_{4736}$	${ }_{4736}$	${ }_{81}$	${ }_{4736}$	${ }_{30}$	0	${ }^{30}$	${ }_{448}^{248}$	${ }_{\text {248 }}^{224}$	${ }_{1825}$	1825	0	0
${ }_{\text {SHEET 1 OFO }}$ OSOC CREEE R RO.	CSI 0914-33-097BEGIN TO STA 281+00STA 281+00 TO END									${ }^{224}$	${ }^{224}$	897	897	60	60
${ }_{\text {SHEET } 2 \text { O }}$ S 2		${ }_{442}$	${ }_{442}$	${ }_{442}$	${ }_{7}^{43}$	${ }_{442}^{2399}$		${ }_{20}^{20}$	${ }_{20}^{20}$	${ }^{224}$	${ }^{224}$	${ }^{897}$	${ }^{897}$	60	
		2981	2981	2981	50	2981	0	40	40	${ }^{224}$	224	897	897	60	60
		${ }_{\substack{3092 \\ 3408}}$	(3092 3408	${ }_{\substack{3092 \\ 3408}}$	${ }_{5}^{52}$	${ }_{\substack{3092 \\ 3408}}$				${ }_{3}^{336}$	336 12				
		${ }_{8532}$	${ }_{8532}$	${ }_{8532}$	143	${ }_{8532}$	${ }_{139}$	0	139	${ }_{672}$	${ }_{672}$	0	0	0	
	DR-CSJ 0914-33-097														
		${ }_{\substack{3167 \\ 2522}}$	${ }_{\substack{3167 \\ 252}}$	${ }_{\substack{3167 \\ 252}}$	${ }_{42}^{53}$	${ }_{\substack{3167 \\ 2522}}$		${ }_{44}^{40}$	${ }_{44}^{40}$	${ }_{224}^{224}$	${ }_{224}^{224}$				
	\qquad	5689	5689	5689	95	5689	0	${ }_{84}$	${ }_{8} 8$	${ }_{448}$	${ }_{448}$	0	0	0	0
	CS50914.33-097	${ }^{25584}$	${ }^{25584}$	25584	${ }^{430}$	${ }^{25584}$	${ }^{30}$	${ }^{254}$	${ }^{284}$	1792	1792	${ }^{622}$	${ }^{622}$	90	90
	C5, 11/4402-030														
	Proikct totals	34116	3416	34116	573	4116	169	254		246					

\section*{| SEOUENCE OF WORK |
| :---: |
| GENERAL: |
 GENER}

2. Contractor Shall mantain two-Lane traffic.at the conclusion of Each
 OFFS GREATER THAN 2 ".

 Approval.
3. Poortali C Changeail m mssage sicn shall be placed for at Least seven DARS PRIOR T C CAANGES N T TRAAFFIC ConTrol OPEERATONS TO WARN TRAAFFIC ABOUT THE CHANGE IN CONOITTINS.
4. PLACE ALL TTAAFIC CONTROL DEVICES BEFORE OPENNG To TRAAFFLC.
5. Contractor IS RESPONSBLEL FOR PROVIIIG AAL WEATHER ACCESS TO PRVATE

APPRoved by the Encinerr.

THIII 5 SUSSIDAARY TOITEM 502
6. COVER PREMANENT SIGNS IN CONFLLCT WITH TRAAFFIC PAASIGG. THIIIS phase stapt date bestictions
Phase Stant date restictrons 1. Contactoor hall substantally complete A phasestrer, incluoimg

 (WTH THE ExCEPTION OF OSO CREEE AND ZYL R ROAD).
7. WORK IN MULTPLE P PHASESANDOR STTEPS SHALL BE APPROUED BY THE

TEXAS GAS SERYCE RESTRICTIO

- mestactou puse urranstize

UNTL $9 / 72024$ UNLLESS APPROVVED BY THE ENGNEER.
6. AT RESTR/CTION- PHASE1 6 from STA $186+00$ to $199+00$ mar not BEGIN

UNTL 9 g/IRO24 UNLLESS APPROVED BY THE ENGNEER.

work to progress near Lue uturtiss:

 SHALL USE TEE 7251 TO LOCATE THE UTLTTEE PRIOR TO BEGIN WORK IN THE

 IS N DRECT CONELLCT WTH DOANAGE PPE THE PAMMENT AND EARTHWORK Work Shall proceed and contractor shall use caution to perform - Eronter has aututy crossng nearstasta

ATT HAS A UTLUTT NEAR STA 186+00 TO $194+00$.
ATT HAS A UTLUT NEAR STA $278+00$ To $283+00$
PHASE LA: PAEEENTT WIDENNGG NORTH BOUNDD LANES AT APPALLOSSA RUN ROAD, 1. PLACE ALL AOVAACED WARNNG SIINS, TTAAFFIC CONTROL DEVCES, WORK ZONE PAVEMENT MARKNGS ANV SIINS I N ACCORDANCE WTHT TMUTCD,
 2. INSTALL BMP AND EROSION CQ
3. ARRANGE TRAFFIC CONTROL DEVICES I A ACOORDANCE WTH TRAFFIC CONTROL Trical sections ano standaros contractor shall mantain Two- Lane TRAFFC. AT THE END OF EACH WORK DAYY. CONTRACTOR SHALL PLACE B:1 1 OR FIATER) SAFETV SLOPE AT ALL DRop-ooff G GEEATER THAN 2 ".
5. PLLCE PeRRanent Erosion control measures
6. REMOVE TAAFFIC CONTROL DEVYCES FROM THIS PHASE

PrAASE BB: PAVEMENT WIDENNG North Bound Lanes at Towermg cedar drive

 (2.3)-23.
install bmp and erosor courol devices as shown on plans and 2. INTELL BMP AND EROSTONCO
3. ARRANGE Traffic control dev Ics in accordance wit traffic contro mpical sections and stanoaros. contractor shall mantan two-lane

Construct parallel d danacae stuctures, pavement widenng, and T-steets for staton Lmits shown on the Traffic control TrPical SECTONS
ENGNEE
5. PLACE PEEMANeNT ERRSIIO Control MEASURES.
6. Remove traffic control devices from this fhas
 SHeLF Rock road.
PLLCCE ALL ADVANCEE WAANNG SIINS, TRAFFIC CONTROL DEVICES, WOR
 (2:3)-23.
2. NSTALL BMP AND EROSIO COOTROL DEVCEES AS SHOWN ON PLANS, AND AS DIRECTED Br THE ENGNEER.
3. ARANGE TRAFFIC CONTROLDEVCES IN ACCORDAACE WTH TRAAFIIC CONTROL

4. CONSTRUCT PROPOSEED CROSS CUUVERTS. FOR CUUVER CONSTRUCTION
 LOCATON AND ISTTAL PROPOSED MBGF. UTLIZZ BC(10)-21AS REQUIRED.
 SECTons. perform base repaliat locations as dikecteo by the ENGNEER
6. PLACE PERMANENT RROSION CONTROL MEASURES.
7. REMOVE TRAFFIC CONTROL DEVCCES FROM THIS PHASE

PHASE DD: PAVENENT WIDENNG North bound lanes at zYe Road.

1. PLLCE ALL ADVANCED WARNNG SIINS, TRAFFIIC CONTROL DEVICES, WORK Zone pavement marking and signs in accordance wit tuutco.
 TCP(2-3) 23 .
2. INTALLL BMP AND EROSION CO
3. ARRANGE TRAFFIC Control devices in accordance wit trafflc CONTROL TTPCLCA SECTITNS AND STANDAROS. CONTRACTTR SHALLL

4. CONSTRUCT PAVEMENT WIDENNG AND DRNV EWAYS F FR STATION LMITS SHown on the Traffic control trical sections. Perform mase reair at Locatons as directed by the Enginer.
5. PLACE PREMANENT RROSION CONTROL MEASURES.

Phase I I: Pavement mienng south bound lanes at oso creek rona 1. PLACE ALL LOVANCED WARNNG SIINS, TRAFFIC Control devपcs, work
 (2.3).23.
2. INSTALL BMP AND EROSION CONTROL DEVCEE AS SHOWN ON PLANS, AND AS DIRETTED BY THE ENGINEER.
3. ARRANGE TRAFFIC CONTROL DEVMCES $\operatorname{INaCCORDANCE~WTH~TRAFFIC~Control~}$

4. CONSTRUCT PARALLEE DRANAGE STRUCTURES PAVEMENT WIDENNG, AND
 ENGNEER.
5. PLACE PERMANENT EROSION Control measures.
6. REMOVE TRAFFII CONTROL DEVCESS FROM THHS PHASE.

PHASE IF: PAVEMENT WIDENNG NORTH Bound LaNES AT OSO CREEE ROAD.

 $\underset{\substack{\text { GENERAL } \\(2-3) \cdot 23}}{\text { and }}$
2. INSTALL BMP AND EROSIIN CONTROL DEvCES AS SHHWN on Plans, AND AS 2. NSTALL EMPANO ERSSION
3. ARRANGE TRAFFIC CONTROL DEVपCES 1 N ACCORDANCE WTH TRAAFFIC CONTROL

 engneer.
PLACE PERMANENT EROSION Control MEASURES.

PHAEE IG: PAVEMENT WIDENNG SOUTH BOUND LANE AT TVE R ROAD.
 GENERAL NOTES, BC STANDAROS (1-12) -21, TCP (1-1)-18, TCP ($(2-2)$-18, AND Tc (2.3.3) 23 .
2. NSTALL BMP AND EROSION CONTROL DEVCEE AS SHONN ON PLANS AND AS DRECTED BYTHE ENGNEER
3. ARRANGE TRAFFIC CONTROL DEVICES I A ACOOBAACE WTH TRAAFFIC Control

4. Construct paralle dranage stuuctures. pavenent widenng, ano

 ENGINER.
5. PLACE PeRMAneNT ERosion control measures.
6. REMOVE TRAFFIC CONTROL DEVCES FROM THIS PAASE.

Phase μ H Pavement widenng north bound lanes at Lewis mountan drve

 (2.3-3.23.

NSTALL BMP AND EROSION COOTROL DEVICES AS SHOWN ON PLANS, ANDAS RECTED By THE ENGNEE
3. ARRAGGE TRAFFIC Control devices in accordance wit traffic control
 FLLATER SAFET SLOPE AT ALL DROP-OFFS GREATER THAN 2 ".
 ON THE TRAFFIC CONTROL TYPCCLL LEETTONS. PRERFRRM BASE REPAIR LOCATONS AS DRECTED BY THE ENGMEER.

Phase II: Pavement widenng south bound Lanes at lewis mountan road.

 ${ }^{(2.3)-23}$
2. INSTALL BMP AND EROSION CONTROL DEVCEE AS SHOWN ON PLANS AND AS ted by THE ENGINEE
 TRAAFICL:AT THE END O F EACH WORK DAY CONTRACTORS SHALLP PLACE S $3: 1$ IO TRAFHC.AT HHE END OF EACH WORK DAY, CONTRACTOR SHALL
4. Construuct paralle doan inac stu ctures, pavement wienncg, and SECTIONS. PERFORMM BASE REPARAR AT LOCATIONS AS DIRECTED BYT THE ENGNEER.
5. PLACE P ERMANENT EROSIIN CONTROL MEASURES.
6. REMOVE TRAFFIC CONTROL DEVICES FROM THIS PHASE.

PHASE 2: 을LLAY THE FOLLOWNG ITTERSECTONS:

1. PLACE ALL AdVaNceD WARNNNG SIINS, Traffic controo devices, work ZONE PAVEMEN MARKNGSAND SINS IN ACCOKDANE WTH TMUTC,

2. INSTALL BMP AND EROSION CONTROL DEVMCES AS SHOWN ON PLANS, ANO AS
DRECTED BY THE ENGNEER.

3. PLACE TEMPOOAARY TABS I I LINE WTH PRROOSSED CENTERLINE STRPRMC

SIGNNG AND PAVEMENT MARKNG LAYOUTS.
open all lanes To trafflc
erform final clean up in completed construction area. remove all REMANNG TEMPORARY EROSION CO
WHEN DRECTEO B THE ENGINERR.

TCP TYPICAL SECTION PHASE $1 F$ RM 1826 AT OSO CREER RD- - RM 1826 -4 STA $271+00.00$ TO STA $284+00.00$

TCP TYPICAL SECTION PHASE 2

The Barricade and Construction Standard Sheets (BC sheets) are intended to show typical examples for placement of temporory traffic control
devices, construction pavement markings, and typical work zone signs. The information contained in these sheets meet or exceed the requirements shown in the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD)
2. The development and design of the Traffic Control PIon (TCP) is the responsibility of the Engineer.
3. The Contractor may propose changes to the TCP that ore signed and sealed by a licensed professional engineer for approval. The Engineer may develop, and seal Contractor proposed changes.
4. The Contractor is responsible for installing and maintaining the traffic control devices as shown in the plans. The Contractor may not move or change
the approximate location of any device without the approval of the Engineer.
5. Geometric design of lane shifts and detours should, when possible, meet the applicable design oriteria contained in manuals such os the Amer ican
Association of State Highway and Transportation Officials (AASHTO) "A Policy on Ceometric Design of Highways and Streets," the T×DOT "Roadway Design manual" or engineering judgment.
6. When projects obut, the Engineer (s) may omit the END ROAD WORK, TRAFFIC FINES DOUBLE, and other advance warning signs if the signing would be redundant and the work oreas appear continuous to the motor ists. If the adjacent project is completed first, the contractor shall erect the
necessary worning signs os shown on these sheets, the TCP sheets or necessory worning signs os shown on these sheets, the TCP sheets or as
directed by the Engineer. The BEGIN ROAD WORK NEXT X MILES sign shall be revised to show appropriate work zone distance.
7. The Engineer may require duplicate warning signs on the median side of divided highways wher
justify the signing.
8. All signs shall be constructed in accordance with the details found in the "Standard Highway Sign Designs for Texas," latest edition. Sign details not shown in this manual shall be shown in the plans or the Engineer shall provide a detail to the Contractor before the sign is manufactured.
9. The temporary traffic control devices shown in the illustrations of the BC sheets ore examples. As necessary, the Engineer will determine the most appropriate traffic control devices to be used
10. Where highway construction or maintenance work is being undertaken, other than mobile operations os defined by the Texas Manual on Uniform Traffic Control Devices, CSJ limit signs are reauired. CSJ limit signs are shown On BC (2). The OBEY WARNING SIGNS STATE LAW sign, STAY ALERT TALK OR TEX
LATER ond the WORK ZONE TRAFFIC FINES DOUBLE sign with PIoque shal। be LATER and the WORK ZONE TRAFFIC FINES DOUBLE sign with plaque shall be
erected in odvoce of the CSJ !imits. The BEGIN ROAD WORK NEXT X MILES, erected in advonce of the CSJ limits. The BEGIN ROAD WORK NEXT X MILES,
CONTRACTOR and END ROAD WORK signs shall be erected ot or near the CSJ limits. For mobile operations, CSJ limit signs are not required.
11. Traffic control devices should be in place only while work is actually in progress or a definite need exists.
12. The Engineer has the final decision on the location of all traffic control devices.
13. Inactive equipment and work vehicles, including workers' private vehicles must be parked oway from trovel lanes. They should be as close to the or os opproved by the Engineer.

WORKER SAFETY NOTES:

Workers on foot who ore exposed to traffic or to construction equipment within the right-of-woy shall weor high-visibility safety apporel meeting
the requirements of ISEA "American National Standard for High-visibility the requirements of ISEA "American National Standard for High-Visibility
Apparel," or equivalent revisions, and labeled as ANSI $107-2004$ standord performance for Class 2 or 3 risk, exposure. Closs 3 garments should be performance for high traffic volume work oreas or night time work.
2. Except in emergency situotions, flagger stations shall be illuminated when flagging is used at night

COMPLIANT WORKZONE TRAFFIC CONTROL DEVICES

- Only pre-qualified products shall be used. The "Compliant Work Zone Traffic Control Dev
and their sources.

2. Work zone traffic control devices shall be compliant with the Manual for Assessing safety Hordwore (MASH).

The docl dOCUMENTS BELOW CAN BE FOUND ON-LINE AT http://www.txdot.gov
COMPLIANT WORK ZONE TRAFFIC CONTROL DEVICES LIST (CWZTCD)
DEPARTMENTAL MATERIAL SPECIFICATIONS (DMS)
MATERIAL PRODUCER LIST (MPL)
ROADWAY DESIGN MANUAL - SEE "MANUALS (ONLINE MANUALS)"
STANDARD HIGHWAY SIGN DESIGNS FOR TEXAS (SHSD)
TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (TMUTCD)
TRAFFIC ENGINEERING STANDARD SHEETS

BC (1)-21

\# Moy be mounted on bock of "ROAD WORK AHEAD" (CW2O-10) sign with opprovol of Engineer.
(See note 2 del low)
The typical minimum signing on a crossrood opproch should be a "ROAD WORK AHEAD" (CW2O-10) sign ond a
($620-2)$
 "Typicol Construction worring sign size ond Spocing"). See the "Stondord Highwoy Sion Designs for
Texos" monual for sion teto

 AHEAD, LOOSE CRAVEL, or other oppropr iote signs. When oodit ionol sions are reauired, these signs wil
be consi dered port of the min imm reauirements. The Engineer/ Inspector will determine the proper

 motor ists of the length of construct ion in ei ther direct ion
will determine whether o roodwy is
is considered nigh volume.
WORK areas in multiple locations within csu limits

CSJ limits at t-intersection
The Engineer will determine the types ond locotion of ony odditionol troffic control devices,
such os of fogger ond occompony ing sions, or other sions, thot should be used when work is such os oflogger ond occompony ing si ins., or
being performed ot or neor on intersection.
If construction closes the rood ot o T -intersection, the Controctor shal) ploce the "Contractor
NAME" ($620-6 \mathrm{~T}$) sign benind the Type 3 Borr icoces for the rood closure (see BC(10) ol sol .

TYPICAL APPLICATION OF WORK ZONE SPEED LIMIT SIGNS
Work zone speed limits sholl be regulotory, estoblished in occordonce with the "Procedures for Estoblishing Speed Zones, "
and approved by the Texas Tronsportotion Cormission, or by City Ordinonce when within Incorporated City Limits.
Reduced speeds should only be posted in the vicinity

of work activity and not throughout the entire project. Regulatory work zone speed signs (R2-1) shall be removed or covered during periods when they ore not needed.

GUIDANCE FOR USE:
LONG/INTERMEDIATE TERM WORK ZONE SPEED LIMITS
This type of work zone speed limit should be included on the design of the traffic control plans when restricted geometrics with a lower design
speed are present in the work zone ond modificotion of the geometrics to speed ore present in the work zone ond noter
a higher design speed is not feosible.

Long/Intermediate Term Work Zone Speed Limit signs, when opproved os described obove, should be posted ond visible to the motor ist when work octivity is present. above, stivit be posted ond visible to the motor ist when work activity is preat
Work octivity may also be defined as a change in the roodway that requires a reduced speed for motor ists to sofe ly negotiote the work orea, including:
a) rough road or domaged povement surface
a) rough rood or domaged povement surf foce
b) substantial alteration of roodway geometrics (diversions)
c) Constr
e) width
f) other conditions readily opporent to the driver

As long os ony of these conditions exist, the work zone speed ।imit signs
should remain in

SHORT TERM WORK ZONE SPEED LIMITS
This type of work zone speed limit may be included on the design of
the troffic control plons when workers or equipment ore not behind concrete borrier, when work octivity is within 10 feet of the troveled woy or octually in the troveled woy.

Short Term Work Zone Speed Limit signs should be posted ond visible to the motorists only when work activity is present. When work activity is not present, signs shall be removed or covered.
(See Removing or Covering on BC(4)).

gENERAL NOTES

1. Regulatory work zone speed limits should be used only for sections of construction - Regulatory wherk zone spend imits should be used on
projects where speed control is of major importonce.
2. Regulatory work zone speed limit signs shall be placed on supports at a 7 foot minimum mounting height.
3. Speed zone signs ore illustroted for one direction of trovel and are normally posted for each direction of trovel.
4. Frequency of work zone speed limit signs should be:

$$
\begin{array}{ll}
40 \mathrm{moh} \text { and greater } & 0.2 \text { to } 2 \mathrm{miles} \\
35 \mathrm{mph} \text { ond less } & 0.2 \text { to } 1 \mathrm{mile}
\end{array}
$$

5. Regulatory speed limit signs shall have black legend and border on a white reflective bockground (See "Reflective Sheeting" on BC(4)).
 "WORK ZONE"(G2O-50P) ploque ond the "SPEED LIMIT" (R2-1) sig
directly, but sholl be considered subsidiory to I Item 502.
6. Turning signs from view, laying signs over or down will not be allowed, unless os
otherwise noted minder "RENOVING OR COVERING" on BC (4).
B. Techniques that may help reduce traffic speeds include but are not I imited to: A. Low enforcement.
A. Flogger stotioned next to sign,
C. Portoble chongeoble messoge sign (PCMS),
D. Low-power (drone) rodor tronsmitter
E. Speed monitor trailers or signs.
7. Speeds shown on details above are for illustration only.
for each project

$\underset{\substack{\text { Trafflc } \\ \text { Stafty } \\ \text { Staisiond } \\ \text { tandard }}}{ }$
barricade and construction WORK ZONE SPEED LIMIT
8. For more specific guidance concerning the type of work, work zone
conditions ond foctors impacting conditions ond factors impocting all owoble regulatory construct
zone reduction see TxDOT form 1204 in the TxDOT e-form system.

typical minimum clearances for long term and intermediate term signs * When placing skid supports on unlevel ground, the leg post lengths must be adjusted so the sign appeors straight and plumb. Objects shall NOT be placed under skids as a means of leveling. * * When plaques ore ploced on dual-leg supports, they should be ottoched to the upright nearest the trovel lane. Supplemental plaques (advisory or distance) should not cover the surface of the parent sign.									

vood sign posts shall not de spliced

Ine types of sign supports, sign mount ing neight, the size of signs, ond the type of sign substrotes con vory
 egord to croshwor thiness
a. ona
Leng
term stat ionary
o. Long- -term Stot ionary - work thot occupies o locot ion more thon 3 doys.
b. Internedioneterm tot ionory - work thot occcupies o locot ion more thon one doyl ight per iod up to 3 doys, or night time work lost ing
more thon one hour.
c. Short -term stotionory - doyt ime work thot occupies olocotion for more thon 1 hour in a single doylight per iod.

Spl icing embedded per foroted sauore metal tubing in order to extend post
ne ight will only de ol owed when the spl ice is mode us ing four bolts, two

STOP/SLOW PADDLES

 2. STOP/SLOW podales sholl De retroref lector ized when used ot . STOP/SLOW podales moy be oftoched to o stoff with o minimum
length of 6^{\prime}, to the bot om of the sign. 4. Any lights incorporoted into the stop or stow podale foces
sholl only be os specificol IV described in Sect ion 6 . 03
Hond Signol ing Devices in the Twurco.

$\longleftarrow 24 " \longrightarrow$

SHEETING REQUIREMENTS (WHEN USED AT NIGHT)		
USAGE	COLOR	SIGN FACE MATERIAL
ACKGROUND	RED	TYPE B OR C SHEETING
BACKGROUND	ORANGE	TYPE $\mathrm{Brac}_{\text {O }}$ OR C_{5} SHEETING
LEGEND \& BoRDER	WHITE	TYPE B OR C SHEETING
LEGEND \& BoRDER	BLACK	IC NON-REFLECTIVE

CONTRACTOR REQUIREMENTS FOR MAINTAINING PERMANENT SIGNS WITHIN THE PROJECT LIMITS
Permonent signs ore used to give not ice of troffic lows or regulotions, coll
ottent ion to condit ions thot ore potent iol ly hozzordous to troffic operot ions,

 Cul turol informotion. Dri ivers proceeding, through a work zone need the some,
f not detter route guidonce os normol ly instol led on o roodwoy without construction. Mhen permonent regul lotory or worn ing sions conflict with work zone condit ions,
remove or cover the permonent signs unt il the permment sign mesosoge motches

When exist ing pernonent sions ore moved ond relocoted due to construction purposes, they sholl De visible to motor ists ot oll tines.
If existing signs ore to pe relocoted on the ir or iginol suports, they sholl be
 nol meet the required mount ing neights show on the BC Sheets or the swo
tondords. This work should be poid for under the oopropr iote poy item for Stondords. This work should
relocot ing exi isting signs.
If permonent si gns ore to be removed ond relocoted using tempor ory supor ts,
the controctor sholl use croshwor thy supporats os shown on the TLRS stondord sheets or the CWICCD i ist. The signs sholl meet the required nount ing heights shown on the BC, or the sMO stondord sheets dur ing constryction. This work
should be poid for under the oporoor iote pay item for relocoting existing sions. Any sign or troffic control device thot is struck or damoged by the Controctor or nis/her construction equipment shall be repoloced os soon os possible by the
Controctor to ensure proper guidonce for the motor ists. This will be sussidiory Controctor to
to I tem 502.
 will be by bolts ond nuts
or screws. Use TxDOT s or
monufocturer's s recommended monuffocturer's recormended
procedures for ottoching sig
ons procedures for ottaching sig
substrates to other types of
sign suppor ts

Nails shall NOT
be allowed.
Each sign
sholl be ot toched
directly to the sign
support. Multiple
signs shall not be
joined or spliced by
ony meons. Wood
supports shall not be
extended or repoired
by splicing or
other meons.

d. Short, duration - work that occupies o locotion wo to 1 hour.
e. Mooi ile -work thot moves cont inuously or intermitently (stopping for wo to opproximotely 15 minutes)

SICN MoUNTING HELIGH

oppropr iote Long- term/Intermediote sign hei ight.

IZE OF SICNS

sicn substrates
 Mesh" fyepe moteriols ore Not on opprover sion substrote, regord less of the tiontress of the weove.
 centers. The Engineer moy ooporove other methoos of sol ic ing the sion foce.
 White sheet ing, meet ing the requirenents of oivs-8300 Type A, sholl be used for signs with o white bockground.
. Oronge sheetis, meet ing the requirens of SIGN LETTERS
 REMOVING or COVERING
When sign messoges moy be confusing or do not opply, the signs sholl be removed or completely covered.
 intersect ions where the sign moy be seen from opprooching troffic.

 . Durt tope or other oones ive moter iel shiol Not be offixed to a sign foce.
Signs ond onchor stuos shol 1 be removed ond holes bockfilled upon completion of work.
SIGN SUPPORT WEIGHTS

constont we iont,
Rock, concrent, steel or or other sol id objects sholl not be permitted
for

flags on signs

baRricade and construction TEMPORARY SICN NOTES

BC (4) -21

	bc-21.dgn	Tx00T Cer Tx00\% [m:			: Tx007
	Noverner 2002	cowr		\%os	momar
9-07		0914	33	097, ETC.	RM 1826
	${ }_{\text {8-21 }}^{8-14}$	${ }_{0}$ oist		cownr	
		AUS		TRAVIS \& HAYS	33

 portable changeable message signs
The Engineer/Inspect tor sholl opprove oll messoges used on por toble Chongeoble messoges sings (PCCUS)
Messoges on PCus should contai

 messoge should convey o singe thought, and must de understooc by
iself.
Use the word "ExII" to refer to on exit ramp on o freewoy; i.e., 4. Use the word "ExIT" or refer to on exitr 5. Alwoys wise. the route or interstorme "desigignotion (IIH, US, SH, FM 6. olong, with the number when referr ing to or roodwoy.

 Keeping two lines of the messoge the some ond chonging the third line

1. Do not ue the word "oonge" in messoe.
2. Do not disploy the messoge "LANES SHIFT LEFT" or "LANES SHIFI RIGHT"

 Pcus hos mol functione.
bors is oppropri iote.

WORD OR PHRASE	abbreviation	MORD OR PHRASE	abbeviation
Access Rood	ACCS RO	Mojor	MAJ
Alternote		Miles	
Averue	${ }^{\text {ave }}$	Miles Per Hour	MPH
Best Route	BEST RTE		MNP
Boulevard	BLVO	Mondoy	MON
Bridge	${ }_{\text {Broc }}^{\text {CaNT }}$	$\frac{\text { Normol }}{\text { North }}$	Nosm
Center	CTR	Nor thbound	ute)
Construct ion	Const ahd	Parking	Pking
${ }_{\text {Aneod }}$ Crossinc		Rood	
Cresting		$\frac{\text { Rioght Lone }}{\text { Soturcoy }}$	${ }_{\text {RT L }}^{\text {LN }}$
Do Not	Dont	${ }^{\text {Service }}$	$\frac{\text { SERV }}{}$ So
East		Shoulder	SHLDR
Eostbound	${ }_{\text {(route) } \mathrm{E}}^{\text {EuFR }}$	Slippery	
Emergency Venicle	EMER VEH	$\frac{\text { Sout }}{\text { Southound }}$	(route)
Entronce, Enter	ENT	Speed	
Express Lone	ExP LN	Street	
Expresswoy	${ }_{\text {expmy }}$	Sundoy	SuN
xxxx reet	XxxX FT	Telephone	HONE
Fog Aheod	${ }_{\text {rec }}$	Temporary	TEMP
Freewoy	FRMy, fry	Thurssoy	
Freewoy Blocked Fridoy		To Domitom	${ }^{\text {To O OMW }}$
Hozorcous Oriving	haz driving	Iroffic Trovelers	
Hozor dous Moter io		-	
High-Occuponcy	Hov	Time Minut	TIME MIN
venicle	HWY	Upper Level	UPR LEVEL
$\xrightarrow{\text { Highwoy }}$ Hour (s)		venicles (s)	VEH, VEHS
Informotion		Horning	WARN
It is	ITS	Heanescoy	WED
Junction	${ }^{\text {Jct }}$	-	
Left	LT	ound	
Left Lone	LFT LT	Wet Poveme	WET PVI
Lone closed	LN CLOSED	Will Not	
Lover Level	Ledint		
Roodway designation \# IH-number, US-number, SH-number, FM-n			

RECOMMENDED PHASES AND FORMATS FOR PCMS MESSAGES DURING ROADWORK ACTIVITIES The Engineer may approve other messages not specifically covered here.)

Phase 1: Condition Lists

Rood/Lone/Rom	Closure List	Other Condition List	
$\begin{aligned} & \hline \text { FREEWAY } \\ & \text { CLOSED } \\ & \times \text { MILE } \end{aligned}$	$\begin{aligned} & \text { FRONTAGE } \\ & \text { ROAD } \\ & \text { CLOSED } \\ & \hline \end{aligned}$	ROADWORK XXX FT	$\begin{gathered} \text { ROAD } \\ \text { REPAIRS } \\ \text { Xxxx FT } \end{gathered}$
$\begin{gathered} \text { ROAD } \\ \text { CLOSED } \\ \text { AT SH } \mathrm{SXX} \end{gathered}$	$\begin{aligned} & \text { SHOULDER } \\ & \text { CLOSEDD } \\ & \text { XxX FT } \end{aligned}$	FLAGGER $\times \times \times \times \mathrm{FT}$	$\begin{gathered} \text { LANE } \\ \text { NARROWS } \\ \text { XXXX FT } \end{gathered}$
$\begin{aligned} & \text { ROAD } \\ & \text { CLSD AT } \\ & \text { FM XxXX } \end{aligned}$	RIGHT LN XXX FT	RIGHT LN NARROWS XXXX FT	TWO-WAY TRAFFIC XX MILE
$\begin{aligned} & \text { RIGHT } \mathrm{X} \\ & \text { LANES } \\ & \text { CLOSED } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RIGHT X X X } \\ & \text { LANES } \\ & \text { OPEN } \end{aligned}$	MERGING TRAFFIC XXXX FT	$\begin{aligned} & \text { CONST } \\ & \text { TRAFFIC } \\ & \text { XXX FT } \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { CENTER } \\ & \text { LANE } \\ & \text { CLOSED } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { DAYTIME } \\ & \text { LANE } \\ & \text { CLOSURES } \end{aligned}$	$\begin{gathered} \text { LOOSE } \\ \text { CRAVEL } \\ \text { XXXX FT } \end{gathered}$	$\begin{gathered} \hline \text { UNEVEN } \\ \text { LANES } \\ \text { XXXX FT } \end{gathered}$
$\begin{gathered} \text { NIGHT } \\ \text { LANE } \\ \text { CLOSURES } \end{gathered}$	$\begin{gathered} \hline \text { I-XX SOUTH } \\ \text { EXIT } \\ \text { CLOSED } \\ \hline \end{gathered}$	DE TOUR \times M MILE	$\begin{aligned} & \text { ROUGH } \\ & \text { ROAD } \\ & \text { XXXX FT } \end{aligned}$
$\begin{aligned} & \text { VARIOUS } \\ & \text { LANES } \\ & \text { CLOSED } \end{aligned}$	$\begin{aligned} & \text { EXIT XXX } \\ & \text { CLOSED } \\ & \text { X MILE } \end{aligned}$	$\begin{aligned} & \hline \text { ROADWORK } \\ & \text { PAST } \\ & \text { SH XXXX } \end{aligned}$	$\begin{aligned} & \hline \text { ROADWORK } \\ & \text { NEXT } \\ & \text { FRI-SUN } \\ & \hline \end{aligned}$
$\begin{gathered} \hline \text { EXIT } \\ \text { CLOSED } \end{gathered}$	$\begin{aligned} & \text { RIGHT LN } \\ & \text { TO BE } \\ & \text { CLOSED } \end{aligned}$	$\begin{gathered} \quad \text { BUMP } \\ x X x \times \quad F T \end{gathered}$	$\begin{gathered} \text { US XXX } \\ \text { EXIT } \\ \times \text { MILES } \end{gathered}$
$\begin{gathered} \text { MALL } \\ \text { DRIVEWAY } \\ \text { CLOSED } \end{gathered}$	$\begin{gathered} \text { X LANES } \\ \text { CLOSED } \\ \text { TUE - FRI } \end{gathered}$	$\begin{aligned} & \text { TRAFFIC } \\ & \text { SIGNAL } \\ & X X X X F T \end{aligned}$	$\begin{aligned} & \hline \text { LANES } \\ & \text { SHIFT } \end{aligned}$

XXXXXXXX
BLVD
CLOSED

* lanes shift in phose 1 must be used with stay in lane in Phose

APPLICATION GUIDELINES

4. A Lose Listist". Phose is necessory only if a distonce or locotion

Phase 2: Possible Component Lists

* * See Applicotion Guidelines Note 6.

STAY
IN
LANE

ording alternatives

1. The words RICHIT, LEET ond ALL con be interchonged Os opoproor iote.
2. hooowrwy desi inot ions IH, US, SH, FM ond LP con be interchonged os
oporrorp iote. EAST . WEST, North ond South for oboreviotions $\mathrm{E}, \mathrm{W}, \mathrm{N}$ ond S) con

PCMS SIGNS WIthin the r.o.w. Shall be behind guardrail or
CONCRETE BARRIER OR SHALL HAVE A MINIMUM OF FOUR (4)
PLASTIC DRUMS PLACED PERPENDICULAR TO TRAFFIC ON THE
UPSTREAM SIDE OF THE PCMS, WHEN EXPOSED TO ONE DIRECTION
Of tRaFFIC. WHEN EXPOSED TO TWO WAY TRAFFIC, THE FOUR DRUM
ShOULD be placed with one drum at each of the four corners of the unit.

full matrix pcus sigus

. when symmol signs ore represented grophically on the full Motrix PCMS, they sholl only supplement the use of the stotic sign represented, ond sholl not substitute
 some size orrow. (2)
 Ref lectors con be found ot the Moter iol 1 Procuccer L ist web oddress
som on

CONCRETE TRAFFIC BARRIER (CTB)
3. Where troffic is on one side of the CTB, two (2) Borr ier Ref lectors

 4. Whe bere cis ser, seoroctes two-woy trof fic, three mounted on eoch section of CTB. The, ref lee borr ier ref lectors sholl be two yel low reflective foces si- Directionol while the ref feletors one eoch
side of the oorr ier sholl hove one yel iow ref lective foce, os shom in 5. When cetoil sobove. seor troffic trovel ing in the some direction, no barrier reflectors will be reauired on top of the crib.
6. Borr ier Reflector units sholl be yell ow or white in color to motan
 7. Mox inum spoci ief of Borr ier Ref ef ectors is for ty (40) feet.
8. Povement morkers or 8. sholl 1 Not be used os $T \mathrm{~TB}$ del l ineot ion. 9. Afecomendot ions.
10. Mi isssine

1. 10. Missing or domoged Borr ier Reflectors sholl be reploced os directed
by the Engineer. 11.Sy the Engineer.
in

BARRIER REFLECTORS FOR CONCRETE TRAFFIC BARRIER AND ATTENUATORS

Type C Worning Light or opproved substitute mounted on o
drum odiocent to the trovel woy.

$\xrightarrow{2}$
Worning ref lector moy be round or soure. Must nove o yel low
ref lect ive surf oce orea of ot leost

WARNING LIGHTS

ypea Their Intensity Floshing Worning Lights ore commonly used with drums. They ore intended to worn of or mork a potentiolly hozordous
 4. Type-C ond Type $D 360$ dearee Steody Burn Lionts ore intended to be used in o ser ies for del ineotion to supplement other trof fic control
 6. When required by the Engineer, the Contractor sholl furnish ocopy of the worning lights certificot ion. The worning light monufocturer wit

WARNING LIGHTS MOUNTED ON PLASTIC DRUMS

2. Type A floshing worning lights ore intended to worn drivers thot they ore opprooching or ore in a potentiolly hozordous orea,

WARNING REFLECTORS MOUNTED ON PLASTIC DRUMS AS A SUBSTITUTE FOR TYPE C (STEADY BURN) WARNING LIGHT 1. A worning reflector or opproved substitute moy be mounted on a plostic drum os o substitute for a Type C , steady burn worning light ot the 2. Tiscretion of the controctor unless otherwise noted in the plons. . on the CWYTCD.
3. The worning refl lector sholl hove a minimum retroref lect ive surfoce orea (one-side) of 30 squore inches.

6. $\begin{aligned} & \text { Thtoches to the side of the worning reflector focing opprooching troffic sholl hove sheet ing meet ing the color ond retroreflectivity reauirements for } \\ & \text { ows } \\ & \text { sion }\end{aligned}$ 7. When used near two-woy troffic, both sides of the worning reflector sholl de reflector ized.

arow Boards may be locoted ben ind channelizing devices in place for a shoulder
oper or merging toper, otherwise they sholi be del ineoted with four (4) chomne oper or merging toper, otherwise they shal ine del ineoted with four (4) chonnelizing
devices ploced perpendiculor to troffic on the upstream side of troffic.

- The Floshing Arrow Boord should be used for oll lone closures on multi-lone roodways, or slow
moving mointenonce or construct ion octivities on the trovel lones.
 The Eng ineerl Insector sholl choose oll oporoor iote si ions, borr icodes ond/or other troffic

4. control devices thot should be used in conj inction with the Floshing arrow

		$\because \bullet$	$\stackrel{\bullet}{\bullet}$
	OR	\bullet \ddots	$\bullet \bullet$.
4 Corner caution		aliernating diamond caution	$\bullet \cdot \bullet$
$\begin{array}{lllll} \bullet \bullet & & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & & \bullet & \bullet \\ \hline \end{array}$			$\begin{array}{lllll}\bullet & \ddots & \bullet \\ \bullet & \ddots & \ddots \\ & \bullet & \bullet\end{array}$
double arrow		RIGHT/LEFT ARROW (right orrow shown; left is similor)	RICHT/LEET SEQUENTIAL CHEVRON and (right chevron show left is simil ar) mir

5. The "caution" disploy consists of four corner lomps floshing simul toneously, or the Alternot ing

Disploy moy be used dur ing doyl ioght operotions. Vonicle, troi ter or other sui toole support.

FLASHING ARROW BOARDS
SHEET 7 OF 12

RUCK - MOUNTED ATTENUATORS

Truck-mounted ottenuotors (TMA) used on TxDOT foci itites
must meet the requirements out ined in the Monuol for
Assessing Sofety Hordwore (MWSHH).

 TMAs ore reau
in the plons.

 ARROW PANEL, REFLECTORS, WARNING LIGHTS \& ATTENUATOR

GENERAL NOTES

 if personel ore present on the ropoejet ot oll + times to mointoin the
cones in proper position ond locot ioc.
3. For short term stot ionory work zones on freewoys, drums ore the preferred
chonnel i izing device but moy be reploced in topers, tronsi i tions ond tongen heonnel izing device out moy be reploced in topers, tronsit ions ond
sect ions by vert icol pone is, two-piece cones or one-piece cones os
sections by vertico
oproved by the Eng ineer
a.
orums ond oll reloted
4. Drums ond oll reloted items sholl conply with the reauirements of the
curren version of the "Texos Monuol on uniform Troffic Control Devices"
(TMuTCD) ond the "Compl iont Work Zone Irof ic ic Control Devices List" current
(CTMTITO)
(CWTCTO).
5. Drums, boses, ond reloted moter iols sholl exhibit good worknonship and
sholl be free from object ionoole morks or defects that will of fect the ir oppeorance or serviceobility. The Controctor shors teploce ony plostic
 GENERAL DESIGN REQUIREMENTS

Pre-qual ified plastic drums shall meet the following requirements

1. Plostic crums sholl be o two-piece design; the "booty" of the drum sholl
be the top port ion ond the "bose" sholl be the bot tom.
2. De the top port tion shal the "oose" sholl be the botom. seeporotes from the bose when inmocted by o venicie trovel ing ot o speed
of 20 wpH or greoter but prevents occidentol seporat ion due to normol
hond ing ondor oir turbulence created by possing venicles.
Plostic drums sholl
be constructed of lightweight flexible, deformole moter iols. The controctor sholl Nor use metol ar arus or
single piece per ostic

3. The top of the drum shol
sholl be desi ineden to dorail hove wober built-in hondie for eosy pickup ond

4. Thenp exterterior of
5. The exter ior of the drum body sholl hove o minimum of four ol ternot ing
oronge ond white retroref lect ive circumferentiol stri pes not less thon inches nor greoter thon 8 inches in width. Any non-rer lector izee
6. idoth.
7. Boses. sholl hove o mox imum width of 36 inches, 0 moximum he ight of 4 , to de neld down whi ie seporot ing the orum body fram the dose.

Retroreflective sheeting
8. ITe str ipes used on drums shol I be constructed of sheet ing meet ing the
col or ind retroref lect ivity reau i rements of Deportmentol Moteri iols

9. The sheet ing sholl, be suitoble for use on ond sholl, oonere to the orum oonereo in-ploce ond exnibit no de lominoting, crock ing, or loss of
retrofef lect ivity other thon thot loss due to ooros ion of the sheet ing
surfoet
ballast

 surfocee moy mot exceed 12 inches.
10. Boses with built-in ool lost sholl weigh between 40 IDS. ond 50 los.
Built- in bol lost con be constructed of on integral crumb rubber bose or 0 sol id rubber bose. . Recycled truck tire sidewoll is moy pe used for bol ost on Crums opprove
for this type of pol lost on the CWYTCD a. The bol lost sholl not be neovy objects, woter, or ony moter iol thot
would become hozordous to motor ists, pedestri ions, or workers when the you la become nozor cous to
drum is
struck or oy o venicle.
11. When used in regions suscent tible to freezing, drums sholl hove droinoge
noles in the bot toms so thot woter will not col lect ond freeze becoming
o hozord when struck by o venicle.e.
12. Boil lost sholl not be ploced on top of drum

\square
$18{ }^{18} \times 24$ Sign
Moximum Sign Simension
 by Engineer
\qquad $12 " \times 24^{\prime \prime}$
verticol Ponel monnt with diogonols
sloping cown towords
trovel woy

Plywood, Aluminum or Metal sign plostic drums
signs, Chevrons, and vertical panels mounted ON PLASTIC DRUMS

Signs used on plostic orums sho
substrotes I isted on the CWITCD.
2. Chevrons ond other work zone signs with on oronge bockground
shol I be monufoctured with yype $B_{\text {Fl }}$ or Type C_{F} oronge

3. Vert tical Ponels sholl De monufoctured with oronge ond white
sheet ing meet ing the reauirements of ows -8300 Yype A or Type Sheet ing meet ing the requirements of DWS-8300 Type A or Type
Diogonl str ipes on vert icol Pone Is sholl slope down toword the intended troveled lone.

5. Signs shall De instol led using o $1 / 2$ inch bolt (nominol
ond nut, two woshers, ond one lock ing wosher for eoch ond nut, two
comnection.
6. Mounting bolts ond nuts shall be fully engoged ond
odequotely toraved. Bolts should not extend more thon $1 / 2$ ooequotery forque
. Chevrons moy be ploced on drums on the outside of curves,
on merg
ong topers or or on shifting topers. locort tons, they moy be plocece on every yrum or s.oceco not

DETECTABLE PEDESTRIAN BARRICADES 1. When exist ing pedestrin foci ilities ore disrupted, closed, or

(ADAAC) " ond should not be used os a control for pedestri ion
movenents.
5.
wornnights

8. Rg-9, R9-10, R9-11 ond Rg-110 Sidewolk Closed sions which
ore 24 inches
mide moy pe mounted on plost $i c$ drums, with

SHEET 8 OF 12
Texas Department of Transportation

baRricade and construction ChANNELIZING DEVICES
pone 1 is 36 inches or
6 inches sholl be used.
PORTABLE
VERTICAL PANELS (VPs)

GENERAL NOTES

1. Mork Zone chonnel izing devices illustroted on this sheet moy be instol led
 plocenent is uni form ond in occocrconce with the "Texos Monuol on Uni form
Iroffic Control Devices" (TMUCCD).
 por toble bose. The reauirement for self-right ing choonel
be spece if ied in the cenerol Notes or or ther pol on sheets.
 oreos where chonnel izing devices ore freavent 1 y impocted by erront venicles
or venicle re loted wind gusts moking ol i igment of the chonnel $i z i n g ~ d e v i c e s ~$ difficult to mointoin. Locotions of these devices sholl De detoit led el se-
where in the plons. These devices sholl conform to the TwuTco ond the Mhere in the plons. These devices sholl conform to the TMUTCD and the
CTompl iont Work Zone Troff ic Control Devices List "(CWITCD).
 donoged, norref lect ive, foded, or broken devi ces ond Doses os reauired by
the Engineer 1 Inspector. The Controctor sholl 1 be reauired to mointo in proper
2. devi ie spocing ond ol ignnent.
 Detween the oones ives, the fixece monnt obses ond the povement surf oce. Adhesi ives sholl be prepored ond oppl ied occording to the monufocturer's
 detr inentol effects to
surfoce discoloration or surf foce integr i ty. Dri iveoble boses shall not permitted on finol povement surfoces. The Eng ineer/Inspector sholl opporo
 Vp's mon be used in oost ime or ni nontrime situot ions.
They moy be used ot tye edge of shou der drop-offs ond

 Engineer/Inspector sholl refer to the Roodwoy Desi gn
Monuol for ofoditionol requirements on the use vp 's
for droo-offs. for drop-offs.
vp shnold doe mounted bock to bock if used of the edge
of cuts odiocent to two-woy two lone roocwoys. Stri ines of cuts odjocent to two-woy two lone roodwoys. Str ipes
ore to be ref lect ive oronge ond ref lect ive whi ite ond

 Where the en inh of ref lective moter iol on the verticol
ponel is 3 in inches or or greater, 0 oponel stripe of
6 inches sholl be used.

CHEVRONS

LONGITUDINAL CHANNELIZING DEvICES (LCD)
. LCOs ore croshwor thy, lightwe ight, deformoble devices thot ore highly visible, hove good torget volue ond
con be connected together. They ore not desi ined to contoin or reatirect o venicle on impoct.
2. LCDS moy be used insteod of o line of cones or drums. instal otion reauirements specific to the device, ond

Used only when shown on the CWTTCD D i ist.
4. LCOs should not be used to orovide posit
4. LCOS should not be used to provide posit ive protection for oostocles, pedestri ions or workers.
5. LCos shol 1 be supplemented wi th retroref lective del ineot ion os required for temporary borr iers
5. $\operatorname{\text {on}}$ BC(7) when ploced roughly porol lel to the trovel lones.

water ballasted systems used as barriers
Worer boll losted systems used os worr iers sholl not de used sole ty to chonnel ize rood users, but ol so to protect the

. when woter bol losted systems used os borr iers hove blunt ends exposed to trofficenet they should be ot tenuated

HOLLOW OR WATER BALLASTED SYSTEMS USED AS LONGITUDINAL CHANNELIZING DEVICES OR BARRIERS

Posted	formulo	$\begin{gathered} \text { Minimum } \\ \text { Desirable } \\ \text { Toper Lengths } \\ * * \end{gathered}$			$\|$Suggested Moximur Spocino Chonel Chof Deving izes	
		Offse + Offset 0 of set			On or	Tongent
30	$L=\frac{w s^{2}}{60}$	150	165^{\prime}	180^{\prime}	30^{\prime}	60^{\prime}
35		205^{\prime}	225'	245'	35^{\prime}	70°
40		265^{\prime}	295'	320'	40'	80°
45	L=wS	450'	495'	540°	45^{\prime}	90°
50		500'	550'	600'	50^{\prime}	100'
55		550^{\prime}	605'	660'	55'	110^{\prime}
60		600'	660'	720^{\prime}	60'	120^{\prime}
65		650^{\prime}	715.	780'	65^{\prime}	130^{\prime}
70		700^{\prime}	770'	840°	70^{\prime}	140
75		750°	825'	900'	75°	150^{\prime}
80		800^{\prime}	880'	960'	80^{\prime}	160'

SUGGESTED MAXIMUM SPACING OF CHANNELIZING DEVICES AND MINIMUM DESIRABLE TAPER LENGTHS

SHEET 9 OF 12

$\underset{\substack{\text { Thraftic } \\ \text { Sivision }}}{\substack{\text { Sis. }}}$

BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES

WORK ZONE PAVEMENT MARKINGS

GENERAL

1. The Controctor shall de responsible for mointoining work zone on The Controctor sholl be responsi ibe for mointoining work orene ond
existing povenent mork inos., in occordonce with the stondord
speci ificotions

2. Color, potterns ond dimens ions sholl be in conformonce with the
Texos Monual on Uni form Troff ic Control Devices" (TMUTCD).
3. Addit ionol suppl enentol povement morking detai is moy be found in the
plons or speci ificotions.
seci if icotions
4. Povenent mork ings sholl be instal led in occordonce with the TwUTCD
ond os shown on the plons.
5. When short term mork ings ore reauired on the plons, short term
mork ings sholl conform with the TMWTCD, the plons ond detoi is os mork ings shol I conforr wi th the TMWTCD, the
shown on the stondord Plon Sheet WZ (STPM).
6. When stondord povement morkings ore not in ploce ond the roodwoy
is opened to trof fic, Do Not PASS signs sholl 1 be erected to mork the beginning of the sections where possing is pronibited ond PASS WIITH CARE signs ot the beginning of sections where possing
is permitee.
7. All work zone povement morkings shol I De instol led in occordonce
with Item 662 , "Work Zone Povenent Mork ings."

RAISED PAVEMENT MARKERS

1. Roi sed povement morkers ore to be ploced occording to the potterns

PREFABRICATED PAVEMENT MARKINGS

1. Removobie prefoobr icoted povement morkings shall meet the requirements
2. Non-remomoble prefor icoted povement mork ings (foil bock) sholl meet
the requirenents of $\mathbf{~ O W S}$ - 8240 .

MAINTAINING WORK ZONE PAVEMENT MARKING

1. The Controctor will be responsible for mointaining work zone povement
morkings within the work limits.
2. Work zone povenent mork ings sholl be inspected in occor donce with
the frequency ond repor t ing reauir rements of work zone troff fic control device inspections os required by Form 599.
3. The morkings should provide o visible reference for o minimum
distorce of 300 feet dur ing normal doy iont nours ond 160 feet

Morkings foing to by roodwoy geemetrics.
Morkings foli ing to meet this criter io with in the first 30 oys ofter
DIOcement shol 1 be repococed of the expense of the controctor os per
Specificiction 1 ten 66 .

REMOVAL OF PAVEMENT MARKINGS

 - Povenent mork ings thot ore no longer ooplicobie, could create confusionor direct o motor ist toword or into the closed portion of the roodwoy roll
sholl be remover or or obl iteroted before the rooawoy is opened to troffic. 2. The ooove sholl not ooply to defours in ploce for less thon three
doys,
where filoggers ond/or suff icient choonel $i z$ ing devices ore used doys, where flogegers ond/or suff icie ient chonnel iz
in 1 ieu of morki ings to out ine the detour route.
3. Povenent mork ings sholl be removed to the ful lest extent possible,
so os not to leove o discernoole morking. This sholl be by ony method
 opproved by Ixion spec ificotion
Povenent Morki inss ond Morkers".
4. The removol of povement morkings moy reauire resurfocing or seol
coot ing port ions of the rooodwoy os descri ibed in It tem 677 .
5. Subject to the oporoval of the Engineer, ony method thot proves to be
successful on o port icul or type povement may de used.
6. Blost cleaning moy be used but will not be reauired unless specifically
6. Blost cleoning moy ba
shown in the plons.
7. Over-pointing of the morkings SHaLL NOT BE permittec.
8. Removol of roised povement morkers sholl be os directed by the
9. Removol of existing povenent mork ings ond morkers will be poid for directly in occordonce with Item 677 , "EL IMINATING ExISTING PAVEMENT
MARKINGS ANO MARERSS,
unless otherwise stoted in the plons.
uros 10. Block-out mork ing tope moy be used to cover conflicting existing
mork ings for peri iods less thon two weeks when Opproved by the Engineer.

Temporary Flexible-Reflective Roodwoy Morker Tobs

> STAPLES OR NAILS SHALL NOT BE USED TO SECURE TEMPORARY FLEXIBLE-REFLECTIVE ROADWAY MARKER TABS TO THE PAVEMENT SURFACE

Tenporory flexible-ref lect ive roodway mor
sholl meet the requirenents of ows 8842 .
2. Toos detai led on this sheet ore to de inspected ond occepted by the normally required, however ot the option of the Engineer, either "A" normely reauired, however ot the iotion of the Engineer, eit her "A"
or B" be ow moy be innosed to ossure quol ity before plocenent on the
roodwo.
oomay.
A. Select five (5) or more tobs of rondom from eoch lot or shi inent Sect ion to determine speci it icoct ion conpl ionce.
B. Select five (5) toos ond perform the following test. Affix five
(5) toos ot 24 inch intervols on on osphol + tic povement in a stroight ine. Using o medium size possenger veniclee or pickup, run over the morkers with the front ond rear tires of o speed,
of 35 to 40 mi es per hour, four (4) times in each direction. of 35 to 40 mi les per hour, four (4), times in eoch direction. No
more thon one (1) out of the five 5 , ref eletive surfoces shol
be lost or di sploced os o result of this test.
3. Small design vorionces may be noted between tod monufocturers.
4. See Stondord Sneet wz (STPM) for too plocement on new povenents. See
Stondord Sheet TCP $(7-1)$ for too plocement on seal coot work.

RAISED PAVEMENT MARKERS USED AS GUIDEMARKS

1. Roi sed povement morkers used os guvidemorks shall De from the opproved
2. A11 +emorory construct ion roi sed povenent
project shoil 11
be of the some monufocturer.

surfoces.
cuidemorks shall be desi gnoted os
YELLOW - (two onner ref lective surfoces with yell 1 ow body).
wHITE - (one si lver ref lect ive surfoce with wite body).

PAVEMENT MARKERS (REFLECTORIZED)	DMS-4200			
TRAEFIC BUTTONS	DMS -4300	TRAFFIC BUTTONS MS 4300 EPOXY AND ADHESIVES DMS-6100 Bituminous adhesive for pavement markers	PERMANENT PREF ABRICATED PAVEMENT MARKINGS	DMS-8240
:---	:---			
TEMPORARY REMAVABLE, PREFABRICATED		TEMPORAR REMOVABLE, PREFABRICATED		

PAVEMENT MARKINGS TEMPORAR FLEXXBLE,
ROAOWAY MARKR TIE
A ist of prequalified reflective roised
 ponement morkings con be fo fo
web odress shown on BC (1).

Eng ineer.

EDGE \& LANE LINES FOR DIVIDED HIGHWAY
 Prefoor icoted morkings moy be substituted for reflector ized povement morkings.

LANE \& CENTER LINES FOR MULTILANE UNDIVIDED HIGHWAYS

REFLECTORIZED PAVENeNT MARKIN
Prefoor icoted morkings moy de substituted for ref lector ized povement mork ings.
TWO-WAY LEFT TURN LANE

Control Name	Published: NAD83 (2011) Coordinate Information			Measured: NAD83 (2011) Coordinate Information			Deferent (Published - Measured)		
	North	East	Elev.	North	East	Ele	North	East	Elev.
S2270215	10,055,884.00	3,068,853.24	5.68	10,055,884.00	3,068,853.24	975.68	0.00	0.00	0.00
PU03123974	10,039,806.05	3,056,455.23	977.9	10,039,806.00	3,056,455.19	977.97	0.05	0.04	0.00
17662	10,040,628.99	3,078,208.55	791.00	10,040,628.88	3,078,208.53	791.03	0.11	0.02	0.03
Notes:									
1. Published values for S2270215, according to control layout and sketches sheets for Oak Hill Parkway prepared by SAM, are based on NAD83 (2011 Adj). NAVD88 (Geoid 12A), and were constrained to during calibration.									
2. Published values for PU03123974, according to control layout and sketches sheets for RM 1826 in Hays County, prepared by H. A. Kuehlem Survey Company and signed 01/28/15, are based on NAD83 (2011 Adj), NAVD88 (Geoid 12A). The published elevation of this point was constrained to during calibration.									

Texas Department of Transportation				
$\begin{gathered} \text { RM } 1826 \\ \text { SUREY CNTROL } \\ \text { INDEX SHFFT } \end{gathered}$				
FEDERAL AID Project no. SEE COVER SHEET				SHet
				59
	State	distr		count
	texas	aus		travi
	control	section	J08	hichwar
	1754			

ALIGNMENT (RM 1826) - LEWIS MOUNTAIN RD
Element: Linear
 Elemeral Length: ${ }_{1310.40}^{527036}$

Tangent: 413.90

Chhord direction is iction: N15031.2"

ALIGNMENT (RM 1826) - ZYLE RD

Tangential Direction: $52^{\circ} 7^{\circ} 50^{\circ} \cdot 41^{\prime \prime} \mathrm{W}$
Tangential Length: 2444.83
 Tangential Length: 292.68
ALIGNMENT (RM 1826) - APPALOOSA RUN
CL-RM1826
3

Midale Ordinate. 48.63

Tangential Leng

CL-LEWIS MOUNTAIN

 Tangential Len

CL-APPALOOSA RUN

angential Length: ${ }^{200}{ }^{20}$

Tangential Length:
Element: Circular

Tangent:
Chord:
4.
189

CL-RM1826_2_DRWY2

CL-RM1826_2_DRWY

 Tangential Direction: ${ }^{\text {Nata }}$

Ahead Radial Direction: No1 ${ }^{\circ} 34^{\prime} 10^{\prime \prime}$ E

CL-RM1826_2_DRWY4

CL-RM1826_2_DRWY5

CL-RM1826 3 DRWY6

3056511.8783 E
notes.

1. THE HORIZONTAL DATA ISA GUIDE AND

2. TRAVIS COUNTY ALIGNMENTS: ALL BEARIGGS ZONE ((20203). NORTH AMERICCND DATUM OE 2OME ((4203), NOR
1983 (2011 AD).

ALIGNMENT (RM 1826) - OSO CREEK RD
-

Length: 1623.28
$\begin{array}{ll}\text { Tangent: } & 981.54 \\ \text { Chord } \\ \text { Midd } \\ \text { Hider }\end{array}$

ALIGNMENT (RM 1826) - WOODLAND DR / SHELF ROCK RD, TOWERING CEDAR DR L-RM1826_5

Tangent:
Chord:
5220.89

Tangent: 506.88


```
Tangent:407.53 (1)
MMade Ordingt.:%2.05
External:43.DO.
Ahead Radial Direction: N3904'40"W
```

 Tangential Direction: $550^{\circ} 55^{\prime}$ ' $^{\prime \prime}$

CL-OSO CREEK RD

CL-WOODLAND DR

Tangential Length:

CL-TOWERING CEDAR

CL-RM1826_4_DRWY7

CL-RM1826_4_DRWY8

 Tangential Directio | 545301 |
| :--- |
| |
| 50.00 |

notes
 IN ACCORDANCE WITH THE TYPICAL SECTION.
2. COORRDINATES AND DIITANCES ARE SURFACE COORDINATES APPLYNG A SUOFEACE ASUSTMENT FACTOR OF F 1.000008 ITO TEXAS STANTE GRID COORORDDATES NADB3 (2011) EPOCH: 20

COMMUNICATIONS
VERIZON (TELE)
AT\&T (TELE) AT\&T (TELE)
FRONTIER (TELE) FRONTIER (FOLDUUCT)
FRUN SUDDENLINK (FO/DUCT)
ATS (FODCT) AT\&T (FOIDUCT)
SPECTRUM (CATV)

ELECTRIC/POWER PEDERNALES ELEC COOP QL" " \qquad PRIVATE

GAS / PETROLEUM
TEXAS GAS SERVICE
ENTERPRISE ENTERPRISE
KINDER MORGAN PHILLIPS 66
POTABLE WATER
WEST TRAVIS COUNTY PUA ${ }^{Q L}$ "B"
F AUSTIN
OVERHEAD UTLLTY
overhead lines
QL "B"

QL "C"/QL "D" OH \qquad
\qquad

THESE NOTES APPLY TO ALL ROADWAY PLAN SHEETS

1. HORIZONTAL DATA \& PROFILE GRADE IS A GUIDE FOR DESIGN VERIFICATION PURPOSES ONLY. CONSTRUCT THE

PAVEMENT IN ACCORDANCE WTH THE TYPICAL SECTION

5. THE
\qquad
‘
,
TRAVIS OF σ IN DISTANCE FROM UTLITIES.

8. FAATY COUNTY TOPO - COORDINATES AND DISTANCES ARE SURFACE COORDINATES BASED ON A PROJJCT
S ADUSTMENT FACTOR OF 1.000008 TO STATE PLANE

REPAIR WITH MILLING

BRIDGE APPROACH/DEPARTURE TRANSITION

BRIDGE APPROACH/DEPARTURE TRANSITION match exisiting arider occk

BRIDGE APPROACH MILLING NOTES
$T=$ OVERLAY/INLAY THICKNESS (IN)
$=$ DEPTH OF MILING ON BRIDGE
TAPER LENGTH = 100 FT PER 1 IN OF T OR Y
ENLINEER SHOULD INCLUDE WORK TO ADJUST MBGG TD
MEET STANDARD HEICHT. ADJUSTMENT TO MBGF WIL BE
PIL MEET STANDARD HEICHTT ADJUSTMENT
PAID USING APPROPRIATE BID ITEMS.
Engineer must include work to adjust mowstrip to
ELIMINALE Ponding.

flexible pavement DETAILS
flexpave (3)-22 (aus) Ox00I 2023

y b may be blade laid.
must be paver lajo.
Tr
LL ACP PER Item 3076
FOLLOWING WORK IS SUBS IDIARY:
TACK ALL ACP SURFACES And layers

GENERAL NOTES

PAYMENT FOR THIS WORK IS SUBSIDIARY TO PREP R.O.W. REMOVE ALL DEAD TREES, DEAD BRUSH, AND DEAD MULTI-TRUNKED TREES WITHIN THE
R. O. T. RES. SHRES, OR MUTI-TRUNKE RRES THAT DIE DURING CONSTRUCTION Shall be removeo prior to completion of the projett.
2. USE Work methoos in accordance with ansi a 300 Standards and item 752
3. flatling equipment is not allowed on oak trees.
4. repair damage to private fences and/or private property.
5. Perform tree pruning only within the r.o.w. no cuts shall be made outside
6. PERFORM TREE PRUNING PER DETAIL FOR ENTIRE R.O. W. AREA WITHIN PROJECT LIMITS.
THE ENGINER MAY DEFINE AREAS TO RESTRICT TREE PRUNING.
7. REVIEW EDIC SHEETS FOR AREAS TO BE AVVIDED DUE TO Environmental reasons or
ADOTITINAL NOTES THAT PEETAIN TO TRE PRUNING.

9. no trimming of the vegetation that contains an active nest for migratory
10. THE TRIMMING OR CUTTING OF RED OAK AND LIVE OAK SPECIES FOR PURPOSES OTHER THAN PROTECTING PUBLIC SAFETY IS ONLY PERMITTED BETWEE
31 ST AND PROHIBITED BETWEEN FEBRUARY IST AND JUNE 30 He
帾 pona cus mit come ALL PRUNING CUTS MUST BE TREATED IMMEDIATELY WITH COMMERCIAL PRUNING PAIN
TO SEAL THE EXPOSED SURF SCE FROM CONTAMINAT ION. USE OF AEROSOL CAN IS THE
 BY TRIMMING, CONSTRUCTION OR ACC IDENT, SHALL BE TREATED IMMED IATELY WITH
COMMECIIL PRUNIN PAINT TO SEA THE SURAEE FRO CONAMINAT TON THE TXDO INSPECTOR MAY CONOUCT UNANNOUNCED INSPECTIONS TO ENSURE COMPLIANCE.
12. IF MORE THAN 25\% OF THE TREE CANOPY WILL BE REMOVED CONTACT THE TXDOT ABORIST
OR INSPECTOR FOR APPROVAL PRIOR TO PROCEEDING.

CONDITION - 1 THIN HMAC SURFACES OR HMAC OVERLAY WITH THICKNESS OF 2.5" OR LESS

CONDITION - 3
NEW OR RECONSTRUCTED PAVEMENT HMAC THICKNESS 2.5" TO 5"

CONDITION - 2 OVERLAY OF EXISTING PAVEMENT HMAC THICKNESS 2.5" TO 5

*** SEE TYPICAL SECTION FOR ROADSIDE DETAILS

CONDITION - 4

NEW OR RECONSTRUCTED PAVEMENT HMAC THICKNESS 5" OR GREATER

1. UNLESS OTHERWISE SHOWN IN THE PLANS, A VERTICAL EDG
 THAN 2.5'.". Pavement and
2. FOR F FIRTHER INFORMATION REGARDING THE ROODSIDE AND
PAVEMENT DETALLS, SEE TYPICAL SECTIONS.
3. PAYMENT FOR TAPERED EDGE WILL BE IN ACCORDANCE WITH
4. The stope of the tapered edge shall be 1.75H:IV or
5. THE TAPERED EDGE SHALL BE PRODUCED BY USE OF A SCREED
ATTACHMENT CAPABLE OF PRODUCING A SMOOTH COMPACTED
 SURFACE: ADDITIONAL CO
SCREED is NOT REQUIRED.

Design
Ditision
Standard

TAPERED EDGE DETAILS HMAC PAVEMENT

TE (HMAC)-11

(1)Tx00	entrocl 1. dgn	On: Txod			
	Jonuery 2011	cowt		- 0	Amax
		0914	33	097, ETC.	RM 1826
		Oist		cownr	Suter mo

WOODLAND DR / SHELF ROCK \& TOWERING CEDAR DR

DUR							
${ }^{5-M 1 N}$		${ }_{\text {SteAR }} 8.11$	9.66	${ }_{17} 11.90$	13.70	${ }_{100}^{15.50}$	${ }^{500.60}$
${ }^{15-M / N}$	4.22	$\stackrel{5.41}{5.42}$	${ }^{6.44}$	7.90	9.06	10.30	13.60 67
60-MIN	1.96 1.21	2.52 158 1.58	3.00 1.02	3.69 24 1.4	4.23	4.83 3 3	6.57 4.80
${ }_{3}^{2-H R}$	1.21 0.90	1.1 .88 1.18	1.92 1.45	2.43 1.87	2.8.24	3.35 2.67	${ }_{3}^{4.80}$
6-HR	0.53	0.70	0.88	1.15	1.39	1.68	2.54
${ }_{2}^{12-H R}$	${ }_{0}^{0.30}$	${ }_{0}^{0.46}$	${ }_{0}^{0.59}$	0.66 0.38	${ }^{0.80} 0$	${ }_{0}^{0.95}$	${ }_{0}^{1.84}$

BASIIID	METHOD	DRAINAGE AREA		WEIGHTED	HYOROLOGIC SUMMARY TABLE		RAINFALL INTENSITY (INHR)							PEAK DISCHARGE (CFS)						
	$\xrightarrow[\text { USED }]{\text { RATINAL }}$	${ }_{\text {ACRES }}{ }_{228.22}$	SOMI 0.357	${ }_{0.39}$	M1N 48	HRS 0.80	${ }_{2.37}^{12}$	${ }_{3}^{15}$	${ }^{110}$					${ }_{2} 209$	${ }_{26}^{267}$		389			
${ }^{\text {d }}$ 5-1E	RATIONAL	30.95	0.048	0.36	14	0.23	4.38	5.62	6.69	8.22	9.43	10.74	14.12	48	62	74	91	104	119	156
D5-1W	RATIONAL	14.59	0.023	0.51	22	0.37	${ }^{3} .65$	4.67	5.55	6.79	7.78			27	35	41	50	58	66	
D5-2	${ }_{\text {RATIONAL }}^{\text {Rational }}$					0.17		${ }^{6.46}$		9.49	10.90				18	22	27	31		
D5.3	${ }_{\text {RATIOONAL }}^{\text {RATINAL }}$	293.61 2.72	0.459 0.004	0.36 0.52	13 10 10	0.55 0.17	2.89 5.02	3.69	7.78	9.49	${ }^{6.10} 10$			${ }^{303}$		${ }_{4}^{460}$	13	${ }_{15}^{641}$	${ }_{18}^{726}$	${ }^{970}$
D5.5	RATIONAL		0.002	0.65	10	0.17	5.02	6.46	7.70					4	5	6	7	8	9	
D5-6	RATIONAL	11.55	0.018	0.32	21	0.35	${ }_{3.73}$	4.77		6.95	7.96	9.04	12.97	14	18	${ }_{21}$	26	30	34	

(2) DITCH AREA D 5 -1 INCLUDES AREAS OF 30.95 AC AND 14.59 AC FROM D 5 -1E \& D 5-1W, RESPECTVELY AND AN ADDITIONAL AREA OF 182.68 AC FOR A TOTAL AREA OF 228.22 AC.

NOTES:
CULVERT 1 IS LOCATED In travis countr.
 DRAINAGE AREA BOUNDARY WAS DELINEATED USING THE TNRII 2021 LIDAR.
. ALL ELEVATIONS BASED on the NaVD88 VERTICA DATUM.
5. THE PROJECT FLOWS WERE CALCULATED USIIGG RATIONAL METHOD AND COMPARED TO SCS HYDROGRAP
6. TIME OF CONCENTRATION FOUND USING TR-55 METHODOLOGY ; LAG $=0.6 T C$.
. NOAA ATLAS 14 PRECIPITATION DATA WAS USED FOR THE 24-HR RAINFALL DEPTH
8. THE DESIISN ANUUAL RECURRENCE INTERVAL IS THE 10-YR EVENT WITH A CHECK FLOOD OF 100-YR EVEN

references
TXDOT'S HYDRAULIC DESIGN MANUAL (SEPTEMBER 2019)
2. TOPOGRAPHIC DATA SOURCE. TNRIS 2021 LIDAR AND LOCAL SURVE

Texas Department of Transportation			
RM 1826 DRAINAGE AREA MAP CULVERT 1			
SHEET 5 OF 8			
coor	${ }_{\text {ser }}^{\text {ser }}$	${ }_{\text {¢ }}{ }^{\text {Jog }}$	
0914	33	097, ETC.	RM 1826
Dist		${ }_{\text {cowr }}^{\text {come }}$	Stuter oo.

nOTES:
. THE CULVERT 2 STREAM CROSSES RM 1226 AND IS DESIGNATED AS SPECIAL FLOOD HAZARD (SFHA)

3. THE HAYS COUNTY LOCAL FLOODPLAIN ADMINISTRATOR (FPAA WILL BE PROVIDED A COPY OF THE PLANS
.
al Elevations based on the davors vertical datum.
6. THE PROEECT FLOLSS WERE CAHCULATED USING SCS HYDROGRAPH METHOD AND COMPARED TO
7. TIME OF CONCENTRATION FOUND USING TR-55 METHODOLOGY; LAG=0.6TC.
. noAA atLas 14 PRECIPTTATION dATA WAS USED FOR THE 24-HR RAINFALL DEPTH.
9. THE DESIGN ANNUAL RECURRENCE INTERVAL IS 10-YR FOR MAINLANES, WITH A 100-YR EVENT FOR
10. HEC-HMS V. 10 WAS USED TO MODEL THE WATERSHED FOR SCS HYDROGRAPH METHOD

1. CN REDUCTION APPLIED TO WATERSHED IN ACCORDANCE WITH TXDOT HDM (SEPT. 2019 .

REFERENCES:
TXDOTS HYDRAULIC DESIGN MANUAL (SEPTEMBER 2019)
2. Topographic data source: tNRII 2021 LIDAR And Local surver

HYDROLOGIC SUMMARY TABLE - OFFSITE FLOWS																						
STATION	${ }_{\text {casind }}$	Метнод	DRAINAGE AREA		WEIGHTED CN	time of concentration		LAG TIME	RAINFALL DEPTH (IN)							PEAK DISCHARGE (CFS)						
	CULVERT	USED	ACRES	So.m.		MIN	HRS	MIN	12	15	110	125	150	1100	1500	Q2	Q5	Q10	Q25	Q50	0100	Q500
EXISTING/ PROPOSED CONDITIONS																						
514+92.99	culvert 2	$\underset{\text { HYOROGRAPH }}{\text { SCS }}$	228	0.36	71	25	0.42	15	1.06	1.35	1.61	1.98	2.26	2.57	3.39	313	521	725	1032	1276	1548	2263

Tr-55 TIME OF CONCENTRATION																							
Station		EXISTING/ PROPOSED CONDITIONS																					
	$\underset{\substack{\text { BASINN } \\ \text { CULVERTID }}}{ }$	SHEET FLOW						Shallow Concentrated flow					OPEN Chandel flow									total time	
		$\underset{\substack{\text { LENGTH } \\(F T)}}{ }$	$\begin{array}{\|l\|l\|} \hline \text { SLOPE } \\ (\text { fTTFT } \end{array}$	SURFACE DEECRIPTION		$\begin{aligned} & P_{2}\left({ }_{1}\right) \\ & ()^{2} \end{aligned}$	$\stackrel{T}{\text { (MIN) }}$	$\begin{gathered} \text { LENGTH } \\ (F T) \end{gathered}$	$\begin{gathered} \text { SLOPE } \\ (\text { (FTFT } \end{gathered}$	SURFACE DESCRIPTION		$\begin{gathered} \text { TSHALLOW } \\ (M I N) \end{gathered}$	section	$\underset{(\text { ENGTH }}{\text { (FT) }}$	$\begin{gathered} \text { SLOPE } \\ (\text { (FT/FT) } \end{gathered}$	n	$\left(A_{(T 2)}^{A}\right)$		$\stackrel{R}{(F T)}($	$\stackrel{\text { VT/S) }}{\substack{\text { (T/S) }}}$	$\underset{(M I N)}{T_{1}}$	$\tau_{(M N)}^{(M i N)}$	$\xrightarrow{\text { (MIIN) }}$
514+92.99	culvert 2	100	0.015	Short grass	0.15	4.15	10	310	0.039	unPaved	16.13	2	1	1274	0.019	0.03	9.7	18.5	0.52	4.43	5	25	15
51492.98	culver 2			short oras									2	4301	0.017	0.03	74	39.7	1.86	9.79	8		

NOTES:

2. THE CULVERT S STREAM CROSSES RM 1826 AND IS DESIGNATED AS SPECIAL FLOOD HAZARD (SFHA) ,
the tNRIS 2021 LIDAR
3. all elevations based on the navd 88 vertical datum.

THE PROJECT FLOWS WERE CALCULATED USIIG RATIONAL METHOD AND COMPARED TO SCS
TIME OF CONCENTRATION FOUND USING TR-55 METHODOLOGY ; LAG=0.6TC
7. NOAA ATLAS 14 PRECIPITATION DATA WAS USED FOR THE 24-HR RAINFALL DEPTH.
8. THE DESIIGN ANNUAL RECURREVCE INTERVAL IS THE 10-YR EVENT WITH A CHECK FLOOD OF

HEC-HMS V4. 10 WAS USED TO MODEL THE WATERSHED FOR SCS HYDROGRAPH METHOD
0. CN REDUCTION APPLIED TO WATERSHED IN ACCORDANCE WITH TXDOT HDM (SEPT. 2019)

REFERENCES:

. TXDOT'S HYORAULIC DESIGN MANUAL (SEPTEMBER 2019)
2. TOPOGRAPHIC DATA SOURCE: TNRIS 2021 LIDAR AND LOCAL SURVE

tr-5 5 TIME Of CONCENTRATION																							
EXISTNG/ PROPOSED CONDITIONS																							
	${ }_{\text {CULLERT }}^{\text {BAINT }}$	SHEET FLOW						Shallow Concentrated flow					OPEN CHANNEL FLOW									total time	
station		$\underset{(F T)}{\operatorname{LENGTH}}$	$\begin{aligned} & \text { SLOPE } \\ & (F T / F T) \end{aligned}$	SURFACE DEECRIPT		$\begin{aligned} & P_{2}, \\ & (\mathbb{N}) \end{aligned}$	$\underset{\left(\overline{M i N i N}^{\prime}\right)}{ }$	$\underset{(F T)}{\operatorname{LENGTH}}$	$\begin{gathered} \text { SLOPE } \\ (\text { (FT/FT) } \end{gathered}$	SURFACE DESCRIPTION		$\begin{gathered} \text { TSHALLOW } \\ (M I N) \end{gathered}$	section	$\underset{(F T)}{\operatorname{LENGTH}}$	$\begin{gathered} \text { SLOPE } \\ (\text { FTIFT } \end{gathered}$	n	$\left(\frac{A_{1}}{(F T 2)}\right.$		$\underset{(f T)}{R}$	$\underset{(F T / S)}{\left.v_{1}\right)}$	${ }_{\text {(Miñ }}$	$\begin{gathered} \left.\tau_{\text {MiN }}\right) \end{gathered}$	$\underset{\substack{\text { TMag } \\ \text { (MI) }}}{ }$
					nor					Tre	к		1	1964	0.019	0.03	2.2	7.4	0.3	3.05	11		
$531+35.41$	CULVERT 3	100	0.006	Light Underbrush	${ }^{0.4}$	4.15	30	1499	0.045	UNPAVED	16.13	8	2	3682	0.015	0.03	61.4	47.5	1.29	7.26	9	58	35

duration							
	2-YEAR	5-YEAR	10-YEAR	25-YEAR	50-YEAR	100-YEAR	500-YEAR
5-Mı	0.53	0.68	0.81	0.99	1.14	1.30	1.71
15-MIN	1.06	1.35	1.61	1.98	2.26	2.57	3.39
60-MIN	1.96	2.52	3.00	3.69	4.23	4.83	6.57
2-HR	2.43	3.15	3.83	4.85	5.71	6.70	9.60
3-HR	2.71	3.54	4.35	5.61	6.72	8.02	11.80
6-HR	3.18	4.20	5.24	6.87	8.34	10.10	15.20
12-HR	3.65	4.85	6.06	7.96	9.69	11.70	17.70
24-HR	4.15	5.52	6.89	9.03	10.90	13.20	19.80

NOTES:
Storm sewer line a is located in hays county
3. DRAINAGE AREA BOUNDARY WAS DELINEATED USING THE TNRIS 2021 LIDAR.

4all elevations based on the navdos vertical datum.
THE PROJECT FLOWS WERE CALCULATED USING RATONAL METHOD
6. TIME OF CONCENTRATION FOUND USING TR-55 METHODOLOGY.
. NOAA ATLAS 14 PRECIPITATION DATA WAS USED FOR THE 24-HR RAINFALL INTENSITY.

. GEOPAK DRAINAGE (2020, bentley ssio, geopak 3.1) WAS USED TO MODEL THE STORM SEWER hroraulics.

EfERENCES
TOPOGRAPHIC DATA SOURCE: TNRIS 2021 LIDAR AND LOCAL SURVEY

1. CULIERT 1 IS LOCATED IN TRAVIS COUNTY

2. ELEVATIONS REPORTED In NAVD88.

HYDRologic summary table - OfFSITE flows																					
STATION	${ }^{\text {basinf }}$	МЕтНод	drainage area		WEIGHTED C	time of concentration		RAINFALL INTENSITY (INHR)							PEAK DISCHARGE (CFS)						
station	CULVERT ID	USED	ACRES	So. MI.		MIN	HRS	12	15	110	125	150	1100	1500	2	Q5	Q10	Q25	Q 0	Q100	0500
EXISTING/ PROPOSED CONDITIONS																					
$248+96.56$	culvert 1	RATIONAL	12	0.02	0.36	13	0.22	4.54	5.85	6.98	8.59	9.86	11.18	14.78	20	25	30	37	43	48	64

HYDRAULIC DATA - ExIsting c																					comments
Station	$\underbrace{\text { BAIN }}_{\text {CULVERTI }}$	STREAM	frequency	OUTLET CHANNEL					$\begin{gathered} \text { NO. } \\ \text { of } \\ \text { BARRELS } \end{gathered}$	CULVERT											
				flow	invert	s	tw	$\begin{gathered} \text { TW } \\ \text { VELOCITY } \end{gathered}$		diam.	SLOPE	LENGTH	TYPE	$\underset{\substack{\text { MANNNG'S } \\ N=V A L L U E}}{ }$	CULVERT CAPACITY	$\frac{\begin{array}{c} \text { CRTITCAL } \\ \text { DEPTH } \end{array}}{(\text { FTT) }}$	NORMAL (FT)	outlet VELOCITY (FPS)	headwater elevation (FT)	ROADWAY CRESTELLEVATIONT(fT)	
				(CFS)	(FT)	(FT/FT)	(FT)	(FPS)		(IN)	(FT/FT)	(FT)			(CFS)						
$248+$	CUIVERT 1	NOT IDENTIFED BY FEMA	10-YR	30	944.52	0.0396	946.03	6.48	1	24	${ }^{0.015}$	38.38	RCP	0.012	24.66	1.75	1.37	9.91	949.46	949.29	EXISTING STRUCTURE OVERTOPS FOR THE S-YR EVENT HYDRAULIC MODEL INDICATESTHAT EXISTING STRUCTURE IS UNDERIZED.
$248+$	culv	NOT IDENTFIED BY FEMA	100-YR	48			946.32	7.29							25.36	1.77	1.40	10.00	949.64		

HYORAULIC DATA - PROPOSED CONDITIONS																					COMMENTS
station	BASINNCULVERTID	STREAM	frequency			Let Chan			CULIERT												
				$\begin{aligned} & \text { FLOW } \\ & \hline \text { (CFS) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { INVERT } \\ \hline \text { (FT) } \end{gathered}$	$\begin{gathered} s_{(F T / F T)} \\ \hline \end{gathered}$	$\frac{{ }_{\text {i }}}{(\text { (FT) }}$	$\underset{\substack{\text { VELOCITY } \\(F P S)}}{T w}$	$\begin{gathered} \hline \text { NO. } \\ \text { OF } \\ \text { BARELS } \end{gathered}$	$\frac{\text { DIAM. }}{(I N)}$	$\begin{aligned} & \text { SLOPE } \\ & \hline(\text { FT/FT) } \\ & \hline \end{aligned}$	$\frac{\text { LENGTH }}{(\text { (FT) }}$	TYPE	$\underset{\substack{\text { MANNING'S } \\ \text { N-VALLUE }}}{ }$	$\begin{gathered} \begin{array}{c} \text { CULVERTT } \\ \text { AAPCTI } \\ \hline(C F S S) \end{array} \end{gathered}$	$\begin{gathered} \substack{\text { CRTITAL } \\ \text { DEPTH }} \\ (\text { FTT) } \end{gathered}$	NORMAL DEPTH (FT)	$\begin{aligned} & \begin{array}{l} \text { OUTLET } \\ \text { vELOCITY } \end{array} \\ & \hline(\text { PPS) } \end{aligned}$	HEADWATER ELEVATION (FT)	ROADWAY CRESTELLVVATION(FT)	
	CUVERT 1	NOT DENTIFIED BY FEMA	10-YR	30			946.03	6.48							24.51	1.74	1.37	9.93	949.46		${ }_{\text {PROPOSED STRUCTUUR }}^{\text {S-YR EVENT HYORALI }}$
8+96.56	CULVERT 1	NOT IDENTFIEL D BY FEMA	100-YR	48	. 52	0.0396	946.32	7.29	1	24	0.015	41.10	RCP	0.012	25.21	1.77	1.40	10.01	949.64	949.29	THAT PROPOSED STRUCTURE IS UNDERSIED.

Texas Department of Transportation			
RM 1826			
hYDRAULIC CALCULATION SUMMARY			
CULVERT 1			
SHEET 1 OF 3			
${ }^{\text {cowr }}$	ster	${ }_{\text {\% }}^{108}$	${ }_{\text {mectur }}$
$\frac{0914}{0.5}$	33	cownr	

NoTES:
CULVERT 2 IS LOCATED IN hays COUNTY
THE CULVERT 2 STREAM CROSSES RM 1826 AND IS DESIINATED AS SPECIAL FLOOD HAZARD (SFHA) ZONEA
 . USACE HEC-RAS VERSION 6.3.1 WAS USED FOR THE HYORAULIC ANALYSIS.
THE PROEECT FLOWS WERE CALCULATED USING THE SCS HYDROGRAPH METHOD AND COMPARED TO THE
TX OMEGA EM REGEESSION EQUATONS.
5. cn Reduction applied to watershed in accordance with txdot hdm (sept. 2019),
6. THE SCS HYOROGRAPH METHOD DISCHARGES WERE USED FOR THE HYDRAULIC MODELING.

. THE DESIIGN anNual recurrence interval is 10-Yr for mainanes, with a ioo-rr event for the
CHCKKLooo:
$010=725$ CFS
$\mathrm{V} 10=6.05 \mathrm{FPS} \quad \mathrm{V} 100=1,548 \mathrm{CFS}$
$\begin{array}{ll}H W 10=1050.98 & H W 100=1051.4\end{array}$
all elevations based on the navdr8 vertich datum.

EfERENCES

. TXDOTS HYDRAULIC DESIGN MANUAL (SEPTEMBER 2019)
. TOPOGRAPHIC DATA SOURCE: TNRIS 2021 LIDAR AND LOCAL SURVE

PROPOSED CULVERT 2 COMPARISON TABLE

DESIGN STORM	$\underset{\substack{\text { wSEL } \\(\text { FT) }}}{ }$	$\underset{\substack{\text { THROUGH-CULVERT } \\ \text { FLOW } \\ \text { (CFS) }}}{\text { 16S) }}$	THROUGH-CULVERT VELTOTITY ITST (FT/S)	$\begin{aligned} & \text { overtopping } \\ & \text { (FFFS) } \end{aligned}$
2-YR	1050.49	161.00	7.59	152.00
5-YR	1050.84	163.10	7.69	357.90
10-YR	1050.98	164.88	7.78	560.12
25-YR	1051.23	168.46	7.94	863.54
50-YR	1051.40	169.91	8.30	1100.10
100-YR	1051.44	170.03	8.02	1377.97
500-YR	1051.83	178.02	8.40	2084.98

PROPOSED THROUGH-CULVERT CONVEYANCE CURVE

1. culvert is located in hays countr
2. THE CULVERT 3 STREAM CROSSES RM 1826 AND IS DESIGNATED AS SPECIAL FLOOD HAZARD (SFHA) ZONE X FLOODPLAIN.

3. CN REDUCTION APPLIED TO WATERSHED IN ACCORDANCE WITH TXDOT HDM (SEPT. 2019).
4. CULVERT 3 ACTS AS RELIES STRUCTURE TO EXISTING 2-30" RCP THAT IS ALSO INCLUDED IN THE HYDRAULIC MODEL.
ONLI CULVERT R RESULS ARE SHOWN.
5. ELEVATIONS REPORTED IN NAVD88,

HYOROLOGIC SUMMARY TABLE - OFFSITE FLO																											
STATION	BASIN/	$\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$	DRAINAGE AREA		WEIGHTED CN	tIme of concentration		$\frac{\text { LAG TIME }}{\text { MIN }}$	RAMFALL DEPTH (IN)							PEAK DISCHARGE (CFS)											
	EXISTING/ PROPOSED CONDITIONS																										
531+35.41	CULVERT 3	SCS HYDROGRAPH	294	0.46		71	58		0.97	35	1.57	2.01	2.38	2.92	3.33	3.78	5.05	249	418	585	838	1044	1277	1916			

hyoraulic data- Existing conoitions																					COMMENTS
Station	$\underbrace{\text { BASIN }}_{\text {cULVERTID }}$	STREAM	frequencr			Et CHAN			CULVERT												
				flow	INVERT	s	tw	$\begin{array}{c\|} \hline \text { Tw } \\ \text { VELOCITY } \end{array}$	$\begin{gathered} \hline \text { No. } \\ \text { of } \end{gathered}$	diam.	SLOPE	Length	TYPE	MANNING'S	CULVERT CAPACITY	$\underbrace{\text { DEPTH }}_{\text {CRITICAL }}$	$\begin{gathered} \text { NORMAL } \\ \text { DEPTH } \end{gathered}$	$\begin{array}{c\|} \hline \text { OUTLET } \\ \text { VELOCITY } \end{array}$	HEADWATER elevation	ROADWAY CREST elevation	
				(CFS)	(FT)	(FT/FT)	(FT)	(FPS)	barrels	(IN)	(FT/FT)	(FT)			(CFS)	(FT)	(FT)	(FPS)	(FT)	(FT)	
$531+35.41$		NOT IDENTIFIED BY FEMA	10-YR	585	1051.50	0.0189	1051.05	5.42	1	24	0.023	40.39	RCP	0.012	22.36	1.69	1.11	10.79	1056.26	1055.32	EXISTING STRUCTURE OVERTOPS FOR THE 2-YR EVENT. HYDRAULIC MODEL INDICATESTHAT EXISTING STRUCTURE IS UNDERSIZED.
	culvert 3	NOT IDENTHIED BY FEMA	100-YR	1277			1051.62	7.08							24.27	1.74	1.17	11.03	1056.72		

hYoraulic data - Proposed																					COMMENTS
station	CULVERTIDCUSN	STREAM	frequencr	ET Channel					CULVERT												
				flow	INVERT	s	tw	$\begin{gathered} \text { TW } \\ \text { VELOCITY } \end{gathered}$	$\begin{gathered} \text { No. } \\ \text { BARRELS } \end{gathered}$	$\begin{gathered} \text { DIAM. } \\ \hline(\mathbb{N}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { SLOPE } \\ & \hline(\text { (FT/FT) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { LENGTH } \\ \hline \text { (FT) } \\ \hline \end{array}$	TYPE	$\underset{\substack{\text { MANNIGG'S } \\ \text { N-VALLUE }}}{ }$	CULVERT CAPACIT	$\begin{gathered} \text { CRRTITCAL } \\ D \in P T H \\ \hline \end{gathered}$	$\underset{\substack{\text { NORMAL } \\ \text { DEPTHL }}}{ }$	OUTLET	headwater elevation	ROADWAY CREST elevation	
				(CFS)	(FT)	(FT/FT)	(FT)	(FPS)							(CFS)	(FT)	(FT)	(FPS)	(FT)	(FT)	
$531+$	CUIV	NOT IDENTIFIED BY FEMA	10-YR	585	1051.38	0.0189	1051.05	5.42	1	24	0.02	45.44	RCP	0.012	22.36	1.69	1.11	10.96	1056.26		PROPOSEDSTRUCTURE OVERTOPS FORTHE
			100-YR	1277			1051.62	7.08							24.27	1.74	1.17	11.18	1056.72		THAT PROPOSED STRUCTURE IS

Texas Department of Transportation			
RM 1826			
hYDRAULIC CALCULATION SUMMARY			
Culvert 3			
SHEET 3			
cowr	stcr	108	Hectuar
0914	33	097, ETC	RM 1826
		cownr	

CULVERT 1 - EXISTING CULVERT ANALYSIS SUMMARY (HY-8)

 INLET ELEV INVERT) 945.10 OF
CULVERT LENGTH 38.38 FT

3. HY-8 VESTION 7. 80.2 .0 WAS USED FOR THE HYRRAUIC ANALYSIS AND DESIGN OF THE CROSS CULVERT (CULVERT I)
CULVERT LLNGTH: 38.38 FT CULVERT SLOPE: O.015 FT/TT

FREQUENCY	$\begin{gathered} \text { TOTAL } \\ \text { DICHARGE } \\ (C F S) \end{gathered}$	$\begin{gathered} \text { CILVERT } \\ \text { DISCARGE } \\ \text { (CFS) } \end{gathered}$	HEADWATER ELEVATION ELEVATION (FT)			FLOW TPPE	$\underset{\substack{\text { NORMAL } \\ D(F T H)}}{\substack{(F T)}}$		$\underset{\substack{\text { oUTLET } \\ \text { DEFTH } \\(F T)}}{ }$	$\underset{\substack{\text { TALLWATER } \\ \text { DEFTH } \\(F T)}}{ }$		
2-YR	20.00	20.00	948.39	3.29	2.55	5-52n	1.19	1.61	1.29	1.2	9.33	5.86
5-YR	25.00	24.25	949.36	4.26	3.24	5-52n	1.36	1.74	1.46	1.41	9.86	6.19
10-YR	30.00	24.66	949.46	4.36	3.31	5-52n	1.37	1.75	1.48	1.51	9.91	6.48
25-YR	37.00	24.99	949.55	4.45	3.37	5-52n	1.39	1.76	1.49	1.63	9.95	6.83
50-YR	43.00	25.21	949.60	4.5	3.41	5-52n	1.40	1.77	1.50	1.72	9.98	7.09
100-YR	48.00	25.36	949.64	4.54	3.35	5-52n	1.40	1.77	1.51	1.8	10	7.29
500-YR	64.00	25.76	949.74	4.64	3.62	$5-52 n$	1.42	1.78	1.52	2	10.05	7.83

frequency	HEADWATER ELEVATION ELEVATION	$\begin{gathered} \text { TOTAL } \\ \text { DICARGE } \\ \text { (CFS) } \end{gathered}$	CULVERT 1 DISCHARGE (CFS)	ROADWAY DISCHARGE (CFS)	iterations
2-YR	948.39	20.00	20	0.00	1
5-YR	999.36	25.00	24	0.75	7
10-YR	949.46	30.00	25	5.27	9
25-YR	949.55	37.00	25	11.97	7
50-YR	949.6	43.00	25	17.77	6
100-YR	9.6	48.00	25	22.62	5
500-YR	949.74	64.00	26	38.24	5
OVERTOPPING	949.29	23.96	24	0.00	OVERTOPPING

SITE DATA
SITE data option: culvert invert data
InLet Station: 0.00 FT
INLET ELLEVATION: 945.10 F
OUTLET STATION: 38.38 fT
OUTLET ELLEVATION: 944.52
NUMBER OF BARRELS: 1
culvert data summary
BARREL SHAPE: CIRCULAR
BARREL DIAMETER: 2 FT
BARREL MATERILL: CONCRETE
EMBEDMENT: 0.00 IIN
BARREL MANNING'SN: 0.012
CUVERTTYPE: STRAGGT
CULVERT TYPE: STRAIGHT
INLET CONFIGURATION: MITERED TO CONFORM TO SLOPE (Ke=0.7)
INLET CONFIGURATION:
INLET DEPRESSION: NONE
tallwater channel data
tallwater channel option: IRregular channel
SLOPE OF CHANNEL: 0.0396 FT/FT
MANNING'SN: 0.035
CHANNEL INVERT: 944.52 FT
roadway data
roadway proflle shape: Irregular roadwar

$\begin{gathered} \text { COORD } \\ \text { No. } \end{gathered}$	STA (FT)	ELEV (fT)
1	0.00	959.24
2	38.98	956.64
3	58.98	955.38
4	85.96	953.88
5	111.95	952.62
6	144.94	951.29
7	173.93	950.40
8	178.93	950.19
9	207.91	949.55
10	220.91	949.34
11	230.90	949.29
12	246.90	949.34
13	257.89	949.44
14	272.88	949.73
15	286.88	950.11
16	307.87	950.87
17	334.86	952.21
18	350.85	953.07
19	384.84	955.10
20	41.82	957.13

ROADWAY SURFACE: PAVED
ROADWAY TOP WIDTH: 22 F

1. CULVERT I IS LOCATED IN TRAVIS COUNTY

INLET ELEV (INVERT): 945.14 A
CULVERT LENGTH: 44.00 FT OUTLET ELEV (INVERT): 944.52
CULVERT SLOPE: 0.014 FT/FT
2. THE CULVERT 1 STREAM CROSSES RM 1826 AND IS DESIGNATED AS SPECIAL FLOOD HAZARD (SFHA) ZONE XLLOOPLAAN.

CULVERT LENGTH: 44.00 RT CULVERT SLOPE: 0.014 FTFT 4. Elevations reported in navd88.

FREQUENCY	$\begin{gathered} \text { TOTAL } \\ \text { DICHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{gathered} \text { CUUVERT } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	HEADWATER ELEVATION ELEVA)	$\underset{\substack{\text { ILLET COOTROL } \\ \text { DETHTH } \\ \text { (FT) }}}{\text { IT. }}$	$\underset{\substack{\text { OUTLET CONTROL } \\ \text { DEPT) } \\(F T)}}{\text { 2 }}$	FLOW TYPE	$\begin{gathered} \text { NORMAL } \\ D(F T H) \\ (F T) \\ \hline \end{gathered}$		$\begin{gathered} \text { OUTEET } \\ \substack{\text { CEPTHTH}} \\ (f T) \end{gathered}$			TALLWATER VELOCITY (fPS)
2-YR	20.00	20.00	948.43	3.29	2.52	5-52n	1.19	1.61	1.28	1.29	9.38	5.86
5-YR	25.00	24.11	949.37	4.23	3.20	5-52n	1.35	1.74	1.45	1.41	9.88	6.19
10-YR	30.00	24.51	949.46	4.32	3.27	5-52n	1.37	1.75	1.47	1.51	9.93	6.48
25-YR	37.00	24.84	949.55	4.41	3.33	5-52n	1.38	1.76	1.48	1.63	9.97	6.83
50-YR	43.00	25.05	949.60	4.46	3.37	5-52n	1.39	1.76	1.49	1.72	9.99	7.09
100-YR	48.00	25.21	949.64	4.50	3.31	5-52n	1.40	1.77	1.49	1.80	10.01	7.29
500-YR	64.00	25.61	949.74	4.60	3.58	5-52n	1.42	1.78	1.51	2.00	10.06	7.83

frequencr	HEADWATER $\underset{\substack{\text { ELEVATIO } \\ \text { (FT) }}}{ }$	$\underset{\substack{\text { TISTAL } \\ \text { DCARGE } \\ \text { (CFS) }}}{\text { TOTS }}$	CULVERT 1 DISCHARGE (CFS)	$\begin{gathered} \text { ROADWAY } \\ \text { DISHAGGGE } \\ \text { (CFSS) } \end{gathered}$	ittrations
2-YR	948.43	20.00	20.00	0.00	1
5-YR	949.37	25.00	24.11	1.28	9
10-YR	949.46	30.00	24.51	5.88	9
25-YR	949.55	37.00	24.84	12.57	7
50-YR	949.60	43.00	25.50	18.37	6
100-YR	949.64	48.00	25.21	23.21	5
500-YR	949.74	64.00	25.61	38.83	5
OVERTOPPING	949.29	23.80	23.80	0.00	OVERTOPPING

SITE DATA
ITLETATA STATION: 0.00
ILEESTATION: 0.00 FT
INLET ELLVATION: : 945.14 FT
OUTLET STATION:
41.10
outlet elevation: 944.52
IERT DATA SUMMAR
BARREL SHAPE: CIRCULAR
barrel material: concrete
EMBEDMENT: 0.00 in
BARREL MANNING'S N: 0.012
CULLERT TYPE: STRAIGHT
INLET CONFIGURATION: MITERED TO CONFORM TO SLOPE (Ke=0.7)

- hater channel data

ILWATER CHANNEL DATA
TAlLWATER CHANNEL Option: IRREGULAR ChaNNEL
SLOPE OF CHANNEL: 0.0396 FT/FT
SLOPE OF CHANNEL:
MANNING'S: N o. 03 s .
CHANNEL INVERT: 944.52 FT
roadway data
ROADWAY PRoFLLE SHAPE: IRREGULAR ROADWAY

$\begin{gathered} \text { COORD } \\ \text { No. } \end{gathered}$	STA (FT)	ELEV (FT)
1	0.00	959.24
2	38.98	956.64
3	58.98	955.38
4	85.96	953.88
5	111.95	952.62
6	144.94	951.29
7	173.93	950.40
8	178.93	950.19
9	207.91	949.55
10	220.91	949.34
11	230.90	949.29
12	246.90	949.34
13	257.89	949.44
14	272.88	949.73
15	286.88	950.11
16	307.87	950.87
17	334.86	952.21
18	350.85	953.07
19	384.84	955.10
20	416.82	957.13

ROADWAY SURFACE: PAVED
ROADWAY TOP WIDTH: 28 F

HYDRAULIC ANALYSIS												
RIVER StATION	EXISTING MODEL						Proposed model					
	DESIIGN			СНЕСК			design			СНесК		
	10-YEAR			100-YEAR			10-YEAR			100-YEAR		
	Q (CFS)	V ((TTS)	WSEL (fT)	Q (CFF)	V (FT /)	WSEL (FT)	Q (CFS)	V (fTTS)	WSEL (FT)	Q (CFS)	$V(\mathrm{FT} /$ S)	WSEL (fT)
2025	725	5.09	1058.59	1548	7.20	1059.32	725	5.09	1058.59	1548	7.20	1059.32
1845	725	6.95	1057.14	1548	8.07	1057.82	725	6.95	1057.14	1548	8.07	1057.82
1782.25*	725	5.68	1056.56	1548	7.06	1057.26	725	5.68	1056.56	1548	7.06	1057.26
1719.50*	725	5.09	1056.20	1548	6.27	1056.93	725	5.09	1056.20	1548	6.27	1056.93
1656.75*	725	4.85	1055.78	1548	6.11	1056.50	725	4.85	1055.78	1548	6.11	1056.50
1594	725	7.09	1054.93	1548	8.61	1055.59	725	7.09	1054.93	1548	8.61	1055.59
1530.25*	725	6.93	1054.10	1548	8.67	1054.76	725	6.93	1054.10	1548	8.67	1054.76
1466.50*	725	7.43	1053.18	1548	8.90	1053.92	725	7.43	1053.18	1548	8.90	1053.92
1402.75*	725	6.37	1052.54	1548	8.43	1053.18	725	6.37	1052.54	1548	8.43	1053.18
1372	725	8.12	1052.05	1548	9.28	1052.8	725	8.12	1052.05	1548	9.3	1052.84
1339	725	6.52	1051.20	1548	7.14	1052.30	725	6.52	1051.20	1548	7.14	1052.30
1305.00*	725	6.42	1050.80	1548	7.18	1051.67	725	6.41	1050.80	1548	7.18	1051.67
1271.00*	725	3.51	1051.01	1548	4.87	1051.54	725	3.51	1051.01	1548	4.96	1051.52
1237	725	2.27	1051.02	1548	3.33	1051.55	725	2.27	1051.02	1548	3.39	1051.52
1208	725	2.59	1050.98	1548	3.90	1051.47	725	2.58	1050.98	1548	4.00	1051.44
1154	T 2:3-36"RCP						CULVERT 2: 3-36"RCP					
1120	725	6.05	1049.11	1548	7.94	1049.51	725	6.05	1049.11	1548	7.94	1049.51
1095	725	5.40	1048.32	1548	6.21	1048.81	725	5.40	1048.32	1548	6.21	1048.81
1054.00*	725	5.45	1048.00	1548	6.41	1048.47	725	5.45	1048.00	1548	6.41	1048.47
1013.00*	725	5.82	1047.62	1548	6.81	1048.10	725	5.82	1047.62	1548	6.81	1048.10
972	725	4.36	1047.40	1548	5.43	1047.85	725	4.36	1047.40	1548	5.43	1047.85
891	725	4.87	1046.66	1548	5.77	1047.15	725	4.87	1046.66	1548	5.77	1047.15
809	725	4.60	1045.87	1548	6.02	${ }^{1046.33}$	725	4.60	1045.87	1548	6.02	1046.33
727	725	3.16	1045.15	1548	4.05	1045.71	725	3.16	1045.15	1548	4.05	1045.71
646	725	3.17	1044.76	1548	4.04	1045.40	725	3.17	1044.76	1548	4.04	1045.40
566	725	2.63	1043.78	1548	3.93	1044.72	725	2.63	1043.78	1548	3.93	1044.72
486	725	2.08	1043.28	1548	4.18	1044.18	725	2.08	1043.28	1548	4.18	1044.18
405	725	1.43	1043.00	1548	3.66	1043.73	725	1.43	1043.00	1548	3.66	1043.73

Stat	${ }_{\text {CULLERTID }}^{\text {BAIN }}$		$\begin{gathered} \text { CUUVERT } \\ =T T P E F \end{gathered}$	Q (CFS)		HW/W (FT)		HW/W (FT)		FLOW LINE		$\left\lvert\, \begin{aligned} & \text { ROADWAY } \\ & \text { CREST (FT) }\end{aligned}\right.$	MODELINGSOFTWARE USED			CHECK 100YR FREEBOARD (FT)	$\begin{gathered} \text { CHECK V100 } \\ (\text { FPS }) \end{gathered}$
				Q10	Q100	нw10	Tw10	HW100	Tw100	inlet	outlet						
514+92.9	CULLERT 2	3	RCP	725	1548	1050.9	1049	1051.	1049.51	1045.	1045.66	1049.88	HEC-RAS 6.3.1	-1.10	7.99	1.59	8.29

CULVERT 2 HEC RAS EXISTING PROFILE

CULVERT 2 HEC RAS PROPOSED PROFILE

NOTES

1. CULVERT 2 IS LOCATED IN HAYS COUNTY
2. THE CULVERT STREAM CROSSES RM 1226 AND IS DESIINATED AS SPECIAL FLOOD HAZARD (SFHA) ZONE A FLOODPLAIN WITH NO

3.USACEHEC-RAS VERSIO 6.3. WAS USED FORTHEHDRAUIC ANALYSIS.
3. THE PROEECT FLOWS WERE CALCULATED USING THE SCS HYDROGRAPH METHOD AND COMPARED TO THE TX
OMEGA EM REGESSSION EQUATIONS.
4. CN REDUCTION APPLED TO WATERSHED IN ACCORDANCE WITH TXDOT HDM (SEPT. 2019,
5. THE SCS hYDROGRAPH METHOD DISCHARGES WERE USED FOR THE HYDRAULIC MODELING

6. THE DESIGN AnNUAL RECURRENCE INTERVAL IS 10 -yr FOR MAILLANES, with A 100-Yr EVENT FOR THE CHECK FLOod,
$Q 10=725$ CFS \quad Q100 $=1,548$ CFS
$V 10=7.78$ fPS $\quad V 100=8.02$ fPS
$H W 10=1050.98 \quad H W 100=1051.44$
7. ALL ELEVATIONS BASED ON the NAVD88 vERTICAL DATUM.
references
8. TXDOT'S HYDRAULIC DESIGN MANUAL (SEPTEMBER 2019
9. TOPOGRAPHIC DATA SOURCE: TNRIS 2021 LIDAR AND LOCAL SURVEY

$\begin{aligned} & \text { DESIGN } \\ & \text { STORM } \end{aligned}$	WSEL UPSTREAM (t)		
	ExISTING	PROPOSED	Difference
	(1)	(2)	(2)-(1)
2-ヶR	1050.49	1050.49	0.00
5-YR	1050.74	1050.84	0.10
10-YR	1050.98	1050.98	0.00
25-YR	1051.20	1051.23	0.03
50-YR	1051.36	1051.40	0.04
100-YR	1051.47	1051.44	-0.03
500-YR	1051.77	1051.83	0.06

DESIGN	VELOCITY UPSTREAM (tI/s)		
	ExIsting	Proposed	Difference
	(1)	(2)	(2)-(1)
2-YR	7.80	7.59	-0.21
5 -YR	7.72	7.69	-0.03
10-YR	7.99	7.78	-0.21
25-YR	8.11	7.94	-0.17
50-YR	8.45	8.30	-0.15
100-YR	8.29	8.02	-0.27
500-YR	8.53	8.40	-0.13

\section*{
 | EXISTITNG | 169.37 |
| :--- | :--- |
| PROPOSED | 16200 |
 PROPOSED 161.00}

notes

1. CULLERT 2 II LOCATED IN HAYS COUNTY
2. THE CULLERT STREAM CROSSES RM 1826 AND IS DESIGNATED AS SPECIAL FLOOD HAZARD (SFHA) ZONEA ELEVATIONS (BEE) HAVE NOT TBEEN DETERMINED. CULLERT 2 CAN BE FOUND ON THE FLLOOD INSLRANCE CAIL MAP (FIRM) NUMBER 48209COIد , LFFECTNU DATE SEFILMBER 2 ,
3. THE PROEECT FLOWS WERE CALCULATED USING THE SCS HYDROGRAPH METHOD AND COMPARED TO THE
4. CN REDUCTION APPLED TO WATERSHED IN ACCORDANCE WITH TXDOT HDM (SEPT. 2019,
5. THE SCS HYDROGRAPH METHOD DISCHARGES WERE USED FOR THE HYDRAULIC MODELING
6. THE DOWNSTREAM BOUNDARY CONDTIIN WAS ESTABLISHED USING A NORMAL DEPTH OF O.OOG FTTFT FOR ALL ,
7. THE DESGIGN ANNUAL RECURRENCE interval IS 10 -Yr for mainlanes, with a 100-yr Event for the

Q10 $=725 \mathrm{CFS} \quad$ Q100 $=1,548 \mathrm{CFS}$
$V_{10}=7.78$ fPS \quad V100 $=8.02$ fPS
$H W 10=1050.98 \quad H W 100=1051.44$
9. ALL ELEVATIONS BASED ON THE NAVD88 VERTICAL DATUM.
references

1. TXDOTS HYDRAULIC DESIGN MANUAL (SEPTEMBER 2019,
2. TOPOGRAPHIC DATA SOURCE: TNRIS 2021 LIDAR AND LOCAL SURVE

PROPOSED UPSTREAM CULVERT XS

EXISTING DOWNSTREAM CULVERT XS

CULVERT 3 - EXISTING CULVERT ANALYSIS SUMMARY (HY-8)

1. cullert a is located in hays countr.
 3. HV-8 VEESION 7.80 .0 .2 WAS USED FOR THE HYORAUILC ANAAYIIS AND DESIGN OF THE CROSS CULVERT (CULVERT 3).
2. CULVERT 3 ACTS AS RELLEE STRUCTURE TO EXISTING 2-30" RCP THAT IS ALSO INCLUDED IN THE HYDRAULIC MODEL. 5. ELEVATIONS REPORTED IN NAVDB8.

FREQUENCY	$\begin{gathered} \text { TOTAL } \\ \text { DICHARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{gathered} \text { CULVERT } \\ \text { DISCHRRGE } \\ \text { (CFSS) } \end{gathered}$	HEADWATER ELEVATION (FT)	$\underset{\substack{\text { INLET CONTROL } \\ \text { DEPTH } \\ \text { FTH }}}{\text { in }}$	$\underset{\substack{\text { OUTLET CONTROL } \\ \text { DETTH } \\ \text { FTT }}}{\substack{22}}$	FLOW TYPE	$\underset{\substack{\text { NORMAL } \\ D(F T H) \\(F T)}}{\substack{\text { che }}}$			$\underset{\substack{\text { TALLLEATER } \\ \text { DETHTH }}}{\text { (TT) }}$	$\underset{\substack{\text { OUTLET } \\ \text { VELCCIT } \\(F P S)}}{ }$	
2-YR	249.00	20.61	1055.87	3.43	2.29	5-52n	1.06	1.63	1.19	1.62	10.57	4.04
5-YR	418.00	21.64	1056.10	3.66	2.46	5-52n	1.09	1.66	1.23	1.84	10.7	4.81
10-YR	585.00	22.36	1056.26	3.82	2.57	5-52n	1.11	1.69	1.25	2.02	10.79	5.42
25-YR	838.00	23.19	1056.46	4.02	2.71	$5.52 n$	1.14	1.71	1.28	2.25	10.89	6.14
50-YR	1044.00	23.75	1056.59	4.15	2.81	5-52n	1.16	1.73	1.30	2.42	10.96	6.62
100-YR	1277.00	24.27	1056.72	4.28	2.90	5-52n	1.17	1.74	1.32	2.59	11.03	7.08
500-YR	1916.00	25.31	1056.98	4.54	3.09	5.52n	1.20	1.77	1.36	3.01	11.17	8.01

SITE DATA

frequency	HEADWATER ELEVATION ELEVAT)	$\begin{gathered} \text { TOTAA } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$	CULVERT 3 DISCHARGE (CFS)	ROADWAY (CFS)	iterations
2-YR	1055.87	249.00	20.61	134.19	16
5-YR	1056.10	418.00	21.64	299.54	8
10-YR	1056.26	585.00	22.36	464.33	8
25-YR	1056.46	838.00	23.19	714.51	7
50-YR	1056.59	1044.00	23.75	918.51	6
100-YR	1056.72	1277.00	24.27	1149.95	6
500-YR	1056.98	1916.00	25.31	1785.45	4
OVERTOPPING	1055.32	105.70	17.85	0.00	OVERTOPPING

STTE DATA OPTIN: CULL
INLET STATION: 0.00 ft
INLET ELEVATION: 1052.44 FT
OUTLET STATION: 40.38 fT
OUTLET EILVATION: 1051.50
NUMBER OF BARRELS: 1
CULVERT DATA SUMMAR
BARREL SHAPE: CIRCULAR
BARRELDAMETER: 2 FT
barrel materilal concrete
EMBEDMENT: 0.00 IN
BARREL MANNING'S N: 0.012
CUUVERT TYPE: STRAGGT
CULVERT TPPE: STRAIGHT
INLET CONFIGURATION: MTTERED TO CONFORM TO SLOPE (Ke=0.7)
INLET CONFIGURATION: MIT
INLET DEPRESSION: NONE
tallwater channel data
tallwater channel option: IRregular channel
SLOPE OF CHANNEL: 0.0189 FT/FT
MANNING'SN: 0.035
Channel invert: 1049.031 ft
roadway data
roadway proflle shape: Irregular roadwar
IRREGULAR ROADWAY CROSS-SECTION:

ICOORD
NO.

STAT (FT) ELEV (FT)

ROADWAY SURFACE: PAVED
ROADWAY TOP WIDTH: 30 F

 INLET ELEV (INVERT): 1052.44
CULVERT LENGTH: 45.50 FT
CULVERT LENGTH: 45.50 F OUTLET ELEV (INVERT): 1051.50
CULVERT SLOPE: 0.021 FT/FT
CULVERT SLOPE: 0.021 FTFT

NOTES:

1. culvert is located in hays country
2. THE CULVERT STREAM CROSSES RM 1826 AND IS DESGNATED AS SPECIAL LLOOD HAZARD (SFHA) ZONE XLLOODLLINN

3. CULVERT 3 ACTS AS RELIEF STRUCTTRE TO EXISTING 2-30" RCP THAT IS ALSO INCLUDED IN THE HYDRAULIC MODEL. 5. ELEVATIONS REPORTED IN NAVDB8.

FREQUENCY	$\begin{gathered} \text { TOTAL } \\ \text { DSCARGE } \\ \text { (CFS) } \end{gathered}$	$\begin{gathered} \text { CULVERT } \\ \text { DISCARGE } \\ \text { CCFS) } \end{gathered}$	HEADWATER ELEVATION ELEVATIO (FT)	$\underset{\substack{\text { ILET COOTROL } \\ \text { DeTFTH } \\ \text { (FT) }}}{ }$	$\underset{\substack{\text { outLET CONTROL } \\ \text { DEPTH) } \\(F T)}}{\substack{\text { and }}}$	FLOW TYPE			$\underset{\substack{\text { OUTET } \\ D \in P T H \\(F T)}}{ }$	TAILWATER (FT)		TALL WATER VELOCITY (fPS)
2-YR	249.00	61	1055.87	3.43	2.21	5.52n	1.06	1.63	1.19	1.62	10.73	4.04
5-YR	418.00	21.64	1056.10	3.66	2.38	5-52n	1.09	1.66	1.21	1.84	10.87	4.81
10-YR	585.00	22.36	1056.26	3.82	2.5	5-52n	1.11	1.69	1.24	2.02	10.96	5.42
25-YR	838.00	23.19	1056.46	4.02	2.64	5-52n	1.14	1.71	1.27	2.25	11.06	6.14
50-YR	1044.00	23.74	1056.59	4.15	2.74	5-52n	1.15	1.73	1.29	2.42	11.12	6.62
100-YR	1277.00	24.27	1056.72	4.28	2.83	5-52n	1.17	1.74	1.30	2.59	11.18	7.08
500-YR	1916.00	25.31	1056.98	4.54	3.02	5.52n	1.20	1.77	1.34	3.01	11.30	8.01

site data
STTE DATA OPTION: CUL
Inlet STATION: 0.00 ft
INLET ELEVATION: 1052.44 FT
OUTLET STATION: 45.44 RT
OUTLET EILVATION: 1051.38
NUMBER OF BARRELS: 1
CULIERT DATA summar
BARREL SHAPE: CIRCULAR
BARRELDAMETER: 2 FT
barrel materill: concrete
EMBEDMENT: 0.00 IN
BARREL MANNING'SN: 0.012
CUVERTTYPE: STRAGGT
CULLERT TYPE: STRAIGHT
INLET CONFIGUATION: MIT
INLET CONFIGURATION: MITERED TO CONFORM TO SLOPE (Ke=0.7)
water channel data
tallwater channel option: irregular channel
SLOPE OF CHANNEL: 0.0189 FT/FT
MANNING'S N: 0.035
CHANNEL INVERT: 1049.031 FT
roadway data
roadway profile shape: IRREGULAR roadway

$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { No } \\ \text { No } \end{array}$	STAT (FT)	ELEV (FT)
1	0.00	1056.76
2	45.98	1056.83
3	115.94	1056.78
4	133.93	1056.91
5	225.89	1056.74
6	351.82	1056.66
7	453.77	1056.20
8	525.74	1055.93
9	593.70	1055.55
10	699.65	1055.32
11	773.61	1055.89
12	831.59	1056.59
13	903.55	1057.75
14	931.53	1058.30
15	1057.47	1061.45
16	1111.44	1062.60
17	1187.41	1064.46
18	1279.36	1067.07
19	1297.35	1067.47
20	137	69.45

ROADWAY SURFACE: PAVED
ROADWAY TOP WIDTH: 30 F

INLET ID	NODE NAME	STOTEE	cL	OffsET		${ }_{\text {NTPE }}^{\text {NODE }}$	$\begin{gathered} \text { NODE } \\ \text { PROFFLE } \\ \text { TYPE } \end{gathered}$	$\begin{gathered} \text { CONPETITE } \\ \text { SPREEDE } \\ \text { SLOPE } \end{gathered}$	inlet grate trpe	$\substack{\begin{subarray}{c}{\text { INRETET} \\ \text { LRNGTH }} }} \end{subarray}$	$\begin{gathered} \text { INLET } \\ \text { SRATE } \\ \text { NuTHTH } \end{gathered}$	$\underset{\text { AREA }}{\text { INLET }}$ GRATE	\|iner grate		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { PCRMGETER } \\ \text { REDUCTION } \\ \hline \end{array}$
os-02	PSL FG-SFG 3×3 W/ 3×3 GRATE	279+25.10	RM1826_4	34.50 LT	895.65	GRATE	SAG	0.33	fahlel 1778	3.17	3.17	4.54	12.67	0.500	0.50
os-01		278+02.12	RM1826_4	30.71 LT	897.99	GRATE	SAG	0.33	PARALLEL 17/8-4	3.17	3.17	4.54	12.67	0.500	0.50

5-YR LINK COMPUTATIONS															
LINK - ID	LINK - PIPE		$\begin{aligned} & \text { DOWNTINEAM } \\ & \text { DOWNE } \\ & \text { NODE } \end{aligned}$		MATERERIAL	$\begin{gathered} \text { NUMK- } \\ \text { UMRER OR } \\ \text { BARELLS } \end{gathered}$		$\begin{gathered} \text { HYRNAULIC } \\ \text { HENGTH } \end{gathered}$		$\stackrel{\text { LINK }}{\text { SLOPE }}$		$\begin{gathered} \text { LINK. } \\ \text { UPSFFTREAM } \end{gathered}$		$\begin{gathered} \operatorname{LINK}\left(\begin{array}{c} \text { INET } \\ \text { UPSTRTREAM } \end{array}\right] \end{gathered}$	
OS.2	${ }_{\text {PlPE }}^{\text {PIPE }}$	${ }_{\text {OS }}^{\text {OS.O2 }}$	OS.OUT	${ }_{\text {CIRCULAR }}^{\text {CRCULAR }}$	CONCRETE CoNCRETE	1.00 1.00	$\frac{177.48}{123.48}$	${ }_{1}^{172.98}$	${ }_{0}^{0.01}$	${ }_{2}^{1.12}$	$\xrightarrow{2.00} 1.50$	887.35 895	885.42 892.84	885.35 893.87	$\xrightarrow{883.42} 8$

5-YR RUNOFF COMPUTATIONS				
drainage area	$\begin{gathered} \text { COMPOSITE } \\ \text { C-VALUE } \end{gathered}$	TIME OF CONCENTRATION	intensitr	$\begin{gathered} \text { DESSIGN } \\ \text { DISCHARGE } \\ (5-Y R) \end{gathered}$
10 ACRES IS.01 3250 0.		MINUTE)	(INHHR)	(CF5)
OS.01 3.250 05.02 1.460 0	0.32 0.38	${ }_{10}^{10.00}$	6.46	
OS-DITCH 8.900	0.34	10.00	6.46	19.5

5-YR INLET HYDRAULIC COMPUTATIONS																
InLET ID	Let TTPE		$\xrightarrow{\text { NODEE }}$	cL	$\begin{gathered} \text { INLET } \\ \text { DISCHARGE } \\ \text { (CFS) } \end{gathered}$			$\underset{\substack{\text { INLET- } \\ \text { BPAS } \\ \text { fles }}}{\text { LCS }}$ (CF5)	INLET- BPASS NODEID NODEID	$\begin{aligned} & \text { COLETTED } \\ & \text { COPUDED } \\ & \text { PONDED } \\ & \text { WIDTH } \end{aligned}$		$\begin{aligned} & \text { COLET-ED } \\ & \begin{array}{c} \text { COPUTED } \\ \text { PONDED } \\ \text { WIDTH } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { INLET-MAX -MAX } \\ \text { PONDEED } \\ \text { DEPTH } \\ \text { (FT) } \end{gathered}$	$\begin{aligned} & \text { LOLETTODI } \\ & \hline \text { LNGTULUD } \\ & \text { NLL } \end{aligned}$		SPRE
	${ }_{\text {GRATE }}^{\text {GRATE }}$	${ }_{\text {SAG }}^{\text {SAG }}$	${ }_{278}^{27}$	${ }_{\text {RM1826 }}{ }^{\text {RM1826 }}$	${ }_{7}^{4}$	${ }^{10.48}{ }^{12.87}$	0.00 0.00	O.OO 0.00		(f) 1.14 1.89	${ }_{\text {cki }}^{8.18}$	(f.7) 0.35 0.50	0.744 3.22	¢	0.08 0.46	${ }_{0}^{0.01} \begin{aligned} & 0.01\end{aligned}$

100-YR LINK HYDRAULICS																	
LINK - ID	$\begin{gathered} \text { LINK- } \\ \text { DISCARGE } \\ \text { (CFS) } \end{gathered}$								$\left.\begin{array}{\|c\|} \hline \text { LINK - ACTUAL } \\ \text { VOENOCTTY } \\ \text { (FTTSEAM } \end{array} \right\rvert\,$				LINK - HGL DOWNSTREAM (FT)		LINK - EGL DOWNSTREAM (FT)	$\begin{aligned} & \text { LINK - EGL } \\ & \text { UPSTREAM } \\ & \text { (FT) } \end{aligned}$	
${ }_{\text {OS }}^{\text {OS-2 }}$	$\frac{11}{7}$	${ }_{17}^{27.85}$	${ }_{0}^{0.919}$	7.91 8.79	1.190 1.020	$\underset{\substack{5.65 \\ 5.44}}{ }$	0.00 0.01	0.01 0.02	7.88 8.73	5.22 3.96	0.91 0.70	1.27 1.50	884.33 892.04	${ }_{898562}^{885}$	885.30 893.22	${ }_{8895.12}^{88}$	0.08 0.46

100-YR RUNOFF COMPUTATIONS				
dratinage area	$\begin{gathered} \text { COMPOSITE } \\ \text { C-VALUE } \end{gathered}$	TME OF CONCENTRATION	intensitr	$\begin{gathered} \text { DESSIGN } \\ \begin{array}{c} \text { DISCHARGE } \\ (5-Y R) \end{array} \end{gathered}$
ID ACRES		(MINTE)		(CFS)
	0.32 0.38	10.00 10.00	12.50 12.50	$\stackrel{13.9}{6.9}$
(1)	${ }_{0.34}$	${ }_{10.00}$	12.50	38.0

OO-																
InLet id	INLET TYPE		$\xrightarrow{\text { STODE }}$	CL	$\begin{gathered} \text { INLET } \\ \text { DISCHRGE } \\ \text { (CFS) } \end{gathered}$			(CFS)	${ }_{B Y}^{\text {INLET- }}$ NODEID	COMPUTED PNDED WIDTH		$\begin{aligned} & \text { COMPUTED } \\ & \text { PONDED } \\ & \text { WIDTH } \end{aligned}$	(FT)	$\begin{gathered} \text { LNLETUDI } \\ \text { LNGTUL } \\ \text { NLOPE } \end{gathered}$		${ }_{\text {S }}^{\text {INREEAD }}$ -
		SAG				10.48	0.00	0.00		${ }_{\text {fret }}^{1.51}$	${ }_{8} .18$	${ }_{\text {f. }}^{\text {f. } 50}$	0.74	N/A	0.06	
0s-01	GRATE	SAG	$278+02.12$	RM1826 4	7	21.87	0.00	0.00		6.41	22.34	1.14	3.22	N/A	0.93	0.01

100-YR LINK HYDRAULICS																	
LINK - ID									$\left\|\begin{array}{c} \angle I N K \text { - ACTUAL } \\ \text { VEWOCTY } \\ \text { DOWTRTRAM } \\ (F T / S) \end{array}\right\|$		$\begin{gathered} \text { LINK -ACTUAL } \\ \text { DOWNSTHTEAM } \\ \text { (FT) } \end{gathered}$		$\begin{gathered} \text { LINK - HGL } \\ \text { DOWNSTREAM } \\ (F T) \end{gathered}$				$\underset{\substack{\text { Loss } \\(\text { fTT) }}}{ }$
OS.2	20	${ }^{27.85}$		9.09	1.610	. 40	${ }^{0.01}$	0.01	9.06	7.15	1.32	${ }^{1.67}$	884.74		886.	${ }^{887}$	${ }_{0}^{0.06}$

PROPOSED DRIVEWAY CULVERT SUMMARY												
CULVERT	station	$\underset{\substack{\text { OfFsET } \\(\text { FT) }}}{ }$	SIDE	NO OF CULVERTS	$\begin{gathered} \text { CULVERT } \\ \text { SIIZT } \end{gathered}$	$\begin{aligned} & \text { CULVERT } \\ & \text { LENGTH (} 7 \text {) } \end{aligned}$	$\begin{gathered} \text { UPSTREAM } \\ \text { FLELEV } \end{gathered}$	$\underset{\substack{\text { DownsTREAM } \\ \text { LLELLEV }}}{ }$	upstream end TREATMENT	DOWNSTREAM END TREATMENT	$\begin{aligned} & \text { DESIGN } \\ & \text { RREQUENCY } \end{aligned}$	
1	144+00.00	-	LT	No CULVERT NEEDED								
2	$183+21.78$	18.50	RT	1	18" RCP (CLIV)	31	996.79	996.67	1-SET Tr-IIPD (4:1)	1-SET Tr-I\|PD (4:1)	5-YR	
3	189+72.83	-	RT	EXIITING DRIVEWAY CULVERT TO REMAIN								
4	191+48.79	31.20	RT	1	18" RCP (CLIV)	34	993.28	992.49	1-SET Tr-1\|PD (4:1)	1-SET Tr-\|	-PD (4:1)	5-YR
5	192+60.41	28.39	RT	1	18" RCP (CLIV)	36	989.90	988.28	1-SET Tr-H-PD (4:1)	1 - SET Tr-IIPD (4:1)	5-YR	
(1) 6	242+44.97	33.17	LT		18" RCP (CLIV)	24	974.73	974.25	1-SET Tr-IIPD (4:1)	1-SET TY-IIPD (4:1)	5-YR	
7	$278+86.46$	27.53	RT	1	${ }^{18 "}$ CMP	28	890.54	889.71	PIPE COLLAR	1-SET TY-IIPD (3:1)	5-YR	
8	279+87.91	-	LT	PIPE SUBTOTAL (FT):								

(1) Low FILL DRIVEWAY, SEE DRIVEWAYS AND MALLBOX STANDARD FOR DETALLS

DITCH ID	$\begin{gathered} \text { STATION } \\ \text { (STA) } \end{gathered}$	FLOWLINE ELEVATION (FT)	$\begin{gathered} \text { OFFSET } \\ (T T R T) \end{gathered}$	DESIGN $\substack{\text { DISCARGE } \\ \text { CTSE } \\ \text { (GS) }}$		DITCH FLOW DEPTH ' D ' DEPTH (FT)	DS WATER SURFACE (FT)	MAX WATER SURFACE ELEV (FT)
LEWIS MOUNTAIN RD - CL RM 1826_1								
$\substack{D-R M 18261-1 \\ 05=8.1 \mathrm{CFS}}$	143+00.00	962.68	31.49 LT	0.0				964.55
	142+00.00	953.08	30.77 LT	0.8	3.7	0.24	953.32	954.77
	141+00.00	944.28	29.90 LT	1.6	4.2	0.31	944.59	945.76
	140+00.00	935.48	30.33LT	2.5	4.6	0.37	935.85	937.06
	$139+00.00$	929.00	27.34LT	3.3	4.4	0.43	929.43	929.83
	$138+00.00$	${ }^{923.93}$	29.47 LT	4.1	4.3	0.49	${ }^{924.42}$	925.64
	$137+00.00$	920.30	37.97 LT	4.9	3.5	0.46	920.76	922.31
	$136+00.00$	917.19	29.89LT	5.8	3.7	0.56	917.75	919.49
	$135+00.00$	${ }^{914.50}$	31.34LT	6.6	3.5	0.58	915.08	917.00
	$134+00.00$ $133+16.00$	912.92 91160	${ }^{29.166 L T}$	7.4 8.1 10	2.9 3	0.65 0.75	$\begin{array}{r}913.57 \\ \hline 97235\end{array}$	${ }^{914.92}$
D-RM1826_1-2O5 $=12.8$ CFS	$133+16.00$ $150+00.00$	${ }_{1} 11007.59$	${ }^{21.93 L T}$	8.1 1.0	3.2 .3	0.75	${ }_{10} 912.35$	913.60 100909
	149+00.00	1001.99	27.46 RT	1.7	3.3	0.30	1002.29	1003.99
	147+00.00	986.23	27.63 RT	3.1				
	146+00.00	977.88	30.53 RT	3.8	4.4	0.34	978.22	981.58
	$145+00.00$	972.40	29.82RT	4.5	3.9	0.39	972.79	976.09
	$144+00.00$	967.84	26.58 RT	5.2	3.9	0.45	968.29	969.84
	140+00.00	934.65	35.53 RT	8.0	4.8	-0.52	934.13	936.23
	$139+00.00$	927.51	31.14 RT	8.7	6.2	0.68	928.19	929.89
	$138+00.00$	${ }^{923.41}$	32.61 RT	9.4	4.9	0.70	924.11	925.56
	$137+00.00$	919.61	33.57 RT	10.1	4.8	0.73	920.34	922.00
	136+00.00	917.25	30.60 RT	10.8	3.9	0.76	918.01	918.90
	$135+00.00$	915.25	24.65 RT	11.5	3.6	0.48	915.73	916.80
	134+00.00	912.80	28.58 RT	12.2	3.9	0.72	${ }^{913.52}$	914.79
	$133+16.00$	911.62	28.35 RT	8.1	3.2	0.75	912.35	913.60
ZYLE RD-CLRM 1826_2								
$\begin{gathered} D-R M 1826_{6}^{2-2} \\ Q 5=8.1 C F S \end{gathered}$	$184+00.00$	996.11	33.50LT	-23.0				
	183+00.00	995.72	33.50LT	-22.3				
	184+00.00	996.11	33.50 LT					
	$185+00.00$	996.50	33.50 LT	0.7	0.8	0.26	996.76	998.52
	186+00.00	996.37	33.50LT	1.4	0.8	0.60	996.97	998.70
	187+00.00	996.25	33.50 LT	2.1	0.8	0.71	996.96	998.36
	$188+00.00$	996.00	33.50 LT	2.9	1.2	0.69	996.69	998.28
	189+00.00	999.75	33.50 LT	3.6	1.1	0.59	996.34	997.54
	190+00.00	994.87	33.50LT	4.3	2.0	0.59	995.46	996.75
	191+00.00	994.00	33.50LT	5.0	1.7	0.43	994.43	995.56
	192+00.00	991.37	33.50 LT	5.7	3.1	0.48	9991.85	993.24
	193+00.00	988.74	32.60LT	6.4	3.6	0.60	989.34	990.47
	194+00.00	${ }^{9859.72}$	30.29LT	7.1	3.8	0.61	986.33	987.57
$\begin{aligned} & \hline \text { D-RM1826_2-1 } \\ & \text { Q5 = 187.0 CFS } \end{aligned}$	186+00.00	998.60	28.54RT					
	185+00.00	997.40	24.80 RT	23.4	3.5	0.65	998.05	${ }^{998.98}$
	184+00.00	996.96	29.94RT	46.8	3.1	1.26	998.22	998.55
	$183+00.00$ $182+0800$	996.66 99638	${ }^{29.712 R T}$	70.1	2.9	1.75 1.37	${ }^{998.41} 9$	${ }^{998.53}$
	182+00.00	${ }_{996.36}$	33.10 RT	93.5	6.5	1.51	${ }_{997.87}$	${ }_{998.60}$
	$181+80.00$	996.30	34.15 RT	98.2	6.3	1.56	997.86	998.63
$\begin{aligned} & \text { D-RM1826_2-3 } \\ & \text { Q5 }=46.5 \text { CFS } \end{aligned}$	$187+00.00$	997.24	24.46 RT					998.73
	$188+00.00$	996.90	25.09 RT	5.6	1.7	0.91	997.81	998.61
	189+00.00	${ }^{996.36}$	24.56 RT	11.1	2.4	1.08	997.44	${ }^{997.87}$
	190+00.00	995.28	31.48 RT	16.7	3.4	1.11	996.39	997.02
	191+00.00	994.13	30.97 RT	22.3	3.7	1.22	995.35	995.75
	192+00.00	992.08	23.88 RT	27.8	4.9	1.19	993.27	993.42
	193+00.00	989.25	24.42 RT	33.4	5.1	0.97	990.22	990.73
APPALOOSA RUN - CL RM 1826_3								
$\begin{aligned} & D-\text { RM1826.3-2 } \\ & Q 5=37.6 \mathrm{CFS} \end{aligned}$	$239+00.00$	981.27	28.23 LT	15.1		0.81	982.08	982.08
	240+00.00	980.24	29.96 LT	17.1	2.6	0.75	980.99	981.73
	$241+00.00$	978.74	30.38LT	19.2	2.8	0.62	979.36	${ }^{980.34}$
	$242+00.00$	976.99	30.11LT	21.2	2.8	0.57	${ }^{977.56}$	978.52
	243+00.00 $244+0000$	974.19 970.61	$32.28 L T$ $33.114 T$	23.2 25.3	5.3 5.9	1.05 1.03 1	975.24 97164	976.26 97283
	$245+00.00$	${ }_{965.81}$	33.45 LT	27.3	6.7	1.01	966.82	${ }_{968.12}$
	$246+00.00$	960.82	29.45 LT	29.3	7.0	1.03	961.85	962.86
	$247+00.00$	953.47	29.82 LT	31.3	8.2	0.98	954.45	956.09
	$248+00.00$	949.24	25.39 LT	33.4	5.8	0.66	949.90	${ }^{951.25}$
$\begin{gathered} \text { D-RM1826.3-3 } \\ \text { Q5 }=9.0 \text { CFS } \end{gathered}$	$\xrightarrow{240+00.00}$	980.48 97876	${ }_{\text {27.86RT }}^{2785 \mathrm{RT}}$	${ }^{0.8}$	1.4 1.9	0.27	980.75 97978	982.27 98072
	${ }^{242+00.00}$	977.27	${ }_{27.57 \mathrm{RT}}^{27.05}$	2.4	1.7	${ }_{0.31}$	${ }_{977.58}$	${ }_{978.77}^{98.72}$
	$243+00.00$	973.46	27.19 RT	3.2	2.7	0.30	973.76	${ }_{975.66}$
	244+00.00	970.28	27.25 RT	4.0	2.7	0.33	970.61	972.43
	$247+00.00$	${ }^{953.30}$	27.26 RT	6.5	4.3	0.38	953.68	955.78
	$248+00.00$	948.06	27.00 RT	7.3	4.4	0.50	948.56	950.86

дITCH ID	$\begin{gathered} \text { STATION } \\ \text { (STA) } \end{gathered}$	FLOWLINE ELEVATION (FT)	$\begin{gathered} \text { OFFSET } \\ \text { (TTRT) } \\ (F T) \end{gathered}$	$\begin{gathered} \text { DESIGN } \\ \text { DISCARE } \\ \text { Q } \\ (C E S) \end{gathered}$	$\begin{gathered} \text { DESIGN } \\ \text { VELCCITY } \\ \text { w } \\ \text { (FPS) } \end{gathered}$	DITCH FLOW DEPTH ${ }^{\text {D }}$ (FT)	$\begin{aligned} & \text { DS WATER } \\ & \text { SURFACE } \end{aligned}$ $(F T)$	MAX WATER SURFACE ELEV (FT)
OSO CREEK RD - CL RM 1826_4								
$\begin{gathered} D \text { DOS-1 } \\ Q 5=7.0 \mathrm{CFS} \end{gathered}$	$276+00.00$	904.16	28.96 LT					
	277+00.00	${ }^{900.36}$	31.89LT	3.5	3.7	0.69	901.05	${ }^{904.56}$
	$278+00.00$	897.99	29.16LT	7.0	3.7	0.97	898.96	901.21
$\begin{gathered} D \quad D S-2 \\ Q 5=4.0 \mathrm{CFS} \end{gathered}$	$278+60.10$	898.50	33.71LT					
	279+00.00	896.56	337.78 LT	2.5	3.5	0.49	897.05	897.85
	$279+25.00$	895.65	$34.5 L T$	4.0	3.2	0.32	895.97	896.39
$\begin{gathered} \text { D_OS-OUT } \\ Q 5=20.0 \text { CFS } \end{gathered}$	279+92.96	892.19	32.05 LT					
	280+00.00	892.01	29.03 LT					
	281+00.00	882.79	36.93LT	5.3	5.7	0.68	883.47	885.27
	282+00.00	876.76	${ }^{32.86 L T}$	10.2	5.8	0.94	877.70	${ }^{877.88}$
	283+00.00	870.22	35.15 LT	15.1	6.6	1.07	871.29	872.13
	$284+00.00$	865.00	30.88 LT	20.0	6.5	1.24	866.24	867.31
$\begin{aligned} & D . R M 1826-4-1 \\ & Q 5=4.26 \text { CFS } \end{aligned}$	281+00.00	${ }^{881.72}$		1.1	3.4	0.40	${ }^{882.12}$	${ }^{882.50}$
	282+00.00	${ }^{874.52}$		2.1	4.2	0.51	875.03	875.18
	283+00.00	868.79	-	3.2	4.2	0.61	869.40	869.41
	$284+00.00$	863.99		4.3	3.7	0.51	864.50	865.22
WOODLAND DR /SHELF ROCK RD-CL RM 1826_5								
	$503+90.00$	${ }_{1}^{1075.75} 10$	${ }^{29.688 L T}$	-		:	:	
	$504+00.00$	1075.66	${ }_{\text {cel }}^{29.855 L T}$.				
	506+00.00	1072.00	${ }_{33,23 L T}$					
		${ }^{10699.40}$	${ }^{34.922 L T}$.	-	-	.	
	508+00.00 $509+00.00$							
	510+00.00	${ }^{1063.35}$	39.00 LT					
	$511+00.00$	1060.69	30.49 LT	11.6	3.9	0.86	1061.55	1062.31
	$512+00.00$ 512	1056.69	${ }^{32.2747 T}$	13.2	4.7	0.84	1057.53	${ }^{1058.76}$
	513+00.00	1052.88	${ }^{32.17 L T}$	14.8	3.6	0.58	1053.46	1054.92
	$514+00.00$ $515+00.00$	1050.28 1045.87	${ }_{\text {cke }}^{32.844 T}$	$\stackrel{16.5}{18.1}$	3.2	${ }_{0}^{0.65}$	1050.93	1051.40
${ }_{\text {D RM1826_5-2 }}$ Q $5=18.11$ CFS	$528+00.00$	1054.39			4.0			1050
	527+00.00	1054.69	34.67 LT	1.5	2.7	2.61	1057.30	1057.39
	$526+00.00$	1054.20	35.63 LT	3.0				
	$525+00.00$	1054.49	31.48 LT	4.5	-	.	.	.
	$524+00.00$	1053.22	33.19LT	6.0	-	-		
	$523+00.00$	1052.53	33.11LT	7.5	-	-		
	522+00.00	1051.98	331.98 LT	9.1	-	-	.	
	${ }^{521+00.00}$	10551.83	${ }^{27.82 L T}$	10.6	-	-	-	
	$520+00.00$	1050.62	${ }^{31.36 L T}$	12.1	-	-	.	
	519+00.00	1049.43	332.17 LT	13.6	-	-		
	518+00.00	1048.27	33.36LT	15.1	-	-	.	
	517+00.00 $516+0.00$	10488.30 1045	${ }^{32.36 L T}$	16.6 18.1	-	-	.	
	506+00.00	1072.69	27.46 RT	21.3	4.9	1.21	1073.90	1074.69
	507+00.00	1070.10	28.04 RT	31.5	5.3	1.40	1071.50	1072.10
	$508+00.00$	1067.66	${ }^{27.47 \mathrm{RT}}$	41.7	5.6	1.57	1069.23	1069.66
	509+00.00	1065.06	27.77 RT	51.8	6.1	1.68	1066.74	1067.30
$\begin{aligned} & D_{D} \text { RM1826.5-1E } \\ & Q 5=62.0 \subset C F \end{aligned}$	$510+00.00$	1061.56		62.0	8.3	1.38	1062.94	1064.85
	$511+00.00$	1059.92	${ }^{27.37 .3 \mathrm{RT}}$					
	512+00.00	1056.34	${ }^{27.54 R T}$	15.5	5.1	1.04	${ }^{1057.38}$	1058.66
	$513+00.00$ $514+0000$	1052.40 10500 1	27.70 RT	31.0 465	${ }_{5}^{6.0}$	1.22	1053.62	${ }^{1054.96}$
	$515+00.00$	${ }_{1}^{1046.11}$	-RT	62.0		${ }_{1}^{1.60}$	${ }_{1078}^{1051.60}$	1052.30 1050.74
	$529+00.00$	1054.94	27.38 RT	6.6	0.7	${ }_{1} 1.15$	1056.09	1056.44
	$528+00.00$	1054.40	27.59 RT	8.8	1.7	0.82	1055.22	1056.40
	$524+00.00$	1052.84	27.49 RT	17.5	2.1	1.06	1053.90	1054.34
	$523+00.00$	1052.17	27.66 RT	19.7	2.3	1.07	1053.24	1053.67
	522+00.00	1051.28	${ }^{27.238 \mathrm{RT}}$	21.9	2.6	1.06	1052.34	1052.78
	${ }^{521+00.00}$	${ }^{1050.41}$	${ }^{27.68 \mathrm{RT}}$	24.1	2.6	1.10	1051.51	${ }^{1051.91}$
	$519+00.00$ $518+0000$	${ }^{1049.15}$	27.37 RT	28.4	2.7	${ }^{0.86}$	1050.01	1050.26 1049
	517+00.00	1048.41	${ }_{27}^{27.71 \text { RT }}$	32.8	1.4	1.36	1049.77	1049.91

dITCHID	station (STA)	FLOWLINE ELEVATION (FT)	OFFSET (LTRT) (fT)	DESIGN DISCHARGE ' Q ' (Cr)		DITCH FLOW DEPTH ' ${ }^{\prime}$ ' (FT)	DS WATER SURFACE (FT)	MAX WATER SURFACE ELLEV (FT)
TOWERING CEDAR DR - CL RM 1826_5								
$\begin{aligned} & D . R M 1826.5-4 \\ & Q 5=9.1 \mathrm{CFS} \end{aligned}$	$528+00.00$	1054.39	33.08 LT	1.8	1.1	0.65	1055.04	1057.18
	529+00.00	1054.09	33.90 LT	3.6	1.3	0.84	1054.93	1057.07
	530+00.00	1053.79	${ }^{30.355 T}$	5.4	1.4	${ }^{0.98}$	1055477	${ }_{1}^{1055.87}$
	$531+00.00$	1052.48	28.50 LT	7.3	2.7	0.87	1053.35	1056.62
	$532+00.00$	1053.85	23.61LT	9.1				
	$546+00.00$	1079.39	31.05 LT	0.9	1.8	0.35	1079.74	1081.15
	$545+00.00$	1076.98	${ }^{32.62 L T}$	1.8	2.3	0.43	1077.41	1079.14
	$544+00.00$	1075.04	31.58 LT	2.6	2.4	0.53	1075.57	1076.93
	$543+00.00$	1073.09	30.65 LT	3.5	2.6	0.59	1073.68	1074.75
	$542+00.00$	1070.59	30.62 LT	4.4	3.0	0.61	1071.20	1072.34
	541+00.00	1068.08	28.72 LT	5.3	3.1	0.65	1068.73	1069.82
	$540+00.00$	1065.59	26.07 LT	6.2	3.2	0.69	1066.28	1067.12
	539+00.00	1062.09	${ }^{27.55 L T}$	7.0	3.8	0.68	1062.77	1064.44
	$538+00.00$	1059.59	25.75LT	7.9	3.4	0.76	1060.35	1061.95
$\begin{aligned} & \text { DRM1 } 1226.5-3 \\ & Q 5=387.0 \subset F S \end{aligned}$	${ }^{5377+00.00}$	1057.57	${ }^{27.46 \text { RT }}$	8.8	3.0	0.65	1057.96	1059.54
	$536+70.00$	1056.90	27.42RT	9.1	3.1	0.65	1057.25	1058.82
	$542+00.00$	1070.27	${ }^{28.46}$ RT	139.9	6.6	1.96	1072.23	1072.52
	541+00.00	1067.75	${ }^{28.23 \mathrm{RT}}$	186.5	6.9	1.82	1069.57	1069.75
	$540+00.00$	1065.18	27.87 RT	233.1	7.4	1.99	1067.17	1067.18
	$539+00.00$	1062.01	27.68 RT	279.8	8.7	2.17	1064.18	1064.51
$\begin{aligned} & D R M 1826.5-5 \\ & Q 5=5.0 \quad C F S \end{aligned}$	552+00.00	1076.38	28.32 RT	3.2	2.4	0.47	1076.85	1078.38
	$553+00.00$	1073.90	${ }^{28.208 T}$	3.7	2.6	0.49	1074.39	1075.90
	$554+00.00$ $555+0000$	1071.41 106889	$\underset{\text { 27.89RT }}{27 \mathrm{7LT}}$	4.3	2.7	0.52	1071.93	1073.41
	555+00.00 $552+0.00$	${ }_{1}^{1068.89}$		4.8	2.8	0.54	${ }_{1}^{1069.43}$	1070.89
	${ }^{552+00.00}$	${ }^{10767.38}$	28.32RT	9.8	3.4	0.69	1077.07	1078.38
	$553+00.00$	1073.90	28.2 RT	12.2	3.5	0.76	1074.66	1075.90
	554+00.00 $555+00.00$	1071.41 1068.89	$\underset{\text { 27.89 RT }}{27.74 \mathrm{RT}}$	14.7 17.1	3.7 3.8	${ }_{0}^{0.82}$	1072.23 1069.76	1073.41 1070.89

notes:

1. USE ROUGH COEFFICIENT ' n ' $=0.030$ AND
GRASS DTCH LINNG UNLESS NOTES OTHR
GRIISE.

CONCRETE DTTCH LNING.
2. THESEDITCCH TABLLES ARE FOR A 5-Yr FREQUENCY
3. MAX WATER SURFACE ELEVATION IS BASED ON THE

Texas Department of Transportation			
RM 1826 DITCH TABLE			
SHEET 2 OF 2			
cowr	ster	Ios	
0914	33	097,JETC.	RM 1826
$\frac{\text { ost }}{\text { OUS }}$		cownr	Sterer wo.

TEMPORARY SPECIAL SHORING

FOR CULVERTS WHERE COVER BETWEEN TOP OF
PIIPE OR BOX AND BOTOM OF FAVEMENT ISLESS THAN 1:
CEMENT STABILIZED BACKFILL DETAIL

CULVERT LENGTHENING DETAIL

MISCELLANEOUS DRAINAGE DETAILS

CROSS PIPE LENGTHS AND PIPE RUNNER LENGTHS (1) (2)

ESTIMATED CONCRETE RIPRAP QUANTITIES (CY) ${ }^{(5)}$												
$\begin{array}{\|c} \text { Nominal } \\ \text { Culvert I.D. } \end{array}$	3:1 Side Slope				4:1 Side Slope				6:1 Side Slope			
	$0^{\circ} \mathrm{Skew}$	$15^{\circ} \mathrm{skew}$	$30^{\circ} \mathrm{Skew}$	$45^{\circ} \mathrm{Skew}$	0° Skew	${ }^{15^{\circ} \mathrm{Skew}}$	$30^{\circ} \mathrm{Skew}$	45° Skew	0° Skew	${ }^{15^{\circ} \mathrm{Skew}}$	$30^{\circ} \mathrm{Skew}$	$45^{\circ} \mathrm{Skew}$
${ }^{12^{\prime \prime}}$	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.6	0.7	0.7	0.7	0.8
$15^{\prime \prime}$	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.9
$18^{\prime \prime}$	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.8	0.8	0.8	0.9	1.0
$21^{\prime \prime}$	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.9	0.9	0.9	1.0	1.2
$24^{\prime \prime}$	0.6	0.7	0.7	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.1	1.3
$27^{\prime \prime}$	0.7	0.7	0.8	0.9	0.8	0.9	0.9	1.1	1.1	1.1	1.2	1.4
$30^{\prime \prime}$	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.2	1.2	1.2	1.3	1.6
$33^{\prime \prime}$	0.8	0.8	0.9	1.0	1.0	1.0	1.1	1.3	1.3	1.4	1.5	1.7
$36^{\prime \prime}$	0.9	0.9	0.9	1.1	1.1	1.1	1.2	1.4	1.4	1.5	1.6	1.8
$42^{\prime \prime}$	1.0	1.0	1.1	1.3	1.2	1.3	1.3	1.6	1.6	1.7	1.8	2.1
$48^{\prime \prime}$	1.1	1.1	1.2	N/A	1.4	1.4	1.5	N/A	1.9	1.9	2.1	N/A
$54^{\prime \prime}$	1.3	1.3	N/A	N/A	1.6	1.6	N/A	N/A	2.1	2.1	N/A	N/A
$60^{\prime \prime}$	1.4	N/A	N/A	N/A	1.7	N/A	N/A	N/A	2.3	N/A	N/A	N/A

ISOMETRIC VIEW OF TYPICAL INSTALLATION
=
(1) Provide pipe runner of the size shown in the tables. Provide cross
pipe of the same size as the pipe runner. Provide cross pipe stub out and bottom anchor pipe of the nexter. smaller size pipe as shown
in the Standard Pipe Sizes and Max Pipe Runner Lengths table.
(2) This standard allows for the placement of only one pipe runner across each culvert pipe opening. In order to limit the clear
poening to be traversed by ha errant vehicle, the following

For $60^{\prime \prime}$ culvert pipes, the skew must not exceed 0°.
For 54° "ulvert pipes, the skew must not exceed 15°.
For $44^{\prime \prime}$.

Roadway Design Manual.
(3) Miter $=$ slope of mitered end of pipe culvert.
(4) Riprap placed beyond the limits shown will be paid for as concrete
riprap in accordance with Item 432, "Riprap".

Quantities shown are for one end of one reinforced concrete pipe (RCP)
culvert. For multiple pipe culverts or for corrugated metal pipe (CMP)

PLAN OF SKEWED
$\underline{\underline{\text { INSTALLATION }}}$

NoTE: The separate pipe runner shown is required
when Cross Pipe Connection Option Al is used. PIPE RUNNER DETAILS

(4) Riprap placed beyond the limits shown will be paid for as concrete
riprapo in accordance with Item 432,
(6) Recommended values of side slope are 3:1, 4.1., and 6.1. All quantities, calculations, and dimensions shown herein are
based or these reconmended values. Slope of $3: 1$ or flatter
ts required for vehicle safety
Note that actual slope of pipe runner may vary slightly
from side slope of riprap and trimmed culvert pipe edge.
(8) Ensure that riprap concrete does not flow into the cross
pipe so as to permit disassembly of the bolted connection
(0) anow creanout access.
(9) After installation, inspect the $1 / /$, hole to ensure that the lap
of the pipe runner with the bottom anchor pipe is adequate.
(10) At fabricator's option, a heat bend to a smooth $5^{\prime \prime}$ radius or a manufticulere ol low oo tor the same material ast the runner) ma
subtstituted for the mitered and welded joint in the bottom
anchor pipe.

OPTION B1

$-\frac{\text { Pipe culvert l.D. }}{\text { (nominal) }}-\frac{\text { Pipe culvert }}{\text { Spa } \sim G}$

MATERIAL NOTES
List (metic may be used in lieu of steel reinforcring in in riprap concrete
Lst MPL may be mite
unless oted otherwise.
Provide pipe runnes. cross pipes, and anchor pipes conforming to the
requir rements of ASTM A53 (Type E or S, Gr B), ASTM A500 Gr B,
or API 5 PX52.
Provide ASTM A307 bolts and nuts.
Gailuaize
Provide ASTM ABO7 bolts and nuts.
faarvanize all steel components, except concrete reinforcing, after
fabrication.
Repriation gavanizing damaded during transport or construction in
Recordance with the specificications.
GECORERAL With the s
Pipe runners are de signed for a traversing load of 1,800 pounds at yield
as recommended by Research Report 280-1, Safety Treatment of Rooadside

Safety end treatment.
Construct concrete riprap and all necessary inverts in accordance with

SHOWING TYPICAL PIPE
CULVERT AND RIPRAP

(2) See sheet PDD for corresponding wall thickness (W) of base unit or riser

DETAIL "A" Reinforcing not shown for clarity) When an apron is to be cast around
Ps, ses detail above co create an
apron ledge on all 4 sides.

FABRICATION NOTES:
 2. Provide

Compressive strength of of 5,000 in psi.

5. $\begin{aligned} & \text { reilifor or cem } \\ & \text { Seienf } \\ & \text { reinforcting }\end{aligned}$

Design tongue and groove joints for full closure on both shoulders. Minimu
spigot depth is
3
8. Provide lifting devices in conformance with Manufacturer's recommendations.

INSTALLATION NOTES:

1. Precast slab lids are intended for direct traffic and may be placed in roadwa).
 grouted no mor
is greater.
2. Do not grout rubber gasket joints without Manufacturer's recommendation
3. Initial Installation of grade adj justment rings for Styles
'RH' and 'SH' is limite
 greater than $2^{2-0^{\prime \prime}}$ with additional risers. Adjustments can be made up to Max depth shown on sheet PDD. Structure must be evaluated if Max depth will be
exceded

6. $\begin{array}{l}\text { exceeded. } \\ \text { orither diong dimension of grate slots perpendicular to traffic, unless noted } \\ \text { otherwise on platis }\end{array}$

general notes:

$$
\begin{array}{|c|}
\hline \text { Cover dimensions are clear dimensions, unless noted } \\
\text { otherwise. }
\end{array}
$$

\bigcirc				
	cour		\%es	Highar
	0914	33	097, ет.	RM 1826
	${ }_{0}^{0,15}$		cownr	Steer loe
	aus		Travis \& hars	157

\longleftarrow Lewis Mtn Dr $\frac{\perp}{4.5} 9 \frac{1}{4.5} 22.8-5-14.1 \frac{\perp}{5.3} 8.3-4.5$

D21-1TL_78×12;
1.5" Radius, $0.5 "$ Border, White on Green; Standard Arrow Custom 9.0" $\times 6.0^{\prime \prime} 180^{\circ}$;

५ Zyle Rd
${ }_{4.5} 9 \frac{1}{4.5}^{4.8} 54-\frac{1}{5.1} 9.2 \underset{4.9}{\square}$
D21-1TL_54×12;
$1.5^{"}$ Radius, 0.5 " Border, White on Green; Standard Arrow Custom 9.0" $\times 6.0^{\prime \prime} 180^{\circ}$; "Zyle Rd", ClearviewHwy-3-W;

4- Appaloosa Run
$\left\lvert\, \frac{1}{4.5} 9 \frac{11}{4.5}-44.8-\frac{11}{5.1} 14.8-\dagger_{7.3}\right.$
D21-1TL_90x12;
1.5" Radius, $0.5^{\prime \prime}$ Border, White on Green; "Appaloosa Run", ClearviewHwy-3-W.

\leftarrow Oso Creek Rd

${ }_{4.5}{ }^{9}{ }_{4.5}{ }^{15-}{ }_{3.8}-23.7-{ }_{3.8} 9.2{ }_{4.5}$
D21-1TL_78×12;
1.5" Radius, $0.5^{" 1}$ Border, White on Green; Standard Arrow Custom
"Oso", ClearviewHwy-3-W;
"Creek", ClearviewHwy-3-n,
Ra,
\leftarrow Woodland Dr

${ }^{\text {D21-1TL_84×12; }}$
1.5 " Radius, $0.5^{"}$ Border, White on Green; Standard Arrow Custom 9.0" $\times 6.0^{\prime \prime} 180^{\circ}$; "Woodland", ClearviewHyy-3-w
"Dr", ClearviewHwy-3-w;
Towering Cedar Dr
$\frac{1}{4.5} 9 \frac{1}{4.5}-39-\frac{1}{5.1}-24.2-\left.\frac{1}{4.9} 8.3\right|_{8.5}$
D21-1TL_108×12;
1.5" Radius, $0.5^{" \prime}$ Border, White on Green; Standard Arrow Custom $9.0^{\prime \prime} \times 6.0^{\prime \prime} 180^{\circ}$; "Towering Cedar Dr", ClearviewHwy-3-w;

Lewis Mtn Dr \rightarrow -

$\frac{1}{4.5} 22.8-5-14.1 \frac{1}{5.3} 8.3 \underbrace{}_{4.5} 9 \frac{1}{4.5}$

D21-1TR 78×12;
1.5" Radius, $0.5^{" ~ B o r d e r, ~ W h i t e ~ o n ~ G r e e n ; ~}$ "Lewis Mtn Dr", ClearviewHwy-3-W;
Standard Arrow Custom 90 " $\times 6.0$
Standard Arrow Custom 9.0" $\times 6.0^{\prime \prime} 0^{\circ}$;

Zyle Rd $\rightarrow{ }_{-\infty}^{{ }_{-\infty}^{\infty}{ }^{-}}$

$\frac{\square}{4.5} 16.8 \frac{\square}{5.1} 9.2 \underset{5.9}{\square} 9 \frac{1}{4.5}$
D21-1TR_54×12;
1.5" Radius, $0.5^{\prime \prime}$ Border, White on Green;
"Zyle Rd", ClearviewHwy-3-w
Standard Arrow Custom 9.0" $\times 6.0^{01} 0^{\circ}$

1.0" Radius, 0.0 " Border, White on Green;
"RM", ClearviewHwy-3-W;
"1826", ClearviewHw-3-W

Oso Creek Rd $\rightarrow{ }^{-{ }_{-\infty}^{(N)}}$

D21-1TR_78×12;
1.5" Radius, 0.5 " Border, White on Green;
"Oso", ClearviewHwy-3-W;
"Creek", ClearviewHwy-3-W
"Rd", ClearviewHwy-3-W;

D21-1TR 84×12;
${ }^{1.5 " \text { Radius, } 0.5^{\prime \prime} \text { Border, White on Green; }}$ "Woodland", ClearviewHwy-3-W

D21-1TR_108x12;
1.5" Radius, $0.5^{\prime \prime}$ Border, White on Green, "Towering Cedar Drr", ClearviewHwy-3-W;
Standard Arrow Custom $9.0^{\prime \prime} \times 6.0^{0} 0^{\circ}$.

Zyle Rd ${ }_{\sim}^{\sim}$

130
1.0" Radius, 0.0 " Border, White on Green Zyle", ClearviewHwy-3-w
"Rd", ClearviewHwy-3-w;

Lewis Mtn Dr ${ }_{\sim}^{\sim}$

D3-1_42x8;
1.0" Radius, 0.0 " Border, White on Green "Lewis Mtn", ClearviewHwy-3-W, "Dr", ClearviewHwy-3-w;

```
Oso Creek Rd N- =\mp@subsup{~}{~}{N+}
```



```
D3-1_42x8;
1.0" Radius, 0.0" Border, White on Green;
"Oso Creek", ClearviewHwy-3-W 50% spacing
"Rd", ClearviewHwy-3-W 50% spacing;
Woodland Dr F
L.5-28.3-42-3.2.5.5
D-1_42\times8;
1.0" Radius, 0.0" Border, White on Green;
Woodland", ClearviewHwy-3-W
"Dr", ClearviewHwy-3-w;
Towering Cedar Dr N- =
```



```
$3-1_48x8;
1.0" Radius, 0.0" Border, White on Green
"Towering Cedar", CleaviewHwy-2-W 50% spacing; "Sherf", CleavviewHwy-3-W.
"Shelf", ClearviewHwy-3-W;
"Rock", ClearviewHwy-3-w
```


SUMMARY OF SMALL SIGNS

SUMMARY OF SMALLSIGNS

CONCRETE ANCHOR

general notes:

1. SI ip bose sholl be permonently morked to indicote monufocturer. Method, des ign, ond locotion of 2. Moteriol used os onst iththis system sholl conform to the fol lowing specificotions: 10 BUC Tubing (2.875" outside diem
$0.1344^{\text {nominol woll }}$ whickness

70,000 PSI minimum tensi le strenth
20% min imum el ongot ion in $2 "$

$0.276 "$ noninol woll thickness
Steel tuoing per ASTM A500 Gr C

2. See the Troffic Operations Division website for detai led drow ings of sign clonps ond Texos
Universol Triongul or si indose System components. The weosi ite odoress is:

3. Sign supports sholl not be spl iced except where shown. Sign support posts sholl not be spli iced. assembly procedure
Foundot ion
4. Prepore 12 -inch diameter by 42 -inch deep hole. If sol id rock is encountered, the depth of the
foundotion moy De reeduced such thot it is is embedded 0 min
5. The Engineer moy permit tootches of concrete eess thon 2 cubic yords to be mixed wi th o port toole,

for th milite pushing it down into the concrete to ossure good contoct betwen the concrete ond stav.
cont inve to work the stuo into the concrete until it it is between 2 to 4 inches obove the ground.
6. Plumb the stub. Al ow o mininum of 4 doys to set, unless otherwise directed by the Engineer.
7. The triongul or slipoose system is mul tidirect ional ond is des inned to releose when struck from ony
dre
Support support so thot the bottom of the sign will be 7 to 7.5 feet obove the edge of the trovel woy

8. Attocont s
9. Attoch sign to support using connect ions show. when mult tiple sions ore instol led on the some support, ensure the minimm clea
clearonces bosed on

SM RD SCN ASSM TY Xxxxx(x) SA SX-Xxxx)

REQUIREMENTS FOR INDEPENDENT MOUNTED ROUTE SIGNS

SHEETING REQUIREMENTS		
USAGE	COLOR	SIGN FACE MATERIAL
BACKGROUND	WHITE	TYPE A SHEETING
BACKGROUND	ALL OTHERS	TYPE B OR C SHEETING
LEGEND \& BORDERS	WHITE	TYPE A SHEETING
LEGEND \& BORDERS	BLACK	ACRYLIC NON-REFLECTIVE FILM
LEGEND \& BORDERS	ALL OTHERS	TYPE B or C SHEETING

TYPICAL EXAMPLES

SHEETING REQUIREMENTS		
USAGE	COLOR	SIGN FACE MATERIAL
BACKGROUND	ALL	TYPE B OR C SHEETING
LEGEND \& BORDERS	WHITE	TYPE D SHEETING
LEGENDD, SYMBOLS \& BORDERS	ALL OTHERS	TYPE B OR C SHEETING

Lockhart
State Park

GENERAL NOTES
Signs to be furnished shall be as detoi led el sewhere in the plons ond/or os
shown on sign tobulotion sheet. Stondord sign designs ond orrow dimensions con be found in the "Stondard Highway sign Designs for Texos" (SHSD).
White legend shall use the Cleorview Alphobet. The following Clearview fonts shol) De used to reploce the existing white Federol Highwoy Admini istrot ion
(FHWA) Stondord Highwoy Alphooets, when not specified in the SHSD, or in the (FFWWA)
plons.

B	$\mathrm{CV}-1 \mathrm{~W}$
C	$\mathrm{CV}-2 \mathrm{~W}$
D	$\mathrm{CV}-3 \mathrm{~W}$
E	$\mathrm{CV}-4 \mathrm{~W}$
Emod	$\mathrm{CV}-5 \mathrm{FR}$
F	$\mathrm{CV}-6 \mathrm{~F}$

3. Route sign legend (ie. IH, US, SH and FM shie IdS) shal I use the Federal
Highwoy Administrotion (FHWA) Stondord Highwoy Alphobets B, C, D, E, Emod or F).
4. Loterol spocing between letters ond numerols shal conform with the SHSD,
ond ony opproved chonges thereto. Loterol spocing of legend sholl provide ond ony oporoved changes thereto. Loteral spoci
o boi lonced oppeor once when spacing is not shown.
5. Independent mounted route sign with white or colored legend and borders sholl be opplited by screening process with tronsporent col or ink, tronsporent
colored over loy film to wite bockround sheet ing or cut-out white shee ting
to cel to colored bockground sheeting, or combinotion thereof. White legend, symbols ond borders on ol other sig
colored bockground sheet ing.
6. Informotion regording borders ond rodi for signs is found in the "Stondord Highwoy Sign Desi igns for Texas". Dimens ions shown ond descr ibed for borders
ond corner rodi ond corner rodit on porent sion ore nominol. Borders moy vory in width os
much os $1 / 2$ inch. Corner rodi i obove 3 inches moy vory in width os much os inch. Borders ond corner radi it within o porent sign must be of motching
widths. The sign orea outside the corner rodius should be tr imed or rounded.
7. Sign substrote sholl be ony moter ial thot meets the Departmental Moter ial

Specification requirements of DMS-7110 or opproved oiternative.
8. Mounting details of roodside signs ore shown in the "SMD series" Stondord
Plon Sheets.

DEPARTMENTAL MATERIAL SPECIFICATIONS	
Aluminum SiGN blanks	DMS-7110
SIGN FACE MATERIALS	DMS-8300

ALUMINUM SIGN BLANKS THICKNESS	
Square Feet	Minimum Thickness
Less thon 7.5	0.080
7.5 to 15	0.100
Greoter then 15	0.125

$$
\begin{aligned}
& \text { The Stondord Highwoy Sign Designs for Texas (SHSD) } \\
& \text { con be found ot the fol liowing websi ite. } \\
& \text { http://www.txdot.gov/ }
\end{aligned}
$$

TYPICAL SIGN REQUIREMENTS

STORMWATER POLLUTION PREVENTION PLAN (SWP3):
This SWP3 has been developed in accordance with the TPDES Construction General Permit TXR150000 (CGP). The Texas Department of Transportation (TxDOT) ensures that project specifications include adequate best management practices (BMPs) for this project.
For all projects with any soil disturbing activities, TxDOT will maintain a SWP3 with all pertinent records, correspondence, environmental documents, etc. at the project field office. If no field office is available, then this SWP3 shall be kept in the appropriate TxDOT Area Office
This SWP3 is consistent with requirements specified in applicable stormwater plans and the projects environmental permits, issues, and commitments (EPICs). A copy of the CGP is included in Attachment 2.12 of the SWP3 binder.

1.0 SITE/PROJECT DESCRIPTION

1.1 PROJECT CONTROL SECTION JOB (CSJ):

0914-33-097 and 1754-02-030

1.2 PROJECT LIMITS:

From: NORTH OF LEWIS MOUNTAIN ROAD
To: SOUTH OF TOWERING CEDAR DRIVE
1.3 PROJECT COORDINATES:

BEGIN: (Lat) $30^{\circ} 12^{\prime 2} 28.01^{\prime \prime} \mathrm{N}$,(Long) $97^{\circ} 54^{\prime} 35.95^{\prime \prime} \mathrm{W}$
END: (Lat) $30^{\circ} 8^{\prime} 17.78^{\prime \prime} \mathrm{N}$,(Long) $98^{\circ} 0^{\prime} 15.12^{\prime \prime} \mathrm{W}$
1.4 TOTAL PROJECT AREA (Acres): 78.60

15 TOTAL AREA TO BE DISTURBED (Acres): 1.6 NATURE OF CONSTRUCTION ACTIVITY:

FOR THE CONSTRUCTION OF ADDING TURN LANES CONSISTING OF WIDENING, GRADING, STRUCTURES AND SURFACING

1.7 MAJOR SOIL TYPES:

Soil Type	Description
Crawford clay, Volente silty clay loam	Lewis Mountain Dr
Brackett-Rock outcrop complex, Crawtord clay, Eckrant very stony clay	Zyle Rd
Brackett-Rock outcrop complex, Purves clay	Appaloosa Run
Brackett-Rock outcrop- Comfor complex, Comfort- Rock outcropo complex	Oso Creek Rd
Real-Comfort-Doss complex, Comfort-Rock outcrop complex	Woodland Dr and Shelf Rock Rd
Comfort-Rock outcrop complex, Doss sity clay	Towering Cedar Dr

1.8 PROJECT SPECIFIC LOCATIONS (PSLs): PSLs must be depicted on the Environmental Layout Sheets in Attachment 1.2 of this SWP3. PSLs may be identified during preconstruction meetings or during the construction process. Please choose from the options below:
\square PSLs determined during preconstruction meeting \square PSLs determined during construction
X No PSLs planned for construction

X No PSLs planned for construction	
Type	Sheet \#s

All off-ROW PSLs required by the Contractor are the Contractor's responsibility. The Contractor shall secure all permits required by local, state, federal laws for off-ROW PSLs. The contractor shall provide diagrams, areas of disturbance, acreage, and BMPs for all off-ROW PSLs within one mile of the project.

1.9 CONSTRUCTION ACTIVITIES:

(Use the following list as a starting point when developing the Construction Activity Schedule and Ceasing Record in Attachment 2.5.)
X Mobilization
X Install sediment and erosion controls
\square Blade existing topsoil into windrows, prep ROW, clear and grub X Remove existing pavement
X Grading operations, excavation, and embankment
X Excavate and prepare subgrade for proposed pavement widening
X Remove existing culverts, safety end treatments (SETs)
X Remove existing metal beam guard fence (MBGF), bridge rail
X Install proposed pavement per plans
X Install culverts, culvert extensions, SET
X Install mow strip, MBGF, bridge rail
Place flex base
X Rework slopes, grade ditches
Blade windrowed material back across slopes
X Revegetation of unpaved areas
X Achieve site stabilization and remove sediment and erosion control measures
Other: \qquad
Other:
Other:

1.10 POTENTIAL POLLUTANTS AND SOURCES

X Sediment laden stormwater from stormwater conveyance over disturbed area
X Fuels, oils, and lubricants from construction vehicles, equipment, and storage
Solvents, paints, adhesives, etc. from various construction activities
Transported soils from offsite vehicle tracking
X Construction debris and waste from various construction
activities
Contaminated water from excavation or dewatering pump-out water
X Sanitary waste from onsite restroom facilities
X Trash from various construction activities/receptacles Long-term stockpiles of material and waste
\square Other:

Other:

Other:
1.11 RECEIVING WATERS:
Receiving waters must be depicted on the Environmental Layout Sheets in Attachment 1.2 of this SWP3. Include Segment \# for receiving waters.

receiving waters.	Classified Waterbody
Tributaries	
SLAUGHTER CREEK	
BEAR CREEK	
ONION CREEK	

* Add (*) for impaired waterbodies with pollutant in ().

1.12 ROLES AND RESPONSIBILITIES: TXDOT

X Development of plans and specifications
X Submit Notice of Intent (NOI) to TCEQ (≥ 5 acres)
x Post Construction Site Notice
X Submit NOI/CSN to local MS4
X Perform SWP3 inspections
X Maintain SWP3 records and update to reflect daily operations X Complete and submit Notice of Termination to TCEQ X Maintain SWP3 records for 3 years

Other:

\square Other:
Other:
1.13 ROLES AND RESPONSIBILITIES: CONTRACTOR X Day To Day Operational Control X Submit Notice of Intent (NOI) to TCEQ (≥ 5 acres) X Post Construction Site Notice
X Submit NOICSN to local MS X Maintain schedule of major construction activities X Install, maintain and modify BMPs
X Complete and submit Notice of Termination to TCEQ
X Maintain SWP3 records for 3 years
\square Other:
\square Other:
\square Other:
1.14 LOCAL MUNICIPAL SEPARATE STORM SEWER SYSTEM (MS4) OPERATOR COORDINATION: MS4 Entity

SYSTEM (MS4) OPERATOR COORDINATION:

STORMWATER POLLUTION PREVENTION PLAN (SWP3)

STORMWATER POLLUTION PREVENTION PLAN (SWP3)

2.0 BEST MANAGEMENT PRACTICES (BMPs)

AND CONTROLS, INSPECTION, AND

MAINTENANCE

The Contractor shall be the responsible party for implementing he BMPs described herein and for complying with the SWP3 for control of erosion and sedimentation during day-to-day operations. The Contractor shall implement changes to this SWP3 approved by TxDOT within the times specified in this SWP3 or the CGP.
2.1 EROSION CONTROL AND SOIL

STABILIZATION BMPs:
T/P
\square Protection of Existing Vegetation
Vegetated Buffer Zones
Geotextiles
\square Mulching/ Hydromulching

- Soil Surface Treatments

Temporary Seeding
\checkmark Permanent Planting, Sodding or Seedin
\square Biodegradable Erosion Control Logs
\square Rock Filter Dams/ Rock Check Dams
\checkmark Vertical Tracking
Interceptor Swale
\checkmark Riprap
Diversion Dike
Temporary Pipe Slope Drain
\square Embankment for Erosion Contro
\square Paved Flumes
$\square \square$ Other:
\square Other:
Othe \qquad
\qquad
2.2 SEDIMENT CONTROL BMPs:

T/P
\square Biodegradable Erosion Control Logs
\square Dewatering Controls
$\checkmark \square$ Inlet Protection
$\checkmark \square$ Rock Filter Dams/ Rock Check Dams
\square Sandbag Berms
$\checkmark \square$ Sediment Control Fence
$\checkmark \square$ Stabilized Construction Exit
$\square \square$ Floating Turbidity Barrier
\square Vegetated Buffer Zones
\square Vegetated Filter Strips
$\square \square$ Other: \qquad
\square Other
Other
Other

Refer to the Environmental Layout Sheets/ SWP3 Layout Sheets
ocated in Attachment 1.2 of this SWP3

Sediment control BMPs requiring design capacity calculation (See SWP3 Attachment 1.3):

T/P
Sediment Trap
Calculated volume runoff from 2-year, 24 -hour storm for each acre of disturbed area
3,600 cubic feet of storage per acre drained
$\square \square$ Sedimentation Basin
Not required (<10 acres disturbed)
Required (>10 acres) and implemented
Calculated volume runoff from 2-year, 24-hour storm for each acre of disturbed area
3,600 cubic feet of storage per acre drained
Required (>10 acres), but not feasible due to:
\square Available area/Site geometry
Site slope/Drainage patterns
Site soils/Geotechnical factors
Public safety
Other: \qquad
2.3 PERMANENT CONTROLS:
(Coordinate post-construction BMPs with appropriate TxDOT maintenance sections.)
BMPs To Be Left In Place Post Construction:

Type	Stationing	
	From	To
VEGETATIVE FILTER STRIPS	$133+50$	$137+00$
VEGETATIVE FILTER STRIPS	$133+50$	$134+52$
VEGETATIVE FILTER STRIPS	$143+00$	$150+20$
VEGETATIVE FILTER STRIPS	$183+00$	$192+60$
VEGETATIVE FILTER STRIPS	$232+00$	$236+75$
VEGETATIVE FILTER STRIPS	$239+50$	$244+20$
VEGETATIVE FILTER STRIPS	$240+00$	$241+75$
VEGETATIVE FILTER STRIPS	$246+90$	$248+10$
VEGETATIVE FILTER STRIPS	$273+69$	$277+00$
VEGETATIVE FILTER STRIPS	$503+90$	$506+35$
VEGETATIVE FILTER STRIPS	$506+35$	$509+73$
VEGETATIVE FILTER STRIPS	$506+35$	$503+90$
VEGETATIVE FILTER STRIPS	$511+00$	$512+60$
VEGETATIVE FILTER STRIPS	$516+75$	$519+32.27$
VEGETATIVE FILTER STRIPS	$520+71.75$	$525+00$
VEGETATIVE FILTER STRIPS	$527+00$	$529+98$
VEGETATIVE FILTER STRIPS	$537+00$	$541+80$
VEGETATIVE FILTER STRIPS	$551+60$	$555+35$
Refer to the Water Qualily Layout		

2.4 OFFSITE VEHICLE TRACKING CONTROLS:

\checkmark Excess dirt/mud on road removed daily
\checkmark Haul roads dampened for dust control
\checkmark Loaded haul trucks to be covered with tarpaulin
\checkmark Stabilized construction exit
\square Other: \qquad
Other: \qquad
Other:
Other:

2.5 POLLUTION PREVENTION MEASURES

\square Chemical Management
\checkmark Concrete and Materials Waste Management
\checkmark Debris and Trash Management
r Dust Control
Sanitary Facilities
Other:

Other:

Other:
Other:

2.6 VEGETATED BUFFER ZONES:

Natural vegetated buffers shall be maintained as feasible to protect adjacent surface waters. If vegetated natural buffer zones are not feasible due to site geometry, the appropriate additional sediment control measures have been incorporated into this SWP3.

Type	Stationing	
	From	To

2.7 ALLOWABLE NON-STORMWATER DISCHARGES:

X Fire hydrant flushings

X Irrigation drainage
X Pavement washwater (where spills or leaks have not occurred and detergents are not used)
X Potable water sources
X Springs
X Uncontaminated groundwater
X Water used to wash vehicles or control dust
X Other allowable non-stormwater discharges as allowed by TPDES GP TXR150000.

2.8 INSPECTIONS:

All disturbed areas and erosion and sediment control devices shall be inspected at least once every seven (7) days. Inspections shall be performed by TxDOT as indicated on the Field Inspection and Maintenance Report Form 2118 and retained in Attachment 2.5 of this SWP3

2.9 MAINTENANCE:

Control measures shall be properly installed according to specifications. If it is determined that a BMP or control measure is not operating effectively, maintenance must be accomplished as soon as possible and before the next anticipated rain event, but in no case later than 7 calendar days after being able to access the site. Maintenance shall be performed by the Contractor as indicated on the Field Inspection and Maintenance Report Form 2118 and retained in Attachment 2.5 of this SWP3

STORMWATER POLLUTION PREVENTION PLAN (SWP3)

STORMWATER POLLUTION PREVENTION-CLEAN WATER ACT SECTION 402 TPDES TXR 150000: Stormwoter Dischorge Permit or Construction Cenerol Permit reauired for projects with 1 or more ocres disturbed soil. Projects with ony I tem 506.
List MS4 Operator (s) that may receive dischorges from this project.
they may need to be notified prior to construction octivities.
\square No Action Required Required Action
Action No.
Prevent stormwater pollution by controlling erosion ond sedimentation in
occordonce with TPDES Permit TXR 150000
2. Comply with the SW3P ond revise when necessory to control pollution or
reauired by the Engineer.
3. Post Construction Site Notice (CSN) with SW3P informotion on or near
the site, occessible to the public ond TCEQ, EPA or other inspectors.
4. When Controctor project specific locotions (PSL's) increose disturbed soi

il. WORk IN or near streams, waterbodies and wetlands clean water

 USACE Permit raires for filling, aredging excovating or other work in USACE Permit required for filling, dredging, excovoting or owoter bodies, r ivers, creeks, streoms, wet 1 londs or wet oreas. The Controctor must oanere to all of the terms and conditions ossocioted with the following permit(s):
(7) No Permi + Required
\square Notionwide Permit 14-PCN not Required (less thon 1/10th ocre woters or ,
[Notionwide Permit 14 - PCN Required (1/10 to <1/2 ocre, $1 / 3$ in tidal woters \square Individual 404 Permit Required
\square Other Notionwide Permit Required: NW

Required Actions: List woters of the US permit opplies to, locotion in project ond check Best Monogement Proctices plonned to control erosion, sedimentotion
2.
3.

The elevotion of the ordinory high woter marks of ony oreas requir ing work to be performed in the woters of the US
permit con be found on the Bridge Loyouts.

Best Monogement Proctices

Erosion	Sedimentation	Post-Construction TSS
\square Tenmorory Vegetotion	\square Silt Fence	\square vegetotive Filter Strips
\square Blonkets/Motting	\square Rock Berm	\square Retention/Irrigotion Systens
\square Mulch	\square Triongulor Filter Dike	\square Extended Detention Bosin
\square sodding	\square Sond Bog Berm	\square Constructed Wetionds
\square Interceptor Swole	\square Strow Bole Dike	\square wet bosin
\square Diversion Dike	\square Brush Berms	\square Erosion Control Compost
\square Erosion Control Compost	\square Erosion Control Compost	\square Muich Fil ter Berm ond Socks
\square Mulch Filter Berm ond Socks	\square Mulch Filiter Berm ond Socks	\square Compost fil ter Berm ond
\square Compost Filiter Berm ond Socks	\square campost fil ter Berm ond Socks	\square vegetotion Lined Ditch
	\square Stone Outlet Sediment Irops	\square Sond fil
	\square Sediment Bosins	\square crossy Swo les

work moy not remove octive nests from bridges ond other structures dur ing work moy not remove oct ive nests from bridges ond other structures dur ing
nest ing seoson of the birds ossocioted with the nests. If coves or sinkholes ore discovered, cease work in the immediote orea, ond contoct the

 LIS

st of abbreviations

 itHeol th Services
otion
swer System

vi. hazardous materials or contamination issues

 Generol (opplies to oll projects):Comply with the Hozord Communication Act (the Act) for personnel who will de working with hozordous moter iols by conduct ing sofety meet ings pr ior to beginning construction ond
moking workers owore of potentiol hozords in the workoloce, Ensure that provided with personal protective equipment appropriote for ony hozardous moteriols used, obtain and keep on-site Moterial Safety Data Sheets (MSDS) for all hozordous products used on the project, which may include, but ore not 1 imited to the following cotegor ies: Points, ocids, solvents, osphalt products, chemical odditives, fuels ond concrete cur ing compounds or odditives. Provide protected storoge, off bore ground ond covered, for
products which may be hozordous. Mointain product lobell ing os required by the Act.
Mointain on odequate supply of on-site spill response moteriols, as indicoted in the MSD. In the event of o spill, toke octions to mitigote the spill os indicoted in the MSDS, immediately. The controctor sholl be responsible for the proper containment ond cleanup of oll product spills.
Contact the Engineer if ony of the following ore detected:

* Deod or distressed vegetotion (not identified os normal)
* Unces irole 1 es smells, or odors.
* Evidence of leaching or seepage of substances

Does the project involve ony oridge closs structure renobilitation or
locements (bridge closs structures not including box culverts)
If "No", then no further oction is reauired
If "Yes", then TxDOT is responsible for como \square yes $\quad \square$ No
If "Yes", then TxDOT must retain a DSHS II censed osbestos consultant to ossist with octivities os necessory.
The notification form to DSHS must be postmarked of leont wivkes as necessory. she holificotion

If "No", then TxDOT is still required to notify DSHS 15 working days prior to ony In either cose, the controctor is responsible for providing the date(s) for obotement octivities ond/or demol i ition with coreful coordination between the Engineer ond
osbestos consultont in order to minimize construction deloys ond subsequent claims.
Any other evidence indicoting possible hozordous moterials or contaminotion discovered on site. Hozordous Moterials or Contamination Issues Specific to this Project:
V No Action Required
\square Required Action

Action No.
2.
II. OTHER ENVIRONMENTAL ISSUES

\square No Action Required $\quad \square$ Required Action
Action No.
${ }^{2}$

ENVIRONMENTAL PERMITS ISSUES AND COMMITMENTS EPIC

1. REEER TO SW3P STANDARD SHEETS FOR DETALLS.
2. INSTALLED MEASURES SHALL REMAIN IN PLACE AND SHALL BE MAINTANED THROUGHOUT DURATION OFTH
CONSTITION IN THIS AREA OR AS DIRECTED
OHE THE ENGINEER.
3. SW3P MEASURES SHOWN ARE MINIUUM REEUIREMENTS

$+\infty$
$=\frac{-5}{7}$

GRM 18263 STA 231+55.00 EEGIN WIDENNG
BEGIN TOM OVERLAY
竍

EXISTROW - PT

3. SW3 P MEASURES SHOWN ARE MINIMM REOUIREMENTS MEASURES WROJECT DESIGN. MSTALLLATONOF OF SW

notes:

1. REFER TO SW3P STANDARD SHEETS FOR DETALLS
2. INTAALED MEASURES SHALL REMAIN IN PLLCE AND SHAL CONSTRUCTTON THRTHGHOUT AREA ORAS AS DIRECTED OF TH HE ENGINEER.
3. SW3P MEASURES SHOWN ARE MINIUUM REEUIREMENTS

The following TCEQ requirements (Form TCEQ-0592A, Rev. 7/15/15) are applicable to all work that disturbs 5 or more acres in the contributing zone of the Edwards Aquifer in Hays, Travis and/or Williamson Counties and must be adhered to by the Contractor and all Subcontractors:
. A written notice of construction must be submitted to the TCEQ regional office of least 48 hours prior to the start of ony ground disturbance or construction octivities. This notice must include the nome of the oporoved project;
the octivity stort dote
ne octivity stort dote; ond
the contoct informotion of the prime contractor
2. All controctors conducting reauloted octivities ossociated with this project should be provided with complete copies of the opproved Contribut ing Zone plan (CZP) ond the TCEQ letter
3. No hozordous substonce storoge tonk shall be installed within 150 feet of o woter supply source, distribution system, well, or sensitive feoture.
 speci ificotions. If inspections indicate a control has been used inoppo
in ploce until the disturbed oreas hove been permonently stobilized.
5. Any sediment that escopes the construction site must be collected ond properly disposed of before the next roin event to ensure it is not woshed into surfoce streams, sensitive feotures, etc,
6. Sediment must be removed from the sediment traps or sedimentation basins when it occupies 50% of the basin's design copacity
. Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from being discharged offsite,
8. All excovated material that will be stored on-site must hove proper EaS controls.
 inoctivity. If octivity will resume prior to the
meosures sholl be initioted os soon os possible.
10. The following records should be mointoined ond mode available to the TCEQ Upon request:
the dotes when constryction octivities tempororily or
the dotes when stobilizotion measures ore initioted.
11. The holder of ony opproved CZP must notify the oppropriote regionol office in writing ond obtain opproval from the executive director prior to initiating ony of the following
4. ony physical or operational modificotion of ony best management proctices (BMPs) or structure(s), including but not limited to temporary or permonent ponds, dams, berms, silt fences, and
ony chonge in the noture or chorocter of the reguloted octivity from thot which wos originolly opproved,

[^0]: Signature

[^1]: SPECIFITATIONS ADOPTED BY THE TEXAS DEPARTMENT OF
 TRANSPORTATION ON NOVEMBER 1 , 2 IA14 AND SPECIFICAT
 TRANSPORTATION ON NOVEMBER 1, 2 2014 AND SPECIITCCTITON ITEMS
 ISTED AND DATED AS FOLLOWS, SHALL GOVERN ON THIS PROJECT.

[^2]: (1) for contractor's infornation onl

