TCEQ EDWARDS AQUIFER RECHARGE ZONE EXCEPTION REQUEST

WEST LAKE HILLS BOND PROGRAM

PREPARED FOR:

CITY OF WEST LAKE HILLS

PREPARED BY

JULY 2023

Recharge and Transition Zone Exception Request Form Checklist

- X Edwards Aquifer Application Cover Page (TCEQ-20705)
- X General Information Form (TCEQ-0587)
 - X Attachment A Road Map
 - X Attachment B USGS / Edwards Recharge Zone Map
 - X Attachment C Project Description
- X Geologic Assessment Form (TCEQ-0585), if necessary
 - X Attachment A Geologic Assessment Table (TCEQ-0585-Table)
 - X Attachment B Soil Profile and Narrative of Soil Units
 - x Attachment C Stratigraphic Column
 - X Attachment D Narrative of Site Specific Geology
 - x Site Geologic Map(s)
 - X Table or list for the position of features' latitude/longitude (if mapped using GPS)
- X Recharge and Transition Zone Exception Request Form (TCEQ-0628)
 - X Attachment A Nature of Exception
 - X Attachment B Documentation of Equivalent Water Quality Protection
- X Temporary Stormwater Section (TCEQ-0602)
 - X Attachment A Spill Response Actions
 - X Attachment B Potential Sources of Contamination
 - χ Attachment C Sequence of Major Activities
 - N/A Attachment D Temporary Best Management Practices and Measures
 - X Attachment E Request to Temporarily Seal a Feature
 - x Attachment F Structural Practices
 - χ Attachment G Drainage Area Map
 - N/A Attachment H Temporary Sediment Pond(s) Plans and Calculations
 - x Attachment I Inspection and Maintenance for BMPs
 - x Attachment J Schedule of Interim and Permanent Soil Stabilization Practices
- X Agent Authorization Form (TCEQ-0599)
- **X** Fee Application Form (TCEQ-0574)
- X Check Payable to the "Texas Commission on Environmental Quality"
- X Core Data Form (TCEQ-10400)

Texas Commission on Environmental Quality

Edwards Aquifer Application Cover Page

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with 30 TAC 213.

Administrative Review

- Edwards Aquifer applications must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.
 - To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: http://www.tceq.texas.gov/field/eapp.
- 2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
- 3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
- 4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.
 - An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.
- 5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
- 6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the *Instructions to Geologists* (TCEQ-0585 Instructions).

Technical Review

- 1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.
- 2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be

- clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.
- 3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or will be denied. Please note that because the technical review is underway, whether the application is withdrawn or denied **the application fee will be forfeited**.
- 4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.

Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "Mid-Review Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available:

- If the technical review has begun your application can be denied/withdrawn, your fees will be forfeited, and the plan will have to be resubmitted.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.

If the application is denied/withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the affected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity Name: West Lake Hills Bond Program			2. Regulated Entity No.:					
3. Customer Name: City of West Lake Hills			4. Customer No.: CN600685515					
5. Project Type: (Please circle/check one)	New	Modification		Exter	Extension Exception			
6. Plan Type: (Please circle/check one)	WPAP CZP	SCS	UST	AST	EXP	EXT	Technical Clarification	Optional Enhanced Measures
7. Land Use: (Please circle/check one)	Residential	Non-residential			8. Sit	e (acres):	10.92	
9. Application Fee:	\$500	10. Permanent BM			BMP(s	s):	N/A	
11. SCS (Linear Ft.):	N/A	12. AST/UST (No. Ta			o. Tar	ıks):	N/A	
13. County:	Travis	14. Watershed:					Eanes Creek, Little Bee Creek	

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:

http://www.tceq.texas.gov/assets/public/compliance/field_ops/eapp/EAPP%20GWCD%20map.pdf

For more detailed boundaries, please contact the conservation district directly.

Austin Region					
County:	Hays	Travis	Williamson		
Original (1 req.)	_	_1_	_		
Region (1 req.)	_	_1_	_		
County(ies)	_	_1_	_		
Groundwater Conservation District(s)	Edwards Aquifer AuthorityBarton Springs/ Edwards AquiferHays TrinityPlum Creek	_ x _Barton Springs/ Edwards Aquifer	NA		
City(ies) Jurisdiction	AustinBudaDripping SpringsKyleMountain CitySan MarcosWimberleyWoodcreek	AustinBee CavePflugervilleRollingwoodRound RockSunset Valley _x_West Lake Hills	AustinCedar ParkFlorenceGeorgetownJerrellLeanderLiberty HillPflugervilleRound Rock		

San Antonio Region						
County:	Bexar	Comal	Kinney	Medina	Uvalde	
Original (1 req.)	_	_		_	_	
Region (1 req.)	_	_		_		
County(ies)						
Groundwater Conservation District(s)	Edwards Aquifer Authority Trinity-Glen Rose	Edwards Aquifer Authority	Kinney	EAA Medina	EAA Uvalde	
City(ies) Jurisdiction	Castle HillsFair Oaks Ranch _Helotes _Hill Country Village _Hollywood Park _San Antonio (SAWS) _Shavano Park	BulverdeFair Oaks RanchGarden RidgeNew BraunfelsSchertz	NA	San Antonio ETJ (SAWS)	NA	

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.				
Victoria M Ortega				
Print Name of Customer/Authorized Agent				
Victoria // Ortega	7/21/2023			
Signature of Customer/Authorized Agent	Date			

FOR TCEQ INTERNAL USE ONLY				
Date(s)Reviewed:	red: Date Administratively Complete:			
Received From:	Correct Number of Copies:			
Received By:	Distrib	ution Date:		
EAPP File Number:	Complex:			
Admin. Review(s) (No.):	No. AR	No. AR Rounds:		
Delinquent Fees (Y/N):	Review	Review Time Spent:		
Lat./Long. Verified:	SOS Cu	stomer Verification:		
Agent Authorization Complete/Notarized (Y/N):	Fee	Payable to TCEQ (Y/N):		
Core Data Form Complete (Y/N):	Check:	Signed (Y/N):		
Core Data Form Incomplete Nos.:		Less than 90 days old (Y/N):		

General Information Form

Texas Commission on Environmental Quality

For Regulated Activities on the Edwards Aquifer Recharge and Transition Zones and Relating to 30 TAC §213.4(b) & §213.5(b)(2)(A), (B) Effective June 1, 1999

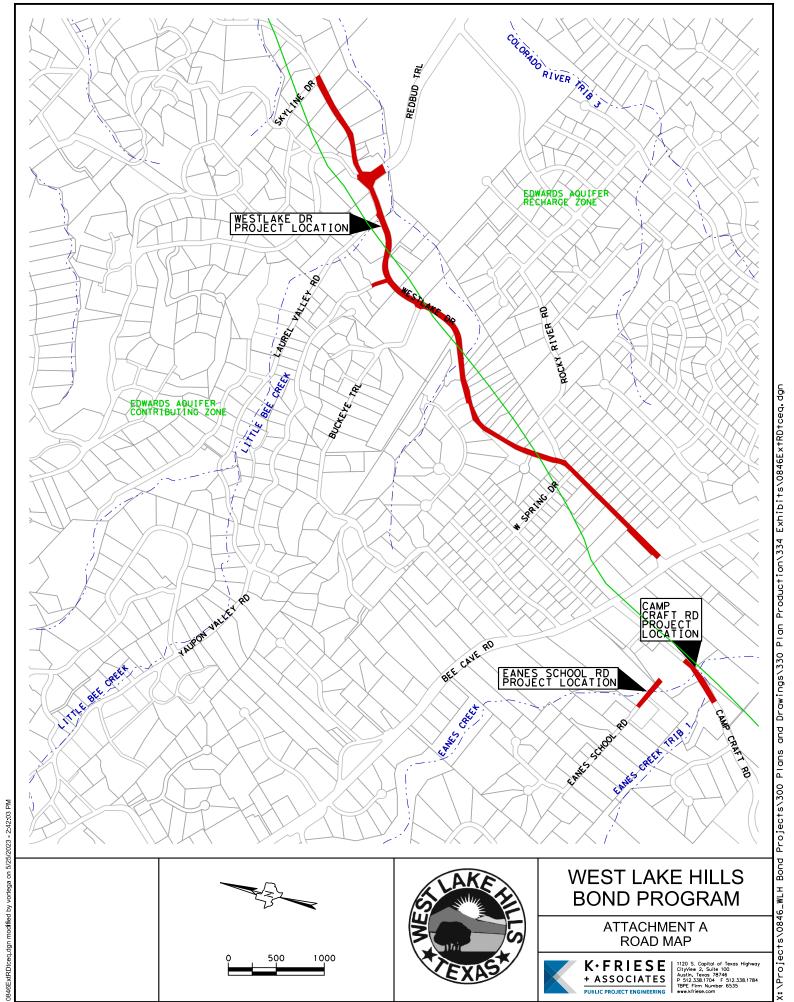
To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

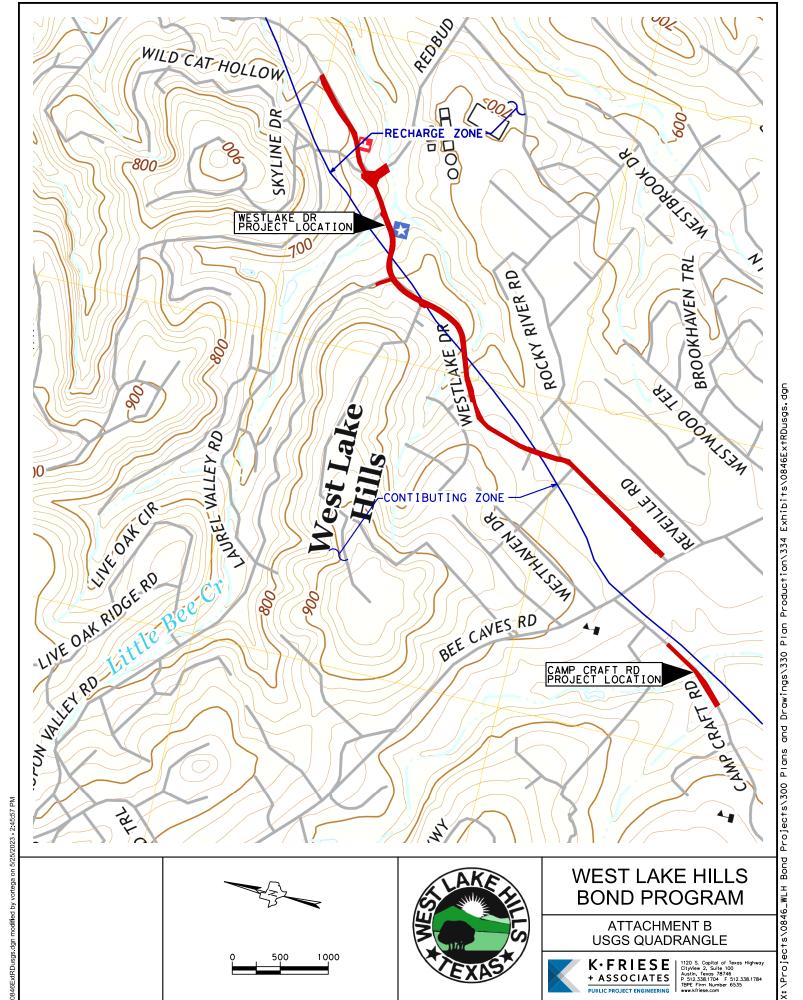
Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **General Information Form** is hereby submitted for TCEQ review. The application was prepared by:

Dat	nt Name of Customer/Agent: <u>Victoria M Ortega, PE</u> re: <u>7/21/2</u> 023
Sig	nature of Customer/Agent:
Vi	ctoria M Ortega
Pr	oject Information
1.	Regulated Entity Name: West Lake Hills Bond Program
2.	County: <u>Travis</u>
3.	Stream Basin: Eanes Creek, Little Bee Creek
4.	Groundwater Conservation District (If applicable):
5.	Edwards Aquifer Zone:
	Recharge Zone Transition Zone
6.	Plan Type:
	WPAPSCSModificationASTUSTException Request


7.	Customer (Applicant):
	Contact Person: Trey Fletcher Entity: City of West Lake Hills Mailing Address: 911 Westlake Dr City, State: West Lake Hills, Texas Telephone: (512) 327-3628 Email Address: tfletcher@westlakehills.gov
8.	Agent/Representative (If any):
	Contact Person: Victoria M. Ortega, PE Entity: K Friese + Associates Mailing Address: 1120 S Capital of Texas Highway, Bldg 2, Ste 100 City, State: Austin, TX Zip: 78746 Telephone: (512) 338-1704 Email Address: vortega@kfriese.com
9.	Project Location:
	 ☐ The project site is located inside the city limits of West Lake Hills. ☐ The project site is located outside the city limits but inside the ETJ (extra-territorial jurisdiction) of ☐ The project site is not located within any city's limits or ETJ.
10.	The location of the project site is described below. The description provides sufficient detail and clarity so that the TCEQ's Regional staff can easily locate the project and site boundaries for a field investigation.
	Project is part of the West Lake Hills Bond Program, includes six projects. Two projects, Eanes Creek Low Water Crossings and Westlake Drive are located in Recharge Zone. Eanes Creek Low Water Crossings includes Camp Craft Rd, from 404 Camp Craft Rd to Eanes School Rd, and Eanes School Rd, between 223 Eanes School Rd and 304 Camp Craft Rd. Westlake Drive project is Bee Caves Rd to Skyline Dr.
11.	Attachment A – Road Map. A road map showing directions to and the location of the project site is attached. The project location and site boundaries are clearly shown on the map.
12.	Attachment B - USGS / Edwards Recharge Zone Map. A copy of the official 7 ½ minute USGS Quadrangle Map (Scale: 1" = 2000') of the Edwards Recharge Zone is attached. The map(s) clearly show:
	 ☑ Project site boundaries. ☑ USGS Quadrangle Name(s). ☑ Boundaries of the Recharge Zone (and Transition Zone, if applicable). ☑ Drainage path from the project site to the boundary of the Recharge Zone.
13.	The TCEQ must be able to inspect the project site or the application will be returned. Sufficient survey staking is provided on the project to allow TCEQ regional staff to locate


	e boundaries and alignment of the regulated activities and the geologic or manmade atures noted in the Geologic Assessment.
Sui	rvey staking will be completed by this date: <u>N/A</u>
na	rachment C – Project Description. Attached at the end of this form is a detailed rrative description of the proposed project. The project description is consistent oughout the application and contains, at a minimum, the following details:
	Area of the site Offsite areas Impervious cover Permanent BMP(s) Proposed site use Site history Previous development Area(s) to be demolished
15. Existin	g project site conditions are noted below:
	Existing commercial site Existing industrial site Existing residential site Existing paved and/or unpaved roads Undeveloped (Cleared) Undeveloped (Undisturbed/Uncleared) Other:
Prohib	oited Activities
	m aware that the following activities are prohibited on the Recharge Zone and are not oposed for this project:
(1)	Waste disposal wells regulated under 30 TAC Chapter 331 of this title (relating to Underground Injection Control);
(2)	New feedlot/concentrated animal feeding operations, as defined in 30 TAC §213.3;
(3)	Land disposal of Class I wastes, as defined in 30 TAC §335.1;
(4)	The use of sewage holding tanks as parts of organized collection systems; and
(5)	New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41(b), (c), and (d) of this title (relating to Types of Municipal Solid Waste Facilities).
(6)	New municipal and industrial wastewater discharges into or adjacent to water in the state that would create additional pollutant loading.
	m aware that the following activities are prohibited on the Transition Zone and are t proposed for this project:

- (1) Waste disposal wells regulated under 30 TAC Chapter 331 (relating to Underground Injection Control);
- (2) Land disposal of Class I wastes, as defined in 30 TAC §335.1; and
- (3) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41 (b), (c), and (d) of this title.

Administrative Information

18. The fee	e for the plan(s) is based on:
whe For foo For nur A re	ra Water Pollution Abatement Plan or Modification, the total acreage of the site ere regulated activities will occur. If an Organized Sewage Collection System Plan or Modification, the total linear stage of all collection system lines. If a UST Facility Plan or Modification or an AST Facility Plan or Modification, the total mber of tanks or piping systems. If a use of tanks or piping systems is equest for an exception to any substantive portion of the regulations related to the otection of water quality.
	equest for an extension to a previously approved plan.
fee cor	olication fees are due and payable at the time the application is filed. If the correct is not submitted, the TCEQ is not required to consider the application until the rect fee is submitted. Both the fee and the Edwards Aquifer Fee Form have been at to the Commission's:
	TCEQ cashier Austin Regional Office (for projects in Hays, Travis, and Williamson Counties) San Antonio Regional Office (for projects in Bexar, Comal, Kinney, Medina, and Uvalde Counties)
nee cou	omit one (1) original and one (1) copy of the application, plus additional copies as eded for each affected incorporated city, groundwater conservation district, and unty in which the project will be located. The TCEQ will distribute the additional pies to these jurisdictions. The copies must be submitted to the appropriate regional ice.
	person shall commence any regulated activity until the Edwards Aquifer Protection n(s) for the activity has been filed with and approved by the Executive Director.

ATTACHMENT C PROJECT DESCRIPTION

West Lake Hills proposes maintenance improvements for existing roadways and drainage improvements as part of the West Lake Hills Bond Program. Maintenance activities consist of drainage improvements, including culvert replacement, storm sewer installation, ditch regrading, and roadway improvements, including reconstruction, mill and overlay, and crack sealing, along the existing roadways. Two of the projects, Eanes Creek Low Water Crossings and Westlake Dr Pavement and Drainage Improvements, are located within the Recharge Zone. Eanes Creek Low Water Crossings will reconstruct portions of Eanes School Rd and Camp Craft Rd and Westlake Dr Pavement and Drainage Improvements includes Westlake Dr from Bee Cave Rd to Skyline Dr.

The site area for the Project is contained within existing and proposed right-of-way and permanent and temporary easements and totals approximately 10.92 acres. Under pre-project conditions there is approximately 5.53 acres of impervious cover within the total project area. The proposed maintenance activities will remove 0.04 acres of impervious cover for a total post-project impervious cover of 5.49 acres, or 50.3 percent of the project area.

The right-of-way for the Project is owned by the City of West Lake Hills and currently includes the existing Camp Craft Rd and Westlake Dr, which are both two lane roadways. Proposed work on Eanes School Rd is contained within the existing and proposed right-of-way. The Project will reconstruct or repair the existing roadway within the footprint of the existing roadway base. There are no existing EAPP permits to be modified.

Three culverts will be upsized for the Eanes Creek Low Water Crossings project, Eanes Creek at Eanes School Rd, Eanes Creek at Camp Craft Rd, and Eanes Creek Trib 1 at Camp Craft Rd. The existing pipe culverts will be removed and replaced with box culverts to improve conveyance of offsite water through the site, maintaining existing drainage patterns. No parallel improvements are proposed along Eanes School Rd and storm sewer is proposed within Camp Craft Rd to replace the existing roadside ditches within the project limits. The project area contributes to Eanes Creek, which drains to the Colorado River. Offsite areas are comprised of developed residential and school.

One culvert will be replaced on Westlake Dr. The existing pipe culvert will be replaced with box culverts to improve conveyance of offsite runoff through the site, maintaining existing drainage patterns. Roadside channels along Westlake Dr will be improved to adequately convey water within the right-of-way to the culvert crossing. The project area contributes to Little Bee Creek, which drains to the Colorado River. Offsite areas are comprised of developed residential.

There are no permanent water quality BMPs proposed as part of this project as the overall project scope includes maintenance activities along previously disturbed areas, and the overall impervious cover will be reduced. Approximately 0.04 acres of impervious cover will be demolished and replaced with grass. This reduction is associated with the reconstruction of Camp Craft Rd and the proposed consistent typical section.

TCEQ EDWARDS AQUIFER PROTECTION PROGRAM RECHARGE ZONE EXCEPTION REQUEST

WEST LAKE HILLS BOND PROGRAM

ATTACHMENT C.1: CONSTRUCTION PLANS

PREPARED FOR:

CITY OF WEST LAKE HILLS

Prepared: July 2023

CITY OF WEST LAKE HILLS ROAD AND DRAINAGE BOND PROGRAM

ROADWAY POSTED SPEED CAMP CRAFT RD EANES SCHOOL RD 25 MPH LAUREL VALLEY RD 25 MPH 25 MPH YAUPON VALLEY RD 25 MPH 25 MPH REDBUD TRI TERRACE MOUNTAIN DR

INDEX OF SHEETS

SHEET NO.	DESCRIPTION
1	TITLE SHEET
2	INDEX OF SHEETS

PROGRAM TOTAL

NET LENGTH OF ROADWAY = 33,408.97 FT (6.327 MILES) NET LENGTH OF BRIDGE = 214.80 FT (0.041 MILES) NET LENGTH OF PROJECT = 33,623.77 FT (6.368 MILES)

113096

FOR THE CONSTRUCTION OF: ROADWAY AND DRAINAGE IMPROVEMENTS CONSISTING OF ASPHALT PAVEMENT, BRIDGES, GRADING, CULVERT STRUCTURES, STORM SEWER, AND PEDESTRIAN FACILITIES

PROJECT DESCRIPTION AND LIMITS

EANES CREEK LOW WATER CROSSINGS:

ROADWAY AND DRAINAGE RECONSTRUCTION, SIDEWALK IMPROVEMENTS, & CHANNEL GRADING AT EANES SCHOOL RD AND CAMP CRAFT RD NET LENGTH OF ROADWAY = 775.82 FT (0.147 MILES) NET LENGTH OF BRIDGE = 78.13 FT (0.015 MILES) NET LENGTH OF PROJECT = 853.95 FT (0.162 MILES)

WESTLAKE DR DRNG & PVMT IMPROV

ROADWAY REPAIRS & DRAINAGE IMPROVEMENTS FROM BEE CAVE RD TO THE HIGH ROAD NET LENGTH OF ROADWAY = 7,486.94 FT (1.418 MILES)

NET LENGTH OF BRIDGE = 30.03 FT (0.006 MILES) NET LENGTH OF PROJECT = 7,516.97 FT (1.424 MILES)

LAUREL VALLEY DRNG & PVMT IMPROV

ROADWAY REPAIRS & DRAINAGE IMPROVEMENTS FROM YAUPON VALLEY

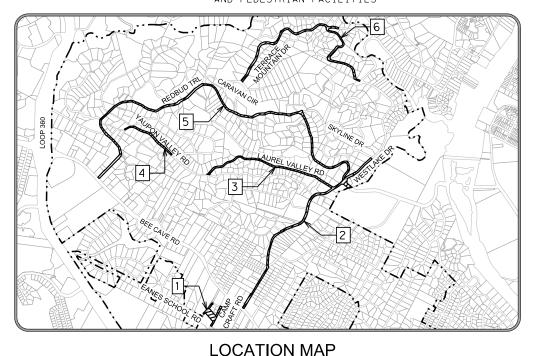
NET LENGTH OF ROADWAY = 4.083.06 FT (0.773 MILES) NET LENGTH OF BRIDGE = 106.64 FT (0.020 MILES) NET LENGTH OF PROJECT = 4,189.70 FT (0.794 MILES)

YAUPON VALLEY DRNG & PVMT IMPROV

ROADWAY REPAIRS & DRAINAGE IMPROVEMENTS FROM JUNIPER RD TO

NET LENGTH OF ROADWAY = 1,759.90 FT (0.333 MILES) NET LENGTH OF BRIDGE = 0.00 FT (0.0 MILES) NET LENGTH OF PROJECT = 1,759.90 FT (0.333 MILES)

REDBUD TRAIL DRNG & PVMT IMPROV


ROADWAY REPAIRS & DRAINAGE IMPROVEMENTS FROM BEE CAVE RD TO CITY LIMITS

NET LENGTH OF ROADWAY = 12,403.95 FT (2.349 MILES) NET LENGTH OF BRIDGE = 0.00 FT (0.0 MILES) NET LENGTH OF PROJECT = 12,403.95 FT (2.349 MILES)

TERRACE MOUNTAIN DRNG & PVMT IMPROV

ROADWAY REPAIRS & DRAINAGE IMPROVEMENTS FROM CARAVAN CIR TO WESTLAKE DR

NET LENGTH OF ROADWAY = 6,899.60 FT (1.307 MILES) NET LENGTH OF BRIDGE = 0.00 FT (0.0 MILES) NET LENGTH OF PROJECT = 6,899.60 FT (1.307 MILES)

1120 S. Capital of Texas Highway CityView 2, Suite 100 Austin. Texas 78746 P - 512.338.1704 F - 512.338.1784 TBPE Firm #6535 www.kfriese.com

SUBMITTED FOR ACCEPTANCE BY:

7/17/2023 DATE VICTORIA ORTEGA, PE K FRIESE + ASSOCIATES, INC. ACCEPTED BY: DATE ACTING CITY ENGINEER ACCEPTED BY: DATE

TREY FLETCHER, CITY ADMINISTRATOR

ALL RESPONSIBILITY FOR THE ADEQU/AC/2028 THESE PLANS REMAINS WITH THE ENGINEER WHO PREPARED THEM. IN ACCEPTING THESE PLANS, THE CITY OF WEST LAKE HILLS MUST RELY ON THE ADEQUACY OF THE WORK OF THE DESIGN ENGINEER.

ALL MATERIALS AND CONSTRUCTION METHODS FOR SITE GRADING, PAVING, AND SITEWORK SHALL BE IN ACCORDANCE WITH THE CITY OF AUSTIN STANDARD SPECIFICATIONS, UNLESS OTHERWISE NOTED. ALL MATERIALS AND CONSTRUCTION METHODS FOR DRAINAGE SHALL BE IN ACCORDANCE WITH TXDOT STANDARD SPECIFICATIONS FOR CONSTRUCTION OF HIGHWAYS. STREETS AND BRIDGES ADOPTED NOVEMBER 1, 2014 UNLESS OTHERWISE NOTED. ALL WORK SHALL BE IN ACCORDANCE WITH THE BUILDING CODES, ORDINANCES, SAFETY CODES, AND RULES AND PROCEDURES OF THE CITY OF WEST LAKE HILLS.

TITLE SHEET INDEX OF SHEETS GENERAL NOTES OVERALL PROJECT LAYOUT 5 - 12 PROJECT QUANTITIES EANES CREEK LOW WATER CROSSINGS 16 ROADWAY ALIGNMENT DATA 18 TRAFFIC CONTROL NARRATIVE DETOUR LAYOUT - PHASE 1 20 - 21 TRAFFIC CONTROL PLAN - PHASE 1 22 - 23 TRAFFIC CONTROL PLAN - PHASE 2 24 - 26 ROADWAY PLAN & PROFILE 27 - 30 CROSS STREET AND DRIVEWAY PLAN & PROFILE 31 - 32 DRAINAGE AREA MAP 33 CHANNEL HYDRAULIC DATA 34 - 36 CULVERT HYDRAULIC DATA 37 - 39 CULVERT LAYOUT 40 HYDRAULIC COMPUTATIONS 41 - 42 DRAINAGE PLAN & PROFILE 43 - 44 GRADING DETAILS 46 SW3P 47 - 48 EROSION CONTROL LAYOUT TREE LIST WESTLAKE DR DRNG & PVMT IMPROV ROADWAY ALIGNMENT DATA TRAFFIC CONTROL NARRATIVE TRAFFIC CONTROL PLAN - PHASE 1 DETOUR LAYOUT - PHASE 2 57 59 - 62 TRAFFIC CONTROL PLAN - PHASE 2 63 - 64 DETOUR LAYOUT - PHASE 3 65 - 69 TRAFFIC CONTROL PLAN - PHASE 3 70 - 77 ROADWAY LAYOUT 78 - 79 ROADWAY PLAN & PROFILE 80 - 81 DRAINAGE AREA MAP CULVERT HYDRAULIC DATA CULVERT LAYOUT HYDRAULIC COMPUTATIONS 85 - 91 DRAINAGE PLAN & PROFILE - 96 EROSION CONTROL LAYOUT 97 LAUREL VALLEY DRNG & PVMT IMPROV 98 PROJECT LAYOUT 99 - 102 REMOVAL LAYOUT ROADWAY ALIGNMENT DATA TYPICAL SECTIONS TRAFFIC CONTROL NARRATIVE 106 TRAFFIC CONTROL PLAN - PHASE 1 107 DETOUR LAYOUT - PHASE 2 108 - 111 TRAFFIC CONTROL PLAN - PHASE 2 112 DETOUR LAYOUT - PHASE 3 113 - 116 TRAFFIC CONTROL PLAN - PHASE 3 117 - 120 ROADWAY LAYOUT 121 - 123 ROADWAY PLAN & PROFILE 124 - 125 DRAINAGE AREA MAP 126 - 129 CULVERT HYDRAULIC DATA 130 - 133 CULVERT LAYOUT 134 HYDRAULIC COMPUTATIONS 135 - 141 DRAINAGE PLAN & PROFILE DRAINAGE DETAILS EPIC 143 144 145 - 148 EROSION CONTROL LAYOUT 149 TREE LIST

SHEET NO DESCRIPTION

GENERAL

SHEET NO	DESCRIPTION	SHEET NO	DESCRIPTION
150 151 - 152	YAUPON VALLEY DRNG & PVMT IMPROV PROJECT LAYOUT REMOVAL LAYOUT	291 - 299	TRAFFIC CONTROL STANDARDS TRAFFIC CONTROL DETAILS
153 154 155	ROADWAY ALIGNMENT DATA TYPICAL SECTIONS TRAFFIC CONTROL NARRATIVE	300 - 305 306	ROADWAY STANDARDS ROADWAY DETAILS GF (31) - 19
159 - 160	TRAFFIC CONTROL PLAN - PHASE 1 TRAFFIC CONTROL PLAN - PHASE 2 TRAFFIC CONTROL PLAN - PHASE 3 ROADWAY LAYOUT	307 308 309 310 - 313	GF (31) DAT - 19 SGT (12S) 31 - 18 TE (HMAC) - 11
163 164 165 - 167	DRAINAGE AREA MAP HYDRAULIC COMPUTATIONS DRAINAGE PLAN & PROFILE	314 - 316 317	PRD - 13 MBFG (SR) - 19 TRAFFIC RAIL TYPE T631LS
168 169 170	DRAINAGE PROFILES DRAINAGE DETAILS EPIC SW3P	320 - 321	RAC DRAINAGE STANDARDS
	EROSION CONTROL LAYOUT TREE LIST	322 - 326 327 328 329 - 330	DRAINAGE DETAILS BCS SCC-MD
177 - 183	REDBUD TRAIL DRNG & PVMT IMPROV PROJECT LAYOUT REMOVAL LAYOUT	331 - 332 333 - 334 335 - 336	SCC-5 & 6 SCC-7
192 193	ROADWAY ALIGNMENT DATA TYPICAL SECTIONS TRAFFIC CONTROL NARRATIVE ROADWAY LAYOUT	337 338 339 340	SCP-MD SCP-3 SCP-4 SCP-5
207 - 208 209 - 218 219 - 224	DRAINAGE AREA MAP CULVERT HYDRAULIC DATA CULVERT LAYOUT	341 342 343	SCP-6 SCP-7 SCP-8
	HYDRAULIC COMPUTATIONS DRAINAGE PLAN & PROFILE EPIC SW3P	344 345 346 - 347 348 - 349	
	EROSION CONTROL LAYOUT TREE LIST	350 - 351 352 353	
254 - 255	TERRACE MOUNTAIN DRNG & PVMT IMPROV PROJECT LAYOUT REMOVAL LAYOUT ROADWAY ALIGNMENT DATA	354 355 356 357	FW-O FW-S PW CH-FW-O
262 263 264	TYPICAL SECTIONS TRAFFIC CONTROL NARRATIVE DETOUR LAYOUT - PHASE 1	358 359 - 360 361	CH-PW-O
273	TRAFFIC CONTROL PLAN ROADWAY LAYOUT DRAINAGE AREA MAP CULVERT HYDRAULIC DATA	362 363 364 365	PSET-RC PSET-RP PSET-RR PB
278 - 281 282 283 - 284	CULVERT LAYOUT HYDRAULIC COMPUTATIONS DRAINAGE PLAN & PROFILE	366 367 368	PBGC PJB PDD
285 286 287 - 289 290	EPIC SW3P EROSION CONTROL LAYOUT TREE LIST	369 370 - 371 372 - 373 374	
		375 376 377 - 378	TDD CGT-PCU SRR
		379 - 380	ENVIRONMENTAL STANDARDS ENVIRONMENTAL CONTROL DETAILS
		381 - 388	CROSS SECTIONS EANES CREEK LOW WATER CROSSINGS

113096 CENSE 7/17/2023 K FRIESE & ASSOCIATES, INC.
CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX
WEST LAKE HILLS BOND PROGRAM SHEET Ю

> **K·FRIESE** + ASSOCIATES

WEST

S

1120

INDEX

WEST LAKE HILLS. TX

SHEET 1 OF SCALE NTS DATE 7/17/2023 SHEET

NUMBER

GENERAL CONSTRUCTION NOTES:

- 1. AFTER THE CONSTRUCTION PERMIT HAS BEEN ISSUED AND PRIOR TO THE BEGINNING OF CONSTRUCTION, THE CONTRACTOR OR HIS REPRESENTATIVE SHALL SCHEDULE A PRE-CONSTRUCTION CONFERENCE BETWEEN THE CITY OF WEST LAKE HILLS, DESIGN ENGINEER, CONTRACTOR(S), OTHER UTILITY COMPANIES, AND ANY OTHER AFFECTED PARTIES. THE CITY OF WEST LAKE HILLS SHALL BE CONTACTED TO SET UP THE MEETING AT LEAST FORTY-EIGHT (48) HOURS PRIOR TO THE PROPOSED MEETING
- 2. CONSTRUCTION NOTIFICATION:

CONTRACTOR WILL PROVIDE A MINIMUM OF FOURTEEN (14) DAYS NOTICE TO THE CITY OF WEST LAKE HILLS, THE POLICE DEPARTMENT, THE FIRE DEPARTMENT, THE EMERGENCY SERVICES DISTRICT, AND THE SCHOOL DISTRICT OF ALL ROADWAY

CONTRACTOR SHALL PROVIDE A MINIMUM OF SEVEN (7) DAYS NOTICE TO LANDOWNER/TENANT PRIOR TO COMMENCING WORK ADJACENT TO OR AFFECTING ACCESS TO THE PROPERTY.

AT LEAST FORTY-EIGHT (48) HOURS PRIOR TO ANY CONSTRUCTION ACTIVITY WITHIN THE RIGHT OF WAY, THE CONTRACTOR MUST NOTIFY:

CITY OF WEST LAKE HILLS - (512) 327-3628

CONTRACTOR SHALL SUBMIT PLACEMENT AND MESSAGES OF CHANGEABLE MESSAGE BOARDS TO THE ENGINEER FOR APPROVAL FOR EACH LOCATION AT LEAST FOURTEEN (14) DAYS PRIOR TO ANY CONSTRUCTION ACTIVITIES OR CHANGES TO TRAFFIC

- ALL MATERIALS AND CONSTRUCTION METHODS FOR SITE GRADING, PAVING, AND SITEWORK SHALL BE IN ACCORDANCE WITH THE CITY OF AUSTIN STANDARD SPECIFICATIONS, UNLESS OTHERWISE NOTED. ALL MATERIALS AND CONSTRUCTION METHODS FOR DRAINAGE SHALL BE IN ACCORDANCE WITH TXDOT STANDARD SPECIFICATIONS FOR CONSTRUCTION OF HIGHWAYS, STREETS AND BRIDGES ADOPTED NOVEMBER 1, 2014 UNLESS OTHERWISE NOTED. ALL WORK SHALL BE IN ACCORDANCE WITH THE BUILDING CODES, ORDINANCES, SAFETY CODES, AND RULES AND PROCEDURES OF THE CITY OF WEST LAKE HILLS.
- 4. ALL CONSTRUCTION OPERATIONS SHALL BE IN ACCORDANCE WITH APPLICABLE REGULATIONS OF THE U.S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION.
- 5. TRAFFIC CONTROL DEVICES, INCLUDING SIGNS AND PAVEMENT MARKINGS, PROVIDED HEREIN, SHALL BE IMPLEMENTED PER PLAN AND IN ACCORDANCE WITH THE TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES. ANY MODIFICATIONS MUST BE IN ACCORDANCE WITH TXMUTCD AND SUBMITTED TO THE CITY FOR REVIEW AND
- CONSTRUCTION ACTIVITY SHALL BE PERFORMED TO MAINTAIN A SAFE ENVIRONMENT FOR WORKERS AND PUBLIC SAFETY.
- 7. PRIOR TO ANY CONSTRUCTION, THE CONTRACTOR SHALL APPLY FOR AND SECURE ALL PROPER PERMITS FROM THE APPROPRIATE AUTHORITIES.
- 8. BLASTING OR BURNING SHALL NOT BE PERMITTED ON THIS PROJECT.
- THE CONTRACTOR SHALL VERIFY ALL DEPTHS AND LOCATIONS OF EXISTING UTILITIES PRIOR TO BEGINNING CONSTRUCTION. ANY DISCREPANCIES WITH THE CONSTRUCTION PLANS FOUND IN THE FIELD SHALL BE BROUGHT TO THE ATTENTION OF THE DESIGN ENGINEER IMMEDIATELY. THE DESIGN ENGINEER SHALL BE RESPONSIBLE FOR REVISING THE PLANS AS APPROPRIATE AND SUBMITTING A REVISION TO THE CITY. CONTRACTOR SHALL TAKE PRECAUTIONARY MEASURES WHEN OPERATING IN THE VICINITY OF UTILITIES. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING WORK WITH THE APPROPRIATE ELECTRIC / UTILITY COMPANY. CONTRACTOR SHALL CONTACT ONE CALL AND WATER DISTRICT 10 BEFORE BEGINNING CONSTRUCTION. NO SEPARATE PAYMENT WILL BE MADE FOR THIS WORK.
- 10. ANY CHANGES OR REVISIONS TO THESE APPROVED PLANS MUST BE SUBMITTED BY THE DESIGN ENGINEER AND APPROVED BY THE CITY OF WEST LAKE HILLS, OR THE OWNER'S REPRESENTATIVE, PRIOR TO CONSTRUCTION OF THE REVISION.
- 11. ANY EXISTING UTILITIES, PAVEMENT, CURBS, SIDEWALKS, STRUCTURES, TREES, ETC., NOT PLANNED FOR DESTRUCTION OR REMOVAL OR OTHER PUBLIC INFRASTRUCTURE DAMAGED OR REMOVED WILL BE REPAIRED OR REPLACED BY THE CONTRACTOR AT HIS EXPENSE BEFORE FINAL ACCEPTANCE OF WORK.
- 12. CONTRACTOR WILL BE RESPONSIBLE FOR KEEPING ROADS AND DRIVES ADJACENT TO AND NEAR THE SITE FREE FROM SOIL, SEDIMENT AND DEBRIS. CONTRACTOR WILL NOT REMOVE SOIL, SEDIMENT OR DEBRIS FROM ANY AREA BY MEANS OF WATER, ONLY SHOVELING AND SWEEPING WILL BE ALLOWED. CONTRACTOR WILL BE RESPONSIBLE FOR DUST CONTROL FROM THE SITE. NO SEPARATE PAYMENT WILL BE MADE FOR THIS WORK.
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DISPOSING OF ALL SPOILS MATERIAL FROM THE CONSTRUCTION SITE. ALL SPOILS MATERIAL SHALL BE DISPOSED OF BY THE CONTRACTOR AT AN APPROVED SPOIL SITE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR LOCATING AND SECURING A PERMIT FOR THE SITE. NO SEPARATE
- 14. ACCESS TO RESIDENCES MUST BE MAINTAINED OVERNIGHT, BETWEEN 5PM AND 8AM. RESIDENTIAL DRIVEWAY CLOSURES MUST BE COORDINATED WITH PROPERTY OWNER AND/OR TENANT. CONSTRUCTION AT DRIVEWAYS SHALL BE COORDINATED WITH THE PROPERTY OWNER/TENANT.
- 15. MAINTAIN POSITIVE DRAINAGE FOR PERMANENT AND TEMPORARY WORK FOR THE DURATION OF THE PROJECT. THE CONTRACTOR IS RESPONSIBLE FOR ANY ITEMS ASSOCIATED WITH THE TEMPORARY OR INTERIM DRAINAGE AND ALL RELATED MAINTENANCE. NO SEPARATE PAYMENT WILL BE MADE FOR THIS WORK.
- 16. CONTRACTOR PARKING: CONTRACTOR CAN UTILIZE UP TO 10 PARKING SPACES AT CITY HALL, SUBJECT TO AVAILABILITY AND CITY APPROVAL. COORDINATION SHALL BE DONE WEEKLY. PARKING ALONG RIGHT-OF-WAY WILL BE LIMITED WHERE ROADWAYS ARE ACTIVE.
- 17. STAGING & STORAGE: CONTRACTOR CAN USE CITY OWNED PROPERTY FOR STAGING AND STORAGE. USE WILL BE COORDINATED WITH THE CITY AND VEGETATION REMOVAL WILL BE LIMITED TO PLANTS 3-INCHES IN DIAMETER AND SMALLER.

EROSION CONTROL NOTES:

- THE CONTRACTOR SHALL INSTALL EROSION/SEDIMENTATION CONTROLS AND TREE/NATURAL AREA PROTECTIVE FENCING PRIOR TO ANY SITE DISTURBANCE (CLEARING, GRUBBING OR EXCAVATION).
- 2. THE PLACEMENT OF EROSION/SEDIMENTATION CONTROLS SHALL BE IN ACCORDANCE WITH THE CURRENT CITY OF AUSTIN ENVIRONMENTAL CRITERIA MANUAL AS ADOPTED BY THE CITY OF WEST LAKE HILLS AND THE APPROVED EROSION AND SEDIMENTATION CONTROL PLAN. NO EROSION CONTROLS SHALL BE PLACED BEYOND THE PROPERTY LINES OF THE SITE UNLESS WRITTEN PERMISSION HAS BEEN OBTAINED FROM AFFECTED PROPERTY OWNERS.
- MAJOR REVISIONS OF LOCATIONS OF EROSION CONTROLS MUST BE DOCUMENTED AND SUBMITTED FOR APPROVAL BY THE ENGINEER OF RECORD, MINOR CHANGES TO BE MADE AS FIELD REVISIONS TO THE EROSION AND SEDIMENTATION CONTROL PLAN MAY BE REQUIRED BY THE CITY INSPECTOR DURING THE COURSE OF CONSTRUCTION TO CORRECT CONTROL INADEQUACIES.
- 4. THE CONTRACTOR IS REQUIRED TO INSPECT THE CONTROLS AT WEEKLY INTERVALS AND AFTER ANY RAINFALL EVENT TO ENSURE THAT THEY ARE FUNCTIONING PROPERTY. THE PERSON(S) RESPONSIBLE FOR MAINTENANCE OF CONTROLS AND FENCES SHALL IMMEDIATELY MAKE ANY NECESSARY REPAIRS TO DAMAGED AREAS. SILT ACCUMULATION AT CONTROLS MUST BE REMOVED ONCE THE ACCUMULATED DEPTH REACHES SIX (6) INCHES.
- PRIOR TO FINAL ACCEPTANCE BY THE CITY, HAUL ROADS AND WATERWAY CROSSINGS CONSTRUCTED FOR TEMPORARY CONTRACTOR ACCESS MUST BE REMOVED, ACCUMULATED SEDIMENT REMOVED FROM THE WATERWAY AND THE AREA RESTORED TO THE ORIGINAL GRADE OR DESIGN GRADE, AS APPROPRIATE, AND REVEGETATED OR STABILIZED. ALL LAND CLEARING DEBRIS SHALL BE DISPOSED OF IN APPROVED SPOIL DISPOSAL SITES.
- 6. TEMPORARY AND PERMANENT EROSION CONTROL: ALL DISTURBED AREAS SHALL BE RESTORED AS NOTED BELOW.
 - ALL DISTURBED AREAS TO BE REVEGETATED ARE REQUIRED TO PLACE A MINIMUM OF FOUR (4) INCHES OF TOPSOIL (SEE STANDARD SPECIFICATION ITEM NO. 601S.3(A)). DO NOT ADD TOPSOIL WITHIN THE CRITICAL ROOT ZONE OF EXISTING TREES. THE TOPSOIL SHALL BE COMPOSED OF 4 PARTS OF SOIL MIXED WITH 1 PART COMPOST, BY VOLUME. THE COMPOST SHALL
 MEET THE DEFINITION OF COMPOST AS DEFINED BY TXDOT SPECIFICATION
 ITEM 161. THE SOIL SHALL BE LOCALLY AVAILABLE NATIVE SOIL THAT
 MEETS THE FOLLOWING SPECIFICATIONS:
 - B. SHALL BE FREE OF TRASH, WEEDS, DELETERIOUS MATERIALS, ROCKS, AND
 - C. 100% SHALL PASS THROUGH A 1.5-INCH (38-MM) SCREEN.
 - D. TOPSOIL SALVAGED FROM THE EXISTING SITE MAY OFTEN BE USED. BUT IT SHOULD MEET THE SAME STANDARDS AS SET FORTH IN THESE STANDARDS.

THE VEGETATIVE STABILIZATION OF AREAS DISTURBED BY CONSTRUCTION SHALL BE

TEMPORARY VEGETATIVE STABILIZATION:

- 1. FROM SEPTEMBER 15 TO MARCH 1, SEEDING SHALL BE WITH COOL SEASON COVER CROPS (WHEAT AT 0.5 POUNDS PER 1000 SF, OATS AT 0.5 POUNDS PER 1000 SF, CEREAL RYE GRAIN AT 0.5 POUNDS PER 1000 SF) WITH A TOTAL RATE OF 1.5 POUNDS PER 1000 SF. COOL SEASON COVER CROPS ARE NOT PERMANENT
- FROM MARCH 2 TO SEPTEMBER 14, SEEDING SHALL BE WITH HULLED BERMUDA AT A RATE OF 1 POUNDS PER 1000 SF.
 - A. FERTILIZER SHALL BE WATER SOLUBLE WITH AN ANALYSIS OF 15-15-15 TO BE APPLIED ONCE AT PLANTING AND ONCE DURING THE PERIOD OF ESTABLISHMENT AT A RATE OF 1/2 POUND PER 1000 SF.
 - B. HYDROMULCH SHALL COMPLY WITH TABLE1, BELOW.
 - TEMPORARY EROSION CONTROL SHALL BE ACCEPTABLE WHEN THE GRASS HAS GROWN AT LEAST 1-1/2 INCHES HIGH WITH 95% COVERAGE, PROVIDED NO BARE SPOTS LARGER THAN 16 SQUARE FEET EXIST.

PERMANENT VEGETATIVE STABILIZATION:

- 1. FROM SEPTEMBER 15 TO MARCH 1, SEEDING IS CONSIDERED TO BE TEMPORARY STABILIZATION ONLY. IF COOL SEASON COVER CROPS EXIST WHERE PERMANENT VEGETATIVE STABILIZATION IS DESIRED, THE GRASSES SHALL BE MOWED TO A HEIGHT OF LESS THAN ONE-HALF (1/2) INCH AND THE AREA SHALL BE RE-SEEDED IN ACCORDANCE WITH 2. BELOW.
- 2. FROM MARCH 2 TO SEPTEMBER 14, SEEDING SHALL BE WITH HULLED BERMUDA AT A RATE OF 1 POUND PER 1000 SF WITH A PURITY OF 95% WITH 85% GERMINATION. BERMUDA GRASS IS A WARM SEASON GRASS AND IS CONSIDERED PERMANENT EROSION CONTROL.
 - A. FERTILIZER SHALL BE A WATER SOLUBLE WITH AN ANALYSIS OF 15-15-15 TO BE APPLIED ONCE AT PLANTING AND ONCE DURING THE PERIOD OF ESTABLISHMENT AT A RATE OF 1/2 POUND PER 1000 SF.
 - THE PLANTED AREA SHALL BE TEMPORARILY IRRIGATED OR SPRINKLED IN A MANNER THAT WILL NOT ERODE THE TOPSOIL, BUT WILL SUFFICIENTLY SOAK THE SOIL TO A DEPTH OF SIX INCHES. THE IRRIGATION SHALL OCCUR AT DAILY INTERVALS (MINIMUM) DURING THE FIRST TWO MONTHS. RAINFALL OCCURRENCES OF 1/2 INCH OR MORE SHALL POSTPONE THE WATERING SCHEDULE FOR ONE WEEK.
 - C. PERMANENT EROSION CONTROL SHALL BE ACCEPTABLE WHEN THE GRASS HAS GROWN AT LEAST 1-1/2 INCHES HIGH WITH 95% COVERAGE, PROVIDED NO BARE SPOTS LARGER THAN 16 SQUARE FEET EXIST.

EROSION CONTROL NOTES (CONT.):

- 3. THE CONTRACTOR SHALL NOT DISPOSE OF SURPLUS EXCAVATED MATERIAL FROM THE SITE WITHOUT NOTIFYING THE CITY OF WEST LAKE HILLS AT LEAST FORTY-EIGHT (48) HOURS PRIOR WITH THE LOCATION AND A COPY OF THE PERMIT ISSUED TO RECEIVE THE MATERIAL.
- 4. EROSION CONTROL AND STABILIZATION MEASURES MUST BE INITIATED IMMEDIATELY IN PORTIONS OF THE SITE WHERE CONSTRUCTION ACTIVITIES HAVE TEMPORARILY CEASED AND WILL NOT RESUME FOR A PERIOD EXCEEDING FOURTEEN (14) CALENDAR DAYS.
- 5. ALL EROSION AND SEDIMENTATION CONTROLS SHALL BE OF PLASTIC FREE, BIODEGRADABLE MATERIALS UNLESS OTHERWISE SPECIFIED.

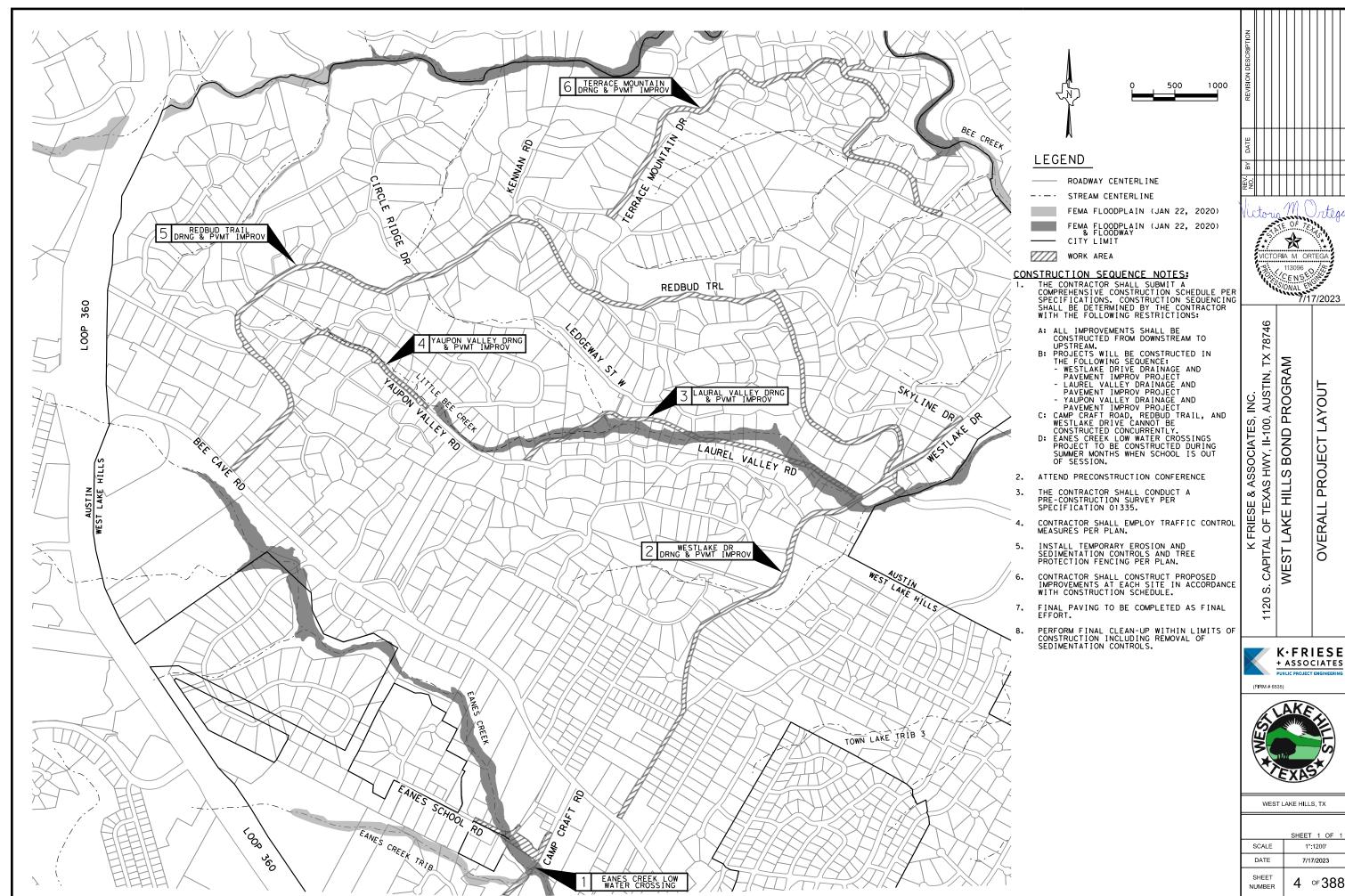
 \succeq Ō AUS RO RO 100, D PF OND NOT SSOCI, HWY, S BO RAL

ENE

ST CAPIT, WE 'n 20 **K·FRIESE**

EXAS F

LAKI

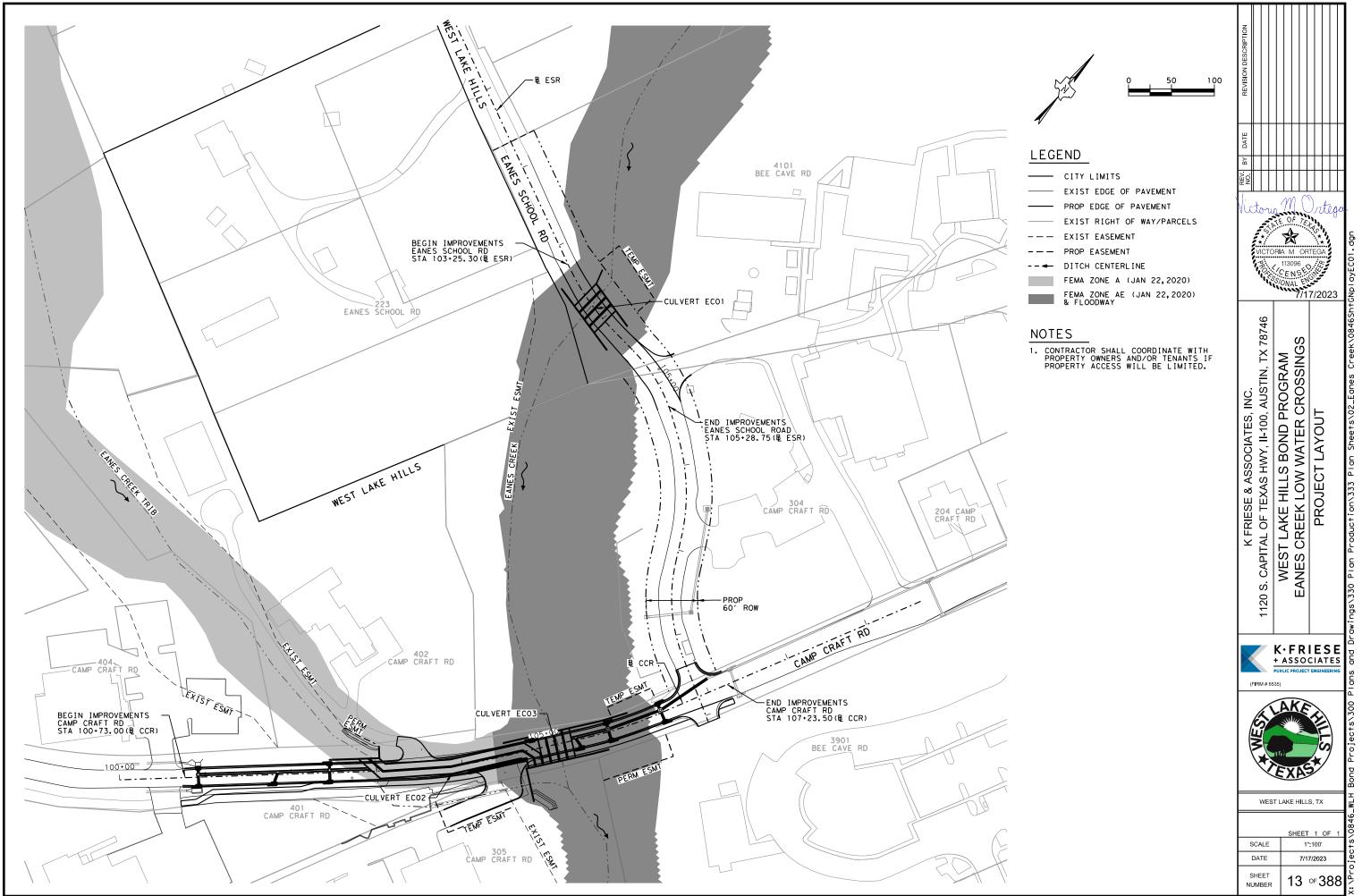

쥬 넉

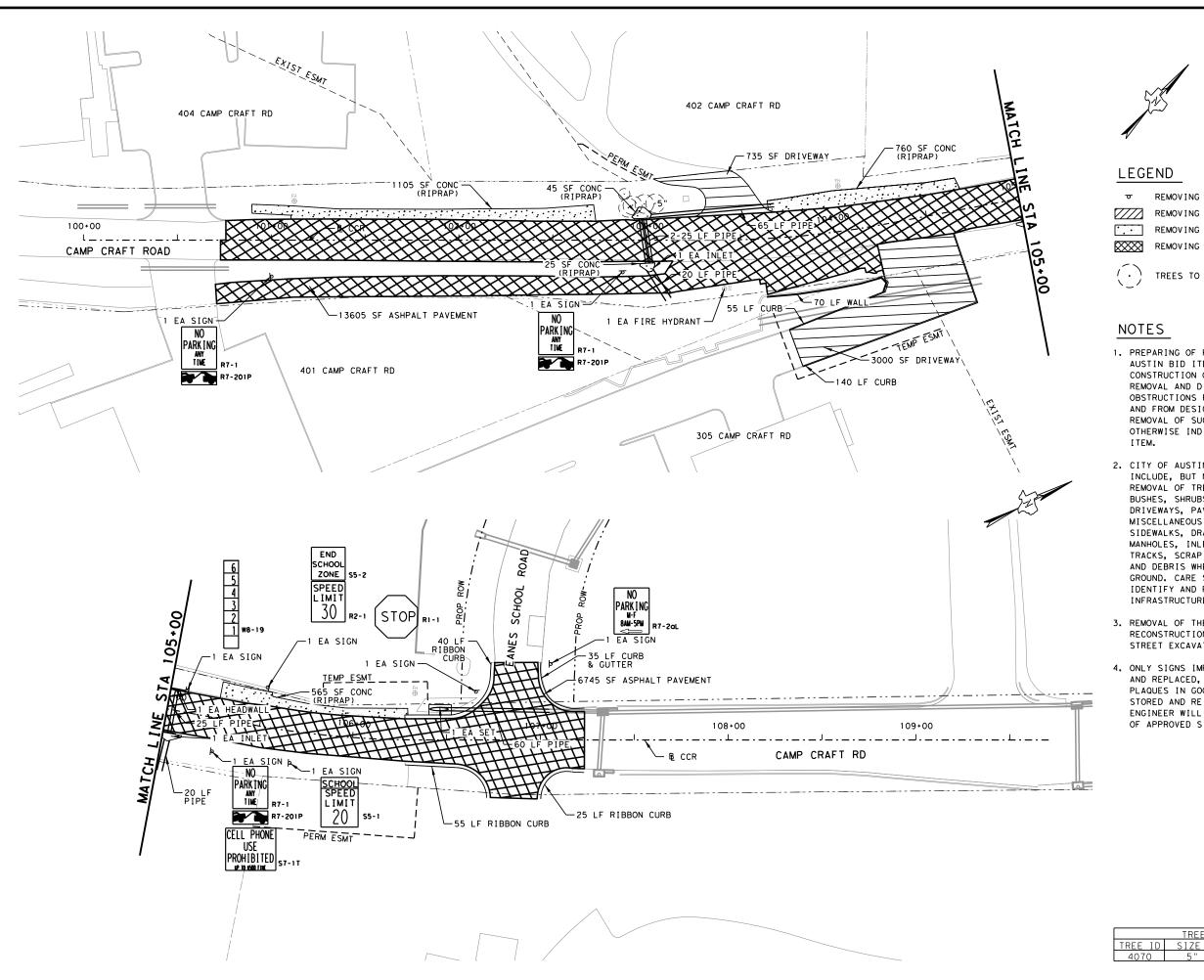
	SHEET 1 OF 1
SCALE	NTS
DATE	7/17/2023
SHEET NUMBER	3 of 388

WEST LAKE HILLS. TX

SHEET 1 OF

1":1200'


7/17/2023


7/17/2023

LAYOUT

PROJECT

OVERALL

REMOVING SIGN

REMOVING CONC (PAVE)

REMOVING CONC (RIPRAP)

REMOVING ASPHALT PAVEMENT

TREES TO BE REMOVED

- 1. PREPARING OF RIGHT-OF-WAY (CITY OF AUSTIN BID ITEM 101S) FOR CONSTRUCTION OPERATIONS INCLUDES THE REMOVAL AND DISPOSAL OF ALL OBSTRUCTIONS FROM THE RIGHT-OF-WAY AND FROM DESIGNATED EASEMENTS, WHERE REMOVAL OF SUCH OBSTRUCTIONS IS NOT OTHERWISE INDICATED AS A SEPARATE PAY
- 2. CITY OF AUSTIN BID ITEM 101S SHALL INCLUDE, BUT NOT BE LIMITED TO, THE REMOVAL OF TREES, STUMPS, ROOTS, BUSHES, SHRUBS, CURB AND GUTTER, DRIVEWAYS, PAVED PARKING AREAS, MISCELLANEOUS STONE, BRICK, SIDEWALKS, DRAINAGE STRUCTURES, MANHOLES, INLETS, ABANDONED RAILROAD TRACKS, SCRAP IRON, AND ALL RUBBISH AND DEBRIS WHETHER ABOVE OR BELOW GROUND. CARE SHOULD BE TAKEN TO IDENTIFY AND PROTECT EXISTING INFRASTRUCTURE.
- 3. REMOVAL OF THE EXISTING ROADWAY FOR RECONSTRUCTION SHALL BE SUBSIDIARY TO STREET EXCAVATION, BID ITEM 110S-A.
- 4. ONLY SIGNS IMPACTED SHALL BE REMOVED AND REPLACED, AS INDICATED. SIGN PLAQUES IN GOOD CONDITION CAN BE STORED AND REINSTALLED ON NEW POSTS. ENGINEER WILL MAKE FINAL DETERMINANT OF APPROVED SIGNS.

TREE REMOVAL

TYPE

TORIA M ORTEGA 7/17/2023

SE & ASSOCIATES, INC.
TEXAS HWY, II-100, AUSTIN, TX 78
E HILLS BOND PROGRAM
< LOW WATER CROSSINGS K FRIESE & ASSOCIATES, IN 120 S. CAPITAL OF TEXAS HWY, II-100, AL WEST LAKE HILLS BOND PRO EANES CREEK LOW WATER CR

> **K·FRIESE** + ASSOCIATES

WEST LAKE HILLS, TX

	SHEET 1 OF 2
SCALE	1":50'
DATE	7/17/2023
SHEET	14 of 388

LEGEND

REMOVING SIGN

REMOVING CONC (PAVE)

REMOVING CONC (RIPRAP)

REMOVING ASPHALT PAVEMENT

TREES TO BE REMOVED

- 1. PREPARING OF RIGHT-OF-WAY (CITY OF AUSTIN BID ITEM 101S) FOR CONSTRUCTION OPERATIONS INCLUDES THE REMOVAL AND DISPOSAL OF ALL OBSTRUCTIONS FROM THE RIGHT-OF-WAY AND FROM DESIGNATED EASEMENTS, WHERE REMOVAL OF SUCH OBSTRUCTIONS IS NOT OTHERWISE INDICATED AS A SEPARATE PAY ITEM.
- 2. CITY OF AUSTIN BID ITEM 101S SHALL INCLUDE, BUT NOT BE LIMITED TO, THE REMOVAL OF TREES, STUMPS, ROOTS, BUSHES, SHRUBS, CURB AND GUTTER, DRIVEWAYS, PAVED PARKING AREAS, MISCELLANEOUS STONE, BRICK, SIDEWALKS, DRAINAGE STRUCTURES, MANHOLES, INLETS, ABANDONED RAILROAD TRACKS, SCRAP IRON, AND ALL RUBBISH AND DEBRIS WHETHER ABOVE OR BELOW GROUND. CARE SHOULD BE TAKEN TO IDENTIFY AND PROTECT EXISTING INFRASTRUCTURE.
- 3. REMOVAL OF THE EXISTING ROADWAY FOR RECONSTRUCTION SHALL BE SUBSIDIARY TO STREET EXCAVATION, BID ITEM 110S-A.
- 4. ONLY SIGNS IMPACTED SHALL BE REMOVED AND REPLACED, AS INDICATED. SIGN PLAQUES IN GOOD CONDITION CAN BE STORED AND REINSTALLED ON NEW POSTS. ENGINEER WILL MAKE FINAL DETERMINANT OF APPROVED SIGNS.

TREE REMOVAL

1541

TYPE

SYCAMORE LIGUSTRUM

PECAN

HACKBERRY

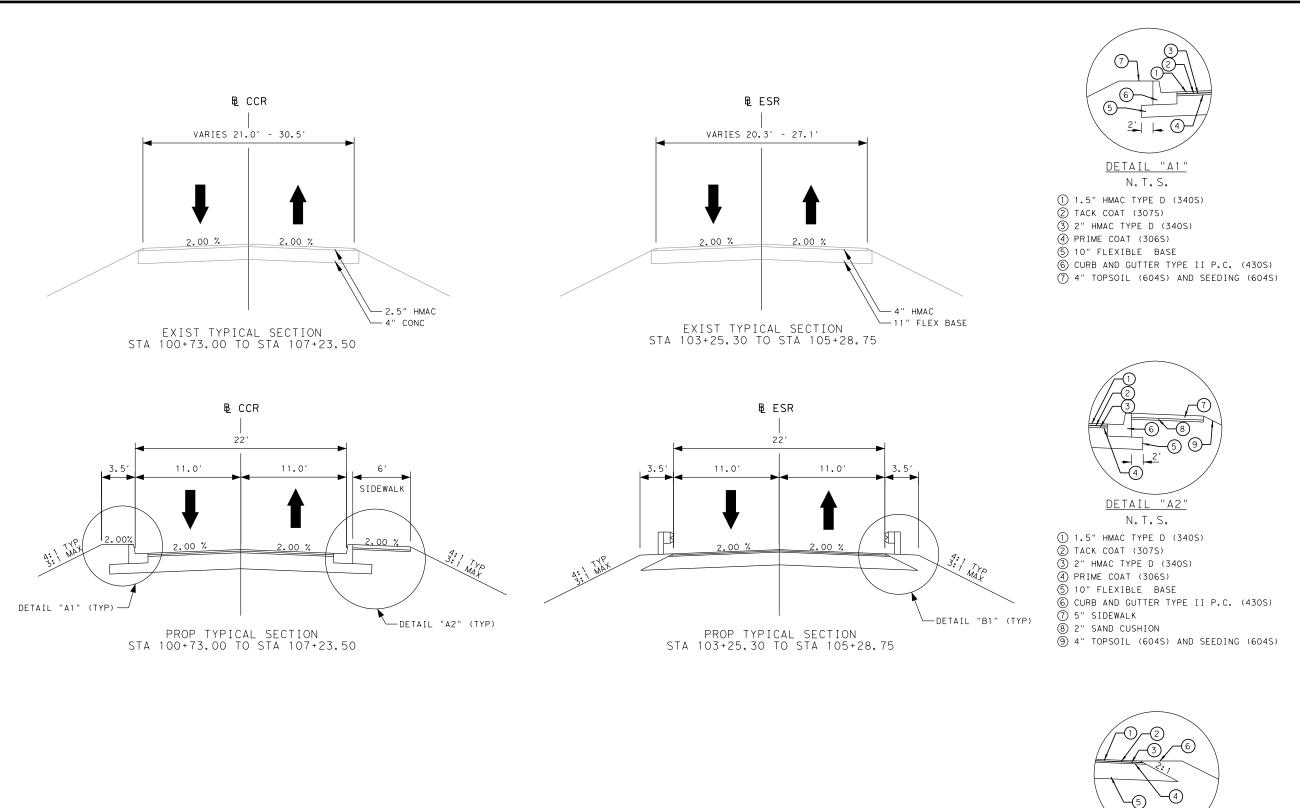
SYCAMORE

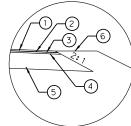
SYCAMORE SYCAMORE

	S/ONAL EX	
PITAL OF TEXAS HWY, II-100, AUSTIN, TX 78746	SST LAKE HILLS BOND PROGRAM S CREEK LOW WATER CROSSINGS	REMOVAL LAYOUT IES SCHOOL RD STA BEGIN - END

REMOVAL LAYOUT SCHOOL RD STA BEGIN

TORIA M ORTEGA


WES EANES S



WEST I	AKE HILLS, TX
	SHEET 2 OF 2
00415	411-501

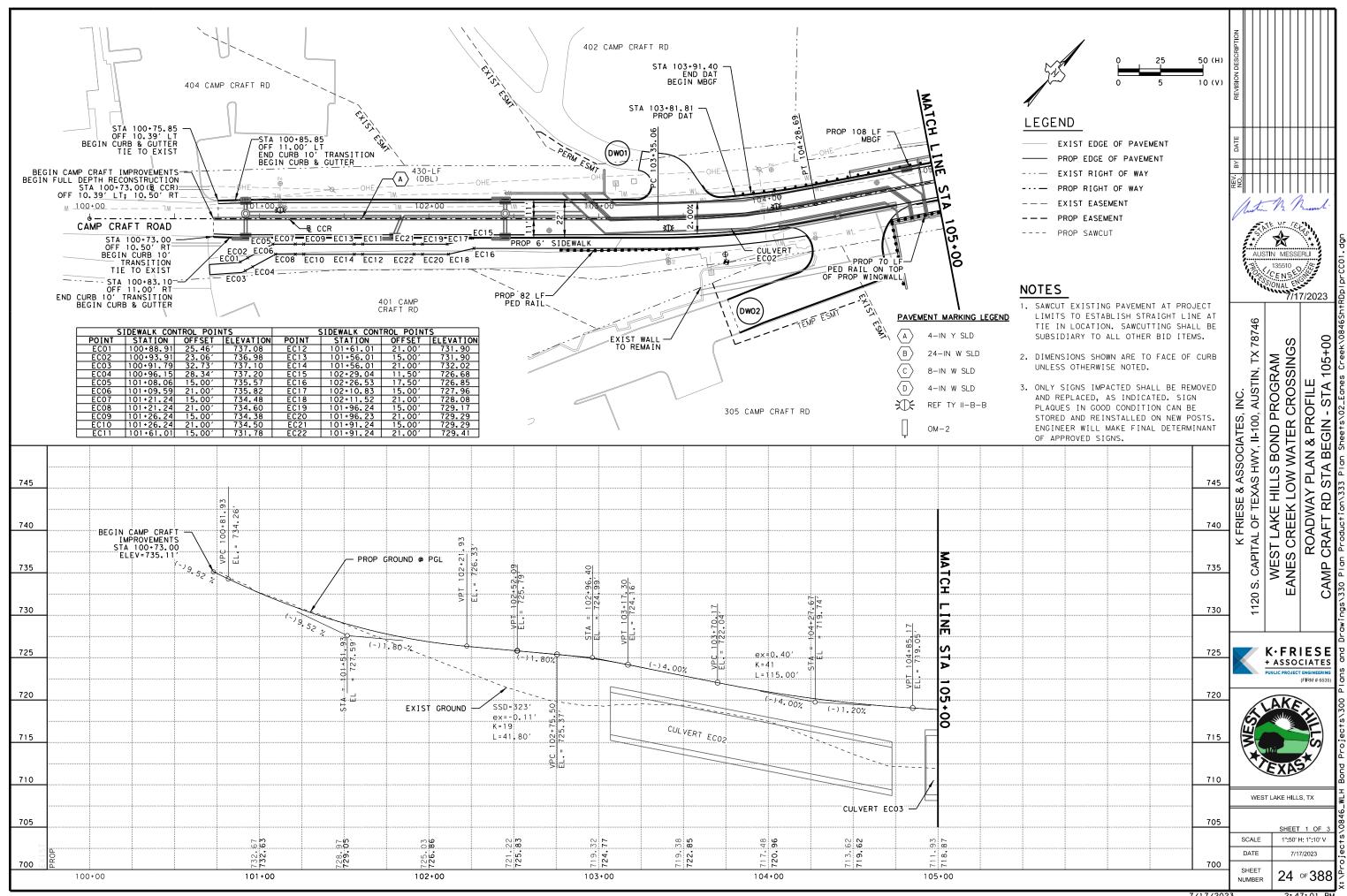
SCALE	1":50'
DATE	7/17/2023
SHEET	15 ∘ 388

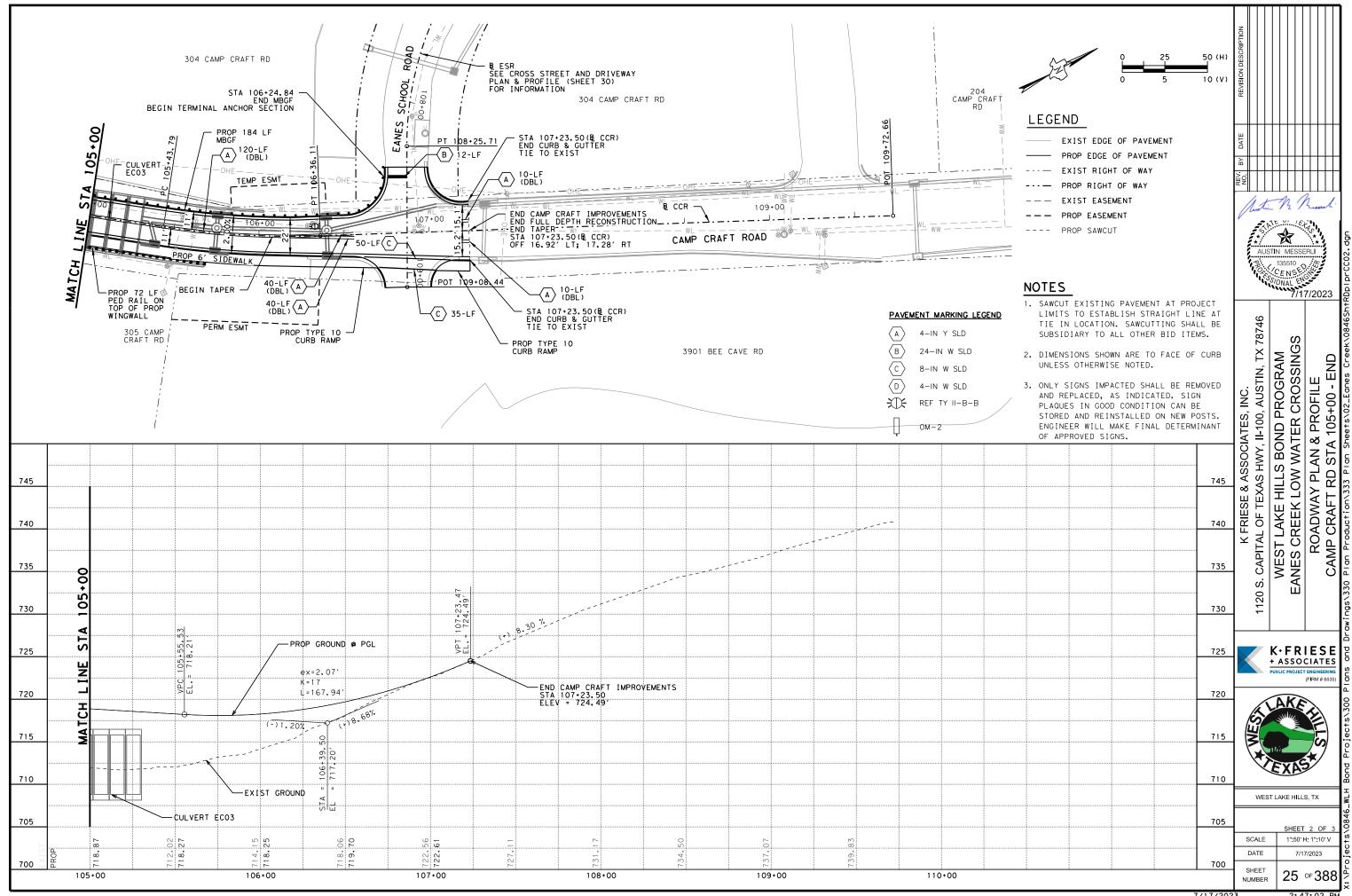
DETAIL "B1" N.T.S.

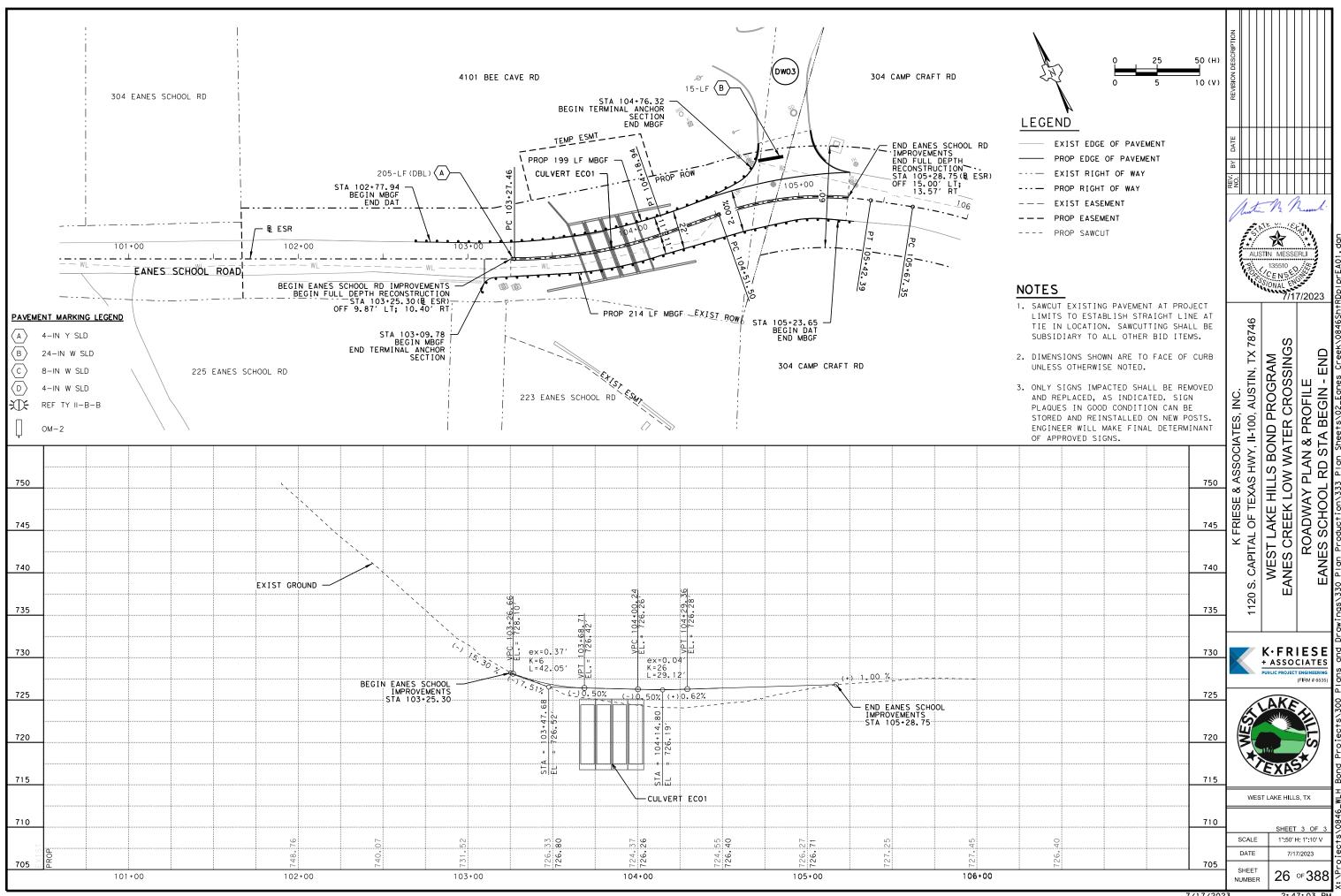
- 1.5" HMAC TYPE D (340S)
- ② TACK COAT (307S)
- 3 2" HMAC TYPE D (340S)
- 4 PRIME COAT (306S)
- 5 10" FLEXIBLE BASE
- (6) 4" TOPSOIL (604S) AND SEEDING (604S)

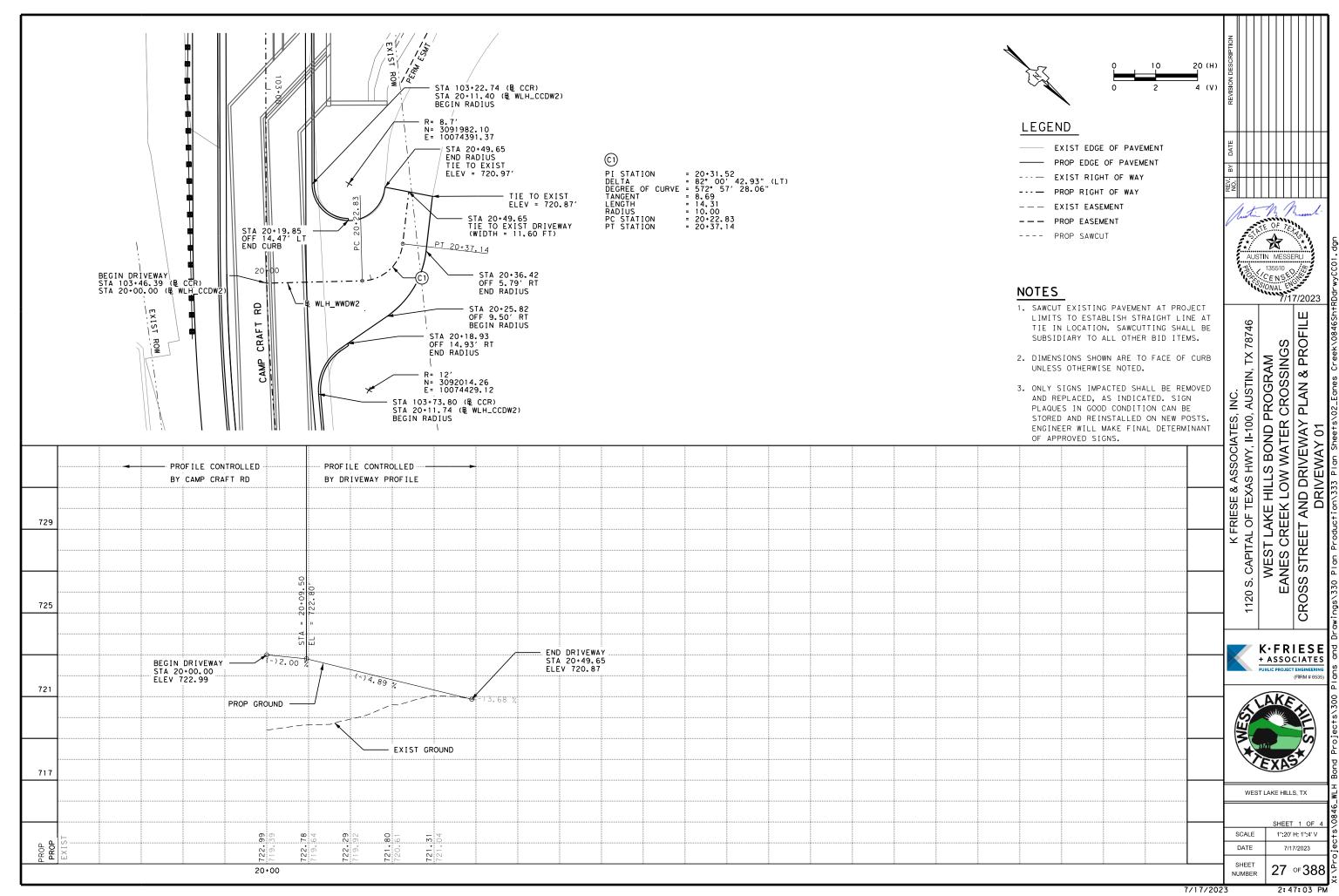
7/17/2023 K FRIESE & ASSOCIATES, INC.
1120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 78746
WEST LAKE HILLS BOND PROGRAM
EANES CREEK LOW WATER CROSSINGS

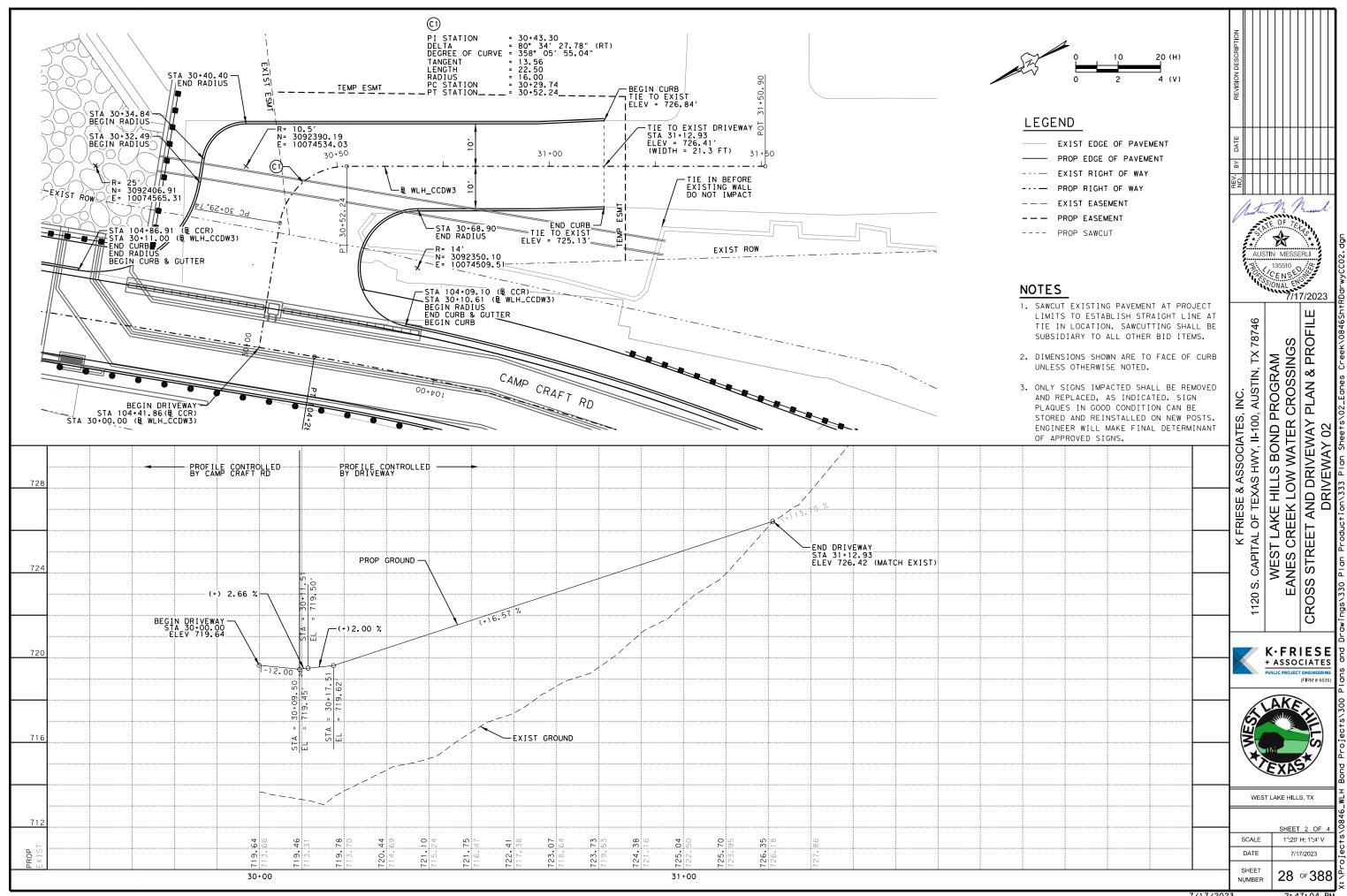
K•FR	IFSE
+ ASSO	
PUBLIC PROJECT	ENGINEERING

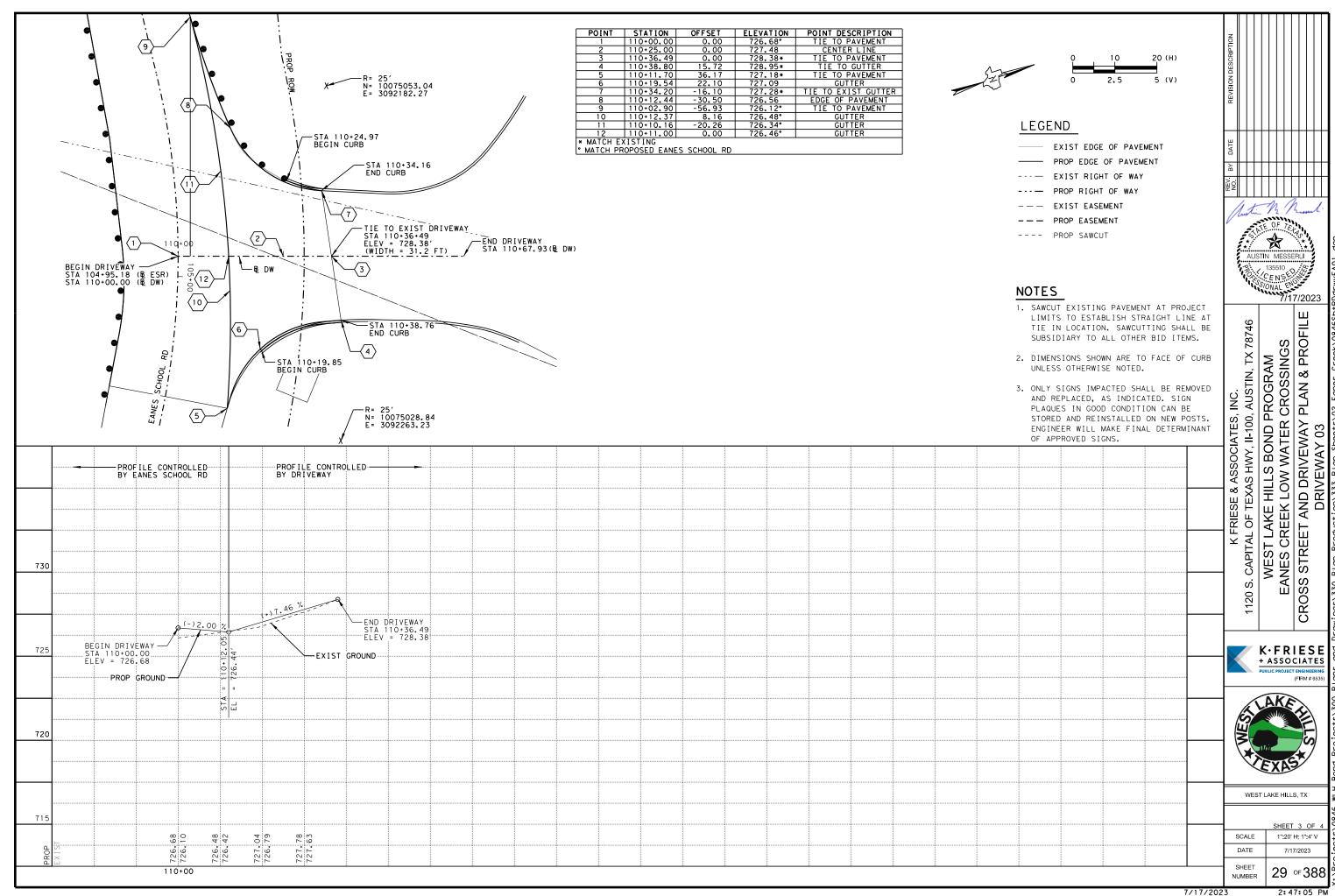


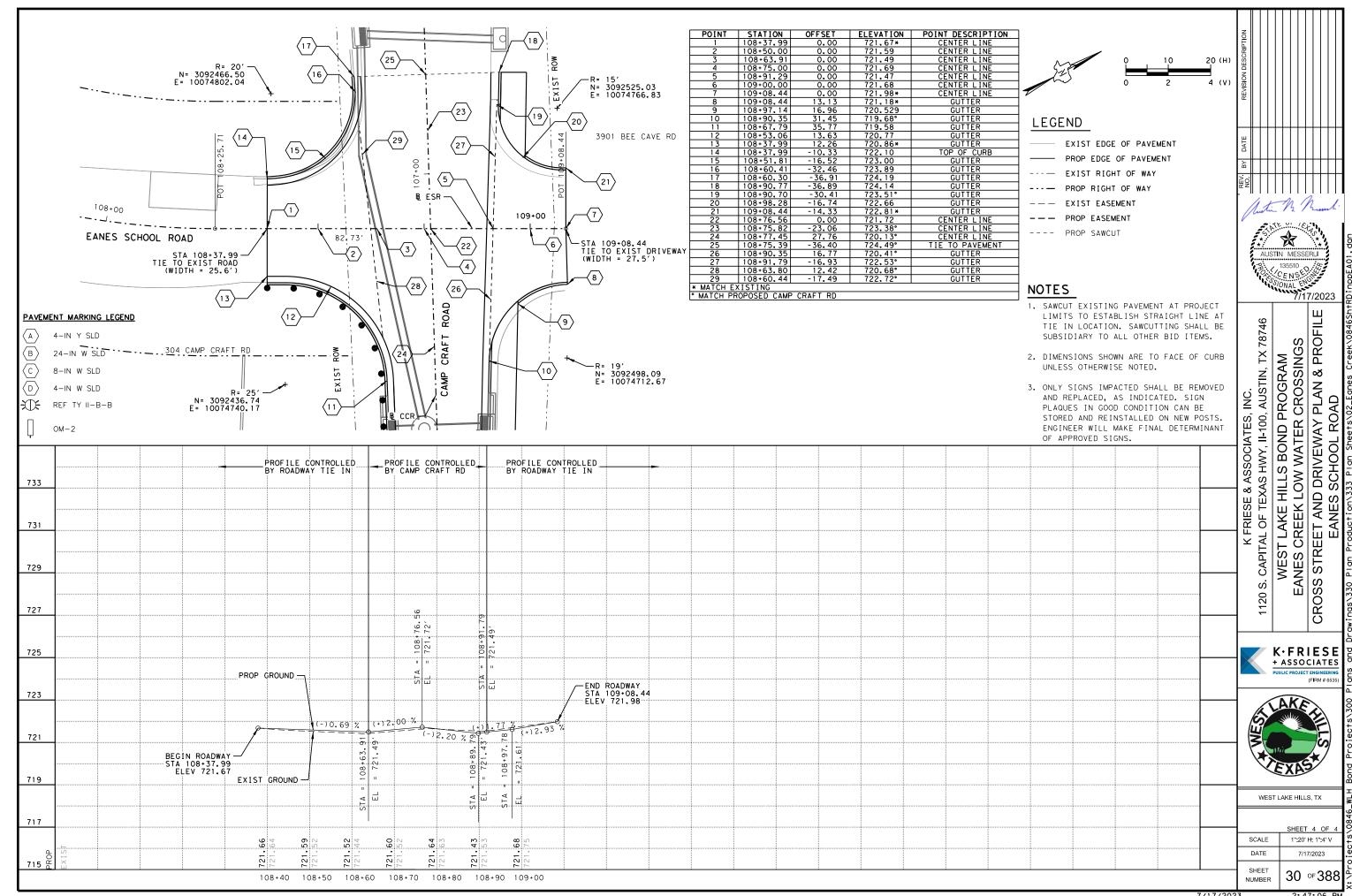

WEST LA	KE H I LLS	, Т.	х	
	SHEET	1	OF	

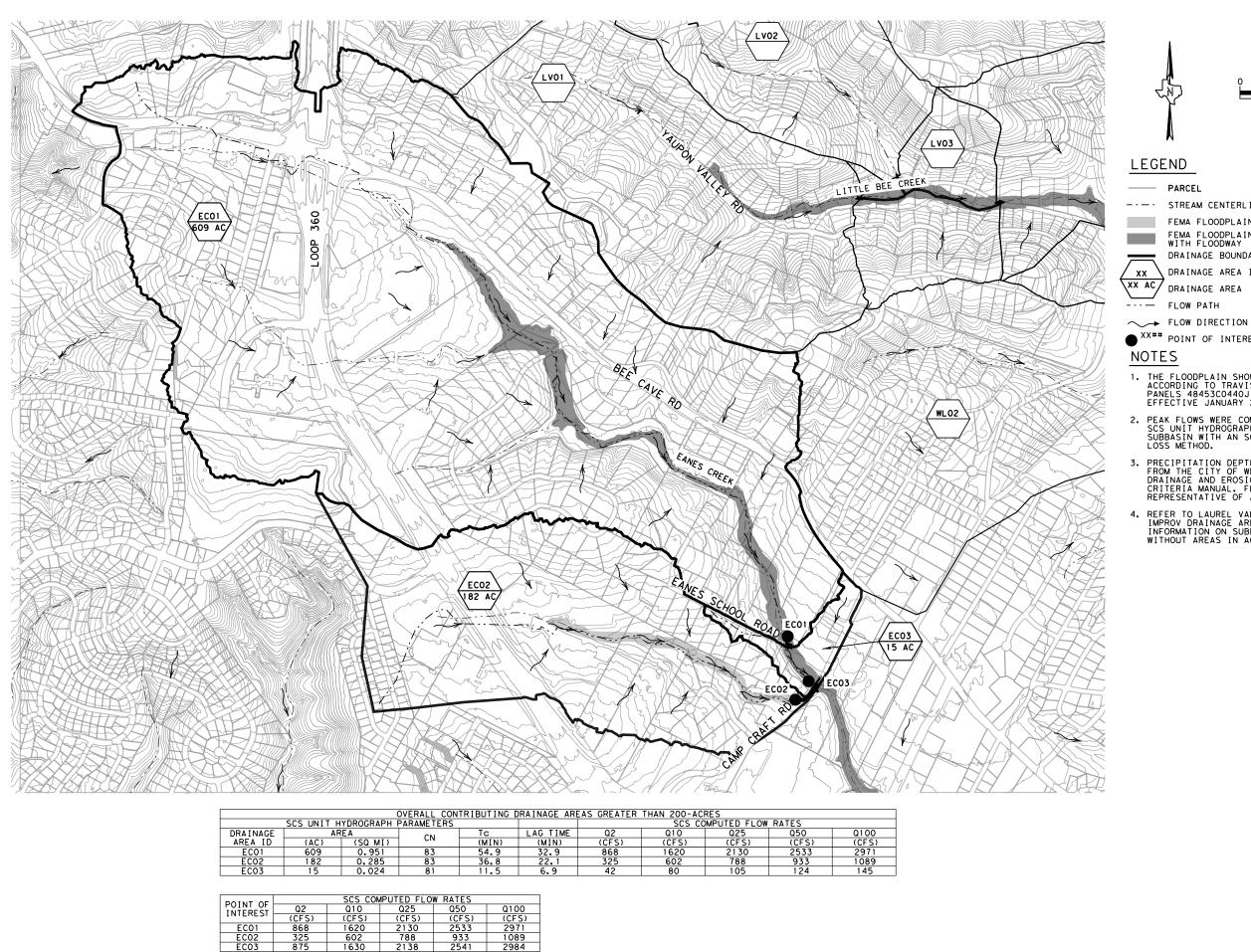

7/17/2023 SHEET NUMBER

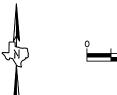

SCALE


NTS









---- STREAM CENTERLINE

FEMA FLOODPLAIN ZONE A FEMA FLOODPLAIN ZONE AE WITH FLOODWAY DRAINAGE BOUNDARY

DRAINAGE AREA ID

DRAINAGE AREA

■ XX## POINT OF INTEREST

- 1. THE FLOODPLAIN SHOWN IS ZONE AE ACCORDING TO TRAVIS COUNTY FIRM PANELS 48453C0440J AND 48453C0445K EFFECTIVE JANUARY 22, 2020.
- 2. PEAK FLOWS WERE COMPUTED FROM THE SCS UNIT HYDROGRAPH FOR EACH SUBBASIN WITH AN SCS CURVE NUMBER LOSS METHOD.
- 3. PRECIPITATION DEPTHS WERE OBTAINED FROM THE CITY OF WEST LAKE HILLS DRAINAGE AND EROSION CONTROL CRITERIA MANUAL. FLOWS ARE REPRESENTATIVE OF ATLAS 14.
- REFER TO LAUREL VALLEY DRNG & PVMT IMPROV DRAINAGE AREA MAP FOR INFORMATION ON SUBBASINS SHOWN WITHOUT AREAS IN ACRES.

1000

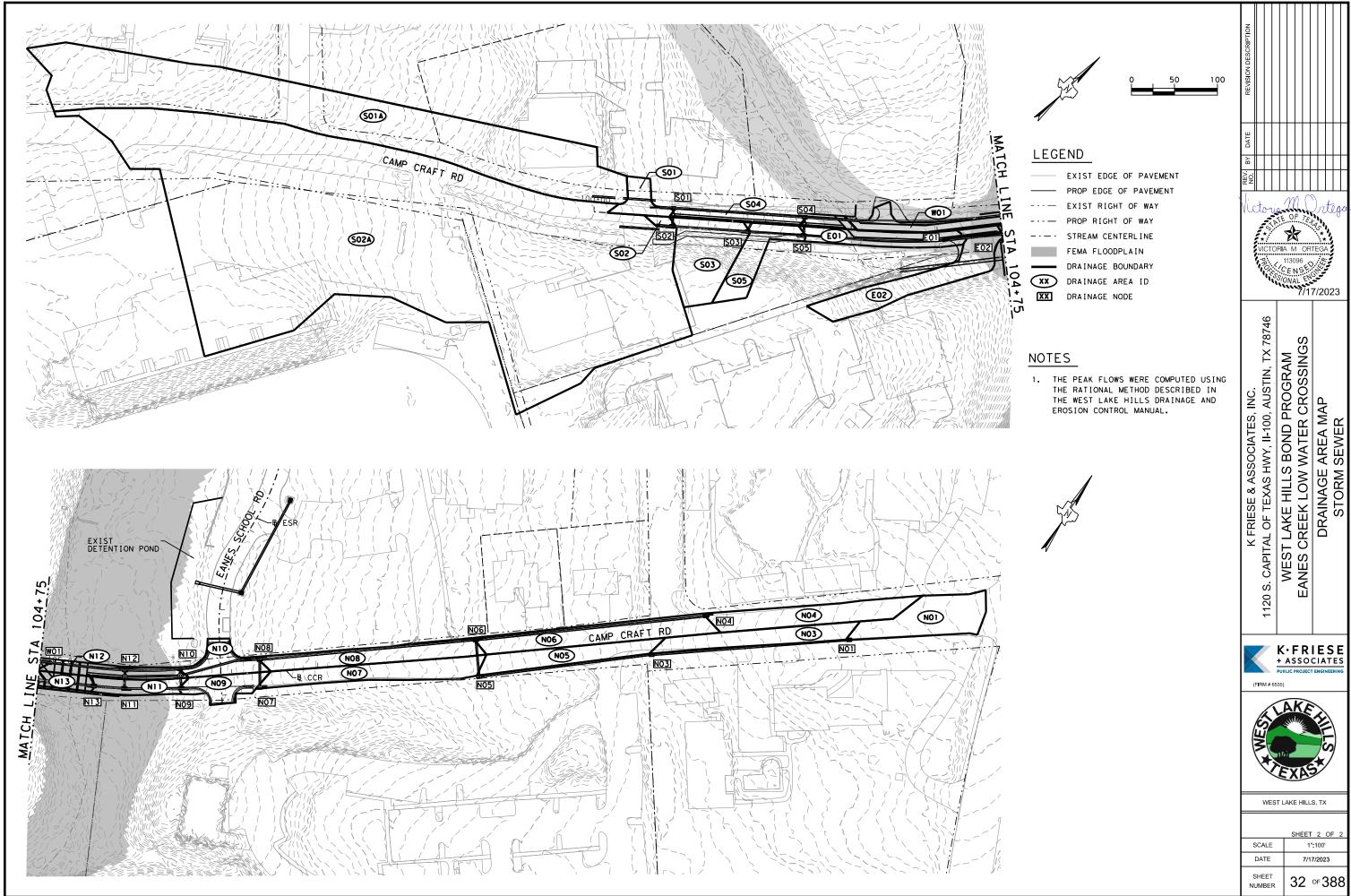
* VICTORIA M ORTEGA 113096 CENSE 7/17/2023

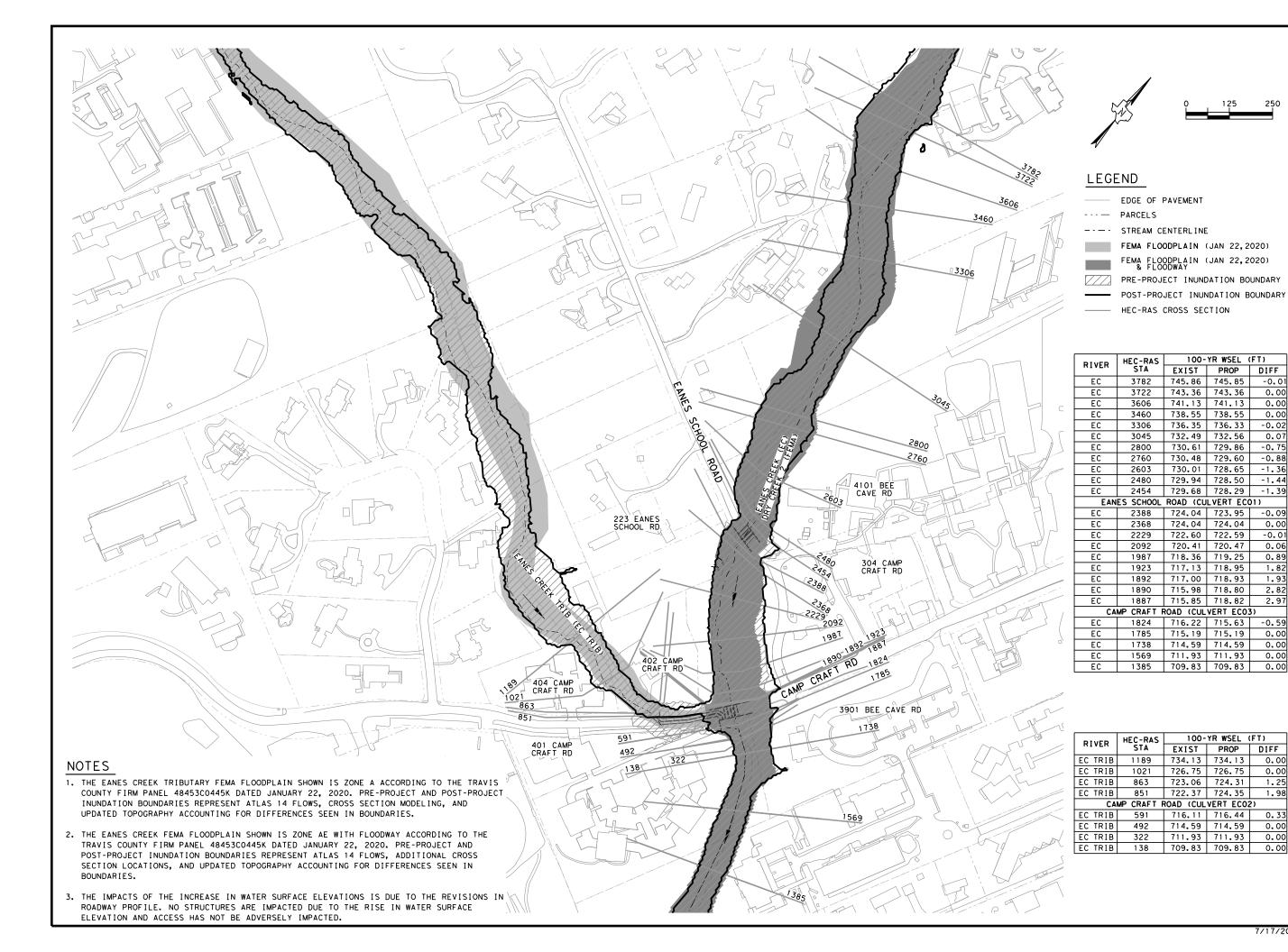
K FRIESE & ASSOCIATES, INC.

WEST LAKE HILLS BOND PROGRAM
EANES CREEK LOW WATER CROSSINGS

DRAINAGE AREA MAP
CROSS STRUCTURES

CROSS STRUCTURES


1120 **K·FRIESE** + ASSOCIATES



WEST LAKE HILLS, TX						
	SHEET 1 OF 2					
SCALE	1":1000'					
DATE 7/17/2023						

SHEET

31 of 388

7/17/2023

-0.01

0.00

0.00

0.00

-0.02

0.07

-0.75

-0.88

-1.36

0.00

-0.01

0.06

0.89

1.93

2.82

2.97

0.00

0.00

0.00

DIFF

0.00

0.00

1.25

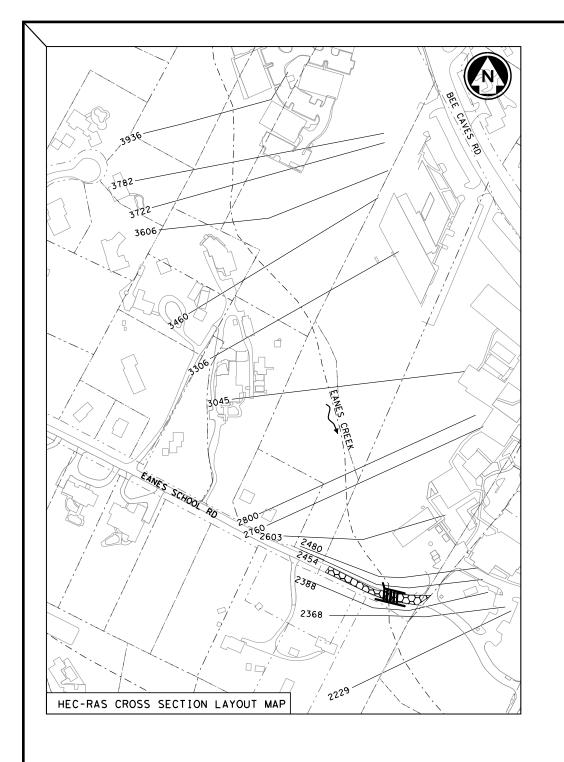
1.98

0.33

0.00

0.00

S BOND PROGRAM


WATER CROSSINGS AUSTIN, TX **CHANNEL HYDRAULIC DATA** WEST LAKE HEANES CREEK I 1120

> **K·FRIESE** + ASSOCIATES

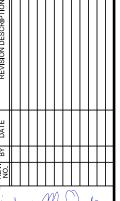
EXAS	
WEST LAKE HILLS, TX	

	SHEET 1 OF 1	0
CALE	1":250'	
ATE	7/17/2023	
HEET	22 05 200	

HYDROLOGIC METHOD:

1. ANALYSIS OF THE PEAK FLOWS FOR THE EXISTING AND PROPOSED STRUCTURES WAS PERFORMED USING THE SCS UNIT HYDROGRAPH METHOD. THE SCS UNIT HYDROGRAPH PEAK FLOWS FOR THE DRAINAGE AREAS WERE COMPUTED USING HEC-HMS VER 4.9.0

HYDRAULIC METHOD:


- 1. HEC-RAS (VER 6.1.0) WAS USED TO COMPUTE EXISTING AND PROPOSED CONDITION WATER SURFACE ELEVATIONS. CHANNEL CROSS SECTIONS WERE OBTAINED FROM TOPOGRAPHIC SURVEY DATA, CROSS SECTION DATA WAS SUPPLEMENTED WITH LIDAR DATA
- 2. NORMAL DEPTH WAS USED AS THE DOWNSTREAM BOUNDARY CONDITION FOR EANES CREEK, A SLOPE OF 0.014 WAS USED FOR THE EXISTING AND PROPOSED CONDITION
- 3. 25-YR (DESIGN) 100-YR (CHECK)

FLOOD HAZARD AREA:

1. EANES CREEK (FEMA DRY CREEK 2) IS LOCATED WITHIN THE FEMA SPECIAL FLOOD HAZARD ZONE "AE" WITH FLOODWAY ACCORDING TO FEMA FIRM PANELS 48453C0445K AND 48453C0440J EFFECTIVE JANUARY 22, 2020.

CULVERT ECO1										
DESCRIPTION	DIST. TO UPSTREAM	ENT LOSS	EXIT LOSS	CULV MANNING'S	UPSTREAM INVERT	INVERT	DOWNSTREAM BOUNDARY	MANNI	NG'S "n"	VALUE
DESCRIPTION	XS (FT)	COEFF.	COEFF.	"n"	ELEV (FT)	ELEV (FT)	CONDITIONS	LOB	CHANNEL	ROB
(EXIST) 1 - 24" X 48' CMP	5	0.9	1	0.024	717.44	717.17	NORMAL DEPTH	0.150	0.080	0.150
(EXIST) 1 - 36" X 48' CMP	5	0.9	1	0.024	718.62	718.24	NORMAL DEFTH	0.130	0.080	0.130
(PROP) 4 - 8' X 7' X 37' MBC	13	0.2	1	0.015	717.53	717.36	NORMAL DEPTH	0.150	0.080	0.150

				DESIGN	FREQUENCY 25-1	/R				CHECK E	REQUENCY 100-Y	R		
HEC-RAS	DOWNSTREAM		COMP		ER SURFACE				COMF	COMPUTED WATER SURFACE			VELOCITIES (FPS)	
RIVER STA	REACH LENGTH (FT)	FLOWS (CFS)	EXIST	PROP	DIFFERENCE	EXIST	PROP	FLOWS (CFS)	EXIST	PROP	DIFFERENCE	EXIST	PROP	
3936	154	2130	747.91	747.92	0.01	6.63	6.63	2971	748.58	748.58	0.00	7.70	7.70	
3782	60	2130	745.27	745.27	0.00	4.64	4.64	2971	745.86	745.85	-0.01	5.36	5.37	
3722	116	2130	742.88	742.88	0.00	7.74	7.76	2971	743.36	743.36	0.00	8.59	8.60	
3606	146	2130	740.24	740.24	0.00	4.79	4.79	2971	741.13	741.13	0.00	5.35	5.35	
3460	154	2130	737.70	737.71	0.01	6.68	6.66	2971	738.55	738.55	0.00	7.58	7.58	
3306	261	2130	735.41	735.35	-0.06	5.44	5.52	2971	736.35	736.33	-0.02	6.12	6.14	
3045	245	2130	731.59	731.80	0.21	6.06	5.78	2971	732.49	732.56	0.07	6.97	6.87	
2800	40	2130	729.77	728.77	-1.00	3.69	4.77	2971	730.61	729.86	-0.75	4.30	5.04	
2760	157	2130	729.64	728.37	-1.27	3.09	4.26	2971	730.48	729.60	-0.88	3.63	4.35	
2603	123	2130	729.26	726.50	-2.76	2.69	4.88	2971	730.01	728.65	-1.36	3.34	4.18	
2480	26	2130	729.21	726.12	-3.09	1.55	2.58	2971	729.94	728.50	-1.44	1.98	2.39	
2454	66	2130	729.04	725.70	-3.34	4.34	5.12	2971	729.68	728.29	-1.39	5.53	4.44	
EANES SCHOOL ROAD (CULVERT ECO1)														
2388	20	2130	723.31	723.29	-0.02	8.97	7.38	2971	724.04	723.95	-0.09	10.38	9.15	
2368	139	2130	723.26	723.26	0.00	3.93	3.93	2971	724.04	724.04	0.00	4.49	4.49	
2229	137	2130	721.85	721.85	0.00	4.60	4.60	2971	722.60	722.59	-0.01	5.26	5.27	

7/17/2023

K FRIESE & ASSOCIATES, INC.

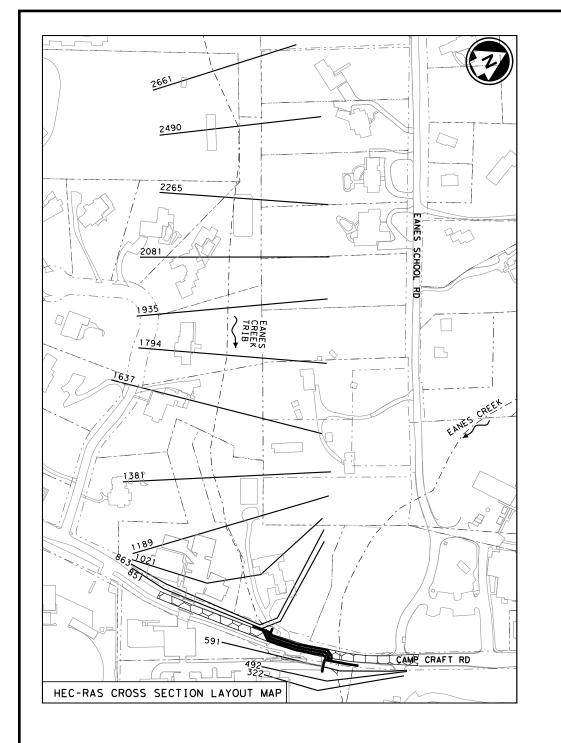
WEST LAKE HILLS BOND PROGRAM
EANES CREEK LOW WATER CROSSINGS

CULVERT HYDRAULIC DATA

CULVERT EC01

GULVERT EC01 1120

K·FRIESE + ASSOCIATES


(FIRM # 6535

WEST LAKE HILLS. TX

SHEET 1 OF SCALE NTS DATE 7/17/2023 SHEET

NUMBER

PROP GROUND AT B 730 730 PROP 100YR WSEL 728.29′_∑ PROP GROUND ELEV 726.22' -EXIST GROUND 720 720 -CULVERT ECO1 4-8'x7' MBC HEC-RAS SECTION STA 2454 CROSS SECTION SHOWN FACING UPSTREAM CULVERT

730

720

HYDROLOGIC METHOD:

1. ANALYSIS OF THE PEAK FLOWS FOR THE EXISTING AND PROPOSED STRUCTURES WAS PERFORMED USING THE SCS UNIT HYDROGRAPH METHOD. THE SCS UNIT HYDROGRAPH PEAK FLOWS FOR THE DRAINAGE AREAS WERE COMPUTED USING HEC-HMS VER 4.9.0

HYDRAULIC METHOD:

PROP 100YR WSEL 724.35'

PROP GROUND ELEV 722.91'

- 1. HEC-RAS (VER 6.1.0) WAS USED TO COMPUTE EXISTING AND PROPOSED CONDITION WATER SURFACE ELEVATIONS. CHANNEL CROSS SECTIONS WERE OBTAINED FROM TOPOGRAPHIC SURVEY DATA. CROSS SECTION DATA WAS SUPPLEMENTED WITH LIDAR DATA
- 2. KNOWN WSEL BOUNDARY CONDITION TAKEN FROM EANES CREEK MODEL XS 1385

DOWNSTREAM BOUNDARY CONDITION

Flow (cfs)	Known WSEL (ft)
1147	705.92
2144	707.59
2814	708.51
3344	709.17
3919	709.83
5511	711.42

PROP GROUND AT B

-EXIST GROUND

PROP 25YR WSEL 720.03

-CULVERT ECO2 2-7'x5' MBC

HEC-RAS SECTION STA 851

CROSS SECTION SHOWN FACING UPSTREAM CULVERT

3. 25-YR (DESIGN) 100-YR (CHECK)

CULVERT ECO2										
DESCRIPTION	DIST. TO UPSTREAM	ENT LOSS COEFF.	EXIT LOSS COEFF.	CULV MANNING'S "n"	UPSTREAM INVERT ELEV (FT)	DOWNSTREAM INVERT ELEV (FT)	DOWNSTREAM BOUNDARY	MANNING'S "n" VALUE		
	XS (FT)						CONDITIONS	LOB	CHANNEL	ROB
(EXIST) 2 - 15" X 46' CMP*	19	0.5	1	0.024	717.30	716.18	NORMAL DEPTH	0.150	0.080	0.150
(EXIST) 1 - 36" X 120' CMP	10	0.9	1	0.024	714.51	709.90	NORMAL DEFIN	0.150	0.080	0.150
(PROP) 2 - 7' X 5' X 215' MBC	12	0.4	1	0.015	716.66	709.10	NORMAL DEPTH	0.150	0.080	0.150

* EXISTING CULVERT CONSISTS OF 2-15" X 27 LF CMP AND 2-36" X 19 LF CMP. THE MODEL USED THE SMALLER DIAMETER PIPE FOR THE FULL LENGTH OF THE EXISTING CULVERT AS THEY ARE CONNECTED BY A STRUCTURE.

			DESIGN	FREQUENCY 25-	YR	CHECK FREQUENCY 100-YR							
HEC-RAS RIVER STA	F1 0W6	COMP	PUTED WAT	ER SURFACE	VELOCITI	(ES (FPS)	FLOWS (CFS)	COMF	PUTED WAT	VELOCITIES (FPS)			
	FLOWS (CFS)	EXIST	PROP	DIFFERENCE	EXIST	PROP		EXIST	PROP	DIFFERENCE	EXIST	PROP	
2661	788	773.57	773.57	0.00	5.27	5.27	1089	774.25	774.25	0.00	5.70	5.70	
2490	788	767.74	767.74	0.00	5.60	5.60	1089	767.93	767.93	0.00	6.85	6.85	
2265	788	761.28	761.28	0.00	6.17	6.17	1089	761.57	761.57	0.00	6.83	6.83	
2081	788	756.22	756.22	0.00	5.84	5.84	1089	756.61	756.61	0.00	6.83	6.83	
1935	788	754.03	754.03	0.00	6.94	6.94	1089	754.49	754.49	0.00	7.63	7.63	
1794	788	750.73	750.73	0.00	2.83	2.83	1089	751.32	751.32	0.00	3.18	3.18	
1637	788	744.80	744.80	0.00	5.76	5.75	1089	745.13	745.13	0.00	6.76	6.76	
1381	788	738.88	738.88	0.00	2.58	2.58	1089	739.42	739.42	0.00	2.85	2.85	
1189	788	733.50	733.50	0.00	8.79	8.79	1089	734.13	734.13	0.00	9.62	9.62	
1021	788	726.50	726.50	0.00	6.29	6.31	1089	726.75	726.75	0.00	7.45	7.45	
863	788	722.56	722.56	0.00	7.80	7.80	1089	723.06	724.31	1.25	8.41	5.27	
851	788	721.84	720.03	-1.81	9.04	9.72	1089	722.37	724.35	1.98	10.07	4.74	
				CAME	CRAFT RO	AD (CULVER	T ECO2)						
591	2814	714.91	715.13	0.22	6.58	13.40	3919	716.11	716.44	0.33	6.90	14.94	
492	2814	713.36	713.36	0.00	6.16	6.16	3919	714.59	714.59	0.00	6.86	6.86	
322	2814	710.66	710.66	0.00	7.23	7.23	3919	711.93	711.93	0.00	8.13	8.13	

FLOOD HAZARD AREA:

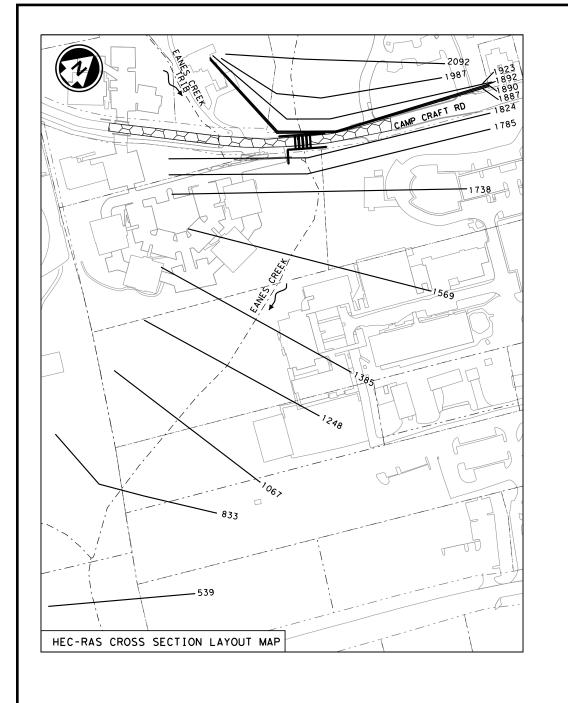
1. EANES CREEK TRIBUTARY IS LOCATED WITHIN THE FEMA FLOOD HAZARD ZONE "A" ACCORDING TO FEMA FIRM PANELS 48453CO445K AND 48453CO440J EFFECTIVE JANUARY 22, 2020.

VICTORIA M ORTEGA

113096 CENSE SONAL ENGL 7/17/2023

K FRIESE & ASSOCIATES, INC.
120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 787
WEST LAKE HILLS BOND PROGRAM
EANES CREEK LOW WATER CROSSINGS
CULVERT HYDRAULIC DATA
CULVERT EC02 1120

> **K·FRIESE** + ASSOCIATES


WEST LAKE HILLS, TX

SHEET 2 OF SCALE NTS 7/17/2023

35 of 388 NUMBER

730

720

720

710

HYDROLOGIC METHOD:

1. ANALYSIS OF THE PEAK FLOWS FOR THE EXISTING AND PROPOSED STRUCTURES WAS PERFORMED USING THE SCS UNIT HYDROGRAPH METHOD. THE SCS UNIT HYDROGRAPH PEAK FLOWS FOR THE DRAINAGE AREAS WERE COMPUTED USING HEC-HMS VER 4.9.0

HYDRAULIC METHOD:

- HEC-RAS (VER 6.1.0) WAS USED TO COMPUTE EXISTING AND PROPOSED CONDITION WATER SURFACE ELEVATIONS. CHANNEL CROSS SECTIONS WERE OBTAINED FROM TOPOGRAPHIC SURVEY DATA. CROSS SECTION DATA WAS SUPPLEMENTED WITH LIDAR DATA
- 2. NORMAL DEPTH WAS USED AS THE DOWNSTREAM BOUNDARY CONDITION FOR EANES CREEK. A SLOPE OF 0.014 WAS USED FOR THE EXISTING AND PROPOSED CONDITION
- 3. 25-YR (DESIGN) 100-YR (CHECK)

FLOOD HAZARD AREA:

PROP GROUND ELEV 717.97'

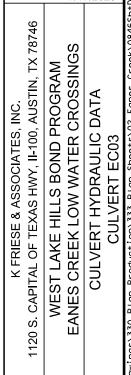
PROP 100YR WSEL 718.82'\\$

1. EANES CREEK (FEMA DRY CREEK 2) IS LOCATED WITHIN THE FEMA SPECIAL FLOOD HAZARD ZONE "AE" WITH FLOODWAY ACCORDING TO FEMA FIRM PANELS 48453C0445K AND 48453C0440J EFFECTIVE JANUARY 22, 2020.

CULVERT ECO3										
DESCRIPTION	DIST. TO UPSTREAM	ENT LOSS	EXIT LOSS COEFF.	CULV MANNING'S "n"	UPSTREAM INVERT ELEV (FT)	DOWNSTREAM INVERT	DOWNSTREAM BOUNDARY	MANNING'S "n" VALUE		
	XS (FT)	COEFF.				ELEV (FT)	CONDITIONS	LOB	CHANNEL	ROB
(EXIST) 1 - 18" X 45' CMP	8.5	0.5	1	0.024	710.08	709.94	NORMAL DEPTH	0.150	0.080	0.150
(PROP) 4 - 8' X 7' X 36' MBC	7	0.2	1	0.015	709.00	708.50	NORMAL DEPTH	0.150	0.080	0.150

				DESIGN	FREQUENCY 25-	YR	CHECK FREQUENCY 100-YR						
HEC-RAS RIVER STA DOWNSTREAM REACH LENGTH (FT)	EL OWC	COMP	UTED WAT	ER SURFACE	VELOCITI	VELOCITIES (FPS)		COMF	PUTED WAT	VELOCITIES (FPS			
		FLOWS (CFS)	EXIST	PROP	DIFFERENCE	EXIST	PROP	FLOWS (CFS)	EXIST	PROP	DIFFERENCE	EXIST	PROP
2092	105	2130	719.69	719.66	-0.03	5.90	5.94	2971	720.41	720.47	0.06	6.63	6.49
1987	64	2130	717.69	717.89	0.20	5.62	5.28	2971	718.36	719.25	0.89	6.44	5.19
1923	31	2138	716.49	717.24	0.75	5.35	4.28	2984	717.13	718.95	1.82	6.14	4.02
1892	2	2138	716.35	717.19	0.84	3.70	3.03	2984	717.00	718.93	1.93	4.41	3.03
1890	3	2138	715.49	717.00	1.51	7.96	4.46	2984	715.98	718.80	2.82	8.88	4.05
1887	63	2138	714.76	716.77	2.01	11.39	5.56	2984	715.85	718.82	2.97	10.64	4.12
					CAMP CRA	FT ROAD (C	ULVERT EC	03)	•				
1824	39	2138	714.98	714.57	-0.41	6.76	5.61	2984	716.22	715.63	-0.59	7.10	6.60
1 785	47	2814	713.98	713.98	0.00	6.22	6.22	3919	715.19	715.19	0.00	6.74	6.74
1738	169	2814	713.36	713.36	0.00	6.09	6.09	3919	714.59	714.59	0.00	6.77	6.77
1569	184	2814	710.66	710.66	0.00	7.29	7.29	3919	711.93	711.93	0.00	8.22	8.22
1385	137	2814	708.51	708.51	0.00	6.14	6.14	3919	709.83	709.83	0.00	7.02	7.02
1248	181	2814	707.49	707.49	0.00	5.26	5.26	3919	708.87	708.87	0.00	5.92	5.92
1067	234	2814	705.90	705.90	0.00	6.08	6.08	3919	707.23	707.23	0.00	6.93	6.93
833	294	2814	704.01	704.01	0.00	5.48	5.48	3919	705.40	705.40	0.00	6.17	6.17
539	0	2814	700,60	700.60	0.00	7.36	7.36	3919	701.93	701.93	0.00	8.36	8.36

PROP GROUND AT


EXIST GROUND

PROP 25YR <u>▼</u> WSEL 716.77

-CULVERT ECO3 -4-8'x7' MBC

HEC-RAS SECTION STA 1887

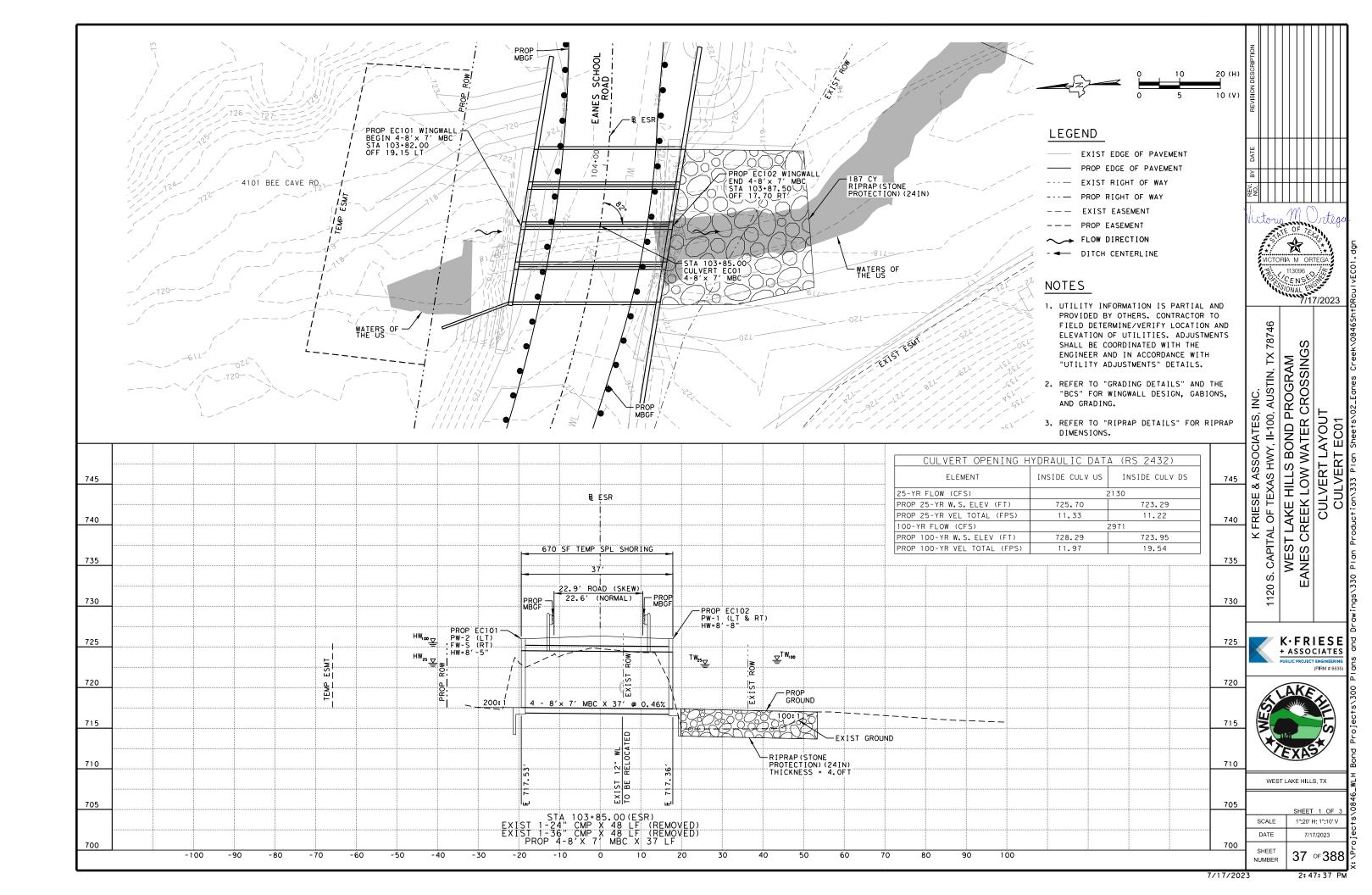
CROSS SECTION SHOWN FACING UPSTREAM CULVERT

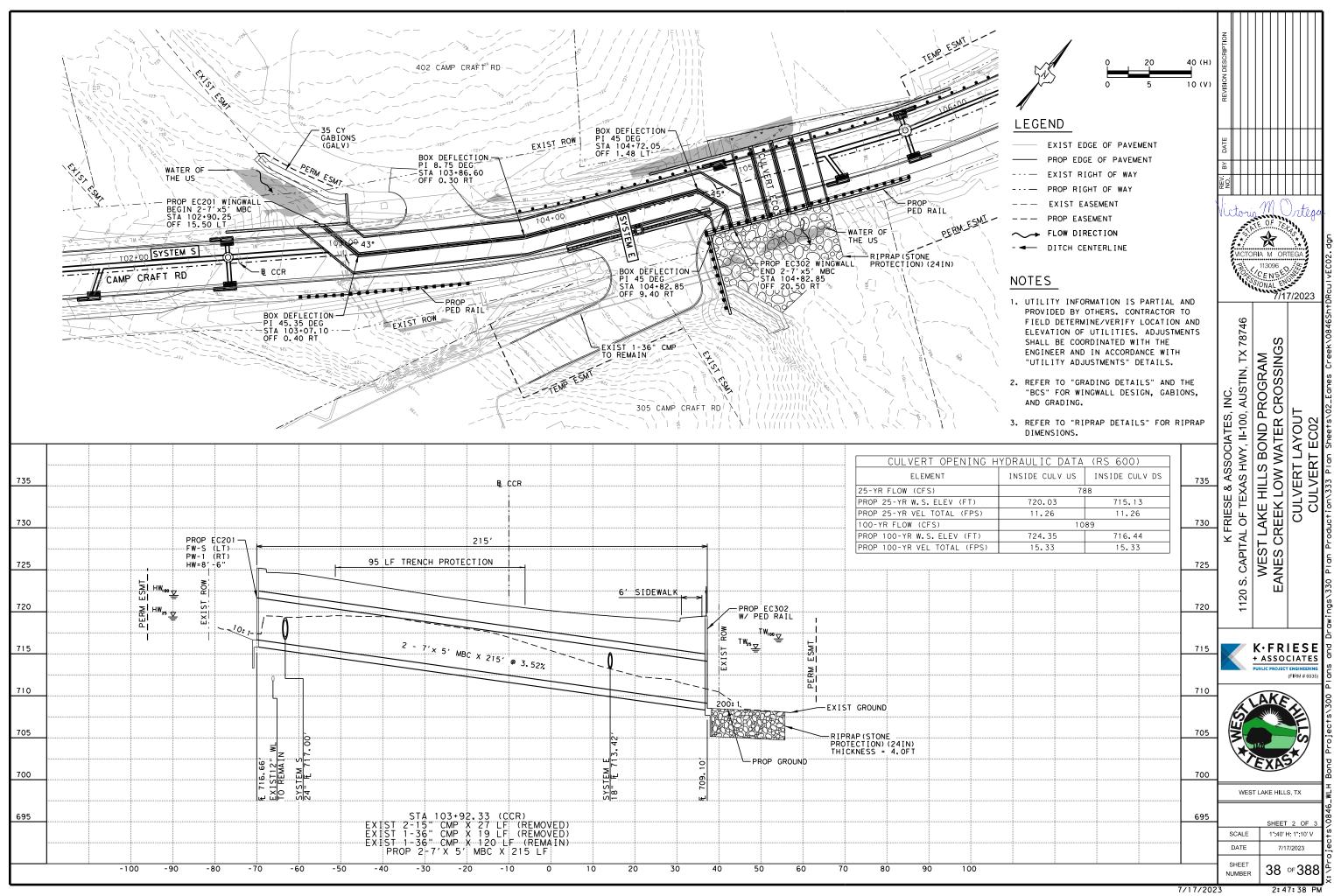
VICTORIA M ORTEGA

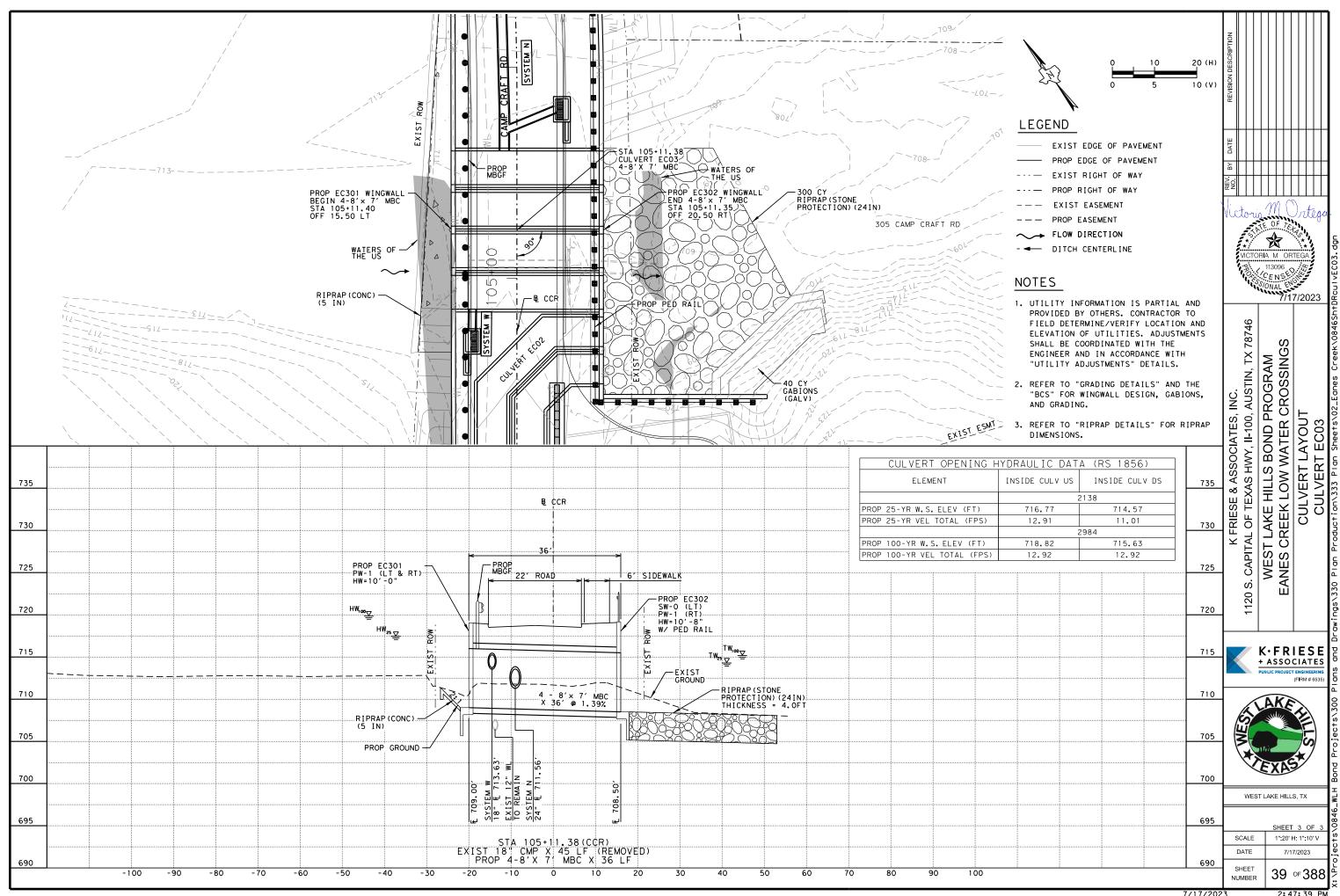
113096 CENSE SONAL ENGINE

7/17/2023

K·FRIESE + ASSOCIATES


WEST LAKE HILLS, TX	


SHEET 3 OF SCALE NTS DATE 7/17/2023


SHEET 36 of 388 NUMBER

720

710

SYSTEM S AREA ID AREA (AC) RUNOFF COEFF T. (IN/HR) (25-YR) 100-YR S01 0.04 0.81 0.5 9.40 0.3 12.25 0.5 S01A 0.91 0.47 4.8 9.40 0.1 12.25 6.5 S02 0.01 0.81 0.5 9.40 0.1 12.25 0.1 S02A 2.91 0.71 3.3 9.40 0.1 12.25 0.1 S03 0.15 0.44 0.7 9.40 0.7 12.25 1.0 S04 0.04 0.81 0.9 9.40 0.3 12.25 0.1 S03 0.15 0.44 0.7 9.40 0.7 12.25 1.0 S04 0.04 0.81 0.9 9.40 0.3 12.25 0.5 S05 0.08 0.54 0.7 9.40 0.4 12.25 0.7

INLET I	NFORMATION	ROADWAY	INFORMA	ATION	HYDRAU	LIC PARA	METERS	25-YR		BY PASS		PONDED	WIDTH	PONDED	DEPTH
INLET ID	INLET TYPE	PROFILE TYPE	LONG SLOPE	CROSS SLOPE	CURB LENGTH	GRATE LENGTH	GRATE AREA	Q Q	ALLOW	ACTUAL	NODE TO	ALLOW	ACTUAL	ALLOW	ACTUAL
		TIFE	(%)	(%)	(FT)	(FT)	(SF)	(CFS)	(CFS)	(CFS)	1	(FT)	(FT)	(FT)	(FT)
S01	PCU	On Grade	7.96	2.00	5.0	5.0	3.13	0.3	0.50	0.04	S04	5.5	3.1	0.50	0.06
SOIA	OPEN	Sag	N/A	2.00	5.0	n/a	n/a	4.4	N/A	N/A	N/A	N/A	N/A	0.75	0.52
S02	PCU	On Grade	7.96	2.00	9.5	5.0	3.13	0.1	0.50	0.00	S03	5.5	1.7	0.50	0.03
S02A	OPEN	Sag	N/A	2.00	9.5	u\a	n/a	21.4	N/A	N/A	N/A	N/A	N/A	0.75	0.71
S03	PCU	On Grade	4.57	2.00	9.5	5.0	3.13	0.7	0.50	0.01	S05	5.5	4.6	0.50	0.09
S04	PCU	On Grade	2.07	2.00	9.5	5.0	3.13	0.4	0.50	0.00	WO1	5.5	4.2	0.50	0.08
S05	PCU	On Grade	2.07	2,00	9.5	5.0	3.13	0.5	0.50	0.00	E02	5.5	4.6	0.50	0.09

LINK ID	US NODE ID	DS NODE ID	LINK SIZE	ACTUAL LENGTH (FT)	LINK SLOPE (%)	US FL ELEV (FT)	DS FL ELEV (FT)	CUMM TC (MIN)	DISCHARGE (CFS)	CAPACITY (CFS)	ACTUAL VELOCITY (FPS)	US HGL (FT)	DS HGL (FT)	JUNC LOSS (FT)
S01	S01	SJ1	1-18" RCP	4	5,00	726,64	726,44	10.0	4,7	27.4	2,7	728,41	728.39	0.01
S02	S02	SJ1	1-18" RCP	11	5.00	726.95	726.44	10.0	21.5	27.4	12.2	730.48	728.39	1.61
SJ1	SJ1	SJ2	1-24" RCP	91	4.62	725.94	721.74	10.0	26.2	56.7	15.4	728.39	722.80	0.56
S03	S03	SJ2	1-18" RCP	14	0.50	722.31	722.24	10.0	0.7	8.7	0.4	723.72	723.71	0.00
SJ2	SJ2	SJ3	1-24" RCP	58	4.62	721.74	719.06	10.1	26.8	56.6	14.6	723.71	720.20	0.08
S04	S04	SJ3	1-18" RCP	5	5.00	719.77	719.56	10.0	0.3	27.4	0.2	721.43	720.03	0.00
S05	S05	SJ3	1-18" RCP	11	5.00	720.07	719.56	10.0	0.4	27.4	0.3	721.43	721.43	0.00
SJ3	SJ3	SOUT	1-24" RCP	45	4.59	719.06	717.00	10.2	27.5	56.5	8.7	721.43	720.75	0.09

SYSTEM E

3131LN	<u> </u>						
	AREA		т	25	-YR	100	-YR
AREA ID		RUNOFF	'•	I	Q	I	Ö
AREA ID	(AC)	COEFF	(MIN)	(IN/HR)	(CFS)	(IN/HR)	(CFS)
E01	0.07	0.81	1.0	9.40	0.6	12.25	0.9
E02	0.15	0.81	0.9	9.40	1.2	12.25	1.9

INLET IN	NFORMATION	ROADWAY	INFORMA	TION	HYDRAU	HYDRAULIC PARAMETERS				BY PASS		PONDED	WIDTH	PONDED	DEPTH
INLET ID	INLET TYPE	PROFILE TYPF	LONG SLOPE	CROSS SLOPE	CURB LENGTH	GRATE LENGTH	GRATE AREA	25-YR Q	ALLOW	ACTUAL	NODE	ALLOW	ACTUAL	ALLOW	ACTUAL
		TTPE	(%)	(%)	(FT)	(FT)	(SF)	(CFS)	(CFS)	(CFS)	2	(FT)	(FT)	(FT)	(FT)
E01	TDD	On Grade	2.30	2.00	n/a	32.0	32.00	0.6	0.50	0.00	E02	11.0	5.1	0.50	0.10
E02	TDD	On Grade	2.30	2.00	n/a	32.0	32.00	1.2	0.50	0.01	N11	11.0	6.5	0.50	0.13

LINK ID	US NODE ID	DS NODE ID	LINK SIZE	ACTUAL LENGTH (FT)	LINK SLOPE (%)	US FL ELEV (FT)	DS FL ELEV (FT)	CUMM TC (MIN)	DISCHARGE (CFS)	CAPACITY (CFS)	ACTUAL VELOCITY (FPS)	US HGL (FT)	DS HGL (FT)	JUNC LOSS (FT)
E01	E01	EOUT	1-18" RCP	2	2,00	713.46	713,42	10.0	1,9	17.3	1.0	716, 16	716.15	0.01

SYSTEM W

	AREA		т	25	- YR	100	-YR
AREA ID	ARLA	RUNOFF	١.	I	Q	I	Q
I I	(AC)	COEFF	(MIN)	(IN/HR)	(CFS)	(IN/HR)	(CFS)
WO1	0.07	0.81	1,1	9.40	0.6	12.25	0.9

INLET IN	NFORMATION	ROADWAY	INFORM	ATION	HYDRAU	LIC PARA	METERS	25-YR		BY PASS		PONDED	WIDTH	PONDED	DEPTH
INLET ID	INLET TYPE	PROFILE TYPE	LONG SLOPE (%)	CROSS SLOPE (%)	CURB LENGTH (FT)	GRATE LENGTH (FT)	GRATE AREA (SF)	Q (CFS)	ALLOW (CFS)	ACTUAL (CFS)	NODE TO	ALLOW (FT)	ACTUAL (FT)	ALLOW (FT)	ACTUAL (FT)
WO1	PCU	On Grade	1.20	2.00	9.5	5.0	3.13	0.6	0.50	0.00	N12	11.0	5.7	0.50	0.11

LINK ID	US NODE ID	DS NODE ID	LINK SIZE	ACTUAL LENGTH (FT)	LINK SLOPE (%)	US FL ELEV (FT)	DS FL ELEV (FT)	CUMM TC (MIN)	DISCHARGE (CFS)	CAPACITY (CFS)	ACTUAL VELOCITY (FPS)	US HGL (FT)	DS HGL (FT)	JUNC LOSS (FT)
WO1	WO1	WOUT	1-18" RCP	6	2,00	713,73	713.63	10.0	0.6	17,3	0.3	717,52	717,52	0,00

SYSTEM N

	AREA		T,	25	-YR	100	-YR
AREA ID	ANEA	RUNOFF	'•	I	Q	I	Q
ANLA ID	(AC)	COEFF	(MIN)	(IN/HR)	(CFS)	(IN/HR)	(CFS)
NO1	0.13	0.81	0.7	9.40	1,1	12.25	1.6
N03	0.10	0.81	0.8	9.40	0.8	12.25	1.2
N04	0.12	0.81	0.8	9.40	1.0	12.25	1.5
N05	0.09	0.81	0.9	9.40	0.8	12.25	1.1
N06	0.14	0.81	0.9	9.40	1.2	12.25	1.7
N07	0.12	0.81	0.8	9.40	1.0	12.25	1.5
N08	0.11	0.81	0.8	9.40	0.9	12.25	1.4
N09	0.05	0.81	0.7	9,40	0.5	12,25	0.6
N10	0.05	0.81	0.7	9,40	0.5	12,25	0.6
N11	0.04	0.81	0.7	9,40	0.4	12,25	0.5
N12	0.05	0.81	0.8	9,40	0.4	12.25	0.6
N13	0.03	0.81	0.7	9.40	0.2	12.25	0.4

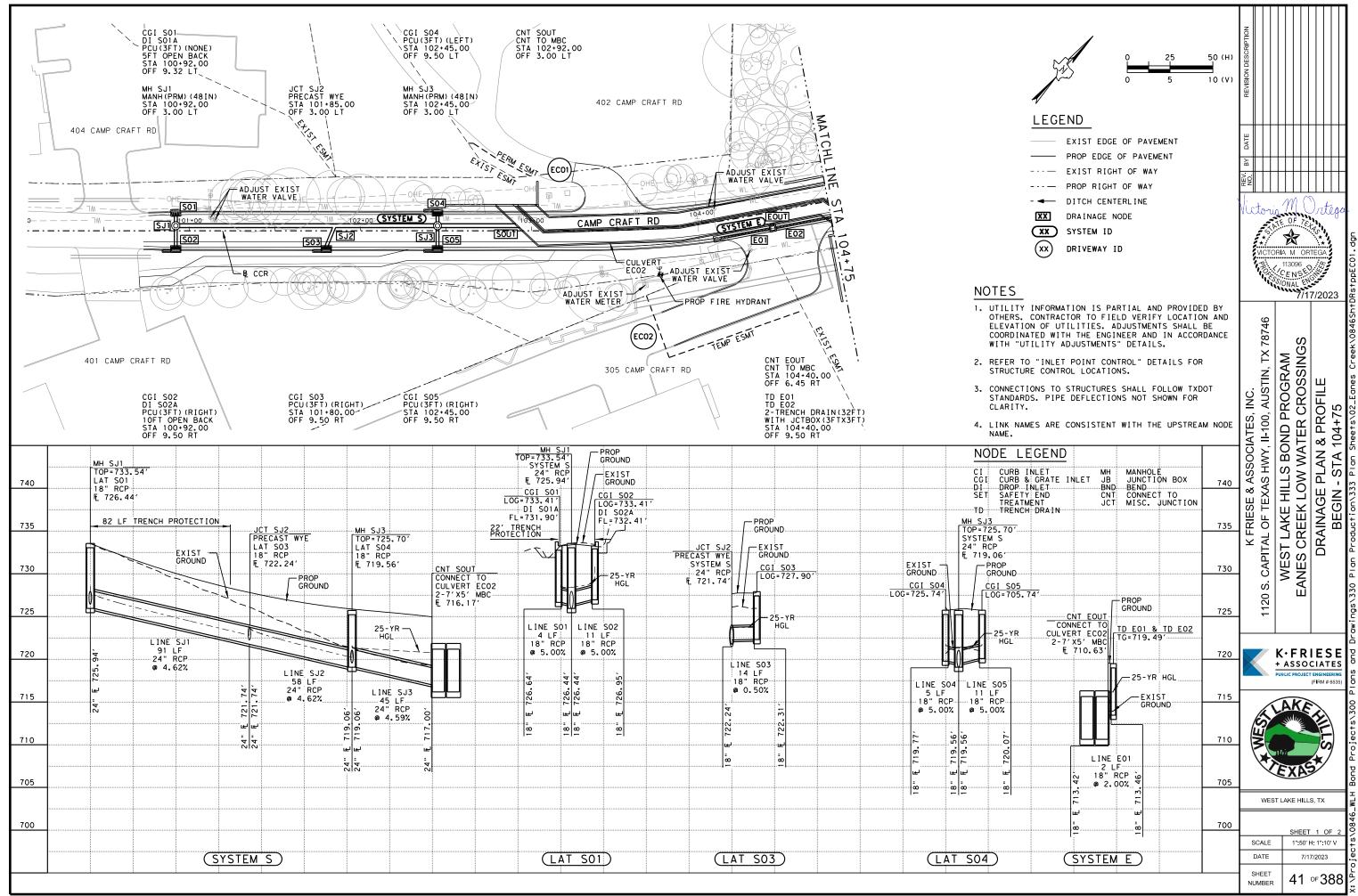
INLET IN	NFORMATION	ROADWAY	INFORM	ATION	HYDRAU	LIC PARA	METERS	25-YR		BY PASS		PONDED	WIDTH	PONDED	DEPTH
INLET ID	INLET TYPE	PROFILE TYPE	LONG SLOPE	CROSS SLOPE	CURB LENGTH	GRATE LENGTH	GRATE AREA	Q	ALLOW	ACTUAL	NODE TO	ALLOW	ACTUAL	ALLOW	ACTUAL
		ITPE	(%)	(%)	(FT)	(FT)	(SF)	(CFS)	(CFS)	(CFS)	10	(FT)	(FT)	(FT)	(FT)
NO1	EXIST PCU	On Grade	5.00	2.00	5.0	5.0	3.13	1,1	0.50	0.32	NO3	5.5	5.0	0.50	0.10
NO3	EXIST PCU	On Grade	5.70	2.00	5.0	5.0	3.13	1.1	0.50	0.35	N05	5.5	5.0	0.50	0.10
N04	EXIST PCU	On Grade	5.70	2.00	9.5	5.0	3.13	1.0	0.50	0.07	N06	5.5	4.9	0.50	0.10
N05	EXIST PCO	On Grade	5.70	2.00	5.0	n/a	n/a	1.1	0.50	0.45	NO7	5.5	5.0	0.50	0.10
N06	EXIST PCU	On Grade	5.70	2.00	9.5	5.0	3.13	1.2	0.50	0.12	N08	5.5	5.2	0.50	0.10
N07	EXIST PCO	On Grade	8.69	2.00	9.5	n/a	n/a	1.5	0.50	0.29	N09	5.5	5.1	0.50	0.10
N08	EXIST PCU	On Grade	8.69	2.00	9.5	5.0	3.13	1.0	0.50	0.09	N10	5.5	4.5	0.50	0.09
N09	PCU	On Grade	3.77	2.00	9.5	5.0	3.13	0.7	0.50	0.01	N11	5.5	4.9	0.50	0.10
N10	PCU	On Grade	3.77	2.00	9.5	5.0	3.13	0.5	0.50	0.00	N12	5.5	4.4	0.50	0.09
N11	PCU	Sag	N/A	2.00	9.5	5.0	3.13	0.4	N/A	N/A	N/A	5.5	5.1	0.50	0.10
N12	PCU	Sag	N/A	2,00	9.5	5.0	3.13	0.4	N/A	N/A	N/A	5.5	5.1	0.50	0.10
N13	PCU	On Grade	1.20	2,00	9.5	5.0	3.13	0.2	0.50	0.00	N11	5.5	3.8	0.50	0.08

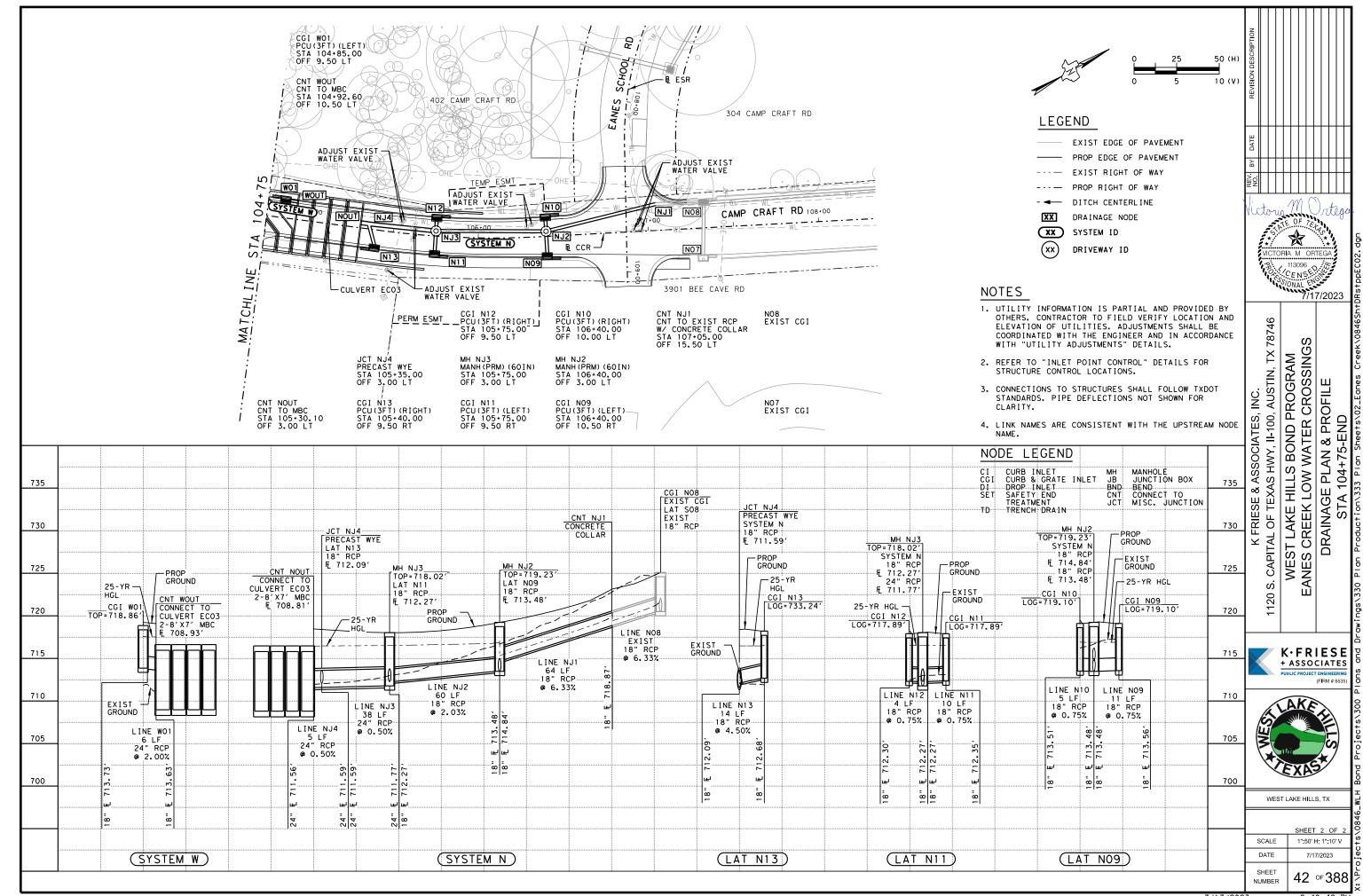
LINK ID	US NODE ID	DS NODE	LINK SIZE	ACTUAL LENGTH (FT)	LINK SLOPE (%)	US FL ELEV (FT)	DS FL ELEV (FT)	CUMM TC (MIN)	DISCHARGE (CFS)	CAPACITY (CFS)	ACTUAL VELOCITY (FPS)	US HGL (FT)	DS HGL (FT)	JUNC LOSS (FT)
NO1	NO1	N03	EXIST 1-18" RCP	226	4.43	760.00	750.00	10.0	1.1	25.8	6.8	760.66	750.22	0.04
N03	N03	N05	EXIST 1-18" RCP	197	6.60	750.00	737.00	10.6	1.8	31.5	9.2	750.87	737.25	0.01
N05	N05	N06	EXIST 1-18" RCP	41	1.25	737.00	736.50	10.9	2.6	13.7	1.6	737.84	737.80	0.13
N04	N04	N06	EXIST 1-18" RCP	265	6.81	754.50	736.50	10.0	1.0	32.0	7.8	755.24	736.69	0.02
N06	N06	N08	EXIST 1-18" RCP	248	6.46	736.50	720.50	11.1	4.6	31.1	12.0	737.80	720.91	0.15
NO7	NO7	N08	EXIST 1-18" RCP	30	1.67	721,00	720.50	10.0	1.0	15.8	0.6	721.84	721.83	0.02
N08	N08	NJ1	EXIST 1-18" RCP	26	6.33	720.50	718.87	11.4	6.4	30.8	11,1	721.83	719.41	0.19
N09	N09	NJ2	1-18" RCP	11	0.75	713.56	713.48	10.0	0.4	10.6	0.3	716.88	716.88	0.00
NJ1	NJ1	NJ2	1-18" RCP	64	6.33	718.87	714.84	11.4	6.4	30.8	12.6	720.05	715.33	0.05
N10	N10	NJ2	1-18" RCP	5	0.75	713.51	713.48	10.0	0.5	10.6	0.3	716.88	716.88	0.00
NJ2	NJ2	NJ3	1-18" RCP	60	2.03	713.48	712.27	11.5	7.2	17.4	4.1	716.88	716.51	0.11
N1 1	N11	NJ3	1-18" RCP	10	0.75	712.35	712.27	10.0	0.4	10.6	0.2	716.51	716.51	0.00
N12	N12	NJ3	1-18" RCP	4	0.75	712.30	712.27	10.0	0.4	10.6	0.2	716.51	716.51	0.00
NJ3	NJ3	NJ4	1-24" RCP	38	0.50	711.77	711.59	11.7	7.9	18.6	2.5	716.51	716.46	0.00
N13	N13	NJ4	1-18" RCP	14	4.50	712.68	712.09	10.0	0.2	26.0	0.1	716.46	716.46	0.00
NJ4	NJ4	NOUT	1-24" RCP	5	0.50	711,59	711.56	11,8	8, 1	18,6	2,6	716,46	716,45	0,01

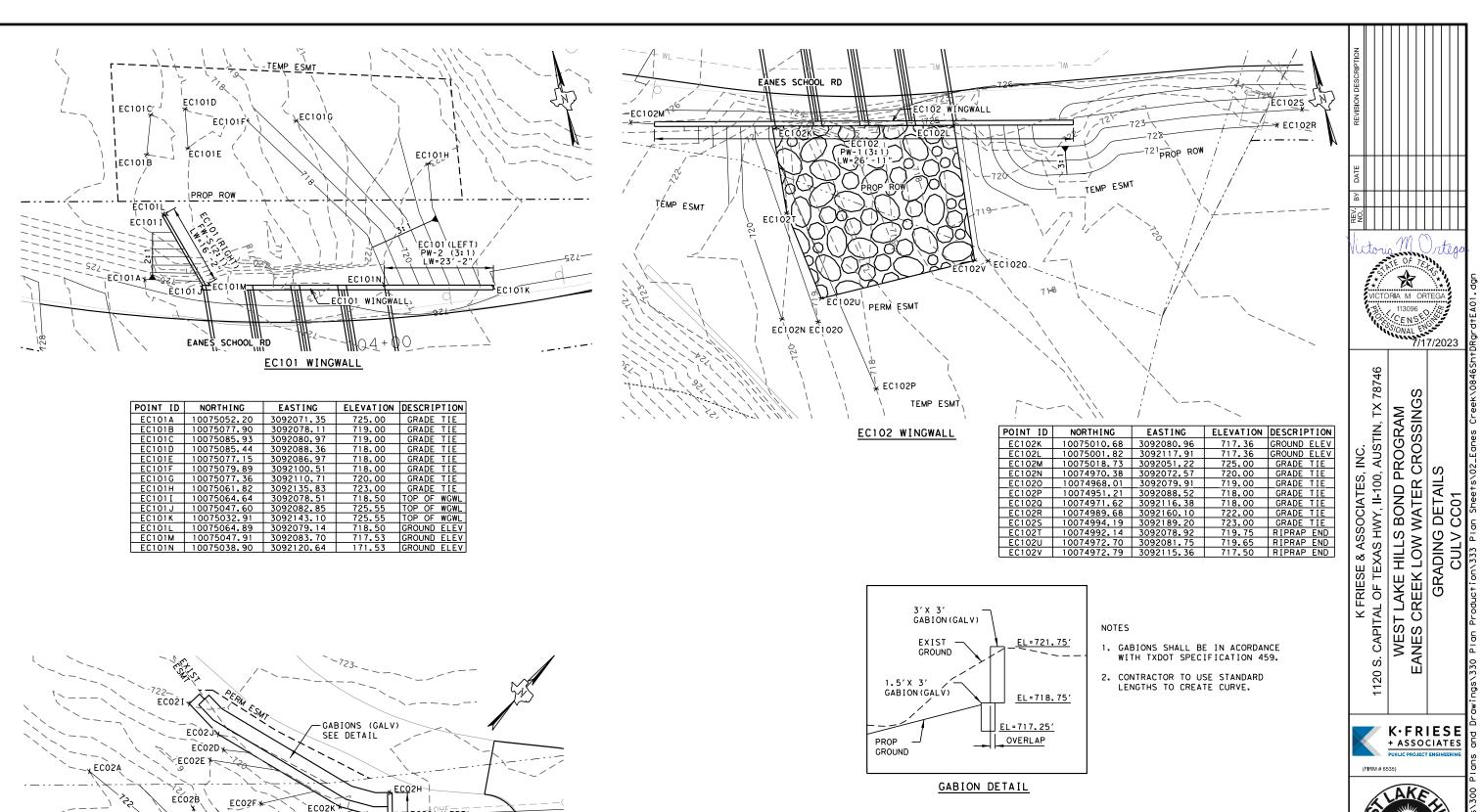
NOTES

- ANALYSIS WAS PERFORMED USING THE CURRENT EDITION OF GEOPAK DRAINAGE, PERFORMING CALCULATIONS IN ACCORDANCE WITH FHWA HEC-22.
- 2. DRAINAGE PARAMETERS AND CRITERIA ARE IN ACCORDANCE WITH THE CITY OF WEST LAKE HILLS DRAINAGE AND EROSION CONTROL MANUAL (2020).
- PEAK FLOWS WERE CALCULATED USING THE RATIONAL METHOD. MINIMUM TIME OF CONCENTRATION USED IS 10 MIN.
- 4. INTENSITIES WERE DETERMINED FROM TABLE 3-1 OF THE WLH DRAINAGE AND EROSION CONTROL MANUAL.
- SYSTEM TAILWATERS WERE SET TO THE DOWNSTREAM WSEL OR NORMAL DEPTH, WHICHEVER IS GREATER.
- 6. ALL PIPE IS CONCRETE WITH A MANNINGS OF 0.012 UNLESS OTHERWISE NOTED.
- A MANNINGS OF 0.015 WAS ASSUMED FOR ALL PAVEMENT SURFACES FOR INLET COMPUTATIONS.

K FRIESE & ASSOCIATES, INC.
1120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 78746
WEST LAKE HILLS BOND PROGRAM
EANES CREEK LOW WATER CROSSINGS


HYDRAULIC COMPUTATIONS


K+FRIESE + ASSOCIATES PUBLIC PROJECT ENGINEERING



WEST LAKE HILLS, TX	

	SHEET 1 OF 1					
SCALE	NTS					
DATE	7/17/2023					
SHEET	40 of 388					

 POINT ID
 NORTHING
 EASTING
 ELEVATION
 DESCRIPTION

 EC02A
 10074433, 35
 3092185, 79
 723,00
 GRADE TIE

 EC02B
 10074442,06
 3092207,59
 721,00
 GRADE TIE

 EC02C
 10074446,25
 3092217,29
 718,00
 GRADE TIE

 EC02D
 10074455,68
 3092204,14
 720,00
 GRADE TIE

 EC02E
 10074452,18
 3092203,44
 719,00
 GRADE TIE

 EC02F
 10074452,36
 3092217,71
 718,00
 GRADE TIE

 EC02G
 10074452,39
 3092246,63
 725,16
 TOP OF WGWL

 EC02H
 10074472,30
 3092236,71
 722,75
 TOP OF GABION

 EC02I
 10074458,21
 3092291,19
 718,75
 TOP OF GABION

 EC02J
 10074458,21
 3092201,16
 718,75
 TOP OF GABION

 EC02K
 10074462,96
 3092230,64
 718,75
 TOP OF GABION

 EC02L
 10074465,62
 3092236,02
 718,75
 TOP OF GABION

 EC02M
 10074465,81

EASTING ELEVATION DESCRIPTION

POINT ID

NORTHING

ECO2F*

EC201 (RIGHT)= = PW-1 (4:1)==

. ECO2M 🛣

724

XEC02C

CAMP CRAFT RD.

EC201 WINGWALL

ECO2K

EC02N

EC02L

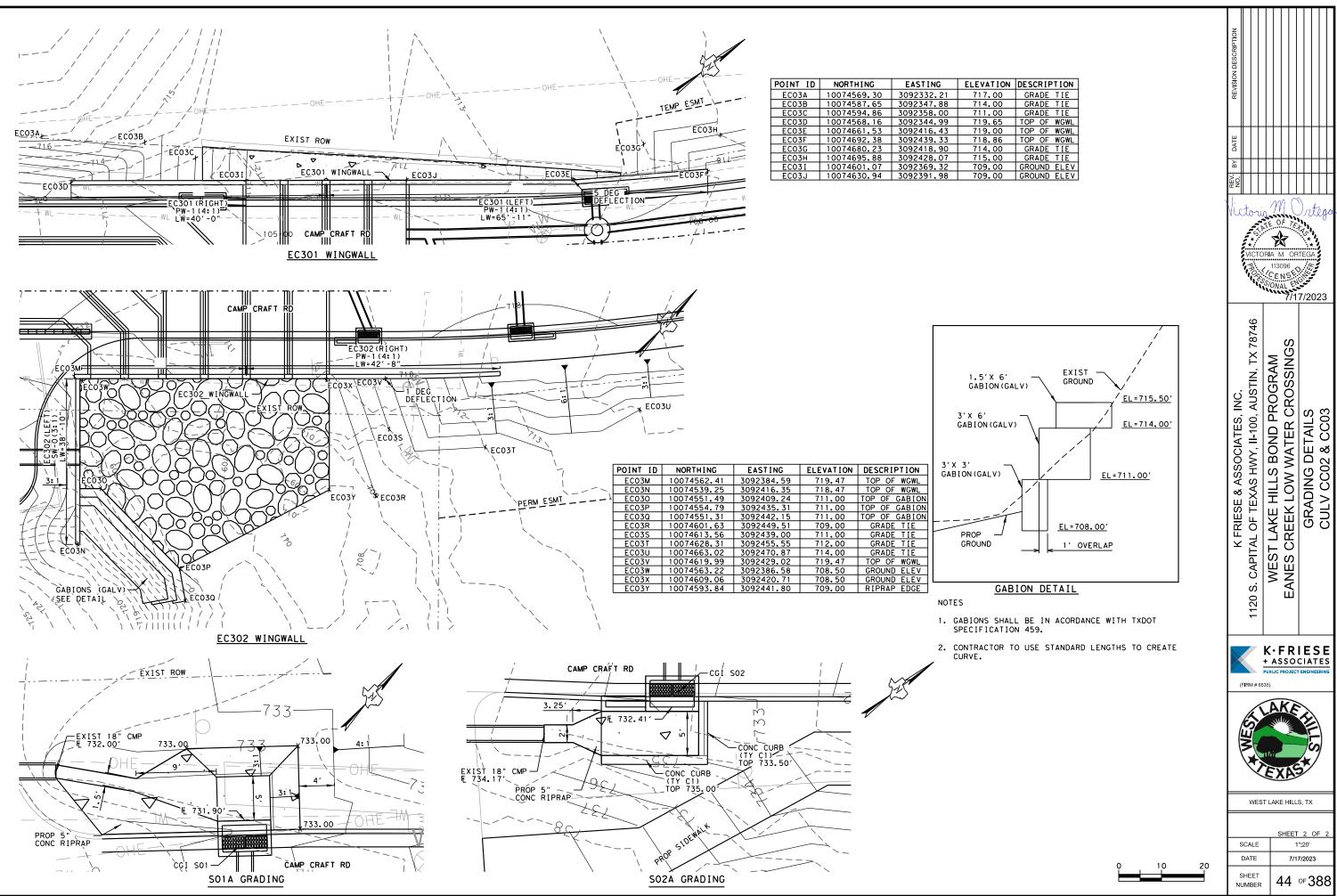
EC201 WINGWALL

ECO20

103+8

EC201 (LEFT) /FW-S(2:1) _LW=13'-6"

K·FRIESE + ASSOCIATES (FIRM # 6535


AKEN
EXAS

CENSE ONAL ENGINEER

``7/17/2023

WEST LAKE HILLS, TX

	SHEET 1 OF 2
SCALE	1":20'
DATE	7/17/2023
SHEET NUMBER	43 ∘ 388

SHEET 2 OF

1":20' 7/17/2023

K·FRIESE + ASSOCIATES

CENS ONAL ENGINEER 7/17/2023

☐ Stone Outlet Sediment Traps ☐ Sand Filter Systems

Grassy Swales

Sediment Basins

III. CULTURAL RESOURCES Refer to TxDOT Standard Specifications in the event historical issues or archeological artifacts are found during construction. Upon discovery of archeological artifacts (bones, burnt rock, flint, pottery, etc.) cease work in the immediate area and contact the Engineer immediately. Required Action ☐ No Action Required 1. AN ARCHAEOLOGIST MUST BE ONSITE TO MONITOR CONSTRUCTION ACTIVITIES WITHIN THE 100-YR FLOODPLAIN. IV. VEGETATION RESOURCES Preserve native vegetation to the extent practical. Contractor must adhere to Construction Specification Requirements Specs 162, 164, 192, 193, 506, 730, 751, 752 in order to comply with requirements for invasive species, beneficial landscaping, and tree/brush removal commitments. Required Action ☐ No Action Required 1. ESTABLISH VEGETATION IN ALL DISTURBED AREAS AS DETAILED IN THE EROSION CONTROL PLAN. V. FEDERAL LISTED. PROPOSED THREATENED. ENDANGERED SPECIES. CRITICAL HABITAT, STATE LISTED SPECIES, CANDIDATE SPECIES AND MIGRATORY BIRDS. ☐ No Action Required Required Action Action No. 1. BEFORE REMOVING ANY TREES, CONFIRM NO NESTS ARE PRESENT. If any of the listed species are observed, cease work in the immediate area, do not disturb species or habitat and contact the Engineer immediately. The work may not remove active nests from bridges and other structures during nesting season of the birds associated with the nests. If caves or sinkholes are discovered, cease work in the immediate area, and contact the Engineer immediately. LIST OF ABBREVIATIONS Best Management Practice SPCC: Spill Prevention Control and Countermeasure Storm Water Pollution Prevention Plan Construction General Permit DSHS: Texas Department of State Health Services Pre-Construction Notification

Project Specific Location

TxDOT: Texas Department of Transportation

USACE: U.S. Army Corps of Engineers

USFWS: U.S. Fish and Wildlife Service

Texas Carmission on Environmental Quality

TPDES: Texas Pollutant Discharge Elimination System

Texas Parks and Wildlife Department

Threatened and Endangered Species

TCFQ:

FHWA: Federal Highway Administration

Memorandum of Understandina

Municipal Separate Stormwater Sewer System TPWD:

MOA: Memorandum of Agreement

MBTA: Migratory Bird Treaty Act

NOT: Notice of Termination

NOI: Notice of Intent

Nationwide Permit

VI. HAZARDOUS MATERIALS OR CONTAMINATION ISSUES

General (applies to all projects):

Comply with the Hazard Communication Act (the Act) for personnel who will be working with hazardous materials by conducting safety meetings prior to beginning construction and making workers aware of potential hazards in the workplace. Ensure that all workers are provided with personal protective equipment appropriate for any hazardous materials used. Obtain and keep on-site Material Safety Data Sheets (MSDS) for all hazardous products used on the project, which may include, but are not limited to the following categories: Paints, acids, solvents, asphalt products, chemical additives, fuels and concrete curing compounds or additives. Provide protected storage, off bare ground and covered, for products which may be hazardous. Maintain product labelling as required by the Act. Maintain an adequate supply of on-site spill response materials, as indicated in the MSDS. In the event of a spill, take actions to mitigate the spill as indicated in the MSDS, in accordance with safe work practices, and contact the District Spill Coordinator immediately. The Contractor shall be responsible for the proper containment and cleanup of all product spills.

Contact the Engineer if any of the following are detected:

- * Dead or distressed vegetation (not identified as normal)
- Trash piles, drums, canister, barrels, etc.
- * Undesirable smells or odors
- * Evidence of leaching or seepage of substances

Does the project involve any bridge class structure rehabilitation or replacements (bridge class structures not including box culverts)?

If "No", then no further action is required.

If "Yes", then TxDOT is responsible for completing asbestos assessment/inspection.

Are the results of the asbestos inspection positive (is asbestos present)?

☐ No

If "Yes", then TxDOT must retain a DSHS licensed asbestos consultant to assist with the notification, develop abatement/mitigation procedures, and perform management activities as necessary. The notification form to DSHS must be postmarked at least 15 working days prior to scheduled demolition.

If "No", then TxDOT is still required to notify DSHS 15 working days prior to any

In either case, the Contractor is responsible for providing the date(s) for abatement activities and/or demolition with careful coordination between the Engineer and asbestos consultant in order to minimize construction delays and subsequent claims.

Any other evidence indicating possible hazardous materials or contamination discovered on site. Hazardous Materials or Contamination Issues Specific to this Project:

Required Action

Action No.

- 1. ASPHALT PRODUCTS
- 2. FUELS

VII. OTHER ENVIRONMENTAL ISSUES

(includes regional issues such as Edwards Aquifer District, etc.)

☐ No Action Required

Required Action

1. TCEQ EDWARDS AQUIFER RECHARGE ZONE

ENVIRONMENTAL PERMITS. ISSUES AND COMMITMENTS

EPIC

FILE: epic.dgn	DN: Tx[TOC	ck: RG	DW:	۷P	ck: AR		
ℂTxDOT: February 2015	CONT	CONT SECT JOB HIGH			CHWAY			
REVISIONS 12-12-2011 (DS)	N/A	N/A	N/A		N	N/A		
05-07-14 ADDED NOTE SECTION IV.	DIST		COUNTY			SHEET NO.		
01-23-2015 SECTION I (CHANGED ITEM 1122 TO ITEM 506, ADDED GRASSY SWALES.	N/A			45				

☐ No Action Required

A. GENERAL SITE DATA

1, PROJECT LIMITS: EANES CREEK LOW WATER CROSSINGS

Begin Project Coordinates: Latitude (N): 30° 16′ 45" Longitude (W): -97° 48' 47" End Project Coordinates: Latitude (N): 30° 16′ 50" Longitude (W): -97° 48" 42"

2. PROJECT SITE MAPS:

- * Project Location Map: Project Layout (Sheet 13)
- * Drainage Patterns: Drainage Area Maps (Sheets 31-32)
- * Slopes Anticipated After Major Gradings or Areas of Soil Disturbance: Typical Sections (Sheet I7)
- * Location of Erosion and Sediment Controls: SW3P Site Maps (Sheets 47-48)
- * Surface Waters and Discharge Locations: Drainage and Culvert Layouts (Sheets 37-39,41-42)
- * Project Specific Location(s) (PSL): To be determined by the project Construction Personnel. Location(s) shown on SW3P Site Map (If PSL location(s) is within one mile of project) and information located in project SW3P Binder (Reference Item *10 below).

3. PROJECT DESCRIPTION:

CONSTRUCTION OF EARTHWORK, GRADING, BASE, HMAC SURFACING, DRAINAGE STRUCTURES, SIDEWALKS, SIGNING AND PAVEMENT MARKINGS

4. MAJOR SOIL DISTURBING ACTIVITIES:

CLEARING AND GRUBBING ROADWAY EXCAVATION AND EMBANKMENT PLACEMENT OF TOPSOIL

DRAINAGE INFRASTRUCTURE

5. EXISTING CONDITION OF SOIL & VEGETATIVE COVER AND % OF EXISTING VEGETATIVE COVERS

SANDY LEAN CLAY (CL) UNDERLAIN BY LIMESTONE.

6. TOTAL PROJECT AREA: 3.11

7. TOTAL AREA TO BE DISTURBED: 3.11

8. WEIGHTED RUNOFF COEFFICIENT

BEFORE CONSTRUCTION: AFTER CONSTRUCTION:

9. NAME OF RECEIVING WATERS:

EANES CREEK (SEGMENT NO.1429B)

10. PROJECT SW3P Binder:

A.For projects disturbing one to five acres.The Contractor will maintain a SW3P Binder at the project field office (If there is not a project field office, should be kept on the Job Site at all times) which contains the following: Index Sheet, TCEQ Signature Authority, TCEQ Small Construction Site Notice, Contractor Certification of Compliance, SW3P Inspector Qualification Statements, Inspection and Maintenance Reports (Form 2118), SW3P Sheet, Site Location Maps, Stored Material Lists specifying associated control measures and the Appendix which contains the TPDES Construction General Permit, MS4 Operator Notification(s) and the Construction PSL Permits per all applicable requirements.

B.For projects disturbing 5 acres or more, the Contractor will follow the actions listed in (IO.A.) above with the addition of the following: Notice Of Intent (N.O.I.) and Fee Payment Form, TCEQ Large Construction Site Notice (to be used instead of Small Site Notice), and TPDES Permit Coverage Notice.

C.For projects disturbing less than one acre, actions described in (IO.A.) and (IO.B.) above are not required. Acreage is calculated by adding Total Area To Be Disturbed Acres on project (See *7 above) and the PSL(s) acreage located within one mile of project.

B. EROSION AND SEDIMENT CONTROLS

- 1. <u>SOIL STABILIZATION PRACTICES</u>: (Select T = Temporary or P = Permanent, as applicable) 1. <u>MAINTENANCE</u>:
 - T TEMPORARY SEEDING PRESERVATION OF NATURAL RESOURCES
 - ____ MULCHING (Hay or Straw)
 - BUFFER ZONES
 - PLANTING P SEEDING

2. STRUCTURAL PRACTICES:

- ____ SODDING

(T = Temporary or P = Permanent)

_T SILT FENCES

- FLEXIBLE CHANNEL LINER RIGID CHANNEL LINER SOIL RETENTION BLANKET
- COMPOST MANUFACTURED TOPSOIL VERTICAL TRACKING
- OTHER: Disturbed areas on which construction activity has ceased either temporarily or permanently, shall be stabilized within 14 days unless activities are scheduled to resume and do so within 21 days.
- __T__ EROSION CONTROL LOGS EROSION CONTROL COMPOST BERMS (Low Velocity)
- T ROCK FILTER DAMS
- ____ DIVERSION, INTERCEPTOR, OR PERIMETER DIKES
- DIVERSION, INTERCEPTOR, OR PERIMETER SWALES ____ DIVERSION DIKE AND SWALE COMBINATIONS
- ____ PIPE SLOPE DRAINS
- PAVED FLUMES
- ____ PAVED FLUMES
 ____ ROCK BEDDING AT CONSTRUCTION EXIT
- ____ TIMBER MATTING AT CONSTRUCTION EXIT
- ____ CHANNEL LINERS SEDIMENT TRAPS
- SEDIMENT BASINS
- STORM INLET SEDIMENT TRAP _ STONE OUTLET STRUCTURES
- P CURBS AND GUTTERS
- P STORM SEWERS
- P VELOCITY CONTROL DEVICES
- ____ OTHER: (Specify Practice)

NOTE: TOP OF BMP'S SHOULD NOT BE HIGHER THAN ROADWAY ELEVATION AS NOT TO FLOOD ROADWAY UNLESS PRIOR APPROVAL FROM ENGINEER IS OBTAINED.

3. STORM WATER MANAGEMENT:

- A. Storm water drainage will be provided by ditches, inlets, and storm water systems which carry drainage within the R.O.W.to the lows within the roadway and project site which drains to natural facilities.
- B. Non paved areas and ditches shall be stabilized with a permanent vegetative cover.
- C. Other permanent erosion controls include hydraulic design to limit structure outlet velocities and grading design generally consisting of 4:1 or flatter slopes with permanent vegetative cover.

4. STORM WATER MANAGEMENT ACTIVITIES: (Sequence of Construction)

I) INSTALL TEMPORARY EROSION CONTROL MEASURES 2) CULVERT AND STORM SEWER IMPROVEMENTS 3) ROADWAY CONSTRUCTION 4) PLACE PERMANENT SIGNING AND STRIPING 5) PLACE TOPSOIL, MULCH, SEEDING, AND PERMANENT EROSION CONTROLS 6) PROJECT CLEAN UP AND REMOVAL OF TEMPORARY EROSION CONTROLS

5. NON-STORM WATER DISCHARGES:

Filter non-storm water discharges, or hold in retention basins, before being allowed to mix with storm water. These discharges consist of but not limited to non-polluted ground water, spring water, foundation or footing drain water, water used for dust control or pavement washing and vehicle washwater containing no detergents.

C. OTHER REQUIREMENTS & PRACTICES

Maintain all erosion and sediment controls in good working order. Perform any necessary cleaning/repairs/replacements at the earliest possible date prior to next rain event, but no later than 7 calendar days, Ensure the surrounding ground has dried sufficiently to prevent damage from equipment."Too Wet" is the only reason for not adhering to time frames described. When construction activities permanently or temporarily cease and are not expected to resume for 14 or more days on a disturbed portion of the site, stabilization measures must be initiated immediately.

2. INSPECTION:

A Construction Observer will perform a regularly scheduled SW3P inspection every 7 calendar days. An Inspection and Maintenance Report, signed by the Construction Observer and the Contractor, will be filed for each inspection. Revise/clean/repair/replace each BMP control device in accordance with the current Field Inspection and Maintenance Report (Form 2118) and Item I (Maintenance) above.

3. WASTE MATERIALS:

On a daily basis, or as may be directed, collect all waste materials, trash and debris from the construction site and deposit into a metal dumpster having a secure cover and which meets all state and local city solid waste management requirements. Empty the dumpster as required by regulation. or as may be directed, at a local approved landfill site. Do not bury construction waste on the construction project site.

4. HAZARDOUS WASTE & SPILL REPORTING:

As a minimum, any products in the following categories are considered to be hazardous: Paints, Acids, Solvents, Fuels, Asphalt Products, Chemical Additives for Soil Stabilization, and Concrete Curing Compounds or Additives. When storing hazardous material on the project site, or at a Project Specific Location, take all practicable precaution to prevent and/or contain any spillage of these materials. In the event of a spill contact the spill coordinator immediately.

Use a licensed sanitary waste management contractor to collect all sanitary waste from portable units as may be required by local regulation, or as directed.

6. CONSTRUCTION VEHICLE TRACKING:

On a regular basis, or as may be directed, dampen haul roads for dust control and stabilize construction entrances/exits. Provide for a motorized broom or vacuum type sweeper to be available on a daily basis.or as may be directed to remove sediment from payed roadways abutting or traversing the project site.

7. MANAGEMENT PRACTICES:

A.Construct disposal areas, stockpiles, haul roads and PSL's in a manner that will minimize and control the amount of sediment that may enter receiving waters. Do not locate disposal areas in any wetland, waterbody or streambed.

B.Locate construction staging areas, vehicle maintenance and PSL's areas in a manner to minimize the runoff of pollutants.

C.When working in or near a wetland, install and maintain operating soil erosion and sediment controls at all times during construction and isolate the work from the wetland.

D.Clear all waterways as soon as practicable of temporary embankment, temporary bridges, matting, falsework, piling, debris or other obstructions placed during construction operations that are not a part of the finished work.

F. Procedures and/or practices should be taken to control dust.

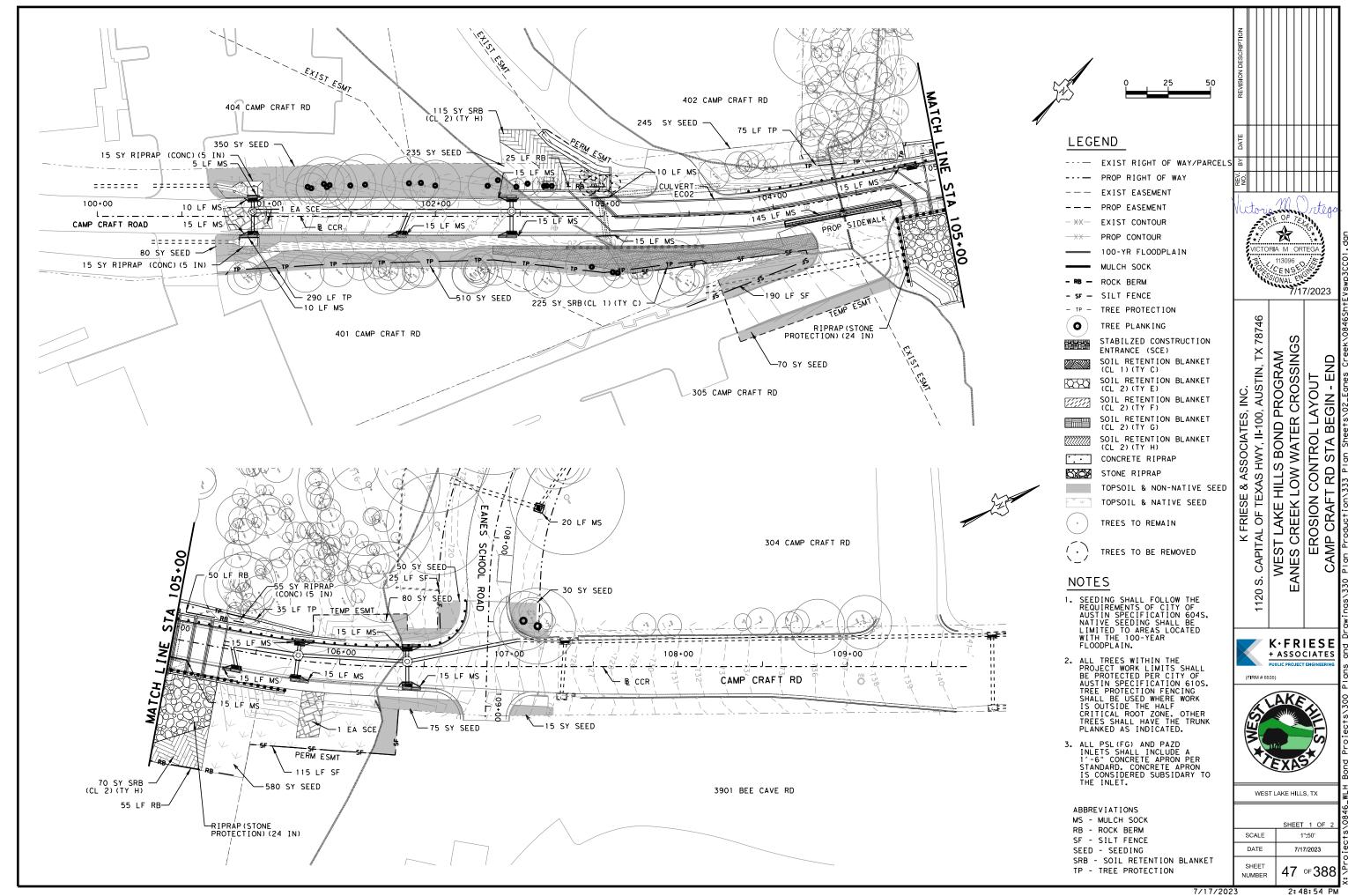
F.Sediment to be removed from roadways daily or when work begins after weather events if construction activities have ceased due to weather event.

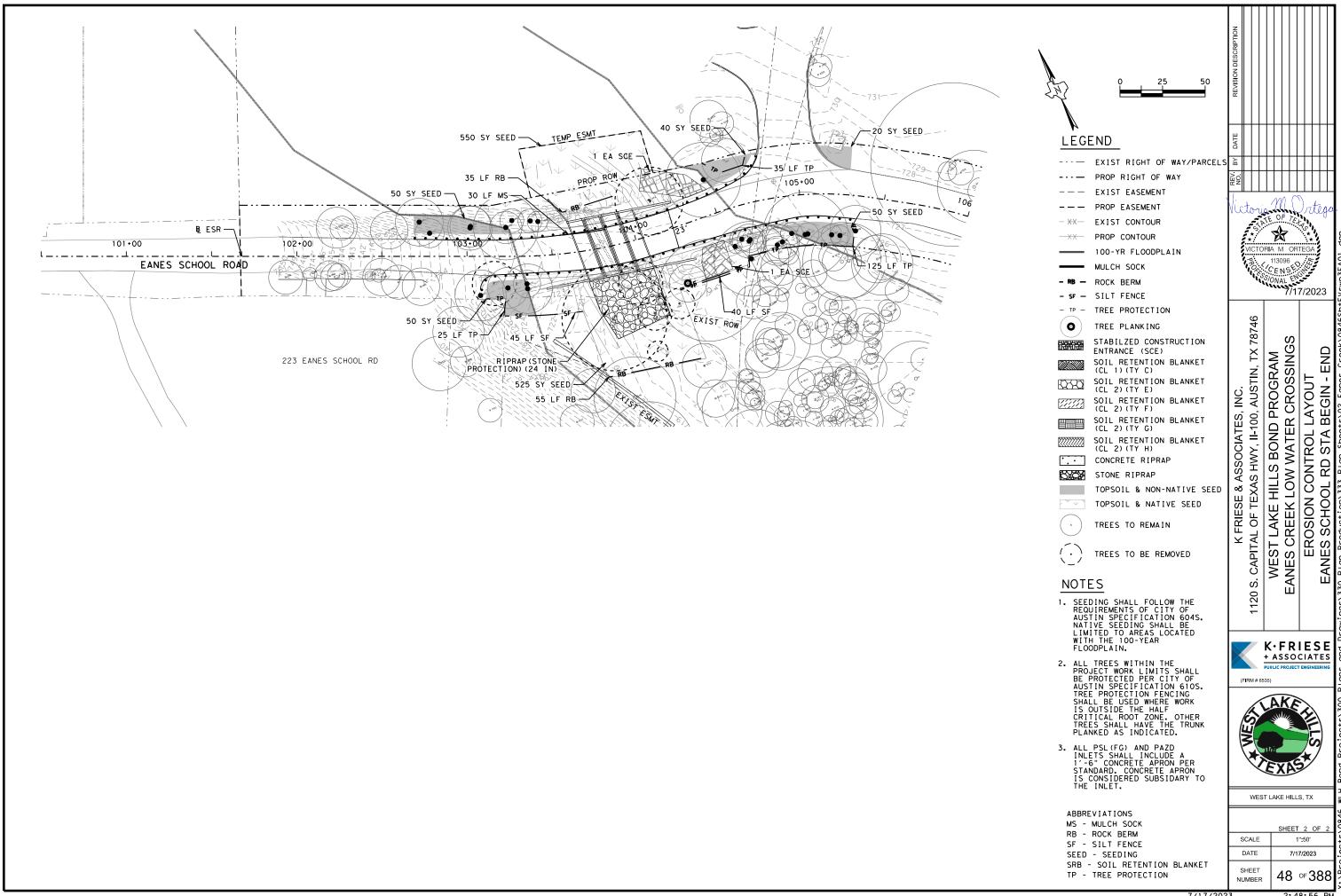
G.The Contractor will be required to contain wash water from concrete trucks in a manner that will prevent same from entering any waterway.

H.The Contractor is responsible for insuring that all Subcontractors are aware and comply with all components of the Temporary Erosion Control Plans.

7/17/2023

STORM WATER POLLUTION PREVENTION PLAN (SW3P)


(FIRM # 6535)


K·FRIESE

+ ASSOCIATES

FEDERAL AID PROJECT NO. NΑ 6 GRAPHICS STATE DISTRICT COUNTY TEXAS TRAVIS CONTROL SECTION JOB 46

Victoria M Ortega, P.E. Signature of Registrant & Date

TREE LIST

APPROXIMATE TREE CRITICAL ROOT ZONE
TREE DIAMETER & TAG NUMBER
EXAMPLE: 3TR-3" CRITICAL ROOT ZONE
MS = MULTI-STEM MTN=MOUNTAIN TX=TEXAS

							MS = MULTI-STEM	MTN=MOUN	TAIN TX=TEXAS						
TAG# 553	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION	TAG# 1507	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION	TAG# 1751	SIZE/DESCRIPTION	TAG# 1873	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION
554	13" LIVE OAK 14" ASHE JUNIPER	1261 1262	24" ASHE JUNIPER (MS-11-7-7-6-6) 3" CEDAR ELM	1384 1385	4" LIGUSTRUM 13.5" ASHE JUNIPER(MS10-7)	1508	3" CRAPE MYRTLE 5" LIGUSTRUM	1629 1630	5" LIGUSTRUM 4" ASH	1752	5.5" LIGUSTRUM(MS4-3) 4" LIGUSTRUM	1874	3" ASHE JUNIPER 4" ASHE JUNIPER	3069 3070	8" ASHE JUNIPER 8.5" ASHE JUNIPER (MS-7-3)
586 725	35" LIVE OAK(MS25-20) 30" PECAN	1263 1264	8" ASHE JUNIPER 9.5" CHINABERRY (MS-7-5)	1386 1387	3" LIGUSTRUM 4" LIGUSTRUM	1509 1510	5" LIGUSTRUM 5" LIGUSTRUM	1631 1632	4" ASH 4" HACKBERRY	1753 1754	4" LIGUSTRUM(MS3-2) 7" LIGUSTRUM(MS5-4)	1875 1876	9.5" ASHE JUNIPER(MS7-5) 3" ASH	3071 3094	5" ASHE JUNIPER 7" ASHE JUNIPER
760	13" HACKBERRY	1265	9" CHINABERRY	1388	4" LIGUSTRUM	1511	6" HACKBERRY	1633	22" LIGUSTRUM(MS10-9-8-7)	1755	4" LIGUSTRUM(MS3-2)	1877	6" ASH	3095	7" ASHE JUNIPER
761 762	9" HACKBERRY 12" ASHE JUNIPER	1266 1267	5" ASHE JUNIPER 9.5" ASHE JUNIPER (MS-7-5)	1389 1390	3" LIGUSTRUM 3" LIGUSTRUM	1512 1513	17.5" WILLOW(MS12-11) 11" WILLOW	1634 1635	7" ASH 4" LIGUSTRUM(MS3-2)	1756 1757	4" LIGUSTRUM 4.5" LIGUSTRUM(MS3-3)	1878 1879	5" CHINABERRY 6" CHINABERRY	3121 3122	5" HACKBERRY 22.5" LIVE OAK (MS-18-9)
763	18" LIGUSTRUM(MS8-6-6-4)	1268	6" ASHE JUNIPER	1391	3" LIGUSTRUM	1514	13" SYCAMORE	1636	3" LIGUSTRUM	1758	7" LIGUSTRUM(MS5-4)	1880	4" ASH	3123	12" LIVE OAK
764 765	13" LIGUSTRUM(MS7-7-5) 15" CEDAR ELM(MS11-8)	1269 1270	5" ASHE JUNIPER 3" ASHE JUNIPER	1392 1393	3" LIGUSTRUM 3" LIGUSTRUM	1515 1516	6" SYCAMORE 24" PECAN	1637 1638	3" LIGUSTRUM 4" ASHE JUNIPER	1759 1760	5" LIGUSTRUM(MS4-2) 7" LIGUSTRUM(MS5-4)	1881 1882	3" ASH 3" ASH	3124 3125	7" LIVE OAK 17.5" LIVE OAK (MS-10-8-7)
766 768	18" HACKBERRY 10.5" ASHE JUNIPER(MS7-7)	1271 1272	8.5" ASHE JUNIPER (MS-6-5) 3" CEDAR ELM	1394 1395	3" LIGUSTRUM 19.5" ASHE JUNIPER(MS8-6-6-4-4-3)	1517 1518	13" HACKBERRY 8" HACKBERRY	1639 1640	4.5" LIGUSTRUM(MS3-2-1) 5.5" LIGUSTRUM(MS3-3-2)	1761 1762	4" LIGUSTRUM 4" LIGUSTRUM	1883 1884	5" CHINABERRY 3" SYCAMORE	3417 3645	35" LIVE OAK 4" ASHE JUNIPER
769	10" ASHE JUNIPER	1273	4" RED OAK	1396	7" LIGUSTRUM(MS5-4)	1519	4" HACKBERRY	1641	6" LIGUSTRUM(MS3-3-3)	1763	4" LIGUSTRUM	1885	3" ASH	3646	3" ASHE JUNIPER
770 771	10" LIGUSTRUM(MS8-4) 10" ASHE JUNIPER	1274 1275	4" ASHE JUNIPER 3" PERSIMMON	1397 1398	4" LIGUSTRUM 7" ASHE JUNIPER	1520 1521	3" HACKBERRY 15" CEDAR ELM	1642 1643	4.5" LIGUSTRUM(MS3-3) 4" LIGUSTRUM(MS3-2)	1764 1765	3" LIGUSTRUM 4" LIGUSTRUM	1886 1887	5" ASH 12" CHINABERRY	3647 3648	8" RED OAK 6" HACKBERRY
772	11" HACKBERRY	1276	3" ASHE JUNIPER	1399 1400	6" ASHE JUNIPER	1522	16" CEDAR ELM	1644	4" LIGUSTRUM(MS3-2)	1766	4" LIGUSTRUM(MS3-2)	1888	3" ASH	3649	4" REDBUD
773 774	15.5" LIGUSTRUM(MS6-5-4-4-3-3) 16" ASHE JUNIPER	1277 1278	5" ASHE JUNIPER 5" ASHE JUNIPER	1400	5" LIGUSTRUM 6" LIGUSTRUM	1523 1524	7" CEDAR ELM 10" CEDAR ELM	1645 1646	4" LIGUSTRUM(MS3-2) 3" LIGUSTRUM	1767 1768	3" LIGUSTRUM 7" LIGUSTRUM(MS5-4)	1889 1890	15" ASH 3" CHINABERRY	3650 3651	8" ASHE JUNIPER 9" ASHE JUNIPER
775 776	11" ASHE JUNIPER 15" ASHE JUNIPER(MS11-8)	1279 1280	20" ASHE JUNIPER (MS-14-12) 11" ASHE JUNIPER	1402 1403	6" LIGUSTRUM(MS4-4) 9" ASHE JUNIPER	1525 1526	8" HACKBERRY 9" CEDAR ELM	1647 1648	3" LIGUSTRUM 4.5" LIGUSTRUM(MS3-3)	1769 1770	4" LIGUSTRUM 8" LIGUSTRUM(MS4-4-2)	1891 1892	3" CHINABERRY 8" ASH	3993 3994	20" HACKBERRY 11" HACKBERRY(MS8-6)
779	16" ASHE JUNIPER	1281	20" ASHE JUNIPER (MS-14-12)	1404	4" LIGUSTRUM	1527	10" CEDAR ELM	1649	5.5" LIGUSTRUM(MS3-3-2)	1771	4" LIGUSTRUM(MS3-2)	1893	4" ASH	3995	7" LIGUSTRUM
780 781	10" ASHE JUNIPER 23.5" ASHE JUNIPER (MS-11-9-8-8)	1282 1283	23.5" ASHE JUNIPER (MS-10-9-9-9) 7" RED OAK	1405 1406	3" LIGUSTRUM 5" LIGUSTRUM	1528 1529	26" PECAN 10" PECAN	1650 1651	4" LIGUSTRUM(MS3-2) 3" LIGUSTRUM	1772 1773	8.5" LIGUSTRUM(MS4-4-3-2) 4" LIGUSTRUM	1894 1895	8" ASH 5" CHINABERRY	3996 3997	8" HACKBERRY 5" LIGUSTRUM
782 800	13" ASHE JUNIPER 6" HACKBERRY	1284 1285	8" RED OAK 3" LIGUSTRUM	1407 1408	15" PECAN 25" CEDAR ELM(MS15-12-8)	1530 1531	8" PECAN 11" ASHE JUN I PER	1652 1653	5.5" LIGUSTRUM(MS3-3-2) 4.5" LIGUSTRUM(MS3-3)	1774 1775	9" LIGUSTRUM(MS6-3-3) 4.5" LIGUSTRUM(MS3-3)	1896 1897	5" ASH 5" ASH	3998 3999	7.5" LIGUSTRUM(MS4-3-2-2) 4" LIGUSTRUM
936	30" ASHE JUNIPER	1286	5" ASHE JUNIPER	1409	8" CEDAR ELM	1532	4" CEDAR ELM	1654	3" ASHE JUNIPER	1776	3" LIGUSTRUM	1898	17.5" CHINABERRY(MS9-9-8)	4000	9" LIGUSTRUM(MS6-3-3)
937 938	34" LIVE OAK (MS-10-9-8-7) 18" LIVE (MS-14-8)	1287 1288	13.5" ASHE JUNIPER (MS-11-5) 8" ASHE JUNIPER (MS-6-4)	1410 1411	12" CEDAR ELM 3" ASHE JUNIPER	1533 1534	9" CEDAR ELM 4" ASHE JUN I PER	1655 1656	4.5" LIGUSTRUM(MS3-3) 4" LIGUSTRUM	1777 1778	7.5" LIGUSTRUM(MS4-4-3) 3" LIGUSTRUM	1899 1900	21" LIGUSTRUM(MS15-8-4) 5" ASH	4001 4002	5" LIGUSTRUM 8" ASHE JUNIPER
940	11" LIVE OAK	1289	3" PERSIMMON	1412	6" LIGUSTRUM	1535	11" ASHE JUNIPER	1657	4.5" LIGUSTRUM(MS3-3)	1779	3" LIGUSTRUM	1901	5" ASH	4003	11" CEDAR ELM
941 942	17" CEDAR ELM 18" CEDAR ELM	1290 1291	11.5" ASHE JUNIPER (MS-9-5) 13.5" ASHE JUNIPER (MS-8-6-5)	1413 1414	4" LIGUSTRUM 5" LIGUSTRUM	1536 1537	6" CEDAR ELM 19" ASHE JUN I PER	1658 1659	3" LIGUSTRUM 3" LIGUSTRUM	1780 1781	4" LIGUSTRUM 5" LIGUSTRUM	1902 1903	5" ASH 4" ASH	4004 4005	12.5" LIGUSTRUM(MS8-6-3) 6" ASHE JUNIPER
943 944	22" CEDAR ELM 39.5" LIVE OAK (MS-18-16-16-11)	1292 1293	8" ASHE JUNIPER 6" ASHE JUNIPER	1415 1416	6" ASHE JUNIPER 19.5" ASHE JUNIPER(MS8-7-7-6-3)	1538 1539	7" CEDAR ELM 7.5" LIGUSTRUM(MS6-3)	1660 1661	3" LIGUSTRUM 4" LIGUSTRUM	1782 1783	4" LIGUSTRUM 4" LIGUSTRUM	1904 1905	3" LIGUSTRUM 7" LIGUSTRUM(MS3-2-2-2-2)	4006 4007	11" ASHE JUNIPER 3" LIGUSTRUM
945	15" CEDAR ELM	1294	6" ASHE JUNIPER	1417	13" ASHE JUNIPER(MS9-8)	1540	17.5" ASHE JUNIPER(MS12-11)	1662	5" LIGUSTRUM	1784	4" LIGUSTRUM(MS3-2)	1906	4" CEDAR ELM	4070	5" ASHE JUNIPER
946 947	21" CEDAR ELM (MS-15-12) 21.5" LIVE OAK (MS-9-9-8-8)	1295 1296	7" ASHE JUNIPER 10" ASHE JUNIPER	1418 1419	10" ASHE JUNIPER 9" LIVE OAK	1541 1542	10" SYCAMORE 9" SYCAMORE	1663 1664	5" LIGUSTRUM(MS3-2-2) 4" LIGUSTRUM	1785 1786	12" ASHE JUNIPER(MS7-6-4) 3" ASH	1907 1908	10" PECAN 8" LIGUSTRUM(MS5-4-2)	4071 4072	5" ASH 5" LIGUSTRUM(MS3-2-2)
949	15" ASHE JUNIPER	1297	3" PERSIMMON	1420	5" ASHE JUNIPER	1543 1544	11" HACKBERRY 11.5" LIGUSTRUM(MS9-5)	1665	4" LIGUSTRUM	1787	7" LIGUSTRUM(MS3-3-3-2)	1909 1910	7" LIGUSTRUM(MS6-2)	4073 4078	5" CHINABERRY
950 951	25" COTTON WOOD 8" LIVE OAK	1298 1299	8" ASHE JUNIPER 26.5" ASHE JUNIPER (MS-14-12-7-6		3" LIGUSTRUM 7" ASHE JUNIPER	1545	10.5" LIGUSTRUM(MS9-3)	1666 1667	8" LIGUSTRUM 8" LIGUSTRUM(MS6-4)	1788 1789	4" LIGUSTRUM(MS3-2) 6" LIGUSTRUM	1911	5" LIGUSTRUM(MS4-2) 3" LIGUSTRUM	4114	3" LIGUSTRUM 3" HACKBERRY
952 953	14" CEDAR ELM 18" HACKBERRY	1301 1302	4" PERSIMMON 5" LIGUSTRUM	1423 1424	7" ASHE JUNIPER 3" LIGUSTRUM	1546 1547	8" PECAN 3" PECAN	1668 1669	4" LIGUSTRUM 6" LIGUSTRUM	1790 1791	9" LIGUSTRUM(MS4-4-3-3) 3" ASHE JUNIPER	1912 1913	3" LIGUSTRUM 6" LIGUSTRUM	4115 4116	3" HACKBERRY 7" ASH
966	13" CEDAR ELM	1303	3" ASHE JUNIPER	1425	4" LIGUSTRUM	1548	4" PECAN	1670	6" LIGUSTRUM(MS5-2)	1792	4" ASHE JUNIPER	1914	3" LIGUSTRUM	4120	7" LIGUSTRUM(MS5-4)
967 968	22" CEDAR ELM 10" LIGUSTRUM (MS-7-6)	1304 1305	4" LIGUSTRUM 4" LIGUSTRUM (MS-3-2)	1426 1427	3" LIGUSTRUM 5" ASHE JUNIPER	1549 1550	4" LIGUSTRUM 7" ASH	1671 1672	3" LIGUSTRUM 5" LIGUSTRUM	1793 1794	7" ASH 13.5" L I GUSTRUM	1915 1916	4" ASH 3" LIGUSTRUM	4121 4122	5" ASH 5.5" ASH(MS4-3)
969 970	12" LIGUSTRUM 8" LIGUSTRUM	1306 1307	4" CEDAR ELM 18" ASHE JUNIPER	1428 1429	5" LIGUSTRUM 4" LIGUSTRUM	1551 1552	4" ASH 8" ASH	1673 1674	6" LIGUSTRUM 4" LIGUSTRUM	1795 1796	6" LIGUSTRUM 42" LIVE OAK	1917 1918	6" PECAN 9" PECAN	4127 4193	11.5" LIGUSTRÚM(MS5-4-3-3-3) 10" ASHE JUNIPER
971	10" LIGUSTRUM (MS-7-6)	1308	3" LIGUSTRUM	1430	6" LIGUSTRUM	1553	4" ASH	1675	10" ASH	1797	3" ASH	1919	9" PECAN	4194	8" ASHE JUNIPER
972 973	22" CEDAR ELM 13" SYCAMORE	1309 1310	12" ASHE JUNIPER (MS-9-6) 3" LIGUSTRUM (MS-2-2)	1431 1432	3" LIGUSTRUM 4" LIGUSTRUM	1554 1555	4" LIGUSTRUM 4" ASH	1676 1677	17" LIGUSTRUM(MS8-8-6-4) 3" LIGUSTRUM	1798 1799	5" HACKBERRY 5" HACKBERRY	1920 1921	12" PECAN 5" PECAN	4195 4196	9" ASHE JUNIPER 11" RED OAK(MS6-5-5)
974 975	20" LIGUSTRUM 31" PECAN	1311 1312	4" LIGUSTRUM 4" LIGUSTRUM	1433 1434	15" CEDAR ELM 6" LIGUSTRUM	1556 1557	10" ASH 7" ASH	1678 1679	11" ASH 4" LIGUSTRUM(MS3-2)	1800	6.5" LIGUSTRUM(MS5-3) 33.5" ASHE JUNIPER(MS19-15-14)	1922 1923	6" PECAN 5" PECAN	4200 4213	10" ASHE JUNIPER 8" ASHE JUNIPER
977	14.5" HACKBERRY (MS-11-7)	1313	4" LIGUSTRUM (MS-3-2)	1435	5" LIGUSTRUM	1558	6" ASH	1680	5.5" LIGUSTRUM(MS4-3)	1801 1802	36" PECAN [DEAD STUMP]	1924	6" PECAN	4214	6" ASHE JUNIPER
978 979	12" HACKBERRY 13" HACKBERRY	1314 1315	10.5" ASHE JUNIPER (MS-8-5) 13" ASHE JUNIPER	1436 1437	5" LIGUSTRUM 5" LIGUSTRUM	1559 1560	4" LIGUSTRUM(MS3-2) 5.5" LIGUSTRUM(MS4-3)	1681 1682	6" LIGUSTRUM 4" LIGUSTRUM	1803 1804	3" LIGUSTRUM 5" LIGUSTRUM	1925 1926	4" PECAN 7" PECAN	4215 4216	6" LIGUSTRUM 12.5" ASHE JUNIPER(MS9-7)
980 982	15" CEDAR ELM 13" HACKBERRY	1316 1317	27.5" ASHE JUNIPER(MS9-9-8-6-6-5 4" LIGUSTRUM	-3)1438 1439	15" CEDAR ELM 5" LIGUSTRUM	1561 1562	5" LIGUSTRUM(MS2-2-2-2) 7" LIGUSTRUM(MS4-3-3)	1683 1684	10" SYCAMORE 3" LIGUSTRUM	1805 1806	3" LIGUSTRUM 3" LIGUSTRUM	1927 1928	4" ASH 4" LIGUSTRUM(MS3-2)	4217 4218	6" ASHE JUNIPER 11" ASHE JUNIPER
984	11" LIGUSTRUM (MS-7-5-3)	1318	5" HACKBERRY	1440	5" ASHE JUNIPER	1563	8.5" CHINABERRY(MS6-5)	1685	11" ASH	1807	4" LIGUSTRUM	1929	4" CEDAR ELM	4219	10" ASHE JUNIPER
985 986	14" HACKBERRY 11" CEDAR ELM	1319 1320	7.5" LIGUSTRUM (MS-5-5) 9" CEDAR ELM	1441 1442	3" LIGUSTRUM 5" LIGUSTRUM	1564 1565	6" LIGUSTRUM 16" LIVE OAK	1686 1687	12" ASH 3" LIGUSTRUM	1808 1809	5" LIGUSTRUM 4" LIGUSTRUM	1930 1931	6" CEDAR ELM 8" CEDAR ELM	4220 4221	5" ASHE JUNIPER 11" ASHE JUNIPER
987 988	10" HACKBERRY 11" HACKBERRY	1321 1322	10" CEDAR ELM 3" LIGUSTRUM	1443 1444	3" LIGUSTRUM 3" LIGUSTRUM	1566 1567	15" LIVE OAK 15" LIVE OAK	1688 1689	3" ASH 7" LIGUSTRUM(MS5-2-2)	1810 1811	4" LIGUSTRUM 4" LIGUSTRUM	1932 1933	4" CEDAR ELM 24" LIGUSTRUM(MS8-7-6-6-5-4-4)	4222 4223	7" ASHE JUNIPER 11.5" ASHE JUNIPER(MS8-7)
989	9" HACKBERRY	1323	3" LIGUSTRUM	1445	15" CEDAR ELM	1568	13" LIVE OAK	1690	6" LIGUSTRUM	1812	3" LIGUSTRUM	1934	10" LIGUSTRUM(MS6-4-4)	4269	7" LIVE OAK
990 1202	10" CEDAR ELM 35" LIVE OAK	1324 1325	7.5" WHITE OAK (MS-4-4-3) 4" LIGUSTRUM	1446 1447	5" LIGUSTRUM 15" ASHE JUNIPER	1569 1570	7" LIGUSTRUM(MS5-4) 24" CEDAR ELM	1691 1692	7" ASH 3" ASH	1813 1814	3" LIGUSTRUM 3" LIGUSTRUM	1935 1936	3" LIGUSTRUM 4" LIGUSTRUM	4270 4332	7" LIVE OAK 7" HACKBERRY
1203 1204	10" LIVE OAK 8" LIVE OAK	1326 1327	5" LIVE OAK 4" LIGUSTRUM (MS-3-2)	1448 1449	9" LIGUSTRUM 3" LIGUSTRUM	1571 1572	6" LIGUSTRUM 3" ASH	1693 1694	5" ASH 7" ASH	1815 1816	6.5" LIGUSTRUM(MS5-3) 4" LIGUSTRUM	1937 1938	12.5" LIGUSTRUM(MS7-7-4) 3" CEDAR ELM	4333 4334	11" HACKBERRY 6" HACKBERRY
1205	5.5" LIGUSTRUM (MS-4-3)	1328	3" ASHE JUNIPER	1450	6" ASHE JUNIPER	1573	5" ASH	1695	4" ASH	1817	3" LIGUSTRUM	1939	3" CEDAR ELM	4335	4" HACKBERRY
1206 1207	7.5" LIGUSTRUM (MS-4-4-3) 48" LIVE OAK (MS-39-18)	1329 1330	4" ASHE JUNIPER 6" ASHE JUNIPER	1451 1452	8" ASHE JUNIPER 3" LIGUSTRUM	1574 1575	5" LIGUSTRUM 3" LIGUSTRUM	1696 1697	5" ASH 7" ASH	1818 1819	7" LIGUSTRUM(MS5-4) 4" LIGUSTRUM	1940 1941	3" HACKBERRY 4" HACKBERRY	4348 4349	7" HACKBERRY 8" HACKBERRY
1208 1209	6" LIGUSTRUM (MS-4-4) 6" LIGUSTRUM (MS-4-4)	1331 1332	6" ASHE JUNIPER 6" ASHE JUNIPER (MS-4-4)	1453 1454	3" LIGUSTRUM 6" LIGUSTRUM	1576 1577	9" ASH 4" ASH	1698 1699	5" ASH 3" ASH	1820 1821	3" LIGUSTRUM 3" LIGUSTRUM	1942 1943	5" PECAN 8" PECAN	4350 4353	4" LIGUSTRUM 12" HACKBERRY
1210	6.5" LIGUSTRUM (MS-5-3) 6.5" LIGUSTRUM (MS-5-3)	1333	11" RED OAK	1455	13" ASHE JUNIPER	1578	7" ASH	1700	5" ASH	1822	4" LIGUSTRUM	1944	7" PECAN	4354	7" HACKBERRY
1211 1212	7.5" LIGUSTRUM (MS-6-3)	1334 1335	5" ASHE JUNIPER 5" LIGUSTRUM	1456 1457	8" LIGUSTRUM 7" LIGUSTRUM	1579 1580	9" ASH 4" ASH	1701 1702	5" ASH 3" ASH	1823 1824	3" LIGUSTRUM 4" LIGUSTRUM	1945 1946	5" PECAN 6" PECAN	9048 9049	14" ASHE JUNIPER 46.5" LIVE OAK (MS-32-18-11)
1213 1214	7" LIGUSTRUM (MS-5-4) 4" CEDAR ELM	1336 1337	4" LIGUSTRUM 5" LIGUSTRUM (MS-3-2-2)	1458 1459	11" ASHE JUNIPER 3" LIGUSTRUM	1581 1582	8.5" ASH(MS7-3) 4" LIGUSTRUM(MS3-2)	1703 1704	15" LIGUSTRUM(MS9-7-5) 4" HACKBERRY(MS3-2)	1825 1826	7" LIGUSTRUM(MS5-4) 4" LIGUSTRUM(MS3-2)	1947 1948	8" PECAN 4" PECAN	9050 9053	11" ASHE JUNIPER (MS-8-6) 3" LIGUSTRUM
1215	6" CEDAR ELM	1338	15" ASHE JUNIPER	1460 1461	5" LIGUSTRUM	1583 1584	3" ASH 6" ASH	1705	7" HACKBERRY	1827	4" LIGUSTRUM	1949	4" LIGUSTRUM	9054	7" LIGUSTRUM (MS-4-3-3)
1216 1217	8.5" LIGUSTRUM (MS-6-5) 23" ASHE JUNIPER	1339 1340	18.5" ASHE JUNIPER (MS-14-9) 4" LIGUSTRUM	1462	8.5" LIGUSTRUM(MS6-5) 12" HACKBERRY	1585	6" ASH	1706 1707	3" LIGUSTRUM 3" HACKBERRY	1828 1829	6" LIGUSTRUM 4" LIGUSTRUM	1950 1951	3" ASHE JUNIPER 16.5" LIGUSTRUM(MS8-7-7-3)	9055 9056	24.5" ASHE JUNIPER (MS-15-12-7) 4" LIGUSTRUM
1218 1219	22" LIGUSTRUM (MS-17-10) 3" LIGUSTRUM	1341 1342	4" LIGUSTRUM 5" LIGUSTRUM	1463 1464	19" CHINABERRY 7" HACKBERRY	1586 1587	4" ASH 8" LIGUSTRUM(MS5-3-3)	1708 1709	10.5" LIGUSTRUM(MS7-4-3 4" LIGUSTRUM	1830 1831	3" LIGUSTRUM 4" LIGUSTRUM	1952 1953	3" PECAN 6" PECAN	9058 9059	4" CEDAR ELM 5" ASHE JUNIPER
1220	6" ASHE JUNIPER	1343	3" LIGUSTRUM	1465	7" HACKBERRY	1588	10" CHINABERRY	1710	4" LIGUSTRUM	1832	6.5" LIGUSTRUM(MS5-3)	1954	5" PECAN	9060	4" ASHE JUNIPER
1221 1222	10" ASHE JUNIPER 8.5" ASHE JUNIPER (MS-6-5)	1344 1345	4" LIGUSTRUM 3" LIGUSTRUM	1466 1467	6" PECAN 3" L I GUSTRUM	1589 1590	10.5" LIGUSTRUM(MS8-5) 8" LIGUSTRUM	1711 1712	5" LIGUSTRUM(MS4-2) 5" LIGUSTRUM	1833 1834	3" LIGUSTRUM 6" LIGUSTRUM(MS4-4)	1955 1956	5" PECAN 5" PECAN		
1223 1224	3" LIGUSTRUM 10" RED OAK (MS-5-4-3-3)	1346 1347	5" ASHE JUNIPER 3" LIGUSTRUM	1468 1469	4" LIGUSTRUM 6" LIGUSTRUM	1591 1592	6" LIGUSTRUM 17" LIGUSTRUM(MS12-7-3)	1713 1714	7" LIGUSTRUM 7" LIGUSTRUM	1835 1836	4" LIGUSTRUM 3" LIGUSTRUM	1957 1958	6" PECAN 4" PECAN		
1225	14.5" ASHE JUNIPER (MS-11-7)	1348	6" LIGUSTRUM	1470	7" LIGUSTRUM	1593	11.5" LIGUSTRUM(MS8-7)	1715	3" LIGUSTRUM	1837	6" ASH	1959	4" PECAN		
1226 1227	10" ASHE JUNIPER 7" RED OAK	1349 1350	7.5" LIGUSTRUM(MS6-3) 5" LIGUSTRUM	1471 1472	29" COTTONWOOD 4" LIGUSTRUM	1594 1595	10" LIGUSTRUM 10" LIGUSTRUM	1716 1717	8" LIGUSTRUM 4" LIGUSTRUM	1838 1839	6" LIGUSTRUM 5" LIGUSTRUM	1960 1961	6" PECAN 5" HACKBERRY		
1228 1229	5.5" LIGUSTRUM (MS-4-3) 5" ASHE JUNIPER	1351 1352	4" LIGUSTRUM 4" LIGUSTRUM	1473 1474	3" LIGUSTRUM 3" LIGUSTRUM	1596 1597	4" LIGUSTRUM(MS3-2) 7" LIGUSTRUM	1718 1719	4" LIGUSTRUM 7" LIGUSTRUM	1840 1841	5" LIGUSTRUM 4" LIGUSTRUM	1962 1963	3" PECAN 3" LIGUSTRUM		
1230	6" ASHE JUNIPER	1353	3" HACKBERRY	1475	4" LIGUSTRUM	1598	7" LIGUSTRUM	1720	4" LIGUSTRUM(MS3-2)	1842	3" LIGUSTRUM	1964	6" WILLOW		
1231 1232	4" ASHE JUNIPER 4" CHINABERRY	1354 1355	3" LIGUSTRUM 4" LIGUSTRUM	1476 1477	4" LIGUSTRUM(MS3-2) 4" LIGUSTRUM	1599 1600	8" LIGUSTRUM(MS4-4-4) 6" LIGUSTRUM(MS5-2)	1721 1722	5" LIGUSTRUM 4" LIGUSTRUM	1843 1844	4" LIGUSTRUM 5" LIGUSTRUM	1965 1966	12" CHINESE TALLOW 5" CHINESE TALLOW		
1233 1234	8" ASHE JUNIPER 15.5" ASHE JUNIPER (MS-12-7)	1356 1357	5" LIGUSTRUM 5" LIGUSTRUM	1478 1479	4" LIGUSTRUM 7" LIGUSTRUM	1601 1602	3" LIGUSTRUM 4" LIGUSTRUM	1723 1724	5" LIGUSTRUM 4" ASH	1845 1846	4.5" LIGUSTRUM(MS3-3) 3" LIGUSTRUM	1967 1968	5" CHINESE TALLOW 4" CHINESE TALLOW		
1235	3" LIGUSTRUM	1358	18" SYCAMORE	1480	20.5" ASHE JUNIPER(MS9-8-8-7)	1603	7" LIGUSTRUM(MS5-4)	1725	5" LIGUSTRUM	1847	5" LIGUSTRUM	1969	9" CHINESE TALLOW		
1236 1237	5" ASHE JUNIPER 9" ASHE JUNIPER (MS-7-4)	1359 1360	10" CEDAR ELM 4" L I GUSTRUM	1481 1482	4" LIGUSTRUM 3" LIGUSTRUM	1604 1605	6" LIGUSTRUM 4" LIGUSTRUM	1726 1727	5" LIGUSTRUM 3" LIGUSTRUM	1848 1849	5" LIGUSTRUM(MS4-2) 41" PECAN	1970 1971	5" CHINESE TALLOW 11" WILLOW		
1238 1239	3" LIGUSTRUM 6.5" RED OAK (MS-5-3)	1361 1362	5" LIGUSTRUM 3" LIGUSTRUM	1483 1484	4" LIGUSTRUM 4" LIGUSTRUM	1606 1607	5" LIGUSTRUM 4" LIGUSTRUM	1728 1729	9" LIGUSTRUM(MS7-4) 4" LIGUSTRUM(MS3-2)	1850 1851	3" LIGUSTRUM 5" LIGUSTRUM	1972 1973	4" SYCAMORE(MS3-2) 6" SYCAMORE		
1240	6" ASHE JUNIPER	1363	4" LIGUSTRUM(MS3-2)	1485	6" ASHE JUNIPER	1608	4" LIGUSTRUM(MS3-2)	1730	6" LIGUSTRUM	1852	4" HACKBERRY	1974	13.5" SYCAMORE(MS9-9)		
1241 1242	8.5" LIGUSTRUM (MS-6-5) 4" LIGUSTRUM	1364 1365	4" LIGUSTRUM 4" ASHE JUNIPER	1486 1487	5" LIGUSTRUM 5" LIGUSTRUM	1609 1610	5" LIGUSTRUM 31" PECAN	1731 1732	4" LIGUSTRUM(MS3-2) 4" LIGUSTRUM	1853 1854	12.5" LIGUSTRUM(MS7-6-5) 4" LIGUSTRUM	1975 1976	5" SYCAMORE 9" CHINESE TALLOW		
1243 1244	12" CEDAR ELM 12" LIVE OAK	1366 1367	4" LIGUSTRUM 5" LIGUSTRUM	1488 1489	5" LIGUSTRUM 6" ASHE JUNIPER	1611 1612	5" LIGUSTRUM 8" LIGUSTRUM(MS7-2)	1733 1734	4" LIGUSTRUM 3" LIGUSTRUM	1855 1856	4" LIGUSTRUM 4" LIGUSTRUM	1977 1978	17" SYCAMORE(MS14-6) 4.5" LIGUSTRUM(MS3-3)		
1245	13" ASHE JUNIPER	1368	11.5" ASHE JUNIPER(MS8-7)	1490	12" CEDAR ELM	1613	8" LIGUSTRUM	1735	3" LIGUSTRUM	1857	4.5" LIGUSTRUM(MS3-3)	1979	5" CHINESE TALLOW		
1246 1247	4" ASHE JUNIPER 12" ASHE JUNIPER	1369 1370	4" LIGUSTRUM 5" LIGUSTRUM	1491 1492	3" LIGUSTRUM 3" LIGUSTRUM	1614 1615	10.5" LIGUSTRUM(MS9-3) 3" LIGUSTRUM	1736 1737	4" LIGUSTRUM 3" LIGUSTRUM	1858 1859	4" HACKBERRY 6.5" LIGUSTRUM(MS4-3-2)	1980 1981	12" CHINESE TALLOW 9" CHINESE TALLOW		
1248 1249	4" ASHE JUNIPER 8" ASHE JUNIPER (MS-6-4)	1371 1372	7" CEDAR ELM 3" LIGUSTRUM(MS2-2)	1493 1494	4" LIGUSTRUM 8" ASHE JUNIPER	1616 1617	5" LIGUSTRUM 3" LIGUSTRUM	1738 1739	4" LIGUSTRUM 4" LIGUSTRUM	1860 1861	6.5" LIGUSTRUM(MS4-3-2) 8" LIGUSTRUM	1982 1983	8" SYCAMORE 9" SYCAMORE		
1250	5" ASHE JUNIPER	1373	6.5" LIGUSTRUM(MS5-3)	1495	3" LIGUSTRUM	1618	6" LIGUSTRUM	1740	4" LIGUSTRUM	1862	5" HACKBERRY	1984	4" SYCAMORE		
1251 1252	3" LIGUSTRUM 3" ASHE JUNIPER	1374 1375	13.5" ASHE JUNIPER(MS9-6-3) 6" ASHE JUNIPER	1496 1497	14" ASHE JUNIPER 5" LIGUSTRUM	1619 1620	3" LIGUSTRUM 8.5" LIGUSTRUM(MS6 - 5)	1741 1742	4" LIGUSTRUM 4" LIGUSTRUM	1863 1864	4" LIGUSTRUM 15" CEDAR ELM	1985 1986	5" SYCAMORE 5" CHINESE TALLOW		
1253 1254	5" LIGUSTRUM 23" ASHE JUNIPER (MS-10-9-6-6-5)	1376 1377	7" ASHE JUNIPER 5" LIGUSTRUM	1498 1499	3" LIGUSTRUM 5" LIGUSTRUM(MS4-2)	1621 1622	6" LIGUSTRUM 7" ASH	1743 1744	5" LIGUSTRUM 3" LIGUSTRUM	1865 1866	5" LIGUSTRUM 8" CHINABERRY	1987 1988	7" CHINESE TALLOW 7" SYCAMORE		
1255 1256	3" LIGUSTRUM	1378 1379	7" ASHE JUNIPER	1500 1501	8.5" LIGUSTRUM(MS4-3-3-3)	1623 1624	10" LIGUSTRUM(MS8-4)	1745 1746	3" LIGUSTRUM	1867 1868	3" HACKBERRY 4" ASH	1989 1990	10" CHINESE TALLOW 9" CHINESE TALLOW		
1257	4" ASHE JUNIPER 3" LIGUSTRUM	1380	5" LIGUSTRUM 18" ASHE JUNIPER(MS9-8-5-5)	1502	5" LIGUSTRUM 17" ASHE JUNIPER	1625	9" LIGUSTRUM 8" LIGUSTRUM(MS4-4-4)	1747	4" LIGUSTRUM 4" LIGUSTRUM(MS3-2)	1869	10" SYCAMORE	3065	16" ASHE JUNIPER (MS-7-7-7-4)		
1258 1259	26" ASHE JUNIPER (MS-9-9-9-8-8) 6" RED OAK	1381 1382	5" LIGUSTRUM 5" LIGUSTRUM	1503 1504	8" LIGUSTRUM 4" LIGUSTRUM(MS3-2)	1626 1627	3" LIGUSTRUM 5" LIGUSTRUM(MS4-2)	1748 1749	5" ASH 3" LIGUSTRUM	1870 1871	4" ASH 6" ASHE JUN I PER	3066 3067	8" ASHE JUNIPER 16" LIGUSTRUM (MS-9-8-6)		
1260	4" RED OAK	1383	30" ASHE JUNIPER (MS8-6-6-6-6-5-5-4)	1505 1506	6.5" LIGUSTRUM(MS5-3) 6" HACKBERRY	1628	9.5" LIGUSTRUM(MS8-3)	1750	5" LIGUSTRUM(MS4-2)	1872	7.5" ASHE JUNIPER(MS6-3)	3068	7" ASHE JUNIPER		
			,	.000	J INTONDERRY										

	X 78746		GS S	
K FRIESE & ASSOCIATES, INC.	1120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 78746	WEST LAKE HILLS BOND PROGRAM	EANES CREEK LOW WATER CROSSINGS	TREE LIST

7/17/2023

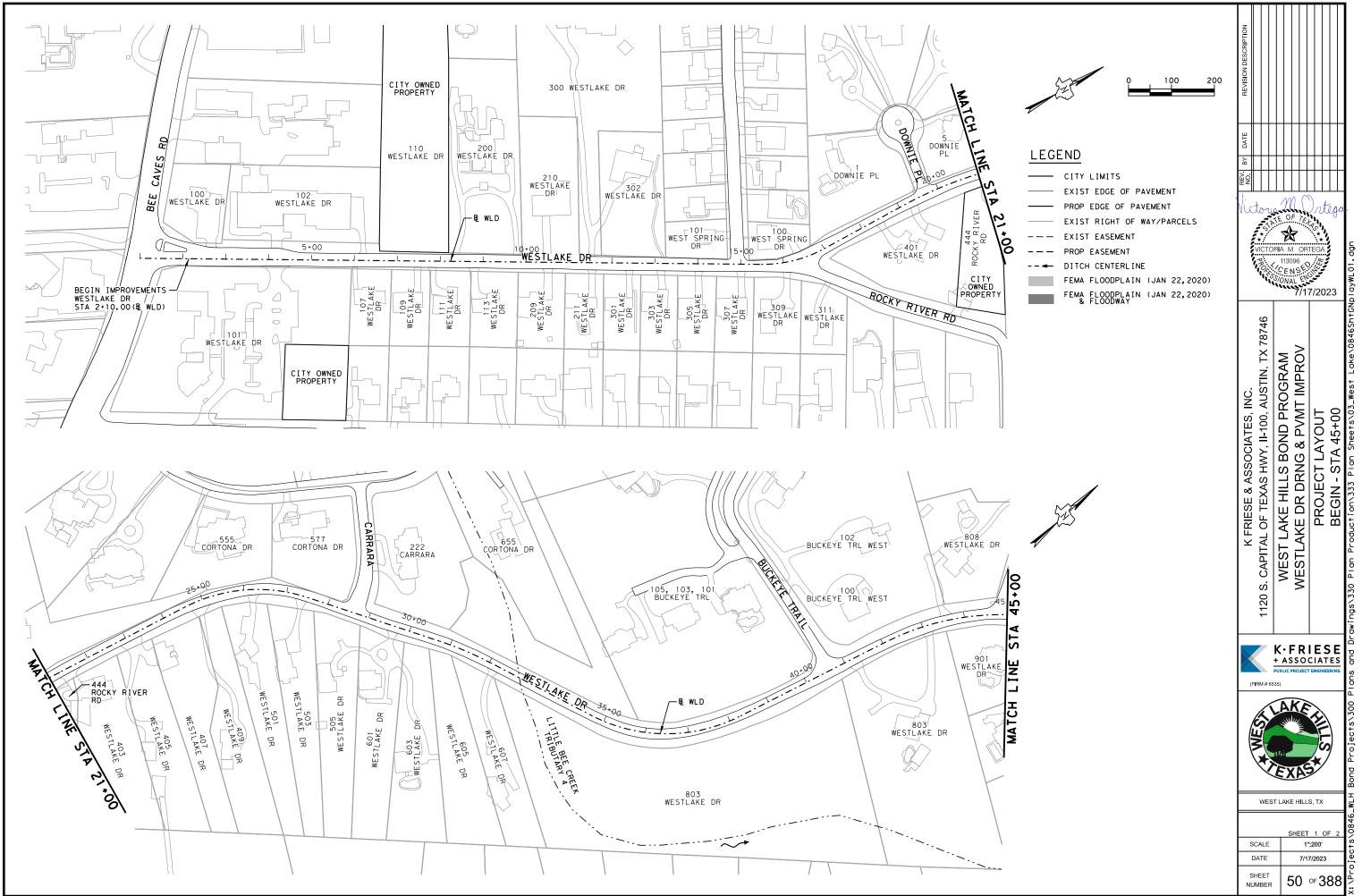
SHEET 1 OF

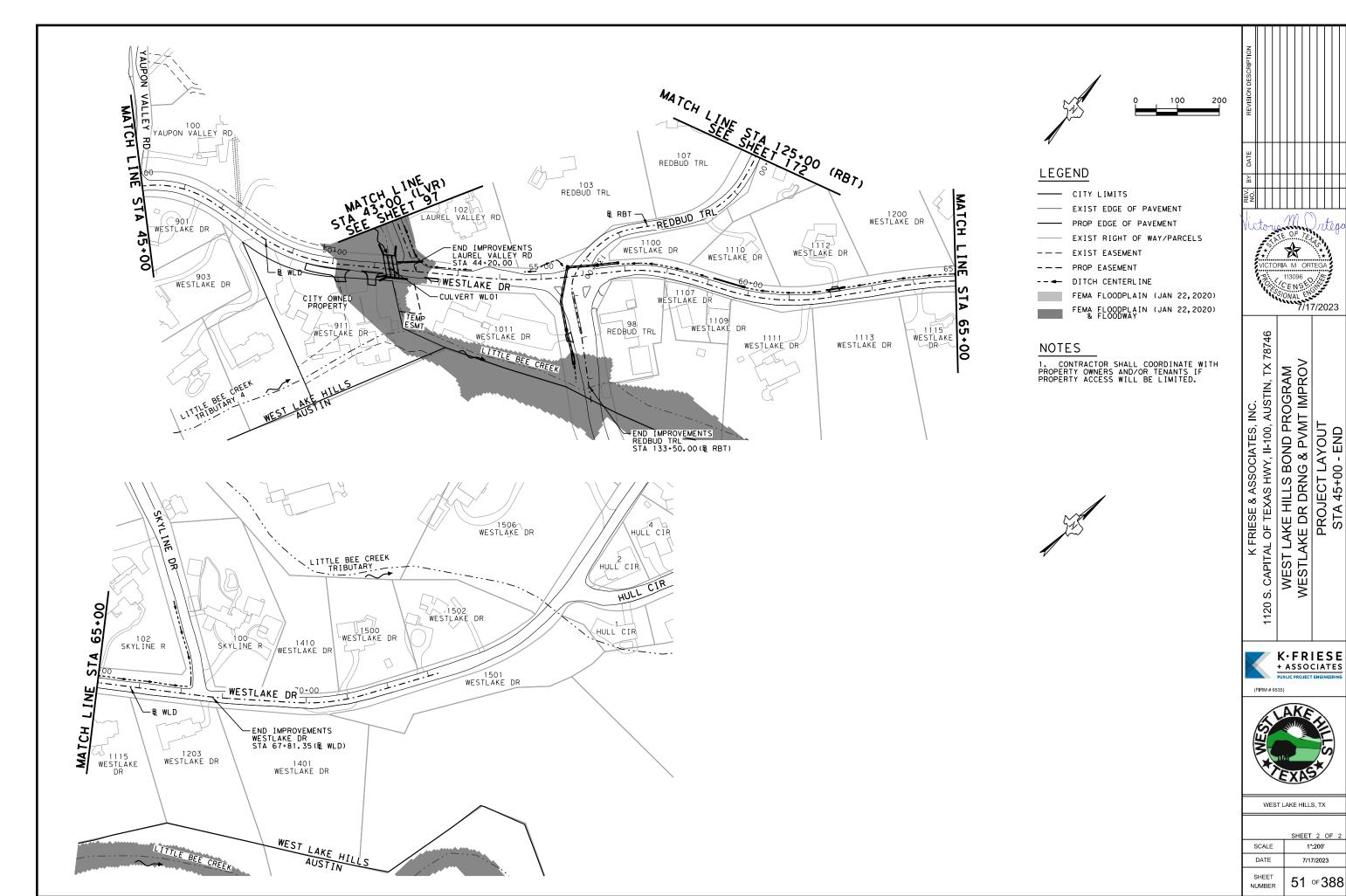
NTS

7/17/2023

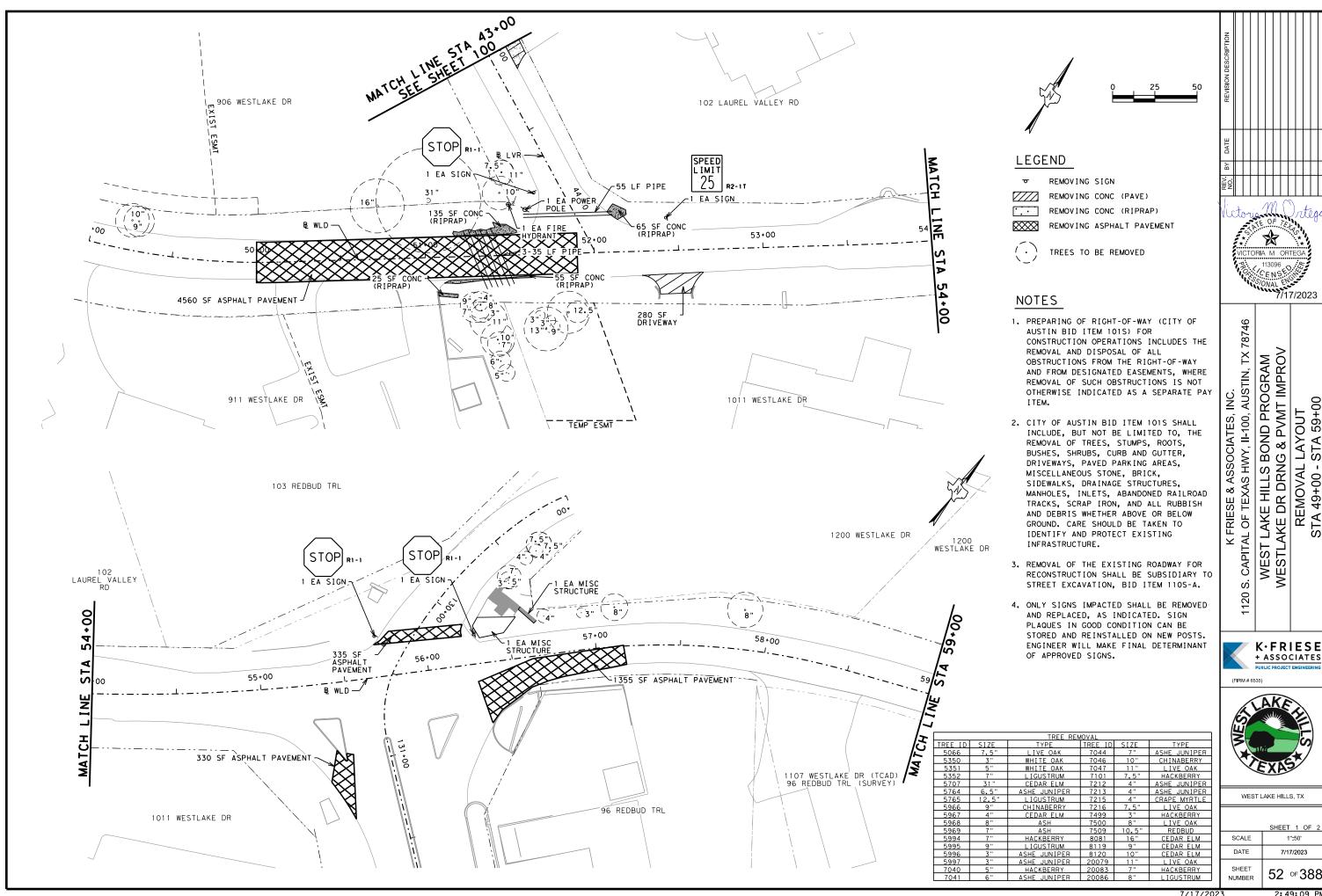
49 of 388

K.FRIESE + ASSOCIATES

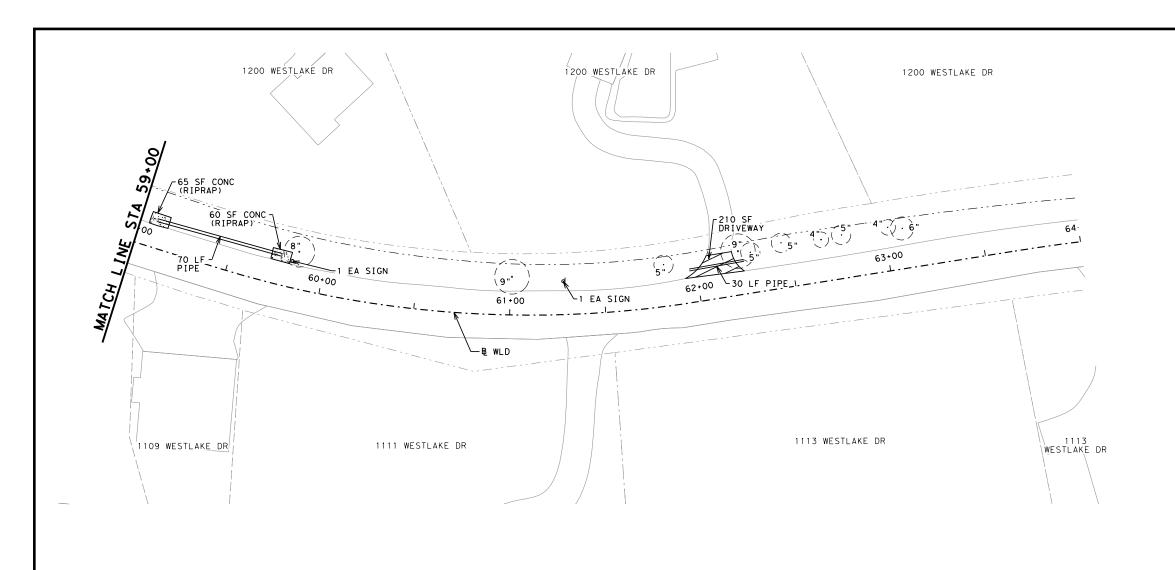

WEST LAKE HILLS, TX

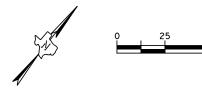

SCALE

DATE


SHEET

NUMBER





PROJECT LAYOUT STA 45+00 - END

REMOVAL LAYOUT STA 49+00 - STA 59+

LEGEND

▼ REMOVING SIGN

REMOVING CONC (PAVE)

REMOVING CONC (RIPRAP)

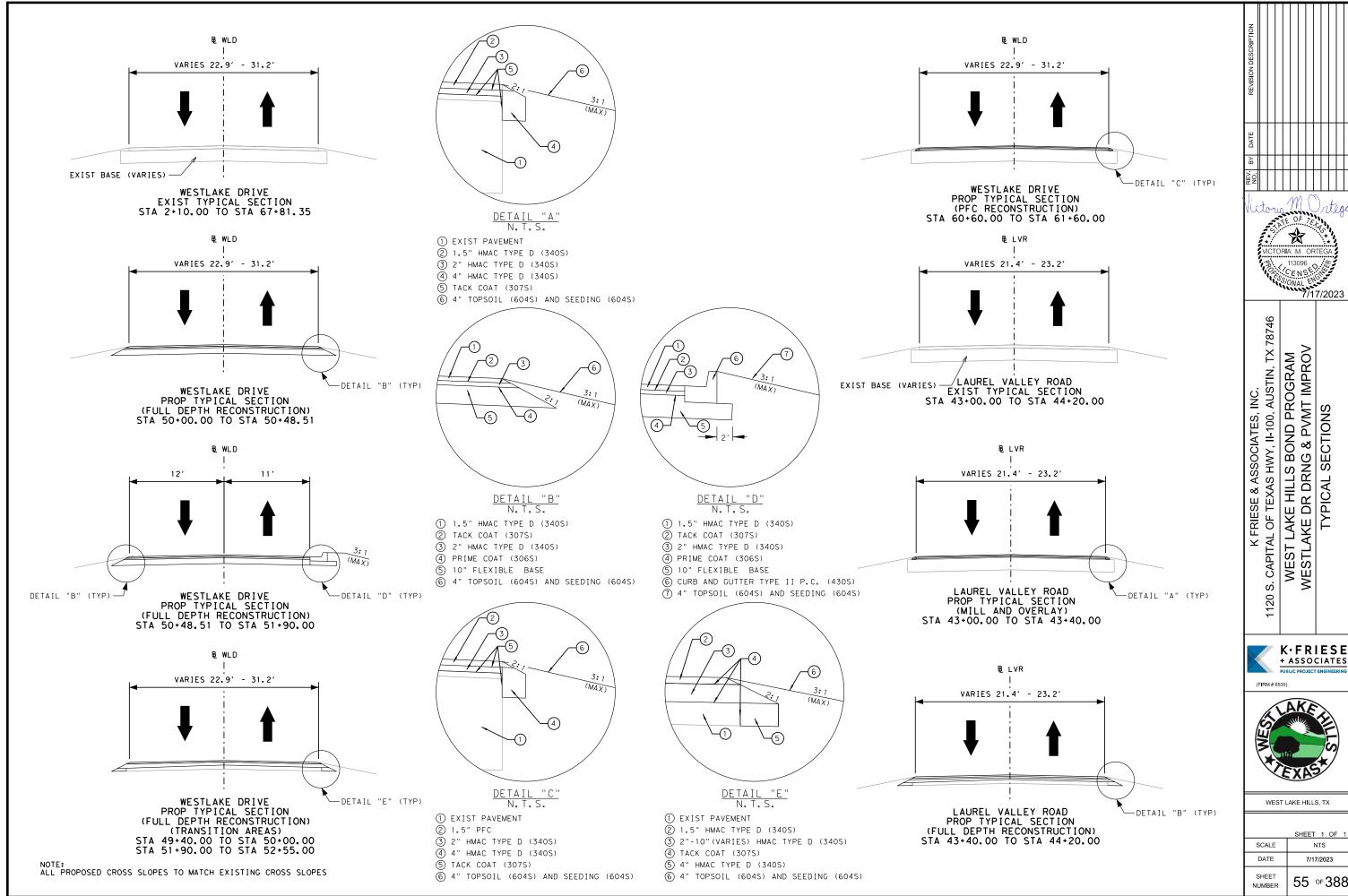
REMOVING ASPHALT PAVEMENT

TREES TO BE REMOVED

NOTES

- 1. PREPARING OF RIGHT-OF-WAY (CITY OF AUSTIN BID ITEM 101S) FOR CONSTRUCTION OPERATIONS INCLUDES THE REMOVAL AND DISPOSAL OF ALL OBSTRUCTIONS FROM THE RIGHT-OF-WAY AND FROM DESIGNATED EASEMENTS, WHERE REMOVAL OF SUCH OBSTRUCTIONS IS NOT OTHERWISE INDICATED AS A SEPARATE PAY ITEM.
- 2. CITY OF AUSTIN BID ITEM 101S SHALL INCLUDE, BUT NOT BE LIMITED TO, THE REMOVAL OF TREES, STUMPS, ROOTS, BUSHES, SHRUBS, CURB AND GUTTER, DRIVEWAYS, PAVED PARKING AREAS, MISCELLANEOUS STONE, BRICK, SIDEWALKS, DRAINAGE STRUCTURES, MANHOLES, INLETS, ABANDONED RAILROAD TRACKS, SCRAP IRON, AND ALL RUBBISH AND DEBRIS WHETHER ABOVE OR BELOW GROUND. CARE SHOULD BE TAKEN TO IDENTIFY AND PROTECT EXISTING INFRASTRUCTURE.
- REMOVAL OF THE EXISTING ROADWAY FOR RECONSTRUCTION SHALL BE SUBSIDIARY TO STREET EXCAVATION, BID ITEM 110S-A.
- 4. ONLY SIGNS IMPACTED SHALL BE REMOVED AND REPLACED, AS INDICATED. SIGN PLAQUES IN GOOD CONDITION CAN BE STORED AND REINSTALLED ON NEW POSTS. ENGINEER WILL MAKE FINAL DETERMINANT OF APPROVED SIGNS.

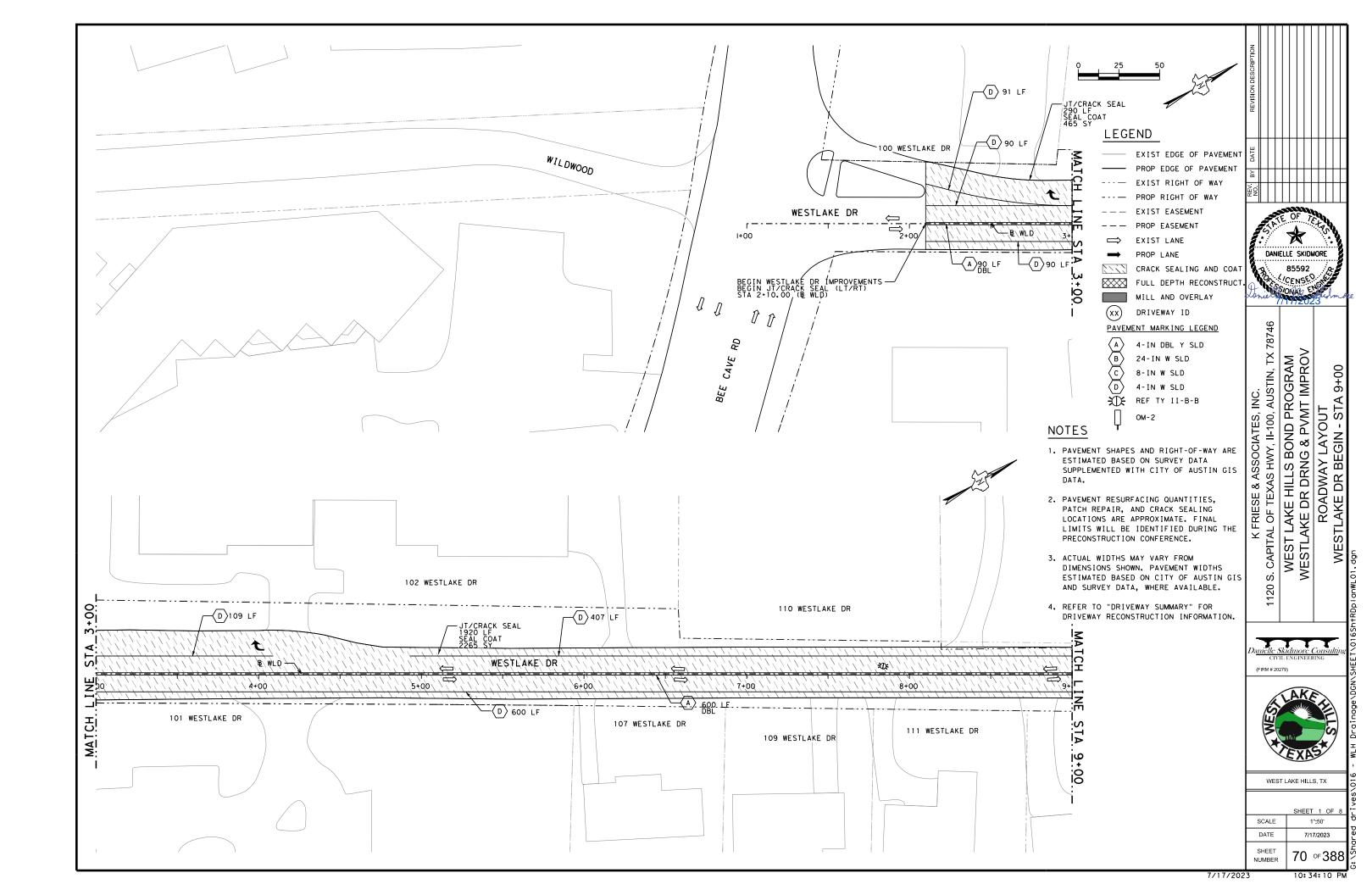
TORIA M ORTEGA

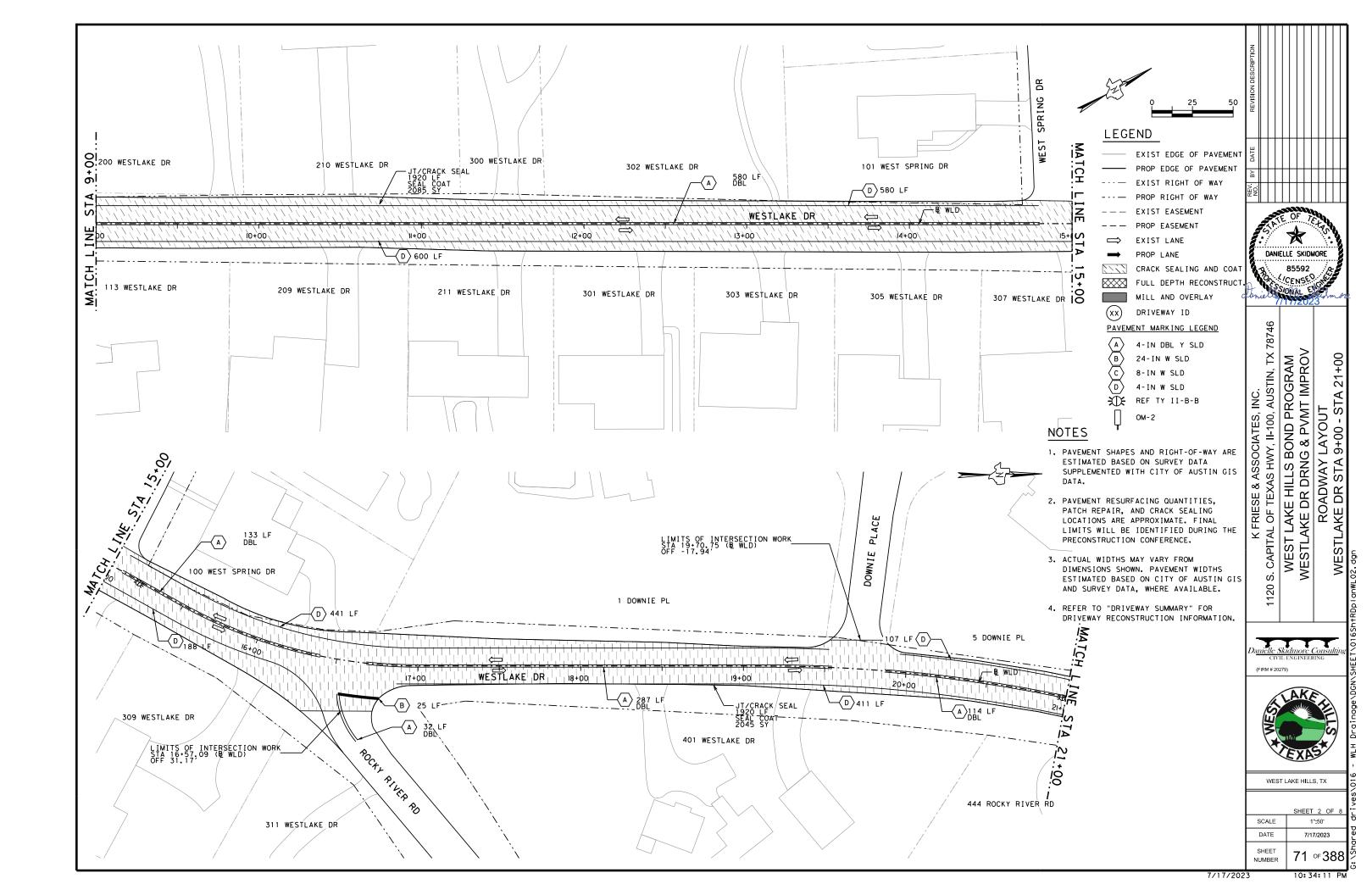

7/17/2023

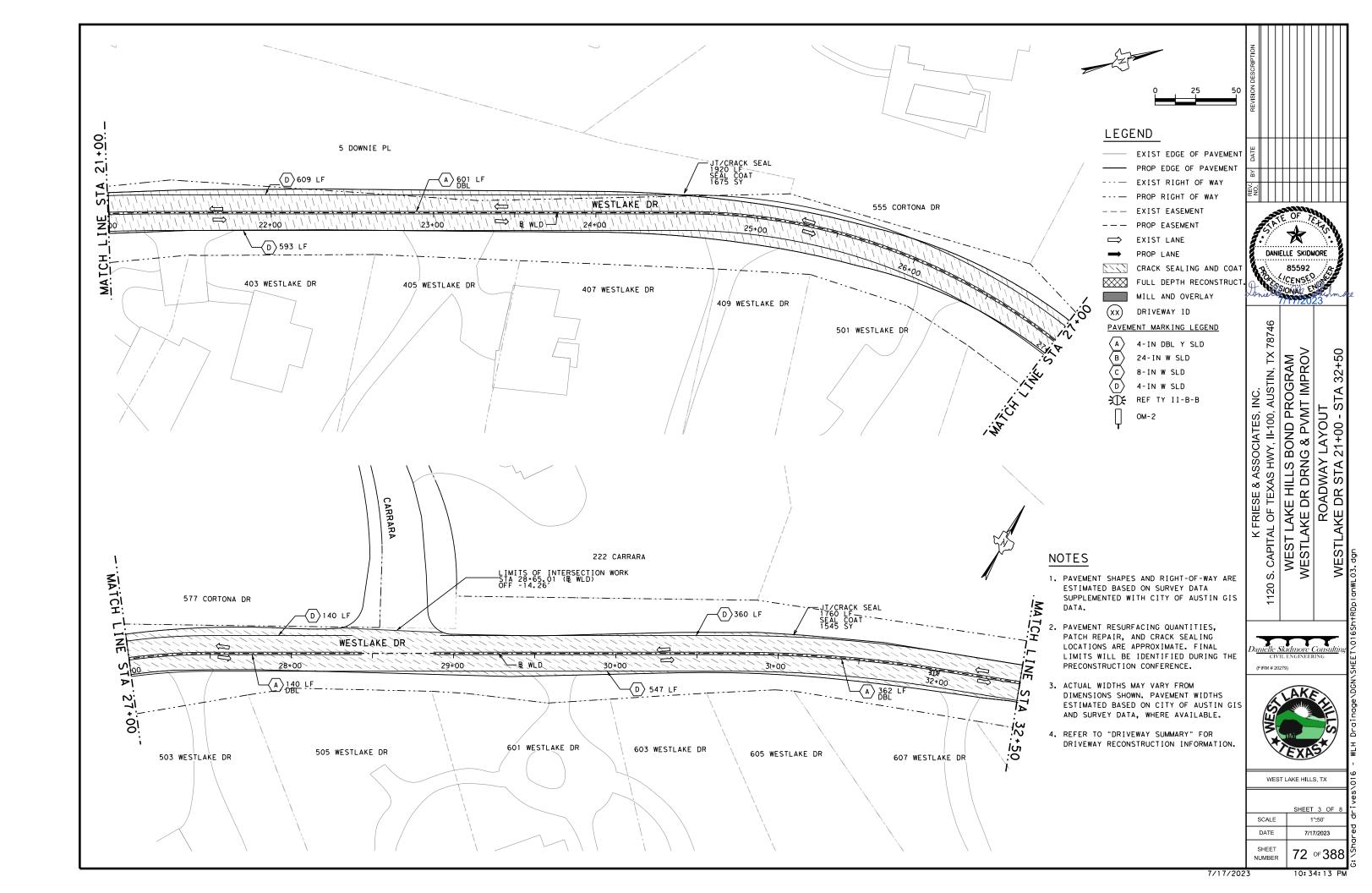
(
LAKE NEXAS

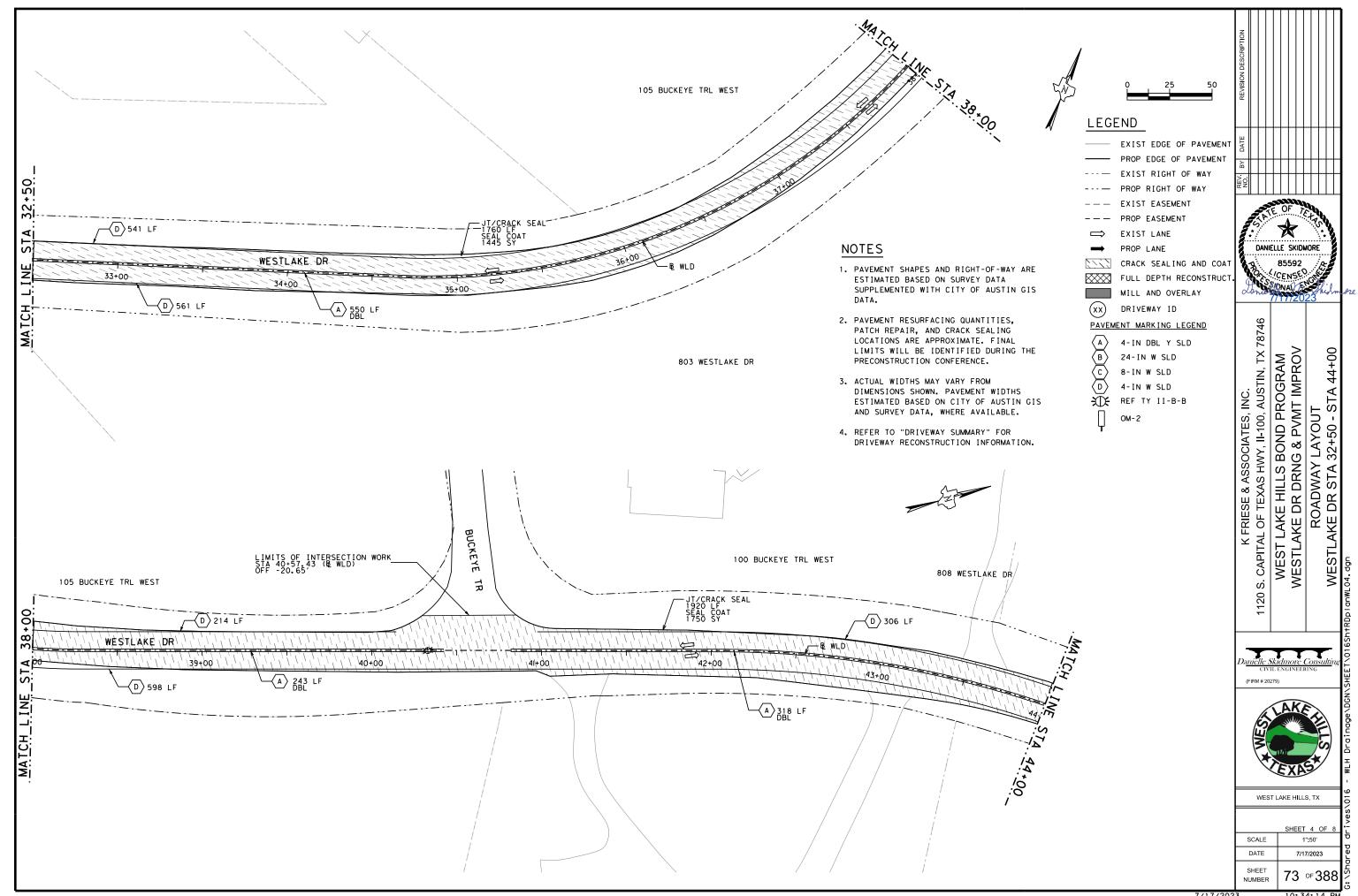
WEST LAKE HILLS, TX

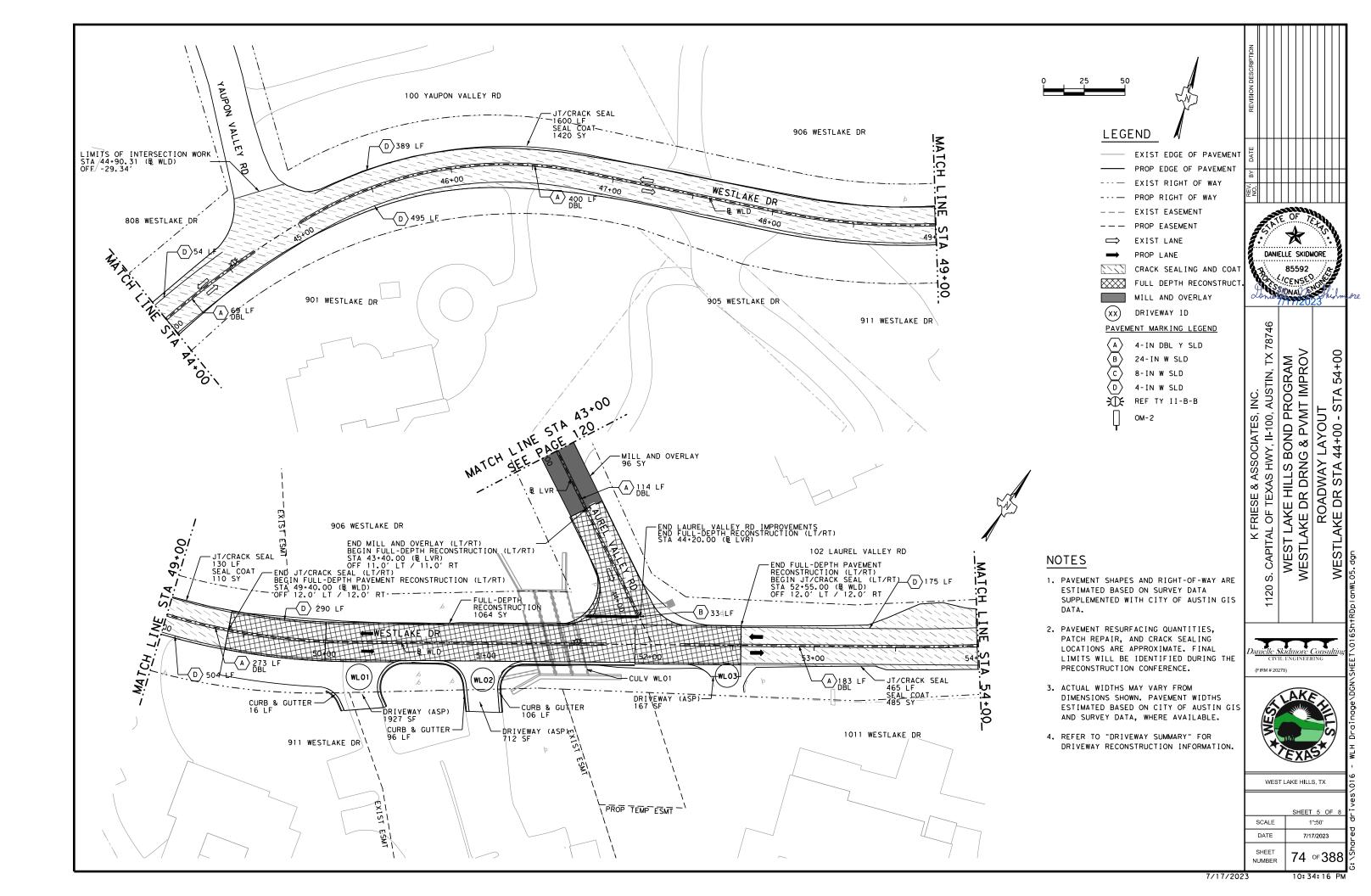
	SHEET 2 OF 2
SCALE	1":50'
DATE	7/17/2023
SHEET	53 of 388

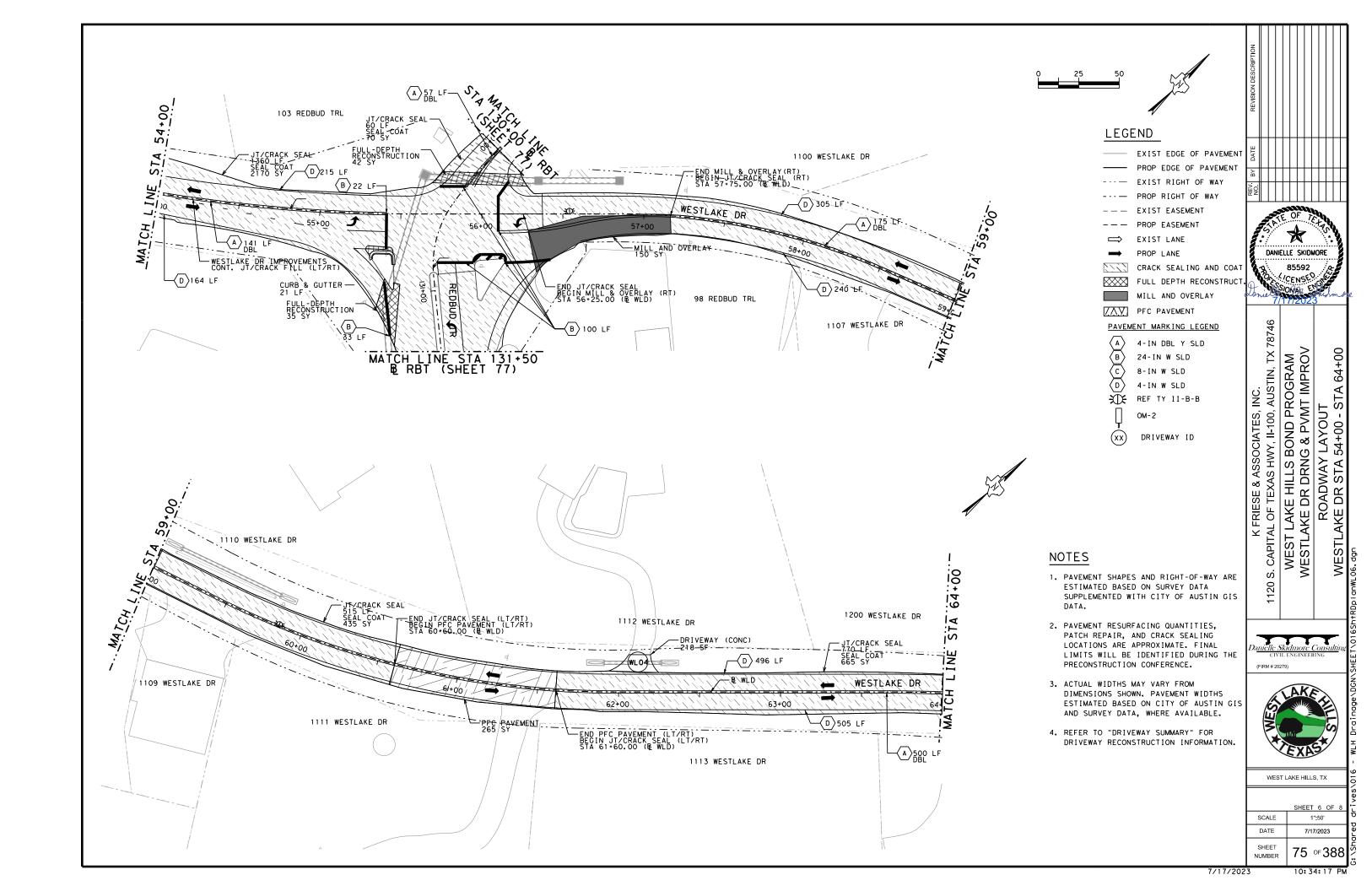

TREE REMOVAL						
TREE ID	SIZE	TYPE				
7581	8"	HACKBERRY				
7627	9"	CEDAR ELM				
7645	5"	CEDAR ELM				
7667	9"	LIVE OAK				
7668	5"	CEDAR ELM				
7676	5"	CEDAR ELM				
7687	4"	CEDAR ELM				
7688	5"	CEDAR ELM				
7696	4"	CEDAR ELM				
7697	6"	CEDAR ELM				

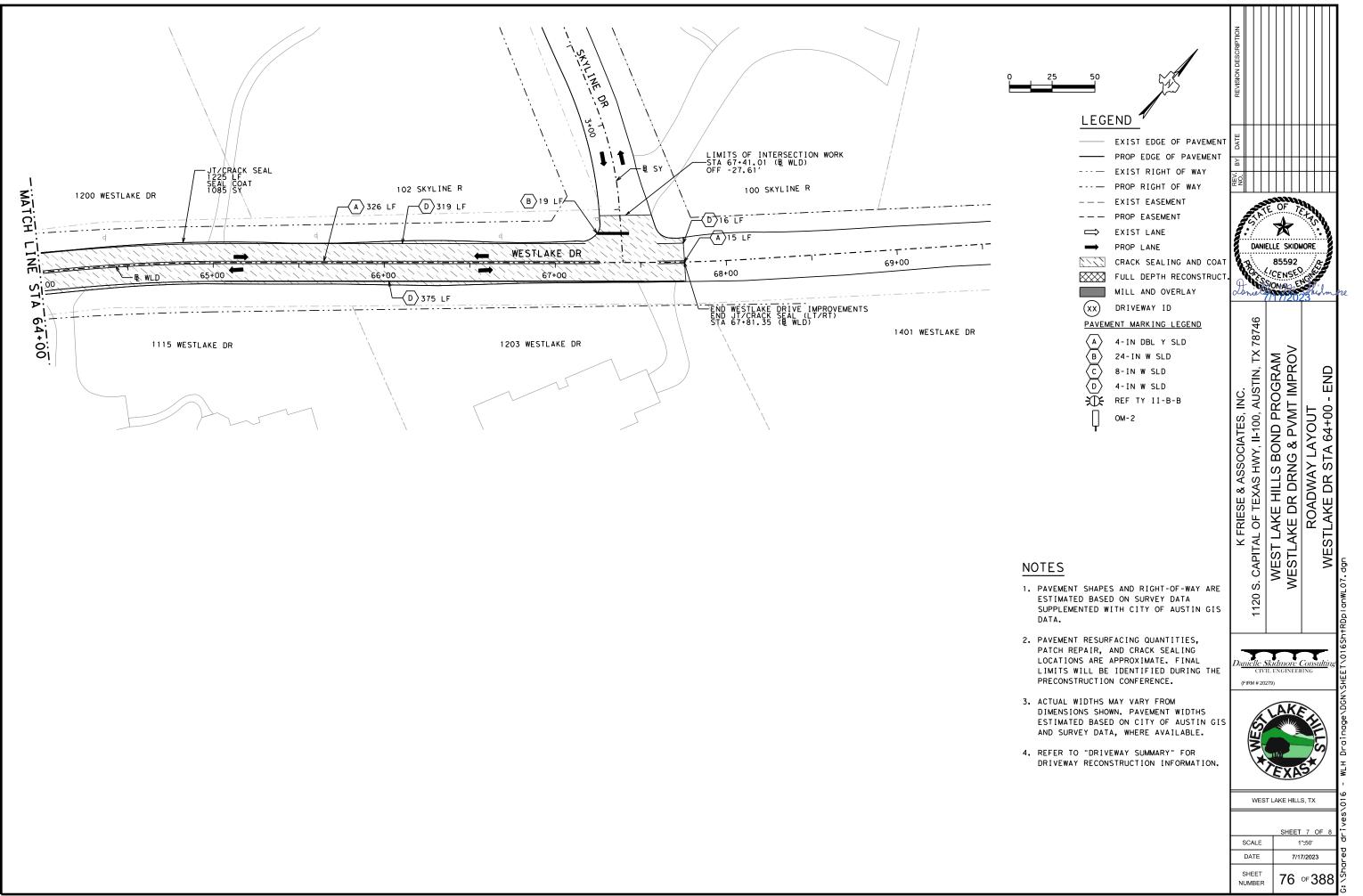


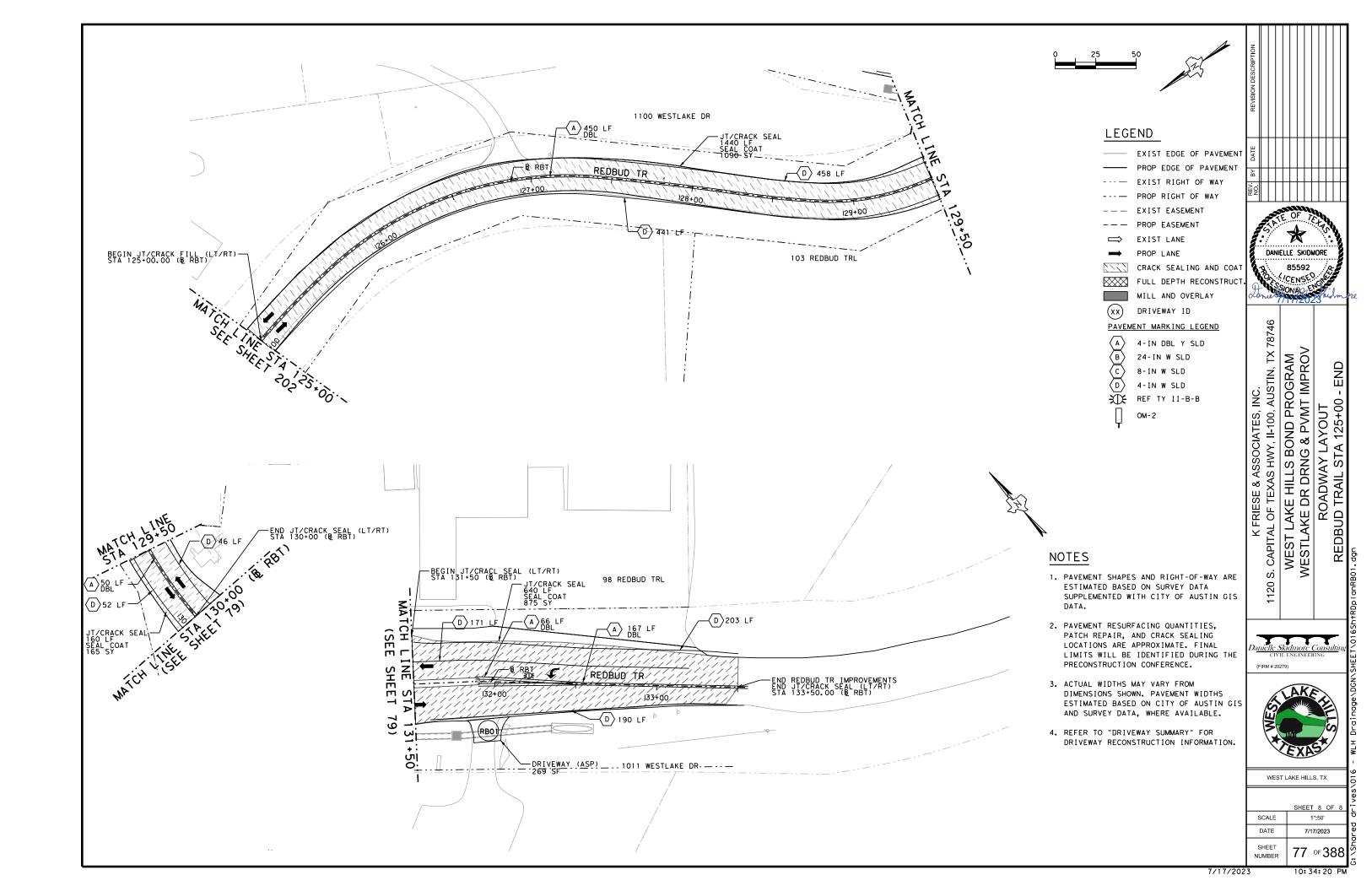

CTIONS

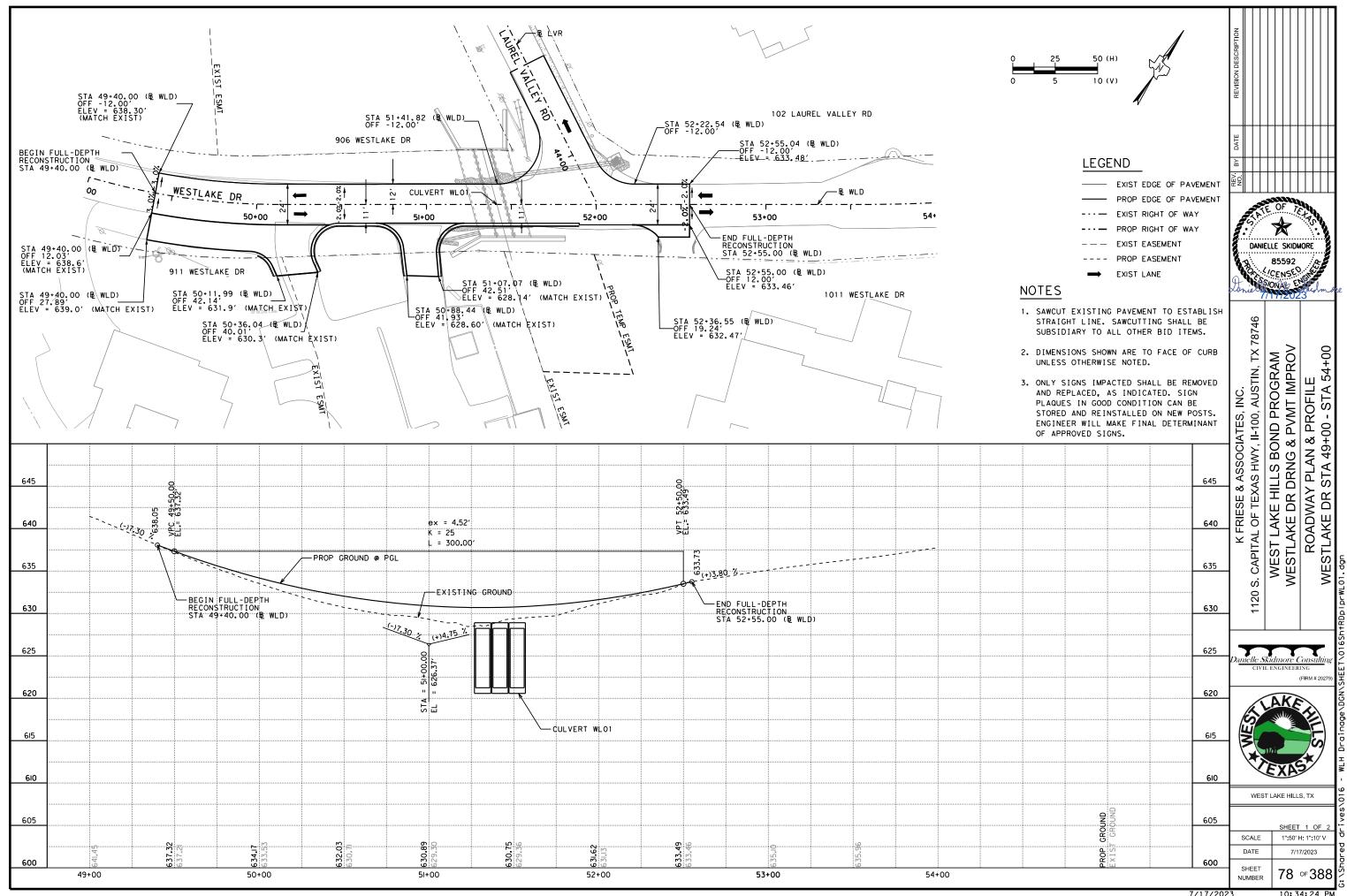

SE

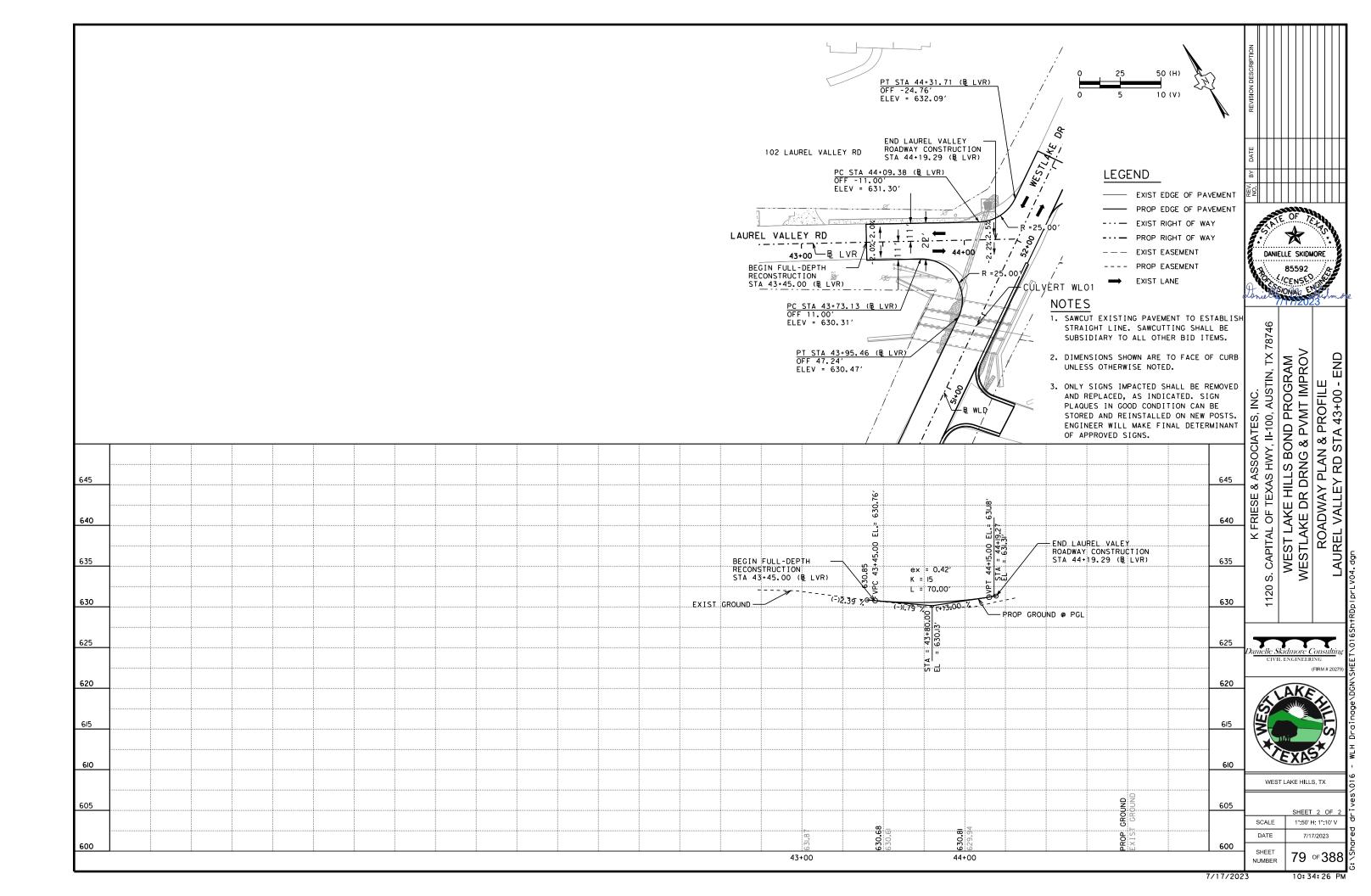

TYPICAL

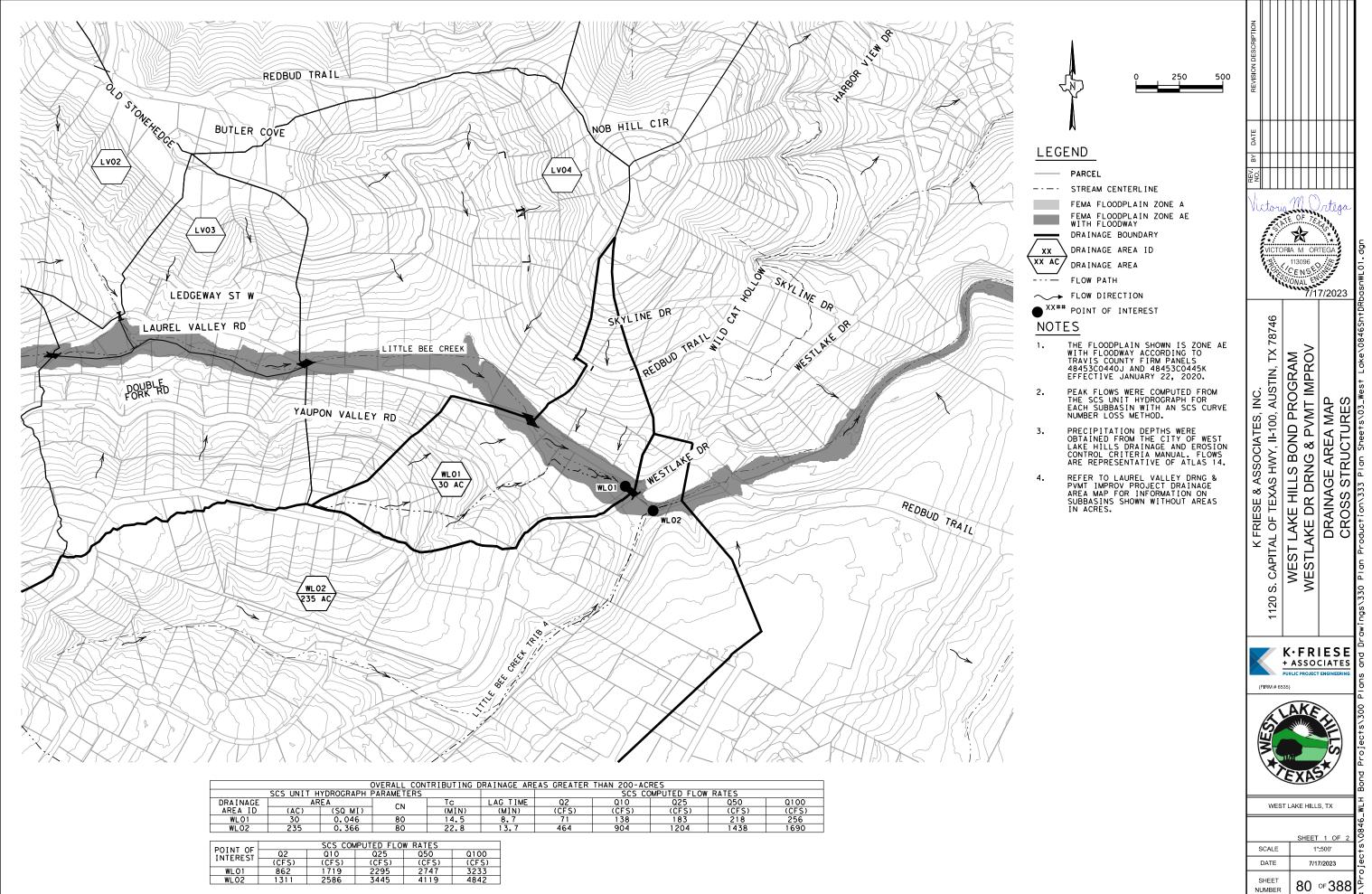




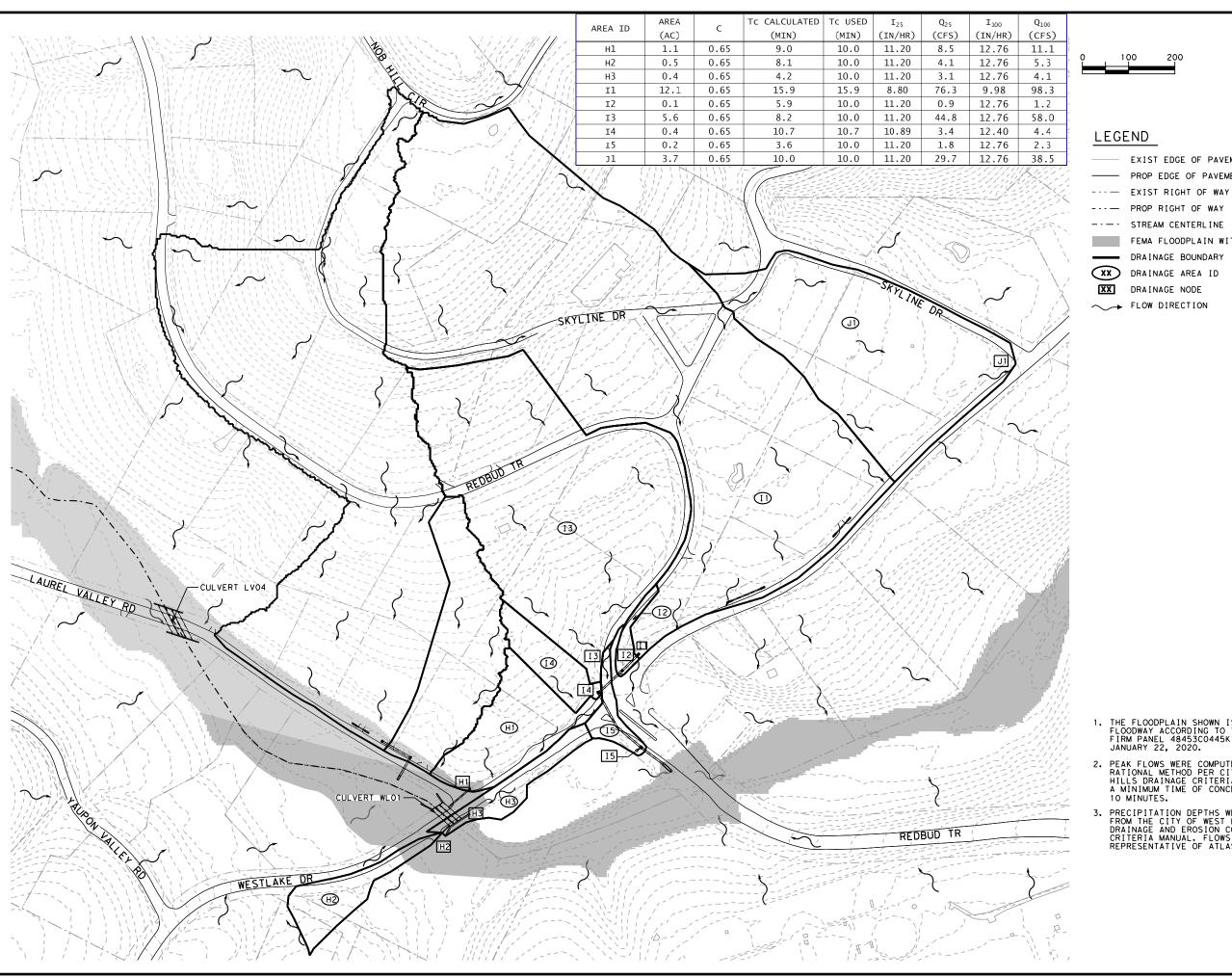








SHEET 1 OF


1":500'

7/17/2023

*

113096 CENSE SONAL ENGL

7/17/2023

EXIST EDGE OF PAVEMENT

- PROP EDGE OF PAVEMENT

--- PROP RIGHT OF WAY

---- STREAM CENTERLINE

FEMA FLOODPLAIN WITH FLOODWAY

DRAINAGE AREA ID

FLOW DIRECTION

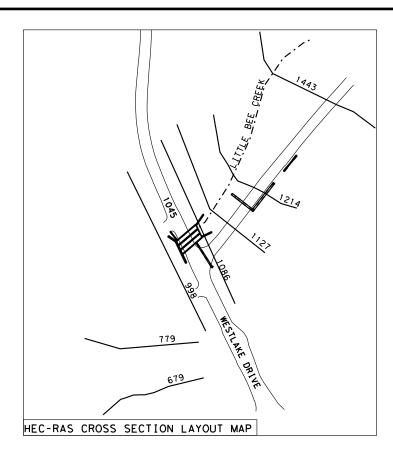
DANIELLE SKIDMORE 85592 KICENSED

746

K FRIESE & ASSOCIATES, INC. 1120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 787	WEST LAKE HILLS BOND PROGRAM	WESTLAKE DR DRNG & PVMT IMPROV	
---	------------------------------	--------------------------------	--

1. THE FLOODPLAIN SHOWN IS ZONE AE WITH FLOODWAY ACCORDING TO TRAVIS COUNTY FIRM PANEL 48453C0445K EFFECTIVE JANUARY 22, 2020.

2. PEAK FLOWS WERE COMPUTED USING THE RATIONAL METHOD PER CITY OF WEST LAKE HILLS DRAINAGE CRITERIA MANUAL WITH A MINIMUM TIME OF CONCENTRATION OF 10 MINUTES.


3. PRECIPITATION DEPTHS WERE OBTAINED FROM THE CITY OF WEST LAKE HILLS DRAINAGE AND EROSION CONTROL CRITERIA MANUAL. FLOWS ARE REPRESENTATIVE OF ATLAS 14.

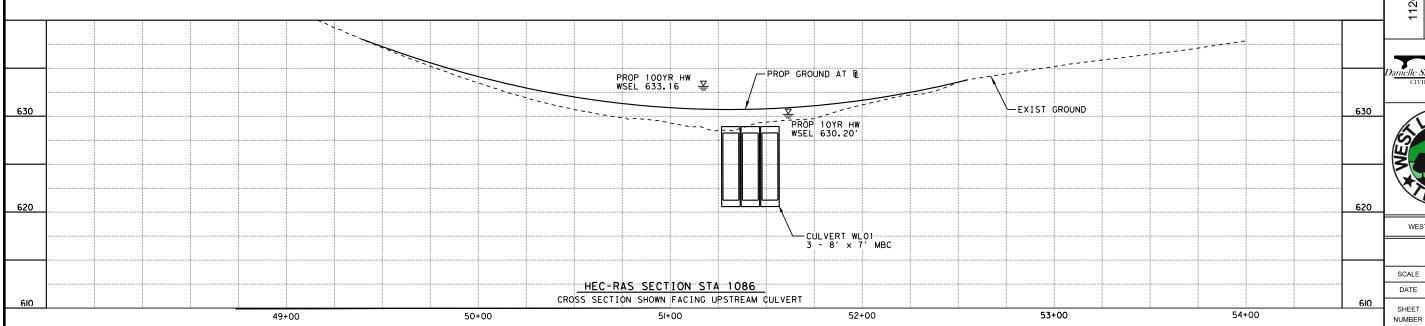
WEST L	AKE HILLS	3, T	х	
	SHEET	2	OF	2
SCALE	1":	200)'	

7/17/2023 SHEET 81 of 388 NUMBER

HYDROLOGIC METHOD:

1. ANALYSIS OF THE PEAK FLOWS FOR THE EXISTING AND PROPOSED STRUCTURES WAS PERFORMED USING THE SCS UNIT HYDROGRAPH METHOD. THE SCS UNIT HYDROGRAPH PEAK FLOWS FOR THE DRAINAGE AREAS WERE COMPUTED USING HEC-HMS VER 4.9.0.

HYDRAULIC METHOD:


- 1. HEC-RAS (VER 6.1.0) WAS USED TO COMPUTE EXISTING AND PROPOSED CONDITION WATER SURFACE ELEVATIONS. CHANNEL CROSS SECTIONS WERE OBTAINED FROM TOPOGRAPHIC SURVEY DATA. CROSS SECTION DATA WAS ALSO SUPPLEMENTED WITH LIDAR DATA.
- 2. NORMAL DEPTH WAS USED AS THE DOWNSTREAM BOUNDARY CONDITION FOR LITTLE BEE CREEK. A SLOPE OF 0.005 WAS USED FOR THE EXISTING AND PROPOSED CONDITION.
- 3. DESIGN STORM: 10-YR (DESIGN) 100-YR (CHECK)

FLOOD HAZARD AREA:

1. WESTLAKE DRIVE IS LOCATED WITHIN THE FEMA SPECIAL FLOOD HAZARD ZONE "AE" WITH FLOODWAY ACCORDING TO FEMA FIRM PANEL 48453C0445K EFFECTIVE 1/22/2020

HEC-	DOWNSTREAM		D	ESIGN F	REQUENCY 10	-YR			(HECK F	REQUENCY 100	-YR		
RAS	REACH LENGTH	ELOWS	СОМР	JTED WA	TER SURFACE	VELOCI	TIES (FPS)	FLOWS	COMPL	ITED WA	TER SURFACE	VELOCITIES (FPS		
RIVER			EXIST	PROP	DIFFERENCE	EXIST	PROP		EXIST	PROP	DIFFERENCE	EXIST	PROP (FT)	
STA	(FT)	(CFS)	(FT)	(FT)	(FT)	(FT)	(FT)	(CFS)	(FT)	(FT)	(FT)	(FT)	PROP (FI)	
1594	151	1641	639.77	639.77	0.00	7.86	7.86	3041	640.93	640.93	0.00	10.13	10.13	
1443	229	1641	637.66	637.66	0.00	9.07	9.07	3041	638.91	638.91	0.00	10.89	10.89	
1214	87	1641	631.94	631.83	-0.11	7.44	7.67	3041	633.07	633.30	0.23	10.43	9.89	
1127	41	1719	631.52	630.25	-1.27	6.63	9.76	3233	632.57	633.02	0.45	9.29	8.31	
1086	88	1719	631.39	630.20	-1.19	6.10	4.68	3233	632.38	633.16	0.78	8.58	4.89	
					WESTL	AKE DRI	VE (WL01)							
998	219	1719	628.57	628.42	-0.15	10.92	7.44	3233	631.95	632.07	0.12	9.48	6.58	
779	100	2586	626.52	626.52	0.00	8.78	8.78	4842	627.74	627.64	-0.10	13.66	13.86	
679	99	2586	626.37	626.36	-0.01	7.12	7.13	4842	627.64	627.49	-0.15	11.02	11.26	

					CULVERT WLO	L				
	DIST. TO	ENT	EXIT	CULV	UPSTREAM	DOWNSTREAM	DOWNSTREAM BOUNDARY	MANI	VING'S "n" V	/ALUE
DESCRIPTION	UPSTREAM	LOSS	LOSS	MANNING'S	INVERT ELEV	INVERT ELEV	CONDITIONS	LOB	CHANNEL	ROB
	XS (FT)	COEFF.	COEFF.	"n"	(FT)	(FT)	CONDITIONS	LUB	CHAININEL	KOB
(EXIST) 3 - 36" X 58" X 37' CMPA	16	0.7	1.0	0.024	624.70	624.30	NORMAL DEPTH: COMPUTED	0.100	0.045	0.100
(PROP) 3 - 8' X 7' X 54' MBC	5	0.2	1.0	0.012	621.20	621.04	DOWNSTREAM OF RED BUD TRAIL	0.100	0.045	0.100

OF Zero

K FRIESE & ASSOCIATES, INC.

1120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 78746

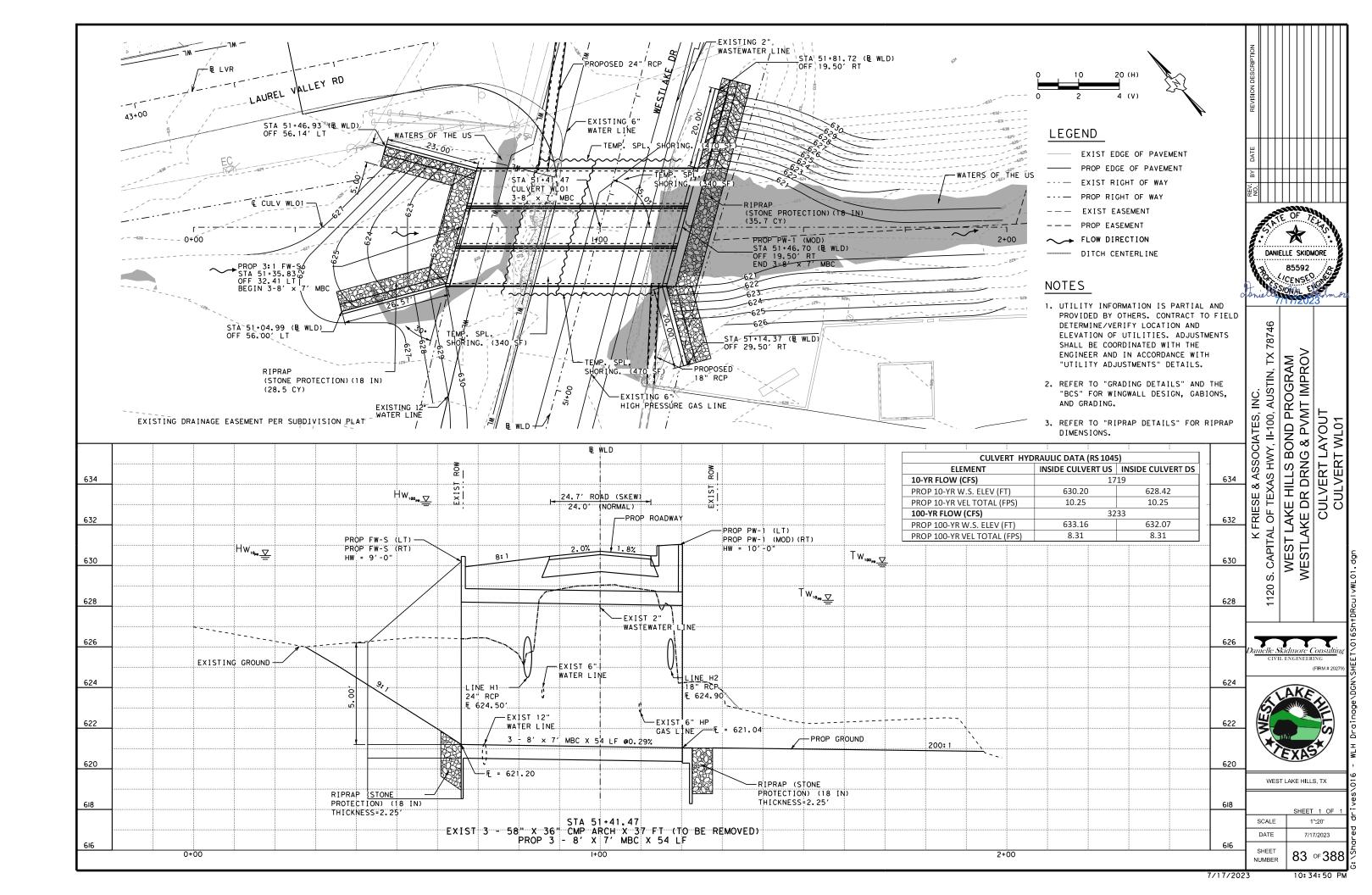
WEST LAKE HILLS BOND PROGRAM

WESTLAKE DR DRNG & PVMT IMPROV

CULVERT HYDRAULIC DATA

CULVERT WL01

Damelle Skidmore Consul civil engineering (firm#2



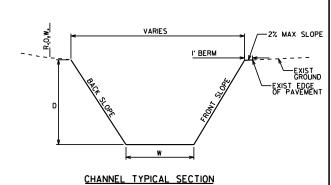
WEST LAKE HILLS, TX

SHEET 1 OF 1
SCALE NTS
DATE 7/17/2023
SHEET NUMBER 82 OF 388

7/17/2023

10:34:42 P

AREA INLET SUMMARY TABLE

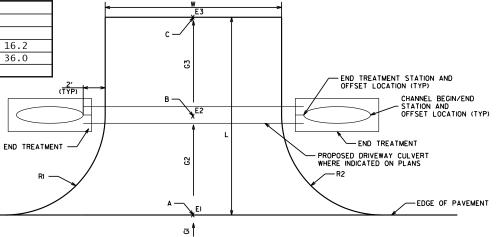

				AREA DRAI	N (PAZD)	25-YEAR	COMPUTAT	IONS			
INLET ID	STATION	ALIGNMENT	TYPE	INLET DESCRIPTION	PROFILE TYPE	CURB LENGTH	25-YEAR DISCHARGE (CFS)	ALLOWABLE PONDED DEPTH (FT)	DEPTH	PONDED ELEV (FT)	NOTES
н1	52+11.67	WLD	Curb	TY PAZD (3-3)	Sag	12	8.5	1.5	0.46	629.46	
I1	56+85.00	WLD	Curb	TY PAZD (4-4)	Sag	16	38.6	1.0	0.81	651.81	Inlet operates with Inlet I2
12	56+35.00	WLD	Curb	TY PAZD (4-4)	Sag	16	38.6	1.0	0.81	647.81	Inlet operates with Inlet I1
14	55+65.00	WLD	Curb	TY PAZD (4-4)	Sag	16	3.4	1.0	0.21	643.71	
15	131+75.00	RBT	Curb	TY PAZD (4-4)	Sag	16	46.6	1.5	1.17	632.57	Intercepts flow from Basin I3

STORM SEWER SUMMARY TABLES

									STORM SE	WER / SMA	LL CULVER	T SYSTEM	25-YEAR						
LINK ID	US NODE ID	DS NODE ID	US FL ELEV (FT)	US HGL (FT)	JUNCTION LOSS (FT)	DS FL ELEV (FT)	DS HGL (ft)	ACTUAL VELOCITY (FPS)	SIZE	NUMBER OF BARRELS	LENGTH (FT)	LINK SLOPE (%)	FRICTION SLOPE (%)	MANNING'S N	TC CALCULATED (MIN)	TC USED (MIN)	25 YEAR DISCHARGE (CFS)	CAPACITY (CFS)	NOTES
н1	н1	H-OUT	625.19	626.74	0.40	624.50	625.30	7.2	24" RCP	1	60	1.15	1.10	0.012	10.0	10.0	8.5	28.3	
Н2	Н2	H2-OUT	625.15	626.30	0.31	624.90	625.54	5.6	18" RCP	1	26	0.99	1.00	0.012	10.0	10.0	4.1	12.2	
11	I1	12	643.00	649.62	1.81	639.00	640.59	20.1	36" RCP	1	46	8.70	8.70	0.012	15.9	15.9	76.3	229.2	
12	12	14	639.00	642.22	0.10	633.50	635.02	21.4	36" RCP	1	66	8.36	8.40	0.012	15.9	15.9	77.0	224.8	
13	13	13.1	643.30	652.96	3.18	634.32	635.53	22.6	24" RCP	1	95	9.55	9.50	0.012	10.0	10.0	44.8	81.5	EXISTING
13.1	13.1	13.2	634.32	638.93	1.66	633.32	635.61	14.3	24" RCP	1	50	2.00	2.90	0.012	10.0	10.0	44.8	37.3	EXISTING
14	14	14.1	631.75	636.62	1.99	628.01	629.78	18.4	36" RCP	1	82	4.61	4.60	0.012	16.0	16.0	79.7	167.0	
14.1	14.1	15	628.01	631.06	0.24	626.79	629.06	13.9	36" RCP	1	68	1.82	1.80	0.012	16.0	16.0	79.7	104.7	
15	15	15.1	625.79	629.21	0.00	625.50	628.75	10.6	48" RCP	1	58	0.50	0.50	0.012	16.1	16.1	115.9	118.4	

DITCH DESIGN SUMMARY TABLE

DITCH	UF	PSTREAM		DOW	DOWNSTREAM			MIN SLOPE	W		MIN DEPTH	SIDE	SLOPE	LINING	CAPACITY	Q ₂₅	V ₂₅	d ₂₅
ID	STA		FLOWLINE	STA		FLOWLINE		SLOFE	COLFFICIENT	(W)	DEFIII	FRONT	BACK	MATERIAL				<u> </u>
10	(STA)	ALIGN	(FT)	(STA)	ALIGN	(FT)	(FT)	(%)	(n)	(FT)	(FT)	(_:1)	(_:1)	MATERIAL	(CFS)	(CFS)	(FPS)	(FT)
LV13	43+25.00	LVR	630.29	44+00.00	LVR	629.50	75	1.1%	0.012	0.0	0.50	2.0	2.0	CONCRETE	2.3	1.3	4.00	0.40
WL01	53+25.00	WLD	634.60	52+50.00	WLD	632.25	75	3.1%	0.040	0.0	0.75	4.0	3.0	GRASS	6.6	7.2	3.42	0.78
WL02	58+00.00	WLD	660.00	56+90.00	WLD	651.00	110	8.2%	0.040	0.0	1.50	3.0	3.0	GRASS	57.3	72.5	9.01	1.64
WL03	59+01.00	WLD	673.00	58+00.00	WLD	660.00	101	12.9%	0.040	0.0	1.50	3.0	3.0	GRASS	71.9	72.5	10.66	1.51
WL04	60+50.00	WLD	685.13	59+80.00	WLD	680.00	70	7.3%	0.040	0.0	1.00	4.0	3.0	GRASS	21.6	57.2	7.89	1.44
WL05	61+25.00	WLD	688.33	60+50.00	WLD	685.13	75	4.3%	0.040	0.0	1.00	4.0	3.0	GRASS	16.5	19.1	4.90	1.06
WL06	61+90.00	WLD	689.25	61+25.00	WLD	688.33	65	1.4%	0.040	0.0	1.00	4.0	3.0	GRASS	9.5	11.4	2.86	1.07
WL07	63+50.00	WLD	691.01	62+27.00	WLD	690.00	123	0.8%	0.040	0.0	1.00	4.0	3.0	GRASS	7.2	3.8	1.75	0.79
WL08	63+50.00	WLD	691.01	64+75.00	WLD	690.48	125	0.4%	0.040	0.0	1.00	4.0	3.0	GRASS	5.2	3.0	1.29	0.81
WL09	64+75.00	WLD	690.48	67+00.00	WLD	684.68	225	2.6%	0.040	0.0	1.00	4.0	3.0	GRASS	12.8	11.9	3.62	0.97



DRIVEWAY CULVERT DESIGN SUMMARY TABLE

	NUMBER	RCP		UPSTR	EAM			DOWNST	REAM			ROUGHNESS	CULVERT FLOWS		
DRIVEWAY ID	OF BARRELS	(CL III) (18 IN)	END TREATMENT	STATION	OFFSET	FLOWLINE	END TREATMENT	STATION	OFFSET	FLOWLINE	SLOPE	COEFF.	Q ₂₅	d ₂₅	CAPACITY
	BARKELS	(LF)	(EA)	A) (STA) (FT) (FT) (EA) (STA) (FT) (FT) (%) (n) (CFS)(FT)									(CFS)		
WL01				EXISTING TO REMAIN											
WL02				EXISTING TO REMAIN											
WL03							EXISTING 1	O REMAIN							
WL04	1	37	6:1 SET	6:1 SET 62+27.00 18.00 LT 690.00 6:1 SET 61+90.00 18.00 LT 689.25 2.03 0.012 9.8 1.24 16.2									16.2		
WL05	1	1 69 6:1 SET 59+80.00 18.00 LT 680.00 6:1 SET 59+10.00 18.00 LT 673.00 10.00 0.012 20.5 1.21 36.0										36.0			
RB01							SEE STOR	RM SEWER							

DRIVEWAY DESIGN SUMMARY TABLE

DRIVEWAY	R	OADWAY S	STATION		LENGTH	WIDTH	RAD	IUS	ROAD GRADE	DRIV	EWAY G	RADE	E	N	DRIVEWAY AREA	
ID	(A)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(L)	(W)	(R_1)	(R ₂)	(G_1)	(G ₂)	(G ₃)	(G_4)	(E_1)	(E ₂)	(E ₃)	AKEA
	(STA)	(OFF)	(OFF)	(OFF)	(ft)	(ft)	(ft)	(ft)	(%)	(%)	(%)	(%)	(ft)	(ft)	(ft)	(sy)
WL01	50+23.38	12.00	N/A	32.00	30	23	15	15	2.00	-7.5%	-7.5%	-0.2%	633.28	N/A	631.04	214
WL02	50+97.76	12.00	22.13	42.25	30	22	15	15	2.00	-7.7%	-7.7%	-1.1%	630.68	629.90	628.34	79
WL03	52+45.78	12.00	N/A	19.24	7	18	0	20	2.00	-0.5%	-0.5%	0.4%	633.05	N/A	633.01	19
WL04	62+12.97	-11.97	-18.02	-23.02	11	13	24	16	2.00	6.3%	6.3%	5.9%	691.86	692.24	692.55	24
WL05							CULVER	RT ONL'	Y - NO PA	VEMENT						
RB01	131+96.16	22.87	37.03	14	27	16	5	2.00	-1.4%	-1.4%	-1.2%	632.63	632.50	632.42	30	

DRIVEWAY DETAIL

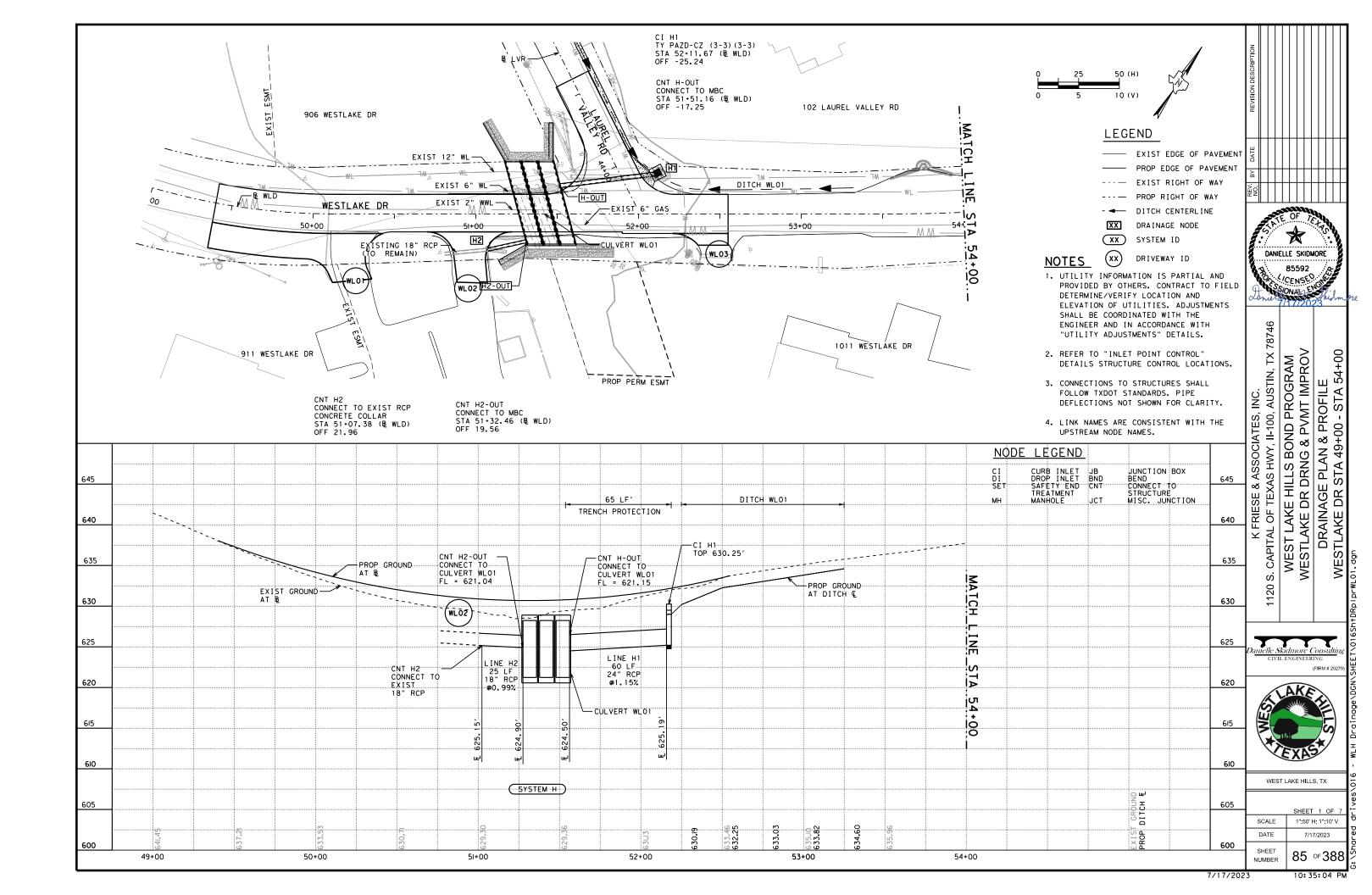
K FRIESE & ASSOCIATES, INC.
1120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 78746
WEST LAKE HILLS BOND PROGRAM
WESTLAKE DR DRNG & PVMT IMPROV
HYDRAULIC COMPUTATIONS

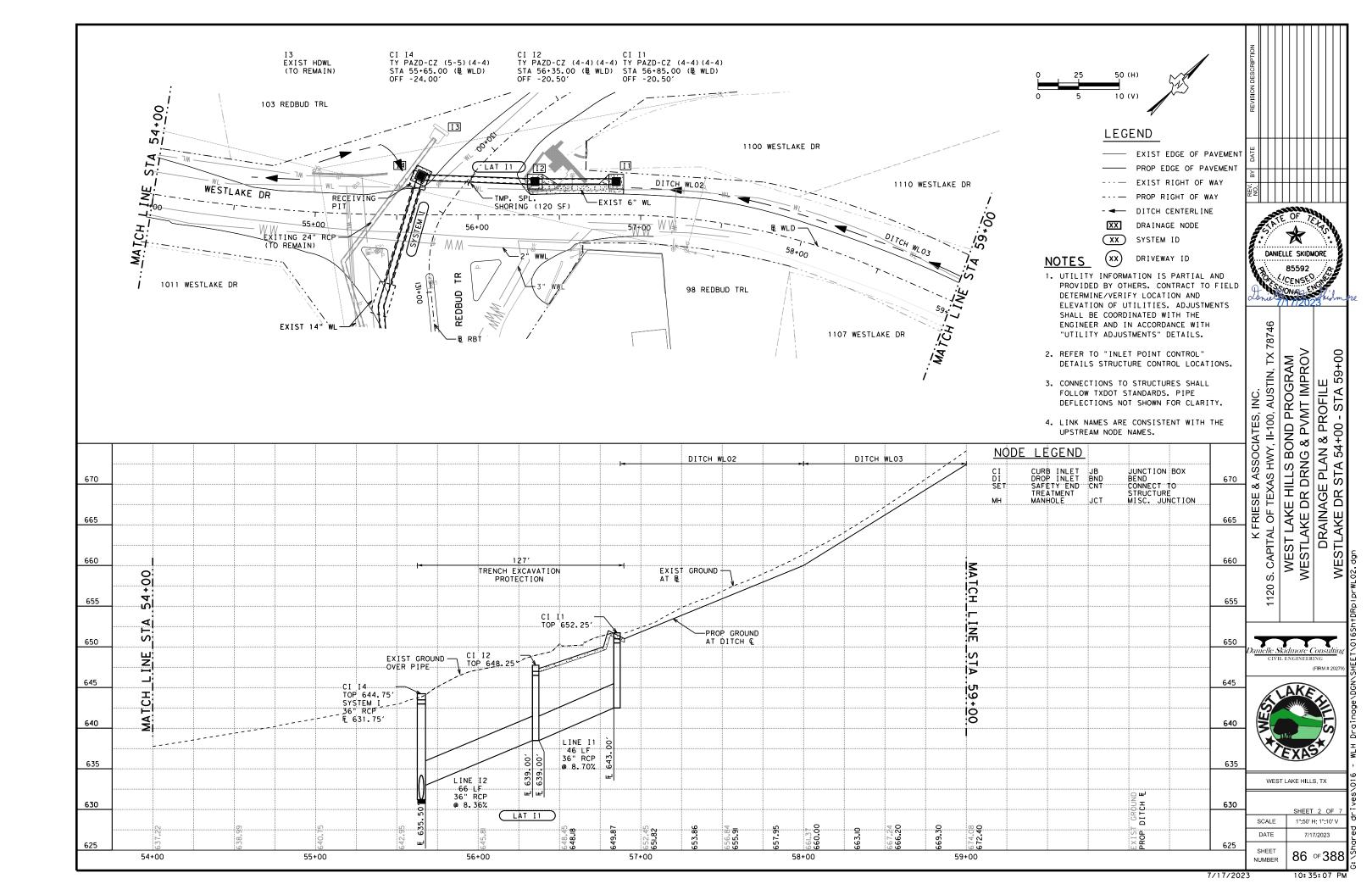
DANIELLE SKIDMORE

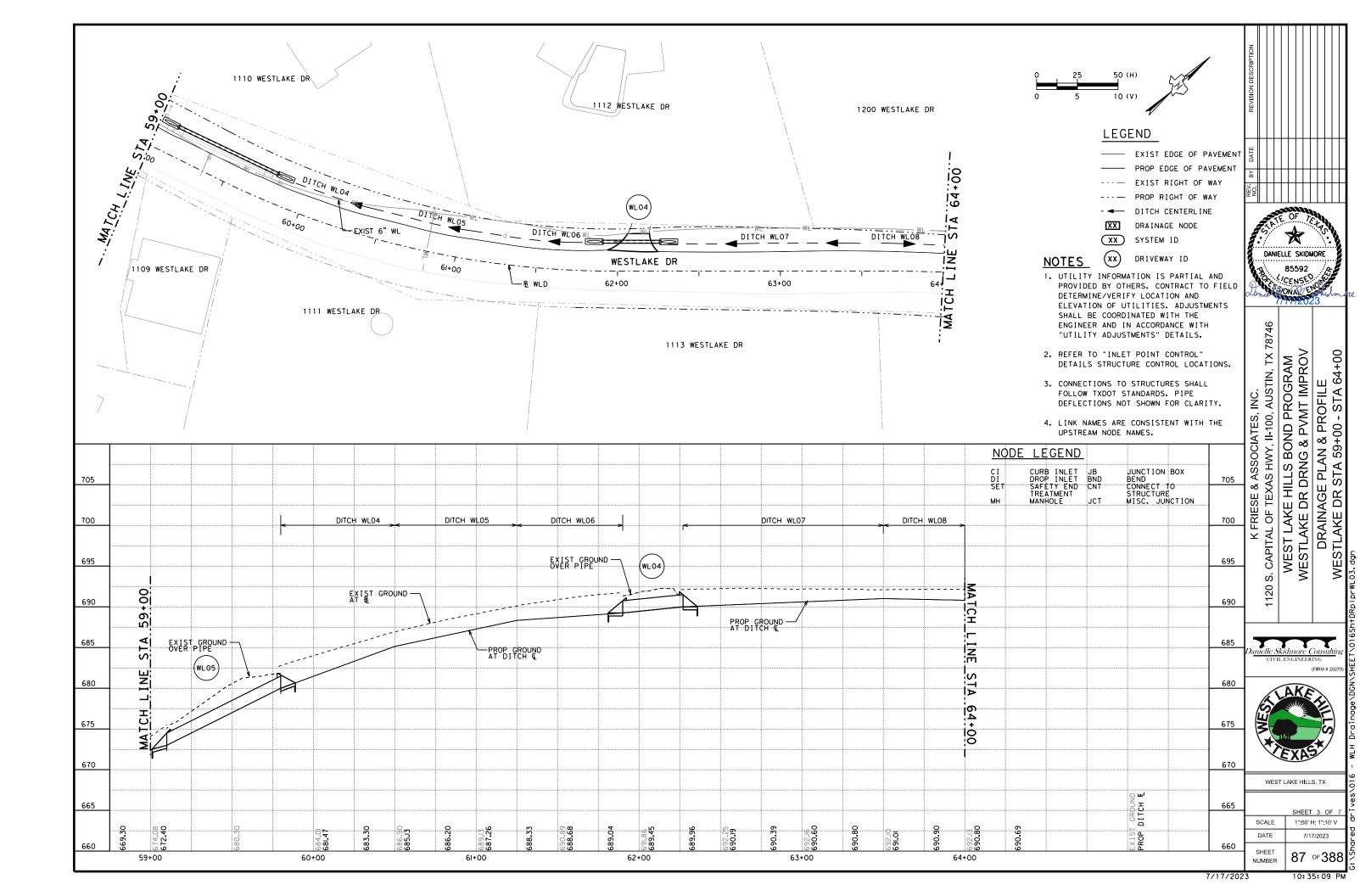
85592

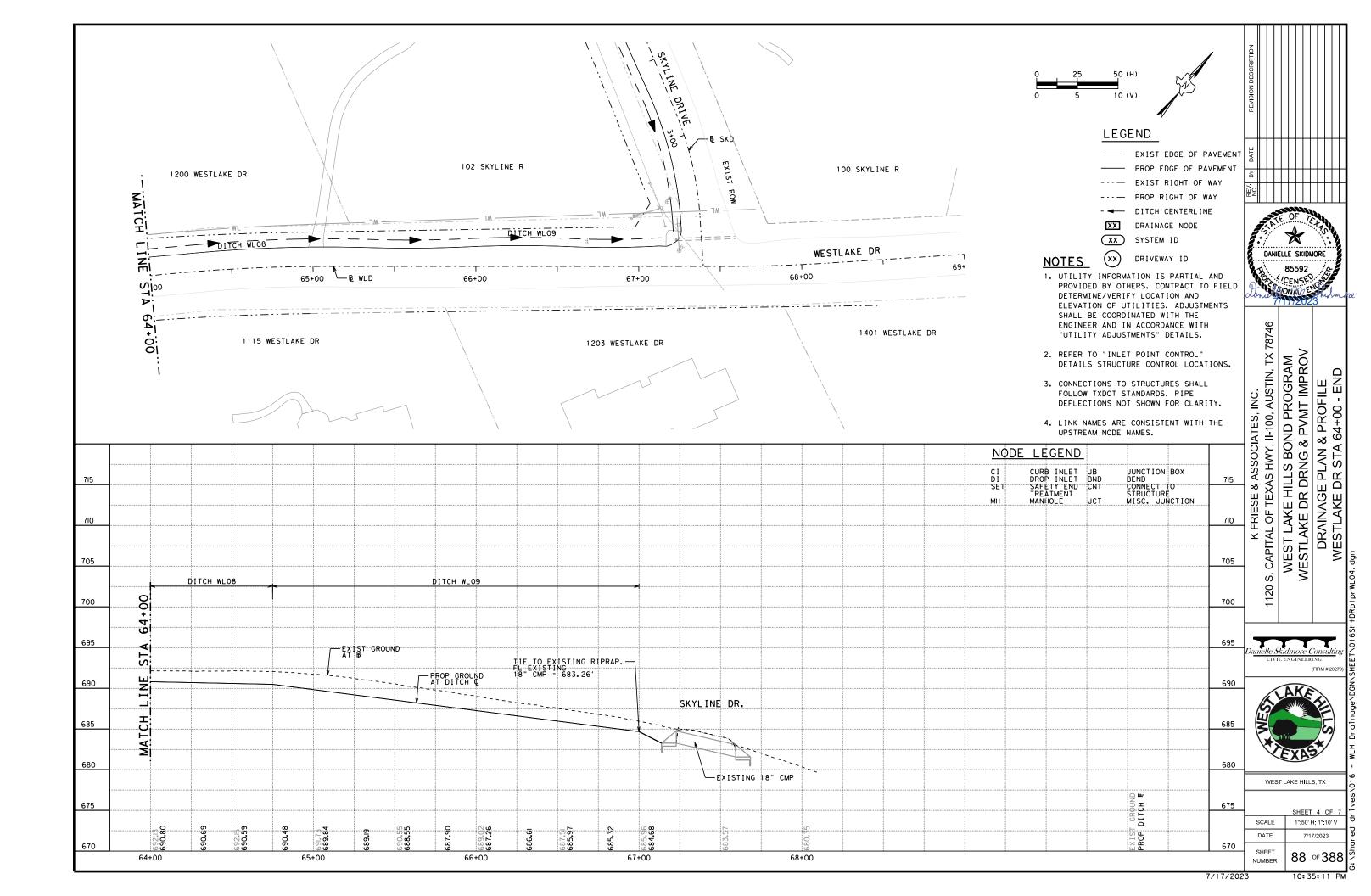
CENSE

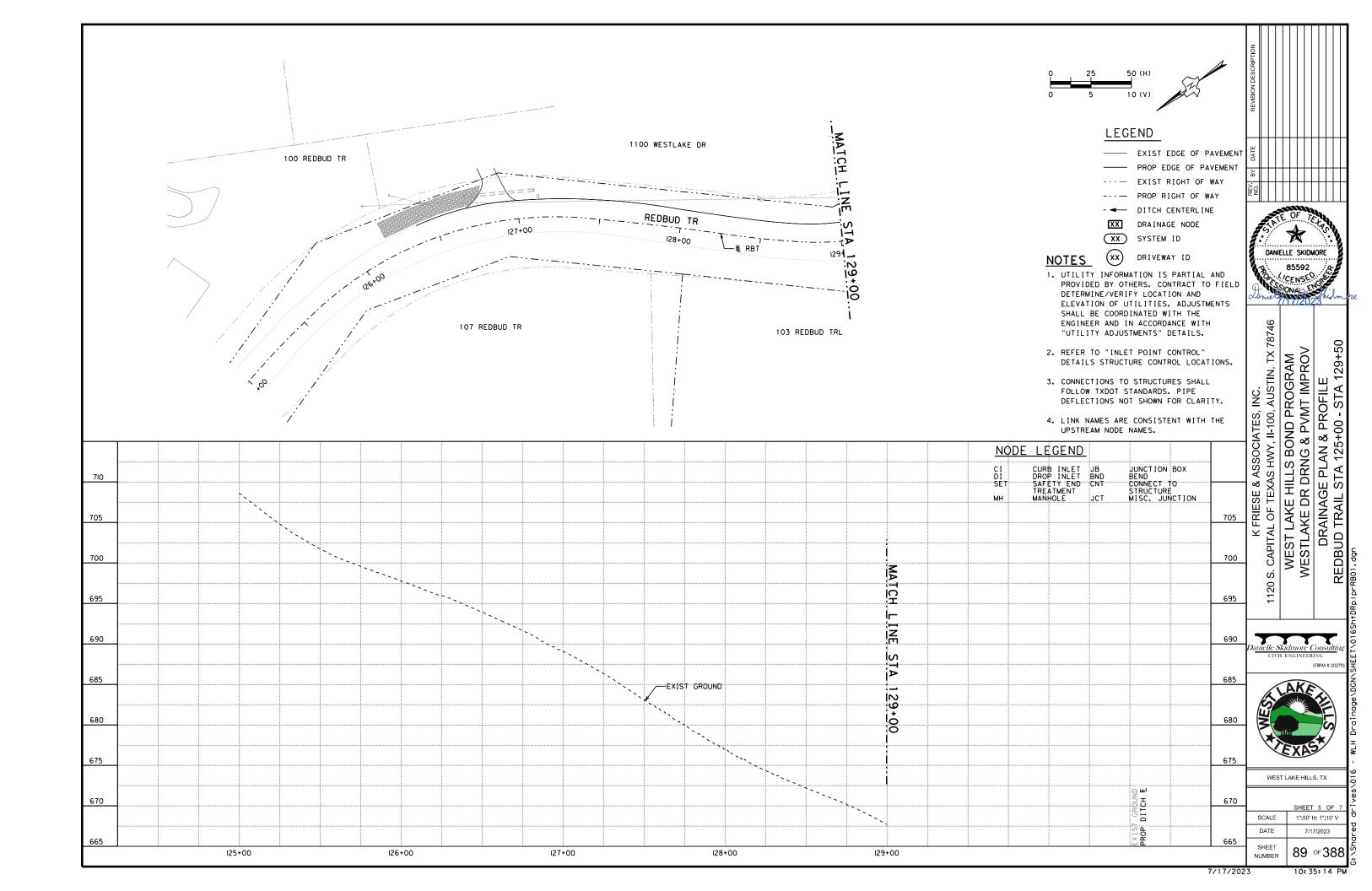
Danielle Skidmore Consulting
CIVIL ENGINEERING
(FIRM # 20279)

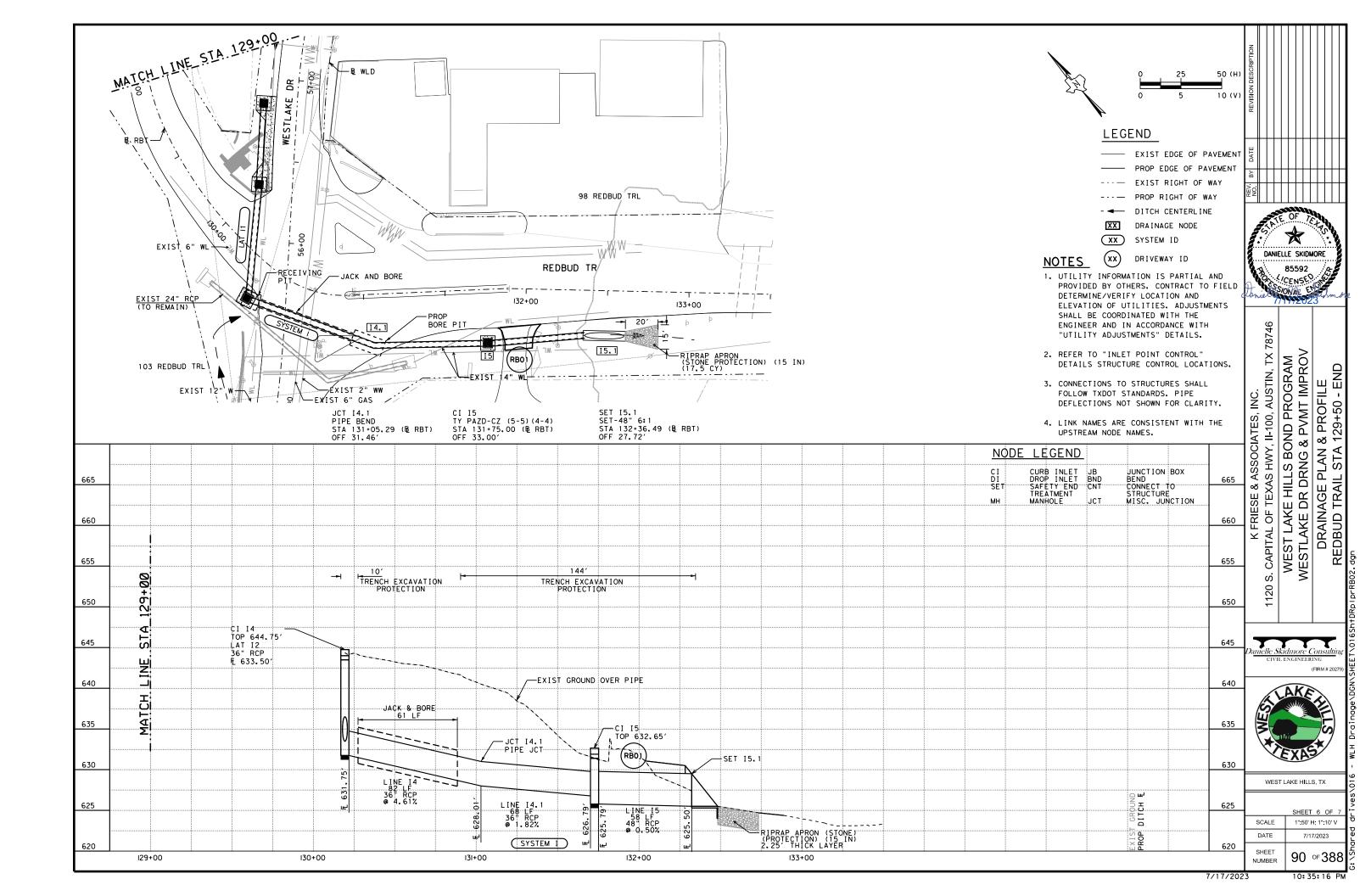

\(\text{\text{\$\lambda}}\)	XAS
WEST L	AKE HILLS, TX
	SHEET 1 OF 1
SCALE	NTS
DATE	7/17/2023

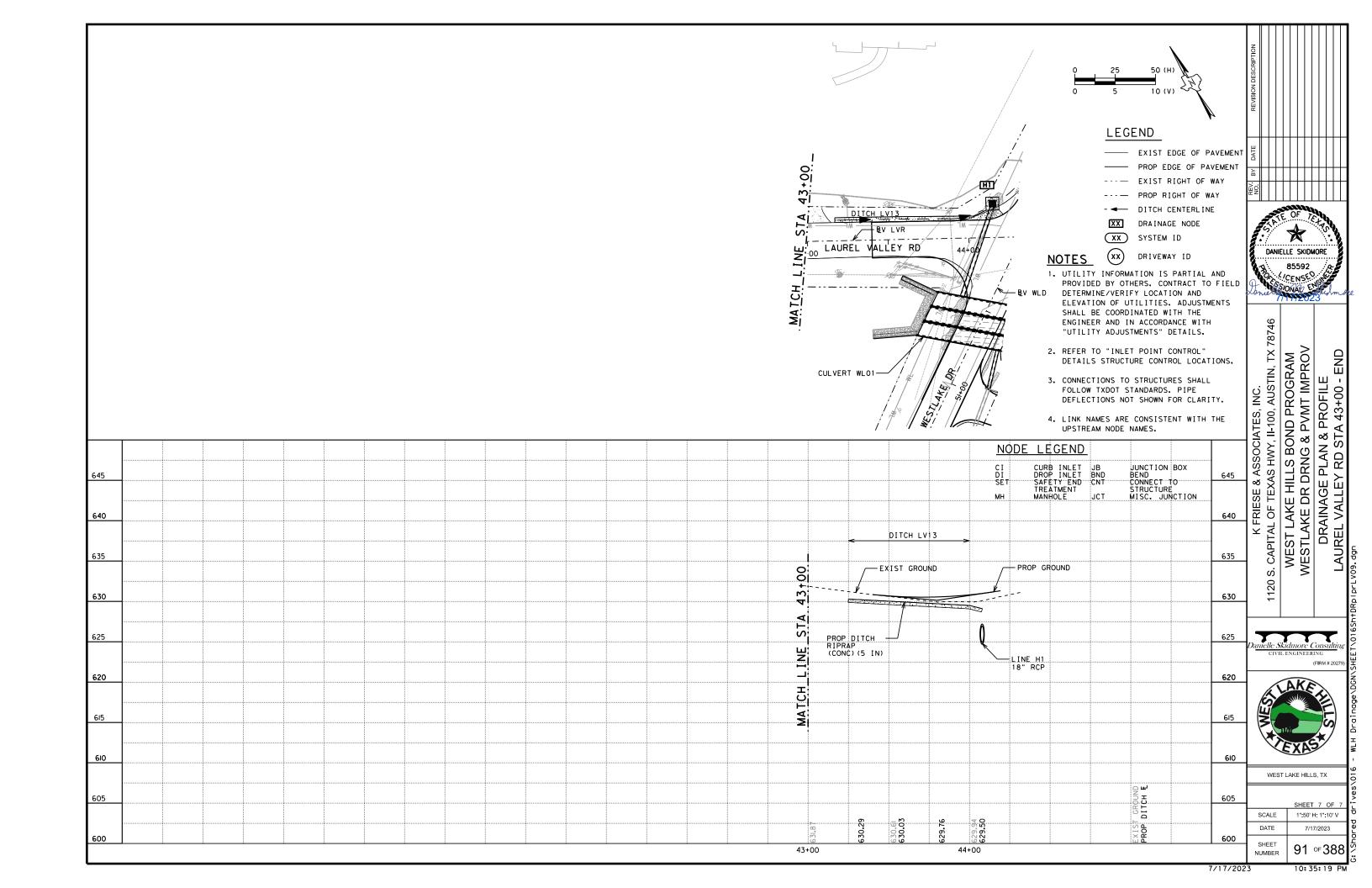

7/17/2023


SHEET


NUMBER


84 of 388





☐ Stone Outlet Sediment Traps ☐ Sand Filter Systems

Grassy Swales

Sediment Basins

	CULTURAL RESOURCES
	Refer to TxDOT Standard Specifications in the event historical issues or archeological artifacts are found during construction. Upon discovery of archeological artifacts (bones, burnt rock, flint, pottery, etc.) cease work in the immediate area and contact the Engineer immediately.
	☐ No Action Required ☐ Required Action
	Action No.
	 AN ARCHAEOLOGIST MUST BE ONSITE TO MONITOR CONSTRUCTION ACTIVITIES WITHIN THE 100-YR FLOODPLAIN.
	3.
	4.
īv	VEGETATION RESOURCES
	Preserve native vegetation to the extent practical. Contractor must adhere to Construction Specification Requirements Specs 162 164, 192, 193, 506, 730, 751, 752 in order to comply with requirements for invasive species, beneficial landscaping, and tree/brush removal commitment
	☐ No Action Required ☐ Required Action
	Action No.
	1. ESTABLISH VEGETATION IN ALL DISTURBED AREAS AS DETAILED IN THE EROSION CONTROL PLAN.
	2.
	3. 4.
٧.	FEDERAL LISTED, PROPOSED THREATENED, ENDANGERED SPECIES, CRITICAL HABITAT, STATE LISTED SPECIES, CANDIDATE SPECIES AND MIGRATORY BIRDS.
	☐ No Action Required ☐ Required Action
	Action No.
	BEFORE REMOVING ANY TREES, CONFIRM NO NESTS ARE PRESENT.
	2.
	3.
	4.
do wor nes	any of the listed species are observed, cease work in the immediate area, not disturb species or habitot and contact the Engineer immediately. The k may not remove active nests from bridges and other structures during staing season of the birds associated with the nests. If caves or sinkholes a discovered, cease work in the immediate area, and contact the gineer immediately.
	LIST OF ABBREVIATIONS

TCFQ:

TPWD:

Texas Commission on Environmental Quality

TPDES: Texas Pollutant Discharge Elimination System

Texas Parks and Wildlife Department

Threatened and Endangered Species

TxDOT: Texas Department of Transportation

USACE: U.S. Army Corps of Engineers

USFWS: U.S. Fish and Wildlife Service

MOA: Memorandum of Agreement

NOT: Notice of Termination

NOI: Notice of Intent

Nationwide Permit

MBTA: Migratory Bird Treaty Act

Memorandum of Understanding

Municipal Separate Stormwater Sewer System

VI. HAZARDOUS MATERIALS OR CONTAMINATION ISSUES

General (applies to all projects):

Comply with the Hazard Communication Act (the Act) for personnel who will be working with hazardous materials by conducting safety meetings prior to beginning construction and making workers aware of potential hazards in the workplace. Ensure that all workers are provided with personal protective equipment appropriate for any hazardous materials used. Obtain and keep on-site Material Safety Data Sheets (MSDS) for all hazardous products used on the project, which may include, but are not limited to the following categories: Paints, acids, solvents, asphalt products, chemical additives, fuels and concrete curing compounds or additives. Provide protected storage, off bare ground and covered, for products which may be hazardous. Maintain product labelling as required by the Act. Maintain an adequate supply of on-site spill response materials, as indicated in the MSDS. In the event of a spill, take actions to mitigate the spill as indicated in the MSDS, in accordance with safe work practices, and contact the District Spill Coordinator immediately. The Contractor shall be responsible for the proper containment and cleanup of all product spills.

Contact the Engineer if any of the following are detected:

- * Dead or distressed vegetation (not identified as normal)
- Trash piles, drums, canister, barrels, etc.
- * Undesirable smells or odors
- * Evidence of leaching or seepage of substances

Does the project involve any bridge class structure rehabilitation or replacements (bridge class structures not including box culverts)?

☐ Yes 🖂

If "No", then no further action is required.

If "Yes", then TxDOT is responsible for completing asbestos assessment/inspection.

Are the results of the asbestos inspection positive (is asbestos present)?

Yes No

If "Yes", then TxDOT must retain a DSHS licensed asbestos consultant to assist with the notification, develop abatement/mitigation procedures, and perform management activities as necessary. The notification form to DSHS must be postmarked at least 15 working days prior to scheduled demolition.

If "No", then TxDOT is still required to notify DSHS 15 working days prior to any scheduled demolition.

In either case, the Contractor is responsible for providing the date(s) for abatement activities and/or demolition with careful coordination between the Engineer and asbestos consultant in order to minimize construction delays and subsequent claims.

Any other evidence indicating possible hazardous materials or contamination discovered on site. Hazardous Materials or Contamination Issues Specific to this Project:

☐ No Action Required

Required Action

Action No.

- 1. ASPHALT PRODUCTS
- 2. FUELS
- 3

VII. OTHER ENVIRONMENTAL ISSUES

(includes regional issues such as Edwards Aquifer District, etc.)

☐ No Action Required

Required Action

Action No.

1. TCEQ EDWARDS AQUIFER RECHARGE ZONE

2.

3.

n Standard

ENVIRONMENTAL PERMITS, ISSUES AND COMMITMENTS

EPIC

DN: TxDOT		ck: RG	DW:	٧P	ck: AR
CONT	SECT	JOB	JOB		SHWAY
N/A	N/A	N/A		N	/A
DIST		COUNTY			SHEET NO.
N/A		TRAVI	S	5	92
	CONT N/A DIST	CONT SECT	CONT SECT JOB N/A N/A N/A DIST COUNTY	CONT SECT JOB N/A N/A N/A DIST COUNTY	CONT SECT

A. GENERAL SITE DATA

1. PROJECT LIMITS: WESTLAKE DR DRNG & PVMNT IMPROV

Begin Project Coordinates: Latitude (N): 30° 16′ 55" Longitude (W): -97° 48' 30" End Project Coordinates: Latitude (N): 30° 17′ 40" Longitude (W): -97° 47′ 44"

2. PROJECT SITE MAPS:

- * Project Location Map: Project Layout (Sheets 50-51)
- * Drainage Patterns: Drainage Area Maps (Sheets 78-79)
- * Slopes Anticipated After Major Gradings or Areas of Soil Disturbance: Typical Sections (Sheet 55)
- * Location of Erosion and Sediment Controls: Erosion Control Layouts (Sheets 93-95)
- * Surface Waters and Discharge Locations: Drainage and Culvert Layouts (Sheets 81,83-89)
- * Project Specific Location(s) (PSL): To be determined by the project Construction Personnel. Location(s) shown on SW3P Site Map (If PSL location(s) is within one mile of project) and information located in project SW3P Binder (Reference Item *10 below).

3. PROJECT DESCRIPTION:

CONSTRUCTION OF EARTHWORK, GRADING, BASE, HMAC SURFACING, DRAINAGE STRUCTURES. SIGNING AND PAVEMENT MARKINGS

4. MAJOR SOIL DISTURBING ACTIVITIES:

CLEARING AND GRUBBING ROADWAY EXCAVATION AND EMBANKMENT PLACEMENT OF TOPSOIL

DRAINAGE INFRASTRUCTURE

5. EXISTING CONDITION OF SOIL & VEGETATIVE COVER AND % OF EXISTING VEGETATIVE COVERS

LEAN CLAY (CL) UNDERLAIN BY LIMESTONE.

6. TOTAL PROJECT AREA: 9.76

7. TOTAL AREA TO BE DISTURBED: 5.37

8. WEIGHTED RUNOFF COEFFICIENT

BEFORE CONSTRUCTION: AFTER CONSTRUCTION:

9. NAME OF RECEIVING WATERS:

LITTLE BEE CREEK LADY BIRD LAKE (SEGMENT NO.1403)

10. PROJECT SW3P Binder:

A.For projects disturbing one to five acres,The Contractor will maintain a SW3P Binder at the project field office (If there is not a project field office, should be kept on the Job Site at all times) which contains the following: Index Sheet, TCEQ Signature Authority, TCEQ Small Construction Site Notice, Contractor Certification of Compliance, SW3P Inspector Qualification Statements, Inspection and Maintenance Reports (Form 2118), SW3P Sheet, Site Location Maps, Stored Material Lists specifying associated control measures and the Appendix which contains the TPDES Construction General Permit, MS4 Operator Notification(s) and the Construction PSL Permits per all applicable requirements.

B.For projects disturbing 5 acres or more, the Contractor will follow the actions listed in (IO.A.) above with the addition of the following: Notice Of Intent (N.O.I.) and Fee Payment Form, TCEQ Large Construction Site Notice (to be used instead of Small Site Notice), and TPDES Permit Coverage Notice.

C.For projects disturbing less than one acre, actions described in (IO.A.) and (IO.B.) above are not required. Acreage is calculated by adding Total Area To Be Disturbed Acres on project (See *7 above) and the PSL(s) acreage located within one mile of project.

B. EROSION AND SEDIMENT CONTROLS

1. SOIL STABILIZATION PRACTICES: (Select T	= Temporary or P = Permanent, as applicab)le)
_T TEMPORARY SEEDING MULCHING (Hay or Straw) BUFFER ZONES PLANTING _P SEEDING SODDING	PRESERVATION OF NATURAL RESOURCES FLEXIBLE CHANNEL LINER RIGID CHANNEL LINER P SOIL RETENTION BLANKET COMPOST MANUFACTURED TOPSOIL VERTICAL TRACKING	
2. STRUCTURAL PRACTICES:	_T OTHER: Disturbed areas on which construct activity has ceased, either temporarily or permanently, shall be stabilized within 14	tion

days unless activities are scheduled to

resume and do so within 21 days.

2. STRUCTURAL PRACTICES:

- - T EROSION CONTROL LOGS
 - EROSION CONTROL COMPOST BERMS (Low Velocity)

 - _T_ ROCK FILTER DAMS
 - ____ DIVERSION, INTERCEPTOR, OR PERIMETER DIKES _ DIVERSION, INTERCEPTOR, OR PERIMETER SWALES
 - ____ DIVERSION DIKE AND SWALE COMBINATIONS
 - ____ PIPE SLOPE DRAINS
 - PAVED FLUMES
 - T ROCK BEDDING AT CONSTRUCTION EXIT
 - ____ TIMBER MATTING AT CONSTRUCTION EXIT
 - ____ CHANNEL LINERS
 - SEDIMENT TRAPS ____ SEDIMENT BASINS

 - STORM INLET SEDIMENT TRAP P STONE OUTLET STRUCTURES
 - CURBS AND GUTTERS
 - ___ CURBS AND GG.
 P STORM SEWERS
 - P VELOCITY CONTROL DEVICES
 - ____ OTHER: (Specify Practice)

NOTE: TOP OF BMP'S SHOULD NOT BE HIGHER THAN ROADWAY ELEVATION AS NOT TO FLOOD ROADWAY UNLESS PRIOR APPROVAL FROM ENGINEER IS OBTAINED.

3. STORM WATER MANAGEMENT:

- A. Storm water drainage will be provided by ditches, inlets, and storm water systems which carry drainage within the R.O.W.to the lows within the roadway and project site which drains to natural facilities.
- B. Non paved areas and ditches shall be stabilized with a permanent vegetative cover.
- C. Other permanent erosion controls include hydraulic design to limit structure outlet velocities and grading design generally consisting of 4:1 or flatter slopes with permanent vegetative cover.

4. STORM WATER MANAGEMENT ACTIVITIES: (Sequence of Construction)

I) INSTALL TEMPORARY EROSION CONTROL MEASURES 2) CULVERT AND STORM SEWER IMPROVEMENTS 3) ROADWAY CONSTRUCTION 4) PLACE PERMANENT SIGNING AND STRIPING 5) PLACE TOPSOIL, MULCH, SEEDING, AND PERMANENT EROSION CONTROLS 6) PROJECT CLEAN UP AND REMOVAL OF TEMPORARY EROSION CONTROLS

5. NON-STORM WATER DISCHARGES:

Filter non-storm water discharges, or hold in retention basins, before being allowed to mix with storm water. These discharges consist of but not limited to non-polluted ground water, spring water, foundation or footing drain water, water used for dust control or pavement washing and vehicle washwater containing no detergents.

C. OTHER REQUIREMENTS & PRACTICES

1. MAINTENANCE:

Maintain all erosion and sediment controls in good working order. Perform any necessary cleaning/repairs/replacements at the earliest possible date prior to next rain event, but no later than 7 calendar days, Ensure the surrounding ground has dried sufficiently to prevent damage from equipment."Too Wet" is the only reason for not adhering to time frames described. When construction activities permanently or temporarily cease and are not expected to resume for 14 or more days on a disturbed portion of the site, stabilization measures must be initiated immediately.

2. INSPECTION:

A Construction Observer will perform a regularly scheduled SW3P inspection every 7 calendar days. An Inspection and Maintenance Report, signed by the Construction Observer and the Contractor, will be filed for each inspection. Revise/clean/repair/replace each BMP control device in accordance with the current Field Inspection and Maintenance Report (Form 2118) and Item I (Maintenance) above.

3. WASTE MATERIALS:

On a daily basis, or as may be directed, collect all waste materials, trash and debris from the construction site and deposit into a metal dumpster having a secure cover and which meets all state and local city solid waste management requirements. Empty the dumpster as required by regulation, or as may be directed, at a local approved landfill site. Do not bury construction waste on the construction project site.

4. HAZARDOUS WASTE & SPILL REPORTING:

As a minimum, any products in the following categories are considered to be hazardous: Paints, Acids, Solvents, Fuels, Asphalt Products, Chemical Additives for Soil Stabilization, and Concrete Curing Compounds or Additives. When storing hazardous material on the project site, or at a Project Specific Location, take all practicable precaution to prevent and/or contain any spillage of these materials. In the event of a spill contact the spill coordinator immediately.

Use a licensed sanitary waste management contractor to collect all sanitary waste from portable units as may be required by local regulation, or as directed.

6. CONSTRUCTION VEHICLE TRACKING:

On a regular basis, or as may be directed, dampen haul roads for dust control and stabilize construction entrances/exits. Provide for a motorized broom or vacuum type sweeper to be available on a daily basis.or as may be directed to remove sediment from payed roadways abutting or traversing the project site.

7. MANAGEMENT PRACTICES:

A.Construct disposal areas, stockpiles, haul roads and PSL's in a manner that will minimize and control the amount of sediment that may enter receiving waters. Do not locate disposal areas in any wetland, waterbody or streambed.

B.Locate construction staging areas, vehicle maintenance and PSL's areas in a manner to minimize the runoff of pollutants.

C.When working in or near a wetland, install and maintain operating soil erosion and sediment controls at all times during construction and isolate the work from the wetland.

D.Clear all waterways as soon as practicable of temporary embankment, temporary bridges, matting, falsework, piling, debris or other obstructions placed during construction operations that are not a part of the finished work.

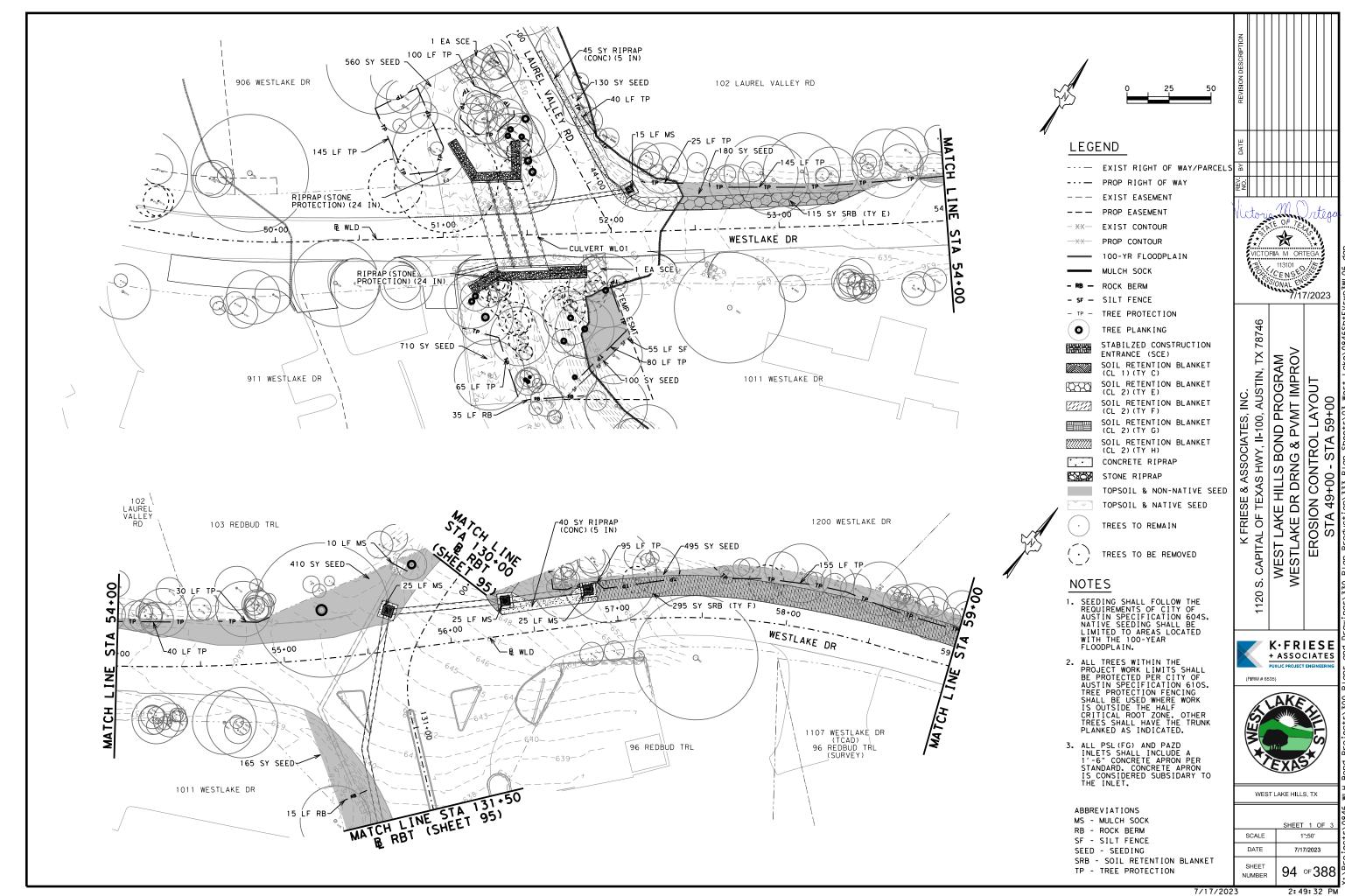
F. Procedures and/or practices should be taken to control dust.

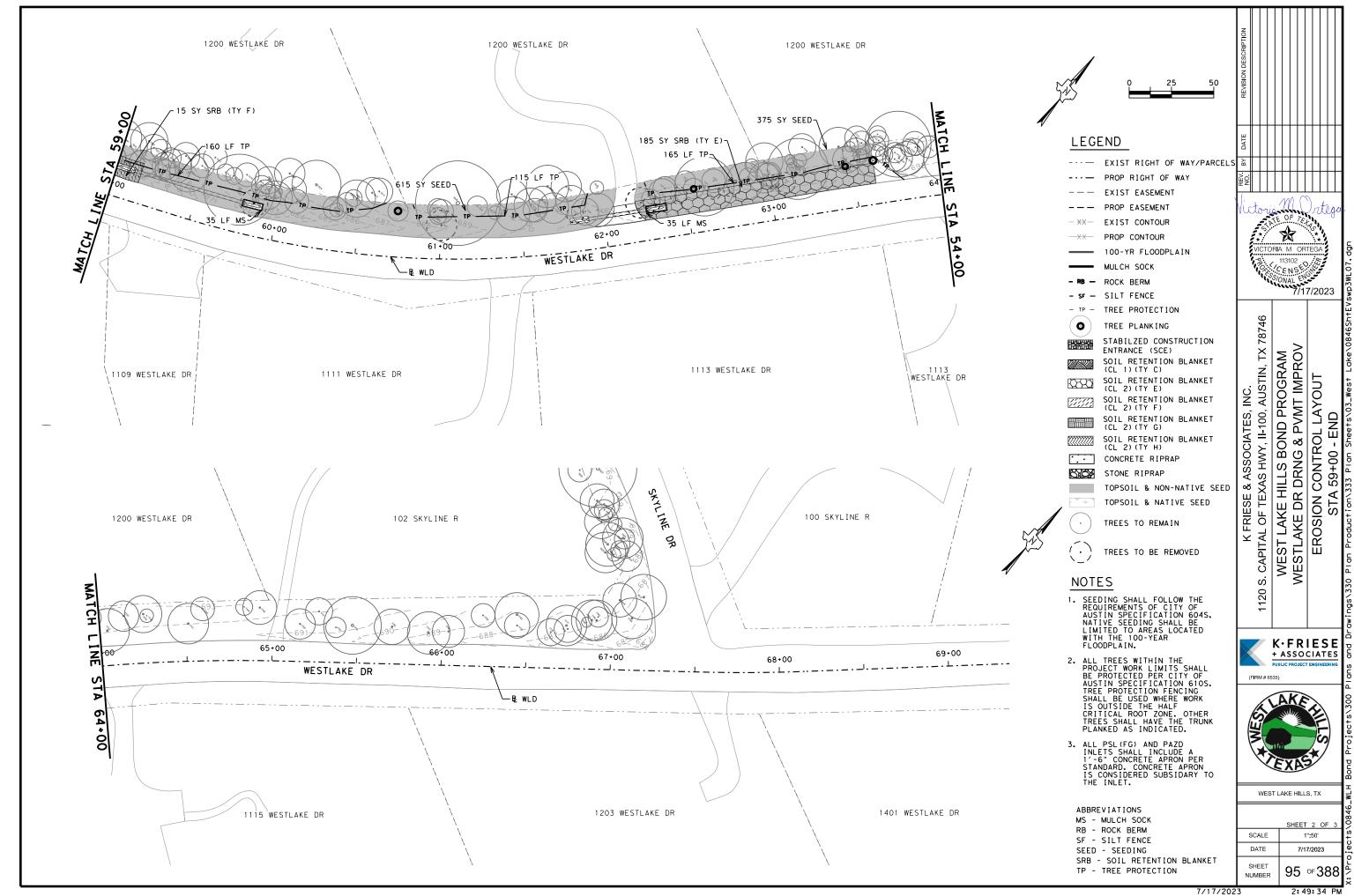
F. Sediment to be removed from roadways daily or when work begins after weather events if construction activities have ceased due to weather event.

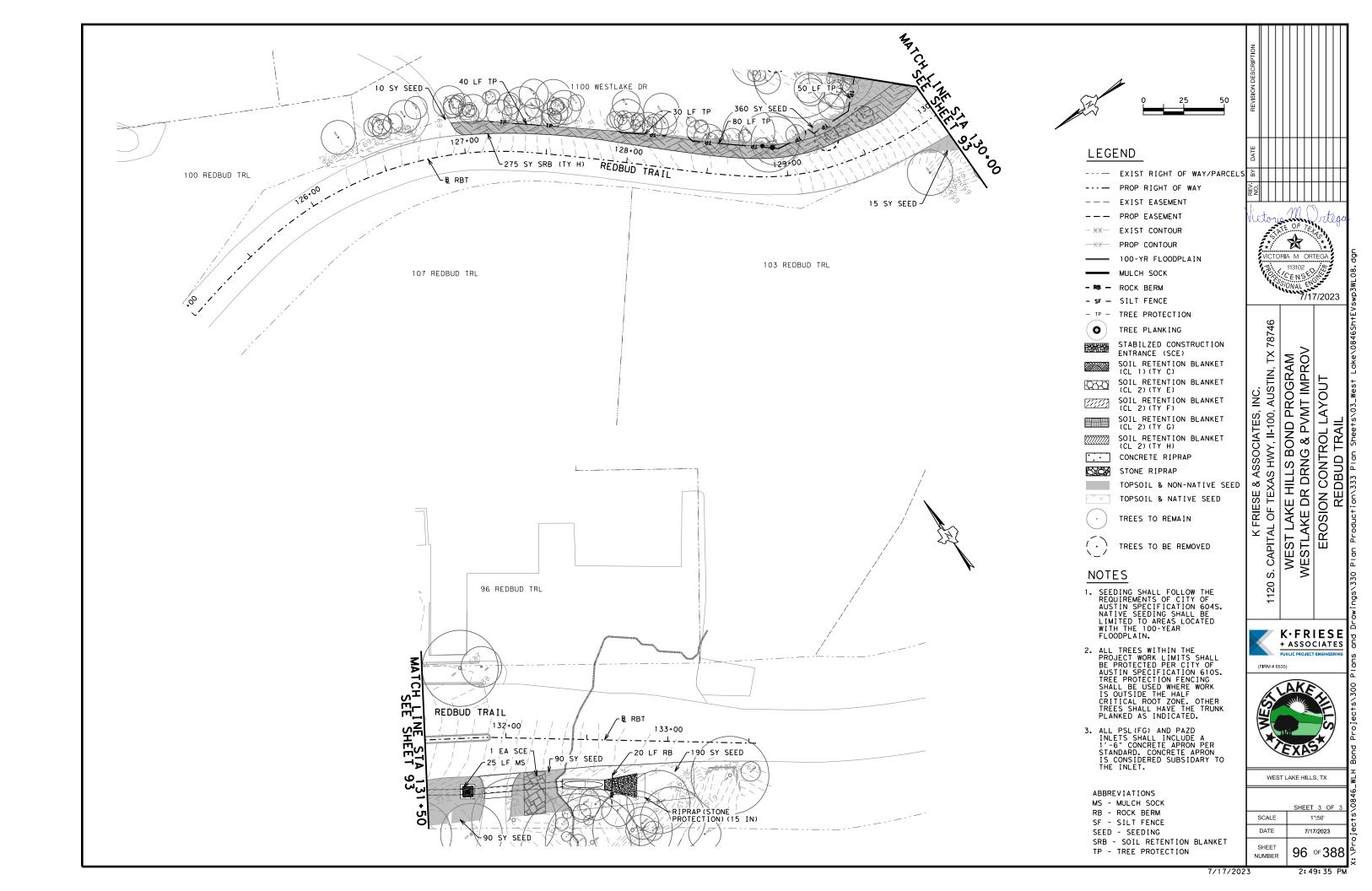
G.The Contractor will be required to contain wash water from concrete trucks in a manner that will prevent same from entering any waterway.

H.The Contractor is responsible for insuring that all Subcontractors are aware and comply with all components of the Temporary Erosion Control Plans.

STORM WATER POLLUTION PREVENTION PLAN (SW3P)


(FIRM # 6535)


K·FRIESE


+ ASSOCIATES

FEDERAL AID PROJECT NO. NΑ 6 GRAPHICS STATE DISTRICT COUNTY TEXAS TRAVIS CONTROL SECTION JOB 93

Victoria M Ortega, P.E. Signature of Registrant & Date

TREE LIST

APPROXIMATE TREE CRITICAL ROOT ZONE TREE
DIAMETER & TAG NUMBER - CIRCLES DO NOT
REPRESENT THE SIZE OR SHAPE OF TREE CANOPY
EXAMPLE: 3"R-3" CRITICAL ROOT ZONE
MS = MULTI-STEM MTN=MOUNTAIN TX=TEXAS

				MS = MULTI-S	STEM MTN=MOUNTAIN TX=TEXAS				
TAG#	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION	TAG#	SIZE/DESCRIPTION
5066 5140	7.5" LIVE OAK(MS5-5) 26" HACKBERRY	7101 7105	7.5" HACKBERRY(MS5-5) 9" ASHE JUNIPER	7270 7271	4" ASHE JUNIPER 7" ASHE JUNIPER	7603 7604	7" ASHE JUNIPER 14.5" ASHE JUNIPER(MS9-6-5	7783 7789	6" LIVE OAK 12" CEDAR ELM
5161	19" COTTONWOOD	7106	4" SYCAMORE	7272	5" ASHE JUNIPER(MS4-2)	7605	7" ASHE JUNIPER	7814	13.5" CRAPE MYRTLE(MS4-4-4-4-4-3
5195	21" COTTONWOOD	7107	8" ASHE JUNIPER	7273	8" ASHE JUNIPER(MS6-4)	7607	8" ASHE JUNIPER	7816	10" ASHE JUNIPER
5243 5244	21" HACKBERRY 5" ASH	7108 7109	6" ASHE JUNIPER 11" ASHE JUNIPER	7274 7275	4.5" ASHE JUNIPER(MS3-3) 4" LIVE OAK	7608 7609	9" ASHE JUNIPER(MS6-6) 8" ASHE JUNIPER	7822 7823	9" CEDAR ELM 5" MOUNTAIN LAUREL
5245	8" HACKBERRY	7111	7" ASHE JUNIPER	7276	9" LIVE OAK	7610	4" ASHE JUNIPER	7824	4" CRAPE MYRTLE
5246	4" CRAPE MYRTLE(MS3-2)	7113	8" ASHE JUNIPER	7277	4.5" CRAPE MYRTLE(MS3-3)	7611	7.5" ASHE JUNIPER(MS5-5)	7825	12" ASHE JUNIPER
5247 5248	19" HACKBERRY(MS13-12) 6" CRAPE MYRTLE(MS4-4)	7114 7115	7" ASHE JUNIPER 5" ASHE JUNIPER	7278 7279	4" RED OAK 6" ASHE JUNIPER	7612 7613	10" ASHE JUNIPER 9" LIVE OAK	7826 7827	13" ASHE JUNIPER 12" CEDAR ELM
5249	4" CRAPE MYRTLE	7116	15" ASHE JUNIPER	7280	6" ASHE JUNIPER	7614	8" LIVE OAK	7828	6" ASHE JUNIPER
5250	4" CRAPE MYRTLE	7117	5" ASHE JUNIPER	7281	7" ASHE JUNIPER	7617	6" CEDAR ELM	7829	4" CEDAR ELM
5251 5252	10" CRAPE MYRTLE(MS4-3-3) 3" CRAPE MYRTLE	7120 7121	6" ASHE JUNIPER 4" ASHE JUNIPER	7282 7283	4" ASHE JUNIPER 6" ASHE JUNIPER	7624 7625	6" ASHE JUNIPER 7" ASHE JUNIPER	7830 7831	10" ASHE JUNIPER 4" CEDAR ELM
5252	4" CRAPE MYRTLE	7122	5" ASHE JUNIPER	7284	10" ASHE JUNIPER (MS7-6)	7626	5" HACKBERRY	7832	6" CEDAR ELM
5255	5" CRAPE MYRTLE	7123	12" ASHE JUNIPER	7285	7" HACKBERRY	7627	9" CEDAR ELM	7833	9" CEDAR ELM(MS5-4-4)
5256 5257	14.5" CRAPE MYRTLE(MS8-5-5-3) 8.5" CRAPE MYRTLE(MS6-5)	7124 7125	6" ASHE JUNIPER 22" ASHE JUNIPER(MS7-6-6-5-5-4-4)	7286	10" ASHE JUNIPER 6" LIVE OAK	7628 7629	25" ASHE JUNIPER(MS11-11-9-8) 6" ASHE JUNIPER	7834 7839	10" CEDAR ELM 23" CHINABERRY(MS12-11-11)
5258	7" CRAPE MYRTLE	7126	21" ASHE JUNIPER(MS9-7-6-6-5)	7288	6" LIVE OAK	7630	4" ASHE JUNIPER	7840	7" ASHE JUNIPER
5259	5" CRAPE MYRTLE	7128	23" LIVE OAK	7289	6" LIVE OAK	7636	9" LIVE OAK	7841	6" CEDAR ELM
5271 5272	16.5" LIVE OAK(MS11-6-5) 7" LIVE OAK	7129 7130	4" LIGUSTRUM 7" ASH	7290 7291	7" LIVE OAK 6" LIVE OAK	7637 7638	10" ASHE JUNIPER 10" ASHE JUNIPER(MS7-6)	7842 7843	7" ASHE JUNIPER 7" CEDAR ELM
5273	9" ASHE JUNIPER	7131	16" ASHE JUNIPER	7292	10.5" LIVE OAK(MS8-5)	7639	7" ASHE JUNIPER	7844	6" CEDAR ELM
5324	9" CEDAR ELM	7132	3" SYCAMORE	7312	4" LIGUSTRUM	7640	8" ASHE JUNIPER	7845	6" PALM
5350 5351	3" WHITE OAK 5" WHITE OAK	7133 7134	5" ASHE JUNIPER 9" LIVE OAK	7315 7316	3" LIGUSTRUM 5.5" LIGUSTRUM(MS4-3)	7641 7642	9" ASHE JUNIPER 12.5" LIVE OAK(MS9-7)	7846 7847	5" CEDAR ELM 12" LIVE OAK
5352	7" LIGUSTRUM(MS3-3-3-2)	7135	4" ASHE JUNIPER	7317	10" LIGUSTRUM(MS5-5-5)	7643	9" ASHE JUNIPER(MS6-6)	7848	8" CEDAR ELM
5376	5.5" WHITE OAK(MS4-3)	7136	20.5" ASHE JUNIPER(MS9-8-8-7)	7318	10" LIGUSTRUM(MS5-5-5)	7644	9" ASHE JUNIPER (MS7-4)	7849	5" CEDAR ELM
5378 5492	5.5" WHITE OAK(MS4-3) 12.5" MOUNTAIN LAUREL(MS5-5-4-3	7138	13" ASHE JUNIPER 10" LIVE OAK	7320 7321	3" LIGUSTRUM 3" LIGUSTRUM	7645 7646	5" CEDAR ELM 8" ASHE JUNIPER	7856 7857	7" CEDAR ELM 10" HACKBERRY
5493	23.5" LIVE OAK(MS16-15)	7145	13.5" ASHE JUNIPER(MS6-6-5-4)	7322	5" ASHE JUNIPER	7647	10" CEDAR ELM	7858	6" CEDAR ELM
5499	7" MOUNTAIN LAUREL(MS5-4)	7146	8" ASHE JUNIPER	7323	34" COTTONWOOD	7648	4" CEDAR ELM	7859	10" ASHE JUNIPER
5500 5501	10" MOUNTAIN LAUREL(MS6-4-4) 7" MOUNTAIN LAUREL	7147 7148	9" LIVE OAK(MS5-4-4) 5" LIVE OAK	7324 7329	29" COTTONWOOD 24.5" LIGUSTRUM(MS11-9-9-9)	7667 7668	9" LIVE OAK 5" CEDAR ELM	7860 7861	16" ASHE JUNIPER(MS12-8) 16" ASHE JUNIPER
5514	6" TEXAS PERSIMMON	7149	10" LIVE OAK	7330	9.5" LIGUSTRUM(MS7-5)	7669	5.5" CRAPE MYRTLE(MS4-3)	7862	8" PALM
5515	5" TEXAS PERSIMMON	7150	7" ASHE JUNIPER	7331	10" LIGUSTRUM `	7670	8" CEDAR ELM	7867	18" LIVE OAK
5516 5517	7" TEXAS PERSIMMON(MS5-4) 5" TEXAS PERSIMMON	7151 7152	7" ASHE JUNIPER 14.5" ASHE JUNIPER(MS9-5-4)	7332 7337	10" HACKBERRY 6" CH I NABERRY	7671 7672	7" ASHE JUNIPER 6" ASHE JUNIPER	7941 7942	8.5" ASHE JUNIPER(MS6-5) 9" ASHE JUNIPER(MS5-5-3)
5518		7153	10" LIVE OAK	7343	10" CHINABERRY	7674	6" LIVE OAK	7963	8" ASHE JUNIPER
5519	4" TEXAS PERSIMMON	7155	8" ASHE JUNIPER	7344	20" SYCAMORE	7676	5" CEDAR ELM	8011	16" CEDAR ELM
5520 5521	11" TEXAS PERSIMMON(MS5-5-4-3) 5" TEXAS PERSIMMON	7156 7157	7" ASHE JUNIPER(MS5-4) 8.5" ASHE JUNIPER(MS6-5)	7345 7359	19.5" LIGUSTRUM(MS14-7-4) 24" CEDAR ELM	7685 7686	17.5" CEDAR ELM(MS15-5) 7" ASHE JUNIPER	8012 8034	11" ASHE JUNIPER 15" ASHE JUNIPER
5522	10" TEXAS PERSIMMON(MS7-6)	7158	4" LIVE OAK	7363	6" PECAN	7687	4" CEDAR ELM	8035	26" ASHE JUNIPER
5523	9.5" TEXAS PERSIMMON(MS6-4-3)	7159	6" ASHE JUNIPER	7462	37" CEDAR ELM(MS27-20)	7688	5" CEDAR ELM	8064	11" ASHE JUNIPER
5524 5540	7.5" TEXAS PERSIMMON(MS5-5) 8" LIGUSTRUM(MS3-3-3-2-2)	7160 7161	9" ASHE JUNIPER 7" LIVE OAK	7480 7481	3" HACKBERRY 6" HUISACHE(MS4-4)	7689 7690	11" LIVE OAK 5" CEDAR ELM	8073 8081	16" RED OAK 16" CEDAR ELM
5553	33" POST OAK	7162	13" ASHE JUNIPER	7482	7" HUISACHE(MS3-3-2-2-1)	7691	4" CEDAR ELM	8096	35" CEDAR ELM
5707	31" CEDAR ELM	7163	4" ASHE JUNIPER	7494	4" ASHE JUNIPER	7692	11" LIVE OAK	8107	5" ASHE JUNIPER
5747 5748	4" LIGUSTRUM 6" LIGUSTRUM(MS3-3-3)	7164 7165	4" ASHE JUNIPER 5" HACKBERRY	7495 7496	14" ASHE JUNIPER 4" ASHE JUNIPER	7693 7694	7" LIVE OAK 7" LIGUSTRUM	8108 8109	11" ASHE JUN I PER 10" ASHE JUN I PER
5750	22" COTTONWOOD	7166	4" HACKBERRY	7490	8" ASHE JUNIPER	7695	9" LIVE OAK	8119	9" CEDAR ELM
5764	6.5" ASHE JUNIPER(MS3-3-2-2)	7167	40" LIVE OAK(MS22-18-18)	7498	28.5" WHITE OAK(MS7-7-6-6-6-6-5-4-3		4" CEDAR ELM	8120	10" CEDAR ELM
5765 5805	12.5" LIGUSTRUM(MS6-5-4-4) 9" LIVE OAK	7184 7187	3" ASHE JUNIPER 11.5" LIVE OAK(MS8-7)	7499 7500	3" HACKBERRY 8" LIVE OAK	7697 7698	6" CEDAR ELM 4" CEDAR ELM	8121 8122	9" ASHE JUNIPER 28" LIVE OAK
5806	16" ASHE JUNIPER	7188	8" ASHE JUNIPER	7502	4" CHINABERRY	7699	18" LIVE OAK	8142	9" ASHE JUNIPER
5807	16.5" CRAPE MYRTLE(MS6-5-4-4-4-4		14" LIVE OAK	7503	3" LIGUSTRUM	7700	3" CEDAR ELM	8143	14" ASHE JUNIPER
5833 5835	11" ASHE JUN I PER 10" RED OAK	7207 7208	9" LIVE OAK 4" MOUNTAIN LAUREL	7504 7505	5" WHITE OAK 6.5" ASHE JUNIPER(MS5-3)	7701 7702	4" CEDAR ELM 3" CEDAR ELM	8149 8170	16.5" ASHE JUNIPER(MS12-9) 4" ASHE JUNIPER(MS3-2)
5863	13" CEDAR ELM	7209	7" HACKBERRY	7509	10.5" REDBUD(MS3-3-2-2-2-2-2)	7703	3" CEDAR ELM	8171	16.5" RED OAK(MS7-7-6-6)
5878	21" LIVE OAK	7210	5" HACKBERRY	7511	10" ASHE JUNIPER	7704	8" CEDAR ELM	8193	4" CEDAR ELM
5966 5967	9" CHINABERRY 4" CEDAR ELM	7211 7212	20" LIVE OAK 4" ASHE JUNIPER	7512 7513	17.5" ASHE JUNIPER(MS10-8-7) 4" ASHE JUNIPER	7705 7706	11.5" ASHE JUNIPER(MS8-7) 3" LIVE OAK	8194 8196	4" HACKBERRY 7" CEDAR ELM
5968	8" ASH	7213	4" ASHE JUNIPER	7514	5" ASHE JUNIPER	7707	3" CEDAR ELM	8197	9" CEDAR ELM
5969	7" ASH	7214	5.5" CRAPE MYRTLE(MS4-3)	7515	7" ASHE JUNIPER(MS4-3-3)	7708	8" ASHE JUNIPER	20036	15" CRAPE MYRTLE
5970 5994	7" HACKBERRY 9" LIGUSTRUM(MS4-3-3-2-2)	7215 7216	4" CRAPE MYRTLE(MS3-2) 7.5" LIVE OAK(MS5-5)	7516 7517	10" ASHE JUNIPER(MS8-4) 9" LIVE OAK	7709 7710	8" LIVE OAK 4" CEDAR ELM	20037 20038	9" CRAPE MYRTLE 5" CEDAR ELM
5995	3" ASHE JUNIPER	7217	6" ASHE JUNIPER	7518	16" ASHE JUNIPER(MS13-6)	7711	7" ASHE JUNIPER	20039	9" ASHE JUNIPER
5996	3" ASHE JUNIPER	7219	15" LIVE OAK(MS10-10)	7520	4" ASHE JUNIPER	7712	7" ASHE JUNIPER	20040	10" CEDAR ELM
5997 5999	13" PECAN 7" LIGUSTRUM(MS4-3-3)	7220 7221	4" HACKBERRY 18.5" LIVE OAK(MS13-11)	7521 7522	5" ASHE JUNIPER 3" MOUNTAIN LAUREL	7714 7715	5" ASHE JUNIPER 6" ASHE JUNIPER	20041 20042	6" ASHE JUNIPER (MS-4-4) 10" ASHE JUNIPER
7000	16" CHINABERRY(MS9-9-5	7222	5" ASHE JUNIPER	7523	5" MOUNTAIN LAUREL	7716	6" ASHE JUNIPER	20042	8" ASHE JUNIPER
7002	17.5" CHINABERRY(MS12-11)	7223	16" LIVE OAK	7524	11" ASHE JUNIPER	7717	5" ASHE JUNIPER	20044	4" LIGUSTRUM
7003 7008	17" COTTONWOOD 18.5" LIGUSTRUM(MS12-9-4)	7224 7225	4" LIVE OAK 7" ASHE JUNIPER(MS5-4)	7525 7526	5" LIVE OAK 9" LIVE OAK	7718 7719	5" ASHE JUNIPER 9.5" ASHE JUNIPER(MS7-5)	20045 20046	7" ASHE JUNIPER 11" CEDAR ELM
7010	18" LIGUSTRUM(MS15-6)	7226	7" HACKBERRY	7527	3" MOUNTAIN LAUREL	7723	7" ASHE JUNIPER	20047	10" CEDAR ELM
7012	13" LIGUSTRUM(MS7-4-4-4)	7227	5" ASHE JUNIPER	7528	11" ASHE JUNIPER	7724	8" ASHE JUNIPER	20048	12.5" ASHE JUNIPER (MS-9-7)
7013 7014	6" CHINABERRY 15" LIGUSTRUM(MS12-6)	7228 7230	9" LIGUSTRUM(MS6-6) 4" ASHE JUNIPER	7529 7530	9" ASHE JUNIPER 3" MOUNTAIN LAUREL	7725 7726	6" ASHE JUNIPER 19.5" CEDAR ELM(MS8-8-4-4-7)	20049 20050	11" ASHE JUNIPER 11" LIGUSTRUM (MS-8-6)
7020	7" HACKBERRY `	7231	7" ASHE JUNIPER	7531	13" ASHE JUNIPER(MS10-6)	7727	10" ASHE JUNIPER(MS6-4-4)	20051	16.5" ASHE JUNIPER (MS-9-8-7)
7022	6" CHINABERRY	7232	3" ASHE JUNIPER	7541	6" ASHE JUNIPER(MS5-2)	7728	5" ASHE JUNIPER	20052	10" HACKBERRY
7023 7030	13" ASHE JUNIPER 4" LIGUSTRUM	7233 7234	11" ASHE JUNIPER 7.5" ASHE JUNIPER(MS5-5)	7542 7544	5.5" ASHE JUNIPER(MS4-3) 11" ASHE JUNIPER	7729 7730	7" ASHE JUNIPER 5" ASHE JUNIPER	20053 20065	11" ASHE JUNIPER 8.5" LIGUSTRUM(MS4-3-2-2-2)
7031	4" CEDAR ELM	7235	8" ASHE JUNIPER `	7545	10" ASHE JUNIPER	7731	6.5" ASHE JUNIPER(MS5-3)	20068	8" LIVE OAK
7032	4" LIGUSTRUM	7236	3" ASHE JUNIPER	7561	8" ASHE JUNIPER	7732	13" CEDAR ELM	20069	12" ASHE JUNIPER
7033 7034	9.5" LIGUSTRUM(MS4-3-3-3-2) 3" CEDAR ELM	7237 7238	9" ASHE JUNIPER 6" ASHE JUNIPER	7562 7563	11" LIVE OAK 8" HACKBERRY	7733 7735	9" ASHE JUNIPER(MS6-6) 11" ASHE JUNIPER	20070 20071	23" LIVE OAK 6" LIVE OAK
7035	5.5" LIGUSTRUM(MS3-3-2)	7239	8" ASHE JUNIPER	7564	6" ASHE JUNIPER	7736	4" CEDAR ELM	20072	22" LIVE OAK
7036	8" ASHE JUNIPER	7240	3" ASHE JUNIPER	7565	8.5" ASHE JUNIPER(MS7-3)	7741	12" CEDAR ELM	20073	4" LIVE OAK
7037 7038	6" SYCAMORE 5.5" LIGUSTRUM(MS4-3)	7241 7242	4" LIVE OAK 8.5" LIVE OAK(MS6-5)	7566 7567	8" ASHE JUNIPER 6" ASHE JUNIPER	7742 7744	7" CEDAR ELM 5" ASHE JUNIPER	20074 20075	10" ASHE JUNIPER 8" HACKBERRY
7039	4" CHINABERRY	7244	10.5" LIVE OAK(MS6-6-3)	7568	10" ASHE JUNIPER	7749	10" PERSIMMON(MS7-6)	20076	7" HACKBERRY
7040	5" HACKBERRY	7245	6" ASHE JUNIPER	7569	6" ASHE JUNIPER	7750	9" CEDAR ELM	20077	21" ASHE JUNIPER (MS-15-12)
7041 7042	6" ASHE JUNIPER 17.5" ASHE JUNIPER(MS12-11)	7246 7247	3" ASHE JUNIPER 5" ASHE JUNIPER	7570 7571	8" ASHE JUNIPER 11.5" ASHE JUNIPER(MS9-5)	7751 7757	8" LIVE OAK 6" CEDAR ELM	20078 20079	14" LIVE OAK 11" LIVE OAK
7044	7" ASHE JUNIPER	7248	5" ASHE JUNIPER	7572	7" LIVE OAK	7758	17" ASHE JUNIPER(MS13-8)	20080	13" LIVE OAK
7046	10" CHINABERRY(MS5-4-3-3)	7249	10.5" ASHE JUNIPER(MS6-5-4)	7573	7" ASHE JUNIPER	7760	10.5" CRAPE MYRTLE(MS5-4-4-3)	20082	13" LIVE OAK
7047 7084	11" LIVE OAK 10" LIGUSTRUM	7250 7251	7" ASHE JUNIPER(MS4-3-3) 4" CRAPE MYRTLE(MS3-2)	7575 7576	5" ASHE JUN I PER 5" ASHE JUN I PER	7761 7762	12.5" CRAPE MYRTLE(MS5-4-4-4-3) 9.5" CRAPE MYRTLE(MS4-4-4-3)) 20083 20084	7" HACKBERRY (MS-5-4) 8.5" LIGUSTRUM(MS4-3-3-3)
7085	16.5" ASHE JUNIPER(MS9-8-7)	7252	5" ASHE JUNIPER	7577	21" LIVE OAK(MS15-12)	7768	7" CEDAR ELM	20085	12" LIGUSTRUM(MS5-4-3-3-2-2)
7086	8" ASHE JUNIPER(MS6-4)	7253	11" ASHE JUNIPER	7578	7" ASHE JUNIPER	7769	13" LIVE OAK	20086	8" LIGUSTRUM(MS4-2-2-2-2)
7087 7088	4" CEDAR ELM 22" ASHE JUNIPER(MS12-10-10)	7254 7255	8" LIVE OAK 4" ASHE JUNIPER	7579 7580	6" ASHE JUNIPER 6" ASHE JUNIPER	7770 7776	7.5" CEDAR ELM(MS4-4-3) 8" CEDAR ELM	20087 20088	6" ASHE JUNIPER (MS-4-4) 4" ASHE JUNIPER
7092	4" CEDAR ELM	7256	6" LIVE OAK	7581	8" HACKBERRY	7777	12" ASHE JUNIPER	20089	8" LIVE OAK
7096	10" ASHE JUNIPER	7265	8" ASHE JUNIPER(MS6-4)	7599	5" CEDAR ELM(MS4-2)	7778	8" PALM	20090	10" LIVE OAK
7097 7098	9" ASHE JUNIPER(MS7-4) 15" ASHE JUNIPER(MS9-9-3)	7266 7268	6" ASHE JUNIPER 9" ASHE JUNIPER	7600 7601	11" ASHE JUNIPER 6" LIVE OAK	7780 7781	3" CEDAR ELM 12" LIVE OAK	20091 20092	5" LIVE OAK 12.5" ASHE JUNIPER(MS5-4-3-3-3-2)
7100	10" ASHE JUNIPER	7269	11" ASHE JUNIPER	7602	4" CEDAR ELM	7782	12" LIVE OAK		2

K FRIESE & ASSOCIATES, INC.	RE	REV BY	/ DATE	REVISION DESC
		_		
1120 S. CAPITAL OF TEXAS HWY, II-100, AUSTIN, TX 78746		Н		
-)				

	K•FR + ASSO	
	PUBLIC PROJECT	ENGINEERIN
(FIRM # 6	535)	

AVA

TEXAST STATES

WEST LAKE HILLS, TX	

	SHEET 1 OF 1
SCALE	NTS
DATE	7/17/2023
SHEET	97 of 388

Geologic Assessment

Texas Commission on Environmental Quality

For Regulated Activities on The Edwards Aquifer Recharge/transition Zones and Relating to 30 TAC §213.5(b)(3), Effective June 1, 1999.

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Print Name of Geologist: <u>Richard V. Klar, P.G.</u>	Telephone: <u>210-699-9090</u>
Date:July 20, 2023	Fax: <u>210-699-6426</u>
Representing: Raba Kistner, Inc., TBPG Firm #50220 #6535 (Name of Company and TBPG or TBPE regist	
Signature of Geologist: RICHARD V KLAR GEOLOGY 259 CENSED CONTRACTOR OF TEXASOR RICHARD V KLAR GEOLOGY 259	7/20/23
Regulated Entity Name: <u>Eanes Creek Low Water C</u>	rossings
Project Information	
1. Date(s) of Geologic Assessment was performe	d: <u>October 27, 2022</u>
2. Type of Project:	
⋈ WPAP	☐ AST
☐ scs	UST

- 3. Location of Project:
 Recharge Zone
 Transition Zone
 Contributing Zone within the Transition Zone
- 4. Attachment A Geologic Assessment Table. Completed Geologic Assessment Table (Form TCEQ-0585-Table) is attached.
- 5. Soil cover on the project site is summarized in the table below and uses the SCS Hydrologic Soil Groups* (Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A, Soil Conservation Service, 1986). If there is more than one soil type on the project site, show each soil type on the Site Geologic Map or a separate soils map.

Table 1 - Soil Units, Infiltration Characteristics and Thickness

Soil Name Group* Thickness Brackett-Rock outcrop 0.5-2 feet complex, 1-12% slopes C (BID) Urban land and 0.5-2 feet Brackett soils, 1-12% С slopes (UuE) Volente silty clay loam, C 3.5-5 feet 1-8% slopes (VoD)

*Soil Group Definitions (Abbreviated)

- A. Soils having a high infiltration rate when thoroughly wetted.
- B. Soils having a moderate infiltration rate when thoroughly wetted.
- C. Soils having a slow infiltration rate when thoroughly wetted.
- D. Soils having a very slow infiltration rate when thoroughly wetted

- 6. Attachment B Stratigraphic Column. A stratigraphic column showing formations, members, and thickness is attached. The outcropping unit, if present, should be at the top of the stratigraphic column. Otherwise, the uppermost unit should be at the top of the stratigraphic column.
- 7. Attachment C Site Geology. A narrative description of the site specific geology including any features identified in the Geologic Assessment Table, a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure(s), and karst characteristics is attached.

8.	Attachment D – Site Geologic Map(s). The Site Geologic Map must be the same scale as the applicant's Site Plan. The minimum scale is 1":400'.
	Applicant's Site Plan Scale: $1'' = \underline{60}'$ Site Geologic Map Scale: $1'' = \underline{60}'$ Site Soils Map Scale (if more than 1 soil type): $1'' = \underline{100}'$
9.	Method of collecting positional data:
	☐ Global Positioning System (GPS) technology.☐ Other method(s). Please describe method of data collection:
10.	The project site boundaries are clearly shown and labeled on the Site Geologic Map.
11.	Surface geologic units are shown and labeled on the Site Geologic Map.
12.	Geologic or manmade features were discovered on the project site during the field investigation. They are shown and labeled on the Site Geologic Map and are described in the attached Geologic Assessment Table.
	Geologic or manmade features were not discovered on the project site during the field investigation.
13.	The Recharge Zone boundary is shown and labeled, if appropriate.
	All known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.): If applicable, the information must agree with Item No. 20 of the WPAP Application Section. There are four (4) test holes present on the project site and the locations are shown and labeled. (Check all of the following that apply.) The test holes are not in use and have been properly abandoned. The wells are not in use and will be properly abandoned. The well is in use and complies with 16 TAC Chapter 76. There are no wells or test holes of any kind known to exist on the project site.
Ac	lministrative Information
	Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.

ATTACHMENTS

ATTACHMENT A

GEOLOGIC ASSESSMENT TABLE (TCEQ-0585-TABLE) COMMENTS TO GEOLOGIC ASSESSMENT TABLE SOIL PROFILE SOILS MAP

Eanes Creek Low Water Crossings - West Lake Hills Bond Projects Travis County, Texas GEOLOGIC ASSESSMENT TABLE PROJECT NAME: (RKI Project No. ASF22-017-01) LOCATION FEATURE CHARACTERISTICS **EVALUATION** PHYSICAL SETTING 1A 1B * 1C* 2B 4 5 5A 6 A8 8B 11 DIMENSIONS (FEET) RELATIVE TREND DENSITY APERTURE FEATURE CATCHMENT AREA LATITUDE LONGITUDE POINTS INFILL SENSITIVITY TOPOGRAPHY FEATURE TYPE FORMATION DOM INFILTRATION TOTAL (DEGREES) (ACRES) (NO/FT (FEET) RATE <1.6 N30 16 46.88 W97 48 43.95 MB (W) 30 1,180 2 ~4-6 \checkmark S-1 Kek Χ 6 36 Floodplain 30 N30 16 52.51 W97 48 45.19 MB (W) 287 2 ~4-6 Χ 36 \checkmark Floodplain S-2 Kgr 6 N30 16 49.40 W97 48 42.31 MB (SD) 30 Kek 208 ~4-6 Χ Floodplain S-3 4 6 36 \checkmark ✓ S-4 N30 16 52.61 W97 48 44.71 MB (SD) 30 Kgr 179 4 ~4-6 Χ 6 36 Drainage N30 16 49.85 W97 48 41.61 S-5 MB (G) 30 Kek 677 2 ~4-6 Х 6 36 \checkmark Floodplain W97 48 45.43 30 247 \checkmark Floodplain S-6 N30 16 52.06 MB (G) Kgr 2 ~4-6 Х 36 S-7 N30 16 48.05 W97 48 42.95 MB (D) 30 Kek 30 3 ~2-4 Χ 6 36 \checkmark Streambed S-8 N30 16 46.69 W97 48 44.85 MB (D) 30 Kek 35 4 ~2 Χ 6 36 \checkmark Streambed S-9 N30 16 52.55 W97 48 46.32 MB (D) 30 Kgr 40 10 ~6 Χ 6 36 Streambed W97 48 45.11 Χ 35 \checkmark \checkmark S-10 N30 16 52.28 MB (GEO, C-1) 30 Kgr 0.2 0.2 15 5 Hillside \checkmark S-11 N30 16 48.68 W97 48 42.48 30 0.2 0.2 15 Χ 35 MB (GEO, C-2) Kek 5 Floodplain W97 48 43.20 30 **√** Floodplain S-12 N30 16 48.00 MB (GEO, C-3) Kek 0.2 0.2 15 Χ 35 S-13 N30 16 46.45 W97 48 44.82 MB (GEO. C-4) 30 Kek 0.2 0.2 15 Χ 5 35 \checkmark Floodplain \checkmark S-14 N30 16 49.98 W97 48 42.18 F 20 Ked, Kgr 105 10 NE-SW 10 F 8 38 Floodplain W97 48 45.86 F 20 NE-SW F 28 **√** \checkmark Hillside S-15 N30 16 45.47 Ked 56 10 8

* DATUM: <u>NAD83</u>

 $Manmade\ Features\ in\ Bedrock\ (MB):\ W=water,\ SD=storm\ drain,\ G=gas,\ D=drainage\ culvert,\ GEO=geotechnical\ boring\ and\ identifier$

Formations: Ked = Edwards limestone, Kep = Person Formation, Kek = Kainer Formation, Kgr = Glen Rose Formation

2A TYPE	TYPE	2B POINTS
С	Cave	30
SC	Solution cavity	20
SF	Solution-enlarged fracture(s)	20
F	Fault	20
0	Other natural bedrock features	5
MB	Manmade feature in bedrock	30
SW	Swallow hole	30
SH	Sinkhole	20
CD	Non-karst closed depression	5
Z	Zone, clustered or aligned features	30

	8A INFILLING				
N	None, exposed bedrock				
С	Coarse - cobbles, breakdown, sand, gravel				
О	Loose or soft mud or soil, organics, leaves, sticks, dark colors				
F	Fines, compacted clay-rich sediment, soil profile, gray or red colors				
V	Vegetation. Give details in narrative description				
FS	Flowstone, cements, cave deposits				
Х	Other materials: Backfill consisting of native soils and granular bedding materials;				
	concrete for storm drains and drainages				
	Test holes were plugged to ground surface with site-derived auger cuttings and bentonite.				
	12 TOPOGRAPHY				
Cliff, H	Cliff, Hilltop, Hillside, Drainage, Floodplain, Streambed				

I have read, I understood, and I have followed the Texas Natural Resource Conservation Commission's Instructions to Geologists. The information presented here complies with that document and is a true representation of the conditions observed in the field.

My signature certifies that I am qualified as a geologist as defined by 30 TAC 213.

Date 7/20/2023
Sheet 1 of 1

COMMENTS TO GEOLOGIC ASSESSMENT TABLE Eanes Creek Low Water Crossings West Lake Hills Bond Projects Travis County, Texas

The locations of the following features are indicated on the *Site Geologic Map* provided as *Attachment D* of this report. The project area consists of two discrete areas corresponding to low-water crossings on Eanes School Road and Camp Craft Road.

Manmade Features in Bedrock

Features S-1 and S-2

Features S-1 and S-2 consist of trenches for existing potable water utilities owned by Austin Water Works. **S-1** is located along Camp Craft Road, and **S-2** is located along a portion of Eanes School Road. The locations of these trenches are based on plans provided by the project civil engineer (Dannenbaum Engineering Company, 2019) as well as field observations including a manhole, valves, and hydrants along the north and south sides of Camp Craft Road and along the north side of Eanes School Road. Based on the provided plans, the water utilities consist of 6-inch lines assumed to be installed to depths of approximately 4

to 6 feet terminating in bedrock. The lengths of the trenches within the SITE are estimated to be 1,180 feet along Camp Craft Road (*S-1*) and 287 feet along Eanes School Road (*S-2*).

Features S-3 and S-4

Features S-3 and S-4 consist of trenches for existing storm water drainage utilities. **S-3** is located along Camp Craft Road and **S-4** is located along a portion of Eanes School Road. Field observations included a 56-inch diameter manhole on the east side of Eanes School Road adjacent to the intersection with Camp Craft Road, plus three 2-foot square grated inlets spaced approximately 120 feet apart on the north side of Eanes School Road. Based on field observations, the storm water drainage utilities are estimated to be between 2 and 4 feet wide. It is assumed that the trench is installed to depths of 2 to 8 feet terminating in

bedrock. The lengths of the trenches within the SITE area are estimated to be 208 feet along Camp Craft Road (*S-3*) and 179 feet along Eanes School Road (*S-4*).

Features S-5 and S-6

Features S-5 and S-6 consist of trenches for existing natural gas utilities. **S-5** is along Camp Craft Road and **S-6** is along a portion of Eanes School Road. The locations of these trenches were identified based on plans prepared by the project civil engineer (Dannenbaum Engineering Company, 2019) and a yellow gas pipe observed attached to a power pole on Eanes School Road, adjacent to the bridge crossing Eanes Creek and the driveway into the Eanes School parking lot. It is inferred that the trench hosting these utility lines are installed to depths of 4 to 6 feet terminating in bedrock. The lengths of the trenches

within the SITE area are estimated to be 677 feet long along Camp Craft Road (**S-5**) and 247 feet along Eanes School Road (**S-6**).

Features S-7 through S-9

Feature S-7 consists of a drainage culvert at the Eanes Creek crossing of Camp Craft Road. It consists of a corrugated metal culvert approximately 2-feet in diameter in the direction of Eanes Creek to the northwest-southeast. A metal grate exists at the road edge on south side of the pavement, with two benches of rock and a flood control gauge on the north edge. It appears that the culvert extends into the bedrock of the creek channel. The culvert extends approximately 30 feet within the SITE.

Feature S-8 consists of a drainage culvert at the Eanes Creek tributary crossing of Camp Craft Road. It consists of a culvert approximately 4 feet wide that passes beneath the road surface, with grates on either side. The culvert is encased in concrete, and appears to extend into the bedrock of the creek channel. The culvert extends approximately 35 feet within the SITE.

Feature S-9 consists of a drainage culvert where Eanes Creek crosses beneath Eanes School Road. It consists of a rectangular concrete culvert with angular rock pieces enclosed in metal wire. The culvert is approximately 10 feet wide and 6 feet high and was installed beneath the bridge that crosses Eanes Creek on Eanes School Road. The culvert appears to extend into the bedrock of the creek channel and extends approximately 40 feet within the SITE.

Features S-10 through S-13

Feature S-10 consists of geotechnical boring C-1 installed by **RKI** for a geotechnical engineering study (**RKI**, 2022). The boring is located at the southeast side of the crossing of Eanes School Road and Eanes Creek adjacent to the driveway into the Eanes School parking lot. The existing pavement sections measured in the field during drilling operations found there to be 4 inches of asphalt underlain by 5.5 inches of flexible road base. Very stiff sandy clay containing gravel and calcareous deposits exists to a depth of 2 feet, with decomposed limestone beneath to a depth of 12 feet, and hard limestone of the Glen Rose Formation beneath to a total depth of 15 feet.

Feature S-11 consists of geotechnical boring C-2 (**RKI**, 2022). The boring is located on Camp Craft Road between the intersection with Eanes School Road and the Eanes Creek crossing. The existing pavement sections measured in the field during drilling operations found there to be 4 inches of asphalt underlain by 11 inches of flexible road base. Hard, tan sandy clay with gravel exists to the depth of 2 feet, with weathered and fractured limestone beneath to a depth of 12.5 feet, and hard slightly weathered and fractured limestone of the Kainer Formation beneath to a total depth of 15 feet.

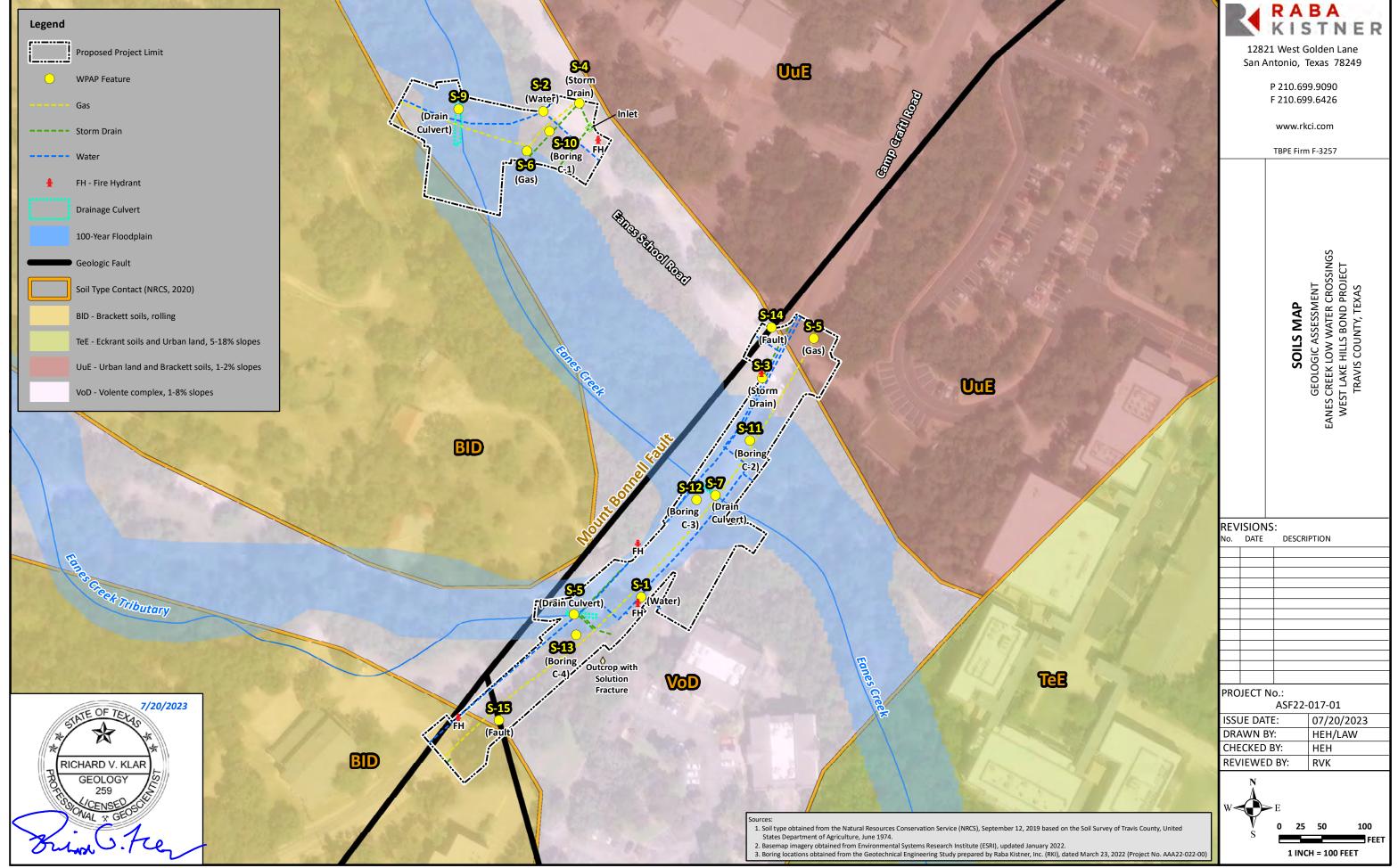
Feature S-12 consists of geotechnical boring C-3 (**RKI**, 2022). The boring is located on Camp Craft Road at the Eanes Creek crossing. The existing pavement sections measured in the field during drilling operations found there to be 2.5 inches of asphalt. Poorly graded sand with gravel exists to a depth of 6 feet, with limestone of the Kainer Formation beneath to a total depth of 15 feet.

Feature S-13 consists of geotechnical boring C-4 (**RKI**, 2022). The boring is located on Camp Craft Road at the Eanes Creek tributary crossing, adjacent to the Enclave Business Park. The existing pavement sections measured in the field during drilling operations found there to be 3.5 inches of asphalt underlain by 4 inches of concrete. Very stiff, brown, sandy clay with gravel and calcareous deposits exists to a depth of 4 feet, with limestone of the Kainer Formation beneath to a total depth of 15 feet.

Faults

Features S-14 and S-15

Feature S-14 consists of a normal fault, referred to as the Mount Bonnell fault on published geologic maps (Fisher, 1974, Garner et al., 1986, and Blome et al., 2005), which trends northeast-southwest and is oriented in approximately the same direction as Camp Craft Road (measured azimuth of 39 degrees within the SITE). The fault location was inferred from changes in rock outcrops across the SITE, and review of published maps. This fault juxtaposes the Glen Rose Formation to the northwest and the Edwards Limestone downthrown to the southeast. The fault is approximately 750 feet long within the SITE. Based on formations outcropping at the surface and thicknesses of geologic formations, the fault throw is estimated to range from approximately 200 feet at the northeast end of the SITE to 350 feet at the southwest end.


Feature S-15 consists of a conjugate fault associated with the Mount Bonnell fault. It crosses the southwest end of the SITE and trends approximately northwest-southeast (measured azimuth of 345 degrees within the SITE). This fault reportedly juxtaposes the Kainer Formation to the northeast with the overlying Person Formation of the Edwards Limestone to the southwest (Blome et al., 2005). No field indicators of this fault were observed. The fault is approximately 140 feet long across the southwest end of the SITE. Based on the formations outcropping at the surface and thicknesses of geologic formations, the fault throw is estimated to be approximately 150 feet.

SOIL PROFILE Eanes Creek Low Water Crossings West Lake Hills Bond Projects Travis County, Texas

SOIL SERIES	THICKNESS ON SITE	DESCRIPTION
Brackett soils	0.5-2 feet	Brackett-Rock outcrop complex, 1 to 12 percent slopes (BID). Consists of up to 6 inches of gravelly clay loam with 6 to 18 inches of clay loam underlain by bedrock. These soils occupy gently undulating to rolling topography, generally on benches 100 to 500 feet wide that are separated by rock outcrops (about 20 percent) of limestone and marl. The slope ranges from 1 to 12 percent, but is dominantly 5 to 12 percent, generally on benches, that are separated by outcrops of the underlying limestone and marl. Broken limestone fragments cover up about 75 percent of the surface with a surface texture of gravelly clay loam, gravelly loam, loam, or clay loam. A large portion of rainfall is lost through runoff and seepage from limestone outcrops. Permeability is moderately slow, and the available water capacity is low. Soils are well drained with high runoff.
Urban land and Brackett 0.5-2 feet soils		Urban land and Brackett soils, 1 to 12 percent slopes (UuE). Consists of 40 percent urban land and 35 percent Brackett and similar soils. Urban land consists of up to 10 inches of cemented material, with soils consisting of up to 6 inches of gravelly clay loam underlain by 6 to 18 inches of clay loam with bedrock below.
Volente soils 3.5-5 feet		Volente silty clay loam, 1 to 8 percent slopes (VoD). Consists of up to about 22 inches of dark grayish-brown silty clay over about 14 inches of dark brown silty clay, followed by brown silty clay to a depth of about 46 inches, and reddish-yellow clay loam to a depth of 54 inches. The parent material is calcareous clayey colluvium and/or alluvium derived from limestone. These soils have moderately slow permeability with high available water capacity. They are well drained with high runoff potential and have a severe erosion hazard.

The preceding table was prepared based on information provided in the *Soils Survey of Travis County, Texas (January 1974)* and the *NRCS Web Soil Survey (2019)* in addition to field observations. As presented on the attached *Site Soils Map*, native soils mapped at the SITE consist of the following units: Brackett-Rock outcrop complex, 1 to 12 percent slopes (BID), Volente silty clay loam, 1 to 8 percent slopes (VoD), and Urban land and Brackett soils, 1 to 12 percent slopes (UuE). The north project segment on Eanes School Road is primarily underlain by VoD soils, with some BID underlying the west edge and UuE on the east edge. Camp Craft Road is primarily underlain by VoD, with some BID along the north edge and at the southwest end.

Soils mapped for the SITE are classified as Group C, which have a low to moderate capacity to transmit infiltrating precipitation. Soils generally consist of 6 to 60 inches of gravelly clay loam, clay loam, and silty clay loam with published permeability values of 0.06 to 1.98 inches per hour. Channel deposits occupy the area in proximity to Eanes Creek and its tributary, and are generally thicker and more reddish in color, while thinner and rocker upland soils exist on ridges and hillsides. Native soils and potential contacts between soil types were observed in conjunction with field reconnaissance efforts except in areas with existing residential and roadway improvements.

ATTACHMENT B STRATIGRAPHIC COLUMN

STRATIGRAPHIC COLUMN Eanes Creek Low Water Crossings West Lake Hills Bond Projects Travis County, Texas

STRATIGRAPHIC FORMATION	THICKNESS	DESCRIPTION
Person Formation (Kep)	180-224 feet	(See descriptions below)
Cyclic and Marine Members, undivided (Kpcm)	80-100 feet	Unit consists of massive mudstone to packstone, <i>miliolid</i> grainstone, and chert. Identified in the field by cycles of light tan, massive to relatively thin limestone bedding units with some occurrence of crossbedding that is laterally extensive and highly permeable. Not present at the SITE.
Leached and Collapsed Members, undivided (Kplc)	80-100 feet	Unit consists of crystalline limestone, mudstone to grainstone and chert with collapsed breccia. Identified in the field by bioturbated iron-stained beds separated by massive limestone beds with extensive vertical karst development. This unit is highly permeable. Mapped on the south edge of Camp Craft Road within the SITE.
Regional Dense Member (Kprd)	20-24 feet	Unit consists of dense, argillaceous mudstone. Identified in the field by wispy iron-oxide stains. This unit has low permeability. Not exposed within the SITE
Kainer Formation (Kek)	260-310 feet	(See descriptions below)
Grainstone Member (Kkg)	50-60 feet	Unit consists of <i>miliolid</i> grainstone, mudstone to wackestone and chert. Identified in the field by white crossbedded grainstone. Not exposed within the SITE
Kirschberg Evaporite Member (Kkke)	50-60 feet	Unit includes highly altered crystalline limestone, chalky mudstone, and chert. Leaching of evaporite layers resulted in a boxwork porosity with neospar and travertine frames. Patchy outcrops along the majority of Camp Craft Road within the SITE.
Dolomite Member (Kkd)	110-130 feet	Unit consists of mudstone to grainstone, crystalline limestone, and chert. Identified in the field by massively bedded, light gray outcrops, with abundant <i>Toucasia</i> . Not exposed within the SITE
Basal Nodular Member (Kkbn)	50-60 feet	Unit consists of shaly, nodular limestone, mudstone and miliolid grainstone. Identified in the field by massively bedded, nodular, and mottled outcrops, with abundant Exogyra texana. Not exposed within the SITE.

STRATIGRAPHIC FORMATION	THICKNESS	DESCRIPTION
Glen Rose Formation (Kgr)*	± 380 feet	(See descriptions below)
Upper Glen Rose	± 220 feet	Conformably underlies the Kainer Formation of the Edwards and serves as the lower confining unit of the Edwards Aquifer. Consists of alternating beds of yellowish-tan, medium-bedded limestone and argillaceous limestone with minor evaporate layers. Surface cavern development associated with faults and fractures and some water production at evaporate beds is considered a rare occurrence. Field identification is commonly associated with stair-step topography that forms through differential erosion of the alternating limestone and marl beds, and the presence of fossilized ripple marks and sparse casts of <i>Tylostoma</i> sp., <i>Turitella</i> sp., <i>Protocardio texana</i> , and the foraminiferan <i>Orbitolina minuta</i> . Classified hydrologically as having mostly non-fabric selective porosity and generally low permeability. Conformably overlies the bivalve-rich <i>Corbula</i> bed at the top of the Lower Glen Rose. <i>Patchy outcrops and float rock were observed along the north edge of Camp Craft Road and Eanes School Road within the SITE</i> .

Note: Stratigraphic Column adapted from Fisher (1974)* and Blome et al., (2005).

ATTACHMENT C NARRATIVE OF SITE SPECIFIC GEOLOGY

SITE GEOLOGY NARRATIVE Eanes Creek Low Water Crossings West Lake Hills Bond Projects Travis County, Texas

Introduction

The following is a site-specific discussion of existing geological conditions and potential recharge features for the Edwards Aquifer identified within the project site, which is part of the West Lake Hills Drainage Master Plan Phase II bond package. As discussed herein, the project site consists of improvements to existing low water crossings within two discrete areas located along Eanes School Road and Camp Craft Road, respectively, in Travis County, Texas (hereinafter referred to as the SITE). This assessment was performed by **Raba Kistner, Inc. (RKI)** for K Friese + Associates, pursuant to applicable Edwards Aquifer Protection Program (EAPP) Rules as specified in *Title 30 of the Texas Administrative Code, Section 213 (30 TAC §213, effective April 24, 2008).* This assessment report is in the format required by the Texas Commission on Environmental Quality (TCEQ) for the Geologic Assessment and was prepared in accordance with the revised *Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones (TCEQ-0585)*, which are applicable to submittals received by the TCEQ after October 1, 2004.

This geologic assessment report documents conditions observed by **RKI** within the SITE boundaries on October 27, 2022.

Site Description

Site Location. The project area (SITE) consists of two discrete areas located along low-water crossings on Eanes School Road and Camp Craft Road. The SITE currently includes paved right-of-way (ROW) with adjacent roadside ditches. Eanes Creek and its tributary flow across Camp Craft Road in the south portion of the SITE. It is a primarily residential area located within the City of West Lake Hills, which is part of the Austin Metropolitan Area. As presented on the attached Site Geologic Map, adjacent properties include schools, commercial properties, and residential properties. To the north of Camp Craft Road is the school zone for Trinity Episcopal School of Austin and Eanes Elementary School, with forested land and multi-family housing to the east, residential properties with forested land to the west, some commercial properties, and the continuation of Camp Craft Road to the southwest. Forested land and the continuation of the ROW surround the Eanes School Road portion of the SITE.

Based on review of official maps published by the Texas Commission on Environmental Quality (TCEQ), the Camp Craft Road portion of the SITE is located primarily within the Edwards Aquifer Recharge Zone (EARZ), oriented in approximately the same direction as the boundary between the Contributing and Recharge zones. The north portion of the SITE on Eanes School Road is fully located within the Contributing Zone. Although a portion of the SITE is located within the Contributing Zone, a geologic assessment was performed on its full extent as required to facilitate planned construction activities pursuant to applicable Edwards Aquifer Protection Program (EAPP) rules as specified in *Title 30 of the Texas Administrative Code, Section 213 (30 TAC 213, effective April 24, 2008)*.

Topography and Drainage. Topographic contours on the U.S. Geological Survey (USGS, 2019) 7.5-Minute Series Topographic map (*Austin West Quadrangle*) were reviewed to evaluate the general surface conditions and drainage patterns, along with more detailed 2-foot topographic contours obtained from the City of Austin's Geographic Information Systems (GIS) interactive web map (City of Austin, 2017). The SITE is within an area of moderately sloping hillside topography, and consists of a low-lying area just above or within the floodplain associated with Eanes Creek and its tributary. The maximum elevation within the SITE is approximately 746 feet above mean seal level (amsl) near the south edge of Camp Craft Road, and slopes to a minimum of approximately 708 feet amsl where Camp Craft Road crosses Eanes Creek. As indicated by topographic contours presented on the **Site Geologic Map**, the local surface drainage patterns are generally to the south-southwest toward Eanes Creek, which flows to the southeast. Ultimate flow from the creek is into the Colorado River, which is located approximately 1.8 miles to the east.

Based on review of the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) Panels 48453C0440J and 48453C445K (effective January 1, 2020) the SITE is almost entirely located in the 100-year floodplain. The Eanes Creek floodplain is designated as a special flood hazard area. Eanes Creek is in Zone AE, a regulatory floodway, while its tributary is in Zone A, a flood hazard area without Base Flood Elevation (BFE).

Historical Property Use. Although research pertaining to past SITE operations and historical land use activities was beyond the scope of this assessment, historical aerial imagery was reviewed to evaluate historical land use and the presence of lineations that could indicate the presence of normal faulting. The following aerial photographs were reviewed using Google EarthTM: 1995, 2002, 2003, 2005-2009, and 2011-2022 and are summarized as follows:

- The 1995 aerial photograph indicates the SITE area to include residential structures west of Eanes School Road and buildings associated with the Eanes Elementary School campus between Eanes School Road and Camp Craft Road. Commercial properties also exist on the south side of Camp Craft Road at the west end of the SITE, with areas to the south of Camp Craft Road primarily consisting of a wooded area.
- The 2002 aerial photograph indicates the construction of the Trinity Episcopal School of Austin southeast of Camp Craft Road, with the remainder of the SITE unchanged.
- The 2003 aerial photographs indicate additional development of parking lots associated with Trinity Episcopal School of Austin, and the 2005 through 2011 aerial photographs indicate continued development of single-family residential and commercial properties adjacent to the SITE.
- The 2014 through 2022 aerial photographs show the SITE essentially as it appears today, with wooded terrain adjacent to Eanes Creek, and adjoining land use including commercial properties, schools, parking lots, and residential properties.

Classification of Recharge Features: As further described herein, features identified and discussed below include thirteen manmade features (i.e., water, storm water, and natural gas utility lines, drainage culverts, and geotechnical borings) and two normal faults. The significance of these features was assessed using definitions and guidance provided in *Instructions to Geologists (TCEQ-0585-Instructions, revised October 1, 2004)*. All features within the SITE that met the criteria presented in this reference were mapped. The

characteristics of all mapped features and the assessments of these features, as defined by the TCEQ, are presented in the attached *Geologic Assessment Table (TCEQ-0585)*.

Stratigraphy

As presented in the attached *Stratigraphic Column*, information pertaining to the lithologies and thickness of geologic units underlying the SITE was primarily taken from *Bureau of Economic Geology, Geologic Map of the Austin Area, Texas* (Garner et al., 1986) and the *Geologic Map of the Edwards Aquifer Recharge Zone, South-Central Texas* (Blome et al., 2005). The SITE is underlain by the Upper Glen Rose Formation and Members of the Edwards Limestone. General descriptions of the Person Formation and Kainer Formation, which constitute the upper and lower parts of the Edwards Limestone, as well as a description of the Glen Rose Formation, are provided below:

- <u>The Person Formation (Kep)</u> is commonly subdivided into three members as follows: (i) Cyclic and Marine Member, undivided mudstone to packstone, grainstone, and chert; (ii) Leached and Collapsed Member, undivided crystalline limestone, mudstone to grainstone, and chert; and (iii) Regional Dense Member dense, carbonate mudstone.
- The Kainer Formation (Kek) is subdivided into four members as follows: (i) Grainstone Member grainstone, mudstone to wackestone, and chert; (ii) Kirschberg Evaporite Member highly altered crystalline limestone with chalky mudstone and chert; (iii) Dolomite Member crystalline limestone consisting of mudstone to grainstone; and (iv) Basal Nodular Member shaly nodular limestone, mudstone, and grainstone.
- The Glen Rose Formation (Kgr) is commonly divided into the upper and lower members as follows:
 (i) Upper Glen Rose thinly bedded fine-grained limestone, dolomite, and marl; and (ii) Lower Glen Rose fossiliferous limestone, dolomite, marl, and evaporites with Corbula bed C at the top.

Based on field mapping observations and review of published references, the SITE is underlain by the Kainer Formation and Person Formation of the Edwards Limestone, in addition to the Upper Glen Rose Formation as presented on the *Site Geologic Map*. The Mount Bonnell fault transects the SITE in approximately the same orientation as Westlake Drive, with the Kainer Formation to the southeast, and the Glen Rose Formation to the northwest. The Kirschberg Evaporite Member of the Kainer Formation underlies the majority of Camp Craft Road, with the Leached and Collapsed Member of the Person Formation at the southwest end owing to the mapped presence of the conjugate fault. Outcrops of the Kirschberg Evaporite Member were observed on the hillside to the south of Camp Craft Road adjacent to the Enclave Business Park. The Upper Glen Rose Formation underlies the north edge of Camp Craft Road and the north portion of the SITE on Eanes School Road. Patchy outcrops of the Glen Rose Formation as well as float rock was observed in Eanes Creek north of Camp Craft Road and west of Eanes School Road. Exposed bedrock was observed where not covered by concrete, roadways, or landscaping associated with development of the Assessment Area. Field observations are consistent with published geologic maps.

In conjunction with field reconnaissance, a solution-enlarged fracture outcrop of the Kainer Formation was identified on the hillside on the south side of Camp Craft Road, adjacent to the Enclave Business Park driveway just outside of SITE boundary, as shown on the *Site Geologic Map*. It consists of a superficial "V" shaped solution-enlarged fracture in a bedrock outcrop that measures approximately 4-feet by 2-feet in plan view. It has a prominent fracture opening within the outcrop that measures approximately 10 inches in aperture and extends 1.5-feet in depth. It appears that this fracture is erosional in nature, with no evidence of connection to the

subsurface. The long axis is oriented approximately north, consistent with conjugate fracture directions. Due to its location on a hillside and the small aperture dimensions, it is unlikely that this feature serves as an infiltration pathway to the aquifer. No connection to the underlying bedrock, channeling or preferential flow was observed for this feature.

Structure

This SITE is located along the north edge of the Balcones Fault Zone and as such, exhibits a similar structural trend. The Balcones Fault Zone generally consists of a northeast-southwest trending, *en echelon* normal fault system, which juxtaposes Upper Cretaceous lithologies in the southeast with Lower Cretaceous lithologies in the northwest. As a result of this larger-scale, regional faulting, minor internal fault sequences and fractures exist within this zone which generally follow the same structural trend and accommodate localized displacement.

Based on review of historical aerial photographs, published maps (Garner et al., 1986 and Blome et al., 2005), and as previously discussed herein, the Mount Bonnell fault crosses the SITE, juxtaposing the Upper Glen Rose to the northwest and the Edwards Limestone to the southeast. The fault trends approximately northeast-southwest in approximately the same orientation as Camp Craft Road. As indicated on the *Site Geologic Map*, a conjugate fault trending approximately northwest-southeast is mapped at the southwest end of the SITE (Blome et al., 2005). Field indications of the Mount Bonnell fault included a few minor fractures observed in the Kirschberg Evaporite outcrops within the south portion of the SITE, and the change between the Edwards and Glen Rose Formations between the south and north side of Camp Craft Road is consistent with the mapped fault. No field evidence of the conjugate fault was observed.

As presented on the *Site Geologic Map*, two faults were identified that may potentially serve to enhance the transmission of surface runoff to the subsurface, as described below:

• Feature S-14: consists of the Mount Bonnell Fault shown on published geologic maps (Garner et al., 1986 and Blome et al., 2005), trending northeast-southwest and oriented in approximately the same direction as Camp Craft Road (measured azimuth of 39 degrees). This normal fault juxtaposes the Glen Rose Formation to the northwest and the Edwards Limestone downthrown to the southeast. It is also in proximity to and crosses the boundary between the Contributing and

Recharge Zones of the Edwards Aquifer. The fault was not directly observed, but was inferred from changes in rock outcrops across the SITE and review of published maps. Fault throw is estimated to range from approximately 200 to 350 feet based on the thickness of the Kainer Formation members.

• Feature S-15: consists of a conjugate fault associated with the Balcones Fault Zone mapped by Blome et al. (2005). The fault trends approximately northwest-southeast (measured azimuth of 345 degrees) and juxtaposes the Kainer Formation to the northeast with the overlying Person Formation to the southwest. Fault throw is estimated to be approximately 150 feet based on thickness of the offset members of the Edwards Limestone.

Manmade Features

As presented on the *Site Geologic Map*, thirteen manmade features were identified that may potentially serve to enhance the transmission of surface runoff to the subsurface. The features consist of a potable water line, storm water drainage, natural gas line, drainage culverts, and geotechnical borings, which meet the criteria for assessment as manmade features in bedrock. These utilities appear to service the commercial, residential, and school properties along Camp Craft Road and Eanes School Road.

- Features S-1 and S-2 consist of trenches for existing potable water utilities owned by Austin Water Works along Eanes School Road and Camp Craft Road.
- **Features S-3 and S-4** consist of trenches for an existing storm water drainage channel that appears to parallel Eanes School Road from north to south on the east side, and serve as storm water control associated with flooding of Eanes Creek. Just southeast of Camp Craft Road are three storm water manholes and a storm water retention pond assumed to be part of the storm water system.
- Features S-5 and S-6 consists of trenches for an existing natural gas utility along the south edge of Eanes School Road.

Although not directly observable, it is inferred that the trenches for these subgrade installations are backfilled in accordance with standard construction practices that include the use of structural fill soils (e.g., base course materials, limestone gravel, compacted clay soils, etc.) overlain by native or fill soils, depending upon location and surface improvements. The trenches were not observed in conjunction with any naturally-occurring recharge features. Although the backfilled trenches may exhibit somewhat greater relative infiltration rate than the surrounding soil/rock strata underlying the project boundaries, these manmade features are collectively classified as not sensitive, having a low potential of preferentially transmitting fluids into the Edwards Aquifer. This classification is based upon the point assignment criteria presented in the *Geologic Assessment Table (TCEQ-0585)* and professional judgment.

In addition to the utilities described herein, there are three drainage culverts within the SITE that were identified as manmade features in bedrock:

• **Feature S-7** consists of a drainage culvert at the Eanes Creek crossing of Camp Craft Road that serves as an avenue for water to flow underneath Camp Craft Road.

- **Feature S-8** consists of a drainage culvert at the Eanes Creek tributary crossing of Camp Craft Road. The creek bed to the north of Camp Craft Road was observed to contain standing water, which appeared to flow beneath the roadway past grates at either side. Water south of Camp Craft Road appears to flow along a drainage along the south side of the road and downhill toward the east into Eanes Creek.
- Feature S-9 consists of a drainage culvert at the Eanes Creek crossing of Eanes School Road. The culvert is underneath the Eanes School Road bridge over Eanes Creek and consists of a concrete culvert and angular rock pieces enclosed in metal wire. This channel serves as an avenue for water to flow through Eanes Creek underneath Eanes School Road, with associated improvements assumed to control flooding.

It appears that limited excavation was performed into the upper portion of the creek and tributary channels in order to install the culverts beneath the road surface; however, these surfaces have been covered in concrete. These features are collectively classified as not sensitive based on a lack of infiltration indicators, fractures, or other avenues for preferentially transmitting fluids into the Edwards Aquifer.

Features S-10 through S-13 consist of geotechnical borings installed by **RKI** as part of a geotechnical engineering study (**RKI**, 2022). They were reportedly installed with straight-flight augers to a maximum total depth of approximately 15 feet for all borings. Borings encountered native soils consisting of sandy clay and sandy soils at depths of 1 to 6 feet. Boring C-1 is underlain by limestone of the Glen Rose Formation, while Borings C-2, C-3, and C-4 are underlain by the Kainer Formation of the Edwards Limestone. No groundwater was observed during drilling operations. These materials are consistent with mapped soil and rock types. These features are collectively classified as not sensitive as they have been plugged and no longer exist.

Potential for Fluid Migration to the Edwards Aquifer

Based on a review of the SITE geology, topography and drainage conditions, and the results of our mapping efforts, the overall potential for fluid movement (i.e. surface-derived flow) to the Edwards Aquifer via infiltration is considered to be low to moderate. The following assessment findings support this conclusion:

- The majority of the SITE is composed of existing roadways with impervious pavements and associated drainage improvements.
- The SITE generally exhibits surface soils ranging in thickness from 0.5 to 5 feet. The Brackett and Volente soils, classified as Hydrologic Soil Group C, have a slow published infiltration rate, which inhibits rapid percolation or rainfall or runoff.
- There were no natural karst features observed in the vicinity of any the observed manmade features, reducing the potential for rapid infiltration. Manmade features present at the SITE (Features S-1 through S-13) are collectively classified as not sensitive based on consideration of construction details and application of point assignment criteria and professional judgment.
- Infiltration along the faults (*Features S-14* and *S-15*) likely occurs, however these are classified as not sensitive within SITE boundaries based upon the lack of discrete recharge openings along the

fault traces, and inferred low relative infiltration rate of overlying soil cover and/or pavement improvements.

Given the presence of karst-bearing formations (i.e. particularly the Person and Kainer Formations), it is possible that karst features are present in the shallow subsurface. If features are discovered in conjunction with future phases of land development (i.e., earthwork, excavation), it is recommended that a qualified geoscientist be consulted to assess, determine the level of sensitivity, and provide recommendations for protective measures, if warranted.

References

- Blome et al., 2005, Geologic Map of the Edwards Aquifer Recharge Zone, South-Central, Texas. United States Geological Survey (USGS).
- City of Austin, 2017, City of Austin's Geographic Information Systems (GIS) interactive web map. https://www.austintexas.gov/GIS/PropertyProfile/, accessed November 1, 2022.
- Dannenbaum Engineering Company Austin, LLC, 2019, Record Drawings Travis County Water Control & Improvement District No. 10 Eanes School Road Waterline Improvements, West Lake Hills, Texas 78746.
- Federal Emergency Management Agency (FEMA), 2020, National Flood Insurance Program, Flood Insurance Rate Map, Travis County Unincorporated Areas, Texas; Federal Emergency Management Agency, Panels 48453C0440J and 48453C0445K.
- Fisher, W. L., 1974, Geologic Atlas of Texas Austin Sheet; Bureau of Economic Geology, The University of Texas at Austin, Austin, Texas.
- Garner, L. E., Young, K. P., Rodda, P. U. Dawe, G.L., and Rogers, M. A., 1986, Geologic Map of the Austin Area, Texas; The University of Texas at Austin, Austin, Texas.
- Google Earth[™], January 1995, April 2002, December 2002, March 2003, November 2003, October 2005, April 2006, February 2007, February 2008, July 2008, February 2009, November 2009, March 2011, August 2012, July 2013, October 2013, November 2013, October 2014, December 2014, May 2015, July 2015, February 2016, January 2017, February 2017, October 2017, January 2018, November 2019, March 2020, April 2020, March 2021, June 2021, January 2022, March 2022, and July 2022.
- Natural Resources Conservation Service (NRCS), 2019, Web Soil Survey (WSS), United States Department of Agriculture (USDA) / National Cooperative Soil Survey.
- Raba Kistner (RKI), 2022. Geotechnical Engineering Study for Eanes Creek Low Water Crossing near Eanes School Road and Camp Craft Road, West Lake Hills, Texas. Prepared for K Friese + Associates, Inc., RKI Project No. AAA22-022-00, March 23, 2022.
- Texas Commission on Environmental Quality (TCEQ) Edwards Aquifer Protection Program, 1998, Edwards Aquifer Recharge Zone Map, Austin West Quadrangle; TNRCC, September 1998.
- Texas Water Development Board (TWDB), Water Data Interactive (WDI) Groundwater Data Viewer, https://www2.twdb.texas.gov/apps/WaterDataInteractive/GroundwaterDataViewer/?map=sdr, accessed November 10, 2022.
- United States Geological Survey (USGS), 2019, Austin West Quadrangle; USGS, Denver, Colorado.

United States Department of Agriculture (USDA), 1974, Soil Survey of Travis County, Texas; USDA / Soil Conservation Service / Texas Agricultural Experiment Station.

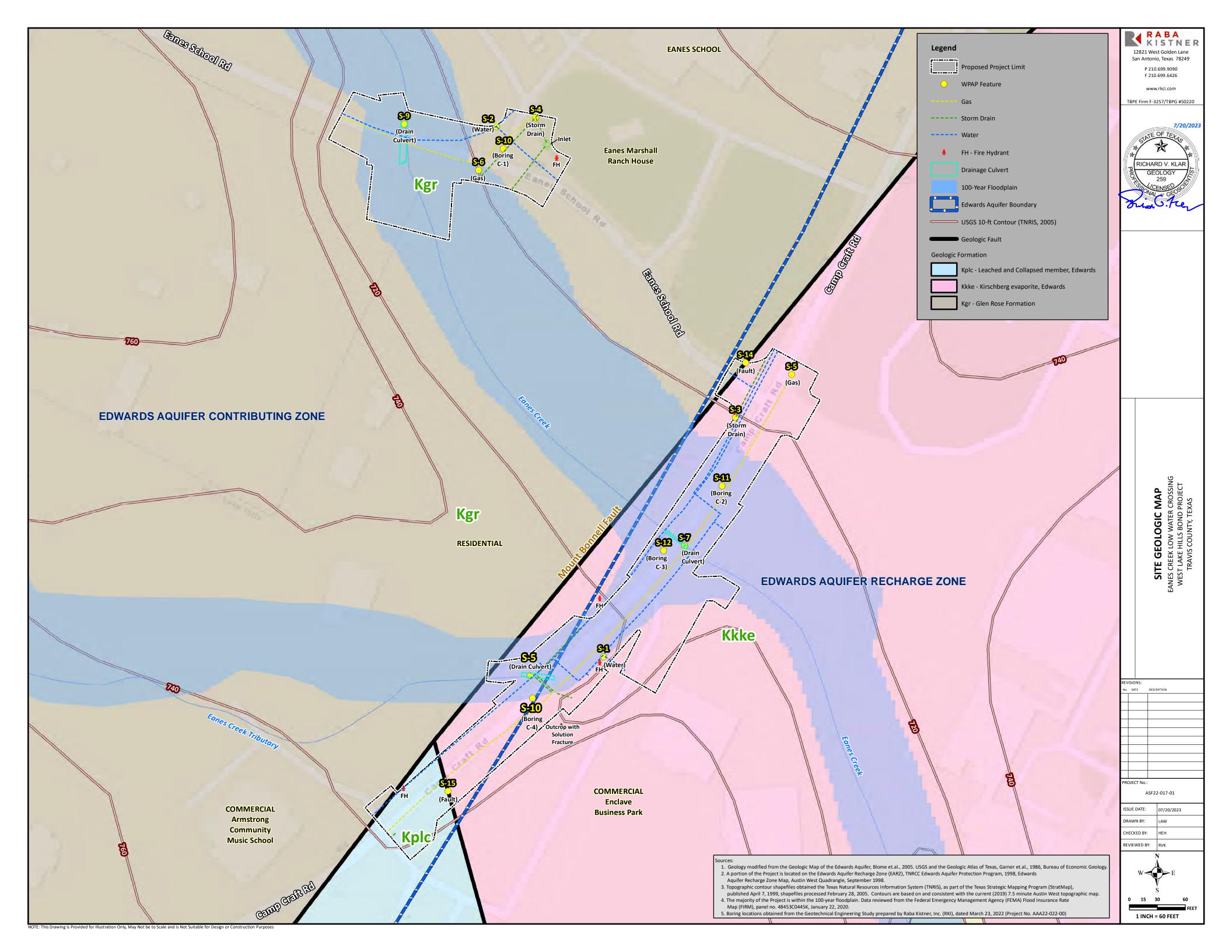
United States Department of Agriculture (USDA), 1986, Urban Hydrology for Small Watersheds; USDA / Natural Resource Conservation Service, Technical Release (TR-) 55, June 1986.

ATTACHMENT D

FEATURE POSITION TABLE (GPS COORDINATES) SITE GEOLOGIC MAP

July 20, 2023

FEATURE POSITION TABLE


Eanes Creek Low Water Crossings West Lake Hills Bond Projects Travis County, Texas

RKI Project No. ASF22-017-01

Feature Designation	Feature Type	Date Collected	North Latitude	West Longitude	UTM Northing (meters)	UTM Easting (meters)
S-1	Potable water line (Camp Craft Road)	10/27/2022	N30 16 46.88	W97 48 43.95	3350375	614241
S-2	Potable water line (Eanes School Road)	10/27/2022	N30 16 52.51	W97 48 45.19	3350548	614206
S-3	Storm water drainage (Camp Craft Road)	10/27/2022	N30 16 49.40	W97 48 42.31	3350453	614284
S-4	Storm water drainage (Eanes School Road)	10/27/2022	N30 16 52.61	W97 48 44.71	3350551	614219
S-5	Natural gas line (Camp Craft Road)	10/27/2022	N30 16 49.85	W97 48 41.61	3350467	614303
S-6	Natural gas line (Eanes School Road)	10/27/2022	N30 16 52.06	W97 48 45.43	3350534	614200
S-7	Drainage culvert	10/27/2022	N30 16 48.05	W97 48 42.95	3350411	614268
S-8	Drainage culvert	10/27/2022	N30 16 46.69	W97 48 44.85	3350369	614217
S-9	Drainage culvert	10/27/2022	N30 16 52.55	W97 48 46.32	3350549	614176
S-10	Geotechnical boring C-1	2/28/2022	N30 16 52.28	W97 48 45.11	3350541	614209
S-11	Geotechnical boring C-2	2/28/2022	N30 16 48.68	W97 48 42.48	3350431	614280
S-12	Geotechnical boring C-3	2/28/2022	N30 16 48.00	W97 48 43.20	3350410	614261
S-13	Geotechnical boring C-4	2/28/2022	N30 16 46.45	W97 48 44.82	3350362	614218
S-14	Fault	10/27/2022	N30 16 49.98	W97 48 42.18	3350471	614288
S-15	Fault	10/27/2022	N30 16 45.47	W97 48 45.86	3350331	614191

Notes:

- 1. Geographic coordinates are presented Degrees, Minutes, Decimal Seconds
- 2. Reference Datum is NAD 83
- 3. Data were collected utilizing a Garmin GPS 60cx Global Positioning System.
- 4. Horizontal Accuracy: RMS Value < 3 meter ground resolution
- 5. GPS data was collected by Heidi Harwick (**RKI** Project Professional).
- 6. GPS coordinates correlate to the points on the map for each feature.

Geologic Assessment

Texas Commission on Environmental Quality

For Regulated Activities on The Edwards Aquifer Recharge/transition Zones and Relating to 30 TAC §213.5(b)(3), Effective June 1, 1999.

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

	Print Name of Geologist: <u>Richard V. Klar, P.G.</u>	Telephone: <u>210-699-9090</u>
	Date:July 20, 2023	Fax: <u>210-699-6426</u>
	Representing: Raba Kistner, Inc., TBPG Firm #5 #6535 (Name of Company and TBPG or TBPE re	0220 on behalf of K Friese + Associates, TBPE Firm egistration number)
<	Signature of Geologist: RICHARD V KLAR GEOLOGY 259 CENSED SCIENCE RICHARD V KLAR GEOLOGY 259	7/20/23
	Regulated Entity Name: Westlake Dr Drainage	and Pavement Improvements
	Project Information	
	1. Date(s) of Geologic Assessment was perform	rmed: <u>October 27, 2022</u>
	2. Type of Project:	
	⊠ WPAP	☐ AST
	☐ SCS	UST

- 3. Location of Project:
 Recharge Zone
 Transition Zone
 Contributing Zone within the Transition Zone
- 4. Attachment A Geologic Assessment Table. Completed Geologic Assessment Table (Form TCEQ-0585-Table) is attached.
- 5. Soil cover on the project site is summarized in the table below and uses the SCS Hydrologic Soil Groups* (Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A, Soil Conservation Service, 1986). If there is more than one soil type on the project site, show each soil type on the Site Geologic Map or a separate soils map.

Table 1 - Soil Units, Infiltration Characteristics and Thickness

Soil Name Group * Thickness Brackett soils and 10 to 18 inches C Urban land, 12-30% slopes (BrF) Eckrant soils and 5 to 13 inches Urban land, 0-2% D slopes (TeA) Eckrant soils and 5 to 13 inches D Urban land, 5-18% slopes (TeE) Urban land and 6 to 24 inches С Brackett soils, 1-12% slopes (UuE)

*Soil Group Definitions (Abbreviated)

- A. Soils having a high infiltration rate when thoroughly wetted.
- B. Soils having a moderate infiltration rate when thoroughly wetted.
- C. Soils having a slow infiltration rate when thoroughly wetted.
- D. Soils having a very slow infiltration rate when thoroughly wetted

- 6. Attachment B Stratigraphic Column. A stratigraphic column showing formations, members, and thickness is attached. The outcropping unit, if present, should be at the top of the stratigraphic column. Otherwise, the uppermost unit should be at the top of the stratigraphic column.
- 7. Attachment C Site Geology. A narrative description of the site specific geology including any features identified in the Geologic Assessment Table, a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure(s), and karst characteristics is attached.

8.	Attachment D – Site Geologic Map(s). The Site Geologic Map must be the same s the applicant's Site Plan. The minimum scale is 1":400'.	cale as
	Applicant's Site Plan Scale: $1'' = \underline{100}'$ Site Geologic Map Scale: $1'' = \underline{100}'$ Site Soils Map Scale (if more than 1 soil type): $1'' = \underline{150}'$	
9.	Method of collecting positional data:	
	Global Positioning System (GPS) technology. Other method(s). Please describe method of data collection:	
10.	$\stackrel{ extstyle op}{ op}$ The project site boundaries are clearly shown and labeled on the Site Geologic Ma	ıp.
11.	Surface geologic units are shown and labeled on the Site Geologic Map.	
12.	Geologic or manmade features were discovered on the project site during the fiel investigation. They are shown and labeled on the Site Geologic Map and are descin the attached Geologic Assessment Table.	
	Geologic or manmade features were not discovered on the project site during the investigation.	field
13.	The Recharge Zone boundary is shown and labeled, if appropriate.	
	I known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.): If oplicable, the information must agree with Item No. 20 of the WPAP Application Sector There are(#) wells present on the project site and the location is shown and labeled. (Check all of the following that apply.) The wells are not in use and have been properly abandoned. The wells are not in use and will be properly abandoned. The well is in use and complies with 16 TAC Chapter 76. There are no wells or test holes of any kind known to exist on the project site.	ion.
Ac	ministrative Information	
	Submit one (1) original and one (1) copy of the application, plus additional copies a needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.	

ATTACHMENTS

ATTACHMENT A

GEOLOGIC ASSESSMENT TABLE (TCEQ-0585-TABLE) COMMENTS TO GEOLOGIC ASSESSMENT TABLE SOIL PROFILE SOILS MAP

Westlake Dr. Drainage and Pavement Improvements - West Lake Hills Bond Project Travis County, Texas **GEOLOGIC ASSESSMENT TABLE** PROJECT NAME: (RKI Project No. ASF22-017-01) LOCATION FEATURE CHARACTERISTICS **EVALUATION PHYSICAL SETTING** 1A 1B * 1C* 4 5 5A 6 8A 8B 11 DIMENSIONS (FEET) RELATIVE TREND DENSITY APERTURE FEATURE CATCHMENT AREA LATITUDE LONGITUDE FORMATION SENSITIVITY TOPOGRAPHY FEATURE TYPE POINTS DOM INFILL INFILTRATION TOTAL (DEGREES) (ACRES) (NO/FT (FEET) RATE N30 17 30.25 W97 47 57.62 30 2,146 3 S-1 MB (W) Kek, Kgr ~6-8 Χ 6 36 Floodplain S-2 N30 17 32.76 W97 47 53.93 30 3 ~8-10 Χ 38 \checkmark Floodplain MB (SS) Kek 1,116 8 \checkmark S-3 N30 17 31.72 W97 47 55.09 MB (COMM) 30 2 Χ Floodplain Kek 290 ~2-4 6 36 ✓ S-4 N30 17 30.16 W97 47 58.08 MB (G) 30 Kek 1,841 2 ~2-4 Х 6 36 Floodplain S-5 N30 17 30.19 W97 47 58.67 MB (D) 30 Kgr, Kek 40 50 ~1-2 Χ 6 36 Streambed N30 17 34.11 W97 47 52.35 F ✓ S-6 F 20 Kgr, Kek 465 10 NE-SW 10 38 Floodplain

* DATUM: NAD83

Manmade Features in Bedrock (MB): W = water, SS = sanitary sewer, COMM = communications, G = gas, D = drainage culvert

Formation: Kgr = Glen Rose Formation, Kek = Kainer Formation (Edwards Limestone)

2A TYPE	TYPE	2B POINTS
С	Cave	30
SC	Solution cavity	20
SF	Solution-enlarged fracture(s)	20
F	Fault	20
О	Other natural bedrock features	5
MB	Manmade feature in bedrock	30
SW	Swallow hole	30
SH	Sinkhole	20
CD	Non-karst closed depression	5
Z	Zone, clustered or aligned features	30

	8A INFILLING
N	None, exposed bedrock
С	Coarse - cobbles, breakdown, sand, gravel
0	Loose or soft mud or soil, organics, leaves, sticks, dark colors
F	Fines, compacted clay-rich sediment, soil profile, gray or red colors
V	Vegetation. Give details in narrative description
FS	Flowstone, cements, cave deposits
Х	Other materials: Backfill consisting of native soils and granular bedding materials (Features S-1 through S-4);
	concrete for storm drains and drainages (Feature S-5)
	12 TOPOGRAPHY
Cliff,	Hilltop, Hillside, Drainage, Floodplain, Streambed

I have read, I understood, and I have followed the Texas Natural Resource Conservation Commission's Instructions to Geologists. The information presented here complies with that document and is a true representation of the conditions observed in the field.

My signature certifies that I am qualified as a geologist as defined by 30 TAC 213.

RICHARD V. KLAR
GEOLOGY
STANG
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY

Date 7/20/2023

Sheet 1 of 1

TCEQ-0585-Table (Rev. 10-01-04)

COMMENTS TO GEOLOGIC ASSESSMENT TABLE Westlake Drive Drainage and Pavement Improvements West Lake Hills Bond Projects Travis County, Texas

The locations of the following features are indicated on the *Site Geologic Map* provided as *Attachment D* of this report.

Manmade Features in Bedrock

Feature S-1

Feature S-1 consists of trenches for the existing potable water utility owned by the Austin Water Works along Westlake Drive. The locations of these trenches are based on plans provided by the project civil engineer (PBS&J, 2005) as well as field observations including a manhole, valves, and hydrants located along both sides of Westlake Drive. Based on the provided plans, the water utility consists of 6-, 12-, and 14-inch lines installed at depths of approximately 6.5 feet. It is assumed that trenches hosting this utility are installed to depths ranging from approximately 6 to 8 feet terminating in bedrock. The combined length of the trenches within the SITE is estimated to be 2,146 feet.

Feature S-2

Feature S-2 consists of a trench for a sanitary sewer utility owned by the West Lake Hills Wastewater Collection System along the west and central portion of Westlake Drive and the south portion of Redbud Trail. The location of this trench is based on plans provided by the project civil engineer (PBS&J, 2005) as well as field observations including two sewer manways along the south side of Westlake Drive east of Redbud Trail. It is assumed that the trench is installed to depths of approximately 8 to 10 feet terminating in bedrock. The length of the trench within the SITE is estimated to be approximately 1,116 feet.

Feature S-3

Feature S-3 consists of a trench for an existing communications utility owned by AT&T. The location of this trench is based on a manhole and underground cable box along the south side of Westlake Drive to the west of Redbud Trail. It is inferred that the trench hosting the utility line is installed to depths of approximately 2 to 4 feet terminating in bedrock. The length of the trench observed within the SITE is estimated to be 290 feet, but as utility plans were not available, it is possible that the length of this utility is more extensive than estimated.

Feature S-4

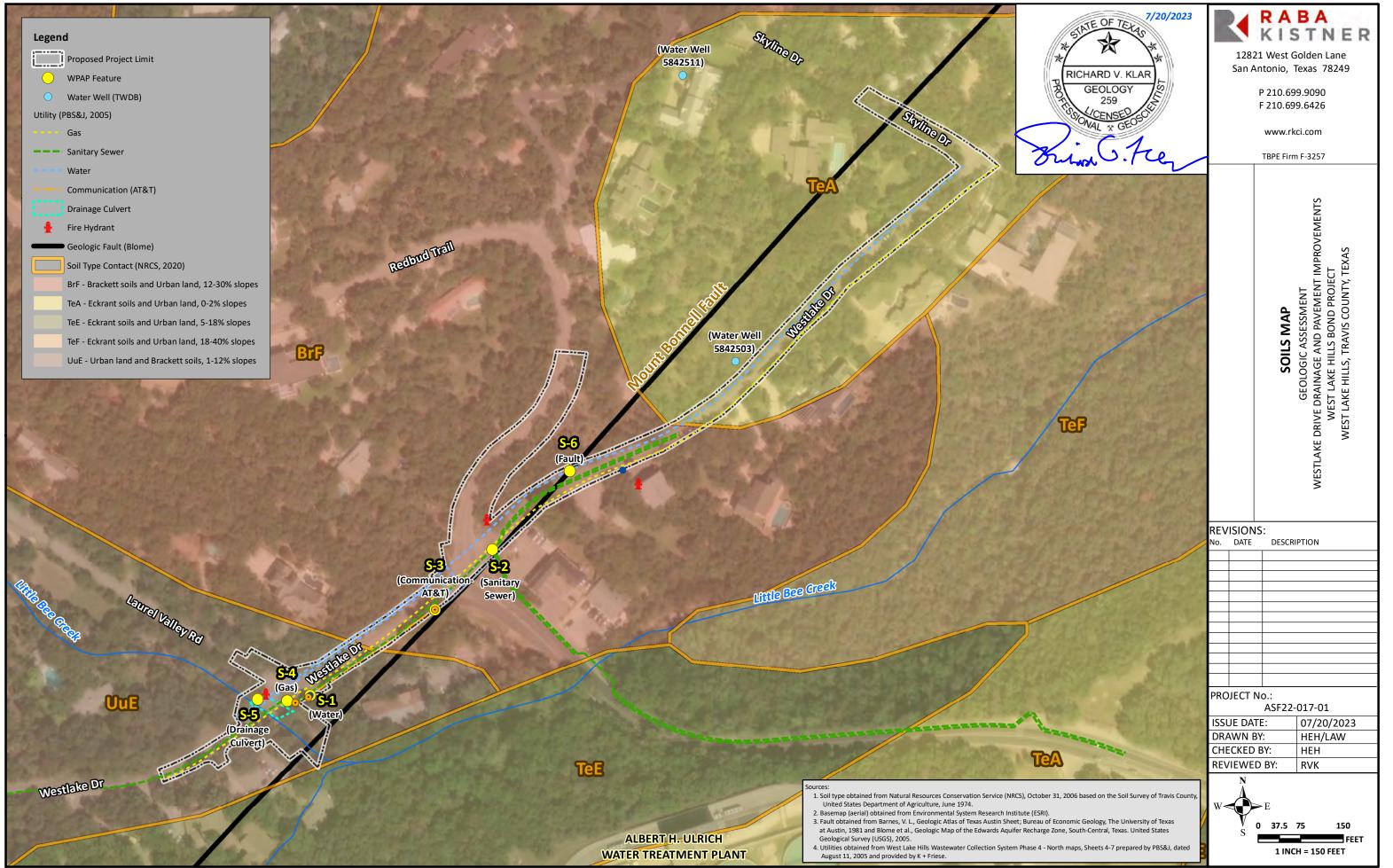
Feature S-4 consists of a trench for an existing natural gas utility along the south edge of Westlake Drive. It is assumed that this utility is owned by Texas Gas, as they are the provider for the City of West Lake Hills. The location of this trench was identified based on review of plans provided by the project civil engineer (PBS&J, 2022). It is inferred that the trench is installed to depths of approximately 2 to 4 feet terminating in bedrock. The length of the trench within the SITE is estimated to be approximately 1,841 feet.

Feature S-5

Feature S-5 consists of a drainage culvert at the Little Bee Creek crossing of Westlake Drive. It consists of three corrugated metal culverts, each approximately 3-feet in diameter that cross the paved road in the direction of Little Bee Creek to the northwest-southeast. The culverts are encased in concrete, and appear to extend into the bedrock of the creek channel. The culverts extend approximately 40 feet within the SITE.

Faults

Feature S-6


Feature S-6 consists of a normal fault, referred to as the Mount Bonnell fault on published geologic maps (Fisher, 1974; Garner et al., 1986, and Blome et al., 2005), which trends northeast-southwest and is oriented in approximately the same direction as Westlake Drive (measured in the northeast-southwest direction at approximately 43 degrees within the SITE). The fault location was inferred from fractures observed along the north edge of Westlake Drive just east of Redbud Trail, from changes in rock outcrops across the SITE, and review of published maps. This fault juxtaposes the Glen Rose Formation to the northwest and the Edwards Limestone to the southeast. The fault is approximately 465 feet long within the SITE. Based on formations outcropping at the surface and published sources, the fault throw is estimated to be approximately 200 feet within the SITE vicinity.

SOIL PROFILE Westlake Drive Drainage and Pavement Improvements West Lake Hills Bond Projects Travis County, Texas

SOIL SERIES	THICKNESS ON SITE	DESCRIPTION
Brackett soils and Urban land	10-18 inches	Brackett soils and Urban land, 12 to 30 percent slopes (BrF). The surface layer is a light brownish-gray gravelly clay loam or gravelly loam about up to 6 inches thick. The next layer is 10 to 12 inches of pale-brown clay loam, underlain by interbedded limestone and marl. Brackett soils make up about 48 percent, urban land about 20 percent, and rock outcrop and other soils about 32 percent. Permeability is moderately slow, and the available water capacity is low. Soils are well drained with very high runoff.
Eckrant soils and Urban land	5-13 inches	Eckrant soils and Urban land, 0 to 2 percent slopes (TeA). Consist of 75 percent Eckrant and similar soils and 20 percent urban land that occupies long, broad ridges. The surface layer has up to about 5 inches of very stony clay with 5 to 8 inches of extremely flaggy clay below, and is underlain by bedrock. Undisturbed areas of Eckrant soils have an 8-inch thick surface layer of dark grayish-brown clay or clay loam. The underlying material is limestone. Soils are well drained with medium runoff.
Eckrant soils and Urban land	5-13 inches	Eckrant soils and Urban land, 5 to 18 percent slopes (TeE). Consist of 70 percent Eckrant and similar soils and 25 percent urban land that occupies ridges. The surface layer has up to about 5 inches of very stony clay with 5 to 8 inches of extremely flaggy clay below, and is underlain by bedrock. Eckrant soils have a surface layer of grayish-brown clay or clay loam, about 8 inches thick, that overlies limestone. Stones are on the surface and in the soil. The basic soil characteristics are not appreciably reshaped in urbanization. Soils are well drained with high runoff.
Urban land and Brackett soils	6-24 inches	Urban land and Brackett soils, 1 to 12 percent slopes (UuE). Consists of 40 percent urban land and 35 percent Brackett and similar soils. Urban land consists of up to 10 inches of cemented material, with soils consisting of up to 6 inches of gravelly clay loam underlain by 6 to 18 inches of clay loam with bedrock below.

The preceding table was prepared based on information provided in the *Soils Survey of Travis County, Texas (January 1974)* and the *NRCS Web Soil Survey (2019)* in addition to field observations. As presented on the attached *Site Soils Map*, native soils mapped at the SITE consist of the following units: Brackett soils and Urban land, 12 to 30 percent slopes (BrF); Eckrant soils and Urban land, 0 to 2 percent slopes (TeA); Eckrant soils and Urban land, 5 to 18 percent slopes (TeE); and Urban Land and Brackett soils, 1 to 12 percent slopes (UuE). The southwest end of the Westlake Drive is underlain by UuE, with some TeE on its south edge. The middle of Westlake Drive, including Redbud Trail, is underlain by BrF, with TeA underlying Skyline Drive and the northeast end of Westlake Drive.

Soils mapped for the SITE are classified as Group C and D soils, which have a low to moderate capacity to transmit infiltrating precipitation. Soils reportedly consist of 5 to 24 inches of gravelly loam, gravelly clay loam, clay loam, and stony clay with published permeability values of 0.06 to 1.98 inches per hour. Urban land consists of up to 10 inches of impervious manmade materials in the vicinity of paved roadways, sidewalks, and parking lots. Brackett soils are associated with the upland areas along Westlake Drive, with Eckrant soils adjacent to Little Bee Creek. Native soils and potential contacts between soil types were observed in conjunction with field reconnaissance efforts except in areas with existing residential and roadway development.

ATTACHMENT B STRATIGRAPHIC COLUMN

STRATIGRAPHIC COLUMN Westlake Drive Drainage and Pavement Improvements West Lake Hills Bond Projects Travis County, Texas

STRATIGRAPHIC FORMATION		THICKNESS	DESCRIPTION	
Edwards Limestone – Kainer Formation (Kek)		260-310 feet	(See descriptions below)	
	Grainstone member (Kkg)**	50-60 feet	Unit consists of <i>miliolid</i> grainstone, mudstone to wackestone and chert. Identified in the field by white crossbedded grainstone. Not exposed within the SITE.	
Edwards Limestone (Ked)*	Kirschberg Evaporite member (Kkke)**	50-60 feet	Unit includes highly altered crystalline limestone, chalky mudstone, and chert. Leaching of evaporite layers resulted in a boxwork porosity with neospar and travertine frames. Patchy outcrops along the south side of Westlake Drive within the SITE.	
	Dolomite member (Kkd)**	110-130 feet	Unit consists of mudstone to grainstone, crystalline limestor and chert. Identified in the field by massively bedded, light groutcrops, with abundant <i>Toucasia</i> . Not exposed within the SITE.	
Walnut Basal Nodular Formation Member (Kwa)* (Kkbn)**		50-60 feet	Unit consists of shaly, nodular limestone, mudstone and <i>miliolid</i> grainstone. Identified in the field by massively bedded, nodular, and mottled outcrops, with abundant <i>Exogyra texana</i> . Not exposed within the SITE.	
Glen Rose Formation (Kgr)*		± 380 feet	(See descriptions below)	
Upper Glen Rose		± 220 feet	Conformably underlies the Kainer Formation of the Edwards and serves as the lower confining unit of the Edwards Aquifer. Consists of alternating beds of yellowish-tan, medium-bedded limestone and argillaceous limestone with minor evaporate layers. Surface cavern development associated with faults and fractures and some water production at evaporate beds is considered a rare occurrence. Field identification is commonly associated with stair-step topography that forms through differential erosion of the alternating limestone and marl beds, and the presence of fossilized ripple marks and sparse casts of <i>Tylostoma</i> sp., <i>Turitella</i> sp., <i>Protocardio texana</i> , and the foraminiferan <i>Orbitolina minuta</i> . Classified hydrologically as having mostly non-fabric selective porosity and generally low permeability. Conformably overlies the bivalve-rich <i>Corbula</i> bed at the top of the Lower Glen Rose. Patchy outcrops and float rock along the north edge of Westlake Drive and Redbud Trail within the SITE.	

Note: Stratigraphic Column adapted from Fisher (1974)* and Blome et al., (2005)**.

ATTACHMENT C NARRATIVE OF SITE SPECIFIC GEOLOGY

SITE GEOLOGY NARRATIVE West Lake Hills Bond Projects Westlake Drive Drainage and Pavement Improvements Travis County, Texas

Introduction

The following is a site-specific discussion of existing geological conditions and potential recharge features for the Edwards Aquifer identified within the project site, which is part of the West Lake Hills Drainage Master Plan Phase II bond package and includes improvements along portions of Westlake Drive, Redbud Trail, Laurel Valley Road, and Skyline Drive in the City of West Lake Hills, Travis County, Texas (hereinafter referred to as the SITE). This assessment was performed by **Raba Kistner, Inc. (RKI)** for K Friese + Associates, pursuant to applicable Edwards Aquifer Protection Program (EAPP) Rules as specified in *Title 30 of the Texas Administrative Code, Section 213 (30 TAC §213, effective April 24, 2008)*. This assessment report is in the format required by the Texas Commission on Environmental Quality (TCEQ) for the Geologic Assessment and was prepared in accordance with the revised *Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones (TCEQ-0585)*, which are applicable to submittals received by the TCEQ after October 1, 2004.

This geologic assessment report documents conditions observed by **RKI** within the SITE boundaries on October 27, 2022.

Site Description

Site Location. The SITE is consists of portions of Westlake Drive, Redbud Trail, Laurel Valley Road, and Skyline Drive in the City of West Lake Hills. The SITE currently includes paved right-of-way (ROW) with adjacent roadside ditches and culverts at the crossing of Little Bee Creek, which flows across Westlake Drive in the southwest portion of the SITE. It is primarily a residential area located within the City of West Lake Hills, which is part of the Austin Metropolitan Area. Based on review of official maps published by the Texas Commission on Environmental Quality (TCEQ), the SITE is located entirely within the Edwards Aquifer Recharge Zone (EARZ). Given its location within the EARZ, performance of a geologic assessment is required to facilitate planned construction activities pursuant to applicable Edwards Aquifer Protection Program (EAPP) rules as specified in *Title 30 of the Texas Administrative Code, Section 213 (30 TAC 213, effective April 24, 2008)*.

As presented on the attached *Site Geologic Map*, adjacent properties include commercial, municipal, and residential properties. The Westlake Fire Department and City Hall are located along the Westlake Drive as well as commercial properties including a gas station. The Albert H. Ulrich Water Treatment Plant is also in proximity to the SITE, located approximately 500 feet to the south. One domestic water supply well completed in the Trinity Aquifer was plotted along Westlake Drive, but it was not identified during field reconnaissance. According to the Texas Water Development Board (TWDB), the wellhead is located on private property approximately 60 feet northwest of Westlake Drive, approximately 0.1 mile from Redbud Trail. The well was reportedly drilled in 1955 to a depth of 987 feet.

Topography and Drainage. Topographic contours on the U.S. Geological Survey (USGS, 2019) 7.5-Minute Series Topographic map (*Austin West Quadrangle*) were reviewed to evaluate the general surface conditions and drainage patterns, along with more detailed 2-foot topographic contours obtained from the City of Austin's Geographic Information Systems (GIS) interactive web map (City of Austin, 2017). The SITE is within an area of moderately sloping topography, and consists of a low-lying area just above or within the floodplain associated with Little Bee Creek. The maximum elevation within the SITE is approximately 698 feet above mean seal level (amsl) in the northeast end of the SITE on Skyline Drive, and slopes to a minimum of approximately 632 feet amsl at the southwest end where Laurel Valley intersects Westlake Drive. As indicated by topographic contours presented on the **Site Geologic Map**, the local surface drainage patterns are generally to the south towards Little Bee Creek, which transects Westlake Road and Redbud Trail. Ultimate flow is to the Colorado River located approximately 0.7 mile to the east.

Based on review of the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM) Panel 48453C445K (effective January 1, 2020) a portion of SITE along Westlake Drive in proximity to Little Bee Creek is located in the 100-year floodplain. The Little Bee Creek floodplain is designated as a special flood hazard area in Zone AE, a regulatory floodway.

Historical Property Use. Although research pertaining to past SITE operations and historical land use activities was beyond the scope of this assessment, historical aerial imagery was reviewed to evaluate historical land use and the presence of lineations that could indicate the presence of normal faulting. The following aerial photographs were reviewed using Google EarthTM: 1995, 2002, 2003, 2005-2009, and 2011-2022. The 1995 aerial photograph indicates the SITE area to include residential structures along Laurel Valley Drive, Redbud Trail, and Skyline Drive, with commercial and municipal structures along the south side of Westlake Drive, as well as the water treatment plant to the south, and wooded areas surrounding the SITE. The 2002 through 2003 aerial photographs show development of additional residential properties at the east end of Westlake Drive, and the 2003 through 2022 aerial photographs depict the SITE essentially the same as it appears today.

Classification of Recharge Features: As further described herein, there were no recharge features attributed to karstification of limestone terrain and/or surface erosional processes identified within SITE boundaries. Features identified and discussed below also include five manmade features (i.e., water, sanitary sewer, communications, and natural gas utility lines, and drainage culverts), in addition to one normal fault. The significance of these features was assessed using definitions and guidance provided in *Instructions to Geologists (TCEQ-0585-Instructions, revised October 1, 2004)*. All features within the SITE that met the criteria presented in this reference were mapped. The characteristics of all mapped features and the assessments of these features, as defined by the TCEQ, are presented in the attached *Geologic Assessment Table (TCEQ-0585)*.

Stratigraphy

As presented in the attached *Stratigraphic Column*, information pertaining to the lithologies and thickness of geologic units underlying the SITE was primarily taken from the *Bureau of Economic Geology, Geologic Map of the Austin Area, Texas* (Garner et al., 1986) and the *Geologic Map of the Edwards Aquifer Recharge Zone, South-Central Texas* (Blome et al., 2005).

The SITE is underlain by the Upper Glen Rose Formation and members of the Edwards Limestone. General descriptions of the Kainer Formation, which constitutes the lower part of the Edwards Limestone, as well as a description of the Glen Rose Formation, are provided below:

- The Kainer Formation (Kek) is subdivided into four members as follows: (i) Grainstone member grainstone, mudstone to wackestone, and chert; (ii) Kirschberg Evaporite member highly altered crystalline limestone with chalky mudstone and chert; (iii) Dolomite member crystalline limestone consisting of mudstone to grainstone; and (iv) Basal Nodular member shaly nodular limestone, mudstone, and grainstone.
- The Glen Rose Formation (Kgr) is commonly divided into the upper and lower members as follows:
 (i) Upper Glen Rose thinly bedded fine-grained limestone, dolomite, and marl; and (ii) Lower Glen Rose fossiliferous limestone, dolomite, marl, and evaporites with *Corbula* bed at the top.

Based on field mapping observations and review of published references, the SITE is underlain by the Kainer Formation of the Edwards Limestone and the Glen Rose Formation, as presented on the *Site Geologic Map*. A normal fault transects the SITE in approximately the same orientation as Westlake Drive, with the Kainer Formation to the southeast, and the Glen Rose Formation to the northwest. The Kirschberg Evaporite Member of the Kainer Formation underlies the majority of Westlake Drive, with the Dolomite Member of the Kainer Formation at the southwest portion, in the vicinity of Little Bee Creek. Patchy outcrops of the Kainer Formation were observed in Little Bee Creek south of Westlake Drive, as well as vuggy float rock of the Edwards Limestone along the south edge of Westlake Drive. The Glen Rose Formation underlies the north edge of Westlake Drive, as well of portions of Laurel Valley Road, Redbud Trail, and the north terminus of Skyline Drive within the SITE. Patchy outcrops of the Glen Rose Formation as well as float rock was observed in Little Bee Creek north of Westlake Drive, as well as along Redbud Trail. Exposed bedrock was observed where not covered by concrete, roadways, or landscaping associated with development of the SITE. Field observations were consistent with published geologic maps.

Structure

This SITE is located along the north edge of the Balcones Fault Zone and is expected to exhibit a similar structural trend. The Balcones Fault Zone generally consists of a northeast-southwest trending, *en echelon* normal fault system, which juxtaposes Upper Cretaceous lithologies in the southeast with Lower Cretaceous lithologies in the northwest. As a result of this large-scale regional faulting, minor internal fault sequences and fractures exist within this zone which generally follow the same structural trend and accommodate localized displacement.

Based on review of historical aerial photographs, published maps, and as previously discussed herein, one fault, named the Mount Bonnell Fault is located within the boundaries of the SITE. As presented on the *Site Geologic Map*, the Mount Bonnell Fault trends approximately northeast-southwest in approximately the same orientation as Westlake Drive within the SITE (Garner et al., 1986 and Blome et al., 2005). Field indicators of this fault included a few minor fractures observed on the north edge of Westlake Drive just east of Redbud Trail, and the change between the Kainer Formation and Glen Rose Formation between the south and north side of Westlake Drive, which are consistent with the mapped fault.

As this fault may potentially serve to enhance the transmission of surface runoff to the subsurface, it was designated herein as *Feature S-6*.

This normal fault juxtaposes the Glen Rose Formation to the northwest and the Edwards Limestone downthrown to the southeast. It also serves as the boundary between the contributing and recharge zones of the Edwards Aquifer. Fault throw is estimated to be approximately 200 feet based on the thickness of the Kainer Formation members. The fault was not directly observed but was inferred from fractures along Westlake Drive, changes in rock outcrops across the SITE, and review of published maps and well reports (Garner et al., 1986, Blome et al., 2005, and TWDB, 2022).

Manmade Features

As presented on the *Site Geologic Map*, five manmade features were identified that may potentially serve to enhance the transmission of surface runoff to the subsurface. The features consist of utility trenches associated with a potable water line, sanitary sewer line, communications line, and natural gas line, as well as a drainage culvert, which meet the criteria for assessment as manmade features in bedrock.

With the exception of the communications utility, information regarding the locations of the existing utility trenches were taken from drawings prepared by the civil engineer, PBS&J (2005) provided to **RKI** by K Friese + Associates on November 17, 2022 in addition to field observations of manway access points or valves. The location of the communications utility is inferred from field observations including a manhole and underground cable boxes. These utilities appear to service the commercial, municipal, and residential properties along Westlake Drive.

- **Feature S-1** consists of trenches for existing potable water utilities owned by the Austin Water Works along Westlake Drive.
- Feature S-2 consists of a trench for a sanitary sewer utility owned by the West Lake Hills Waste Water Collection system along the west and central portion of Westlake Drive and the south portion of Redbud Trail.
- **Feature S-3** consists of a trench for an existing communications utility owned by AT&T along a portion of Westlake Drive.
- **Feature S-4** consists of a trench for an existing natural gas utility owned by Texas Gas along the south edge of Westlake Drive.

Although not directly observable, it is inferred that the trenches for these subgrade installations are backfilled in accordance with standard construction practices that include the use of structural fill soils (e.g., base course materials, limestone gravel, compacted clay soils, etc.) overlain by native or fill soils, depending upon location and surface improvements. The trenches were not observed in conjunction with any naturally-occurring recharge features. Although the backfilled trenches may exhibit somewhat greater relative infiltration rate than the surrounding soil/rock strata underlying the SITE boundaries, these manmade features are collectively classified as not sensitive, having a low potential of preferentially transmitting fluids into the Edwards Aquifer. This classification is based upon the point assignment criteria presented in the *Geologic Assessment Table (TCEQ-0585)* and professional judgment.

Feature S-5 is a drainage culvert that serves as a means for water in Little Bee Creek to flow underneath Westlake Drive at the intersection with Laurel Valley Road. The presence of float rock, mud, and moss deposits in Little Bee Creek south of Westlake Drive, as well as the weathered texture of the rocks in the creek bed, plus mud and sand deposits, provide indicators of past flooding events. A few vugs were identified in the Kainer Formation on the south side of Westlake Drive, however, no fractures or indicators of infiltration were identified. It appears that some excavation may have been performed into the upper portion of the creek channel in order to install the culverts beneath the road surface, however these surfaces have been covered in concrete. This feature is classified as not sensitive based on a lack of infiltration indicators, fractures, or other avenues for preferentially transmitting fluids into the Edwards Aquifer.

Potential for Fluid Migration to the Edwards Aquifer

Based on a review of the SITE geology, topography and drainage conditions, and the results of our mapping efforts, the overall potential for fluid movement (i.e. surface-derived flow) to the Edwards Aquifer via infiltration is considered to be low to moderate. The following assessment findings support this conclusion:

- The majority of the SITE is comprised of paved right-of-way developed with impervious pavements and associated improvements.
- The majority of the SITE is overlain by surface soils ranging in thickness from approximately 5 to 24 inches. The Brackett and Eckrant soils, classified as Hydrologic Soil Groups C and D, have a slow to moderate infiltration rate with high runoff potential when thoroughly wet, and have a slow rate of water transmission.
- There were no natural karst features observed in the vicinity of any the observed manmade features, reducing the potential for rapid infiltration. Manmade features present at the SITE are collectively classified as not sensitive based on consideration of construction details and application of point assignment criteria and professional judgment.
- Infiltration along the fault (Feature S-6) is expected, however it is classified as not sensitive within SITE boundaries, based upon the lack of discrete recharge openings along the fault trace, and inferred low relative infiltration rate of overlying soil cover and/or drainage and pavement improvements.

Given the presence of karst-bearing formations (i.e. the Kainer and Glen Rose Formations), it is possible that karst features are present in the shallow surface. If features are discovered in conjunction with future phases of land development (i.e., earthwork, excavation), it is recommended that a qualified geoscientist be consulted to assess, determine the level of sensitivity, and provide recommendations for protective measures, if warranted.

References

- Blome, C. D., Faith, J. R., Pedraza, D. E., Ozuna, G. B., Cole, J. C., Clark, A. K., Small, T. A., and Morris, R. R., 2005, Geologic Map of the Edwards Aquifer Recharge Zone, South-Central, Texas; United States Geological Survey (USGS).
- City of Austin, 2017, City of Austin's Geographic Information Systems (GIS) interactive web map. https://www.austintexas.gov/GIS/PropertyProfile/, accessed November 1, 2022.
- Federal Emergency Management Agency (FEMA), 2020, National Flood Insurance Program, Flood Insurance Rate Map, Travis County Unincorporated Areas, Texas; Federal Emergency Management Agency, Panel 48453C0445K.
- Fisher, W. L., 1974, Geologic Atlas of Texas Austin Sheet; Bureau of Economic Geology, The University of Texas at Austin, Austin, Texas.
- Garner, L. E., Young, K. P., Rodda, P. U. Dawe, G.L., and Rogers, M. A., 1986, Geologic Map of the Austin Area, Texas; The University of Texas at Austin, Austin, Texas.
- Google Earth[™], January 1995, April 2002, December 2002, March 2003, November 2003, October 2005, April 2006, February 2007, February 2008, July 2008, February 2009, November 2009, March 2011, August 2012, July 2013, October 2013, November 2013, October 2014, May 2015, July 2015, February 2016, March 2016, January 2017, February 2017, January 2018, November 2019, March 2020, April 2020, March 2021, June 2021, January 2022, March 2022, and July 2022.
- Natural Resources Conservation Service (NRCS), 2019, Web Soil Survey (WSS), United States Department of Agriculture (USDA) / National Cooperative Soil Survey.
- PBS&J, 2005, Westlake Hills Waste Water Collection System Phase 4 North. Drawings prepared by PBS&J of Austin, Texas, prepared for the Lower Colorado River Authority, dated August 11, 2005.
- TCEQ Edwards Aquifer Protection Program, 1998, Edwards Aquifer Recharge Zone Map, Austin West Quadrangle; TNRCC, September 1998.
- Texas Water Development Board, 2022, Water Data Interactive (WDI) Groundwater Data Viewer, https://www2.twdb.texas.gov/apps/WaterDataInteractive/GroundwaterDataViewer/?map=sdr, accessed November 10, 2022.
- United States Geological Survey (USGS), 2019, Austin West Quadrangle; USGS, Denver, Colorado.
- United States Department of Agriculture (USDA), 1974, Soil Survey of Travis County, Texas; USDA / Soil Conservation Service / Texas Agricultural Experiment Station.
- United States Department of Agriculture (USDA), 1986, Urban Hydrology for Small Watersheds; USDA / Natural Resource Conservation Service, Technical Release (TR-) 55, June 1986.

ATTACHMENT D

FEATURE POSITION TABLE (GPS COORDINATES) SITE GEOLOGIC MAP

Westlake Dr. Drainage and Pavement Improvements - West Lake Hills Bond Project Travis County, Texas **GEOLOGIC ASSESSMENT TABLE** PROJECT NAME: (RKI Project No. ASF22-017-01) LOCATION FEATURE CHARACTERISTICS **EVALUATION PHYSICAL SETTING** 1A 1B * 1C* 4 5 5A 6 8A 8B 11 DIMENSIONS (FEET) RELATIVE TREND DENSITY APERTURE FEATURE CATCHMENT AREA LATITUDE LONGITUDE FORMATION SENSITIVITY TOPOGRAPHY FEATURE TYPE POINTS DOM INFILL INFILTRATION TOTAL (DEGREES) (ACRES) (NO/FT (FEET) RATE N30 17 30.25 W97 47 57.62 30 2,146 3 S-1 MB (W) Kek, Kgr ~6-8 Χ 6 36 Floodplain S-2 N30 17 32.76 W97 47 53.93 30 3 ~8-10 Χ 38 \checkmark Floodplain MB (SS) Kek 1,116 8 \checkmark S-3 N30 17 31.72 W97 47 55.09 MB (COMM) 30 2 Χ Floodplain Kek 290 ~2-4 6 36 ✓ S-4 N30 17 30.16 W97 47 58.08 MB (G) 30 Kek 1,841 2 ~2-4 Χ 6 36 Floodplain S-5 N30 17 30.19 W97 47 58.67 MB (D) 30 Kgr, Kek 40 50 ~1-2 Χ 6 36 Streambed N30 17 34.11 W97 47 52.35 F ✓ S-6 F 20 Kgr, Kek 465 10 NE-SW 10 38 Floodplain

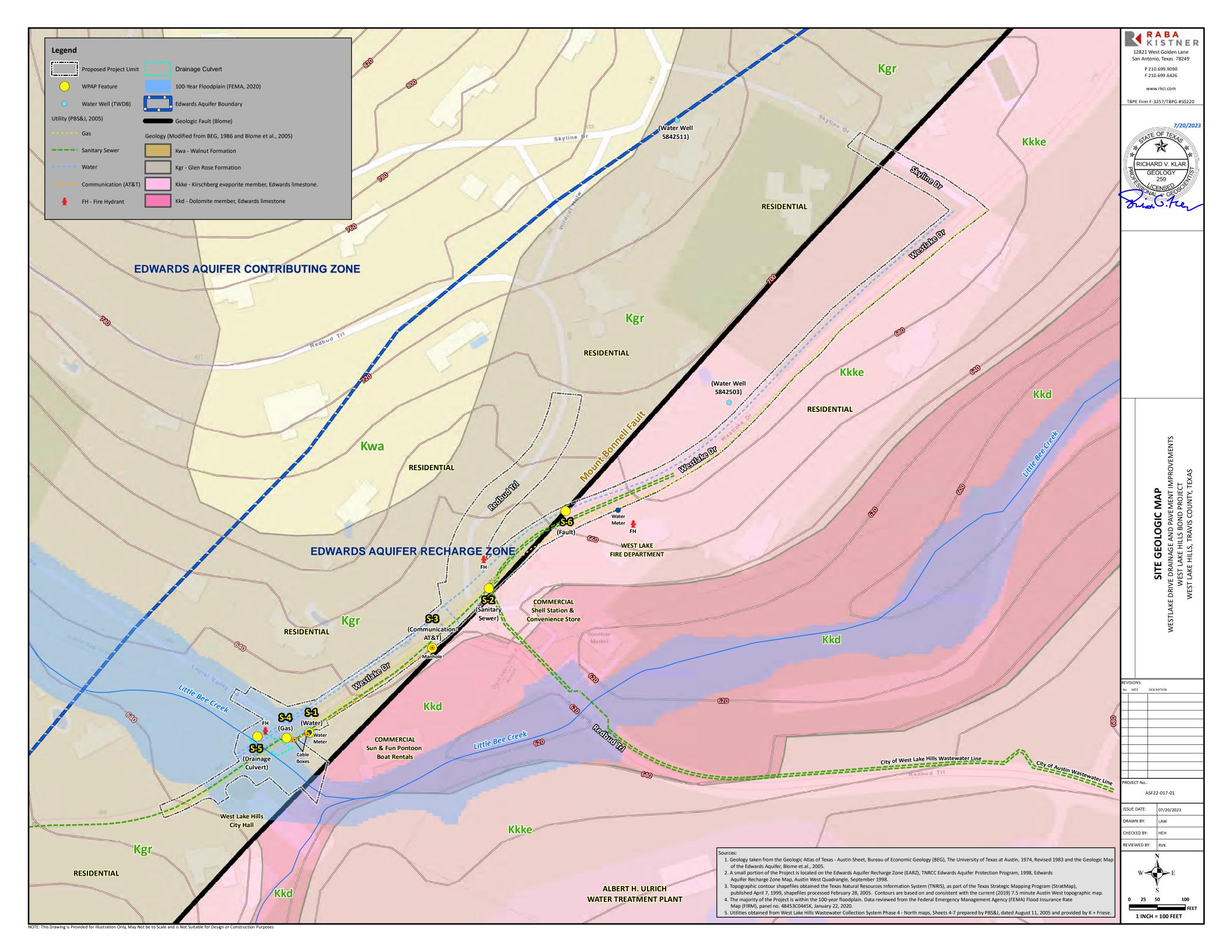
* DATUM: NAD83

Manmade Features in Bedrock (MB): W = water, SS = sanitary sewer, COMM = communications, G = gas, D = drainage culvert

Formation: Kgr = Glen Rose Formation, Kek = Kainer Formation (Edwards Limestone)

2A TYPE	TYPE	2B POINTS
С	Cave	30
SC	Solution cavity	20
SF	Solution-enlarged fracture(s)	20
F	Fault	20
О	Other natural bedrock features	5
MB	Manmade feature in bedrock	30
SW	Swallow hole	30
SH	Sinkhole	20
CD	Non-karst closed depression	5
Z	Zone, clustered or aligned features	30

	8A INFILLING
N	None, exposed bedrock
С	Coarse - cobbles, breakdown, sand, gravel
0	Loose or soft mud or soil, organics, leaves, sticks, dark colors
F	Fines, compacted clay-rich sediment, soil profile, gray or red colors
V	Vegetation. Give details in narrative description
FS	Flowstone, cements, cave deposits
Χ	Other materials: Backfill consisting of native soils and granular bedding materials (Features S-1 through S-4);
	concrete for storm drains and drainages (Feature S-5)
	12 TOPOGRAPHY
Cliff,	Hilltop, Hillside, Drainage, Floodplain, Streambed


I have read, I understood, and I have followed the Texas Natural Resource Conservation Commission's Instructions to Geologists. The information presented here complies with that document and is a true representation of the conditions observed in the field.

My signature certifies that I am qualified as a geologist as defined by 30 TAC 213.

RICHARD V. KLAR
GEOLOGY
STANG
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY
GEOLOGY

Date 7/20/2023
Sheet 1 of 1

TCEQ-0585-Table (Rev. 10-01-04)

Recharge and Transition Zone Exception Request Form

Texas Commission on Environmental Quality

30 TAC §213.9 Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Recharge and Transition Zone Exception Request Form** is hereby submitted for TCEQ review and executive director approval. The request was prepared by:

Print Name of Customer/Agent: Victoria Ortega, PE

Date: 7/21/2023

Signature of Customer/Agent:

Victoria M Ortega

Regulated Entity Name: West Lake Hills Bond Program

Exception Request

- 1. Attachment A Nature of Exception. A narrative description of the nature of each exception requested is attached. All provisions of 30 TAC §213 Subchapter A for which an exception is being requested have been identified in the description.
- 2. Attachment B Documentation of Equivalent Water Quality Protection.

 Documentation demonstrating equivalent water quality protection for the Edwards Aquifer is attached.

Administrative Information

- 3. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 4. The applicant understands that no exception will be granted for a prohibited activity in Chapter 213.
- 5. The applicant understands that prior approval under this section must be obtained from the executive director for the exception to be authorized.

ATTACHMENT A NATURE OF EXCEPTION

The Project is an exception for the requirement for a Water Pollution Abatement Plan for the following reasons:

- 1. The project will remove 0.04 acres of impervious cover from the site.
- 2. Proposed work consists of maintenance of existing facilities including roadways and drainage conveyance systems. Minor soil disturbance and stabilization is required for the regrading of existing roadside ditch and culvert/channel conveyance.
- 3. The proposed work is within existing roadbeds, drainage channels, and culvert locations, which have been previously disturbed.
- 4. Two faults were identified within the limits of Eanes Creek Low Water Crossings and one fault was identified within the limits of Westlake Dr. The fault crossings are located within the project limits but outside the limits of significant excavation.
 - a. Eanes S-14: located at the intersection of Camp Craft Rd and Eanes School Rd, near the end of the project. The improvements consist of roadway grading and tie ins. Excavation is contained within the existing pavement limits and the depth is limited to the pavement section (13.5-in).
 - b. Eanes S-15: located near the driveway of 401 Camp Craft Rd, near the end of the project. The improvements consist of sidewalk construction. Excavation is contained within the existing asphalt walkway and the depth is limited to the sidewalk section (8-in).
 - c. Westlake S-6: located near the intersection of Westlake Dr and Redbud Trl, the improvements consist of minor roadside ditch grading and maintenance and crack sealing and coat. Excavation depths are less than 1-ft.

ATTACHMENT B EQUIVALENT WATER QUALITY PROTECTION

Development of the Project will enhance water quality protection to the Edwards Aquifer over the existing condition for the following reasons: After completion of the project, vegetation will be reestablished in areas disturbed by construction, the project will reduce the total impervious cover, and improved drainage conveyance will help prevent downstream erosion and associated sedimentation in the stream channel over existing conditions.

Temporary Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Temporary Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

Drint	Nama	of Cust	omer	/Agant	Victoria	ortega	DF
PIIII	manne	oi cusi	.omer/	Agent.	VICTOLI	i Ortega	, rc

Date: <u>7/21/2</u>023

Signature of Customer/Agent:

Victoria M Ortega

Regulated Entity Name: West Lake Hills Bond Program

Project Information

Potential Sources of Contamination

Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.

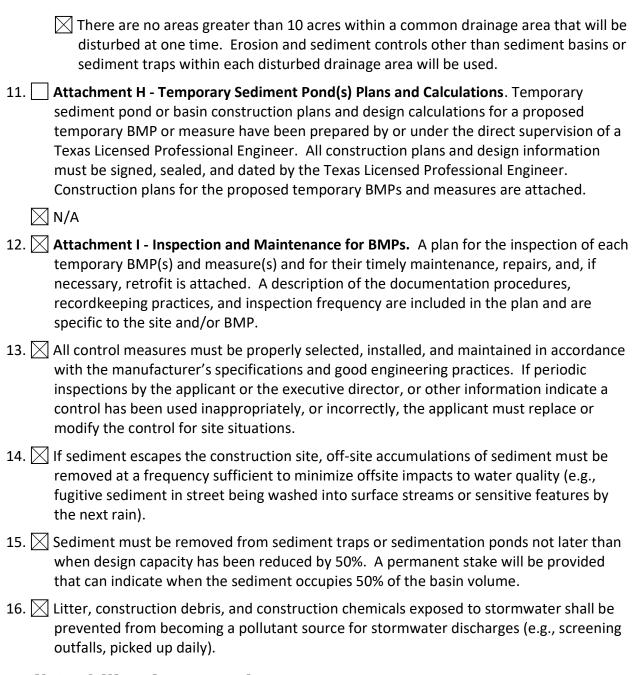
1.	Fuels for construction equipment and hazardous substances which will be used during
	construction:
	The following fuels and/or hazardous substances will be stored on the site: asphalt

These fuels and/or hazardous substances will be stored in:

Aboveground storage tanks with a cumulative storage capacity of less than 250 gallons will be stored on the site for less than one (1) year.

products, chemical additives, gasoline

	 Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year. Aboveground storage tanks with a cumulative storage capacity of 500 gallons or more will be stored on the site. An Aboveground Storage Tank Facility Plan application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.
	Fuels and hazardous substances will not be stored on the site.
2.	Attachment A - Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
3.	Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
4.	Attachment B - Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.
S	equence of Construction
5.	Attachment C - Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.
	 For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given. For each activity described, include a description of appropriate temporary control
	measures and the general timing (or sequence) during the construction process that the measures will be implemented.
6.	Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: <u>Eanes Creek and Little Bee</u>


Temporary Best Management Practices (TBMPs)

Creek, Lady Bird Lake (Segment NO.1403)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.

7. Attachment D – Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

	A description of how BMPs and measures will prevent pollution of surface water, groundwater or stormwater that originates upgradient from the site and flows across the site.
	A description of how BMPs and measures will prevent pollution of surface water or groundwater that originates on-site or flows off site, including pollution caused by contaminated stormwater runoff from the site.
	A description of how BMPs and measures will prevent pollutants from entering surface streams, sensitive features, or the aquifer.
	A description of how, to the maximum extent practicable, BMPs and measures will maintain flow to naturally-occurring sensitive features identified in either the geologic assessment, TCEQ inspections, or during excavation, blasting, or construction.
8.	The temporary sealing of a naturally-occurring sensitive feature which accepts recharge to the Edwards Aquifer as a temporary pollution abatement measure during active construction should be avoided.
	Attachment E - Request to Temporarily Seal a Feature. A request to temporarily seal a feature is attached. The request includes justification as to why no reasonable and practicable alternative exists for each feature.
	There will be no temporary sealing of naturally-occurring sensitive features on the site.
9.	Attachment F - Structural Practices . A description of the structural practices that will be used to divert flows away from exposed soils, to store flows, or to otherwise limit runoff discharge of pollutants from exposed areas of the site is attached. Placement of structural practices in floodplains has been avoided.
10.	Attachment G - Drainage Area Map . A drainage area map supporting the following requirements is attached:
	For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin will be provided.
	For areas that will have more than 10 acres within a common drainage area disturbed at one time, a smaller sediment basin and/or sediment trap(s) will be used.
	For areas that will have more than 10 acres within a common drainage area
	disturbed at one time, a sediment basin or other equivalent controls are not attainable, but other TBMPs and measures will be used in combination to protect down slope and side slope boundaries of the construction area.
	There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. A smaller sediment basin and/or sediment trap(s) will be used in combination with other erosion and sediment controls within each disturbed drainage area.

Soil Stabilization Practices

Examples: establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, or preservation of mature vegetation.

17. Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices. A schedule of the interim and permanent soil stabilization practices for the site is attached.

- 18. Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 19. Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

Administrative Information

- 20. All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
- 21. If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
- 22. Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

ATTACHMENT A SPILL RESPONSE ACTIONS

Spill prevention, control, clean-up, and reporting shall comply with TCEQ regulations 30 TAC, Chapter 327 – Spill Prevention and Control, which is attached, as well as any local regulations. The contractor will implement proper spill prevention measures and maintain appropriate spill response equipment on site. In the event of a hazardous materials spill, the safety of on-site personnel is the most important consideration. Once the safety of personnel is secured, the second priority becomes stopping the source of the spill. If it is safe to do so, the source of the spill will be stopped and the spill will be contained using items such as sandbags, berms or absorbent rolls.

If during the construction of the project (Temporary Stormwater Management) a hazardous substance or hydrocarbon spill of greater than 250 gallons occurs within the project limits, the contractor is to try to stop the spill from continuing, contact the local fire department, and the Engineer. If the spill is caused by the roadway contactor, the roadway contactor will be responsible for the proper clean-up of the spill as well as notifying the TCEQ Spill Reporting Hotline (1-800-832-8224). If a spill occurs within the project limits but is caused by a third party (someone from the traveling public driving through the project), the contractor and/or the Engineer shall immediately contact local law enforcement, the fire department, and the TCEQ Spill Reporting Hotline. The local fire department will immediately respond to the spill and secure the scene (stop the spill and prevent it from spreading). The City of West Lake Hills will work with the responsible party to facilitate the clean-up of the spill on the City of West Lake Hills property.

ATTACHMENT B POTENTIAL SOURCES OF CONTAMINATION

The potential sources of storm water pollution from the proposed project are displaced soil from the construction site from activities such as clearing/grubbing, grading, excavation, filling, and placement of asphalt and roadway base. Other potential sources of contamination include wastewater from portable bathrooms, litter generated during the construction process, de-watering from excavations, construction vehicles tracking onto roads, and construction products and waste. There are also hazardous construction materials including fuel and use of asphaltic products and petroleum products from the operation of construction equipment on site, all of which are potential sources of contamination.

The primary storm water contaminant expected to be generated during the construction project is the entrained solids (soil particles) which will affect the turbidity of the runoff. During this project, disturbed soils will result from:

- 1. Site preparation
- 2. Roadway excavation and fill grading
- 3. Trenching for wastewater force main, storm sewer or culvert construction
- 4. Excavation for water quality batch detention ponds
- 5. Placement of roadway base and pavement
- 6. Imported soil for fill and top-soil

Increased sediment loading in the storm water can be attributed to: a) direct impingement of rain onto disturbed soil areas, sand, gravel and rock areas where rains dislodge or entrain particles; b) erosion of disturbed soil areas; c) the transfer of soils and particulate matter via equipment or vehicle tires onto non-disturbed areas where they are wasted into drainage ditches.

There is a potential for hydrocarbon contamination in the form of oil and grease from equipment, construction vehicles, and fuel spillage on the site. Oil and grease are typically released into the environment because of equipment failure or maintenance operations. Release of fuel can result from on-site fueling operations or from leakage of temporary fuel storage tanks. Most construction equipment operates hydraulically; there is a potential that the release of hydraulic fluids may occur due to equipment malfunction or damage. The clean-up and containment of any fuels, hydraulic fluids, hydrocarbons, or other hazardous substances released on site will be the responsibility of the contractor.

Entrained solids in runoff during the construction phase will be largely contained by temporary BMPs such as erosion control logs, rock filter dams, sediment control fence, and stabilized construction exits, as shown in the Erosion Control Layouts included in *0587-Attachment C.1 Construction Plans* (*Sht 47-48 & 94-96*).

ATTACHMENT C SEQUENCE OF MAJOR ACTIVITIES

The general order of construction activities is included on the SW3P. The detailed construction sequence is included in the Traffic Control Narrative. Both can be found in *0587-Attachment C.1 Construction Plans (Sht 18 & 56)*. Temporary control measures include sediment control fence, erosion control logs, rock filter dams and stabilized construction exits. Temporary control measures will be installed first in the sequence of construction and removed after all site work is complete and vegetation has been established.

For construction activity, an estimate of the total area to be disturbed is shown below:

- 1. Installation of temporary erosion and sedimentation controls: 10.92 ac
- 2. Clearing, grubbing and excavation: 5.39 ac
- 3. Reconstruction of roadway base and driveways: 1.61 ac
- 4. Construction of force main, storm sewers, and channel regrading and maintenance: 1.61 ac
- 5. Site restoration: 5.39 ac
- 6. Seeding, re-vegetation: 1.69 ac
- 7. Removal of temporary erosion and sedimentation controls: 10.92 ac

ATTACHMENT D TEMPORARY BEST MANAGEMENT PRACTICES AND MEASURES

Temporary BMPs will be installed before any construction activities begin and shall be removed after all construction work and re-vegetation is complete. Refer to *0602-Attachment C: Sequence of Construction* for more information on construction activities and sequence. Refer to *0587-Attachment C.1 Construction Plans (Sht 47-48 & 94-96)* for the proposed erosion and sedimentation control construction plan sheets showing the location and types of temporary BMPs proposed for the project.

BMPs for onsite flows will prevent pollution of surface streams by filtering pollutant ridden water. These BMPs include silt fence, rock berms, mulch logs, and stabilized construction exits. Immediately following the placement of topsoil, seeding will be implemented to stabilize areas disturbed during construction.

ATTACHMENT F STRUCTURAL PRACTICES

Temporary structural practices used to limit runoff discharge pollutants include silt fence, mulch logs, rock berms, and stabilized construction exits.

The TCEQ general guidelines included in Section 1.2 to Section 1.4 of RG-348 must be followed for installation and maintenance of temporary structural erosion and sediment control BMPs. Additional guidelines can also be found on the Erosion Control Layouts included in *0587-Attachment C.1 Construction Plans (Sht 47-48 & 94-96)*.

ATTACHMENT G DRAINAGE AREA MAP

The Offsite and Onsite drainage area maps are included in 0587-Attachment C.1 Construction Plans (Sht 31-32 & 80-81).

ATTACHMENT I INSPECTION AND MAINTENANCE FOR BMPS

All erosion and sediment control measures will be maintained in effective operating condition by following the Project maintenance procedures. The general maintenance and inspection requirements are included on the Erosion Control Layouts included in *0587-Attachment C.1 Construction Plans (Sht 47-48 & 94-96)*. The maintenance plan for temporary BMPs meets the maintenance guidance provided in RG-348.

The Contractor shall install and maintain the integrity of temporary erosion and sedimentation control devices to accumulate silt and debris until soil disturbing activities are completed and permanent erosion control features are in place or the disturbed area has been adequately stabilized as approved in accordance with contract documents including City of West Lake Hills Drainage and Erosion Control Manual and Part II, Section F.6 of TPDES General Permit No. TXR150000.

Maintenance, repairs or retrofits will adhere to the project standards and details for the BMP. Damaged portions of BMPs shall be removed and replaced as needed to adhere to the contract documents. BMPs that cannot be adequately repaired or retrofitted to meet project requirements shall be removed and replaced in entirely in accordance with the contract documents.

The maintenance documentation procedures and recordkeeping practices are summarized in the SW3P included in 0587-Attachment C.1 Construction Plans (Sht 46 & 93).

ATTACHMENT J SCHEDULE OF INTERIM AND PERMANENT SOIL STABILIZATION PRACTICES

The general order of construction activities is shown below. The project phasing of construction activities, including time frame information and interim and permanent stabilization measures are included in the Traffic Control Plan - Sequence of Construction and SW3P provided in *0587-Attachment C.1 Construction Plans (Sht 18, 56, 46-48, & 93-96)*. Temporary control measures include silt fence, mulch logs, rock berms, and construction exits and will be installed first in the sequence of construction and removed after all site work is complete and vegetation has been established.

Installation of temporary erosion controls

- 1. Notice of Intent/SWPPP Controls
 - a. Install erosion and sediment control measures in accordance with the SW3P
- 2. Construct stabilized construction exits

Site Clearing and Grading

3. Clearing, grubbing, and grading in the locations of proposed improvements.

Construction of proposed roadway, utilities, culvert, and sidewalk.

- 4. Construction of wastewater force main
- 5. Construction of proposed culverts, storm sewers, and channel maintenance
- 6. Reconstruction of roadway base, sidewalk, and driveways
- 7. Roadway asphalt repaving including mill and overlay.

Site Restoration, Seeding and Re-vegetation

- 8. Installation of stone and concrete riprap.
- 9. Seeding of disturbed soils, soil retention blankets, and other soil stabilization measures, as necessary.

Removal of SWPPP Controls

- 10. Remove erosion and sediment control measures and stabilized construction exits.
- 11. Notice of Termination.

Records will be kept at the project site to document dates when:

- major grading activities occur;
- construction activities temporarily cease;
- · construction activities permanently cease; and
- soil stabilization measures are initiated.

Agent Authorization Form

For Required Signature
Edwards Aquifer Protection Program
Relating to 30 TAC Chapter 213
Effective June 1, 1999

1	UNAS SEEBACH	
	Print Name	
	MERTIPE OF FACILITIES	
	Title - Owner/President/Other	
of	Corporation/Partnership/Entity Name	
	Corporation/Partnership/Entity Name	
have authorized	Trey Fletcher	
	Print Name of Agent/Engineer	
of	City of West Lake Hills Print Name of Firm	
	Print Name of Firm	

to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- Application fees are due and payable at the time the application is submitted. The
 application fee must be sent to the TCEQ cashier or to the appropriate regional office.
 The application will not be considered until the correct fee is received by the
 commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE: Applicant's Signature		2. 70. 7023
THE STATE OF TX § County of TYANS §		
BEFORE ME, the undersigned auth- to me to be the person whose name me that (s)he executed same for the	e is subscribed to the forego	ping instrument, and acknowledged to
GIVEN under my hand and seal of c	office on this 20 day of M	arch , 2023.
JOAN FROST Notary Public, State of Texes Comm. Expires 10-07-2023 Notary ID 13220378-3	NOTARY PUBLIC Toan Fros Typed or Printed Name of N	
	MY COMMISSION EXPIRE	s: 10-7-2023

Agent Authorization Form

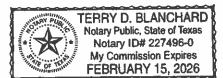
For Required Signature
Edwards Aquifer Protection Program
Relating to 30 TAC Chapter 213
Effective June 1, 1999

1	Trey Fletcher	
	Print Name	
	City Administrator	
	Title - Owner/President/Other	
of	City of West Lake Hills	
	Corporation/Partnership/Entity Name	
have authorized	Victoria Ortega, PE	
	Print Name of Agent/Engineer	
of	K Friese + Associates, Inc	
	Print Name of Firm	

to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- Application fees are due and payable at the time the application is submitted. The
 application fee must be sent to the TCEQ cashier or to the appropriate regional office.
 The application will not be considered until the correct fee is received by the
 commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.


SIGNATURE PAGE:

6-14-2023

THE STATE OF Texas §

County of Travis &

BEFORE ME, the undersigned authority, on this day personally appeared M.TreyFletcher_known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

Jerry D. Blanchard NOTARY PUBLIC

Terry D. Blanchard
Typed of Printed Name of Notary

MY COMMISSION EXPIRES: ___ 2 - 15 - 2 6

Application Fee Form

Texas Commission on Environmental Quality Name of Proposed Regulated Entity: West Lake Hills Bond Program Regulated Entity Location: City of West Lake Hills Name of Customer: City of West Lake Hills Contact Person: Trey Fletcher Phone: 512.327.3628 Customer Reference Number (if issued):CN 600685515 Regulated Entity Reference Number (if issued):RN ______ **Austin Regional Office (3373)** X Travis Williamson Havs San Antonio Regional Office (3362) Medina Uvalde Bexar Comal Kinney Application fees must be paid by check, certified check, or money order, payable to the Texas Commission on Environmental Quality. Your canceled check will serve as your receipt. This form must be submitted with your fee payment. This payment is being submitted to: Austin Regional Office San Antonio Regional Office Mailed to: TCEQ - Cashier Overnight Delivery to: TCEQ - Cashier 12100 Park 35 Circle **Revenues Section** Mail Code 214 Building A, 3rd Floor P.O. Box 13088 Austin, TX 78753 Austin, TX 78711-3088 (512)239-0357 Site Location (Check All That Apply): Recharge Zone **Contributing Zone Transition Zone** Type of Plan Size Fee Due Water Pollution Abatement Plan, Contributing Zone Plan: One Single Family Residential Dwelling \$ Acres Water Pollution Abatement Plan, Contributing Zone Plan: Multiple Single Family Residential and Parks Acres Water Pollution Abatement Plan, Contributing Zone Plan: Non-residential Acres | \$ L.F. | \$ Sewage Collection System Lift Stations without sewer lines Acres | \$ Underground or Aboveground Storage Tank Facility Tanks | \$ Each \$ Piping System(s)(only) 1 Each | \$ 500 Exception Each | \$ **Extension of Time**

Signature: ________ Date: <u>7/21/2</u>023

Application Fee Schedule

Texas Commission on Environmental Quality

Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)

Water Pollution Abatement Plans and Modifications

Contributing Zone Plans and Modifications

Ducinat	Project Area in	F 00
Project	Acres	Fee
One Single Family Residential Dwelling	< 5	\$650
Multiple Single Family Residential and Parks	< 5	\$1,500
	5 < 10	\$3,000
	10 < 40	\$4,000
	40 < 100	\$6,500
	100 < 500	\$8,000
	≥ 500	\$10,000
Non-residential (Commercial, industrial, institutional,	< 1	\$3,000
multi-family residential, schools, and other sites	1 < 5	\$4,000
where regulated activities will occur)	5 < 10	\$5,000
	10 < 40	\$6,500
	40 < 100	\$8,000
	≥ 100	\$10,000

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee		
Sewage Collection Systems	\$0.50	\$650 - \$6,500		

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	\$650	\$650 - \$6,500

Exception Requests

Project	Fee
Exception Request	\$500

Extension of Time Requests

Project	Fee
Extension of Time Request	\$150

TCEQ Core Data Form

TCEQ Use Only

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)											
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)											
		ta Form should b		h the renew	val form)			Other			
2. Customer Reference Number (if issued) Follow this link to search 3. Regulated Entity Reference Number (if issued)								f issued)			
CN 600685515 Fig. Central Registry** RN											
SECTION II: Customer Information											
4. General C	ustomer In	formation	5. Effective D	ate for Cu	stomer	Inform	ation	Update	es (mm/dd/yyyy)		
☐ New Cust☐ Change in		ne (Verifiable wit		odate to Cu cretary of S				roller of	Change in Public Accounts)	Regulated E	Entity Ownership
										rent and	active with the
Texas Sec	retary of	State (SOS)	or Texas Co	mptrolle	r of Pu	blic A	ссо	unts ((CPA).		
6. Customer	Legal Nam	ne (If an individual	, print last name f	first: eg: Doε	, John)		<u>If</u>	new Cus	stomer, enter previ	ous Custome	er below:
City of W	est <u>Lake</u>	Hills									
7. TX SOS/CI	PA Filing N	lumber	8. TX State Ta	ax ID (11 dig	its)		9.	Federa	I Tax ID (9 digits)	10. DUN	S Number (if applicable)
11. Type of C	Customer:	☐ Corporati	on] Individu	ual		Par	tnership: 🔲 Gener	al 🔲 Limited	
		County 🔲 Federal 🗀	State Other] Sole Pr	oprieto	rship	\top	Other:		
12. Number o ✓ 0-20	of Employe	ees 101-250	251-500	☐ 501 a	and highe				endently Owned	and Opera	ted?
		posed or Actual) -	as it relates to th				his for	 rm. Pleas	se check one of the	following	
Owner		Operat			Owner &						
Occupation	nal License	ee Respo	nsible Party	V	/oluntary	Clean	up Ap	plicant	Other:		
	City of	West Lake 1	Hills								
15. Mailing Address:	911 W	estlake Drive									
71001000	City	West Lake 1	Hills	State	TX		ZIP	7874	16	ZIP + 4	
16. Country	Mailing Inf	ormation (if outsi	de USA)	·		17. E-	Mail /	Address	(if applicable)		
					_	tfletc	her(_ @west	tlakehills.gov		
18. Telephon	e Number		1	19. Extensi	ion or C	ode			20. Fax Numbe	r (if applicat	ole)
(512)32	7-3628								()		
SECTION	III: Re	gulated En	tity Infort	mation							
			-		itv" is se	lected I	below	this for	m should be accor	mpanied by	a permit application)
New Regu	•	•	to Regulated Er		•				Entity Information	•	, , , , , , , , , , , , , , , , , , , ,
The Regul	ated Enti	ity Name sub	mitted may l	be updat	ed in o	order t	to m	eet TC	EQ Agency D	ata Stand	ards (removal
		ndings such									
22. Regulate	d Entity Na	ame (Enter name	of the site where t	the regulate	d action is	s taking	place.	.)			
West Lake Hills Bond Program											

TCEQ-10400 (02/21) Page 1 of 2

23. Street Addres the Regulated Er													
(No PO Boxes)		City			State			ZIP			ZIP +		
24. County													<u>l</u>
		E	Inter Phy	sical Lo	cation Desc	ription	if no stre	et address	is pro	ovided.			
25. Description to Physical Location		-				-				-			Rd from 223 Skyline Dr
26. Nearest City	,								State			Nea	rest ZIP Code
West Lake H	ills								ТΧ			787	746
27. Latitude (N) I	n Decim	ıal:	30.29	10			28. Lo	ngitude (W	ecimal:	97.7997			
Degrees		Minutes		S	Seconds		Degrees	3		Minutes	Seconds		
30		·	17		27.60			97		4	47		58.87
29. Primary SIC (Code (4 o	digits) 30.	. Seconda	ry SIC	Code (4 digits))	1. Primary 5 or 6 digits)	/ NAICS Co	de	32. S (5 or 6	econdary digits)	NAI	ICS Code
1611							237310						
33. What is the P	rimary l	Business c	of this ent	ity? (Do not repeat the	e SIC or	NAICS descr	iption.)		<u>'</u>			
City Roadway	У												
24 Mailine							City of We	est Lake Hi	lls				
34. Mailing Address:	l						911 Wes	stlake Drive	9				
Addiess.		City	West	Lake Hi	II State	e	TX	ZIP			ZIP +	- 4	
35. E-Mail A	ddress:					·	tfletcher@	westlakeh	nills.g	ov			
36.	Telepho	one Numbe	er		37. Exte	nsion	or Code		;	38. Fax Nu	mber <i>(if a</i>	ppli	cable)
	(512) 3	327-3628								() -		
9. TCEQ Programs orm. See the Core Dat						ne permi	its/registration	on numbers t	hat wil	l be affected	by the upd	ates	submitted on this
☐ Dam Safety		Distric		a garaan	⊠ Edwards	Aquifer	r	☐ Emission	ns Inve	entory Air	☐ Indu	strial	l Hazardous Waste
-										•			
☐ Municipal Solid V	Vaste	☐ New S	Source Revi	iew Air	OSSF			Petroleu	ım Sto	rage Tank	☐ PWS	3	
Sludge		Storm	Water		☐ Title V A	ir		Tires			Use	liO t	
□ \/-\			- \A/-+		□ \A/4	- 1 - · · · · · · · · ·	14	D W-t D					
☐ Voluntary Cleanu	р	vvaste	e Water		☐ Wastewa	ater Agr	iculture	☐ Water R	lignts		☐ Othe	er:	
SECTION IV	'. Duo	naman I	nform.	tion									
	: Fre	parer II	111011112	<u> 111011</u>									
40. Victori	a Orte	ega, PE				•	41. Title:	Assoc	iate				
42. Telephone Nu	mber 4	43. Ext./Co	de	44. Fax	Number		45. E-Ma	il Address					
(512)338-170)4			() -	vortega@kfriese.com							
SECTION V:	Aut	horized	Signa	ture									
16. By my signature ignature authority to dentified in field 39	submit												
Company:	K Fries	se + Associ	ates				Job Title:	Associ	iate				
Name (In Print):	Victoria	a Ortega					Phone: (512) 338- 1704						

TCEQ-10400 (02/21) Page 2 of 2

Date:

7/21/2023

Signature: