CONTRIBUTING ZONE PLAN

for

THE RANCH AT CALITERRA

ENHANCED MEASURES

Prepared For:
Mr. Greg Rich
CF CSLK Carter, LLC
12222 Merit Drive, Suite 1020
Austin, Texas 75251

Prepared By:
Quynn Dusek, P.E.
CARLSON, BRIGANCE \& DOERING, INC.
5501 West William Cannon Drive
Austin, Texas 78749
(512) 280-5160

Firm \# F3791

Carlson, Brigance $\& x$ Doering, Inc.
Civil Engineering * Surveying
CBD No. 5079
June 2023

TABLE OF CONTENTS

I. Edwards Aquifer Application Cover Page (TCEQ-20705)
II. Geologic Assessment
> Appendix A - Texas Commission on Environmental Quality Forms
Attachment A - Geologic Assessment Table
Attachment B - Stratigraphic Column
Attachment C - Narrative Description of Site Geology
Attachment D - Site Geologic Maps
> Appendix B - Photographic Log
III. Contributing Zone Plan Application (TCEQ-10257)
> ATTACHMENT A - Road Map
> ATTACHMENT B - USGS Quadrangle Map
> ATTACHMENT C - Project Narrative
A ATTACHMENT D - Factors Affecting Surface Water Quality
> ATTACHMENT E - Volume and Character of Stormwater
$>$ ATTACHMENT J - BMPs for Upgradient Stormwater
> ATTACHMENT K - BMPs for On-site Stormwater
> ATTACHMENT L - BMPs for Surface Streams
> ATTACHMENT M - Construction Plans
$>$ ATTACHMENT N - Inspection, Maintenance, Repair and Retrofit Plan
$>$ ATTACHMENT P - Measures for Minimizing Surface Stream Contamination
IV. Temporary Stormwater (TCEQ-0602)
> ATTACHMENT A - Spill Response Actions
> ATTACHMENT B - Potential Sources of Contamination
> ATTACHMENT C - Sequence of Major Activities
$>$ ATTACHMENT D - Temporary Best Management Practices and Measures
> ATTACHMENT F - Structural Practices
> ATTACHMENT G - Drainage Area Map
$>$ ATTACHMENT I - Inspection and Maintenance for BMPs
$>$ ATTACHMENT J - Schedule of Interim and Permanent Soil Stabilization Practices
V. Application Fee Form (TCEQ-0574)
VI. Agent Authorization Form (TCEQ-0599)
VII. Core Data Form (TCEQ-10400)
VIII. Water Quality Design
> Impervious Cover Calculations
> Water Quality Load Removal Calculations
> TSS Removal Spreadsheets
IX. Applicable Construction Plan Sheets
I. Edwards Aquifer Application Cover Page (TCEQ-20705)

Texas Commission on Environmental Quality Edwards Aquifer Application Cover Page

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with 30 TAC 213.

Administrative Review

1. Edwards Aquifer applications must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.
To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: http://www.tceq.texas.gov/field/eapp.
2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.
An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.
5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the Instructions to Geologists (TCEQ-0585 Instructions).

Technical Review

1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.
2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be
clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.
3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or will be denied. Please note that because the technical review is underway, whether the application is withdrawn or denied the application fee will be forfeited.
4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.
Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "MidReview Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available:

- If the technical review has begun your application can be denied/withdrawn, your fees will be forfeited, and the plan will have to be resubmitted.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.
If the application is denied/withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the affected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity Name: The Ranch at Caliterra					2. Regulated Entity No.:		
3. Customer Name: CF CSLK Carter, LLC					4. Customer No.:		
5. Project Type: (Please circle/check one)	New	Modification			Extension	Exception	
6. Plan Type: (Please circle/check one)		SCS	UST	AST	EXT	Technical Clarificatio	Optional Enhanced Measures
7. Land Use: (Please circle/check one)	Residential	Non-	esiden	tial	8. Si	(acres):	200.025
9. Application Fee:	\$8,000.00	10. P	erma	ent		Vegetated Fi Pond	trips \& Batch Detention
11. SCS (Linear Ft.):	N/A	12. A	ST/US	T (N	ks):	N/A	
13. County:	Hays	14.	aters	ned:		Onion Cree	

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:
http://www.tceq.texas.gov/assets/public/compliance/field ops/eapp/EAPP\%20GWCD\%2omap.pdf
For more detailed boundaries, please contact the conservation district directly.

Austin Region			
County:	Hays	Travis	Williamson
Original (1 req.)	-1	-	-
Region (1 req.)	$\underline{1}$	-	-
County(ies)	\ldots	-	-
Groundwater Conservation District(s)	__Edwards Aquifer Authority _Barton Springs/ Edwards Aquifer _ _ Hays Trinity __Plum Creek	Barton Springs/ Edwards Aquifer	NA
City(ies) Jurisdiction	__Austin __Buda __Dripping Springs __Mountain City __San Marcos __Wimberley __Woodcreek	__Austin __Bee Cave __Pflugerville _Rollingwood _Round Rock __Sunset Valley _West Lake Hills	__Austin __Cedar Park __Georgetown __Jerrell __Leander _Liberty Hill __Pflugerville _Round Rock

San Antonio Region					
County:	Bexar	Comal	Kinney	Medina	Uvalde
Original (1 req.)	-	-	-	-	-
Region (1 req.)	-	-	-	-	-
County(ies)	-	-	-	-	-
Groundwater Conservation District(s)	\qquad Edwards Aquifer Authority \qquad Trinity-Glen Rose	__Edwards Aquifer	__Kinney	_EAA __Medina	__EAA _Uvalde
City(ies) Jurisdiction	__Castle Hills __Fair Oaks Ranch __Helotes __Hill Country Village __Hollywood Park __S San Antonio (SAWS) __Shavano Park	__Bulverde __Fair Oaks Ranch __Garden Ridge __ New Braunfels _Schertz	NA	$\begin{aligned} & \quad \text { San } \\ & \text { Antonio ETJ } \\ & \text { (SAWS) } \end{aligned}$	NA

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.

Quynn Dusek, Carlson, Brigance, \& Doering, Inc.
Print Name of Customer/Authorized Agent

DupuDusik	6/14/2023
Signature of Customer/Authorized Agent	Date

II. Geologic Assessment

Geologic Assessment for the Approximately 200 acre

The Ranch at Caliterra, Dripping Springs, Texas

AUGUST 202

PREPARED FOR
CF CSLK CARTER LL

PREPARED BY
SWCA Environmental Consultants
Texas Board of Professional Geoscientists, Firm Registration No. 50159

GEOLOGIC ASSESSMENT FOR THE APPROXIMATELY 200-ACRE THE RANCH AT CALITERRA, DRIPPING SPRINGS, TEXAS

Prepared for
CF CSLK CARTER LLC
12222 Merit Drive
Suite 1020
Dallas, Texas 75

Prepared by
SWCA Environmental Consultants
Texas Board of Professional Geoscientists, Firm Registration No. 50159
4407 Monterey Oaks Boulevard
Austin, Texas 78749
(512) 476-089
www.swca.com

SWCA Project No. 73210

Augu t 2022

EXECUTIVE SUMMARY

On behalf of CF CSLK CARTER LLC, SWCA Environmental Consultants (SWCA) conducted a Geologic Assessment for the approximate 200 acre tract known as the Ranch at Caliterra located south of Onion Creek along Mount Gainor Road in the city of Dripping Springs, Hays County, Texas (Project Area). The purpose of the Geologic Assessment is to determine, to the extent feasible, the presence or lack of sensitive features to the Edwards Aquifer recharge zone.

Texas Administrative Code Title 30 Chapter 213 defines a sensitive feature as "a permeable geologic or manmade feature located on the recharge zone or transition zone where: a potential for hydrological interconnectedness between the surface and the Edwards Aquifer exists; and rapid infiltration to the subsurface may occur."

SWCA Environmental Consultants performed the Geologic Assessment in accordance with the Texas Commission on Environmental Quality's Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones (Rev. 10-01-04).

The project area overlies the Upper Glen Rose Limestone and is mapped entirely within Edwards Aquifer Contributing Zone. The Contributing Zone is the area or watershed where runoff from precipitation flows downgradient to the Recharge Zone of the Edwards Aquifer.

SWCA conducted the pedestrian survey on October 14, 2014, and June 9, 2022, where SWCA identified eight geologic features and three manmade features in bedrock. The eight geologic features consist of one cave, one solution cavity, and six non-karst closed depressions. The three manmade features in bedrock are wells associated with the rural residences on site.

The cave (F-12b) and solution cavity (F-2) are features where rapid infiltration to the subsurface may occur. However, due to their positioning in the Upper Glen Rose Limestone/Contributing Zone and their lack of a hydrological interconnectedness with the Edwards Aquifer, they do not meet the definition of a sensitive feature.

This Geologic Assessment revealed no sensitive features within the project area.

CONTENTS

1 Introduction
2 Methodology 3
3 Results.
3.1 Project Area Overview 5
3.2 Soils3.3 Geology7
3.4 Hydrogeologic Assessment3.5 Feature Descriptions3.5.1 Geologic Features9
3.5.2 Manmade Features in Bedrock
10
4 Conclusion
5 Literature Cited 11

Appendices

Appendix A. Texas Commission on Environmental Quality Forms

Attachment A - eologic Assessment Table
Attachment B - Stratigraphic Column
Attachment C - Narrative Description of Site Geology
Attachment D - Site Geologic Maps
Appendix B. Photographic Log

Figures
Figure 1. Project area location map. .. 4
Figure 2. Project area soils map.
Figure 3. Project area regional trend map.. 8

Tables

Table 1. Soil Units within the Project Area

1 INTRODUCTION

This narrative geologic assessment accompanies Texas Commission on Environmental Quality (TCEQ) Geologic Assessment Form TCEQ-0585 completed for the Ranch at Caliterra (project). The project area consists of approximately 2 acres located south of Onion Creek along Mount Gainor Road in the city of Dripping Springs, Hays County, Texas (Figure 1).

2 METHODOLOGY

Scientists from SWCA Environmental Consultants (SWCA) studied records pertaining to all reputed caves in the project area and gathered information related to documented caves in the project vicinity prior to conducting fieldwork. Relevant information sources included the following:

- Internal SWCA data
- Unpublished data related to SWCA et al. (2008)
- Environmental Systems Research Institute (ESRI) ArcGIS Online Map Services (2022)
- U.S. Geological Survey (USGS) Dripping Springs, Texas, 7.5-minute quadrangles (USGS 2019)
- Geologic maps (Barnes et al. 1981)

SWCA staff, including a Texas-licensed Professional Geoscientist (PG), conducted field surveys, hand excavations, and cave mapping. The pedestrian karst survey was conducted on October 14, 2014, and June 9, 2022.

The pedestrian survey was completed by walking parallel transects spaced approximately 30 to 50 feet apart, as directed by the TCEQ (2004) in the Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones (Rev. 10-01-04). Closer spacing was used where vegetation inhibited clear observation. SWCA scientists carefully examined all potential geologic features, including depressions, holes, and animal burrows, for subsurface extent evidence. SWCA used several techniques for this effort, including probing with a digging implement to determine the thickness and consistency of fill material and feeling for air flow that could indicate the presence of a sub-surface void space. Other techniques included recording notable features and site characteristics, such as vegetation types or semicircular burrow mounds produced by small mammal activity.

Figure 1. Project area location map.

3 RESULTS

3.1 Project Area Overview

The project area occurs within the Edwards Aquifer Contributing Zone (EACZ), which is west of, and is the surface water catchment area upgrade of the Edwards Aquifer Recharge Zone (EARZ) of the San Antonio segment of the Edwards Aquifer (TCEQ 2022). Topography within and surrounding the project area slopes from the north toward Onion Creek which is adjacent to the northern boundary of the project area. The elevation of the project area ranges from approximately 1,068 feet above mean sea level at the northern side of project area to 1,244 feet above mean sea level near the project area's southern extent.

The project area consists of mostly undeveloped land with two rural residences, their associated structures, and unimproved roadways that service the residences. Aside from two cleared areas for agricultural plantings, it appears that little vegetative manipulation has occurred in recent years. Onion Creek crosses the northern portion of the project area, flowing from west to east.

3.2 Soils

The Natural Resources Conservation Service (2022) identified eight soil units within the project area (Figure 2). Table 1 provides additional details for these soil units. Figure 2 depicts the locations of these soil units.

Table 1. Soil Units within the Project Area

Soil Unit	Symbol	Hydrologic Soil Group*	Drainage Class	Depth to Water Table (inches)
Comfort-Rock outcrop complex, 1 to 8 percent slopes	CrD	D	Well Drained	40+
Bolar clay loam, 1 to 3 percent slopes	BrB	C	Well Drained	80
Brackett-Rock outcrop-Comfort complex, 1 to 8 percent slopes	BtD	D	Well Drained	60
Tarpley clay, 1 to 3 percent slopes	TaB	D	Well Drained	60
Gruene clay, 1 to 5 percent slopes	GrC	D	Well Drained	60
Anhalt clay, 1 to 3 percent slopes	AnB	D	Well Drained	60
Real-Comfort-Doss complex, 1 to 8 percent slopes	RcD	D	Well Drained	40
Doss silty clay, moist, 1 to 5 percent slopes	DoC	D	Well Drained	80

Source: Natural Resources Conservation Service (2022).

* Group B - Soils had a slow infiltration rate when thoroughly wetted.

Group D - Soils had very slow infiltration rates when thoroughly wetted and exhibit the highest potential for runoff.

Figure 2. Project area soils map.

3.3 Geology

The project area occurs along the Edwards Plateau within the Edwards Aquifer Contributing Zone (TCEQ 2022). The Edwards Plateau is bounded by the Balcones Fault Zone (BFZ) to the south and east where structural down-warping occurred with the Gulf of Mexico's ancestral formation during the middle Tertiary. The earth's crust was stretched in response, and the BFZ formed along a zone of weakness, which currently marks the boundary between the Edwards Plateau and the Gulf Coastal Plain in central Texas. The BFZ is characterized by a series of northeast-trending, predominantly normal, nearly vertical, en echelon faults.

As depicted on Figure 3, there are no mapped faults within the project area (Barnes et al. 1981). The regional trend of the mapped faults within the area is approximately 45 degrees; therefore, any features within 15 degrees (a range from 30-60 degrees) will be awarded an additional 10 points on the geologic assessment table presented in Appendix A, Attachment A.

The Geologic Atlas of Texas, Llano Sheet (Barnes 1981) indicates that the project area is underlain by two geologic formations: Alluvium (Qal) and Upper Glen Rose Limestone (Kgru) (see Appendix A, Attachment D). SWCA finds the Barnes et al. (1981) interpretation of the geology to be generally accurate. The stratigraphic column is included in Appendix A, Attachment B. The following descriptions of these geological formations are from the Bureau of Economic Geology (Barnes et al. 1981):

- Qal: Gravel, sand, silt, and clay along streams and rivers; inundated regularly. Gravel is mostly limestone and chert. Along minor drainages, includes undivided low terrace deposits. Includes local bedrock outcrops that are undivided.
- Kgru: Limestone, dolomite, and marl in alternating resistant and recessive beds forming stairstep topography.

Figure 3. Project area regional trend map.

3.4 Hydrogeologic Assessment

Due to the presence of a cave and a solution cavity within the project area, the overall potential for fluid migration to the subsurface within the project area appears higher than background infiltration rates. The depth to water approximately 400 feet to the west of the project area has been measured at 180 feet below ground surface in nearby monitoring wells (State ID Nos. 34982) (Texas Water Development Board [TWDB] 2022) TWDB records show one well within the project area (State ID No. 57-56-477); however, there is no information related to depth to water. The northern portion of the project area is likely to have a shallower depth to water, as Onion Creek runs along the northern boundary of the project area. No groundwater was observed in the cave located within the project area. The gentle contours within the project area suggest runoff from rainfall reaching the undisturbed portions of the project area will continue downslope in the form of sheet flow until collected in Onion Creek.

Surface water entering the subsurface within the project area would recharge groundwater within the Upper Glen Rose Limestone, which comprises the Upper Trinity Aquifer. The Upper Trinity Aquifer is hydrostratigraphically lower than the Edwards Aquifer. The Edwards Aquifer does not exist at the project site because the Edwards Group has been eroded, exposing the underlying Upper Glen Rose Limestone.

Therefore, the geologic features identified at the project site appear to have the ability to transmit fluids into the subsurface, but the features do not have an interconnectedness with the Edwards Aquifer. Therefore, the features are not sensitive with respect to the Edwards Aquifer.

3.5 Feature Descriptions

SWCA scientists observed eight geologic features and two man-made features in bedrock within the project area. Seven of the eight features lie along a hillslope at the same elevation and strata of the Upper Glen Rose Limestone. Geologic features identified within the project area are described below and depicted in Appendix A, Attachment D; a photographic log for these features is provided in Appendix B.

3.5.1 Geo c Features

Feature F-2

Feature F-2 is a solution cavity within an outcrop of the upper member of the Glen Rose Limestone. The feature was originally identified by SWCA in 2014 and was reevaluated in 2022 by SWCA. The feature opening measures approximately 1.5 feet by 3 feet with a depth of approximately 3 feet. Positioned on hilltop, the feature has a small catchment area (<1.6 acres). Infill material within the feature consists of loose soil and rock. The potential for rapid infiltration into this feature is considered high (20 points). Because the feature does not have a potential for hydraulic interconnectedness with the Edwards Aquifer, the feature is not sensitive.

F-9, F-12a-F-12f

Features F-9, F-12a, F-12b, F-12c, F-12d, F-12e, and F-12f are geologic features that occur within a similar elevation and along an apparent fracture trend mapped within the upper member of the Glen Rose Limestone. The feature types include non-karst closed depressions and one cave (F-12b). The northern most feature is F-12a is located approximately 242 feet north of the southernmost feature (F-9) along what appears to be the same bedding plane/strata. In 2014, SWCA excavated some of the features to better understand their infiltration rates and potential for subsurface development. At feature F-12b, SWCA removed loose limestone cobbles and boulders intermixed with organic rich soils eventually
unearthing a narrow solution feature that qualifies as a cave. This cave ($\mathrm{F}-12 \mathrm{~b}$) is approximately 1 to 1.5 feet in diameter and extends into the ground approximately 6 feet. The floor of F-12b appears to be plugged with a clay lining; SWCA was unable to excavate further into the feature due to restricted access. Due to the narrow size/limited horizontal development of F-12b, a cave map was not prepared.

The strata in which these features are positioned is located along the upper limits of a hillside approximately 100 feet below the ridgeline at the northern limit and nearly 200 feet at the southern end. Because these features do not have a potential for hydraulic interconnectedness with the Edwards Aquifer, the features are not considered sensitive.

3.5.2 Manm de Features in Bedrock

Three wells were identified during the geologic assessment. One well (well \#5756477) was identified on TWDB well map viewer and was not observed in the field. The other two wells are associated with the onsite rural residences and appear to be functional. These wells should be brought to the attention of the project engineer; however, they do not warrant a protection buffer.

4 CONCLUSION

SWCA identified eight geologic features and three wells (manmade features in bedrock) during the geologic assessment of the Ranch at Caliterra. Seven of those features (F-9 and F-12a-f) appear to exist in the same bedding plane and include a small cave (F-12b). F-2 occurs by itself and is located along a hilltop.

The cave (F-12b) and solution cavity (F-2) are features where rapid infiltration to the subsurface may occur. However, due to their positioning in the Upper Glen Rose Limestone/Contributing Zone and their lack of a hydrological interconnectedness with the Edwards Aquifer, they do not meet the definition of a sensitive feature.

This Geologic Assessment revealed no sensitive features within the project area.

5 LITERATURE CITED

Barnes, V.E., Shell Oil Co., Boyer, R.E., Clabaugh, S.E., and Baker, E.T. 1981. The Geologic Atlas of Texas, Llano Sheet. University of Texas at Austin, Bureau of Economic Geology. Geologic Atlas of Texas 20, 1:250,000.

Environmental Systems Research Institute (Esri). 2022. Esri Map Services-ArcGIS Desktop, Version 10.6. Redlands, California: Environmental Systems Research Institute. Accessed April 2022.

Natural Resources Conservation Service. 2022. Soil Survey Geographic Database. Available at: http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. Accessed June 2022.

Texas Commission on Environmental Quality (TCEQ). 2004. Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones (Rev. 10-01-04). Austin, Texas.
—_ 2022. Edwards Aquifer Viewer, Version 4.1. Available at: https://tceq.maps.arcgis.com/apps/webappviewer/index.html?id=2e5afa3ba8144c30a49d3dc1ab4 9 edcd. Accessed June 2022.

Texas Water Development Board (TWDB). 2022 Groundwater data viewer. Available at: https://www2.twdb.texas.gov/apps/WaterDataInteractive/GroundwaterDataViewer/?map=sdr Accessed June 2022
U.S. Geological Survey (USGS). 2019. Topographic map, 1:24000 series, for the Dripping Springs, Texas, quadrangle.

APPENDIX A

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY FORMS

Geologic Assessment

Texas Commission on Environmental Quality

For Regulated Activities on The Edwards Aquifer Recharge/transition Zones and Relating to 30 TAC §213.5(b)(3), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Print Name of Geologist: Luke Rome, P.G. Telephone: $\underline{\underline{737.236 .4480}}$
Date: August 12, 2022
Fax: 512-47
Representing: SWCA Environmental Consultants; TBPG Firm Registration No. 50159 (Name of Company and TBPG or TBPE registration number)

Signature of Geologist:

Regulated Entity Name: Ranch at Caliterra

Project Informati

1. Date(s) Geologic Assessment was performed: $06 / 06 / 2022$ and 11/14/2014
2. Type of Project:
\square AS
3. Location of Project:Recharge Zone
\square Transition Zon
\square Contributing Zone within the Transition Zon
Project Area overlies the Contributing Zone
4. \triangle Attachment A - Geologic Assessment Table. Completed Geologic Assessment Table (Form TCEQ-0585-Table) is attached.
5. \boxtimes Soil cover on the project site is summarized in the table below and uses the SCS Hydrologic Soil Groups* (Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A, Soil Conservation Service, 1986). If there is more than one soil type on the project site, show each soil type on the site Geologic Map or a separate soils map.

Table 1 - Soil Units, Infiltration Characteristics and Thickness

Soil Name	Group*	Thickness(feet)
See Section 3.2		

* Soil Group Definitions (Abbreviated)
A. Soils having a high infiltration rate when thoroughly wetted.
B. Soils having a moderate infiltration rate when thoroughly wetted.
C. Soils having a slow infiltration rate when thoroughly wetted.
D. Soils having a very slow infiltration rate when thoroughly wetted.

6. \boxtimes Attachment B-Stratigraphic Column. A stratigraphic column showing formations, members, and thicknesses is attached. The outcropping unit, if present, should be at the top of the stratigraphic column. Otherwise, the uppermost unit should be at the top of the stratigraphic column.
7. \triangle Attachment C - Site Geolog . A narrative description of the site specific geology including any features identified in the Geologic Assessment Table, a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure(s), and karst characteristics is attached
8. \triangle Attachment D - Site Geologic Map(s). The Site Geologic Map must be the same scale as the applicant's Site Plan. The minimum scale is $1^{\prime \prime}: 400$

Applicant's Site Plan Scale: $1^{\prime \prime}=\underline{300}$
Site Geologic Map Scale: 1" = $\underline{300}$
Site Soils Map Scale (if more than 1 soil type): 1" = $\mathbf{1 , 0 0 0}^{\prime}$
9. Method of collecting positional data:

Ø Global Positioning System (GPS) technology.
\square Other method(s). Please describe method of data collection: \qquad
10. \boxtimes The project site and boundaries are clearly shown and labeled on the Site Geologic Map.
11. \boxtimes Surface geologic units are shown and labeled on the Site Geologic Map.
12. \boxtimes Geologic or manmade features were discovered on the project site during the field investigation. They are shown and labeled on the Site Geologic Map and are described in the attached Geologic Assessment Table.
\square Geologic or manmade features were not discovered on the project site during the field investigatio
13. \square The Recharge Zone boundary is shown and labeled, if appropriate.
14. All known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.): If applicable, the information must agree with Item No. 20 of the WPAP Application Section.

There are $\underline{2}$ (\#) wells present on the project site and the locations are shown and labeled. (Check all of the following that apply
\square The wells are not in use and have been properly abandoned.
The wells are not in use and will be properly abandoned.
The wells are in use and comply with 16 TAC Chapter 76.
\square There are no wells or test holes of any kind known to exist on the project site.

Administrative Information

15. \triangle Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.

Attachment A

Geologic Assessment Table

2A TYPE	
C	Cave
SC	Solution cavity
SF	Solution-enlarged fracture(s)
F	Fault
O	Other natural bedrock feature
MB	Manmade feature in bedrock
SW	Swallow hole
SH	Sinkhole
CD	Non-karst closed depression
Z	Zone, clustered or aligned fea

TCEQ-0585-Table (Rev. 10-01-04)

Attachment B

Stratigraphic Column

Attachment C

Narrative Description of Site Geology

Refer to Section 3.3 of this report for the geologic narrative description.

Attachment D

Site Geologic Maps

Geologic Assessment for the pproximately 211-acre Ranch at Caliterra Dripping Springs, Texas

Geologic Assessment for the Approximately 211-acre Ranch at Caliterra Dripping Springs, Texas

Figure D3: Site geologic map.
Geologic Assessment for the Approximately 211 acre Ranch at Caliterra Dripping Springs, Texas

APPENDIX B

PHOTOGRAPHIC LOG

Photo 1. View of Feature F-2.

Photo 2. View of Feature F-9.

Photo 3. View of Feature F-12a.

Photo 4. View of Feature F-12b.

Photo 5. View of the interior of F-1 b.

Photo 6. View of feature F-12c

Photo 7. View of the interior of F-12d

Photo 8. View of the interior of F-12e.

Photo 9. View of the interior of F-12f.
III. Contributing Zone Plan Application (TCEQ-10257)

Contributing Zone Plan Application

Texas Commission on Environmental Quality

for Regulated Activities on the Contributing Zone to the Edwards Aquifer and Relating to 30 TAC §213.24(1), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This Contributing Zone Plan Application is hereby submitted for TCEQ review and Executive Director approval. The application was prepared by:

Print Name of Customer/Agent: Quynn Dusek
Date: 6/13/23
Signature of Customer/Agent:

Regulated Entity Name: CF CSLK Carter, LLC.

Project Information

1. County: Hays
2. Stream Basin: Onion Creek
3. Groundwater Conservation District (if applicable): Hays Trinity
4. Customer (Applicant):

Contact Person: Gregory L. Rich
Entity: CF CSLK Carter, LLC
Mailing Address: 1222 Merit Drive, Suite 1020

City, State: Dallas, TX
Telephone: 972-960-2777
Zip: 75251
Fax: \qquad
Email Address: grich@siepiela.com
5. Agent/Representative (If any):

Contact Person: Quynn Dusek
Entity: Carlson, Brigance, \& Doering, Inc
Mailing Address: 5501 West William Cannon Drive
City, State: Austin, TX
Zip: 78749
Telephone: 512-280-5160
Fax: 512-583-0903
Email Address: quynn@cbdeng.com
6. Project Location:
\boxtimes The project site is located inside the city limits of Dripping Springs.
\square The project site is located outside the city limits but inside the ETJ (extra-territorial jurisdiction) of \qquad .
\square The project site is not located within any city's limits or ETJ.
7. \boxtimes The location of the project site is described below. Sufficient detail and clarity has been provided so that the TCEQ's Regional staff can easily locate the project and site boundaries for a field investigation.

Access road connects to Mt Gainor Road FM 220 at $30^{\circ} 10^{\prime} 39.4^{\prime \prime N} 98^{\circ} 07^{\prime} 28.8^{\prime \prime W}$
8. \boxtimes Attachment A-Road Map. A road map showing directions to and the location of the project site is attached. The map clearly shows the boundary of the project site.
9. \boxtimes Attachment B - USGS Quadrangle Map. A copy of the official $71 / 2$ minute USGS Quadrangle Map (Scale: $\mathbf{1 " ~}^{\prime \prime}=2000^{\prime}$) is attached. The map(s) clearly show:

இ
Project site boundaries.
USGS Quadrangle Name(s).
10. \triangle Attachment C - Project Narrative. A detailed narrative description of the proposed project is attached. The project description is consistent throughout the application and contains, at a minimum, the following details:

Area of the site
Ø Offsite areas
Impervious cover
XPermanent BMP(s)
Proposed site use
Site history
இPrevious development
Area(s) to be demolished
11. Existing project site conditions are noted below:
\square Existing commercial site
\square Existing industrial site
\boxtimes Existing residential site

Existing paved and/or unpaved roads

\squareUndeveloped (Cleared)Undeveloped (Undisturbed/Not cleared)
Other: \qquad
12. The type of project is:Residential: \# of Lots: 234Residential: \# of Living Unit Equivalents: \qquad
Commercial
Industrial
\square Other: \qquad
13. Total project area (size of site): $\underline{200.025}$ Acres

Total disturbed area: 168.97 Acres
14. Estimated projected population: $\underline{819}$
15. The amount and type of impervious cover expected after construction is complete is shown below:

Table 1 - Impervious Cover

Impervious Cover of Proposed Project	Sq. Ft.	Sq. Ft./Acre	Acres
Structures/Rooftops	952,500	$\div 43,560=$	21.867
Parking	557,804	$\div 43,560=$	
Other paved surfaces	$\div 43,560=$	12.805	
Total Impervious Cover	$1,510,304$	$\div 43,560=$	34.672

Total Impervious Cover $\underline{34.672} \div$ Total Acreage $\underline{200.025}$ X $100=\underline{17.33 \%}$ Impervious Cover
16.

Attachment D - Factors Affecting Surface Water Quality. A detailed description of all factors that could affect surface water quality is attached. If applicable, this includes the location and description of any discharge associated with industrial activity other than construction.
17. Only inert materials as defined by 30 TAC 330.2 will be used as fill material.

For Road Projects Only

Complete questions 18-23 if this application is exclusively for a road project.
】N/A
18. Type of project:
\square TXDOT road project.
County road or roads built to county specifications.
City thoroughfare or roads to be dedicated to a municipality.
Street or road providing access to private driveways.
19. Type of pavement or road surface to be used:Concrete
Asphaltic concrete pavement
Other: \qquad
20. Right of Way (R.O.W.):

Length of R.O.W.: \qquad feet.
Width of R.O.W.: \qquad feet.
LxW = \qquad $\mathrm{Ft}^{2} \div 43,560 \mathrm{Ft}^{2} /$ Acre $=$ \qquad acres.
21. Pavement Area:

Length of pavement area: \qquad feet.
Width of pavement area: \qquad feet.
$\mathrm{L} \times \mathrm{W}=$ \qquad $\mathrm{Ft}^{2} \div 43,560 \mathrm{Ft}^{2} /$ Acre $=$ \qquad acres.
Pavement area \qquad acres \div R.O.W. area \qquad acres $\times 100=$ \qquad \% impervious cover.
22. \square A rest stop will be included in this project.A rest stop will not be included in this project.
23. \square Maintenance and repair of existing roadways that do not require approval from the TCEQ Executive Director. Modifications to existing roadways such as widening roads/adding shoulders totaling more than one-half (1/2) the width of one (1) existing lane require prior approval from the TCEQ.

Stormwater to be generated by the Proposed Project

24. \boxtimes Attachment E - Volume and Character of Stormwater. A detailed description of the volume (quantity) and character (quality) of the stormwater runoff which is expected to occur from the proposed project is attached. The estimates of stormwater runoff quality and quantity are based on area and type of impervious cover. Include the runoff coefficient of the site for both pre-construction and post-construction conditions.

Wastewater to be generated by the Proposed Project

25. \boxtimes Wastewater is to be discharged in the contributing zone. Requirements under 30 TAC §213.6(c) relating to Wastewater Treatment and Disposal Systems have been satisfied.
\square N/A
26. Wastewater will be disposed of by:
\square On-Site Sewage Facility (OSSF/Septic Tank):
Attachment F - Suitability Letter from Authorized Agent. An on-site sewage facility will be used to treat and dispose of the wastewater from this site. The appropriate licensing authority's (authorized agent) written approval is attached. It states that the land is suitable for the use of private sewage facilities and will meet or exceed the requirements for on-site sewage facilities as specified under 30 TAC Chapter 285 relating to On-site Sewage Facilities.
\square Each lot in this project/development is at least one (1) acre (43,560 square feet) in size. The system will be designed by a licensed professional engineer or registered sanitarian and installed by a licensed installer in compliance with 30 TAC Chapter 285.

Sewage Collection System (Sewer Lines):
The sewage collection system will convey the wastewater to the Dripping Springs (name) Treatment Plant. The treatment facility is:

E Existing.
Proposed.N/A

Permanent Aboveground Storage Tanks(ASTs) ≥ 500

Gallons

Complete questions 27-33 if this project includes the installation of AST(s) with volume(s) greater than or equal to $\mathbf{5 0 0}$ gallons.

【N/A
27. Tanks and substance stored:

Table 2 - Tanks and Substance Storage

AST Number	Size (Gallons)	Substance to be Stored	Tank Material
1			
2			
3			
4			
5			

Total $\times 1.5=$ \qquad Gallons
28. \square The AST will be placed within a containment structure that is sized to capture one and one-half ($11 / 2$) times the storage capacity of the system. For facilities with more than
one tank system, the containment structure is sized to capture one and one-half ($11 / 2$) times the cumulative storage capacity of all systems.

Attachment G - Alternative Secondary Containment Methods. Alternative methods for providing secondary containment are proposed. Specifications showing equivalent protection for the Edwards Aquifer are attached.
29. Inside dimensions and capacity of containment structure(s):

Table 3 - Secondary Containment

Length (L)(Ft.)	Width(W)(Ft.)	Height (H)(Ft.)	L x W x H = (Ft3)	Gallons

Total: Gallons
30. Piping:All piping, hoses, and dispensers will be located inside the containment structure.Some of the piping to dispensers or equipment will extend outside the containment structure.
\square The piping will be aboveground
\square The piping will be underground
31.The containment area must be constructed of and in a material impervious to the substance(s) being stored. The proposed containment structure will be constructed of:
\qquad —.
32.Attachment H - AST Containment Structure Drawings. A scaled drawing of the containment structure is attached that shows the following:

\square	Interior dimensions (length
\square	Internal drainage to a poin
\square	Tanks clearly labeled
\square	Piping clearly labeled
\square	Dispenser clearly labeled

33. \square Any spills must be directed to a point convenient for collection and recovery. Spills from storage tank facilities must be removed from the controlled drainage area for disposal within 24 hours of the spill.
\square In the event of a spill, any spillage will be removed from the containment structure within 24 hours of the spill and disposed of properly.

In the event of a spill, any spillage will be drained from the containment structure through a drain and valve within 24 hours of the spill and disposed of properly. The drain and valve system are shown in detail on the scaled drawing.

Site Plan Requirements

Items 34-46 must be included on the Site Plan.

34. \boxtimes The Site Plan must have a minimum scale of 1 " $=400$ '.

Site Plan Scale: 1" = 100'.
35. 100-year floodplain boundaries:
\boxtimes Some part(s) of the project site is located within the 100-year floodplain. The floodplain is shown and labeled.
\square No part of the project site is located within the 100-year floodplain.
The 100-year floodplain boundaries are based on the following specific (including date of material) sources(s): \qquad .
36. \boxtimes The layout of the development is shown with existing and finished contours at appropriate, but not greater than ten-foot contour intervals. Lots, recreation centers, buildings, roads, etc. are shown on the site plan.

The layout of the development is shown with existing contours at appropriate, but not greater than ten-foot contour intervals. Finished topographic contours will not differ from the existing topographic configuration and are not shown. Lots, recreation centers, buildings, roads, etc. are shown on the site plan.
37. \boxtimes A drainage plan showing all paths of drainage from the site to surface streams.
38. \boxtimes The drainage patterns and approximate slopes anticipated after major grading activities.
39. \boxtimes Areas of soil disturbance and areas which will not be disturbed.
40. \boxtimes Locations of major structural and nonstructural controls. These are the temporary and permanent best management practices.
41. \boxtimes Locations where soil stabilization practices are expected to occur.
42. \boxtimes Surface waters (including wetlands).
\square N/A
43. \boxtimes Locations where stormwater discharges to surface water.
\square There will be no discharges to surface water.
44. \square Temporary aboveground storage tank facilities.

Temporary aboveground storage tank facilities will not be located on this site.
\square Permanent aboveground storage tank facilities.Permanent aboveground storage tank facilities will not be located on this site.
46. \boxtimes Legal boundaries of the site are shown.

Permanent Best Management Practices (BMPs)

Practices and measures that will be used during and after construction is completed.
47. \boxtimes Permanent BMPs and measures must be implemented to control the discharge of pollution from regulated activities after the completion of construction.
\square N/A
48. \boxtimes These practices and measures have been designed, and will be constructed, operated, and maintained to insure that 80% of the incremental increase in the annual mass loading of total suspended solids (TSS) from the site caused by the regulated activity is removed. These quantities have been calculated in accordance with technical guidance prepared or accepted by the executive director.

【 The TCEQ Technical Guidance Manual (TGM) was used to design permanent BMPs and measures for this site.
\square A technical guidance other than the TCEQ TGM was used to design permanent BMPs and measures for this site. The complete citation for the technical guidance that was used is: \qquad .
\square N/A
49. \triangle Owners must insure that permanent BMPs and measures are constructed and function as designed. A Texas Licensed Professional Engineer must certify in writing that the permanent BMPs or measures were constructed as designed. The certification letter must be submitted to the appropriate regional office within 30 days of site completion.
\square N/A
50. Where a site is used for low density single-family residential development and has 20% or less impervious cover, other permanent BMPs are not required. This exemption from permanent BMPs must be recorded in the county deed records, with a notice that if the percent impervious cover increases above 20% or land use changes, the exemption for the whole site as described in the property boundaries required by 30 TAC $\S 213.4(\mathrm{~g})$ (relating to Application Processing and Approval), may no longer apply and the property owner must notify the appropriate regional office of these changes.

ХThe site will be used for low density single-family residential development and has 20% or less impervious cover.
\square The site will be used for low density single-family residential development but has more than 20% impervious cover.
\square The site will not be used for low density single-family residential development.
51. The executive director may waive the requirement for other permanent BMPs for multifamily residential developments, schools, or small business sites where 20% or less impervious cover is used at the site. This exemption from permanent BMPs must be recorded in the county deed records, with a notice that if the percent impervious cover increases above 20% or land use changes, the exemption for the whole site as described in the property boundaries required by 30 TAC $\S 213.4(\mathrm{~g})$ (relating to Application Processing and Approval), may no longer apply and the property owner must notify the appropriate regional office of these changes.
\square Attachment I-20\% or Less Impervious Cover Waiver. The site will be used for multi-family residential developments, schools, or small business sites and has 20\% or less impervious cover. A request to waive the requirements for other permanent BMPs and measures is attached.
\square The site will be used for multi-family residential developments, schools, or small business sites but has more than 20% impervious cover.
邓 The site will not be used for multi-family residential developments, schools, or small business sites.
52. \square Attachment J - BMPs for Upgradient Stormwater.
\square A description of the BMPs and measures that will be used to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site is attached.
\square No surface water, groundwater or stormwater originates upgradient from the site and flows across the site, and an explanation is attached.
\boxtimes Permanent BMPs or measures are not required to prevent pollution of surface water, groundwater, or stormwater that originates upgradient from the site and flows across the site, and an explanation is attached.
53. \boxtimes Attachment K - BMPs for On-site Stormwater.

A description of the BMPs and measures that will be used to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff from the site is attached.
\square Permanent BMPs or measures are not required to prevent pollution of surface water or groundwater that originates on-site or flows off the site, including pollution caused by contaminated stormwater runoff, and an explanation is attached.
54. \boxtimes Attachment L - BMPs for Surface Streams. A description of the BMPs and measures that prevent pollutants from entering surface streams is attached.
N/A
55. \boxtimes

Attachment \mathbf{M} - Construction Plans. Construction plans and design calculations for the proposed permanent BMPs and measures have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer, and are signed, sealed, and dated. Construction plans for the proposed permanent BMPs and measures are
attached and include: Design calculations, TCEQ Construction Notes, all proposed structural plans and specifications, and appropriate details.
\square N/A
56.

Attachment \mathbf{N} - Inspection, Maintenance, Repair and Retrofit Plan. A site and BMP specific plan for the inspection, maintenance, repair, and, if necessary, retrofit of the permanent BMPs and measures is attached. The plan fulfills all of the following:
\boxtimes Prepared and certified by the engineer designing the permanent BMPs and measures
\square Signed by the owner or responsible party
Outlines specific procedures for documenting inspections, maintenance, repairs, and, if necessary, retrofit.Contains a discussion of record keeping procedures
\square N/A
57.Attachment 0 - Pilot-Scale Field Testing Plan. Pilot studies for BMPs that are not recognized by the Executive Director require prior approval from the TCEQ. A plan for pilot-scale field testing is attached.

め
N/A
58. \boxtimes

Attachment \mathbf{P} - Measures for Minimizing Surface Stream Contamination. A description of the measures that will be used to avoid or minimize surface stream contamination and changes in the way in which water enters a stream as a result of the construction and development is attached. The measures address increased stream flashing, the creation of stronger flows and in-stream velocities, and other in-stream effects caused by the regulated activity, which increase erosion that result in water quality degradation.

N/A

Responsibility for Maintenance of Permanent BMPs and Measures after Construction is Complete.

59. \triangle The applicant is responsible for maintaining the permanent BMPs after construction until such time as the maintenance obligation is either assumed in writing by another entity having ownership or control of the property (such as without limitation, an owner's association, a new property owner or lessee, a district, or municipality) or the ownership of the property is transferred to the entity. Such entity shall then be responsible for maintenance until another entity assumes such obligations in writing or ownership is transferred.
60. \boxtimes A copy of the transfer of responsibility must be filed with the executive director at the appropriate regional office within 30 days of the transfer if the site is for use as a multiple single-family residential development, a multi-family residential development,
or a non-residential development such as commercial, industrial, institutional, schools, and other sites where regulated activities occur.

Administrative Information

61. \boxtimes Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions.
62. \boxtimes Any modification of this Contributing Zone Plan may require TCEQ review and Executive Director approval prior to construction, and may require submission of a revised application, with appropriate fees.
63. \boxtimes The site description, controls, maintenance, and inspection requirements for the storm water pollution prevention plan (SWPPP) developed under the EPA NPDES general permits for stormwater discharges have been submitted to fulfill paragraphs 30 TAC §213.24(1-5) of the technical report. All requirements of 30 TAC §213.24(1-5) have been met by the SWPPP document.
\boxtimes The Temporary Stormwater Section (TCEQ-0602) is included with the application.

CZP APPLICATION

ATTACHMENT "A"

Road Map

ATTACHMENT A

THE RANCH AT CALITERRA

LOCATION MAP

SCALE: $1^{\prime \prime}=2,000^{\prime}$

CZP APPLICATION

ATTACHMENT "B" USGS Quadrangle Map

为

7.5-MINUTE TOPO, TX

CZP APPLICATION

ATTACHMENT "C" Project Narrative

1.0 GENERAL

The Ranch at Caliterra project is a 200.025 -acre proposed development consisting of 234 single family lots, located to the Northwest of existing Section 3-9 of the Caliterra Subdivision. This site is located in City of Dripping Springs' ETJ and is in Hays County. The project is in the HCDD No. 1 Municipal Utility District. The site is currently developed with a single-family residence and barn structures that are to be removed. Neighboring parcels are single family residences, cattle land, or buffer space to Onion Creek.

2.0 ORDINANCE STATUS

The project lies over the Edwards Aquifer Contributing Zone in Hays County and is subject to the TCEQ Contributing Zone regulations.

The project is proposed as a continuation of the Caliterra Subdivision and is subject to the Development Agreement between City of Dripping Springs and Development Solutions CAT, LLC, Owner of Caliterra Subdivision, recorded in Vol. 4978, Page 215, OPR of Hays County, Texas. The project is also subject to the Water Agreement between the developer and the Dripping Springs Water Supply Corporation.

3.0 ACCESS

Access to this project shall be from a continuation of existing Soaring Hill Drive within Section 3-9. The secondary access will be from a proposed intersection with Mount Gainor Road extending into the property. The local roadways in this subdivision comprise of 60^{\prime} R.O.W. consisting of 23 ' of pavement, 1.5^{\prime} ribbon curb, and bar ditches. The minor collector roadways comprises of 60^{\prime} R.O.W., consisting of 29^{\prime} of pavement, 1.5 ' ribbon curb, and bar ditches. The access drive from existing Caliterra 3-9 along HC Carter Way will be 15 ' face of curb to face of curb.

4.0 WATER QUALITY

This project is subject to the water quality provisions of the City of Dripping Springs TCSS manual and Hays County stormwater management standards. This project is subject to the water quality provisions of the Texas Commission on Environmental Quality (TCEQ) for the Edward's Aquifer Contributing Zone (CZP) with enhanced measures under RG-348A. The run-off from this project will be treated by natural and engineered vegetated filter strips as well as a water quality pond that meet the TSS removal rates. A CZP will be submitted to TCEQ. Erosion and sedimentation control BMPs will be installed to mitigate downstream affect from the development.

5.0 WATER AND WASTEWATER

The tract is within the City of Dripping Springs Water Supply Corporation water service area. The Ranch at Caliterra will utilize water services through existing water lines plugged at the boundary of the project which were provided in Phase 3 Section 11 subdivision construction.

Wastewater service is within the City of Dripping Springs wastewater system installed with the subdivision. A future design of a wastewater interceptor is proposed at the northernmost corner of the subdivision. The Ranch at Caliterra will utilize this line to service the subdivision. A portion of the lots will use a pressure system connect into the proposed gravity lines.

A treated effluent water line will be extended from Caliterra Phase 3 Section 9 into the subdivision to water the open spaces and parks.

6.0 SEDIMENTATION/EROSION CONTROL/TREE SURVEY

Sedimentation/erosion controls are required and will be in accordance with TCEQ Contributing Zone requirements and City of Dripping Springs guidelines. The project proposes to use silt fence, stabilized construction entrances and inlet protections as temporary measures. Our revegetation plan will comply with City of Dripping Springs and Hays County standards.

7.0 CRITICAL ENVIRONMENTAL FEATURES

There are no known Critical Environmental Features (CEF's) located on the tract or within 150 feet of the tract. The Geologic Assessment identifies 8 features and 3 wells onsite, however, none are considered sensitive. This project is within the Edwards Aquifer Contributing Zone and drains to the Onion Creek Watershed. A portion of this lot is impacted by the 100 -year floodplain Zone AE as defined by FEMA FIRM Panel \# 48209C0115F, revised dated September 2, 2005 for Hays County, Texas. No portion of any lots or roadways are within the floodplain or its buffer area.

8.0 DRAINAGE AND DETENTION

Stormwater runoff will flow overland to vegetative swales along the proposed streets. The drainage system will be designed to convey the 100 -year storm even within the swale system. Some of the swales will be collected into the water quality pond that will drain offsite. Detention is not provided due to this project's proximity to Onion Creek. As shown in the overall Onion Creek drainage study, the flow from this development does not result in an increase in storm flow at the confluence of Onion Creek and its tributary adjacent to the subject property. Aggressive erosion control practices such as rip-rap, permanent rock berms, energy dissipaters, and slope stabilization techniques will be used to minimize erosion.

The impervious cover added to this development is 34.98 acres, or 17.49%. Treatment for approximately 18.96 acres impervious cover will be by water quality BMP's for TSS removal. The remaining will go untreated due to grading limitations. No existing impervious cover will drain to the site.

9.0 CERTIFICATION

I hereby certify that this application complies with the applicable codes and ordinances of the City of Austin Land Development Code, Title 30.

CZP APPLICATION

ATTACHMENT "D"

Factors Affecting Surface Water Quality:

Factors contributing to the contamination of surface and groundwater are generated from manmade pollutants such as pet waste, pesticides, fertilizers, illegal trash dumping, and automotive fluids.

CZP APPLICATION

ATTACHMENT "E" Volume and Character of Stormwater Runoff:

This site has several different discharge points around the boundary. Cumulative proposed discharge leaving site is approximately 1,604 CFS during the 100 -year storm event. Runoff from the development will sheet flow from the roadway and lots through engineered and natural vegetated filter strips that provide a removal rate of 85% by TCEQ standards. A portion of the runoff will be treated by a batch detention pond with a removal rate of 93%. A portion of the runoff sheet flows offsite while the majority is channelized into a tributary of Onion Creek. The curve number for the existing parcel is 79. Developed drainage areas retained the same curve number from existing conditions with impervious cover applied. The total impervious cover in the future developed state is 17.49%. Using Optional Enhanced Measures, no existing onsite impervious cover is applicable. A composite analysis was not performed; therefore, no runoff coefficient is applied for proposed conditions. The runoff leaving the site will be in compliance with the Texas Commission on Environmental Quality (TCEQ) Regulations. This flow is left undetained in order to help manage the peak discharge rates in Onion Creek. By releasing the flow quicker, the rates during the peak are able to maintain flow or decrease flow during the events.

CZP APPLICATION
 ATTACHMENT "J"
 BMP's for Upgradient Stormwater

The proposed site has 40.284 acres draining towards the site, none of which have impervious cover. No BMP's are proposed for any future treatment.

CZP APPLICATION

ATTACHMENT "K"
 BMP's for On-site Stormwater

Permanent water quality controls will be provided by natural and engineered vegetated filter strips. Majority of the storm runoff from onsite and entering the site from offsite will travel overland or streets, through the vegetated filter strips to the roadside swales or storm sewer lines, through a water quality pond and discharge to the tributary or directly into Onion Creek. The remainder of the onsite impervious cover will go uncontrolled. The water quality controls were designed using TCEQ Technical Guidance Manual RG-348 and will provide up to or above 80% removal of the increase in TSS load resulting from this development.

CZP APPLICATION

ATTACHMENT "L"
 BMP's for Surface Streams

The runoff from this site is treated by natural and engineered vegetated filter strips and a water quality pond (batch detention). This will prevent the pollutants from entering the adjacent stream until they are reduced to an acceptable level. There are no sensitive features located within the project site of affected by the project construction. All offsite flows are diverted with temporary diversion dykes/berms or permanent swales to flow into proposed/existing drainage channels that feed into the tributary of Onion Creek.

CZP APPLICATION
 ATTACHMENT "M"
 Construction Plans

Applicable portions of the Construction Plans are provided at the end of this report.

CZ APPLICATION

ATTACHMENT "N"
Inspection, Maintenance, Repair and Retrofit Plan

PROJECT DESCRIPTION

The Ranch at Caliterra project is a 200.025 -acre proposed development consisting of 234 single family lots, located to the Northwest of existing Section 3-9 of the Caliterra Subdivision. This site is located in City of Dripping Springs' ETJ and is in Hays County. The project is in the HCDD No. 1 Municipal Utility District. The site is currently developed with a single-family residence and barn structures. The project lies over the Edwards Aquifer Contributing Zone in Hays County and is subject to the TCEQ Contributing Zone regulations. The project is proposed as a continuation of the Caliterra Subdivision and is subject to the Development Agreement between City of Dripping Springs and Development Solutions CAT, LLC, Owner of Caliterra Subdivision, recorded in Vol. 4978, Page 215, OPR of Hays County, Texas. The project is also subject to the Water Agreement between the developer and the Dripping Springs Water Supply Corporation. The run-off from this project will be treated by engineered and natural vegetative strip. These Best Management Practices will remove the required overall load to more than 80% for the site.

RECORD KEEPING

A record of the routine maintenance of the BMP's shall be logged and kept by the Home Owners Association. If any non-routine maintenance is required, the MUD District shall be responsible for the record keeping.

DEVELOPER CONTACT INFORMATION

CF CSLK Carter, LLC
Mr. Gregory Rich
12222 Merit Drive, Suite 1020
Austin, Texas 75251

PEST MANAGEMENT

The following Integrated Pest Management plan for The Ranch at Caliterra assume that primary pests of concern will be Aphids, Beetles, Beneficial Insects, Caterpillars, Fertilizing Recommendations, Fire Ants, Fleas, Galls, Hiring a Landscape Professional, Landscaping, Lawn Care, Lawn Problems, Mosquito's, Poison Ivy, Pruning, Spider Mites, Product Ratings, Scale, Snails, Stink Bugs, and Weeks. The anticipated pest problems have been derived from the type of pests that typically inhabit subdivisions and developments within local proximity to the project.

Non-toxic and less persistent control products should be employed in controlling pests before more persistent products are considered. More persistent control products should only be used after all other tactics have been employed. It is advisable to utilize a pest control professional, familiar with the IPM approaches, before resorting to highly toxic and persistent chemicals. Regularly scheduled pesticide applications are not considered to be part of the Integrated Pest management.

BATCH DETENTION BASIN

Detention basins have moderate to high maintenance requirements, depending on the extent to which future maintenance needs are anticipated during the design stage. Responsibilities for both routine and nonroutine maintenance tasks need to be clearly understood and enforced. If regular maintenance and inspections are not undertaken, the basin will not achieve its intended purposes.

There are many factors that may affect the basin's operation and that should be periodically checked. These factors can include mowing, control of pond vegetation, removal of accumulated bottom sediments, removal of debris from all inflow and outflow structures, unclogging of orifice perforations, and the upkeep of all physical structures that are within the detention pond area. One should conduct periodic inspections and after each significant storm. Remove floatables and correct erosion problems in the pond slopes and bottom. Pay particular attention to the outlet control perforations for signs of clogging. If the orifices are clogged, remove sediment and other debris. The generic aspects that must be considered in the maintenance plan for a detention facility are as follows:

Routine Maintenance

Inspections:
Basins should be inspected at least twice a year (once during or immediately following wet weather) to evaluate facility operation. When possible, inspections should be conducted during wet weather to determine if the pond is meeting the target detention times. In particular, the extended detention control device should be regularly inspected for evidence of clogging, or conversely, for too rapid a release. If the design drawdown times are exceeded by more than 24 hours, then repairs should be scheduled immediately. The upper stage pilot channel, if any, and its flow path to the lower stage should be checked for erosion problems. During each inspection, erosion areas inside and downstream of the facility should be identified and repaired or revegetated immediately.

Mowing:

The upper stage, side slopes, embankment, and emergency spillway of an extended detention basin must be mowed regularly to discourage woody growth and control weeds. Grassy areas in and around basins should be mowed at least twice annually to limit vegetation height to 18 inches. More frequent mowing to maintain aesthetic appeal may be necessary in landscaped areas. When mowing of grass is performed, a mulching mower should be used, or grass clippings should be caught and removed.

Debris and Litter Removal:
Debris and litter will accumulate near the extended detention control device and should be removed during regular mowing operations and inspections. Particular attention should be paid to floating debris that can eventually clog the control device or riser.

Erosion Control:

The pond side slopes, emergency spillway, and embankment all may periodically suffer from slumping and erosion, although this should not occur often if the soils are properly compacted during construction. Regrading and revegetation may be required to correct the problems. Similarly, the channel connecting an upper stage with a lower stage may periodically need to be replaced or repaired.

Structural Repairs and Replacement:
With each inspection, any damage to the structural elements of the system (pipes, concrete drainage structures, retaining walls, etc.) should be identified and repaired immediately. These repairs should include patching of cracked concrete, sealing of voids, and removal of vegetation from cracks and joints. The various inlet/outlet and riser works in a basin will eventually deteriorate and must be replaced. Public works experts have estimated that corrugated metal pipe (CMP) has a useful life of about 25 yrs, whereas reinforced concrete barrels and risers may last from 50 to 75 yrs.

Nuisance Control:

Standing water (not desired in a detention basin) or soggy conditions within the lower stage of the basin can create nuisance conditions for nearby residents. Odors, mosquitoes, weeds, and litter are all occasionally perceived to be problems. Most of these problems are generally a sign that regular inspections and maintenance are not being performed (e.g., mowing, debris removal, clearing the outlet control device).

Non-Routine Maintenance

Sediment Removal:
When properly designed, dry detention basins will accumulate quantities of sediment over time. Sediment accumulation is a serious maintenance concern in extended detention dry ponds for several reasons. First, the sediment gradually reduces available stormwater management storage capacity within the basin. Second, sediment accumulation can make dry extended detention basins very unsightly. Third, and perhaps most importantly, sediment tends to accumulate around the control device. Sediment deposition increases the risk that the orifice will become clogged, and gradually reduces storage capacity reserved for pollutant removal. Sediment can also be resuspended if allowed to accumulate over time and escape through the hydraulic control to downstream channels and streams. For these reasons, accumulated sediment needs to be removed from the lower stage when sediment buildup fills 20% of the volume of the basin or at least every 10 years.

VEGETATIVE FILTER STRIPS

A clear requirement for Vegetative filter strips is that a firm commitment be made to carry out both routine and non-routine maintenance tasks. The nature of the maintenance requirements is outlined below, along with design tips that can help to reduce the maintenance burden (modified from Young et al., 1996).

Routine Maintenance

Mowing:
The vegetative filter strip should be mowed twice a year to prevent woody growth and control weeds.

Inspections:
Vegetative filter strips should be inspected at least twice a year (once during or immediately following wet weather) to evaluate facility operation. When possible, inspections should be conducted during wet weather to determine if the basin is functioning properly. There are many functions and characteristics of these BMPs that should be inspected. The embankment should be checked for erosion, weeds, and tree growth. The adequacy of grass erosion protection measures
should be checked. During semi-annual inspections, replace any dead or displaced vegetation. Replanting of various species of vegetation may be required at first, until a viable mix of species is established. Voids and undermining should be patched/filled to provide maximum filtration. Trees and root systems should be removed to prevent growth and reduction of the effect of the vegetative filter strip.

Debris and Litter Removal:
As part of periodic mowing operations and inspections, debris and litter should be removed from the surface of the vegetative strip. Particular attention should be paid to floatable debris around the riser, and the outlet should be checked for possible clogging.

Erosion Control:

The slopes and grade may periodically suffer from slumping and erosion. Corrective measures such as regrading and revegetation may be necessary.

Nuisance Control:

Standing water (not desired in a vegetative filter strip) or soggy conditions within the vegetative strip can create nuisance conditions for nearby residents. Odors, mosquitoes, weeds, and litter are all occasionally perceived to be problems. Most of these problems are generally a sign that regular inspections and maintenance are not being performed (e.g., mowing and debris removal).

Non-routine maintenance

Sediment Removal:
As might be expected, the accumulated sediment can reduce both the appearance and pollutant removal performance of the vegetative filter strip. Sediment accumulated in the filter strip area should be removed every two years to prevent accumulation.

CZP APPLICATION

ATTACHMENT "P"

Measures for Minimizing Surface Stream Contamination

The project minimizes surface stream contamination by maintaining the natural occurring sheet flow across lots and utilizing natural and engineered vegetated filter strips. Engineered vegetated filter strips straddle the roadways providing filtration for the roadway contaminates. Within the single-family resident lots, engineered filter strips border the downstream side prior to being collected in roadside swales and discharged offsite. A portion of the runoff will be treated and collected in a batch detention pond prior to releasing.
IV. TEMPORARY STORMWATER SECTION (TCEQ-0602)

Temporary Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This Temporary Stormwater Section is hereby submitted for TCEQ review and executive director approval. The application was prepared by:
Print Name of Customer/Agent: Quynn Dusek, P.E.
Date: $1 / 27 / 2023$
Signature of Customer/Agent:

Regulated Entity Name: The Ranch at Caliterra

Project Information

Potential Sources of Contamination

Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.

1. Fuels for construction equipment and hazardous substances which will be used during construction:
\square The following fuels and/or hazardous substances will be stored on the site: \qquad
These fuels and/or hazardous substances will be stored in:
Aboveground storage tanks with a cumulative storage capacity of less than 250 gallons will be stored on the site for less than one (1) year.Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year. Aboveground storage tanks with a cumulative storage capacity of 500 gallons or more will be stored on the site. An Aboveground Storage Tank Facility Plan application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.

Fuels and hazardous substances will not be stored on the site.
2. \boxtimes Attachment A - Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
3. \triangle Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
4. \triangle Attachment B-Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.

Sequence of Construction

5. \boxtimes Attachment C - Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.
\boxtimes For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given.
\boxtimes For each activity described, include a description of appropriate temporary control measures and the general timing (or sequence) during the construction process that the measures will be implemented.
6. \boxtimes Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: Onion Creek

Temporary Best Management Practices (TBMPs)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.
7. \triangle Attachment D - Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

A description of how BMPs and measures will prevent pollution of surface water, groundwater or stormwater that originates upgradient from the site and flows across the site.
A description of how BMPs and measures will prevent pollution of surface water or groundwater that originates on-site or flows off site, including pollution caused by contaminated stormwater runoff from the site.
A description of how BMPs and measures will prevent pollutants from entering surface streams, sensitive features, or the aquifer.
\boxtimes A description of how, to the maximum extent practicable, BMPs and measures will maintain flow to naturally-occurring sensitive features identified in either the geologic assessment, TCEQ inspections, or during excavation, blasting, or construction.
8. \square The temporary sealing of a naturally-occurring sensitive feature which accepts recharge to the Edwards Aquifer as a temporary pollution abatement measure during active construction should be avoided.

Attachment E-Request to Temporarily Seal a Feature. A request to temporarily seal a feature is attached. The request includes justification as to why no reasonable and practicable alternative exists for each feature.
There will be no temporary sealing of naturally-occurring sensitive features on the site.
9. \boxtimes Attachment F - Structural Practices. A description of the structural practices that will be used to divert flows away from exposed soils, to store flows, or to otherwise limit runoff discharge of pollutants from exposed areas of the site is attached. Placement of structural practices in floodplains has been avoided.
10. \triangle Attachment G - Drainage Area Map. A drainage area map supporting the following requirements is attached:
\square For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin will be provided.For areas that will have more than 10 acres within a common drainage area disturbed at one time, a smaller sediment basin and/or sediment trap(s) will be used.
For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin or other equivalent controls are not attainable, but other TBMPs and measures will be used in combination to protect down slope and side slope boundaries of the construction area.
There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. A smaller sediment basin and/or sediment trap(s) will be used in combination with other erosion and sediment controls within each disturbed drainage area.
\square There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time．Erosion and sediment controls other than sediment basins or sediment traps within each disturbed drainage area will be used．

11
Attachment H－Temporary Sediment Pond（s）Plans and Calculations．Temporary sediment pond or basin construction plans and design calculations for a proposed temporary BMP or measure have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer．All construction plans and design information must be signed，sealed，and dated by the Texas Licensed Professional Engineer． Construction plans for the proposed temporary BMPs and measures are attached．
《N／A
12． 】
Attachment I－Inspection and Maintenance for BMPs．A plan for the inspection of each temporary $\operatorname{BMP}(s)$ and measure（s）and for their timely maintenance，repairs，and，if necessary，retrofit is attached．A description of the documentation procedures， recordkeeping practices，and inspection frequency are included in the plan and are specific to the site and／or BMP．

13．\boxtimes All control measures must be properly selected，installed，and maintained in accordance with the manufacturer＇s specifications and good engineering practices．If periodic inspections by the applicant or the executive director，or other information indicate a control has been used inappropriately，or incorrectly，the applicant must replace or modify the control for site situations．

14． \square If sediment escapes the construction site，off－site accumulations of sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality（e．g．， fugitive sediment in street being washed into surface streams or sensitive features by the next rain）．

15．\boxtimes Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50% ．A permanent stake will be provided that can indicate when the sediment occupies 50% of the basin volume．
16．\boxtimes Litter，construction debris，and construction chemicals exposed to stormwater shall be prevented from becoming a pollutant source for stormwater discharges（e．g．，screening outfalls，picked up daily）．

Soil Stabilization Practices

Examples：establishment of temporary vegetation，establishment of permanent vegetation， mulching，geotextiles，sod stabilization，vegetative buffer strips，protection of trees，or preservation of mature vegetation．

17．\triangle Attachment J－Schedule of Interim and Permanent Soil Stabilization Practices．A schedule of the interim and permanent soil stabilization practices for the site is attached．
18. \boxtimes Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
19. \triangle Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

Administrative Information

20. \measuredangle All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
21. 【 If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
22. \boxtimes Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

TEMPORARY STORMWATER SECTION

ATTACHMENT "A"

Spill Response Actions
Below is the general procedure to follow in the event of a spill or loss of product resulting in an impact or potential impact to soil, surface water, groundwater or sanitary sewer system.

Notifications:

- 911 (if immediate danger to life or health)
- General Contractor Site Superintendent.
- Environmental Emergency Response Contractor (if necessary).
- For spills that exceed the reportable quantity established per federal and state regulations, also contact the Texas Commission on Environmental Quality (TCEQ) at 800-832-8224 and the National Response Center at 800-424-8802.

Cleanup:

- Impacted soil or used absorbent material shall be picked up and stored in a waterproof, leak proof manner such as on plastic sheeting and covered with plastic sheeting, a drum or roll-off container with a lid or cover that can be secured, or a 5 -gallon bucket with a secure lid.
- The Site Superintendent or Emergency Response Coordinator will work with TCEQ to determine the appropriate sampling and disposal protocols for handling impacted soils, absorbent materials, or water.
- Provide proof of sampling and disposal such as laboratory analytical reports and waste manifests to TCEQ.

Follow-up:

- Within 48 hours send a written report to TCEQ describing the cause of the release, the total quantity of material discharged, description of corrective action taken or still in progress to be completed, notifications made, and plans for preventing recurrence.
- Complete any follow-up reports required by the TCEQ or National Response Center within the allowable time frames.
- Submit a copy of documentation of disposal to TCEQ and US EPA at the time of disposal. Also submit a copy of the final uniform hazardous waste manifest "designated facility to generator copy" by the time of environmental closeout.
BEPORTABIE QUANTITY TABLE

Kind of spill	Where discharged	Reportable quantity	Rule, statute, or responsibie agency
Hazardgus substance	onto land	$\frac{\text { Final AOC in Table 302.4 in } 40 \text { CF } 302.4}{\text { (see attached) }}$	30 TAC327
	into water	"Final RQ" or 100 lbs , whichever is less	30 TAC327
Any Oil	coastal waters	as required by the Texas General Land Office	Texas General Land Office
Crude Oil, Oil that is neither a petroleum product nar used oil	onta land	210 gailons (five barrels)	30 TAC 327
	Directly into water	enough to create a sheen	30 TAC327
Petroieum Product, used oil	anto fand from an exempt PST facility	210 gations (five barreis)	30 TAC. 327
	onto land, or onto land from a non-exempt PST facility	25 gailons	30 TAC 327
	directly into water	enough to create a sheen	30 TAC327
Industrial solid waste or other substances	into water	100 lbs	30 TAC327
From petroleum storage tanks, underground or aboveground	into water	enough to create a sheen on water	30 TAC $334.75-81$
From petroleum storage tanks, underground or aboveground	onto land	25 palions erequal to the RO under 40 CFR 309	30 TAC 327
Other substances that may be useful or valuable and are not ordinarily considered to be waste, but will cause pollution if discharged into water in the state	into water	100 lbs	30 TAC. 327

TEMPORARY STORMWATER SECTION

ATTACHMENT "B"
 Potential Sources of Contamination

Potential sources of contamination include the following:

- Gasoline, Diesel, and Hydraulic Fluid from construction equipment
- Asphalt products
- Construction Materials
- Trash and Debris
- Paint
- Concrete
- Gypsum from sheet rock
- Sediment

All materials shall be hauled in a manner consistent with the manufacturer's recommendations.
Disposal of waste material shall be in conformance with all state and local laws

TEMPORARY STORMWATER SECTION

ATTACHMENT "C"
 Sequence of Major Activities

Sequence of Construction Disturbance

1. Install and maintain Erosion Control and Tree Protection per the Approved Plans and specifications prior to any clearing and grubbing, grading, excavating, etc... Notify Construction Inspection Division when installed.
2. Prior to beginning construction, the owner or his representative shall hold a PreConstruction Conference between TCEQ, Williamson County, Contractor, and any other affected parties. Notify TCEQ at least 48 hours prior to the time of the conference and 48 hours prior to beginning construction. Prior to Pre-Construction Conference.
3. Hold Pre-Construction Conference with contractor, TCEQ, EV Inspector, Engineer, and owner or his representative.
4. Begin grade of detention pond.
5. Rough grade roadway. (Estimate of disturbed area $=14.29 \mathrm{ac}$)
6. Begin installation of storm sewer. Upon completion, restore as much disturbed areas as possible, particularly channels and large open areas. (Estimate of disturbed area $=0.81$ ac)
7. Regrade streets to subgrade (Estimate of disturbed area $=11.43 \mathrm{ac}$)
8. Ensure that all underground utility crossings are completed. Lay first course base material on all streets. (11.43 ac)
9. Install curb and gutter. (Estimate of disturbed area $=2.04 \mathrm{ac}$)
10. Lay final base course on all streets. (11.43 ac)
11. Lay asphalt. (11.43 ac)
12. Clean site and revegetate all disturbed area according to the plans and specifications. Stabilization measures should include seeding and/or mulching.
13. Complete permanent erosion control and restoration of site vegetation.
14. Project Engineer to provide a written concurrence letter, and scheduling final inspection with EV Inspector, prior to the removal of erosion controls.
15. Remove and dispose of temporary erosion/sedimentation control measures.
16. Complete any necessary final dress up of areas disturbed.
17. Conduct a final inspection and complete all punch list items.

Clearing and grubbing under a development permit, solely for the purpose of surveying and soil exploration, shall be a hand-cutting or blade-up operation.

TEMPORARY STORMWATER SECTION

ATTACHMENT "D"
 Temporary Best Management Practices and Measures

All temporary BMP's will be installed prior to the beginning of construction and remain in place until revegetation has been completed or the future connecting section is built. These temporary measures will include interceptor swales, tree protections, outlet stabilization, diversion dikes, rock berms silt fences, inlet protection, concrete washouts and stabilized construction entrances. These erosion control devices will prevent the transport of sediment generated from this site. The portion of flow from offsite will be redirected into a diversion dike with temporary rock berms and channeled through the site back to its existing path. The silt fences will be placed along the down gradient areas of the site to prevent any sediment from entering surface streams. The erosion control devices proposed with this project allow for the passing of water while retaining any sediment or trash. This will allow for the flow to maintain its natural course. No sensitive features onsite.

TEMPORARY STORMWATER SECTION

ATTACHMENT "F"

Structural Practices
Structural practices of diverting runoff around exposed soils will consist of silt fence and rock berm, which will be utilized to catch any pollutants from leaving the site. The only runoff aimed at exposed soils will be from the site itself. Inlet protections will prevent the sediment from entering the constructed area inlets.

TEMPORARY STORMWATER SECTION

ATTACHMENT "G"
 Drainage Area Map

An overall drainage area map is included within the plan set submitted with this application. This site has several hill tops that disperses water in all directions, majority that is collected within a tributary of Onion Creek onsite. A temporary sediment basin is not feasible due to the steep slopes and creek buffer within site. A permanent basin is design to encompass the sediments.

TEMPORARY STORMWATER SECTION

ATTACHMENT "I"
 Inspection and maintenance for BMP's

The Best Management Practices installed during construction will be maintained in accordance with the requirements of the EPA's NPDES/TPDES storm water pollution prevention program (SWPPP). The following maintenance procedures shall be followed until permanent stabilization is complete.

Silt Fence
a) Inspect weekly or after each rainfall event and repair or replacement shall be made promptly as needed.
b) Silt Fence shall be removed when the site is completely stabilized so as to not block or impede storm flow or drainage.
c) Accumulated silt shall be removed when it reaches a depth of 6 inches. The Silt shall be disposed of on an approved site and in such a manner that will not contribute to additional siltation.

Stabilized Construction Entrance

a) The entrance shall be maintained in a condition that will prevent tracking or flowing of sediment onto a public roadway. This may require periodic top dressing with additional stone as conditions demand, as well as repair and clean out of any devices used to trap sediment.
b) Entrance must be properly graded to incorporate a drain swale or similar measure to prevent runoff from leaving the construction site.

Inlet Protection
a) Inspection shall be made weekly or after each rainfall event and replacement or repair shall be made promptly as needed.
b) Accumulated silt shall be removed when it reaches a depth of 6 inches. The Silt shall be disposed of on an approved site and in such a manner that will not contribute to additional siltation
c) The dyke shall be removed when the site is completely stabilized so as to not block or impede storm flow or drainage.

Concrete Washout
a) Inspection shall be made daily or after each rainfall event to check for leaks, identify any plastic linings and sidewalls which have been damaged by construction activities.
b) When the washout container is filled over 75% of its capacity, the washwater should be vacuumed off or allowed to evaporate to avoid overflows. When the remaining cementitious solids have hardened, they should be removed and recycled.
c) Damages to the container should be repaired promptly and as needed.
d) Before heavy rains, the washout containers liquid level should be lowered or the container should be covered to avoid an overflow during the rain event.

The owner shall hire an E\&S compliance company to inspect E\&S measures and keep reports of onsite inspections with deficiencies and solutions.

TEMPORARY STORMWATER SECTION

ATTACHMENT "J"
Schedule of Interim and Permanent Soil Stabilization Practices

The project's limits of construction are confined to the existing right-of-ways, easements, and project site. The project will begin with rough cutting of site and pond grading. The utilities will be installed. The backfill behind the curbs and paving will be completed and within 120 days. The backfill behind the curbs and embankments will be revegetated with hydromulch mix to be determined by the City of Dripping Springs to stabilize the soil. Stabilization measures shall be initiated as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased. Where the initiation of stabilization measures by the 14th day after construction activity temporary or permanently cease is precluded by weather conditions, stabilization measures shall be initiated as soon as practicable. Where construction activity on a portion of the site is temporarily ceased, and earth disturbing activities will be resumed within 21 days, temporary stabilization measures do not have to be initiated on that portion of site. In areas experiencing droughts where the initiation of stabilization measures by the 14th day after construction activity has temporarily or permanently ceased is precluded by seasonal arid conditions, stabilization measures shall be initiated as soon as practicable.

V. APPLICATION FEE FORM

Application Fee Form

Texas Commission on Environmental Quality

Name of Proposed Regulated Entity: The Ranch at Caliterra
Regulated Entity Location: West of Caliterra Parkway off of Ranch Road 12 \& Mt. Gainor Rd
Name of Customer: CF CSLK Carter, LLC
Contact Person: Greg Rich
Phone: (972) 960-2777
Customer Reference Number (if issued):CN 604534438
Regulated Entity Reference Number (if issued):RN \qquad
Austin Regional Office (3373)
\boxtimes Hays
San Antonio Regional Office (3362)

Application fees must be paid by check, certified check, or money order, payable to the Texas Commission on Environmental Quality. Your canceled check will serve as your receipt. This form must be submitted with your fee payment. This payment is being submitted to:

Austin Regional Office
Mailed to: TCEQ - Cashier
Revenues Section
Mail Code 214
P.O. Box 13088

Austin, TX 78711-3088
\square San Antonio Regional Office
\square Overnight Delivery to: TCEQ - Cashier
12100 Park 35 Circle
Building A, 3rd Floor
Austin, TX 78753
(512)239-0357

Site Location (Check All That Apply):

\square Recharge Zone \triangle Contributing Zone	\square Transition Zone	
Type of Plan	Size	Fee Due
Water Pollution Abatement Plan, Contributing Zone Plan: One Single Family Residential Dwelling	Acres	\$
Water Pollution Abatement Plan, Contributing Zone Plan: Multiple Single Family Residential and Parks	200.03 Acres	\$ 8,000.00
Water Pollution Abatement Plan, Contributing Zone Plan: Non-residential	Acres	\$
Sewage Collection System	L.F.	\$
Lift Stations without sewer lines	Acres	\$
Underground or Aboveground Storage Tank Facility	Tanks	\$
Piping System(s)(only)	Each	\$
Exception	Each	\$
Extension of Time	Each	\$

Signature: \qquad

Application Fee Schedule

Texas Commission on Environmental Quality
Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)
Water Pollution Abatement Plans and Modifications
Contributing Zone Plans and Modifications

Project	Project Area in Acres	Fee
One Single Family Residential Dwelling	<5	$\$ 650$
Multiple Single Family Residential and Parks	<5	$\$ 1,500$
	$5<10$	$\$ 3,000$
	$10<40$	$\$ 4,000$
	$40<100$	$\$ 6,500$
	$100<500$	$\$ 8,000$
Non-residential (Commercial, industrial,	≥ 500	$\$ 10,000$
institutional, multi-family residential, schools, and	$<1<5$	$\$ 3,000$
other sites where regulated activities will occur)	$5<10$	$\$ 4,000$
	$10<40$	$\$ 5,000$
	$40<100$	$\$ 6,500$
	≥ 100	$\$ 10,000$

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee
Sewage Collection Systems	$\$ 0.50$	$\$ 650-\$ 6,500$

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	$\$ 650$	$\$ 650-\$ 6,500$

Exception Requests

Project	Fee
Exception Request	$\$ 500$

Extension of Time Requests

Project	Fee
Extension of Time Request	$\$ 150$

VI. AGENT AUTHORIZATION FORM

Agent Authorization Form
 The Ranch at Caliterra

 City of Dripping Springs - Hays County

 City of Dripping Springs - Hays County}

Subdivision and related site and offsite Improvements

On behalf of CF CLSK CARTER LLC, I, Greg Rich, Attorney do hereby designate Brett Pasquarella, P.E., Quynn Dusek, P.E., and Bill E. Couch, P.G., AICP CEP of CARLSON, BRIGANCE AND DOERING
ENGINEERING, INC. as the AUTHORIZED AGENTS for the processing of applications, related plans, permits, and documents for professional services, including Surveying, Engineering, Planning, Entitlements, Permitting, Construction and other similarly related services for projects within City of Dripping Springs, its ETJ, and / or Hays County Texas for the purpose of providing Land Development, Utility and Entitlement Services.

Signed:

Date:

STATE OF TEXAS \S

COUNTY OF DALLAS §
Before me, Jennifer Warmest , Notary Public, on this day personally appeared Greg Rich, of CF CLSK CARTER LLC, a Delaware Corporation, known to me to be the person whose name is subscribed to the foregoing instrument and acknowledged that he executed the same for the purposes and consideration therein expressed on behalf of said entity.

VII. TCEQ CORE DATA FORM

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)		
\ New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)		
\square Renewal (Core Data Form should be subm	h the renewal form)	\square Other
2. Customer Reference Number (if issued)	Follow this link to search	3. Regulated Entity Reference Number (if issued)
CN	$\frac{\text { for } \mathrm{CN} \text { or RN numbers in }}{\text { Central Registry** }}$	RN

SECTION II: Customer Information

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)
\boxtimes New Regulated Entity $\quad \square$ Update to Regulated Entity Name $\quad \square$ Update to Regulated Entity Information
The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal
of organizational endings such as Inc, LP, or LLC).
22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)
The Ranch at Caliterra

23. Street Address of the Regulated Entity: (No PO Boxes)	Mt. Gainor Road / Soaring Hill Road							
	City	Dripping Springs	State	TX	ZIP	78620	ZIP + 4	
24. County								

Enter Physical Location Description if no street address is provided.

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

\square Dam Safety	\square Districts	$\boxed{ }$ Edwards Aquifer	\square Emissions Inventory Air	\square Industrial Hazardous Waste
\square Municipal Solid Waste	\square New Source Review Air	\square OSSF	\square Petroleum Storage Tank	\square PWS
\square Sludge	\square Storm Water	\square Title V Air	\square Tires	\square Used Oil
\square Voluntary Cleanup	\square Waste Water	\square Wastewater Agriculture	\square Water Rights	\square Other:

SECTION IV: Preparer Information

40. Name:	Quynn Dusek	41. Title:	P.E.
42. Telephone Number 43. Ext./Code	44. Fax Number	45. E-Mail Address	
$(512) 280-5160$		$(\mathrm{C})-$	quynn@cbdeng.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Carlson, Brigance and Doering, Inc.	Job Title:	P.E., Project Manager		
Name (In Print):	Quynn Dusek, P.E.			Phone:	(512) 280-5160

VIII. WATER QUALITY DESIGN

IMPERVIOUS COVER CALCULATIONS

Basin	DA Name	TOTAL AREA	TOTAL AREA	IMPERVIOUS ROADS			IMPERVIOUS ROAD TOTAL		IMPERVIOUS SIDEWALKS		IMPERVIOUS SIDWALK TOTAL		LOT COUNT		IMP. LOTS total	IMP. LOTS	IMPERVIOUS TOTAL	IMPERVIOUS PERCENT
				$\begin{gathered} \hline 60^{\prime}-75 ' \\ \text { ROW } \\ \hline \end{gathered}$	60' ROW	ROW Varies												
				26	32	16			4	5			10K<X<15K	15K<X<1 AC				
		SF	ACRES	BC-BC	BC-BC	BC-BC	SF	AC	FT	FT	SF	AC	3500	5000	SF	AC		\%
VFS	1	3,461,609	79.47	14,762	1,878	2,818	488,996	11.23	0	0	0	0.00	65	71	582,500	13.37	24.598	30.95\%
Batch Detention Pond	2	1,519,471	34.88	3,064	582	0	98,288	2.26	0	0	0	0.00	61	6	243,500	5.59	7.846	22.49\%
Untreated		1,163,320	26.71	1,260	0	2,253	68,808	1.58	0	0	0	0.00	33	23	230,500	5.29	6.871	25.73\%
Open Space		2,855,486	65.55	0	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00	0.000	0.00\%
Total		8,713,085	200.02	16,022	1,878	5,071	557,804	12.81	0	0	0	0.00	136	98	966,000	22.18	34.982	17.49\%

WATER QUALITY LOAD REMOVAL CALCULATIONS

BASIN SUMMARY TABLE \& BMP REMOVAL					
BMP SELECTED	DRAINAGE AREA (AC.)	IMP. COVER (AC.)	IMP. COVER (\%)	TSS AVAILABLE (LBS.)	TSS (LBS.)
ENGINEERED \& NATURALFILTER STRIPS	79.47	24.60	30.95\%	24,704	24,704
BATCH DETENTION POND A	34.88	7.85	22.49\%	8,591	8,591
		TOTALLBS. TSS REMOVED =			33,295
		TOTAL LBS. TSS REQUIRED $=$			31,975

TSS REMOVAL SPREADSHEETS
Optional Enhanced Measures

Texas Commission on Environmental Quality

TSS Removal Calculations 04-20-2009

Additional information is provided for cells with a red triangle in the upper right corner. Place the Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.
Characters shown in red are data entry fields.
Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the e

1. The Required Load Reduction for the total project:
 Calculations from RG-348

Page 3-29 Equation 3.3: $\mathrm{L}_{\mathrm{M}}=27.7\left(\mathrm{~A}_{\mathrm{N}} \times \mathrm{P}\right)$
where:
$\mathrm{L}_{\text {M TOTAL PROJECT }}=$ Required TSS removal resulting from the pro
$A_{N}=$ Net increase in impervious area for the projec
$\mathrm{P}=$ Average annual precipitation, inches
Site Data: Determine Required Load Removal Based on the Entire Project
County = Hays
Total project area included in plan ${ }^{*}=200.03$ acres
Predevelopment impervious area within the limits of the plan * $=0.00$ acres
Total post-development impervious area within the limits of the plan* Total post-development impervious cover fraction *

34.98	acres
0.17	
33	inches

$\mathrm{L}_{\text {M TOTAL PROJECT }}=31975 \quad$ lbs.

* The values entered in these fields should be for the total project area.

Number of drainage basins / outfalls areas leaving the plan area $=$
2. Drainage Basin Parameters (This information should be provided for each basin):

Drainage Basin/Outfall Area No.	$=$	1	
Total drainage basin/outfall area	$=$	79.47	acres
Predevelopment impervious area within drainage basin/outfall area	$=$	0.00	acres
Post-development impervious area within drainage basin/outfall area	$=$	24.60	acres
Post-development impervious fraction within drainage basin/outfall area	$=$	0.31	
L $_{\text {M THIS }}$ BASIN	$=$	$\mathbf{2 2 4 8 5}$	lbs.

3. Indicate the proposed BMP Code for this basin.

$$
\begin{array}{rcrl}
\text { Proposed BMP } & = & \text { Vegetated } & \text { Filter Strips } \\
\text { Removal efficiency } & = & \mathbf{8 5} & \text { percent }
\end{array}
$$

4. Calculate Maximum TSS Load Removed (L_{R}) for this Drainage Basin by the selected BMP Type.

RG-348 Page 3-33 Equation 3.7: $L_{R}=(B M P$ efficiency $) \times P \times\left(A_{1} \times 34.6+A\right.$
where:

$$
\begin{aligned}
& A_{C}=\text { Total On-Site drainage area in the BMP catch } \\
& A_{I}=\text { Impervious area proposed in the BMP catchm } \\
& A_{P}=\text { Pervious area remaining in the BMP catchme } \\
& L_{R}=T S S \text { Load removed from this catchment area } \\
& A_{C}=79.47 \\
& A_{I}=24.60 \\
& A_{P}=54.87 \\
& L_{R}=24704 \\
& \text { acres } \\
& \text { acres }
\end{aligned}
$$

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

$$
\begin{aligned}
\text { Desired } L_{\text {MTHIS BASIN }} & =24704 \quad \text { lbs. } \\
F & =1.00
\end{aligned}
$$

6. Calculate Capture Volume required by the BMP Type for this drainage basin / outfall area.

Rainfall Depth $=$	4.00	inches
Post Development Runoff Coefficient $=$	0.31	
On-site Water Quality Volume $=$	361284	cubic feet

Calculations from RG-348

Off-site area draining to BMP = 0.00 acres
Off-site Impervious cover draining to BMP = 0.00 acres Impervious fraction of off-site area $=\mathbf{0}$

Off-site Runoff Coefficient $=\quad \mathbf{0 . 0 0}$
Off-site Water Quality Volume = $0 \quad$ cubic feet

Texas Commission on Environmental Quality

TSS Removal Calculations 04-20-2009

Project Name: The Ranch at Caliterra optional enchanged measures

Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell.
Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.
Characters shown in red are data entry fields.
Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.

1. The Required Load Reduction for the total project: Calculations from RG-348 Pages 3-27 to 3-30

Page 3-29 Equation 3.3: $\mathrm{L}_{\mathrm{M}}=27.7\left(\mathrm{~A}_{\mathrm{N}} \times \mathrm{P}\right)$

3. Indicate the proposed BMP Code for this basin.

	Proposed BMP $=$Batch Detention Removal efficiency $=$ 91 percent
Aqualogic Cartridge Filter	
Batch Detention	
Bioretention	

$$
\text { RG-348 Page 3-33 Equation 3.7: } L_{R}=(B M P \text { efficiency }) \times P \times\left(A_{1} \times 34.6+A_{P} \times 0.54\right)
$$

where:
$A_{C}=$ Total On-Site drainage area in the BMP catchment area
$A_{I}=$ Impervious area proposed in the BMP catchment area
$A_{P}=$ Pervious area remaining in the BMP catchment area
$L_{R}=T S S$ Load removed from this catchment area by the proposed BMP

$\mathrm{A}_{\mathrm{C}}=$	34.88	acres
$\mathrm{A}_{1}=$	7.85	acres
A_{P}	$=$	$\mathbf{2 7 . 0 3}$
$\mathrm{L}_{\mathrm{R}}=$	$\mathbf{8 5 9 1}$	acres
lbs		

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area

Desired $L_{M \text { THIS BASIN }}$	$=8591 \quad$ lbs.
F	$=1.00$

6. Calculate Capture Volume required by the BMP Type for this drainage basin / outfall area.

Rainfall Depth $=$	$\mathbf{4 . 0 0}$	inches
Post Development Runoff Coefficient $=$	$\mathbf{0 . 2 4}$	
On-site Water Quality Volume $=$	122158	cubic feet

Calculations from RG-348 Pages 3-36 to 3-37

Off-site area draining to BMP $=$	0.00	acres	
Off-site Impervious cover draining to BMP $=$	0.00	acres	
Impervious fraction of off-site area $=$	0		
Off-site Runoff Coefficient $=$	0.00		
Off-site Water Quality Volume $=$	0	cubic feet	
Storage for Sediment $=$	24432		
Total Capture Volume (required water quality volume(s) $\mathbf{x 1 . 2 0)}$	$=$	146590	cubic feet

IX. APPLICABLE CONSTRUCTION PLAN SHEETS

NORTHERN TRIBUTARY EXISTING HYDROLOGY


```
PROFILE SCALE
```

VERT: $1^{\prime \prime}=4$
PRoposED

SUBGRADE ----

			SLNANGAOYCDI YGLVAGLSVM 			ลิฟ	
			VYษGLIITVO LV HONVY GHL				
	nosum						

HC CARTER WAY LT

HC CARTER WAY RT

\%	
${ }_{\text {date }}^{\text {Dane }} 2023$	
${ }_{\text {SHEET }}$	5079 18162

