
WOLF RANCH WEST SECTION 4G

Sewage Collection System

Modification Application (51127-42)

Prepared By: PAPE-DAWSON ENGINEERS, INC. Texas Board of Professional Engineers, Firm Registration # 470 10801 NORTH MOPAC EXPRESSWAY, BUILDING 3 – SUITE 200 AUSTIN, TEXAS 78759 (512) 454-8711 FISH

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with <u>30 TAC 213</u>.

Administrative Review

1. <u>Edwards Aquifer applications</u> must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.

To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: <u>http://www.tceq.texas.gov/field/eapp</u>.

- 2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
- 3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
- 4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.

An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.

- 5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
- 6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the *Instructions to Geologists* (TCEQ-0585 Instructions).

Technical Review

1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.

- 2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.
- 3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or if not withdrawn the application will be denied and the application fee will be forfeited.
- 4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.

Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "Mid-Review Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available to you:

- You can withdraw your application, and your fees will be refunded or credited for a resubmittal.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.

If the application is withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the effected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity N	ame: Wolf R	anch West, Section 4G	2. Regulated Entity No.: 111446985					
3. Customer Name: H4 Georgetown Phase 4G, LLC				4. Customer No.: 605990142				
5. Project Type: (Please circle/check one)	New	Modification	Exter	ision	Exception			
6. Plan Type: (Please circle/check one)	WPAP CZP	SCS UST AST	EXP	EXT	Technical Clarification	Optional Enhanced Measures		
7. Land Use: (Please circle/check one)	Residential	Non-residential		8. Sit	e (acres):	35.85		
9. Application Fee:	\$1,265.50	10. Permanent BMP(s):			N/A			
11. SCS (Linear Ft.):	2,531	12. AST/UST (No. 7	anks):		N/A			
13. County:	Williamson	14. Watershed:			San Gabriel River			

Application Distribution

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:

http://www.tceq.texas.gov/assets/public/compliance/field_ops/eapp/EAPP%20GWCD%20map.pdf

For more detailed boundaries, please contact the conservation district directly.

Austin Region							
County:	Hays	Travis	Williamson				
Original (1 req.)							
Region (1 req.)		_	<u> </u>				
County(ies)			<u> </u>				
Groundwater Conservation District(s)	Edwards Aquifer Authority Barton Springs/ Edwards Aquifer Hays Trinity Plum Creek	Barton Springs/ Edwards Aquifer	NA				
City(ies) Jurisdiction			Austin Cedar Park Florence ✔ Georgetown Jerrell Leander Liberty Hill Pflugerville Round Rock				

San Antonio Region									
County:	Bexar	Comal	Kinney	Medina	Uvalde				
Original (1 req.)									
Region (1 req.)									
County(ies)									
Groundwater Conservation District(s)	Edwards Aquifer Authority Trinity-Glen Rose	Edwards Aquifer Authority	Kinney	EAA Medina	EAA Uvalde				
City(ies) Jurisdiction	Castle Hills Fair Oaks Ranch Helotes Hill Country Village Hollywood Park San Antonio (SAWS) Shavano Park	Bulverde Fair Oaks Ranch Garden Ridge New Braunfels Schertz	NA	San Antonio ETJ (SAWS)	NA				

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.

Austin Conner, P.E.

1

Print Name of Customer/Authorized Agent

08/31/2023

Signature of Customer/Authorized Agent

Date

FOR TCEQ INTERNAL USE ONLY							
Date(s)Reviewed:	ete:						
Received From:	Correct Number of Copies:						
Received By:	Distribut	Distribution Date:					
EAPP File Number:	Complex:						
Admin. Review(s) (No.):	No. AR R	No. AR Rounds:					
Delinquent Fees (Y/N):	Review T	Review Time Spent:					
Lat./Long. Verified:	SOS Cust	SOS Customer Verification:					
Agent Authorization Complete/Notarized (Y/N):	Fee	Payable to TCEQ (Y/N):					
Core Data Form Complete (Y/N):	Check:	Signed (Y/N):					
Core Data Form Incomplete Nos.:	Less than 90 days old (Y/N):						

GENERAL INFORMATION

General Information Form

Texas Commission on Environmental Quality

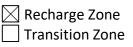
For Regulated Activities on the Edwards Aquifer Recharge and Transition Zones and Relating to 30 TAC §213.4(b) & §213.5(b)(2)(A), (B) Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **General Information Form** is hereby submitted for TCEQ review. The application was prepared by:


Print Name of Customer/Agent: Austin Conner, P.E.

Date: 08/31/2023

Signature of Customer/Agent:

Project Information

- 1. Regulated Entity Name: Wolf Ranch West, Section 4G
- 2. County: Williamson
- 3. Stream Basin: San Gabriel River
- 4. Groundwater Conservation District (If applicable): N/A
- 5. Edwards Aquifer Zone:

6. Plan Type:

WPAP	AST
\boxtimes scs	🗌 UST
\bigotimes Modification	Exception Request

7. Customer (Applicant):

Contact Person: <u>Duke Kerrigan</u> Entity: <u>H4 Georgetown Phase 4G, LLC</u> Mailing Address: <u>3000 Turtle Creek Blvd.</u> City, State: <u>Dallas, TX</u> Telephone: <u>(972) 201-2897</u> Email Address: <u>Duke.Kerrigan@hillwood.com</u>

Zip: <u>75219</u> FAX: <u>(972) 201-2959</u>

8. Agent/Representative (If any):

Contact Person: <u>Austin Conner, PE</u> Entity: <u>Pape-Dawson Engineers, Inc.</u> Mailing Address: <u>10801 N MoPac Expy., Bldg. 3 Suite 200</u> City, State: <u>Austin, TX</u> Zip: <u>78759</u> Telephone: <u>(512) 454-8711</u> FAX: <u>N/A</u> Email Address: <u>AConner@Pape-Dawson.com</u>

9. Project Location:

The project site is located inside the city limits of <u>Georgetown</u>.

The project site is located outside the city limits but inside the ETJ (extra-territorial jurisdiction) of ______.

- The project site is not located within any city's limits or ETJ.
- 10. The location of the project site is described below. The description provides sufficient detail and clarity so that the TCEQ's Regional staff can easily locate the project and site boundaries for a field investigation.

<u>From TCEQ's Regional office, proceed north on IH-35 for approximately 16.6 miles. Exit</u> <u>261 toward Texas 29/Burnet and keep right at the fork, following signs for Taylor.</u> <u>Turn left onto West University Avenue/Texas 29 W and proceed approximately 0.6</u> <u>miles. Turn left onto Wolf Ranch Parkway and proceed for 1.2 miles to Blue Blaze</u> <u>Trail. Turn left onto Legends Lane and continue to the end of the road. The project</u> <u>site is located approximately 0.15 miles South from the end of Blue Blaze Trail.</u>

- 11. Attachment A Road Map. A road map showing directions to and the location of the project site is attached. The project location and site boundaries are clearly shown on the map.
- 12. Attachment B USGS / Edwards Recharge Zone Map. A copy of the official 7 ½ minute USGS Quadrangle Map (Scale: 1" = 2000') of the Edwards Recharge Zone is attached. The map(s) clearly show:

Project site boundaries.

- USGS Quadrangle Name(s).
- Boundaries of the Recharge Zone (and Transition Zone, if applicable).
- Drainage path from the project site to the boundary of the Recharge Zone.

- 13. The TCEQ must be able to inspect the project site or the application will be returned. Sufficient survey staking is provided on the project to allow TCEQ regional staff to locate the boundaries and alignment of the regulated activities and the geologic or manmade features noted in the Geologic Assessment.
 - Survey staking will be completed by this date: <u>Already Complete</u>
- 14. Attachment C Project Description. Attached at the end of this form is a detailed narrative description of the proposed project. The project description is consistent throughout the application and contains, at a minimum, the following details:
 - 🛛 Area of the site
 - 🛛 Offsite areas
 - Impervious cover
 - \ge Permanent BMP(s)
 - Proposed site use
 - Site history
 - Previous development
 - Area(s) to be demolished
- 15. Existing project site conditions are noted below:
 - Existing commercial site
 - Existing industrial site
 - Existing residential site
 - Existing paved and/or unpaved roads
 - \boxtimes Undeveloped (Cleared)
 -] Undeveloped (Undisturbed/Uncleared)
 - Other: _____

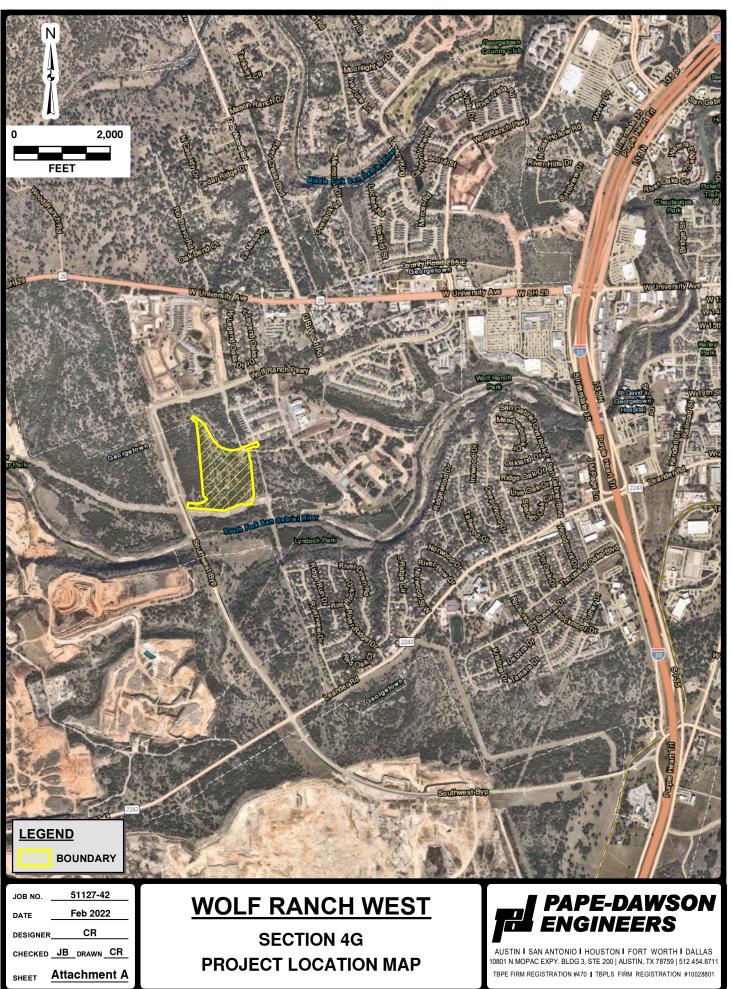
Prohibited Activities

- 16. I am aware that the following activities are prohibited on the Recharge Zone and are not proposed for this project:
 - (1) Waste disposal wells regulated under 30 TAC Chapter 331 of this title (relating to Underground Injection Control);
 - (2) New feedlot/concentrated animal feeding operations, as defined in 30 TAC §213.3;
 - (3) Land disposal of Class I wastes, as defined in 30 TAC §335.1;
 - (4) The use of sewage holding tanks as parts of organized collection systems; and
 - (5) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41(b), (c), and (d) of this title (relating to Types of Municipal Solid Waste Facilities).
 - (6) New municipal and industrial wastewater discharges into or adjacent to water in the state that would create additional pollutant loading.

- 17. I am aware that the following activities are prohibited on the Transition Zone and are not proposed for this project:
 - (1) Waste disposal wells regulated under 30 TAC Chapter 331 (relating to Underground Injection Control);
 - (2) Land disposal of Class I wastes, as defined in 30 TAC §335.1; and
 - (3) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41 (b), (c), and (d) of this title.

Administrative Information

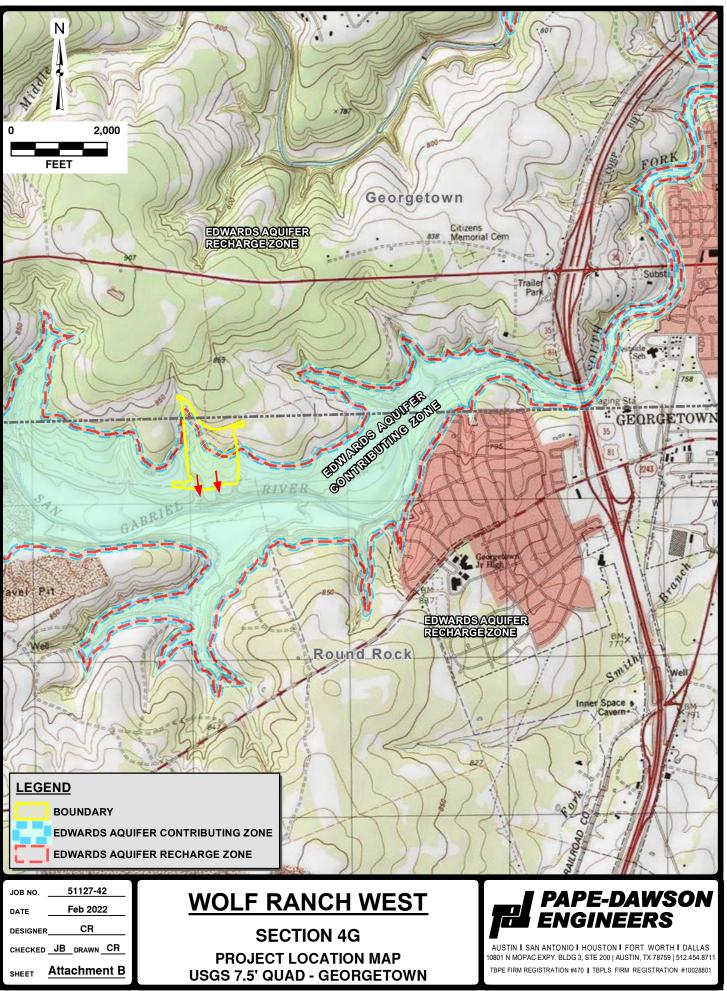
18. The fee for the plan(s) is based on:


- For a Water Pollution Abatement Plan or Modification, the total acreage of the site where regulated activities will occur.
- For an Organized Sewage Collection System Plan or Modification, the total linear footage of all collection system lines.
- For a UST Facility Plan or Modification or an AST Facility Plan or Modification, the total number of tanks or piping systems.
- A request for an exception to any substantive portion of the regulations related to the protection of water quality.
- A request for an extension to a previously approved plan.
- 19. Application fees are due and payable at the time the application is filed. If the correct fee is not submitted, the TCEQ is not required to consider the application until the correct fee is submitted. Both the fee and the Edwards Aquifer Fee Form have been sent to the Commission's:

_____TCEQ cashier

 Austin Regional Office (for projects in Hays, Travis, and Williamson Counties)
 San Antonio Regional Office (for projects in Bexar, Comal, Kinney, Medina, and Uvalde Counties)

- 20. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 21. No person shall commence any regulated activity until the Edwards Aquifer Protection Plan(s) for the activity has been filed with and approved by the Executive Director.


ATTACHMENT A

DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL

ATTACHMENT B

DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANTS ORIGINAL SIGNATURE AND SEA

ATTACHMENT C SCS NARRATIVE

WOLF RANCH WEST, SECTION 4G Sewage Collection System Modification Application

PROJECT DESCRIPTION

Wolf Ranch West, Section 4G is located on approximately 35.85 acres south of the intersection of Wolf Ranch Parkway & Blue Blaze Trail, south of Wolf Ranch West, Section 5 (EAPP11002668), within the city limits of Georgetown in Williamson County, Texas. The project limits are located over the Edwards Aquifer Recharge Zone and Contributing Zone as shown on Attachment B. A Water Pollution Abatement Plan (WPAP) Modification Application for this development was approved on January 20, 2023.

The Wolf Ranch West, Section 4G, SCS Modification Application proposes the construction of approximately 3,991 linear feet of 8-inch gravity wastewater main, 172 linear feet of 27-inch gravity wastewater main, 1,310 linear feet of 30" gravity wastewater main, and 1,049 linear feet of 36-inch gravity wastewater main. Approximately 40 LF of the proposed 3,991 LF of 8-inch gravity sewer mains are to be constructed of PVC, SDR 26, 160 psi pressure-rated pipe, centered on water/sewer-line crossings. This application also includes 1,524 linear feet of double wastewater service laterals for a total of 8,046 linear feet of sewage collection system. Regulated activities proposed include excavation, construction of sewer mains, manhole installation, backfill, and compaction. Approximately 15.05 acres may be disturbed, as identified by the limits of the fifty-foot (50') radius SCS/GA envelope shown on the plans. The SCS proposed with this application will connect to an existing 36-inch wastewater line.

The Guy Tract Geologic Assessment (GA) and Wolf Ranch GA included with this SCS Application states that there are no naturally occurring geologic features within Wolf Ranch West, Section 4G. There are no existing water wells within the Project Boundary submitted with this application.

WOLF RANCH WEST, SECTION 4G Sewage Collection System Modification Application

This SCS application will directly serve a total of 494 LUE's defined as follows:

- Wolf Ranch West, Section 4G (35.85 AC) 77 single family units = 97 LUE's
- Wolf Ranch West, Section 5G (66.99 AC) 217 single family units = 217 LUE's
- Avanta Multifamily (25.98 AC) 266 multi-family units = 200 LUE's

Approximately 154,376 gallons per day (average flow) of domestic wastewater will be generated from the Wolf Ranch West, Section 4G SCS. Sewage flow will be disposed of by conveyance to the existing San Gabriel Wastewater Treatment Plant. The San Gabriel Wastewater Treatment Plant has the capacity to adequately treat the proposed peak flow. Potable water will be provided by the City of Georgetown. Any future wastewater mains will be permitted with their own SCS Application and submitted to the TCEQ for review and approval.

GUY TRACT GEOLOGIC ASSESSMENT

Environmental Services, Inc.

GEOLOGIC ASSESSMENT APPROXIMATELY 366-ACRE GUY TRACT SOUTHERN TERMINUS OF D B WOOD ROAD GEORGETOWN, WILLIAMSON COUNTY, TEXAS HJN 170167 GA

PREPARED FOR:

HILLWOOD COMMUNITIES DALLAS, TEXAS

PREPARED BY:

HORIZON ENVIRONMENTAL SERVICES, INC. TBPG FIRM REGISTRATION NO. 50488

SEPTEMBER 2017

Guy Tract Hillwood Guy tract 170167 GA

CORPORATE HEADQUARTERS 1507 S Interstate 35 ★ Austin, TX 78741-2502 ★ (512) 328-2430 ★ www.horizon-esi.com An LJA Company

TABLE OF CONTENTS

I. GEOLOGIC ASSESSMENT FORM (TCEQ-0585)

II. ATTACHMENTS:

- A GEOLOGIC ASSESSMENT TABLE
- B STRATIGRAPHIC COLUMN
- C DESCRIPTION OF SITE GEOLOGY
- D SITE GEOLOGIC MAP
- E SUPPORTING INFORMATION
- F ADDITIONAL SITE MAPS
- G SITE PHOTOGRAPHS

Geologic Assessment

Texas Commission on Environmental Quality

For Regulated Activities on The Edwards Aquifer Recharge/transition Zones and Relating to 30 TAC §213.5(b)(3), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Print Name of Geologist: James Killian

Telephone: 512 328-2430

Date: 29 September 2017

Fax: <u>512 328-1804</u>

Representing: <u>Horizon Environmental Services, Inc. and TBPG Firm Registration No. 50488</u> (Name of Company and TBPG or TBPE registration number)

Signature of Geologist:

Regulated Entity Name: <u>366-acre Guy Tract, Southern Terminus D B Wood Road, Georgetown,</u> Williamson County, Texas

Project Information

- 1. Date(s) Geologic Assessment was performed: <u>21, 22, 23, and 24 August and 8, 11, and 12</u> September 2017
- 2. Type of Project:

3.

WPAP	AST
\boxtimes scs	UST
Location of Project:	
Recharge Zone	
	SCS Location of Project:

Contributing Zone within the Transition Zone

- 4. Attachment A Geologic Assessment Table. Completed Geologic Assessment Table (Form TCEQ-0585-Table) is attached.
- 5. Soil cover on the project site is summarized in the table below and uses the SCS Hydrologic Soil Groups* (Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A, Soil Conservation Service, 1986). If there is more than one soil type on the project site, show each soil type on the site Geologic Map or a separate soils map.

Soil Name	Group*	Thickness(feet)
Brackett		
gravelly clay		
loam, 3 to		
16% slopes		
(BkE)	С	1 to 2
Eckrant cobbly		
clay, 1 to 8%		
slopes (EaD)	D	0.5 to 1
Eckrant-Rock		
outcrop, 1 to		
10% slopes		
(ErE)	D	0.5 to 1
Georgetown		
silty clay loam,		
1 to 3% slopes		
(GsB)	D	2 to 4

Table 1 - Soil Units, InfiltrationCharacteristics and Thickness

Soil Name	Group*	Thickness(feet)
Oakalla soils, 0		
to 1% slopes,		
channeled,		
frequently		
flooded (Oc)	В	3 to 5

* Soil Group Definitions (Abbreviated)

- A. Soils having a high infiltration rate when thoroughly wetted.
- B. Soils having a moderate infiltration rate when thoroughly wetted.
- C. Soils having a slow infiltration rate when thoroughly wetted.
- D. Soils having a very slow infiltration rate when thoroughly wetted.
- 6. Attachment B Stratigraphic Column. A stratigraphic column showing formations, members, and thicknesses is attached. The outcropping unit, if present, should be at the top of the stratigraphic column. Otherwise, the uppermost unit should be at the top of the stratigraphic column.
- 7. Attachment C Site Geology. A narrative description of the site specific geology including any features identified in the Geologic Assessment Table, a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure(s), and karst characteristics is attached.

8. Attachment D – Site Geologic Map(s). The Site Geologic Map must be the same scale as the applicant's Site Plan. The minimum scale is 1": 400'

Applicant's Site Plan Scale: 1" = <u>300</u>' Site Geologic Map Scale: 1" = <u>300</u>' Site Soils Map Scale (if more than 1 soil type): 1" = 1200'

9. Method of collecting positional data:

Global Positioning System (GPS) technology.

Other method(s). Please describe method of data collection: _____

- 10. The project site and boundaries are clearly shown and labeled on the Site Geologic Map.
- 11. Surface geologic units are shown and labeled on the Site Geologic Map.
- 12. Geologic or manmade features were discovered on the project site during the field investigation. They are shown and labeled on the Site Geologic Map and are described in the attached Geologic Assessment Table.

Geologic or manmade features were not discovered on the project site during the field investigation.

- 13. The Recharge Zone boundary is shown and labeled, if appropriate.
- 14. All known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.): If applicable, the information must agree with Item No. 20 of the WPAP Application Section.

There are $\underline{2}$ (#) wells present on the project site and the locations are shown and labeled. (Check all of the following that apply.)

The wells are not in use and have been properly abandoned.

ig The wells are not in use and will be properly abandoned.

The wells are in use and comply with 16 TAC Chapter 76.

There are no wells or test holes of any kind known to exist on the project site.

Administrative Information

15. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.

ATTACHMENT A

GEOLOGIC ASSESSMENT TABLE

GEOL	OGIC ASS	SESSMEN	Г ТАВ	LE			PRC	JEC		1E:	366-a	ac Guy I	tract; so.	DB Wood	d Rd G	eorge	etowi	n, Will	iamsoi	n Co. Tx
	LOCATIO	DN				FE	ATU	RE CI	HARACT	ERI	STICS	S			EVAI	LUAT	ION	PH	YSICA	L SETTING
1A	1B *	1C*	2A	2B	3		4		5	5A	6	7	8A	8B	9	1	0	1	1	12
FEATURE ID	LATITUDE	LONGITUDE	FEATURE TYPE	POINTS	FORMATION	DIME	NSIONS (F	EET)	TREND (DEGREES)	DOM	DENSITY (NO/FT)	APERTURE (FEET)	INFILL	RELATIVE INFILTRATION RATE	TOTAL	SENSI	ITIVITY		ENT AREA RES)	TOPOGRAPHY
						Х	Y	Z		10						<40	<u>>40</u>	<1.6	<u>>1.6</u>	
F-1	30.62425	-97.70658	SH	20	Ked	6	6	2		0			C,F,O	30	50	Х		Х		Hillside
F-2	30.62507	-97.7121	SC	20	Ked	1	1	1.5		0			C,F,O	25	45	Х		Х		Hilltop
F-2A	30.6251	-97.7215	SC	20	Ked	1	1	1.5		0			C,F,O	22	42	Х		Х		Hilltop
F-3	30.6222	-97.71203	SF	20	Kc	6	0.5	1	N75E	10			C,F,O	7	37	Х		Х		Hillside
F-4	30.6227	-97.7108	SC	20	Ked	0.8	0.3	1		0			C,F,O	7	27	Х		Х		Hillside
F-5	30.62459	-97.62459	С	30	Ked	20	15	3		0			C,F,O	5	35	Х		Х		Cliff
M-1	30.62457	-97.7225	MB	30	Ked	0.2	0.2			0			Х	5	35	Х		Х		Hilltop
M-2	30.62291	-97.7045	MB	30	Kc	0.5	0.5			0			Х	5	35	Х		Х		Hillside
* DATUN	1:																			
2A TYPE		TYPE		2	B POINTS						8A	INFILLIN	١G							
С	Cave				30		Ν	None	exposed b	pedro	ck									
SC	Solution cavity				20		С	Coars	e - cobbles	s, bre	akdowr	n, sand, g	ravel							
SF	Solution-enlarge	ed fracture(s)			20		0	Loose	e or soft mu	id or :	soil. ord	anics, le	aves, stick	s, dark color	s					
F	Fault				20		F													
0	Other natural be	edrock features			-	 F Fines, compacted clay-rich sediment, soil profile, gray or red colors V Vegetation. Give details in narrative description 														
MB	Man-made feat				30															
SW	Swallow hole				30															
SH	Sinkhole				20															
-	Non-karst close	d depression			5								12 TO	POGRAPH	Y					
z		or aligned featu	res		30				Clif	fН	illton	Hillsi	-	inage, F		blain	Str	eam	bed	
4		or allyneu leatu	169		30					.,	mop	, 1 11131	ас, <i>в</i> та	inago, i	1000	Jun	, 00	Juin	u	

I have read, I understood, and I have followed the Texas Commission on Environmental Quality's Instructions to Geologists. The information presented here complies with that document and is a true representation of the conditions observed in the field. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Date : September 29, 2017

Sheet ___1___ of __1____

TCEQ-0585-Table (Rev. 10-01-04)

ATTACHMENT B

STRATIGRAPHIC COLUMN

Geologic Unit	Hydrologic Unit	App Thickr at Proje (ft	ness ect Site	Elevation (ft msl)	Depth (ft)
Edwards Formation (Ked)	Edwards Aquifer	6	5	- 845	0
Comanche Peak Formation (Kc)			60	780	65
Walnut Formation (Kwa)	Confining Unit	1	75	720	125 —
	evation and thin n of 845 feet on				
lorizon	Date: 09 Drawn: HJN NO:	9/14/2017 REO 170167	Stratig (achment B Jraphic Column Guy Tract ninus of D B Wood R	Road

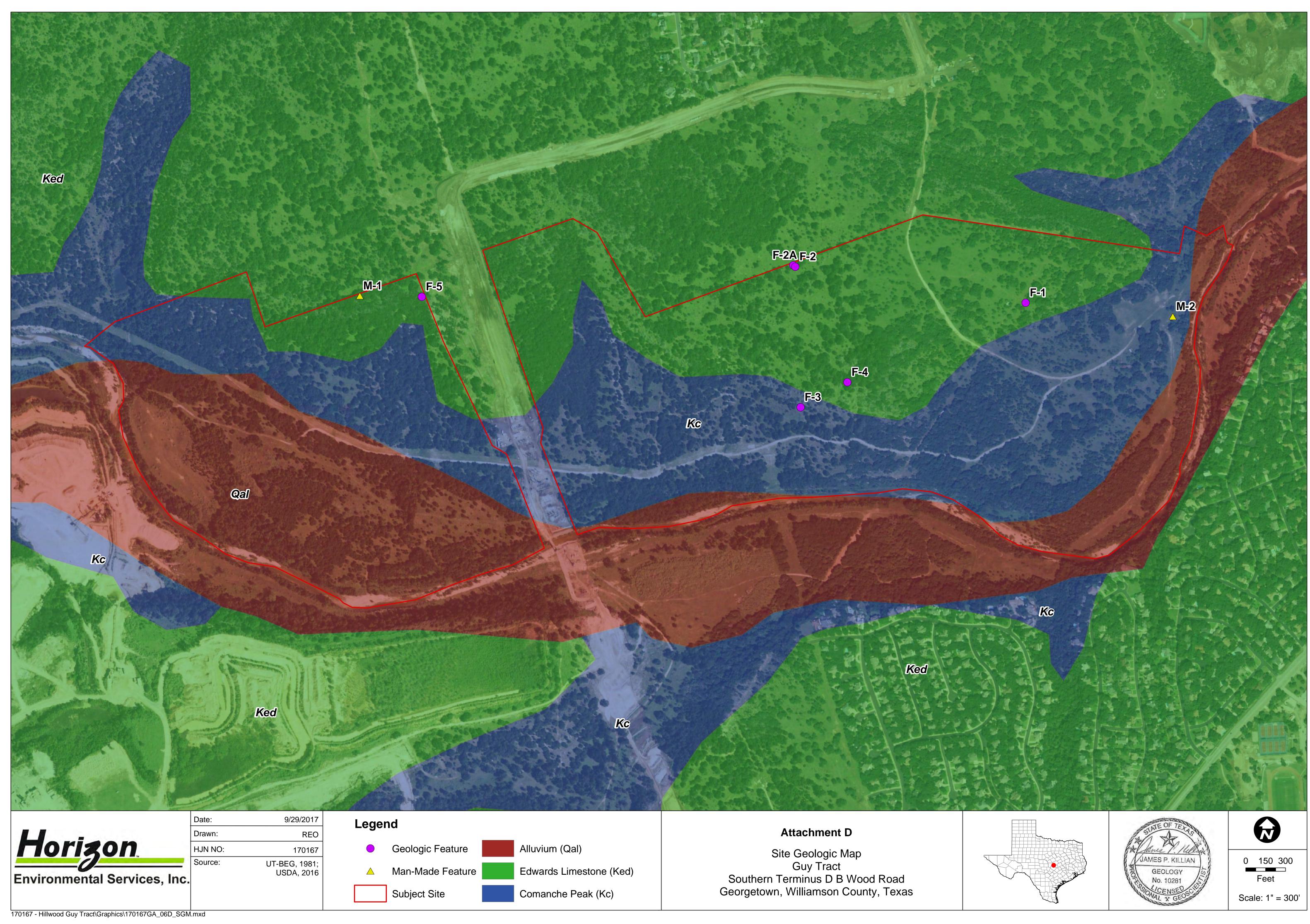
ATTACHMENT C

DESCRIPTION OF SITE GEOLOGY

Geologic information for the subject site obtained via literature review is provided in Attachment E, Supporting Information.

A geologic assessment of the approximately 366-acre Guy Tract was conducted pursuant to Texas rules for regulated activities on the Edwards Aquifer Recharge Zone (EARZ) (30 TAC 213). The subject site consists of undeveloped rangeland located at the southern terminus of D B Wood Road in Georgetown, Williamson County, Texas. Assessment findings were used to develop recommendations for site construction measures intended to be protective of water resources at the subject site and adjacent areas.

The northern portion (approximately 76.3 acres) of the subject site is located within the Edwards Aquifer Recharge Zone (EARZ), as defined by the Texas Commission on Environmental Quality (TCEQ). The EARZ occurs where surface water enters the subsurface through exposed limestone bedrock containing faults, fractures, sinkholes, and caves. The western and southern portions of the site (approximately 289.7 acres) are located within the Edwards Aquifer Contributing Zone.


The subject site is predominantly underlain by both the undifferentiated Edwards Limestone Formation (Ked) and Comanche Peak Limestone (Kc) (UT-BEG, 1981), with estimated maximum thicknesses of about 65 and 60 feet, respectively. In addition, recent alluvium deposits (Qal) occur along the lower, eroded areas located along and near the South Fork of the San Gabriel River, with an estimated maximum thickness of up to 30 feet.

Six natural geologic features (F-1, F-2, F-2A, F-3, F-4, and F-5) and 2 man-made features (M-1 and M-2) were identified at the subject site. Further information pertaining to the geologic and man-made features are presented in Attachments D, E, and F. Photographs of the geologic and man-made features are presented in Attachment G.

ATTACHMENT D

SITE GEOLOGIC MAP

ATTACHMENT E

SUPPORTING INFORMATION

1.0 INTRODUCTION AND METHODOLOGY

This report and any proposed abatement measures are intended to fulfill Texas Commission on Environmental Quality (TCEQ) reporting requirements (TCEQ, 2005b). This geologic assessment includes a review of the subject site for potential aquifer recharge and documentation of general geologic characteristics for the subject site. Horizon Environmental Services, Inc. (Horizon) conducted the necessary field and literature studies according to TCEQ *Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones* (TCEQ, 2004).

Horizon walked transects spaced less than 50 feet apart, mapped the locations of features using a sub-foot accurate Trimble Geo HX handheld GPS, and posted processed data utilizing GPS Pathfinder Office software, topographic maps, and aerial photographs. Horizon also searched the area around any potential recharge features encountered to look for additional features. When necessary, Horizon removed loose rocks and soil (by hand) to preliminarily assess each feature's subsurface extent while walking transects. However, labor-intensive excavation was not conducted during this assessment. Features that did not meet the TCEQ definition of a potential recharge feature (per TCEQ, 2004), such as surface weathering, karren, or animal burrows, were evaluated in the field and omitted from this report.

The results of this survey do not preclude the possibility of encountering subsurface voids or abandoned test or water wells during the clearing or construction phases of the proposed project. If a subsurface void is encountered during any phase of the project, work should be halted until the TCEQ (or appropriate agency) is contacted and a geologist can investigate the feature.

2.0 ENVIRONMENTAL SETTING

2.1 LOCATION AND GENERAL DESCRIPTION

The subject site consists of approximately 366 acres of mostly undeveloped rangeland located at the southern terminus of D B Wood Road in Georgetown, Williamson County, Texas (Attachment F, Figure 1).

2.2 LAND USE

The subject site is currently undeveloped rangeland used to raise beef cattle. Surrounding lands are generally used for agricultural, single-family residential, and/or commercial retail purposes.

2.3 TOPOGRAPHY AND SURFACE WATER

The subject site is situated on gently to steeply sloping terrain that is located within the San Gabriel River watershed (Attachment F, Figures 2 and 3). Surface elevations on the subject site vary from a minimum of approximately 720 feet above mean sea level (amsl) along the southern property boundary at the South Fork of the San Gabriel River to a maximum of approximately 845 feet amsl along the northern property boundary (USGS, 1987). In general,

drainage on the site occurs by overland sheet flow in multiple directions (from north to south, northwest to southeast, and northeast to southwest) into several unnamed tributaries of the South Fork of the San Gabriel River.

2.4 EDWARDS AQUIFER ZONE

The northern portion of the subject site (approximately 76.3 acres) is located within the Edwards Aquifer Recharge Zone (EARZ) (TCEQ, 2017) (Attachment F, Figure 2). The Recharge Zone is described as an area where the stratigraphic units constituting the Edwards Aquifer crop out, including the outcrops of other geologic formations in proximity to the Edwards Aquifer, where caves, sinkholes, faults, fractures, or other permeable features would create a potential for recharge of surface waters into the Edwards Aquifer. The western and southern portions of the site (approximately 289.7 acres) are located within the Edwards Aquifer Contributing Zone. The Contributing Zone of the Edwards Aquifer includes all watersheds that feed runoff into rivers and streams that flow over the Recharge Zone (TCEQ, 2005b). TCEQ rules regulate activities in the portions of the Contributing Zone that are within the counties already regulated by the Edwards Aquifer rules. These areas are generally north and west of the Recharge Zone.

2.5 SURFACE SOILS

Six soil units are mapped within the subject site (NRCS, 2017) (Attachment F, Figure 4). Generally, the soil series are similar in their physical, chemical, and engineering properties, with the principal exception being rock fragment content and thickness. The soil units are described in further detail below.

Brackett gravelly clay loam, 3 to 12% slopes (BkE): This soil has a moderately alkaline, pale brown, clay loam surface layer about 5 inches thick, with about 15% cover of limestone fragments that range from 4 to 12 inches in diameter. The subsoil, to 16 inches, is moderately alkaline, pale yellow clay loam with about 5% weakly cemented fine limestone fragments. The underlying layer is very pale brown, interbedded, calcareous loam and limestone. This soil is well drained, permeability is moderately slow, and available water capacity is very low. Runoff is rapid.

Eckrant cobbly clay, 1 to 8% slopes (EaD): This soil has a surface layer about 13 inches thick. The upper part is dark grayish-brown cobbly clay and the lower part is dark brown cobbly clay. The underlying material is coarsely fractured, indurated limestone. This soil is calcareous and moderately alkaline. The surface has about 50% cover of limestone fragments that are mostly 4 to 8 inches across. This soil is well drained, permeability is moderately slow, and runoff is rapid. The available water capacity is very low.

Eckrant-Rock outcrop complex, rolling (ErE): This unit occurs along hills, ridges, and on sides of drainageways on uplands. This complex is made up of about 70% Eckrant soils, 15% Rock outcrop, and 15% other soils. Typically, the surface layer of Eckrant soils is calcareous, moderately alkaline, dark grayish-brown, extremely stony clay about 8 inches thick. The underlying material is fractured, indurated limestone. Fragments of limestone from 6 inches to 2 feet across cover about 35% of the surface. Rock outcrop consists of exposed limestone bedrock

in narrow bands within areas of Eckrant soils. Loose cobbles and stones on the surface are common. Permeability is moderately slow, and surface runoff is rapid. The available water capacity is very low.

Georgetown stony clay loam, 1 to 3% slopes (GsB): This a gently sloping soil that occurs within central upland areas of the subject site. Typically, this soil has a slightly acidic, brown, stony clay loam surface layer about 7 inches thick and few stones on or near the surface. The subsoil, which extends down to a depth of about 35 inches, is neutral reddish-brown clay in the upper part and slightly acidic, reddish-brown, cobbly clay in the lower part. The underlying material is indurated, fractured limestone that has clay loam in crevices and fractures. This soil is well drained. Permeability is slow, and surface runoff is medium. The available water capacity is low. Reaction is neutral to slightly acidic. The erosion hazard is slight.

Oakalla soils, channeled (Oc) occur primarily along the bottomlands of the South Fork of the San Gabriel River. The surface layer is dark brown loam about 7 inches thick, followed by a dark brown clay loam layer about 16 inches thick. The underlying layer, to 66 inches, is dark brown, sandy, clay loam. This soil is calcareous and moderately alkaline. The available water capacity is high.

Sunev silty clay loam, 1 to 3% slopes (SuB): The upper layer is dark grayish-brown, silty clay loam about 18 inches thick. The subsoil, to 52 inches, is light yellowish-brown silty clay loam. The underlying layer, which extends to 60 inches, is reddish-yellow silty clay loam and has many soft masses and concretions of calcium carbonate. This soil is calcareous and moderately alkaline throughout. This soil is well drained, permeability is moderate, and surface runoff is medium. The available water capacity is moderate, and erosion is a slight hazard.

2.6 WATER WELLS

A review of TCEQ and Texas Water Development Board (TWDB) records revealed no water wells on the subject site and 3 wells within 0.5 miles of the subject site (TCEQ, 2017; TWDB, 2017). According to the TWDB records, 2 of the off-site wells (ID nos. 5827217 and 5819702) are reportedly completed within the Edwards Aquifer at total depths of 121 and 106 feet below surface grade, respectively. The third well (ID no. 54762) is reportedly completed within the Trinity Aquifer at a total depth of 840 feet below surface grade. Additionally, Horizon observed 2 unused private water wells (M-1 and M-2) at the subject site; however, no available records for these wells were found.

The results of this assessment do not preclude the existence of additional undocumented or abandoned wells on the site. If a water well or casing is encountered during construction, work should be halted near the object until the TCEQ is contacted. If any on-site wells are not intended for future use, they should be capped or properly abandoned according to the Administrative Rules of the Texas Department of Licensing and Regulation (TDLR), 16 Texas Administrative Code (TAC), Chapter 76. A plugging report must be submitted by a licensed water well driller to the TDLR Water Well Driller's Program, Austin, Texas. TCEQ publication RG-347, "Landowner's Guide to Plugging Abandoned Water Wells," provides specific guidance. If a well is intended for use, it must comply with 16 TAC §76.

2.7 GEOLOGY

Literature Review

A review of existing literature shows the subject site is predominantly underlain by both the undifferentiated Edwards Limestone Formation (Ked) and Comanche Peak Limestone (Kc) (UT-BEG, 1981), with estimated maximum thicknesses of about 65 and 60 feet, respectively. In addition, recent alluvium deposits (Qal - gravel, sand, silt, and clay) occur along the lower, eroded areas located along and near the South Fork of the San Gabriel River, with an estimated maximum thickness of up to 30 feet.

The Edwards Formation consists mostly of gray to light brownish-gray, thin to mediumbedded, dense dolomite, dolomitic limestone, and limestone. The Comanche Peak Limestone Formation underlies the Edwards and crops out on the south-facing slopes located near the South Fork of the San Gabriel River. It is approximately 60 feet thick and consists of white, soft, nodular limestone interbedded with marl and calcareous clay. Underlying the Comanche Peak Limestone is the Walnut Formation (Kwa). The uppermost 50 feet of the Walnut Formation is named the Keys Valley Marl Member, and consists of cream-colored, fossiliferous marl with some thin interbeds of soft limestone. The Keys Valley Marl is underlain by the Cedar Park Limestone and Bee Creek Marl members of the Walnut Formation. In general, the rock strata beneath the subject site dip to the east-southeast at about 10 to 30 feet per mile.

The subject site is located within the Balcones Fault Zone, and available geologic reports indicate the nearest mapped fault is located about 2 miles to the northeast. In general, the rock strata beneath the site dip to the east-southeast at about 10 to 30 feet per mile (less than 1°). The site Stratigraphic Column is provided as Attachment B, and the Site Geologic Map is Attachment D.

Field Assessment

A field survey of the subject site was conducted by a licensed Horizon geologist and support staff on 21, 22, 23, and 24 August 2017 and 8, 11, and 12 September 2017. Horizon identified 6 geologic features (F-1, F-2, F-2A, F-3, F-4, and F-5) and 2 man-made features (M-1 and M-2; private water wells previously discussed) on the subject site that meet the TCEQ definition of a potential recharge feature. In addition, Horizon observed no apparent springs at the subject site.

Geologic features identified on the subject site are described as follows:

Geologic Feature F-1: Small upland sinkhole measuring approximately 6 feet in diameter by 1 foot deep, with a semi-open drainage portal (approximately 1.5 feet long by 0.5 feet wide by 1.5 feet deep) amongst rock and loose soil infilling. Slight air flow conductivity was noted at the opening. After limited hand excavation, probing with a steel rod encountered loose soil, small rocks, and/or cobbles about 2 feet below the surface. On 8 September 2017, Horizon staff hand- excavated an area (3 feet long by 2 feet wide by 4 feet deep) and found the portal narrows

to only about 1 foot in diameter at 6 feet below the surface. No other voids and/or drainage portals were observed along the excavated floor or walls. Additional probing within the portal revealed loose soil and/or rocks infilling at 8 feet below the surface. The excavation area was left open. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.4 acres.

Geologic Features F-2 and F-2A: Two small solution cavities spaced about 15 feet apart, measuring approximately 0.5 feet in diameter by 1.5 feet deep, with semi-open drainage portals along soil/rock-filled floor areas. Probing with a steel rod encountered light brown clay soil about 2 feet below the surface. Slight air flow conductivity was noted at the openings. On 8 and 11 September 2017, Horizon staff hand-excavated both cavities (approximately 3 feet in diameter by 1.5 feet deep [F-2A] and 3 feet long by 2 feet wide by 2 feet deep [F-2]) and exposed 2 open drainage portals along the excavated floor of the eastern (F-2) solution cavity. The larger portal was about 0.5 feet long by 0.2 feet wide by 1.5 feet deep, with an apparent thin (6-inch high) bedding plane void below. The excavation areas were left open. These features have an intermediate infiltration rate and a surface runoff catchment of less than 0.1 acres, since they are located on a flat to very gently sloping area.

Geologic Feature F-3: Solution-enlarged fracture measuring approximately 6 feet long by 0.5 feet wide by 1.5 feet deep (azimuth: N75°E), with apparent semi-open drainage portals and no apparent air flow conductivity. After limited hand excavation, probing with a steel rod encountered loose clay and cobbles about 2 feet below the surface. On 12 September 2017, Horizon staff hand-excavated an area (2.5 feet long by 2 feet wide by 2.5 feet deep) near the center of the fracture and found no voids and/or drainage portals along the excavated floor and/or walls. Additional probing within the excavation revealed soft weathered bedrock at 3 feet below the surface. The excavation area was left open. This feature has a low infiltration rate and an apparent surface runoff catchment of less than 0.1 acres.

Geologic Feature F-4: Epikarstic solution cavity measuring approximately 0.8 feet long by 0.3 feet wide by 1 foot deep, with firm soil and/or rock infilling. No air flow conductivity or apparent drainage portals were noted. After limited hand excavation, probing with a steel rod encountered firm soil infilling about 1.5 feet below the surface. This feature has a low infiltration rate and an apparent surface runoff catchment of less than 0.1 acres.

Geologic Feature F-5: Small rock shelter cave located along a steep cliff edge within an unnamed tributary of the San Gabriel River near the northeastern corner of the subject site (west tract). The cave measures approximately 15 feet across by 3 feet high along the entrance and extends into the cliff face for about 20 feet. Near the back of the cave is a narrow, low passage about 2 feet wide by 0.5 to 1 foot high that extends for an unknown distance. Slight to moderate air flow conductivity was noted near this opening. This feature is a relic discharge feature that, at one time in the past, may have had groundwater flowing out of the cave entrance as a spring. No water was observed inside the cave. This feature has a very low infiltration rate and no surface runoff catchment.

The geologic and man-made features were evaluated for their potential to be significant pathways for fluid movement into the Edwards Aquifer. The Geologic Assessment

Table (Attachment A) summarizes this evaluation and assigns each feature's sensitivity a total point value. Those with a point value of 40 or higher are deemed to be sensitive groundwater recharge features and should be protected during site development pursuant to TCEQ rules for protection of the Edwards Aquifer (30 TAC 213).

3.0 CONCLUSIONS AND RECOMMENDATIONS

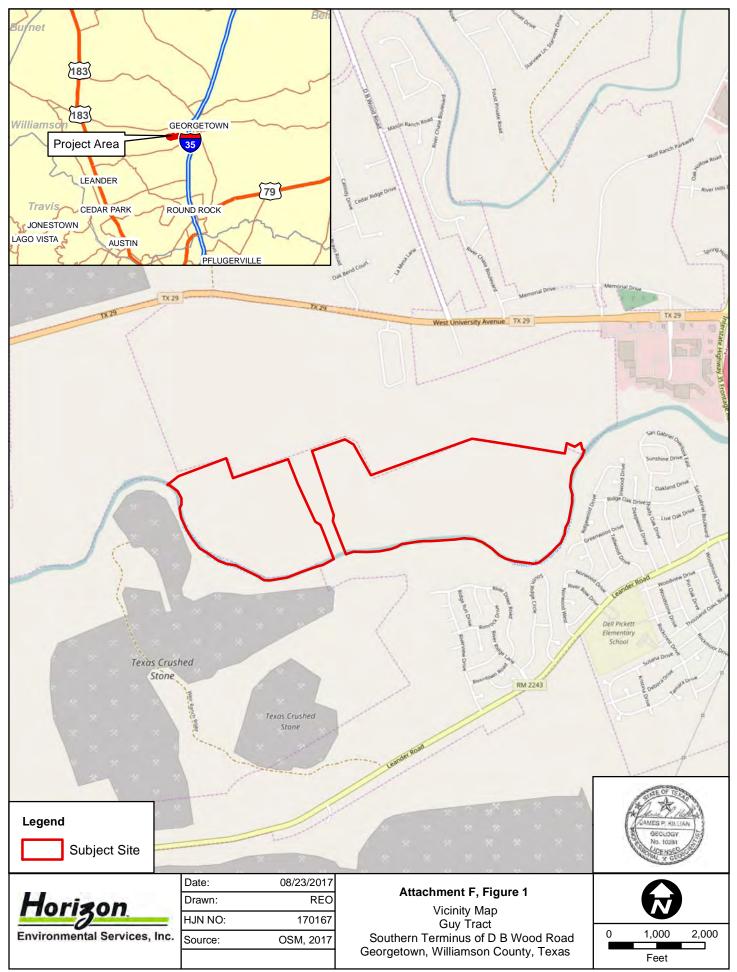
Three geologic features (F-1, F-2, and F-2A) have been evaluated as sensitive for groundwater recharge capability and would therefore require a TCEQ protective setback buffer. In general, a protective buffer encompassing a sensitive feature is recommended to meet the TCEQ guidance for a setback of at least 50 feet in all directions from the feature's areal extent (perimeter), plus its watershed catchment up to 200 feet from the perimeter of the feature. However, for features F-2 and F-2A, only a 50-foot-diameter setback buffer around each opening is recommended, since the immediate topography is relatively flat surrounding these features.

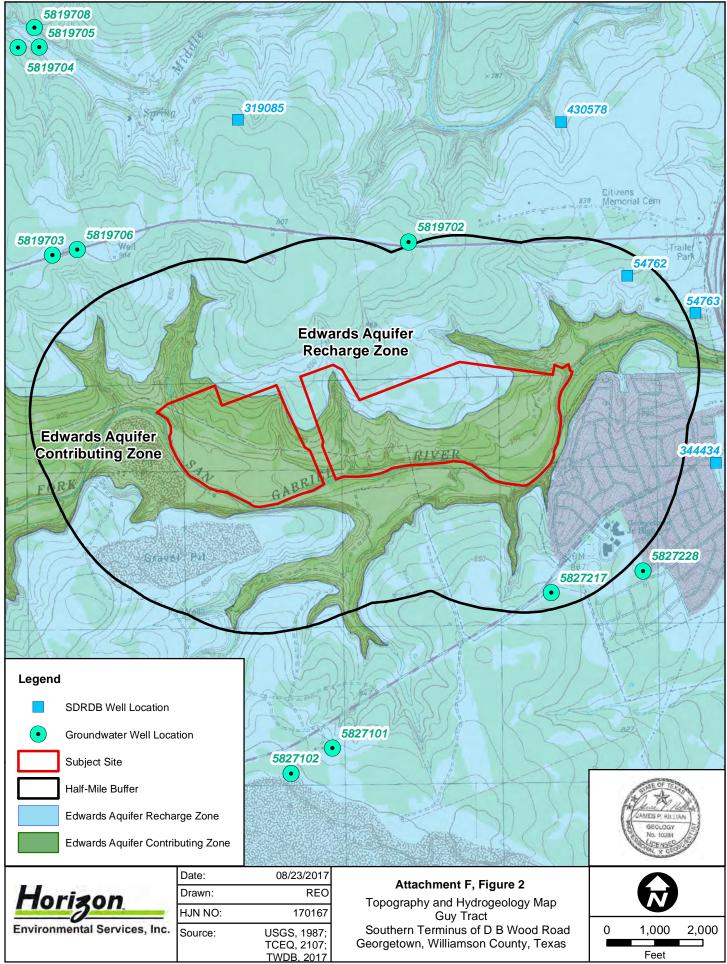
Three geologic features (F-3, F-4, and F-5) have been evaluated as non-sensitive for groundwater recharge capability and would therefore not require a TCEQ protective setback buffer. No further action is recommended for these non-sensitive geologic features. The manmade features (M-1 and M-2) have also been evaluated as non-sensitive for groundwater recharge capability and would therefore not require TCEQ protective setback buffers. Additionally, some of the larger unnamed tributaries of the South Fork of the San Gabriel River would require protection or mitigation pursuant to the City of Georgetown Edwards Aquifer Recharge Zone Water Quality Ordinance No. 2013-59.

The site generally appears well suited to development prospectuses. It should be noted that soil and drainage erosion would increase with ground disturbance. Native grasses and the cobbly content of the soil aid to prevent erosion. Soil and sedimentation fencing should be placed in all appropriate areas prior to any site-disturbing activities.

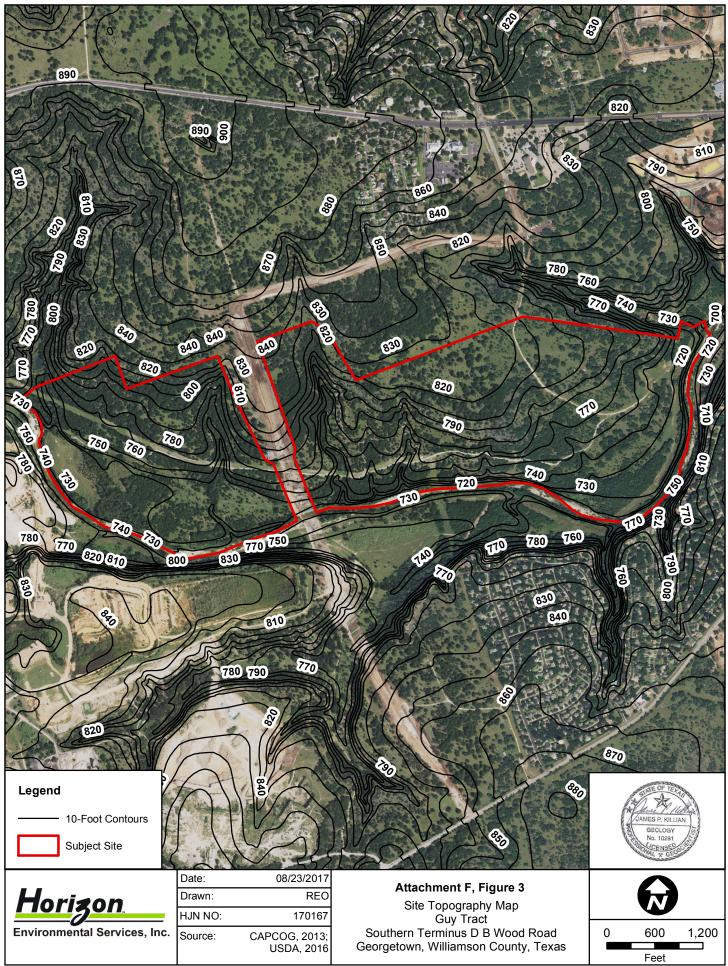
Because a portion of the subject site is located over the Edwards Aquifer Recharge Zone, it is possible that subsurface voids underlie the site. If any subsurface voids are encountered during site development, work should halt immediately so that a geologist may assess the potential for the void(s) to provide meaningful contribution to the Edwards Aquifer.

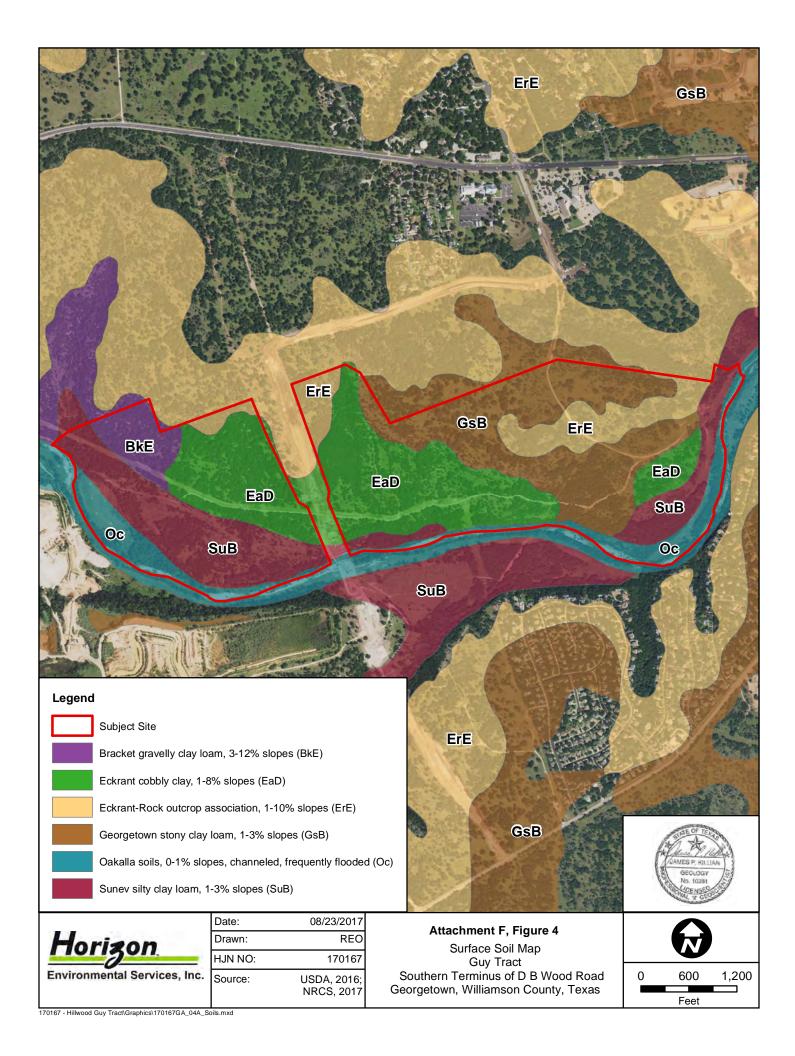
4.0 REFERENCES


- (CAPCOG) Capital Area Council of Governments. *Data, Maps, and Reports.* Contours 10 Foot Merge, http://www.capcog.org/data-maps-and-reports/geospatial-data/. 7 November 2013.
- (NRCS) Web Soil Survey, http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx>. Accessed 27 September 2017.
- (OSM) OpenStreetMap contributors. Open Street Map, <http://www.openstreetmap.org>. Available under the Open Database License (www.opendatacommons.org/ licenses/odbl). Accessed 18 September 2017.
- (TCEQ) Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones. Revised October 2004.
- _____. 2005a. Edwards Aquifer Protection Program, Chapter 213 Rules Recharge Zone, Transition Zone, Contributing Zone, and Contributing Zone Within the Transition Zone. Vector digital data. Available at https://www.tceq.texas.gov/gis/download-tceq-gisdata. 2005; accessed 9 March 2017.
- _____. 2005b. Complying with the Edwards Aquifer Rules: Administrative Guidance. RG-348. Revised July 2005.
- _____. Edwards Aquifer Protection Program. Edwards Aquifer Viewer, https://www.tceq.texas.gov/gis/edwards-viewer.html. Accessed 18 September 2017.
- (TNRIS) Texas Natural Resources Information System. Texas Orthoimagery Program. Williamson County, Texas. 2015.
- (TWDB) Texas Water Development Board. Water Information Integration and Dissemination System. TWDB Groundwater Database, http://www2.twdb.texas.gov/apps/waterdatainteractive/groundwaterdataviewer>. Accessed 18 September 2017.
- (USDA) US Department of Agriculture. Digital orthophoto quarter-quadrangle, Georgetown, Texas. National Agriculture Imagery Program, Farm Service Agency, Aerial Photography Field Office. 2016
- (USGS) US Geological Survey. 7.5-minute series topographic maps, Round Rock, Texas quadrangle, 1987.
- (UT-BEG) The University of Texas at Austin Bureau of Economic Geology; C.V. Proctor, Jr., T.E. Brown, J.H. McGowen, N.B. Waechter, and V.E. Barnes. *Geologic Atlas of Texas*, Austin Sheet. Francis Luther Whitney Memorial Edition. 1974; revised 1981.
- _____. State Map GIS Databases. Geology of the Georgetown area. http://www.beg.utexas.edu/mainweb/services/GISdatabases.htm>. 19 February 2002.


Werchan, L. E., and John L. Coker. *Soil Survey of Williamson County, Texas*. US Department of Agriculture, Natural Resources Conservation Service (formerly Soil Conservation Service), in cooperation with the Texas Agricultural Experiment Station. 1983.

ATTACHMENT F


ADDITIONAL SITE MAPS


170167 - Hillwood Guy Tract\Graphics\170167GA_01A_Vicinity.mxd

170167 - Hillwood Guy Tract\Graphics\170167GA_02A_Topo_Hydro.mxd

170167 - Hillwood Guy Tract\Graphics\170167GA_03A_Topo.mxd

ATTACHMENT G

SITE PHOTOGRAPHS

PHOTO 1 View of geologic feature F-1 (sinkhole), facing down

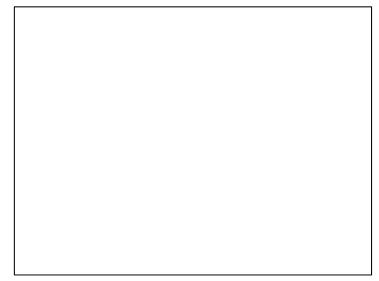


PHOTO 2 View of F-1 after hand excavation with narrow, open drainage portal(s)

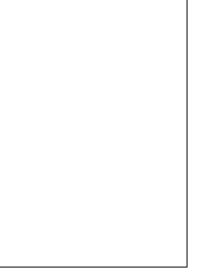


PHOTO 3 View of geologic feature F-2 (solution cavity), facing down

PHOTO 4 View of F-2 after hand excavation with open drainage portals

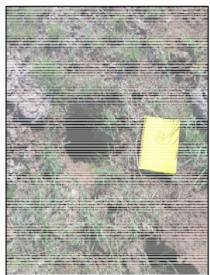


PHOTO 5 View of geologic feature F-2A (solution cavity), facing down

PHOTO 7 View of geologic feature F-3 (solution-enlarged fracture), facing east

PHOTO 6 View of F-2A after hand excavation with open drainage portal

PHOTO 8 View of F-3 after hand excavation with no voids or open drainage portals

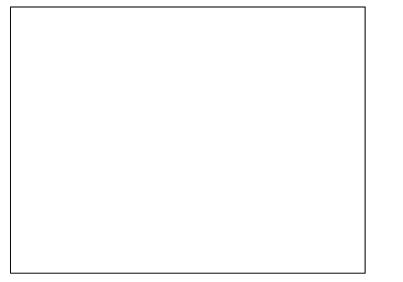


PHOTO 9 View of geologic feature F-4 (epikarstic solution cavity), facing north

PHOTO 10 View of geologic feature F-5 (rock shelter cave), facing northeast

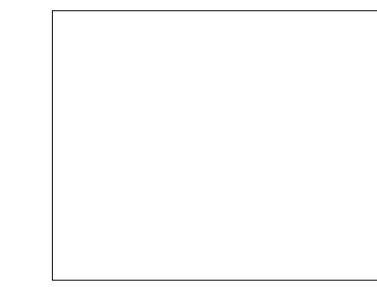


PHOTO 11 View inside F-5 (rock shelter cave), facing northeast

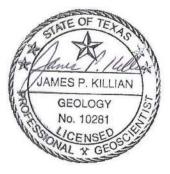
PHOTO 12 Another view inside F-5, facing east

PHOTO 13 View of man-made feature M-1 (unused water well), facing south

PHOTO 14 View of man-made feature M-2 (water well) used to water livestock, facing west

WOLF RANCH GEOLOGIC ASSESSMENT

Environmental Services, Inc.


GEOLOGIC ASSESSMENT 767 ACRES – WOLF RANCH PROPERTIES STATE HIGHWAY 29 WEST GEORGETOWN, WILLIAMSON COUNTY, TEXAS HJN 130219 GA

PREPARED FOR:

HILLWOOD COMMUNITIES DALLAS, TEXAS

PREPARED BY:

HORIZON ENVIRONMENTAL SERVICES, INC.

NOVEMBER 2013

Revised Hillwood Wolf Ranch GA

CORPORATE HEADQUARTERS 1507 South IH 35 ★ Austin, Texas 78741 ★ 512.328.2430 ★ Fax 512.328.1804 ★ www.horizon-esi.com Certified WBE/HUB/DBE/SBE

TABLE OF CONTENTS

<u>SECTION SECTION SECTI</u>	ON		PAGE
LIST O	F TABLE	ES	iii
LIST O	F APPEI	NDICES	iii
	PRO ADM	GIC ASSESSMENT FORM JECT INFORMATION INISTRATIVE INFORMATION	1
ADDIT	IONAL C	OMMENTS	4
1.0	INTR	RODUCTION AND METHODOLOGY	4
2.0	ENV 2.1 2.2 2.3 2.4 2.5 2.6 2.7	IRONMENTAL SETTING LAND USE TOPOGRAPHY AND SURFACE WATER EDWARDS AQUIFER ZONE SURFACE SOILS GEOLOGY WATER WELLS GEOLOGIC AND MANMADE FEATURES	
3.0	CON	CLUSIONS AND RECOMMENDATIONS	
4.0	REF	ERENCES	

LIST OF TABLES

TABLE	PAG	PAGE	
1	SURFACE SOILS	1	
2	GEOLOGIC STRATIGRAPHIC COLUMN	8	

LIST OF APPENDICES

- А PROJECT FIGURES
- SITE GEOLOGIC MAP В
- GEOLOGIC ASSESSMENT TABLE С
- D SITE PHOTOGRAPHS

TCEQ GEOLOGIC ASSESSMENT FORM

For Regulated Activities on The Edwards Aquifer Recharge/Transition Zones and Relating to 30 TAC 213.5(b)(3), Effective June 1, 1999

REGULATED ENTITY NAME:	<u>767 acres – Wolf Ranch Properties;</u> <u>SH 29 West_Georgetown, Williamson County, Texas</u>		
TYPE OF PROJECT: X WPAP	_ AST	<u>x</u> scs	_ UST
LOCATION OF PROJECT: <u>X</u> Recharge Zone Transition Zone <u>X</u> Contributing Zone			

PROJECT INFORMATION

Figure 1 shows the Site Location and Edwards Aquifer Recharge Zone.

- 1. <u>X</u> Geologic or manmade features are described and evaluated using the attached **GEOLOGIC ASSESSMENT TABLE** provided in Appendix C.
- X Soil cover on the project site is summarized in the table below (Table 1) and uses the Soil Conservation Service (SCS) Hydrologic Soil Groups* (*Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A*, SCS, 1986) (NRCS, 1975, and Werchan et al., 1983).

Soil Units, Infiltration Characteristics & Thickness			
Soil Name	Group*	Thickness (feet)	
Brackett gravelly clay loam, 3 to 16% slopes (BkE)	С	1 - 2	
Eckrant cobbly clay, 1 to 8% slopes (EaD)	D	0.5 - 1	
Eckrant extremely stony clay, 0 to 3% slopes (EeB)	D	0.5 - 1	
Eckrant-Rock outcrop complex, rolling (ErE)	D	0.5 - 1	
Eckrant-Rock outcrop complex, hilly (ErG)	D	0.5 - 1	
Georgetown stony clay loam, 1 to 3% slopes (GsB)	D	2 - 4	
Oakalla soils, 0 to 1% channeled (Oc)	В	5 - 7	
Sunev silty clay loam, 1 to 3% slopes (SuB)	В	9 - 11	

TABLE 1 – SURFACE SOILS

* Soil Group Definitions (Abbreviated)

A. Soils having a <u>high infiltration</u> rate when thoroughly wetted.

B. Soils having a <u>moderate infiltration</u> rate when thoroughly wetted.

C. Soils having a <u>slow infiltration</u> rate when thoroughly wetted.

D. Soils having a <u>very slow infiltration</u> rate when thoroughly wetted.

- 3. <u>X</u> A **STRATIGRAPHIC COLUMN** is attached at the end of this form in the additional comments section and shows formations, members, and thicknesses. The outcropping unit should be at the top of the stratigraphic column (Appendix A, Figure 5).
- 4. <u>X</u> A **NARRATIVE DESCRIPTION OF SITE-SPECIFIC GEOLOGY** is attached at the end of this form. The description must include a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure, and karst characteristics of the site.
- 5. <u>X</u> Appropriate **SITE GEOLOGIC MAP(S)** are attached in Appendix B:

The Site Geologic Map must be the same scale as the applicant's Site Plan. The minimum scale is 1": 400'

Applicant's Site Plan Scale	1" = _	200'
Site Geologic Map Scale	1" =	200'
Site Soils Map Scale (if more than 1 soil type)	1" =	1800'

- 6. Method of collecting positional data:
 <u>X</u> Global Positioning System (GPS) technology. Other method(s).
- 7. <u>X</u> The project site is shown and labeled on the Site Geologic Map (Appendix B).
- 8. <u>X</u> Surface geologic units are shown and labeled on the Site Geologic Map (Appendix B).
- 9. <u>X</u> Geologic or manmade features were discovered on the project site during the field investigation. They are shown and labeled on the Site Geologic Map (Appendix B) and are described in the attached Geologic Assessment Table (Appendix C).
 - _ Geologic or manmade features were not discovered on the project site during the field investigation.
- 10. \underline{X} The Recharge Zone boundary is shown and labeled, if appropriate (Appendix A, Figure 2).
- 11. All known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.):
 - <u>X</u> There are <u>3</u> (#) wells and <u>0</u> test wells present on the project site, and the locations are shown and labeled. (Check all of the following that apply.)
 - _ The test well is not in use and has been properly abandoned.
 - \underline{X} The wells are not in use and will be properly abandoned.
 - _ The wells are in use and comply with 16 TAC §76.

There are no wells or test holes of any kind known to exist on the project site.

ADMINISTRATIVE INFORMATION

12. \underline{X} Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.

Date(s) Geologic Assessment was performed:

<u>8 to 11, 17, 18, 22 to 25 October and 26 November 2013</u> Date(s)

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC 213.

For Horizon Environmental Services, Inc.

James Killian, PG¹ Print Name of Geologist (512) 328-2430, Ext. 112 Telephone

<u>(512) 328-2633</u> Fax

Date

27 November 2013

Signature of Geologist

Representing: Horizon Environmental Services, Inc., Austin, Texas

If you have questions on how to fill out this form or about the Edwards Aquifer protection program, please contact us at 210/490-3096 for projects located in the San Antonio Region or 512/339-2929 for projects located in the Austin Region.

Individuals are entitled to request and review their personal information that the agency gathers on its forms. They may also have any errors in their information corrected. To review such information, contact us at 512/239-3282.

¹ Registered Professional Geologist, State of Texas

TCEQ GEOLOGIC ASSESSMENT ADDITIONAL COMMENTS

1.0 INTRODUCTION AND METHODOLOGY

This report and the planned abatement measures are intended to fulfill Texas Commission on Environmental Quality (TCEQ) reporting requirements (TCEQ, 1999). This geologic assessment includes a review of the site for potential aquifer recharge and documentation of general geologic characteristics for the subject property. Horizon conducted the necessary field and literature studies according to TCEQ Instructions to Geologists for completing Geologic Assessments within the Edwards Aquifer Recharge Zone (TCEQ, 2004).

Horizon walked transects spaced less than 50 feet apart and mapped the location of features using a subfoot accurate Trimble GeoHX handheld GPS and post-processed data utilizing aerial photographs, topographic maps, and GPS Pathfinder Office software. Horizon also searched the area around any potential recharge features that were encountered to look for any additional features.

The Geologic Assessment Table in Appendix C provides a description of any features that meet the TCEQ definition of potential recharge features (TCEQ, 2004). Features that do not meet the TCEQ definition, which include surface weathering, karren, or animal burrows, were evaluated in the field and omitted from this report. While walking transects, Horizon removed loose rocks and soil (by hand), when necessary, to preliminarily assess each feature's subsurface extent. However, labor-intensive excavation was not conducted.

The results of this survey do not preclude the possibility of finding subsurface voids or abandoned test or water wells during the clearing or construction phases of the proposed project. If a subsurface void is encountered during any phase of the project, construction should be halted until the TCEQ (or appropriate agency) is contacted and a geologist can investigate the feature.

2.0 ENVIRONMENTAL SETTING

2.1 LAND USE

The subject property is undeveloped rangeland and/or woodland currently used for wildlife management. It consists of 4 separate tracts, totaling approximately 767 acres, located west of Georgetown, Williamson County, Texas along either side of State Highway (SH) 29 West (Appendix A, Figures 1 and 2). Five rural homesteads are located within the subject property, 4 of which are located throughout tract 1, and 1 abandoned homestead that is located near SH 29 in tract 3. Local electrical, sewer, and water utilities were observed along portions of the subject property. Surrounding land use consists of residential, undeveloped, and commercial properties. A privately owned golf course (Georgetown Country Club) is situated along the Middle Fork of the San Gabriel River that divides part of tract 1. Additionally, Texas Crushed Stone Company

operates 2 active (open pit) limestone quarries located immediately northwest and south of tract 2.

2.2 TOPOGRAPHY AND SURFACE WATER

The subject property is situated on gently to steeply sloping terrain along the Middle and South Forks of the San Gabriel River watershed (Appendix A, Figures 3A to 3C and 4A to 4D). Surface elevations vary from a minimum of approximately 700 feet above mean sea level (amsl) at the southeast boundary of tract 1 to a maximum of approximately 910 feet amsl at the northwest corner of tract 3. In general, slopes vary greatly depending on their proximity to the San Gabriel River and/or its surrounding tributaries.

Surface drainage occurs primarily by overland sheet flow into the Middle and South Forks of the San Gabriel River, which eventually converge into the San Gabriel River, located farther to the east. In addition, several unnamed intermittent tributaries located along portions of the subject property drain into the Middle and South Forks of the San Gabriel River.

2.3 EDWARDS AQUIFER ZONE

As shown in Appendix A, Figures 3A to 3C, approximately 686 acres of the subject property are found within the Edwards Aquifer Recharge Zone, as mapped by the TCEQ Recharge Zone Boundary Maps. However, select portions (about 81 acres near the South Fork of the San Gabriel River and its tributaries) are located outside of the recharge zone and mapped within the Edwards Aquifer Contributing Zone (TCEQ, 2013).

2.4 SURFACE SOILS

Mapping by the Natural Resources Conservation Service (NRCS, 2013) shows a total of 8 soil mapping units within the subject property (Appendix A, Figure 5) associated with soil series, as described below.

Brackett gravelly clay loam (BkE) occurs along an unnamed tributary of tract 2. This soil has a moderately alkaline, pale brown clay loam surface layer about 5 inches thick with about 15% cover of limestone fragments that range from 4 to 12 inches in diameter. The subsoil, to 16 inches, is moderately alkaline, pale yellow clay loam with about 5% weakly cemented fine limestone fragments. The underlying layer is very pale brown interbedded calcareous loam and limestone. This soil is well-drained, permeability is moderately slow, and available water capacity is very low. Runoff is rapid.

Eckrant cobbly clay (EaD) is situated at the head of an unnamed tributary within the southwest corner of tract 4. This soil has a surface layer about 13 inches thick. The upper part is dark grayish-brown cobbly clay and the lower part is dark brown cobbly clay. The underlying

material is coarsely fractured, indurated limestone. This soil is calcareous and moderately alkaline. The surface has about 50% cover of limestone fragments that are mostly 4 to 8 inches across. This soil is well-drained, permeability is moderately slow, and runoff is rapid. The available water capacity is very low.

Eckrant extremely stony clay (EeB) occurs mostly in the southern property tracts (2 to 4) along nearly level to gently sloping broad ridges and shallow valleys of uplands. This soil has an extremely stony, very dark gray clay surface layer about 11 inches thick. The underlying material is indurated limestone. About 25% of the surface is covered with limestone fragments, ranging from 3 inches to 3 feet across and as much as 10 inches thick. The soil is calcareous and moderately alkaline. This soil is well-drained, permeability is moderately slow, and surface runoff is rapid. The available water capacity is very low.

Eckrant-Rock outcrop complex, rolling (ErE) is located throughout most of the subject property. It consists of Eckrant soils and Rock outcrop located along hills, ridges, and on sides of drainageways on uplands. This complex is made up of about 70% Eckrant soils, 15% Rock outcrop, and 15% other soils. Typically, the surface layer of Eckrant soils is calcareous, moderately alkaline, dark grayish-brown extremely stony clay about 8 inches thick. The underlying material is fractured, indurated limestone. Fragments of limestone from 6 inches to 2 feet across cover about 35% of the surface. Rock outcrop consists of exposed limestone bedrock in narrow bands within areas of Eckrant soils. Loose cobbles and stones on the surface are common. The other soils included in this complex are Doss, Denton, and Georgetown. Permeability is moderately slow and surface runoff is rapid. The available water capacity is very low.

Eckrant-Rock outcrop complex, hilly (ErG) occurs primarily within tract 1, consisting of Eckrant soils and Rock outcrop mostly along major streams where erosion has formed sharp hills, ridges, and ravines. This complex is made up of about 41% Eckrant soils, 38% Rock outcrop, and 21% other soils. Typically, the Eckrant soils have a calcareous, moderately alkaline, extremely stony, dark grayish-brown silty clay loam surface layer about 11 inches thick. The underlying material is indurated limestone. About 55% of the soil surface is covered with fragments of limestone that are 1 to 6 feet across. Rock outcrop consists of exposed limestone bedrock below the crest of hills and ridges. Loose cobbles and stones on the surface are common. The other soil included in this complex is Doss. The soils are well-drained, permeability is moderately slow, and surface runoff is rapid. The available water capacity is low.

Georgetown stony clay loam (GsB) is situated within tracts 1 and 4 on higher parts of uplands. This soil has a slightly acid, brown stony clay loam surface layer about 7 inches thick and few to common stones on or near the surface. The subsoil, which extends down to a depth of about 35 inches, is neutral, reddish-brown clay in the upper part and slightly acid, reddish-brown cobbly clay in the lower part. The underlying material is indurated, fractured limestone that has clay loam in crevices and fractures. This soil is well-drained, permeability is slow, and surface

runoff is medium. The available water capacity is low, reaction is neutral to slightly acid, and erosion hazards range to slight.

Oakalla soils, channeled (Oc) occur primarily along the bottomlands of the Middle Fork of the San Gabriel River within tract 1. The surface layer is dark brown loam about 7 inches thick, followed by a dark brown clay loam layer about 16 inches thick. The underlying layer, to 66 inches, is dark brown sandy clay loam. This soil is calcareous and moderately alkaline. The available water capacity is high.

Sunev silty clay loam (SuB) occurs primarily along gently sloping stream terraces of the subject property. The upper layer is dark grayish-brown silty clay loam about 18 inches thick. The subsoil, to 52 inches, is light yellowish-brown silty clay loam. The underlying layer, which extends to 60 inches, is reddish-yellow silty clay loam and has many soft masses and concretions of calcium carbonate. This soil is calcareous and moderately alkaline throughout. This soil is well-drained, permeability is moderate, and surface runoff is medium. The available water capacity is moderate and erosion is a slight hazard (NRCS, 2013).

2.5 GEOLOGY

A review of existing geologic literature shows that the subject property is predominately underlain by the undifferentiated Edwards Limestone Formation (Ked) Bureau of Economic Geology (UT-BEG, 1995), with an estimated maximum thickness of up to 100 feet at higher surface elevations (Appendix A, Figure 6, and Appendix B, Figures 1A to 1C). The Comanche Peak Limestone (Kc) crops out in select portions of the subject property, typically at lower surface elevations situated along the South and Middle Forks of the San Gabriel River and its tributaries (tracts 1, 2, and 4). Underlying the Comanche Peak Limestone is the Walnut Formation (Kwa). In general, the rock strata beneath the subject property dip to the east-southeast at about 10 to 30 feet per mile.

Additionally, recent (Quaternary-age) floodplain deposits (alluvium [Qal]) consisting of clay, silt, sand, and gravel occur within both forks of the San Gabriel River (tracts 1 and 4). Fluviatile terrace deposits (Qt) consist of gravel, sand, silt, and clay in various proportions, with gravel more prominent in the older, higher terraces; dolomite, limestone, and chert from the Edwards Plateau; and sand that is mostly quartz (UT-BEG, 1995). These deposits occur primarily along the sides of the South Fork of the San Gabriel River (tracts 2 and 4).

The subject property is located about 1 mile west of the Balcones Fault Zone and available geologic reports indicate that the immediate area has not been affected by geologically inactive, normal faulting. A normal fault is an inclined fault in which the hanging wall appears to have slipped downward relative to the footwall. The nearest mapped fault is located about 1 mile east of the subject property and strikes N10-15°E (UT-BEG, 1995).

Table 2 (below) depicts the stratigraphic relationship and approximate thicknesses of the uppermost geologic unit found at the subject property.

Geologic Period	Hydrologic Unit	Geologic Unit	Geologic Member	Approximate Thickness (feet)	Description
Lower Cretaceous	Edwards Aquifer	Edwards Formation (Ked)		Up to 100	Gray to light brownish-gray, thin to medium-bedded, dense, dolomite, dolomitic limestone, and limestone containing rudists (long, conical bivalves). Gray to black chert is common. Moderate to high cave development.
Lower Cretaceous	Edwards Aquifer	Comanche Peak Formation (Kc)		60	Gray to very light brown, fine-grained, nodular limestone, marly limestone, and marl. No cave development.
Lower Cretaceous	Confining Unit	Walnut Formation (Kwa)		175	Composed of 4 thinly bedded limestone and marl members (Keys Valley Marl, Cedar Park Limestone, Bee Cave Marl, and Bull Creek Limestone). Low cave development.

TABLE 2 – GEOLOGIC STRATIGRAPHIC COLUMN

2.6 WATER WELLS

A search was made for water wells on and within 0.5 miles of the subject property. A review of the records of the TCEQ and the Texas Water Development Board (TWDB) revealed no water wells at the subject property. However, there was evidence of water wells present during the field investigation. Three unused private water wells were found, including 2 cased wells (M-6 and M-11) in tracts 3 and 1, respectively, and an old, apparently collapsed (hand-dug) well (M-5) in tract 3 behind an abandoned homestead. The results of this survey do not preclude the existence of additional unused/abandoned wells.

Five documented water wells were found within 0.5 miles from the subject property (TWDB, 2013). Three of these water wells are reported to be test holes that were completed in the Edwards Formation at total depths ranging from 105 to 134 feet. The fourth water well (No. 5819706) is reported to have been completed in the Glen Rose Formation (Upper and/or Middle Trinity aquifers) at a total depth of 898 feet. The fifth water well (No. 5819822) is reported to be a natural groundwater spring and is not a water well. Appendix A, Figures 3A to 3C, show the water well/spring locations.

Abandoned wells must be capped or properly abandoned according to the Administrative Rules of the Texas Department of Licensing and Regulation, 16 Texas Administrative Code (TAC), Chapter 76, effective 3 January 1999. A plugging report must be

submitted (by a licensed water well driller) to the Texas Department of Licensing and Regulation, Water Well Driller's Program, Austin, Texas. If a well is intended for use, it must comply with 16 TAC §76.

2.7 GEOLOGIC AND MANMADE FEATURES

A field survey of the subject property was conducted by a licensed Horizon geologist with support staff on 8 to 11, 17, 18, and 22 to 25 October 2013. A total of 32 natural geologic features (F-1 to F-22, F-22A, and F-23 to F-31) were identified and are further described below. In addition, 3 natural geologic features (NF-7 [F-32], NF-5 [F-33], and NF-1 [F-34]) have been included in this survey from previous investigation(s) for proposed roadway alignment of Wolf Ranch Parkway conducted by HDR Engineering, Inc. and SWCA Environmental Consultants in December 2010.

A total of 12 manmade features (M-1 to M-12) were found at the subject property. Three manmade features (M-1 to M-3) in tract 4 were identified as sanitary sewer manholes. These manholes and their associated underground sewer line(s) are maintained by the City of Georgetown and appeared to be in good working condition. Manmade feature M-4 is a borrow pit (about 200 feet long x 120 feet wide x 20 feet deep) located in the northwest corner of tract 3 and has apparently been partially filled in with boulders, rubble, dirt fill, and scattered inert waste debris (e.g., wood, tin, etc.). Three manmade features (M-5, M-6, and M-11) identified as unused, private water wells (previously described) were found at the subject property (tracts 1 and 3). Four manmade features (M-7 to M-10) in tract 1 are part of an existing storm water retention pond system, also maintained by the City of Georgetown. The last manmade feature (M-12) is a large stock pond within an unnamed tributary of the South Fork of the San Gabriel River (southwest corner of tract 2).

Geologic Feature F-1 (tract 4): Solution-enlarged fracture (azimuth: N280°W) measuring approximately 4 feet long x 1 foot wide x 2.5 feet deep with apparent drainage portal openings amongst loose, in-filled rocks. Very slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 3.5 to 4 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-2 (tract 4): Upland sinkhole measuring approximately 15 feet in diameter x 3 feet deep with open drainage portal measuring 7 feet long x 4.5 feet wide x 4 feet deep near center of sink. Air flow conductivity was noted. A low (1 to 3 feet high), bedding plane void appears to extend for over 15 feet to the west, north, and east from the entrance drop. This void area meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. This cave appears to have been previously excavated based on the presence of dirt/rock piles located on the surface, immediately to the southwest. In addition, old flagging tape attached to tree limbs was observed near the entrance. Inside the cave, the floor

consists of thick, dry to moist, very dark gray to black clay and loose rocks and appears to slope down toward the east, for about 10 feet from the entrance, into an apparent internal drain of unknown extent. This cave has a high infiltration rate and a surface runoff catchment of less than 1.7 acres.

Geologic Feature F-3 (tract 4): Solution cavity measuring approximately 1.5 feet in diameter x 1.5 feet deep. This feature is clay-filled with no apparent drainage portals or air flow conductivity. Probing with a steel rod encountered firmer clay soil and cobbles about 2 to 2.5 feet below the surface. The feature appears to have been previously excavated based on the presence of small dirt/rock piles located on the surface, immediately to the south. In addition, old flagging tape attached to tree limbs was observed near the opening. This feature has a low infiltration rate and a surface runoff catchment of less than 0.1 acres.

Geologic Feature F-4 (tract 4): Two small solution cavities spaced about 2 feet apart near the base of a small cedar elm tree. One solution cavity measures approximately 0.4 feet long x 0.2 feet wide x 1.5 feet deep with an apparent drainage portal. Slight air flow conductivity was noted. The second cavity measures approximately 0.4 feet long x 0.2 feet wide x 0.5 feet deep with no apparent drainage portal or air flow conductivity. Probing with a steel rod encountered firmer clay soil/rocks about 1.5 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-5 (tract 3): Large upland sinkhole measuring approximately 25 feet in diameter x 4 feet deep next to a big live oak tree. Within the center of the sinkhole is an open drainage portal measuring about 8 feet long x 2.5 feet wide x 1.5 feet deep. Strong air flow conductivity was noted. A low (1 to 4 feet high) bedding plane void room appears to extend from the opening in a west-to-south direction for about 30 feet. At the southwest end of this room is a headwall with an underlying, low opening which leads into a larger, open room about 100 feet long x 60 feet wide x 3 to 8 feet high. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. According to available records, this cave was previously discovered in 1991 and has been officially named **Lobo's Lair Cave** (TPWD, 2013). Inside the cave, the floor areas consist of loose rock and thin, dry to moist, black and red clay. An apparent large internal drain of unknown extent is located within the cave's largest room. At the back of the cave is an upper room with an open connection (skylight) leading back up to the surface that measures about 3 feet long x 2.5 feet wide x 6 feet deep. This cave has a very high infiltration rate and a surface runoff catchment of less than 1.7 acres.

Geologic Feature F-6 (tract 3): Solution cavity measuring approximately 3 feet long x 2 feet wide x 1.5 feet deep with no apparent drainage portal openings or air flow conductivity. Probing with a steel rod encountered clay soil and cobbles about 2.5 feet below the feature's floor. This feature appears to have been previously excavated based on the presence of small dirt/rock piles located on the immediate surrounding surface. In addition, old flagging tape attached to bushes/tree limbs was observed near the feature. This feature has a low infiltration rate and a

surface runoff catchment of less than 0.1 acres. Additionally, there is a large, non-karst, closed depression located about 10 feet north of the solution cavity feature that measures 18 feet in diameter x 2 feet deep with a thick, dense, reddish-brown clay floor. Probing with a steel rod encountered firm clay soil and cobbles about 2 feet below the feature's floor, and no internal drainage portals/pathways were found along the extent of its floor.

Geologic Feature F-7 (about 60 feet west/southwest of Feature F-6; adjacent to tract 3): Large upland sinkhole measuring approximately 25 feet in diameter x 3 to 4 feet deep. Within the center of the sinkhole is a live oak tree that has a large taproot extending into an open drainage portal measuring about 8 feet long x 5 feet wide x 5 feet deep. Additional rock-choked drainage portals occur along the south side of the opening. Air flow conductivity was noted. A low (1 to 3.5 feet high) bedding plane void room appears to extend from the opening in an eastern direction for over 40 feet. At the east end of this room is an internal drain of unknown extent. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. According to available records, this cave was previously discovered in 1991 and has been officially named **Wolf's Rattlesnake Cave** (TPWD, 2013). Inside the cave, the floor areas consist of dry to moist black clay and loose rocks. This cave has a very high infiltration rate and a surface runoff catchment of less than 1.7 acres.

Geologic Feature F-8 (tract 3): Solution cavity measuring approximately 3 feet long x 2 feet wide x 2.5 feet deep with apparent drainage portal openings amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 5 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-9: Large upland sinkhole measuring approximately 30 feet long x 20 feet wide x 3 feet deep within a wooded area. Near the middle of the sinkhole are two open drainage portals, the larger measuring about 7 feet in diameter x 4 feet deep and the smaller measuring 3 feet in diameter x 8 feet deep. Air flow conductivity was noted only at the smaller, but deeper drainage portal opening. This feature appears to have been previously excavated based on the presence of large dirt/rock piles located on the surface near both openings. In addition, a blue tarp was partially draped over the top of the smaller (vertical) opening. At the base of the smaller opening, a low (1 to 4 feet high) bedding plane void room appears to extend in a northeast-to-southeast direction for over 40 to 60 feet. At the east end of this room is an internal drain of unknown extent that had incised scour marks along the clay/rock floor that leads back upslope to where the larger portal opening on the surface is located. Another room that trends farther to the northeast (at least 35 feet long x 10 feet wide; unknown full extent) with higher ceiling heights was visible through a low crawlway at the north side of the bedding plane room. This feature meets the requirements to be classified as a cave, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an averagesized person to enter. According to available records, this sink/cave was previously discovered

and has been officially named **Wolf's Algorita Sink** (TSS, 2013). Inside the cave, the floor areas consist of loose rock and thin, dry to moist, black and red clay. This cave has a high infiltration rate and a surface runoff catchment of less than 1.7 acres.

Geologic Feature F-10 (tract 3): Solution cavity measuring approximately 1 foot long x 0.5 feet wide x 2 feet deep within a small sinkhole (6 feet long x 7 feet wide x 2 feet deep) with apparent drainage portal openings amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 3 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-11 (tract 3): Very large upland sinkhole measuring approximately 60 feet long x 45 feet wide x 4 to 7 feet deep containing a large cedar elm tree and small trees/brush. Along the north central side of the sinkhole is a partially rimmed edge of exposed bedrock (about 80 to 100 feet long) with multiple drainage portal openings. Two of the largest openings are spaced about 40 to 50 feet apart and measure approximately 7 feet long x 5 feet wide x 3 feet deep and 8 feet long x 2 feet high. Strong air flow conductivity was noted at each opening. Multiple bedding plane void rooms and/or passages ranging from 1 to 7 feet high appeared to extend in a general west-to-southeast direction from the openings. Two large internal drains are present about 40 feet and 80 feet due north/northeast from the larger opening. Another internal drain appears to be present at the west interior side based on floor slopes observed from the smaller opening entrance. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. According to available records, this cave was previously discovered in 1983 and has been officially named Wolf Cave (TSS, 2013). Inside the cave, the floor areas consist of loose rock and thin, dry to moist, black and red clay. This cave has a very high infiltration rate and a surface runoff catchment of less than 2 acres.

Geologic Feature F-12 (tract 3): Upland sinkhole measuring approximately 15 feet in diameter x 3 feet deep with a partially open (rock-choked) drainage portal measuring 4 feet long x 3.5 feet wide x 3 feet deep near center of sink. A second, smaller drainage portal (solution-enlarged fracture) about 1 foot x 0.4 feet wide x 2 feet deep is located about 10 feet upslope of the larger portal. Air flow conductivity was noted at both openings. This feature has a high infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-13 (tract 3): Very large upland sinkhole measuring approximately 60 feet long x 50 feet wide x 4 to 7 feet deep with an open drainage portal measuring 7 feet long x 4 feet wide x 7 feet deep near the center of sink. Very strong air flow conductivity was noted when standing above this area. The drainage portal drops another 10 feet, at a 35 degree angle, to an area that has been blocked off by in-filled rocks. On 14 November 2013, Horizon staff excavated feature F-13 with a backhoe down to the lower, in-filled rock area; however, further entry was not possible due to very large rocks blocking the passage. Based on the presence of excessive air flow conductivity, the potential for additional subgrade passage is very probable.

This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an averagesized person to enter. A large pecan tree is located immediately east of the sink edge and an unused private water well (M-6) is located to the south of this feature, about 60 to 70 feet away. According to available records, this sink/cave was previously discovered and has been officially named **Wolf's Pecan Sink** (TSS, 2013). This cave has a very high infiltration rate and a surface runoff catchment of less than 2 acres.

Geologic Feature F-14 (tract 1): Small solution cavity with visible groundwater discharge (spring) located along the side of an unnamed tributary to the Middle Fork of the San Gabriel River. This feature has a very slow discharge rate from an opening that measures about 0.4 feet in diameter x 2 feet long. No air flow conductivity was noted. This spring is classified as a discharge geologic feature and does not have an infiltration rate or surface runoff catchment. It apparently was used to water livestock based on the presence of a nearby (concrete) watering trough and piping from the trough to a small concreted trap at the head of the spring.

Geologic Feature F-15 (tract 1): Upland sinkhole measuring approximately 20 feet in diameter x 2 feet deep within a Texas persimmon/dead cedar thicket. Near the center of this sinkhole is an open drainage portal (solution-enlarged fracture [azimuth: N65°E]) measuring approximately 8 feet long x 2 feet wide x over 27 feet deep. The opening had been covered with cedar posts to keep livestock from falling into it. After removing some of these posts from the opening, air flow conductivity was noted. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. On 9 January, 2013, Horizon staff rigged a tripod with climbing gear over the cave entrance and were able to enter a narrow horizontal bedding plane void (57 feet long x 4 feet wide x 3 to 4 feet high) at the base of the entrance drop that extends to the southwest for approximately 7 feet and to the northeast for approximately 50 feet. This cave has a high infiltration rate and a surface runoff catchment of less than 1.6 acres.

Geologic Feature F-16 (tract 1): Solution-enlarged fracture (azimuth: N70°E) measuring approximately 4 feet long x 1.8 feet wide x 15 feet deep. Slight air flow conductivity was noted. Due to the feature's smooth walls and vertical depth, entry was not possible during the survey to determine if additional subgrade passages were present. (Climbing gear is required.) On 14 November 2013, Horizon staff rigged a cable ladder and were able to enter into a large horizontal bedding plane void (~120 feet long x 20 feet wide x 3 to 4 feet high) at the base of the entrance drop that extends to the southwest for approximately 20 feet and to the northeast for approximately 100 feet. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. Inside the cave, the floor areas consist of loose rock and thin to thick, moist, black and red clay. This cave has a high infiltration rate and a surface runoff catchment of less than 1.7 acres.

Geologic Feature F-17 (tract 1): Upland sinkhole measuring approximately 12 feet long x 10 feet wide x 2 feet deep with a clay-filled solution cavity about 2 feet long x 1 foot wide x 1 foot deep near the center of sink. No air flow conductivity was noted and the cavity had no apparent drainage portals. Some of the solution cavity had been dug into by an animal. Probing with a steel rod encountered firmer clay soil/rocks about 3 feet below the surface. This feature has a low infiltration rate and a surface runoff catchment of less than 0.1 acres.

Geologic Feature F-18 (tract 1): Large upland sinkhole measuring approximately 30 feet long x 20 feet wide x 4 feet deep within a wooded area. Near the middle of the sinkhole are several small (2 to 6 inches), open drainage portals amongst loose rocks and old household trash debris (e.g., tin cans, bottles, etc.). Strong air flow conductivity was noted at most of the portals and even around some of the buried trash debris. This feature, in its present condition, does not meet the requirements to be classified as a cave; however, a very high probability exists based on the air flow conductivity and overall size of the sinkhole, without massive amounts of in-filled fine material. On 13 November 2013, Horizon staff excavated down about 7 feet near the center of the sinkhole using a backhoe and discovered a small horizontal bedding plane room (~ 20 feet long x 10 feet wide x 2 to 3 feet high) along the west side of the entrance drop. At the west side of this room is a headwall with an underlying low opening that leads into a larger bedding plane void room about 35 feet long x 25 feet wide x 0.5 to 2.5 feet high. Along the west side of this lower room is an upper bedding plane void that could not be entered, which is about 15 feet wide x 2.5 feet high x at least 10 feet long (unknown southwest extent). This feature meets the requirements to be classified as a cave, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. This cave has a high infiltration rate and a surface runoff catchment of less than 1.7 acres.

Geologic Feature F-19 (tract 1): Upland sinkhole measuring approximately 20 feet long x 12 feet wide x 2 feet deep with large rocks and a semi-open (clay and rock) drainage portal measuring about 0.3 feet in diameter x 1 foot deep near the north central part of sink. Very slight air flow conductivity was noted. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-20 (tract 1): Solution cavity measuring approximately 0.7 feet in diameter x 2 feet deep with an apparent drainage portal opening amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 3 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-21 (tract 2): Two small solution cavities spaced about 8 feet apart. The larger cavity measures approximately 0.8 feet long x 0.6 feet wide x 1 foot deep with clay floor. The smaller cavity measures approximately 0.5 feet long x 0.2 feet wide x 1.5 feet deep with an apparent drainage portal amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted only at the smaller cavity. After limited hand excavation, probing with a

steel rod encountered additional small rocks and/or cobbles down about 2 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-22 (tract 2): Solution-enlarged fracture (azimuth: N85°E) measuring approximately 2 feet long x 0.5 feet wide x 5 feet deep within a small sinkhole (8 feet in diameter x 2 feet deep) with apparent drainage portal openings amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 6 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-22A (tract 2): Solution cavity about 35 feet south-southeast of F-22 that measures approximately 1 foot long x 0.3 feet wide x 2.5 feet deep with apparent drainage portal opening amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 3.5 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-23 (tract 2): Solution cavity by Texas persimmon trees measuring approximately 1.5 feet long x 0.7 feet wide x 3 feet deep with apparent drainage portal opening amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 4 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-24 (tract 2): Small sinkhole measuring approximately 6 feet long x 5 feet wide x 2 feet deep with a clay-filled small solution cavity near center of sink. No air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional clay/small rocks and cobbles down about 3 feet below the surface. This feature has a low infiltration rate and a surface runoff catchment of less than 0.1 acres.

Geologic Feature F-25 (tract 2): Two small solution cavities with visible groundwater discharge (spring) located along the side of an unnamed tributary to the South Fork of the San Gabriel River. This feature had a slow to moderate discharge rate from openings that measure, on average, about 0.3 feet high x 2.5 feet long. No air flow conductivity was noted. This spring is classified as a discharge geologic feature and does not have an infiltration rate or surface runoff catchment.

Geologic Feature F-26 (tract 2): Solution cavity measuring approximately 1 foot long x 0.7 feet wide x 1.2 feet deep with no apparent drainage portal openings or air flow conductivity. Probing with a steel rod encountered clay soil and cobbles about 2 feet below the feature's floor. This feature has a low infiltration rate and a surface runoff catchment of less than 0.1 acres.

Geologic Feature F-27 (tract 2): Upland sinkhole measuring approximately 12 feet long x 10 feet wide x 2 feet deep along the side of a narrow drainage swale in a wooded area about 100 feet south of SH 29. Near the east side of the sinkhole was a very small (0.3 feet in diameter x 1 foot deep) drainage portal amongst loose rocks and leaf litter. Air flow conductivity was noted at this portal. On 13 November 2013, Horizon staff excavated Feature F-27 down to bedrock (~7 feet below the surface) with a backhoe. A small void measuring about 3 feet wide x 1 foot high was found approximately 4.5 feet below surface grade along the southwest side that extended about 5 feet horizontally. However, no open drainage portals or air flow conductivity was found within this void area. Probing with a steel rod encountered additional densely packed dark gray clay soil within the floor of this void area. Based on the results of the excavation, this feature has a low infiltration rate and minimal catchment (<0.1 acres) area for surface water runoff. All material was placed back into subject excavated area.

Geologic Feature F-28 (tract 2): Large upland sinkhole measuring approximately 30 feet long x 15 feet wide x 2 feet deep in a thickly wooded area. Within the north central part of the sinkhole is an open drainage portal (solutioned-enlarged fracture; azimuth: N330°W) measuring about 3 feet long x 1.8 feet wide x 3.5 feet deep. Air flow conductivity was noted. A low (1 to 3 feet high) bedding plane void room extends from the opening in a northeast to east direction for about 15 feet. At the north side of this room is a headwall with an underlying, low opening that leads into a larger bedding plane void room about 40 feet long x 35 feet wide x 0.5 to 2.5 feet high. Additionally, several smaller (0.2 to 0.4 feet in diameter x 2 feet deep) drainage portals occur up on the surface along the southeast part of the sinkhole. These surface drainage portals appear to connect into the underlying subgrade void passages. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. Inside the cave, the floor areas consist of loose rock and thin to thick, dry to moist, black and red clay. This cave has a very high infiltration rate and a surface runoff catchment of less than 1.7 acres.

Geologic Feature F-29 (tract 2): Large upland sinkhole measuring approximately 30 feet long x 25 feet wide x 4 feet deep with 2 semi-open (clay and rock) drainage portals on opposite sides (east and west) measuring about 2 feet long x 1.5 feet wide x 1.5 feet deep and 1.5 feet long x 1 foot wide x 1 foot deep. Slight air flow conductivity was noted. Most of the sinkhole has thick amounts of in-filled clay/cobbles and Texas persimmon trees upslope along the edge. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-30 (tract 2): Large upland sinkhole measuring approximately 40 feet long x 35 feet wide x 3 to 4 feet deep with an open drainage portal measuring 5 feet long x 2.5 feet wide x 6 feet deep near the center of sink. Air flow conductivity was noted. Sections of cattle panel fencing were erected around the perimeter of this portal to keep out livestock. The drainage portal extends toward the southeast in a low, small room about 8 feet long x 4 feet wide

x 3 feet high. From this room, a low (1 to 1.5 feet high) crawlway curves toward the east-northeast for another 32 feet where massive amounts of in-filled clay have invaded the area and prevent further entry. Very low (0.5 feet high) bedding plane voids continue off to the east/northeast for an unknown extent. Inside, a large, apparent drain could be seen in the floor about 10 feet to the north. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. According to available records, this sink/cave was previously discovered and has been officially named **Grape Arbor Sink** (TSS, 2013). This cave has a high infiltration rate and a surface runoff catchment of less than 2 acres.

Geologic Feature F-31 (tract 2): Solution cavity measuring approximately 1 foot long x 0.8 feet wide x 1.5 feet deep within a small sinkhole (4 feet long x 3 feet wide x 2.5 feet deep) with apparent drainage portal openings amongst loose, in-filled rocks and dark gray clay. Slight air flow conductivity was noted. After limited hand excavation, probing with a steel rod encountered additional small rocks and/or cobbles down about 3 feet below the surface. This feature has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-32 (NF-7; tract 4): Previously excavated solution cavity measuring approximately 4 feet long x 2 feet wide x 8 feet deep within small sinkhole about 7 feet in diameter x 1 foot deep. A brown tarp was lying partially inside the feature. Upon entry, a void occurs to the south about 4 feet long x 3 feet wide x 3 feet high. Slight air flow conductivity was noted from a smaller void (3 inches high x 6 inches wide) located along the floor's east side that appears to extend horizontally about 8 feet. This open area appears to function as the feature's primary drainage portal. This feature meets the requirements to be classified as a **cave**, based on it being a natural underground open space formed by dissolution of limestone that is large enough for an average-sized person to enter. This cave has an intermediate infiltration rate and a surface runoff catchment of less than 0.25 acres.

Geologic Feature F-33 (NF-5; tract 4): Previously excavated solution cavity measuring approximately 3 feet long x 2 feet wide x 4.5 feet deep with no apparent drainage portals, horizontal bedding plane voids, or air flow conductivity. A green tarp was lying inside one side of feature and excavated spoil piles are present immediately west of the opening. Probing with a steel rod encountered clay soil and cobbles about 6 feet below the feature's floor. This feature has a low infiltration rate and a surface runoff catchment of less than 0.1 acres.

Geologic Feature F-34 (NF-1; tract 4): Small solution cavity measuring approximately 2 feet long x 1 foot wide x 2 feet deep that narrows down to 0.3 feet in diameter with clay-filled floor. No air flow conductivity was noted. Old pink flagging was present on nearby trees. Probing with a steel rod encountered clay soil and cobbles about 3 feet below the feature's floor. This feature has a low infiltration rate and a surface runoff catchment of less than 0.1 acres.

Maps detailing site geology and the location of geologic and manmade features are provided in Appendix B (Figures 1A to 1C). Further information pertaining to the geologic and manmade features is provided in the Geologic Assessment Table (Appendix C). Photographs of the geologic features and select manmade features are also provided in Appendix D.

3.0 CONCLUSIONS AND RECOMMENDATIONS

A total of 35 natural geologic features and 12 manmade features were identified at the subject property. All of these features were evaluated for their potential to be significant pathways for fluid movement into the Edwards Aquifer. The geologic assessment table (Appendix C) summarizes this evaluation and grades each feature's sensitivity a total point value. Those with a point value of 40 or higher are deemed to be sensitive groundwater recharge features and should be protected during site development pursuant to TCEQ rules for protection of the Edwards Aquifer (30 TAC 213).

Twenty-five geologic features (F-1, F-2, F-4, F-5, F-7 to F-13, F-15, F-16, F-18 to F-22, F-22A, F-23, and F-28 to F-32) have been evaluated as sensitive for groundwater recharge capability and would therefore require TCEQ protective setback buffers. In general, a protective buffer encompassing sensitive features is recommended to meet the TCEQ guidance for a setback of at least 50 feet in all directions from each feature's areal extent (perimeter), plus each feature's watershed catchment up to 200 feet from the perimeter of each feature. However, a larger protective buffer for 12 of these (cave) features (F-2, F-5, F-7, F-9, F-11, F-13, F-15, F-16, F-18, F-28, F-30, and F-32) is recommended to meet the TCEQ guidance for a setback for features identified as caves. Caves with an unknown subsurface footprint are assumed to extend 150 feet in all directions from the footprint is applied, plus each cave's watershed catchment up to 200 feet from the footprint and then a protective buffer zone extending an additional 50 feet in all directions from the footprint. Caves with a known subsurface footprint (i.e., surveyed/mapped) include a protective buffer zone extending an additional 50 feet in all directions from the footprint.

The 10 remaining geologic features (F-3, F-6, F-14, F-17, F-24 to F-27, F-33, and F-34) have been evaluated as non-sensitive for groundwater recharge capability and would therefore not require TCEQ protective setback buffers. No further action is recommended for F-3, F-6, F-17, F-24, F-26, and F-27 other than the placement of compactable, fine-grained soil, in appropriate lifts, to bring the ground surface to proposed grade for subject property development. Features F-14 and F-25 are active groundwater discharge features (springs) and the placement of compactable fill over these is not recommended. Additionally, all of the manmade features have been evaluated as non-sensitive for groundwater recharge capability and would therefore not require TCEQ protective setback buffers.

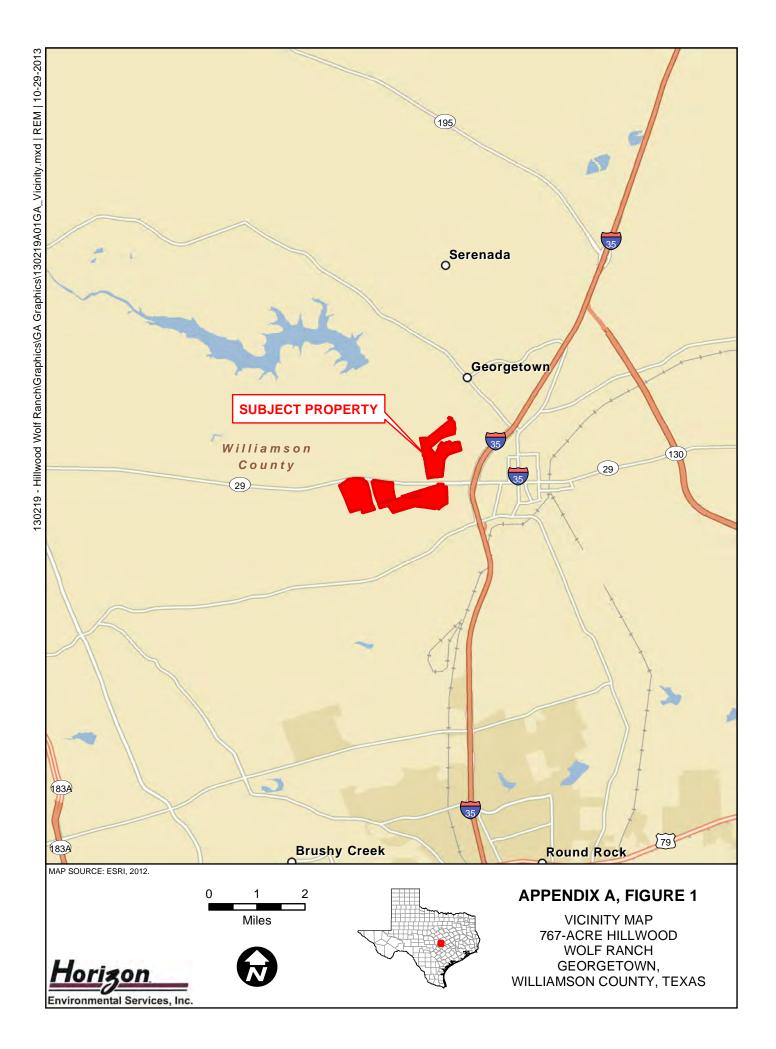
The subject property appears generally well-suited to development prospectus. It should be noted that soil and drainage erosion would increase with ground disturbance. Native

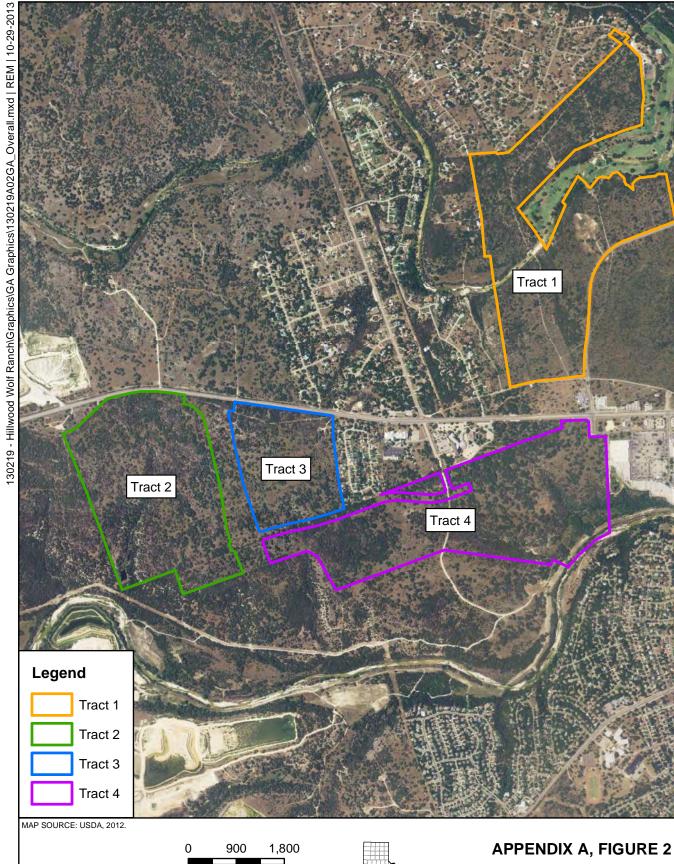
grasses and the cobbly content of the soil aid to prevent erosion. Soil and sedimentation fencing should be placed in all appropriate areas prior to any site construction activities.

Because the majority of the subject property is located over the Edwards Aquifer Recharge Zone, it is possible that subsurface voids underlie the property. The nature of the subgrade is fault-influenced, which can result with variable-sized voids in materials that may otherwise not be noted as void- or cave-forming. If any subsurface voids are encountered during the proposed development, construction should halt immediately so that a geologist may assess potential for the void(s) to provide meaningful recharge to the Edwards Aquifer.

4.0 **REFERENCES**

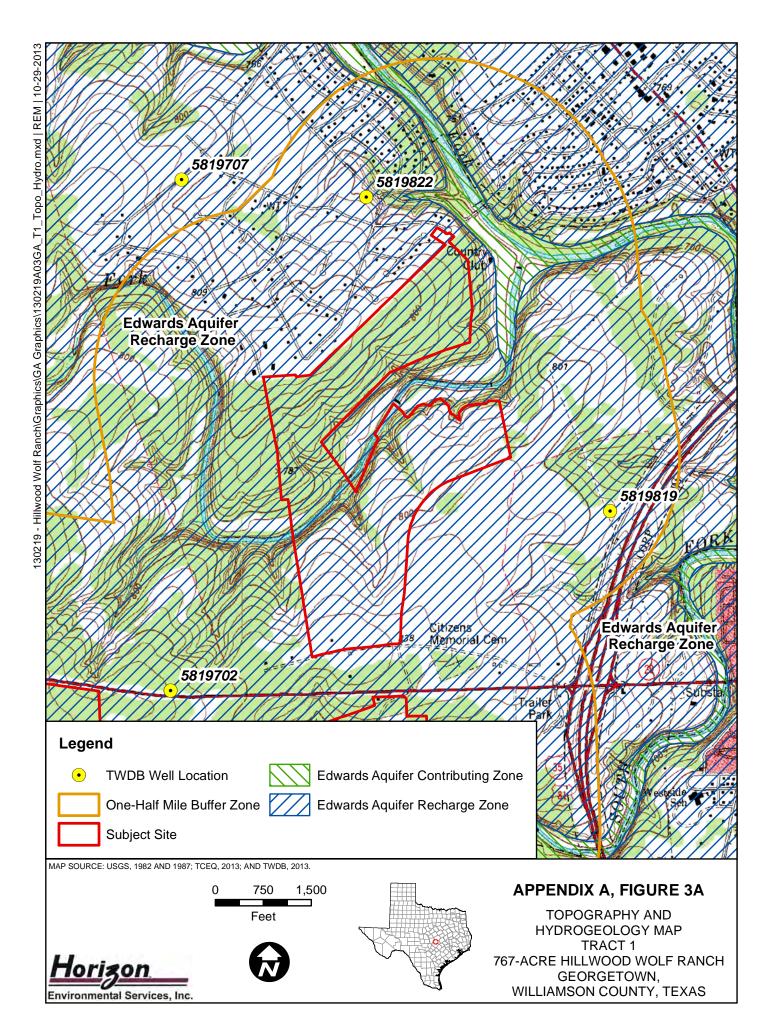
- (CAPCOG) Capital Area Council of Governments. *Data, Maps, and Reports.* Contours 10 Foot Merge. http://www.capcog.org/data-maps-and-reports/geospatial-data/. Accessed 29 October 2013.
- (ESRI) Environmental Systems Research Institute, Inc. Street Map North America Data Layer. ESRI, Redlands, California. 2012.
- (NRCS) Natural Resources Conservation Service (formerly the Soil Conservation Service) US Department of Agriculture, Engineering Division Soil Series and Hydrologic Soil Groups of Urban Hydrology for Small Watersheds, Technical Release No. 55, Engineering Division, January 1975.
- _____. US Department of Agriculture, Natural Resources Conservation Service. 2013. Web Soil Survey, <http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx>. Accessed 29 October 2013.
- (TCEQ) Texas Commission on Environmental Quality. *Complying with the Edwards Aquifer Rules: Administrative Guidance,* Revised August 1999.
- _____. Instructions to Geologists for completing Geologic Assessments within the Edwards Aquifer Recharge Zone, Revised October 2004.
- _____. Edwards Aquifer Protection Program. Edwards Aquifer Viewer, http://gis3.tceq.state.tx.us/website/iredwards2/viewer.htm>. Accessed 29 October 2013.
- (TPWD) Texas Parks and Wildlife Department. Natural Diversity Database, T/E and Rare Species Elemental Occurrences. Wildlife Division, Habitat Assessment Program, Austin, Texas. 14 October 2013.
- (TSS) (TSS) Texas Speleological Society. *(Cave or Property Name)* Data Search. Editor *Andy Gluescamp, Ph.D.* Data Search: November 2013.
- (TWDB) Texas Water Development Board. Water Information Integration and Dissemination System. TWDB Groundwater Database (ArcIMS), <http://wiid.twdb.state.tx.us/ims/ wwm_drl/viewer.htm?DISCL=1&>. Accessed 29 October 2013.
- (USGS) US Geological Survey. 7.5-minute series topographic maps, Georgetown, Texas, quadrangle, 1982.
 - _____. 7.5-minute series topographic maps, Round Rock, Texas, quadrangle, 1987.
- (USDA) US Department of Agriculture. National Agriculture Imagery Program, Farm Service Agency, Aerial Photography Field Office. Williamson County, Texas. 2012.

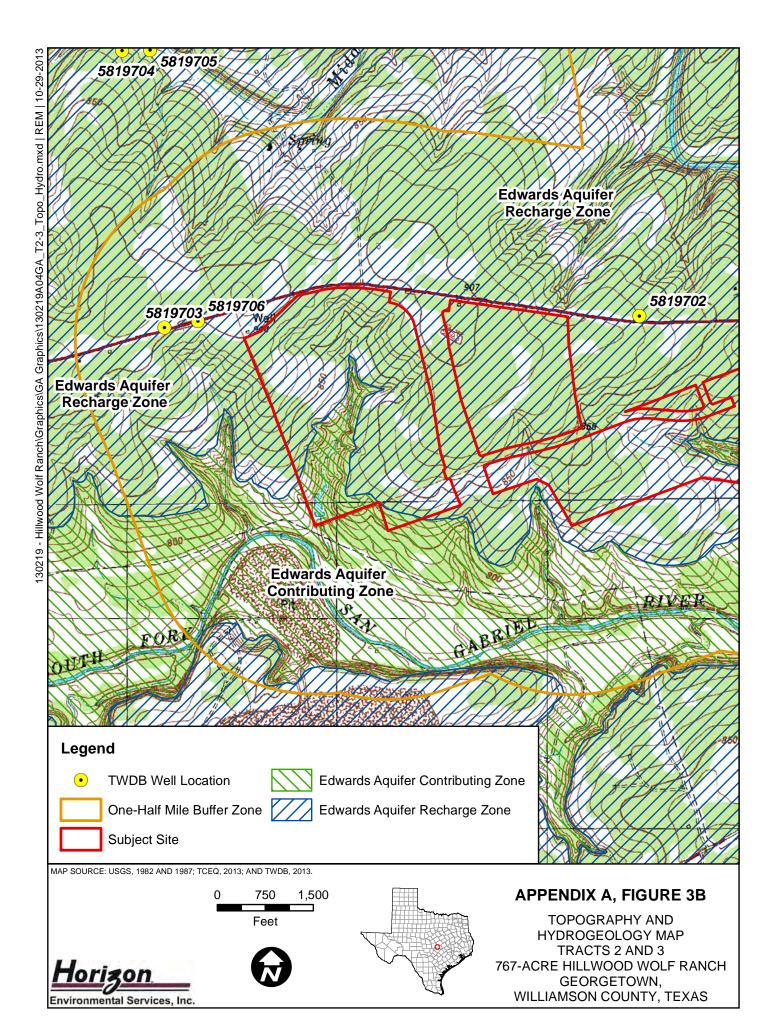

(UT-BEG) The University of Texas at Austin Bureau of Economic Geology; C.V. Proctor, Jr., T.E. Brown, J.H. McGowen, N.B. Waechter, and V.E. Barnes. *Geologic Atlas of Texas*, Austin Sheet. Francis Luther Whitney Memorial Edition. 1974; revised 1995.

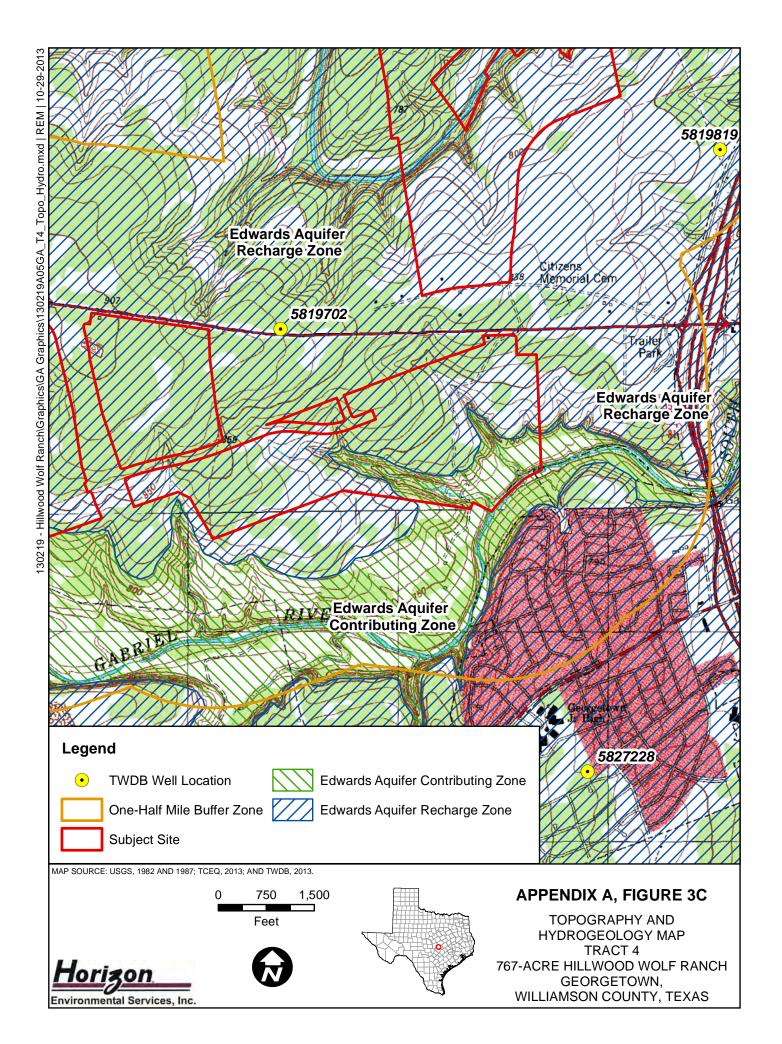

(Werchan et al.) Werchan, L. E., and J. L. Coker. Soil survey of Williamson County, Texas. Soil Conservation Service, US Department of Agriculture, Washington, D.C. 1983.

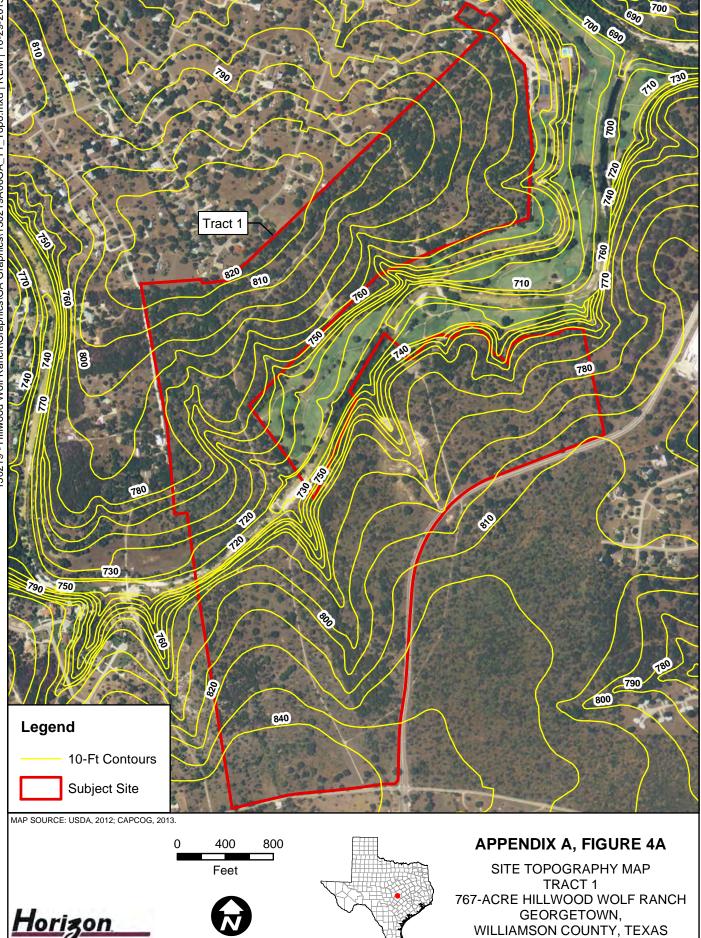
APPENDIX A

PROJECT FIGURES

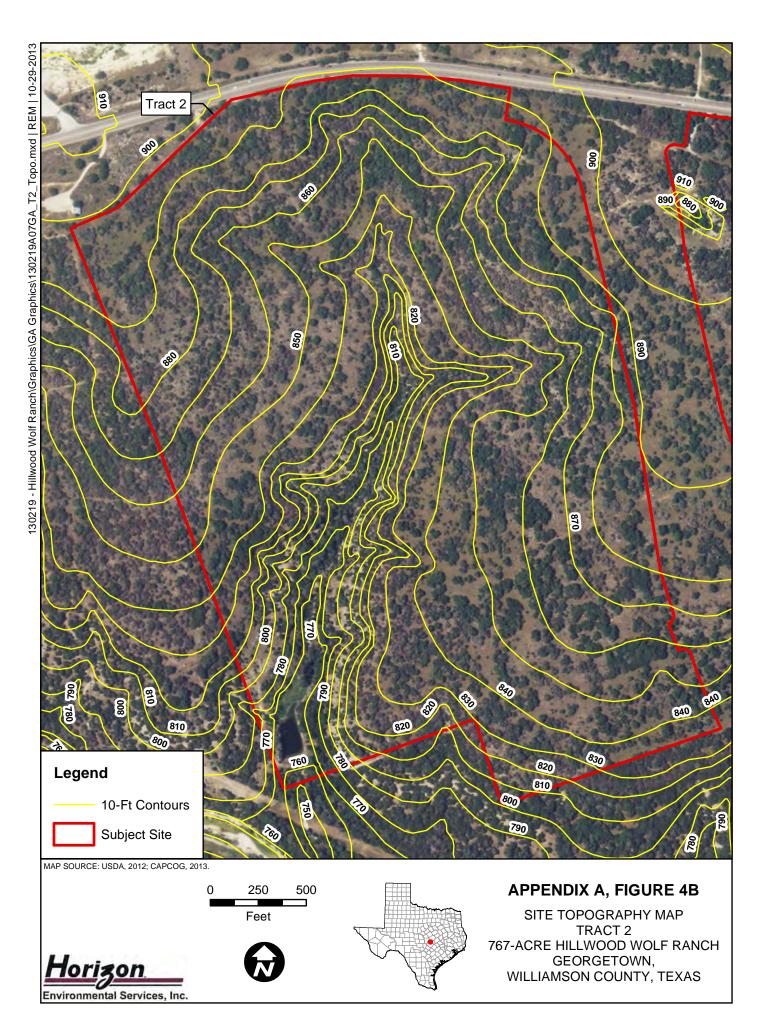


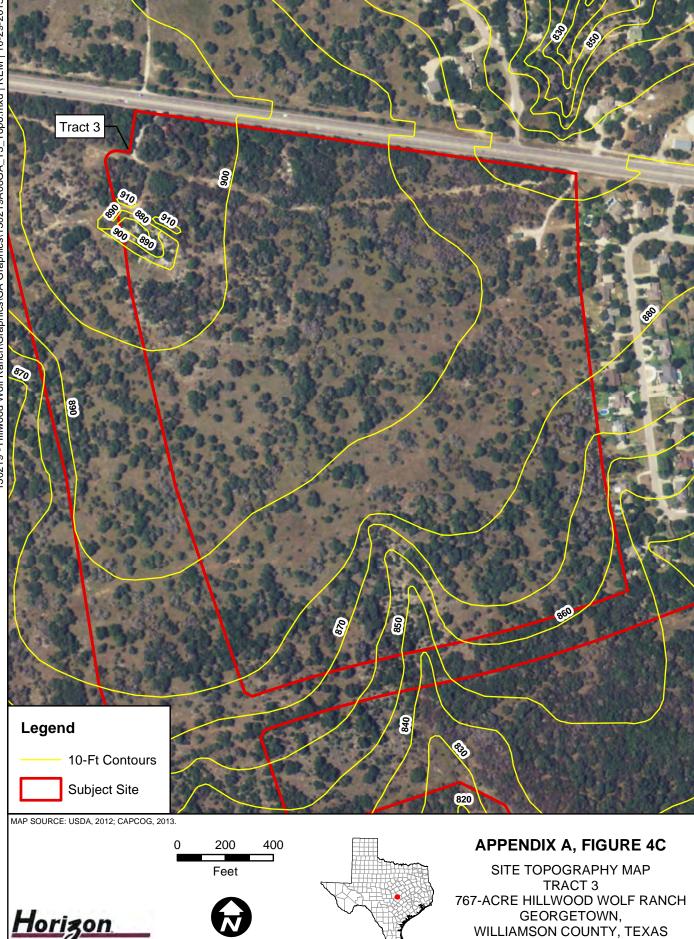

Feet

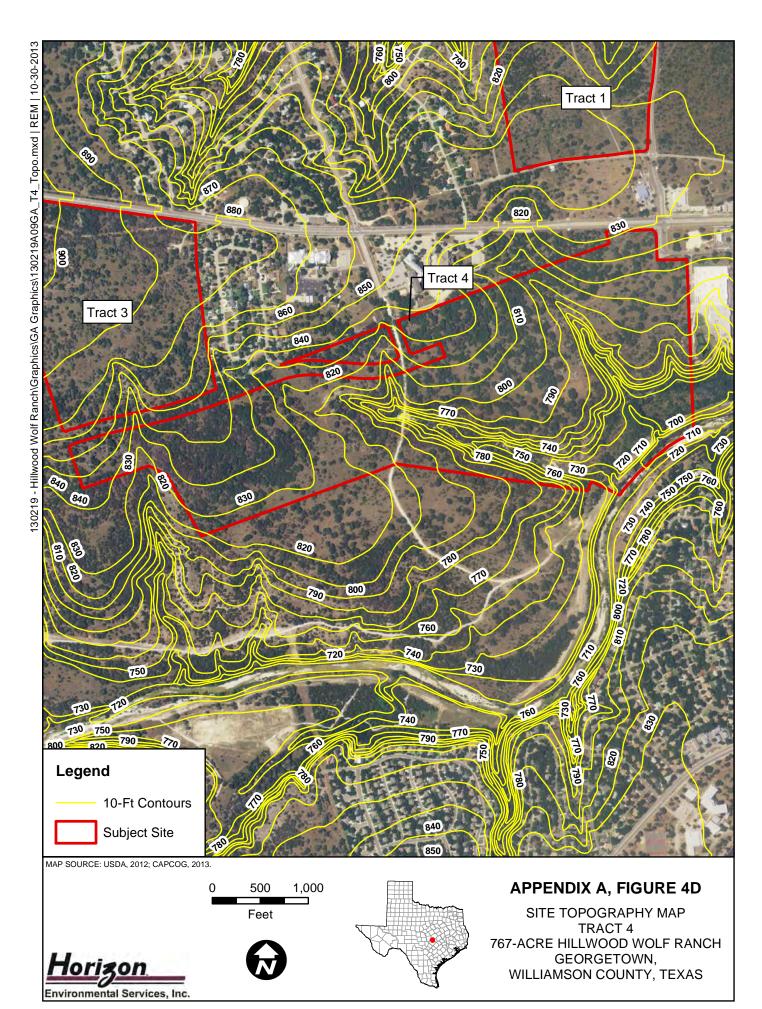

Horizon

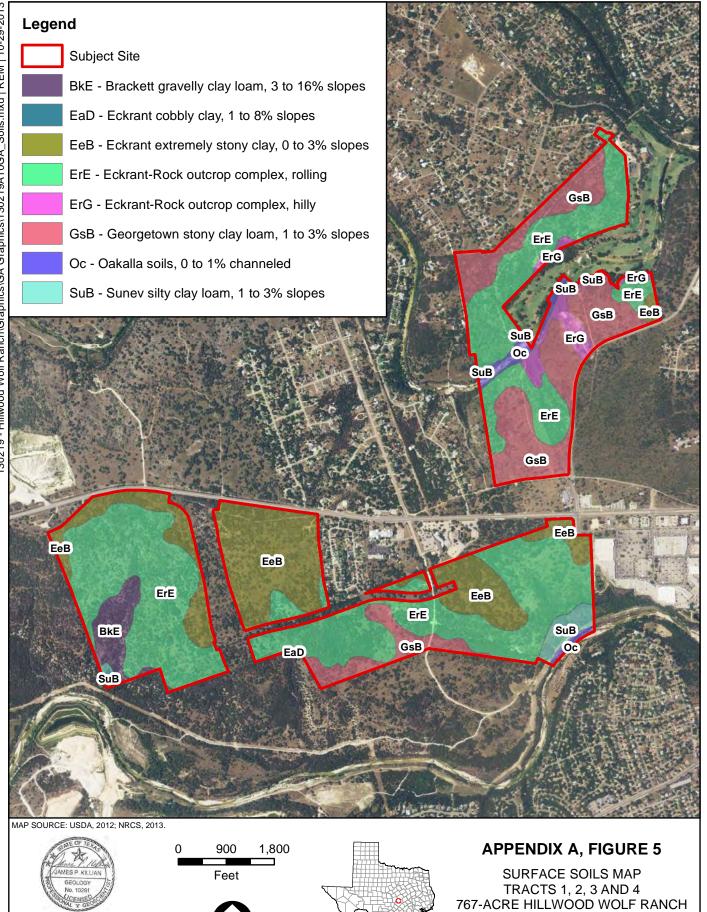

Environmental Services, Inc.

OVERALL PROPERTY MAP TRACTS 1, 2, 3 AND 4 767-ACRE HILLWOOD WOLF RANCH GEORGETOWN, WILLIAMSON COUNTY, TEXAS

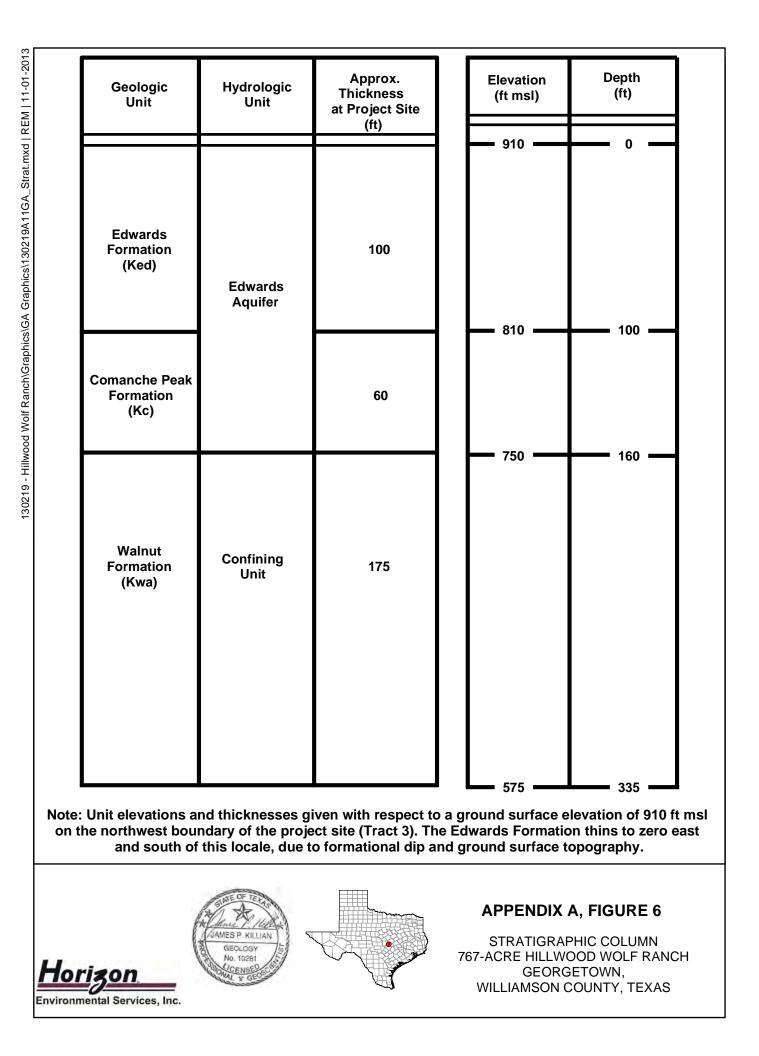







130219 - Hillwood Wolf Ranch\Graphics\GA Graphics\130219A06GA_T1_Topo.mxd | REM | 10-29-2013

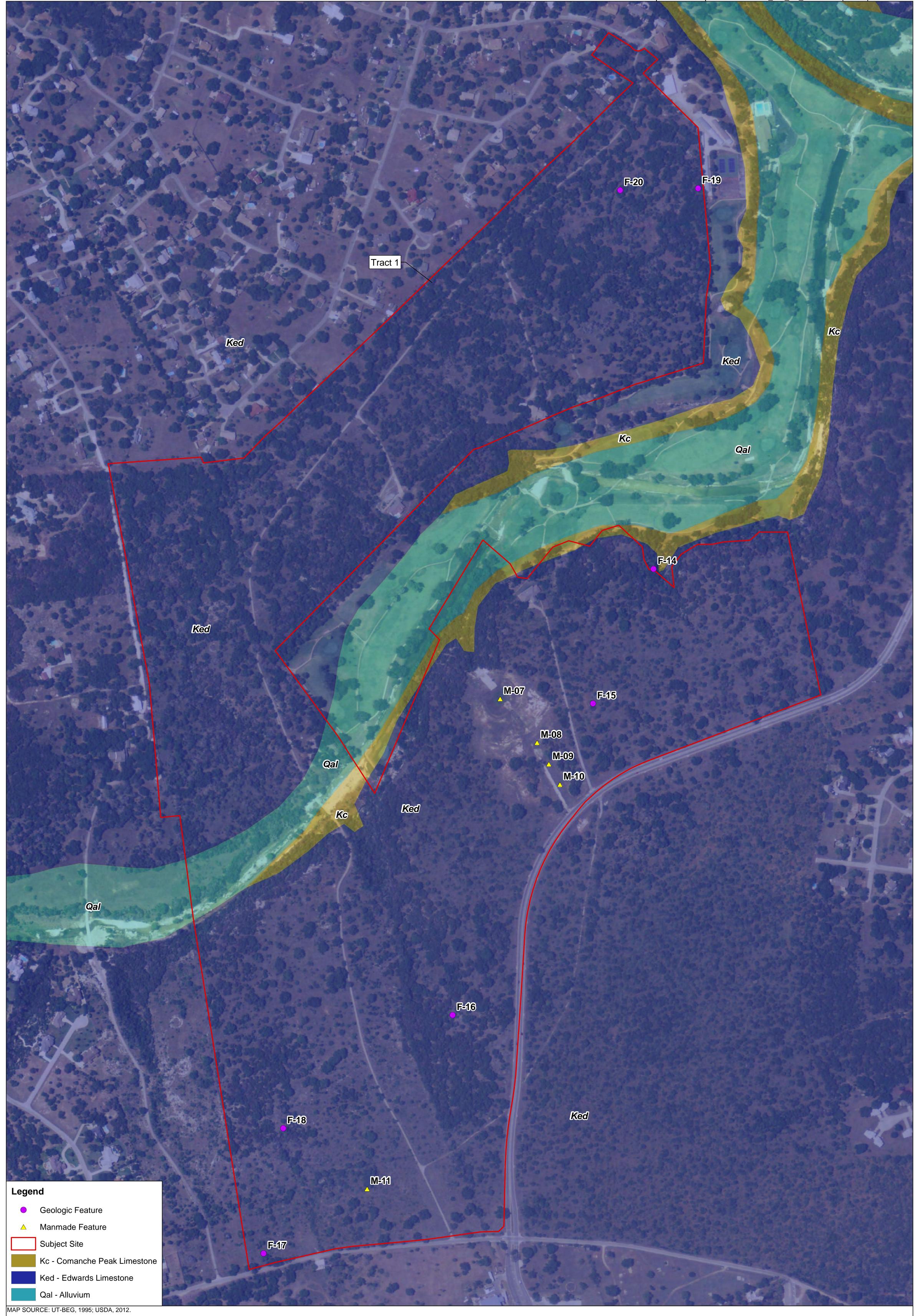
130219 - Hillwood Wolf Ranch/Graphics/GA Graphics/130219A08GA_T3_Topo.mxd | REM | 10-29-2013

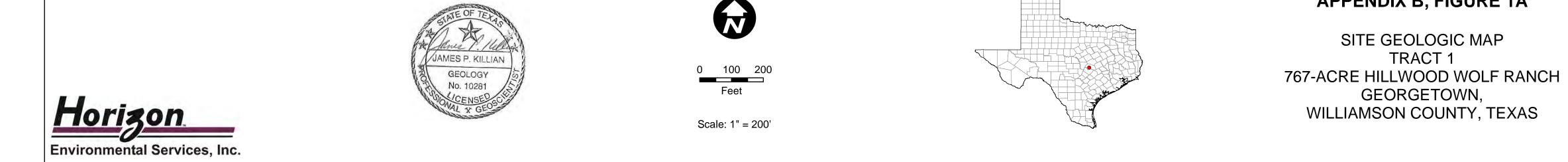


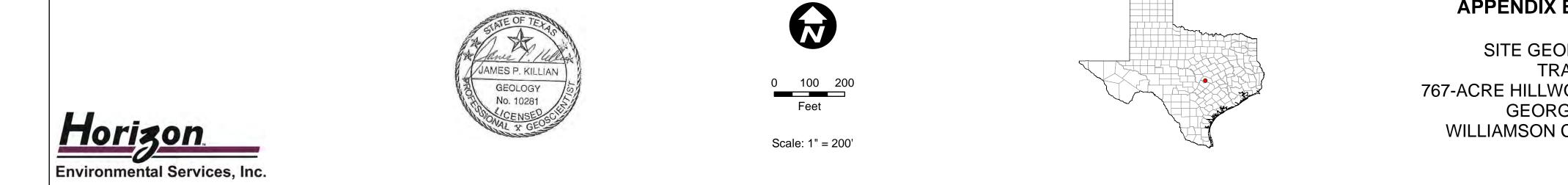
GEORGETOWN,

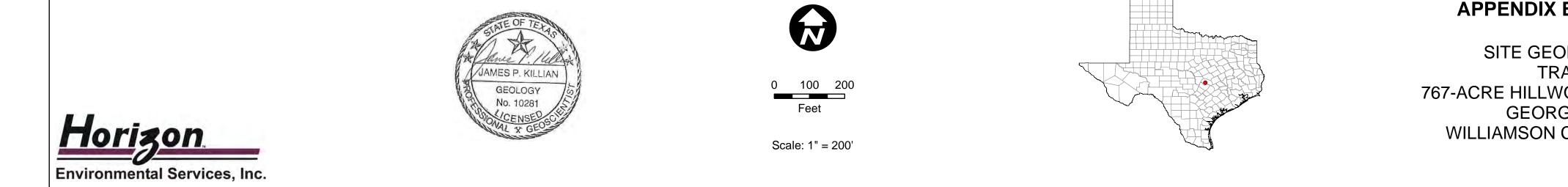
WILLIAMSON COUNTY, TEXAS

130219 - Hillwood Wolf Ranch/Graphics/GA Graphics/130219A10GA_Soils.mxd | REM | 10-29-2013

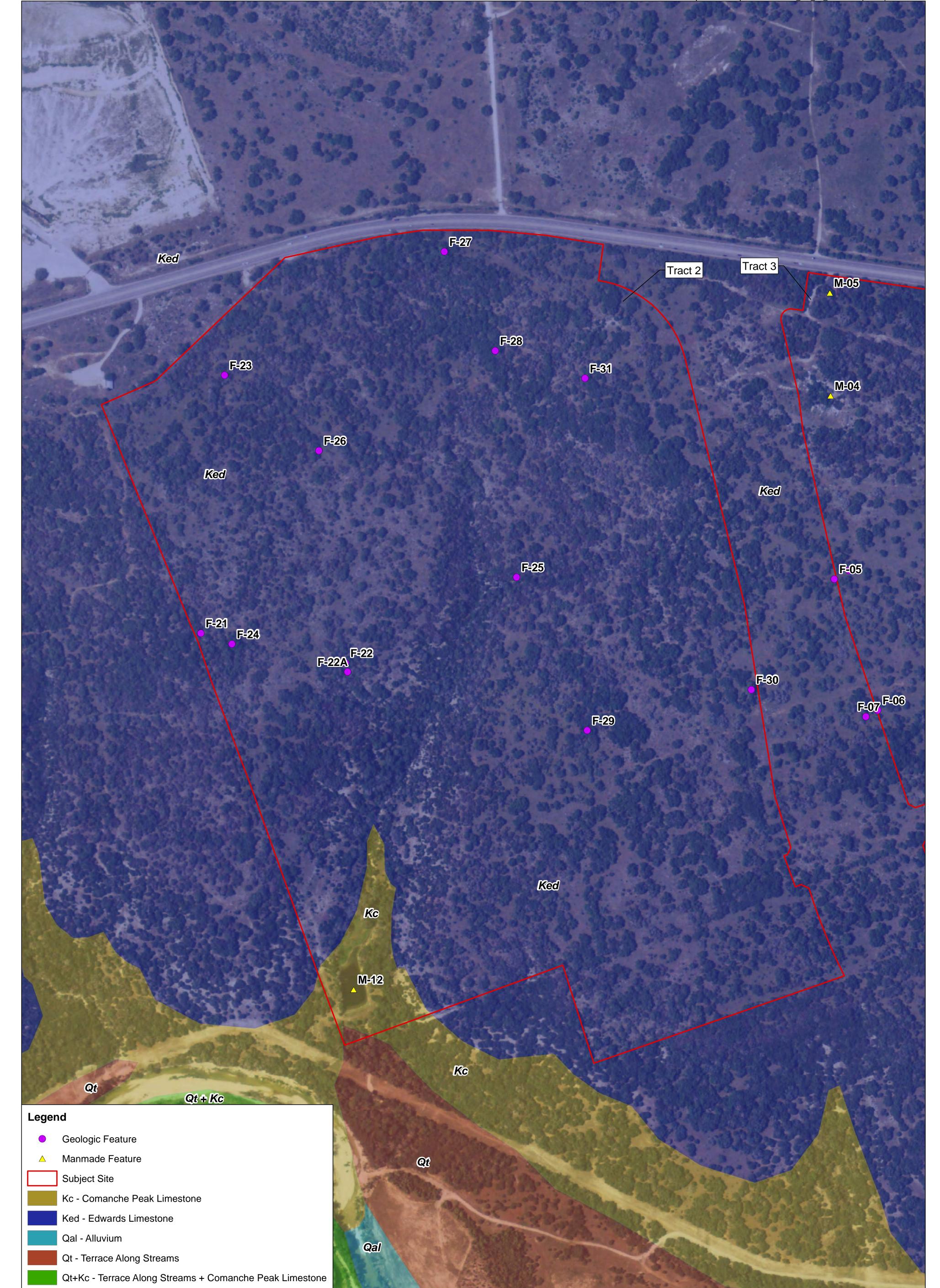

Tor



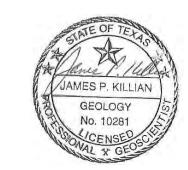


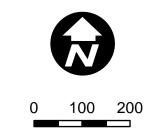

APPENDIX B

SITE GEOLOGIC MAP



APPENDIX B, FIGURE 1A


SITE GEOLOGIC MAP



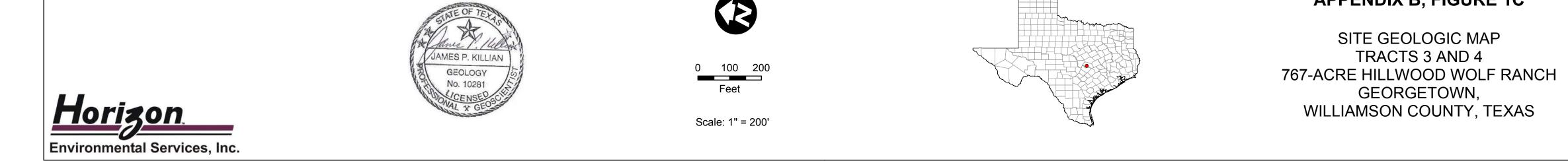
MAP SOURCE: UT-BEG, 1995; USDA, 2012.

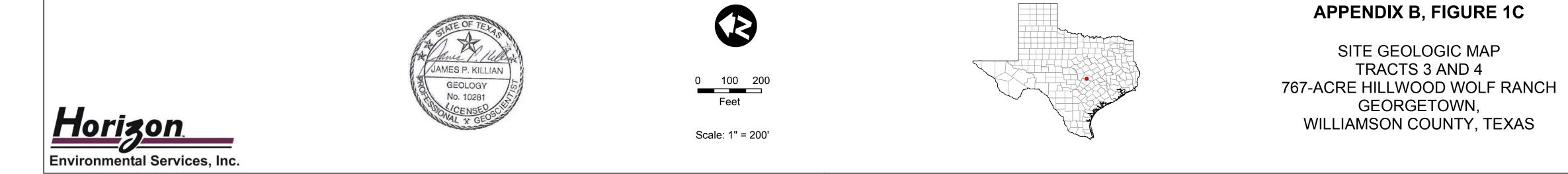
Horizon

Environmental Services, Inc.

Feet

Scale: 1" = 200'


APPENDIX B, FIGURE 1B


SITE GEOLOGIC MAP TRACT 2 767-ACRE HILLWOOD WOLF RANCH GEORGETOWN, WILLIAMSON COUNTY, TEXAS

130219 - Hillwood Wolf Ranch\Graphics\GA Graphics\130219D03_GA_T3_and_T4_SGM.mxd | REM | 11-07-2013

MAP SOURCE: UT-BEG, 1995; USDA, 2012.

APPENDIX C

SITE GEOLOGIC ASSESSMENT TABLE

GEOLOGIC ASSESSMENT TABLE PROJECT NAME: 767 acres - Wolf Ranch Properties; SH LOCATION FEATURE CHARACTERISTICS IEVALUATI														SH 29) W; G	George	town, Tx			
	LOCATI	ON				FI	ΞΑΤΙ	JRE	CHARAC	CTE	RISTI	CS			EVAL	.UAT	FION	PHY	SICAL	SETTING
1A	1B *	1C*	2A	2B	3		4		5	5A	6	7	8A	8B	9	1	10		11	12
FEATURE ID	LATITUDE	LONGITUDE	FEATURE TYPE	POINTS	FORMATION	DIME	DIMENSIONS (FEET)		TREND (DEGREES)			TOTAL	SENSITIVITY		CATCHMENT AREA (ACRES)		TOPOGRAPHY			
						х	Y	Z		10						<40	<u>>40</u>	<1.6	<u>>1.6</u>	
F-1	30.630696	-97.703815	SF	20	Ked	4	1	2.5	N280°W	0			С	30	50		Х	Х		Hillside
F-2	30.626763	-97.718564	SH/C	30	Ked	7.5	7.5	3		0	1		C,F,O	50	80		Х		Х	Hillside
F-3	30.6267113	-97.7164053	SC	20	Ked	0.8	0.7	1.5		0	1		F,O	12	32	Х		Х		Hillside
F-4	30.6277253	-97.7141506	SC	20	Ked	0.4	0.2	1.5		0	-		C,F,O	20	40		Х	Х		Hillside
F-5	30.6300972	-97.7210609	SH/C	30	Ked	12	13	4		0	-		C,F,FS,O	60	90		Х		Х	Hillside
F-6	30.628339	-97.7206703	SC	20	Ked	3	2	1.5		0			C,F,O	16	36	Х		Х		Hillside
F-7	30.6282607	-97.7208423	SH/C	30	Ked	12	13	4		0			C,F,FS,O	60	90		Х		Х	Hillside
F-8	30.627888	-97.717321	SC	20	Ked	3	2	5		0			C,F,O	27	47		Х	Х		Hillside
F-9	30.6283751	-97.7166082	SH/C	30	Ked	30	20	3		0			C,F,FS,O	55	85		Х		Х	Hillside
F-10	30.629189	-97.717977	SC/SH	20	Ked	1	0.5	2		0			C,F,O	30	50		Х	Х		Hillside
F-11	30.629322	-97.716741	SH/C	30	Ked	60	45	7		0			C,F,FS,O	65	95		Х		Х	Hillside
* DATUN	M: <u>State Plane</u> T	exas Central																		
2A TYPE		TYPE		2E	POINTS						8	BA INFILL	ING							
С	Cave				30		N None, exposed bedrock													
SC	Solution cavity				20		С	Coars	se - cobbles	s, bre	akdow	n, sand, g	gravel							
SF	Solution-enlarge	d fracture(s)			20		0	Loos	e or soft mu	ud or	soil, or	ganics, le	eaves, sticks,	dark colors						
F	Fault				20		F	Fines	, compacte	d cla	y-rich s	sediment,	, soil profile, g	gray or red o	colors					
0	Other natural be	drock features			5		V	Vege	tation. Give	e deta	ails in n	arrative o	description							
MB	Manmade featur	30		FS	Flows	stone, ceme	ents,	cave de	eposits											
SW	Swallow hole		30		х	Othe	r materials													
SH	Sinkhole		20																	
CD	Non-karst closed	5							12 TC	DPOGRAPH	/]				
z	Zone, clustered	30			Cli	ff, Hillto	p, ŀ	Hillsic	le, Dra	ainage, F	loodplai	in, Str	rean	nbed	k]				
	alter	-								•			-	•					-	



Date : November 27, 2013

James P. Iullan

Sheet <u>1</u> of <u>5</u>

GEO	LOGIC ASS	SESSMENT	TABLE						CT NA				res - Wolf	Ranch P	roperti	es; S	SH 29) W; G	eorge	town, Tx
	LOCATI	ON				FE	ATU	RE C	HARAC	TER	ISTIC	S			EVAL	JUAT	ΓΙΟΝ	PHY	SICAL	SETTING
1A	1B *	1C*	2A	2B	3		4		5	5A	6	7	8A	8B	9	1	10	11		12
FEATURE ID	LATITUDE	LONGITUDE	FEATURE TYPE	POINTS	FORMATION	DIME	DIMENSIONS (FEET)		TREND (DEGREES)	DOM	DENSITY (NO/FT)	APERTURE (FEET)	INFILL	RELATIVE INFILTRATION RATE	TOTAL	SENS	ITIVITY	(ACRES)		TOPOGRAPHY
						х	Y	Z		10						<40	<u>>40</u>	<1.6	<u>>1.6</u>	
F-12	30.6300175	-97.7165837	SH	20	Ked	8	7	3		0			C,F,O	45	65		Х	Х		Hillside
F-13	30.630887	-97.717227	SH/C	30	Ked	60	50	7		0			C,F,O	65	95		Х		Х	Hillside
F-14	30.644811	-97.698051	SC	20	Ked	0.2	0.2	2		0			N	5	25	Х		Х		Hillside
F-15	30.642811	-97.699123	SH/SF/C	30	Ked	10	10	2	N65°E	0			C,F,O	60	90		Х		Х	Hillside
F-16	30.638188	-97.701607	SF/C	30	Ked	4	1.8	15	N70°E	0			C,F,O	60	90		Х		Х	Hillside
F-17	30.634662	-97.704916	SH	20	Ked	12	10	2		0			C,F,O	12	32	Х		Х		Hilltop
F-18	30.636526	-97.704553	SH/C	30	Ked	30	20	4		0			C,F,O,X	45	75		Х		Х	Hillside
F-19	30.6504807	-97.6972072	SH	20	Ked	20	12	2		0			C,F,O	30	50		Х	Х		Hillside
F-20	30.650467	-97.698552	SC	20	Ked	0.4	0.3	2		0			C,F,O	25	45		Х	Х		Hillside
F-21	30.629401	-97.730471	SC	20	Ked	0.5	0.2	1.5		0			C,F,O	25	45		Х	Х		Hillside
F-22	30.629009	-97.728377	SH/SF	20	Ked	4	4	2	N85°E	0			C,F,O	40	60		Х	Х		Hillside
* DATUN	M: <u>State Plane T</u>	exas Central				-														
2A TYPE	E	TYPE		2E	3 POINTS		8A INFILLING													
С	Cave				30		N None, exposed bedrock													
SC	Solution cavity				20		С	Coars	se - cobble	s, bre	eakdow	n, sand,	gravel							
SF	Solution-enlarge	d fracture(s)			20		0	Loos	e or soft mu	ıd or	soil, or	ganics, le	eaves, sticks	, dark colors	5					
F	Fault				20		F	Fines	, compacte	d cla	ay-rich s	sediment	, soil profile,	gray or red o	colors					
0	Other natural be	drock features			5		V	Vege	tation. Give	deta	ails in n	arrative o	description							
MB	Manmade featur		FS	Flows	stone, ceme	ents,	cave d	eposits												
SW	Swallow hole			х	Othe	r materials														
SH	Sinkhole		20																	
CD	Non-karst closed							12 TC	OPOGRAPH	ſ					1					
z	Zone, clustered	or aligned features			Cli	ff, Hillto	p, I	Hillsic	de, Dra	ainage, F	loodplai	in, Sti	rean	nbea	k]				
		*				-													-	

Date : November 27, 2013

James P. Hullan

Sheet <u>2</u> of <u>5</u>

GEOI	LOGIC ASS	SESSMENT '	TABLE				PR	OJE	CT NA	ME		767 ac	res - Wolf	Ranch P	roperti	ies; S	SH 29) W; C	George	town, Tx
	LOCATI	ON				FE	ATU	RE C	CHARAC	TER	ISTIC	S			EVAL	LUAT	FION	PHY	'SICAL	SETTING
1A	1B *	1C*	2A	2B	3		4		5	5A	6	7	8A	8B	9	9 10		11		12
FEATURE ID	LATITUDE	LONGITUDE	FEATURE TYPE	POINTS	FORMATION	DIME	DIMENSIONS (FEET)		TREND (DEGREES)	DOM	DENSITY (NO/FT)			VITY CATCHMENT ARE (ACRES)		TOPOGRAPHY				
						Х	Y	Z		10						<40	<u>>40</u>	<1.6	<u>>1.6</u>	
F-22A	30.628897	-97.728349	SC	20	Ked	1	0.3	2.5		0			C,F,O	30	50		Х	Х		Hillside
F-23	30.632632	-97.730082	SC	20	Ked	1.5	0.7	3		0			C,F,O	35	55		Х	Х		Hilltop
F-24	30.629261	-97.7300215	SH	20	Ked	6	5	2		0	-		C,F,O	15	35	Х		Х		Hillside
F-25	30.630058	-97.725883	SC	20	Ked		0.3	2.5		0			N	5	25	Х		Х		Hillside
F-26	30.6316731	-97.7287284	SC	20	Ked	1	0.7	1.2		0	-		C,F,O	10	30	Х		Х		Hillside
F-27	30.6341486	-97.7268762	SH	20	Ked	12	10	2		0			C,F,O	19	39	Х		Х		Hilltop
F-28	30.6328998	-97.7261556		30	Ked	30	15	2	N330°W	0			C,F,FS,O	60	90		Х		Х	Hillside
F-29	30.6281267	-97.7248838	SH	20	Ked	30	25	4		0			C,F,O	30	50		Х	Х		Hillside
F-30	30.6286164	-97.7224986	SH/C	30	Ked	40	35	4		0			C,F,O	65	95		Х		Х	Hillside
F-31	30.6325428	-97.7248588	SC	20	Ked	1	0.8	3		0			C,F,O	28	48		Х			Hillside
M-1	30.6256132	-97.7017999	MB	30	Qt	1.5	1.5	8		0			N	5	35	Х		Х		Floodplain
	VI: <u>State Plane Te</u>	exas Central																		
2A TYPE	E	TYPE		2E	B POINTS	8A INFILLING														
С	Cave				30	N None, exposed bedrock														
SC	Solution cavity				20		С	Coar	se - cobbles	s, bre	akdowi	n, sand, g	gravel							
SF	Solution-enlarge	d fracture(s)			20		0	Loos	e or soft mu	id or	soil, org	ganics, le	aves, sticks,	dark colors						
F	Fault				20		F	Fines	s, compacte	d cla	y-rich s	ediment,	soil profile, g	ray or red c	olors					
0	Other natural be	drock features			5		V	Vege	tation. Give	deta	ils in na	arrative d	escription							
MB	Manmade feature		FS	Flows	stone, ceme	ents,	cave de	eposits												
SW	Swallow hole		х	Othe	r materials															
SH	SH Sinkhole 20												_							
CD	Non-karst closed	5							12 TC	DPOGRAPH	1									
z	Zone, clustered of	or aligned features			30			Cli	ff, Hillto	p, I	lillsic	le, Dra	ainage, F	loodplai	in, St	rean	nbed	1		

Date : November 27, 2013

James P. Hillen

Sheet <u>3</u> of <u>5</u>

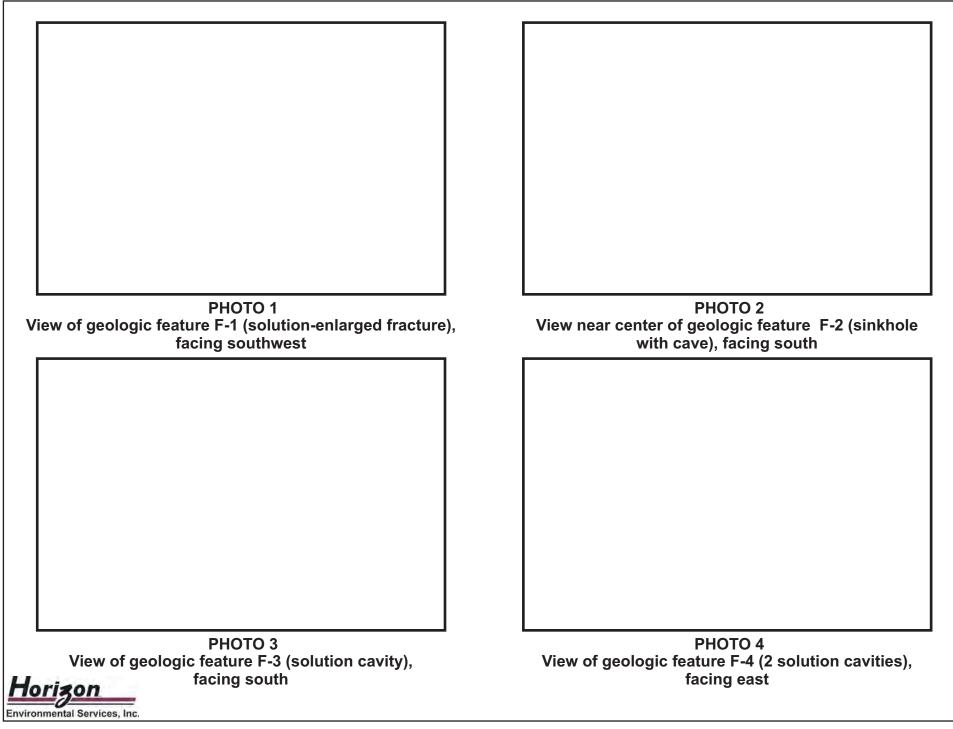
GEOL	OGIC ASS	ESSMENT 1	ABLE		·		PR	OJE	CT NA	ME	:	767 ac	res - Wolf	Ranch P	roperti	es; S	H 29	W; G	eorget	own, Tx		
	LOCATIO	NC				FE	ATU	RE C	HARAC	TER	RISTIC	S			EVAL	UAT	'ION	PHYS	SICAL	SETTING		
1A	1B *	1C*	2A	2B	3		4		5	5A	6	7	8A	8B	9	10			11	12		
FEATURE ID	LATITUDE	LONGITUDE	FEATURE TYPE	POINTS	FORMATION	DIME	DIMENSIONS (FEET)		DIMENSIONS (FEET)		TREND (DEGREES)	DOM	DENSITY (NO/FT)	APERTURE (FEET)	INFILL	RELATIVE INFILTRATION RATE	TOTAL	SENSITIVITY			ENT AREA RES)	TOPOGRAPHY
						х	Y	Z		10						<40	<u>>40</u>	<1.6	<u>>1.6</u>			
M-2	30.6266239	-97.7009221	MB	30	Qt	1	0.3	2.5		0			N	5	35	Х		Х		Hillside		
M-3	30.627305	-97.699324	MB	30	Qt	1.5	0.7	3		0			N	5	35	Х		Х		Hillside		
M-4	30.6322906	-97.7213021	MB/pit	30	Ked	200	120	20		0			C,F,O,X	9	39	Х		Х		Hilltop		
M-5	30.633581	-97.721295	MB/well	30	Ked	2	2	-		0			F,O	8	38	Х		Х		Hilltop		
M-6	30.6308594	-97.7172306	MB/well	30	Ked	0.2	0.2			0			N	5	35	Х		Х		Hillside		
M-7	30.6428973	-97.7007256	MB/pond	30	Ked	70	70	15		0			C,F,O	7	37	Х		Х		Hillside		
M-8	30.6422391	-97.7000951	MB	30	Ked	4	10	6		0			N	5	35	Х		Х		Hillside		
M-9	30.641915	-97.6998959	MB	30	Ked	2	2	6		0			N	5	35	Х		Х		Hillside		
M-10	30.641612	-97.69971	MB	30	Ked	2	2	6		0			N	5	35	Х		Х		Hillside		
M-11	30.63561	-97.703118	MB/well	30	Ked	0.2	0.2			0			N	5	35	Х		Х		Hillside		
M-12	30.6249138	-97.7283129	MB/pond	30	Kc	220	120	10		0			C,F,O	5	35	Х		Х		Hillside		
-	:_ <u>State Plane Te</u>																					
2A TYPE		TYPE		2E	B POINTS		8A INFILLING															
С	Cave				30		Ν	None, exposed bedrock														
SC	Solution cavity				20		С	Coars	se - cobble	s, bre	eakdow	n, sand,	gravel									
SF	Solution-enlarge	d fracture(s)			20		0	Loose	e or soft mu	ud or	soil, or	ganics, le	eaves, sticks,	dark colors	5							
F	Fault				20		F	Fines	, compacte	ed cla	ay-rich s	- sediment,	, soil profile,	gray or red o	colors							
0	Other natural be	drock features			5		V	Vege	tation. Give	e deta	ails in n	arrative of	description									
MB	Manmade featur	e in bedrock			30		FS	Flows	stone, cem	ents,	cave d	eposits										
SW	Swallow hole		30		х	Other	materials															
SH	Sinkhole				20														_			
CD	Non-karst closed	d depression			5							12 TC	DPOGRAPH	(
Z Zone, clustered or aligned features 30 Cliff,											Hillsic	le, Dra	ainage, F	loodplai	in, Sti	rean	nbed	1 k				
	THE OF TEX	1																	•			

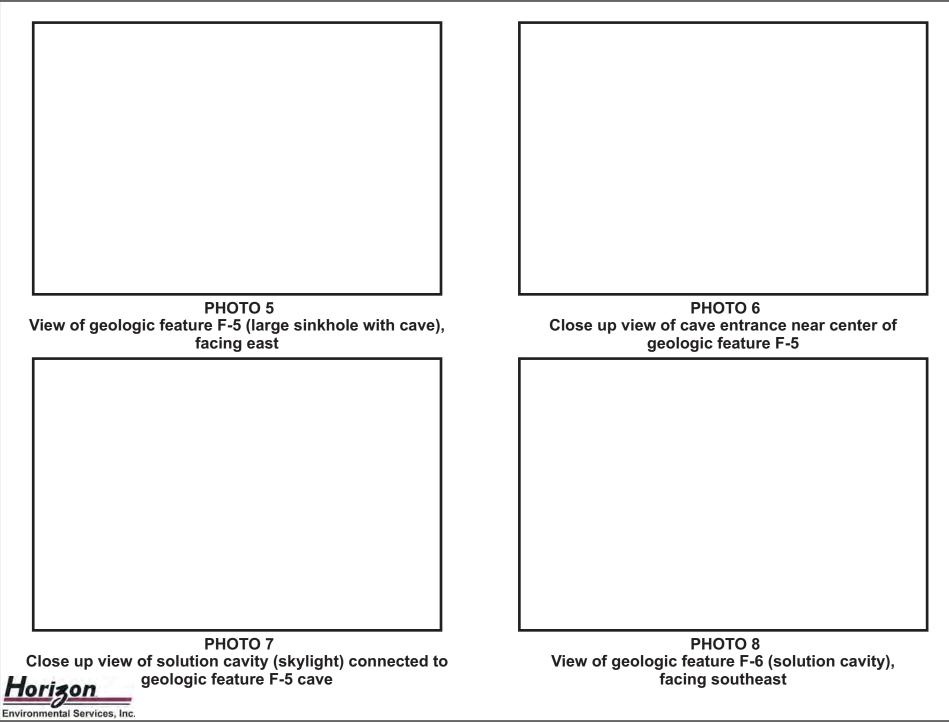
Date : November 27, 2013

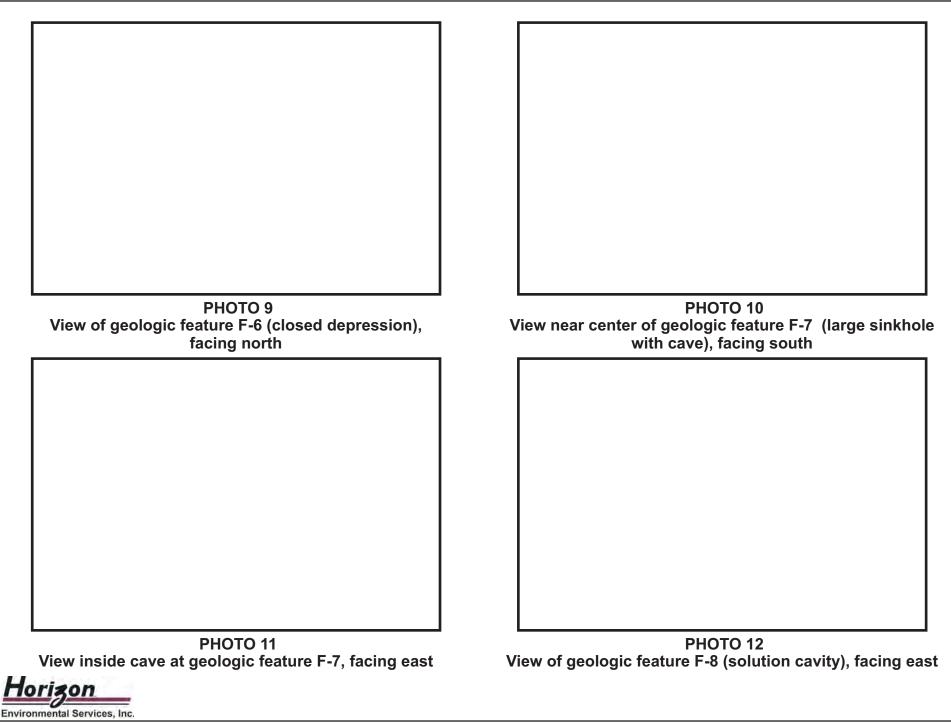
James P. Iullan

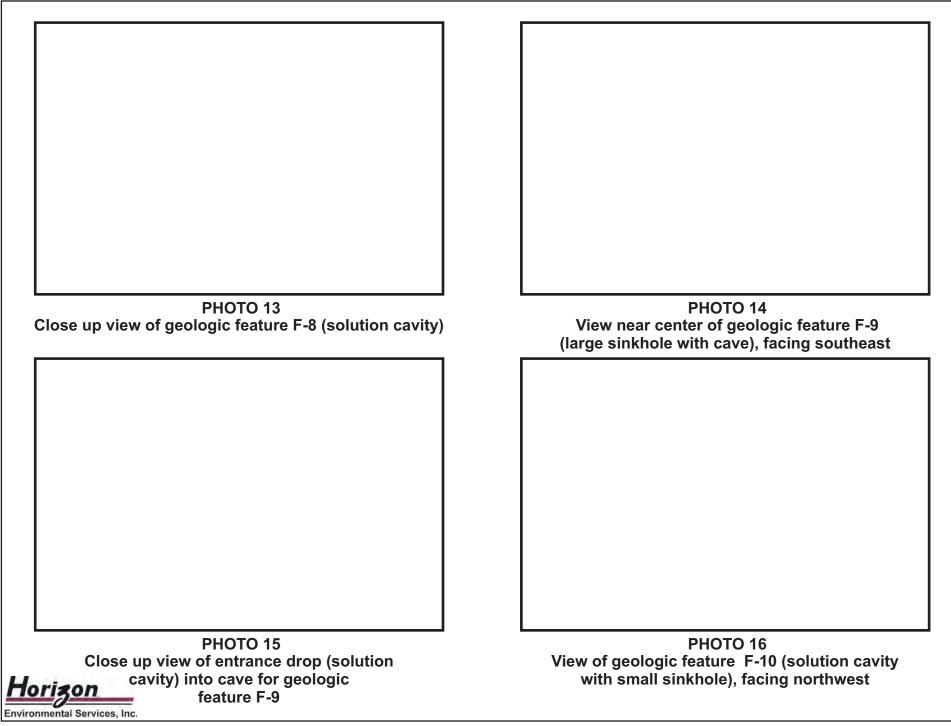
Sheet <u>4</u> of <u>5</u>

GEOL	OGIC ASS	ESSMENT T	ABLE				PR	OJE	CT NA	ME	:	767 ac	res - Wolf	Ranch P	roperti	es; S	H 29	W; G	eorget	own, Tx
	LOCATIO	NC				FE	ATU	RE C	HARAC	TEF	ristic	s			EVAL	LUAT	'ION	PHY	SICAL	SETTING
1A	1B *	1C*	2A	2B	3		4		5	5A	6	7	8A	8B	9	1	0		11	12
FEATURE ID	LATITUDE	LONGITUDE	FEATURE TYPE	POINTS	FORMATION	DIME	NSIONS	(FEET)	TREND (DEGREES)	DOM	DENSITY (NO/FT)	APERTURE (FEET)	INFILL	RELATIVE INFILTRATION RATE	TOTAL	SENS	ITIVITY	Y CATCHMENT AR (ACRES)		TOPOGRAPHY
						х	Y	Z		10						<40	<u>>40</u>	<1.6	<u>>1.6</u>	
F-32	30.6271723	-97.7150157	SC/C	30	Ked	4	2	8		0			C, F, O	30	60		Х	Х		Hillside
F-33	30.6267681	-97.7124339	SC	20	Ked	3	2	4.5		0			C, F, O	15	35	Х		Х		Hillside
F-34	30.6269705	-97.7161	SC	20	Ked	2	1	2		0			C, F, O	12	32	Х		Х		Hillside
ļ																				
										-										
	- Ctata Diana Ta	vee Control																		
2A TYPE	: State Plane Te	TYPE			3 POINTS	1	8A INFILLING													
C	Cave	TIPE		20	30															
							N None, exposed bedrock C Coarse - cobbles, breakdown, sand, gravel													
SC	Solution cavity				20		С													
SF	Solution-enlarge	d fracture(s)			20		0					•	eaves, sticks							
F	Fault				20		F		•		•		soil profile,	gray or red o	colors					
0	Other natural bee				5 30		V	•	tation. Give				lescription							
MB	Manmade feature	e in bedrock		FS		stone, cem	ents,	cave de	eposits											
SW	Swallow hole		Х	Other	materials															
SH	Sinkhole		<u> </u>																	
CD	Non-karst closed								POGRAPH											
Z	Zone, clustered of	or aligned features	;		30			Cli	it, Hillto	p, I	HIISIC	de, Dra	ainage, F	loodpla	ın, St	rean	nbed	t d		


Date : November 27, 2013


Sheet ___5___ of __5____




APPENDIX D

SITE PHOTOGRAPHS

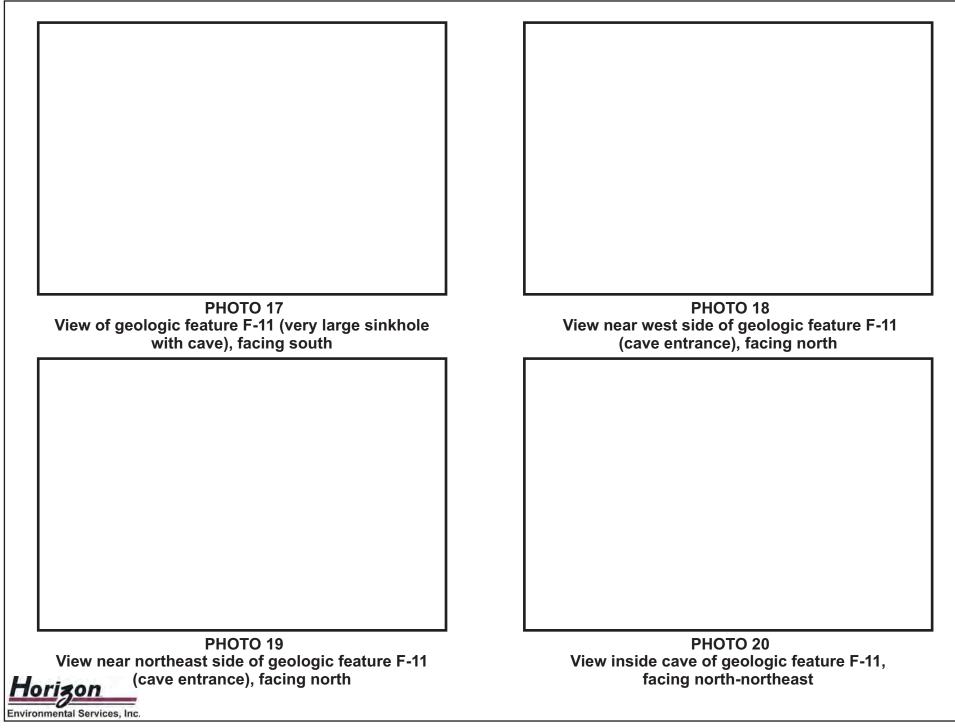


PHOTO 21 View of geologic feature F-12 (sinkhole), facing east

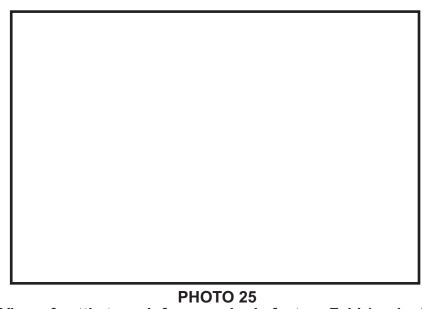

PHOTO 23 View near center of geologic feature F-13 (very large sinkhole with probable cave), facing north

PHOTO 22 Close up view near center of geologic feature F-12

PHOTO 24 View of geologic feature F-14 (spring), facing west

View of cattle trough from geologic feature F-14 (spring), facing northeast

PHOTO 27 Close up view near center of geologic feature F-15 (solution enlarged fracture cave)

PHOTO 26 View of geologic feature F-15 (sinkhole with solution enlarged fracture cave), facing south

PHOTO 28 View of geologic feature F-16 (solution enlarged fracture cave), facing west

PHOTO 29 Close up view of geologic feature F-16 (solution enlarged fracture cave)

PHOTO 31 View near center of geologic feature F-18 (large sinkhole with cave), facing south

PHOTO 30 View of geologic feature F-17 (sinkhole), facing north

PHOTO 32 View of geologic feature F-19 (sinkhole), facing south

PHOTO 33 View of geologic feature F-20 (solution cavity), facing southwest

PHOTO 35 View of geologic feature F-22 (solution enlarged fracture within small sinkhole), facing northwest

PHOTO 34 View of geologic feature F-21 (2 small solution cavities 8 ft apart), facing northwest

PHOTO 36 View of geologic feature F-22A (solution cavity), facing north

PHOTO 37 View of geologic feature F-23 (solution cavity), facing northwest

PHOTO 39 View of geologic feature F-25 (spring), facing west

PHOTO 38 View of geologic feature F-24 (small sinkhole), facing east

PHOTO 40 View of geologic feature F-26 (solution cavity), facing south

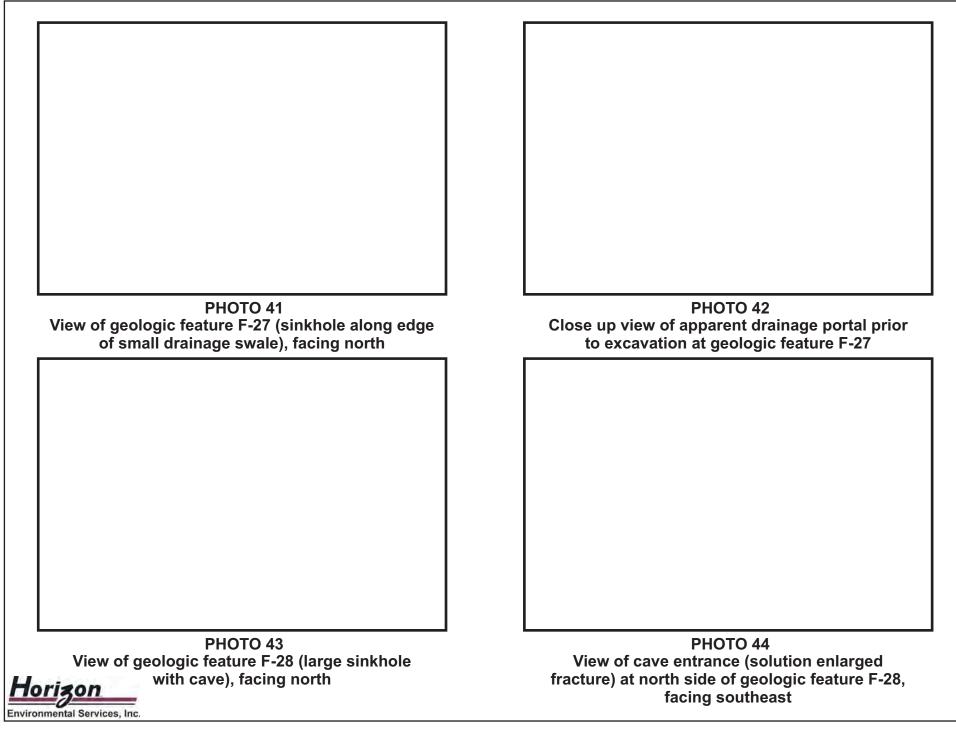


PHOTO 45 View of geologic feature F-29 (large sinkhole), facing north

PHOTO 47 Close up view of cave entrance for geologic feature F-30

Environmental Services, Inc.

PHOTO 46 View near center of geologic feature F-30 (large sinkhole with cave), facing north

PHOTO 48 View of geologic feature F-31 (solution cavity within small sinkhole), facing east

PHOTO 49 View of geologic feature F-32 (NF-7, solution cavity), facing southwest

PHOTO 51 Close up view of geologic feature F-33 (NF-5, solution cavity)

PHOTO 50 Close up view of geologic feature F-32 (NF-7, solution cavity)

PHOTO 52 View of geologic feature F-34 (NF-1, solution cavity), facing east

PHOTO 53 View of manmade feature M-4 (borrow pit), facing east

PHOTO 54 View of manmade feature M-7 (stormwater retention pond), facing south

PHOTO 55 View of manmade feature M-12 (stock pond), facing east

Modification of a Previously Approved Plan

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Transition Zone and Relating to 30 TAC 213.4(j), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This request for a **Modification of a Previously Approved Plan** is hereby submitted for TCEQ review and executive director approval. The request was prepared by:

Print Name of Customer/Agent: Austin Conner, P.E.

Date: 8/31/2023

Signature of Customer/Agent:

Project Information

1. Current Regulated Entity Name: <u>Wolf Ranch West, Section 4G</u> Original Regulated Entity Name: <u>Wolf Ranch West, Section 4G</u> Regulated Entity Number(s) (RN): 111446985

Edwards Aquifer Protection Program ID Number(s): 11002959

The applicant has not changed and the Customer Number (CN) is: 605990142

The applicant or Regulated Entity has changed. A new Core Data Form has been provided.

2. Attachment A: Original Approval Letter and Approved Modification Letters. A copy of the original approval letter and copies of any modification approval letters are attached.

3. A modification of a previously approved plan is requested for (check all that apply):

Physical or operational modification of any water pollution abatement structure(s)
including but not limited to ponds, dams, berms, sewage treatment plants, and
diversionary structures;

Change in the nature or character of the regulated activity from that which was originally approved or a change which would significantly impact the ability of the plan to prevent pollution of the Edwards Aquifer;

Development of land previously identified as undeveloped in the original water pollution abatement plan;

Physical modification of the approved organized sewage collection system;

Physical modification of the approved underground storage tank system;

Physical modification of the approved aboveground storage tank system.

4. Summary of Proposed Modifications (select plan type being modified). If the approved plan has been modified more than once, copy the appropriate table below, as necessary, and complete the information for each additional modification.

WPAP Modification	Approved Project	Proposed Modification
Summary		
Acres		
Type of Development		
Number of Residential		
Lots		
Impervious Cover (acres)		
Impervious Cover (%		
Permanent BMPs		
Other		
SCS Modification	Approved Project	Proposed Modification
Summary		
Linear Feet	<u>6,517 Main / 1,524 Lateral</u>	<u>6,522 Main / 1,524 Lateral</u>
Pipe Diameter	<u>12" & 8" Main / 6-in Lateral</u>	Add 27", 30", & 36" Main
Other		<u>See Narrative – Att. B</u>

AST Modification	Approved Project	Proposed Modification
Summary		
Number of ASTs		
Volume of ASTs		
Other		
UST Modification	Approved Project	Proposed Modification
UST Modification Summary	Approved Project	Proposed Modification
•	Approved Project	Proposed Modification
Summary	Approved Project	Proposed Modification

- 5. Attachment B: Narrative of Proposed Modification. A detailed narrative description of the nature of the proposed modification is attached. It discusses what was approved, including any previous modifications, and how this proposed modification will change the approved plan.
- 6. Attachment C: Current Site Plan of the Approved Project. A current site plan showing the existing site development (i.e., current site layout) at the time this application for modification is attached. A site plan detailing the changes proposed in the submitted modification is required elsewhere.
 - The approved construction has not commenced. The original approval letter and any subsequent modification approval letters are included as Attachment A to document that the approval has not expired.
 - The approved construction has commenced and has been completed. Attachment C illustrates that the site was constructed as approved.
 - The approved construction has commenced and has been completed. Attachment C illustrates that the site was **not** constructed as approved.

The approved construction has commenced and has **not** been completed. Attachment C illustrates that, thus far, the site was constructed as approved.

- The approved construction has commenced and has **not** been completed. Attachment C illustrates that, thus far, the site was **not** constructed as approved.
- 7. The acreage of the approved plan has increased. A Geologic Assessment has been provided for the new acreage.
 - Acreage has not been added to or removed from the approved plan.
- 8. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.

ATTACHMENT A

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

January 20, 2023

Mr. Fred Balda H4 Georgetown Phase 1, LLC 3000 Turtle Creek Blvd. Dallas, Texas 75219

Re: Edwards Aquifer, Williamson County

NAME OF PROJECT: Wolf Ranch West Section 4G; Located South of Wolf Ranch Pkwy. and Blue Blaze Tr.; Georgetown, Texas

TYPE OF PLAN: Request for Modification of a Previously Approved Water Pollution Abatement Plan (WPAP-MOD) and an Approved Organized Sewage Collection System (SCS-MOD); 30 Texas Administrative Code (TAC) Chapter 213 Edwards Aquifer

Edwards Aquifer Protection Program ID Nos. 11003328 (WPAP-MOD) and 11003329 (SCS-MOD); Regulated Entity No. RN111446985

Dear Mr. Balda:

The Texas Commission on Environmental Quality (TCEQ) has completed its review of the WPAP-MOD and SCS-MOD Applications for the above-referenced project submitted to the Austin Regional Office by Pape-Dawson Engineers, Inc. on behalf of H4 Georgetown Phase 1, LLC on October 26, 2022. Final review was completed after additional material was received on January 19, 2023. As presented to the TCEQ, the Temporary and Permanent Best Management Practices (BMPs) were selected and construction plans were prepared by a Texas Licensed Professional Engineer to be in general compliance with the requirements of 30 TAC Chapter 213 and Chapter 217. These planning materials were sealed, signed and dated by a Texas Licensed Professional Engineer. Therefore, based on the engineer's concurrence of compliance, the planning materials for construction of the proposed project and pollution abatement measures are hereby approved subject to applicable state rules and the conditions in this letter. The applicant or a person affected may file with the chief clerk a motion for reconsideration of the executive director's final action on this Edwards Aguifer Protection Plan. A motion for reconsideration must be filed no later than 23 days after the date of this approval letter. This approval expires two (2) years from the date of this letter unless, prior to the expiration date, more than 10 percent of the construction has commenced on the project or an extension of time has been reauested.

BACKGROUND

The Wolf Ranch West Section 5 WPAP, approved by letter dated December 3, 2021 (EAPP ID No. 11002667), included the construction of 76 single-family units with associated roadways, sidewalks, and utilities, as well as a batch detention (Pond 1), and five vegetative filter strips to provide permanent stormwater treatment for the 24.67 acres site.

TCEQ Region 11 • P.O. Box 13087 • Austin, Texas 78711-3087 • 512-339-2929 • Fax 512-339-3795

Mr. Fred Balda Page 2 January 20, 2023

The Wolf Ranch West Section 4G WPAP and SCS, approved by letter dated July 11, 2022 (EAPP ID Nos. 11002958 (WPAP) and 11002959 (SCS)), included the construction of 97 single-family units with associated drives, utilities including a 6,585 linear feet SCS consisting of 6-inch, 8-inch, and 12-inch pipes, a new extended detention basin (Pond 2), in series with a grassy swale, and a total of fourteen vegetative filter strips to provide permanent stormwater treatment for the 35.85 acres site.

PROJECT DESCRIPTION

WPAP DESCRIPTON

The modification of the residential development proposes no changes to the total area of 35.85acre site, to the existing batch detention (Pond 1), or to the approved extended detention basin (Pond 2), in series with a grassy swale. With this modification the total number of single-family units will be reduced to 77 and the total number of vegetative filter strips will be reduced to eleven. The proposed impervious cover will be reduced to 14.02 acres (39.1 percent).

SCS DESCRIPTION

The modified 8,061 linear feet SCS will consist of approximately 1,049 linear feet of 12-inch, 5,448 linear feet of 8-inch, and 1,524 linear feet of 6-inch SDR 26 PVC ASTM D3034, and 40 linear feet of 8-inch SDR 26 PVC ASTM D2241, with associated manholes and stub-outs.

The wastewater generated by this project will be conveyed to the existing San Gabriel Treatment Plant for treatment and disposal. The project is located within the City of Georgetown and will conform to all applicable codes, ordinances, and requirements of the City of Georgetown.

PERMANENT POLLUTION ABATEMENT MEASURES

To prevent the pollution of stormwater runoff originating on-site or upgradient of the site and potentially flowing across and off the site after construction, an existing batch detention (Pond 1; EAPP ID No. 11002667), an extended detention basin (Pond 2; EAPP ID No. 11002958), in series with a grassy swale, and a total of eleven natural (VFS1, VFS3, VFS4, and VFS5) and engineered (VFS2, VFS6 through VFS11) vegetative filter strips designed using the TCEQ technical guidance document, <u>Complying with the Edwards Aquifer Rules: Technical Guidance on Best Management Practices (2005)</u>, will be constructed to treat stormwater runoff. The required total suspended solids (TSS) treatment for this project is 12,203 pounds of TSS generated from the 14.02 acres of impervious cover. The approved measures meet the required 80 percent removal of the increased load in TSS caused by the project.

GEOLOGY

According to the Geologic Assessment (GA) included with the application, no sensitive geologic features were observed at the site. The surface geology of the area consists of Edwards Limestone Formation (Ked) and Comanche Peak limestone Formation (Kc). The site is located entirely within Edwards Aquifer Recharge Zone. The TCEQ site assessment conducted on January 17, 2023, revealed the site to be generally as described by the GA.

SPECIAL CONDITIONS

- I. This WPAP modification is subject to all Special and Standard Conditions listed in the approval letter dated July 11, 2022.
- II. The SCS application approved July 11, 2022 (EAPP ID No. 11002959) for Wolf Ranch West Section 4G is superseded by this SCS-MOD application.
- III. All permanent pollution abatement measures shall be operational prior to occupancy of the facility.

- IV. All sediment and/or media removed from the water quality basins during maintenance activities shall be properly disposed of according to 30 TAC 330 or 30 TAC 335, as applicable.
- V. All wastewater conveyance and treatment infrastructure shall be operational prior to any occupancy of the facility and prior to any wastewater flow being introduced into the sewage collection system.

STANDARD CONDITIONS

- 1. Pursuant to Chapter 7 Subchapter C of the Texas Water Code, any violations of the requirements in 30 TAC Chapter 213 may result in administrative penalties.
- 2. The holder of the approved Edwards Aquifer protection plan must comply with all provisions of 30 TAC Chapter 213 and all best management practices and measures contained in the approved plan. Additional and separate approvals, permits, registrations and/or authorizations from other TCEQ Programs (i.e., Stormwater, Water Rights, UIC) can be required depending on the specifics of the plan.
- 3. In addition to the rules of the Commission, the applicant may also be required to comply with state and local ordinances and regulations providing for the protection of water quality.

Prior to Commencement of Construction:

- 4. Within 60 days of receiving written approval of an Edwards Aquifer Protection Plan, the applicant must submit to the Austin Regional Office, proof of recordation of notice in the county deed records, with the volume and page number(s) of the county deed records of the county in which the property is located. A description of the property boundaries shall be included in the deed recordation in the county deed records. A suggested form (Deed Recordation Affidavit, TCEQ-0625) that you may use to deed record the approved WPAP is enclosed.
- 5. All contractors conducting regulated activities at the referenced project location shall be provided a copy of this notice of approval. At least one complete copy of the approved WPAP and this notice of approval shall be maintained at the project location until all regulated activities are completed.
- 6. Modification to the activities described in the referenced WPAP application following the date of approval may require the submittal of a plan to modify this approval, including the payment of appropriate fees and all information necessary for its review and approval prior to initiating construction of the modifications.
- 7. The applicant must provide written notification of intent to commence construction, replacement, or rehabilitation of the referenced project. Notification must be submitted to the Austin Regional Office no later than 48 hours prior to commencement of the regulated activity. Written notification must include the date on which the regulated activity will commence, the name of the approved plan and program ID number for the regulated activity, and the name of the prime contractor with the name and telephone number of the contact person. The executive director will use the notification to determine if the approved plan is eligible for an extension.
- 8. Temporary erosion and sedimentation (E&S) controls, i.e., silt fences, rock berms, stabilized construction entrances, or other controls described in the approved WPAP, must be installed prior to construction and maintained during construction. Temporary E&S controls may be removed when vegetation is established and the construction area is stabilized. If a water quality pond is proposed, it shall be used as a sedimentation basin during construction. The TCEQ may monitor stormwater discharges from the site to evaluate the adequacy of temporary E&S control measures. Additional controls may be necessary if excessive solids are being discharged from the site.

Mr. Fred Balda Page 4 January 20, 2023

9. All borings with depths greater than or equal to 20 feet must be plugged with non-shrink grout from the bottom of the hole to within three (3) feet of the surface. The remainder of the hole must be backfilled with cuttings from the boring. All borings less than 20 feet must be backfilled with cuttings from the boring. All borings must be backfilled or plugged within four (4) days of completion of the drilling operation. Voids may be filled with gravel.

During Construction:

- 10. During the course of regulated activities related to this project, the applicant or agent shall comply with all applicable provisions of 30 TAC Chapter 213, Edwards Aquifer. The applicant shall remain responsible for the provisions and conditions of this approval until such responsibility is legally transferred to another person or entity.
- 11. This approval does not authorize the installation of temporary aboveground storage tanks on this project. If the contractor desires to install a temporary aboveground storage tank for use during construction, an application to modify this approval must be submitted and approved prior to installation. The application must include information related to tank location and spill containment. Refer to Standard Condition No. 6, above.
- 12. If any sensitive feature (caves, solution cavities, sink holes, etc.) is discovered during construction, all regulated activities near the feature must be suspended immediately. The applicant or his agent must immediately notify the Austin Regional Office of the discovery of the feature. Regulated activities near the feature may not proceed until the executive director has reviewed and approved the methods proposed to protect the feature and the aquifer from potentially adverse impacts to water quality. The plan must be sealed, signed, and dated by a Texas Licensed Professional Engineer.
- 13. All water wells, including injection, dewatering, and monitoring wells must be in compliance with the requirements of the Texas Department of Licensing and Regulation under Title 16 TAC Chapter 76 (relating to Water Well Drillers and Pump Installers) and all other locally applicable rules, as appropriate.
- 14. If sediment escapes the construction site, the sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality (e.g., fugitive sediment in street being washed into surface streams or sensitive features by the next rain). Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50 percent. Litter, construction debris, and construction chemicals shall be prevented from becoming stormwater discharge pollutants.
- 15. Intentional discharges of sediment laden water are not allowed. If dewatering becomes necessary, the discharge will be filtered through appropriately selected best management practices. These may include vegetated filter strips, sediment traps, rock berms, silt fence rings, etc.
- 16. The following records shall be maintained and made available to the executive director upon request: the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 17. Stabilization measures shall be initiated as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, and construction activities will not resume within 21 days. When the initiation of stabilization measures by the 14th day is precluded by weather conditions, stabilization measures shall be initiated as soon as practicable.
- 18. No part of the system shall be used as a holding tank for a pump-and-haul operation.

After Completion of Construction:

- 19. A Texas Licensed Professional Engineer must certify in writing that the permanent BMPs or measures were constructed as designed. The certification letter must be submitted to the Austin Regional Office within 30 days of site completion.
- 20. The applicant shall be responsible for maintaining the permanent BMPs after construction until such time as the maintenance obligation is either assumed in writing by another entity having ownership or control of the property (such as without limitation, an owner's association, a new property owner or lessee, a district, or municipality) or the ownership of the property is transferred to the entity. Such entity shall then be responsible for maintenance until another entity assumes such obligations in writing or ownership is transferred. A copy of the transfer of responsibility must be filed with the executive director through Austin Regional Office within 30 days of the transfer. A copy of the transfer form (TCEQ-10263) is enclosed.
- 21. Upon legal transfer of this property, the new owner(s) is required to comply with all terms of the approved Edwards Aquifer protection plan. If the new owner intends to commence any new regulated activity on the site, a new Edwards Aquifer protection plan that specifically addresses the new activity must be submitted to the executive director. Approval of the plan for the new regulated activity by the executive director is required prior to commencement of the new regulated activity.
- 22. Certification by a Texas Licensed Professional Engineer of the testing of sewage collection systems required by 30 TAC Chapter 213 and Chapter 217 shall be submitted to the Austin Regional Office within 30 days of test completion and prior to the new sewage collection system being put into service. The certification should include the project name as it appeared on the approved application, the program ID number, and two copies of a site plan sheet(s) indicating the wastewater lines and manholes that were tested and are being certified as complying with the appropriate regulations. The engineer must certify in writing that all wastewater lines have passed all required testing to the appropriate regional office within 30 days of test completion and prior to use of the new collection system. Should any test result fail to meet passing test criteria and then subsequently pass testing, the result(s) and an explanation of what repair, adjustment, or other means were taken to facilitate a subsequent passing result shall be provided.

Every five years after the initial certification, the sewage collection system shall be retested. Any lines that fail the test must be repaired and retested. Certification that the system continues to meet the requirements of 30 TAC Chapter 213 and Chapter 217 shall be submitted to the Austin Regional Office. The certification should include the project name as it appeared on the approved application, the program ID number and two copies of a site plan sheet(s) indicating the wastewater lines and manholes that were tested and are being certified as complying with the appropriate regulations. Should any test result fail to meet passing test criteria, and then subsequently pass testing, the result(s) and an explanation of what repair, adjustment, or other means were taken to facilitate a subsequent passing result shall be provided.

- 23. If ownership of this organized sewage collection system is legally transferred (e.g., developer to city or Municipal Utility District), the new owner(s) is required to comply with all terms of the approved Edwards Aquifer protection plan. If the new owner intends to commence any new regulated activity on the site, a new Edwards Aquifer protection plan that specifically addresses the new activity must be submitted to the executive director. Approval of the plan for the new regulated activity by the executive director is required prior to commencement of the new regulated activity.
- 24. An Edwards Aquifer protection plan approval or extension will expire, and no extension will be granted if more than 50 percent of the total construction has not been completed within ten years from the initial approval of a plan. A new Edwards Aquifer protection plan must be submitted to the Austin Regional Office with the appropriate fees for review and approval by the executive director prior to commencing any additional regulated activities.

Mr. Fred Balda Page 6 January 20, 2023

25. At project locations where construction is initiated and abandoned, or not completed, the site shall be returned to a condition such that the aquifer is protected from potential contamination.

This action is taken under authority delegated by the Executive Director of the Texas Commission on Environmental Quality. If you have any questions or require additional information, please contact Mihaela (Miki) Chilarescu, P.E. of the Edwards Aquifer Protection Program of the Austin Regional Office at (512) 339-2929.

Sincerely,

Xillian Butter

Lillian Butler, Section Manager Edwards Aquifer Protection Program Texas Commission on Environmental Quality

LIB/mec

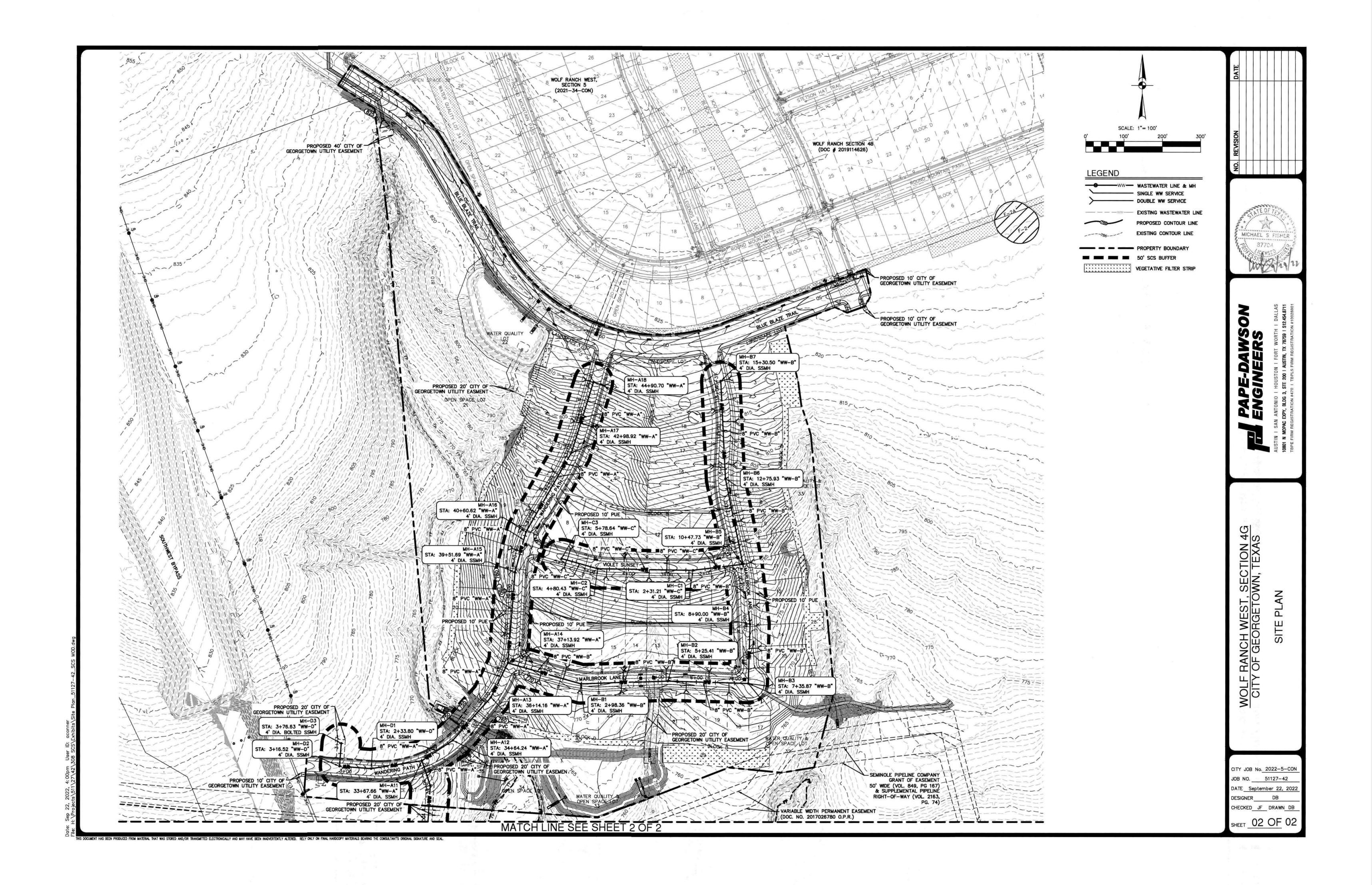
Enclosure: Deed Recordation Affidavit, Form TCEQ-0625 Change in Responsibility for Maintenance of Permanent BMPs, Form TCEQ-10263

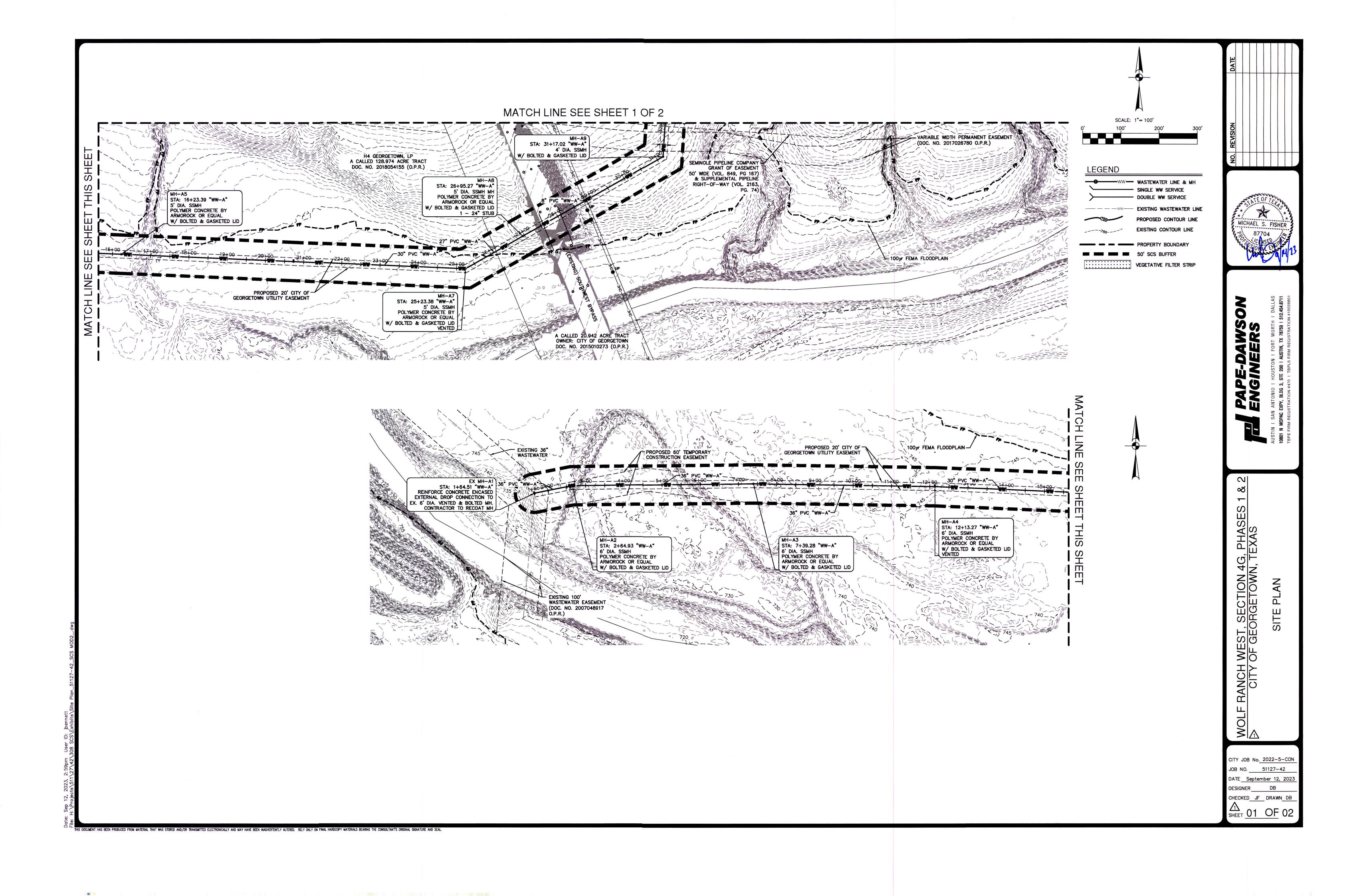
Cc: Ms. Jennifer Franklin, P.E. – Pape-Dawson Engineers, Austin

ATTACHMENT B

WOLF RANCH WEST SECTION 4G – SEWAGE COLLECTION SYSTEM Modification of Previously Approved Plan

Attachment B – **NARRATIVE** of Proposed Modification


On January 20, 2023, the Texas Commission on Environmental Quality approved the Wolf Ranch West, Section 4G SCS Modification Application (EAPP ID No. 11003329). The approved SCS Modification Application provided for disposal services for 294 single family residences and 266 multi-family residences.


The proposed modifications to the Sewage Collection System (SCS) application include changes to the proposed pipe sizes as detailed below. The change in sizing is due to requests made by the City of Georgetown.

Nominal Pipe Diameter (in)	Approved Linear Feet	Modified Linear Feet	Pipe Material	National Standard Specification for Pipe Material	National Standard for Pipe Joints
6	1,524	1,524 (No Change)	PVD SDR 26	ASTM D3034	ASTM D3212
8	5,448	3,951	PVC SDR 26	ASTM D3034	ASTM D3212
8	40	40 (No Change)	PVC SDR 26	ASTM 2241, Class 160	ASTM D3139
12	1,049		PVC SDR 26	ASTM D3034	ASTM D3212
27		172	PVC PS 115	ASTM F679	ASTM D3212
30		1,310	PVC PS 115	ASTM F679	ASTM D3212
36		1,049	PVC PS 115	ASTM F679	ASTM D3212

The site is located within the city limits of the City of Georgetown, Texas and is entirely over the Edwards Aquifer Recharge Zone. Because the project is located entirely over the Edwards Aquifer Recharge Zone, a Geologic Assessment was conducted and submitted with the original SCS application.

ATTACHMENT C

ORGANIZED SEWAGE COLLECTION SYSTEM PLAN

Organized Sewage Collection System Application

Texas Commission on Environmental Quality

For Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(c), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Regulated Entity Name: Wolf Ranch West, Section 4G

 Attachment A – SCS Engineering Design Report. This Engineering Design Report is provided to fulfill the requirements of 30 TAC Chapter 217, including 217.10 of Subchapter A, §§217.51 – 217.70 of Subchapter C, and Subchapter D as applicable, and is required to be submitted with this SCS Application Form.

Customer Information

 The entity and contact person responsible for providing the required engineering certification of testing for this sewage collection system upon completion (including private service connections) and every five years thereafter to the appropriate TCEQ region office pursuant to 30 TAC §213.5(c) is:

Contact Person: Wesley Wright, P.E. Entity: <u>City of Georgetown</u> Mailing Address: <u>300-1 Industrial Avenue</u> City, State: <u>Georgetown, TX</u> Zip: <u>78626</u> Telephone: <u>(512) 931-7672</u> Fax: _____ Email Address: <u>Wesley.Wright@georgetown.org</u> *The appropriate regional office must be informed of any changes in this information within 30 days of the change.*

3. The engineer responsible for the design of this sewage collection system is:

Contact Person: <u>Michael S. Fisher, P.E.</u> Texas Licensed Professional Engineer's Number: <u>87704</u> Entity: <u>Pape-Dawson Engineers, Inc.</u> Mailing Address: <u>10801 N MoPac Expy., Bldg 3, Suite 200</u> City, State:<u>Austin, TX</u> Zip: <u>78759</u> Telephone:(<u>512) 454-8711</u> Fax:<u>N/A</u> Email Address:<u>mfisher@pape-dawson.com</u>

Project Information

4. Anticipated type of development to be served (estimated future population to be served, plus adequate allowance for institutional and commercial flows):

\square	Residential: Number of single-family lots: 294
\boxtimes	Multi-family: Number of residential units: 266
	Commercial
	Industrial
	Off-site system (not associated with any development)
	Other:

5. The character and volume of wastewater is shown below:

<u>100</u> % Domestic	154,376 gallons/day
% Industrial	gallons/day
% Commingled	gallons/day
Total gallons/day: 128,500	

- 6. Existing and anticipated infiltration/inflow is 108,144 gallons/day. This will be addressed by: adequate sizing of the sewer main.
- 7. A Water Pollution Abatement Plan (WPAP) is required for construction of any associated commercial, industrial or residential project located on the Recharge Zone.
 - The WPAP application for this development was approved by letter dated Jan 20, 2023. A copy of the approval letter is attached.
 - The WPAP application for this development was submitted to the TCEQ on____, but has not been approved.
 - A WPAP application is required for an associated project, but it has not been submitted. There is no associated project requiring a WPAP application.
- 8. Pipe description:

Table 1 - Pipe Description

Pipe Diameter(Inches)	Linear Feet (1)	Pipe Material (2)	Specifications (3)
8" Gravity	3,951	PVC, SDR 26	ASTM D3034, ASTM D3212
8" Pressure-Rated (160 psi)	40	PVC, SDR 26	ASTM D2241, Class 160, ASTM D3139
6" Wastewater Service (Double)	1,524	PVC, SDR 26	ASTM D3034, ASTM D3212
27" Gravity	172	PVC, PS115	ASTM D3034, ASTM D3212

Pipe Diameter(Inches)	Linear Feet (1)	Pipe Material (2)	Specifications (3)
30" Gravity	1,310	PVC, PS115	ASTM D3034, ASTM D3212
36″ Gravity	1,049	PVC, PS115	ASTM D3034, ASTM D3212

Total Linear Feet: 8,046

- (1) Linear feet Include stub-outs and double service connections. Do not include private service laterals.
- (2) Pipe Material If PVC, state SDR value.
- (3) Specifications ASTM / ANSI / AWWA specification and class numbers should be included.
- 9. The sewage collection system will convey the wastewater to the <u>San Gabriel Wastewater</u> (name) Treatment Plant. The treatment facility is:

10. All components of this sewage collection system will comply with:

The City of <u>Georgetown</u> standard specifications.
Other. Specifications are attached.

11. No force main(s) and/or lift station(s) are associated with this sewage collection system.

A force main(s) and/or lift station(s) is associated with this sewage collection system and the Lift Station/Force Main System Application form (TCEQ-0624) is included with this application.

Alignment

- 12. There are no deviations from uniform grade in this sewage collection system without manholes and with open cut construction.
- 13. There are no deviations from straight alignment in this sewage collection system without manholes.
 - Attachment B Justification and Calculations for Deviation in Straight Alignment without Manholes. A justification for deviations from straight alignment in this sewage collection system without manholes with documentation from pipe manufacturer allowing pipe curvature is attached.

For curved sewer lines, all curved sewer line notes (TCEQ-0596) are included on the construction plans for the wastewater collection system.

Manholes and Cleanouts

14. Manholes or clean-outs exist at the end of each sewer line(s). These locations are listed below: (Please attach additional sheet if necessary)

Table 2 - Manholes and Cleanouts

Line	Shown on Sheet	Station	Manhole or Clean- out?
See attached table for manholes			

15. Manholes are installed at all Points of Curvature and Points of Termination of a sewer line.

16. The maximum spacing between manholes on this project for each pipe diameter is no greater than:

Pipe Diameter (inches)	Max. Manhole Spacing (feet)
6 - 15	500
16 - 30	800
36 - 48	1000
≥54	2000

- Attachment C Justification for Variance from Maximum Manhole Spacing. The maximum spacing between manholes on this project (for each pipe diameter used) is greater than listed in the table above. A justification for any variance from the maximum spacing is attached and must include a letter from the entity which will operate and maintain the system stating that it has the capability to maintain lines with manhole spacing greater than the allowed spacing.
- 17. All manholes will be monolithic, cast-in-place concrete.
 - The use of pre-cast manholes is requested for this project. The manufacturer's specifications and construction drawings, showing the method of sealing the joints, are attached.

Site Plan Requirements

Items 18 - 25 must be included on the Site Plan.

18. \square The Site Plan must have a minimum scale of 1" = 400'.

```
Site Plan Scale: 1" = <u>100</u>'.
```

19. The Site Plan must include the sewage collection system general layout, including manholes with station numbers, and sewer pipe stub outs (if any). Site plan must be overlain by topographic contour lines, using a contour interval of not greater than ten feet and showing the area within both the five-year floodplain and the 100-year floodplain of any drainage way.

20. Lateral stub-outs:

 \boxtimes The location of all lateral stub-outs are shown and labeled.

No lateral stub-outs will be installed during the construction of this sewer collection system.

21. Location of existing and proposed water lines:

 \boxtimes The entire water distribution system for this project is shown and labeled.

If not shown on the Site Plan, a Utility Plan is provided showing the entire water and sewer systems.

There will be no water lines associated with this project.

22. 100-year floodplain:

- After construction is complete, no part of this project will be in or cross a 100-year floodplain, either naturally occurring or manmade. (Do not include streets or concrete-lined channels constructed above of sewer lines.)
- After construction is complete, all sections located within the 100-year floodplain will have water-tight manholes. These locations are listed in the table below and are shown and labeled on the Site Plan. (Do not include streets or concrete-lined channels constructed above sewer lines.)

Table 3 - 100-Year Floodplain

Line	Sheet	Station
WW-A 35-37 of 61		1+64.51 to 25+89.25
	of	to
	of	to
	of	to

23. 5-year floodplain:

- After construction is complete, no part of this project will be in or cross a 5-year floodplain, either naturally occurring or man-made. (Do not include streets or concrete-lined channels constructed above sewer lines.)
- After construction is complete, all sections located within the 5-year floodplain will be encased in concrete or capped with concrete. These locations are listed in the table below and are shown and labeled on the Site Plan. (Do not include streets or concrete-lined channels constructed above sewer lines.)

Table 4 - 5-Year Floodplain

Line	Sheet	Station
	of	to

24. \square Legal boundaries of the site are shown.

25. X The *final plans and technical specifications* are submitted for the TCEQ's review. Each sheet of the construction plans and specifications are dated, signed, and sealed by the Texas Licensed Professional Engineer responsible for the design on each sheet.

Items 26 - 33 must be included on the Plan and Profile sheets.

26. All existing or proposed water line crossings and any parallel water lines within 9 feet of sewer lines are listed in the table below. These lines must have the type of pressure rated pipe to be installed shown on the plan and profile sheets. Any request for a variance from the required pressure rated piping at crossings must include a variance approval from 30 TAC Chapter 290.

There will be no water line crossings.

There will be no water lines within 9 feet of proposed sewer lines.

Line	Station or Closest Point	Crossing or Parallel	Horizontal Separation Distance	Vertical Separation Distance
WW-A	33+40.12	Crossing	NA	10.57'
WW-B	1+27.50	Crossing	NA	5.5'
WW-C	1+26.44	Crossing	NA	3.46'

Table 5 - Water Line Crossings

27. Vented Manholes:

No part of this sewer line is within the 100-year floodplain and vented manholes are not required by 30 TAC Chapter 217.

- \mid A portion of this sewer line is within the 100-year flood plain and vented manholes will be provided at less than 1500-foot intervals. These water-tight manholes are listed in the table below and labeled on the appropriate profile sheets.
- **A portion** of this sewer line is within the 100-year floodplain and an alternative means of venting shall be provided at less than 1500 feet intervals. A description of the alternative means is described on the following page.

A portion of this sewer line is within the 100-year floodplain; however, there is no interval longer than 1500 feet located within. No vented manholes will be used.

I	Table 6 - \	Venteu Ma	-
	lin		Manhal

Line	Manhole	Station	Sheet
WW-A	EX MH-A1	1+64.51	37 of 61
WW-A	MH-A7	25+23.38	39 of 61

28. Drop manholes:

There are no drop manholes associated with this project.

Sewer lines which enter new or existing manholes or "manhole structures" higher than 24 inches above the manhole invert are listed in the table below and labeled on the appropriate profile sheets. These lines meet the requirements of 30 TAC §217.55(I)(2)(H).

Table 7 - Drop Manholes

Line	Manhole	Station	Sheet
WW-A	MH-EX	1+64.51	37 of 61

29. Sewer line stub-outs (For proposed extensions):

The placement and markings of all sewer line stub-outs are shown and labeled.

No sewer line stub-outs are to be installed during the construction of this sewage collection system.

- 30. Lateral stub-outs (For proposed private service connections):
 - The placement and markings of all lateral stub-outs are shown and labeled.
 - No lateral stub-outs are to be installed during the construction of this sewage collection system.
- 31. Minimum flow velocity (From Appendix A)
 - Assuming pipes are flowing full; all slopes are designed to produce flows equal to or greater than 2.0 feet per second for this system/line.
- 32. Maximum flow velocity/slopes (From Appendix A)
 - Assuming pipes are flowing full, all slopes are designed to produce maximum flows of less than or equal to 10 feet per second for this system/line.
 - Attachment D Calculations for Slopes for Flows Greater Than 10.0 Feet per Second. Assuming pipes are flowing full, some slopes produce flows which are greater than 10 feet per second. These locations are listed in the table below. Calculations are attached.

Table 8 - Flows Greater Than 10 Feet per Second

Line	Profile Sheet	Station to Station	FPS	% Slope	Erosion/Shock Protection

Line	Profile Sheet	Station to Station	FPS	% Slope	Erosion/Shock Protection

- 33. Assuming pipes are flowing full, where flows are ≥ 10 feet per second, the provisions noted below have been made to protect against pipe displacement by erosion and/or shock under 30 TAC §217.53(I)(2)(B).
 - Concrete encasement shown on appropriate Plan and Profile sheets for the locations listed in the table above.
 - Steel-reinforced, anchored concrete baffles/retards placed every 50 feet shown on appropriate Plan and Profile sheets for the locations listed in the table above.
 N/A

Administrative Information

- 34. The final plans and technical specifications are submitted for TCEQ review. Each sheet of the construction plans and specifications are dated, signed, and sealed by the Texas Licensed Professional Engineer responsible for the design on each sheet.
- 35. Standard details are shown on the detail sheets, which are dated, signed, and sealed by the Texas Licensed Professional Engineer, as listed in the table below:

Standard Details	Shown on Sheet
Lateral stub-out marking [Required]	59 of 61
Manhole, showing inverts comply with 30 TAC §217.55(I)(2) [Required]	59 of 61
Alternate method of joining lateral to existing SCS line for potential future connections [Required]	N/A of N/A
Typical trench cross-sections [Required]	60 of 61
Bolted manholes [Required]	N/A of N/A
Sewer Service lateral standard details [Required]	60 of 61
Clean-out at end of line [Required, if used]	60 of 61
Baffles or concrete encasement for shock/erosion protection [Required, if flow velocity of any section of pipe >10 fps]	N/A of N/A
Detail showing Wastewater Line/Water Line Crossing [Required, if crossings are proposed]	60 of 61
Mandrel detail or specifications showing compliance with 30 TAC §217.57(b) and (c) [Required, if Flexible Pipe is used]	6 of 61
Drop manholes [Required, if a pipe entering a manhole is more than 24 inches above manhole invert]	59 of 61

Table 9 - Standard Details

36. All organized sewage collection system general construction notes (TCEQ-0596) are included on the construction plans for this sewage collection system.

- 37. All proposed sewer lines will be sufficiently surveyed/staked to allow an assessment prior to TCEQ executive director approval. If the alignments of the proposed sewer lines are not walkable on that date, the application will be deemed incomplete and returned.
 - \boxtimes Survey staking was completed on this date: <u>9/1/2023.</u>
- 38. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 39. Any modification of this SCS application will require TCEQ approval, prior to construction, and may require submission of a revised application, with appropriate fees.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Organized Sewage Collection System Application** is hereby submitted for TCEQ review and executive director approval. The system was designed in accordance with the requirements of 30 TAC §213.5(c) and 30 TAC §217 and prepared by:

Print Name of Ligensed Professional Engineer: Michael Fisher, P.E.

Date: _____

Place engineer's seal here:

Signature of Licensed Professional Engineer:

TCEQ-0582 (Rev. 02-11-15)

Appendix A-Flow Velocity Table

Flow Velocity (Flowing Full) All gravity sewer lines on the Edwards Aquifer Recharge Zone shall be designed and constructed with hydraulic slopes sufficient to give a velocity when flowing full of not less than 2.0 feet per second, and not greater than 10 feet per second. The grades shown in the following table are based on Manning's formula and an n factor of 0.013 and shall be the minimum and maximum acceptable slopes unless provisions are made otherwise.

Pipe Diameter(Inches)	% Slope required for minimum flow velocity of 2.0 fps	% Slope which produces flow velocity of 10.0 fps
6	0.50	12.35
8	0.33	8.40
10	0.25	6.23
12	0.20	4.88
15	0.15	3.62
18	0.11	2.83
21	0.09	2.30
24	0.08	1.93
27	0.06	1.65
30	0.055	1.43
33	0.05	1.26
36	0.045	1.12
39	0.04	1.01
>39	*	*

Table 10 - Slope Velocity

*For lines larger than 39 inches in diameter, the slope may be determined by Manning's formula (as shown below) to maintain a minimum velocity greater than 2.0 feet per second when flowing full and a maximum velocity less than 10 feet per second when flowing full.

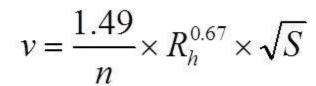


Figure 1 - Manning's Formula

Where:

v = velocity (ft/sec)
n = Manning's roughness coefficient
(0.013)
Rh = hydraulic radius (ft)
S = slope (ft/ft)

line	Charge an Chart	Ctation	Manhole or
Line	Shown on Sheet	Station	Clean-out?
WW-A	37	1+64.51	EX MH
WW-A	37	2+64.93	MH
WW-A	37	7+39.28	MH
WW-A	38	12+13.27	MH
WW-A	38	16+23.39	MH
WW-A	39	20+73.39	MH
WW-A	39	25+23.38	MH
WW-A	39	26+95.27	MH
WW-A	40	31+17.02	MH
WW-A	40	32+99.45	MH
WW-A	40	33+67.66	MH
WW-A	40	34+64.24	MH
WW-A	40	36+14.16	MH
WW-A	40	37+13.92	MH
WW-A	41	39+51.69	MH
WW-A	41	40+60.62	MH
WW-A	41	42+98.92	MH
WW-A	41	44+90.70	MH
WW-B	42	2+98.36	MH
WW-B	42	5+25.41	MH
WW-B	42	7+35.87	MH
WW-B	42	8+90.00	MH
WW-B	43	10+47.73	MH
WW-B	43	12+75.93	MH
WW-B	43	15+30.50	MH
WW-C	44	2+31.21	MH
WW-C	44	4+80.43	MH
WW-C	44	5+78.64	MH
WW-C	44	2+33.80	MH
WW-C	44	3+16.52	MH
WW-C	44	3+76.63	MH

ATTACHMENT A

Wolf Ranch West, Section 4G Engineering Design Report

Prepared in Accordance with the City of Georgetown Wastewater Design Criteria

SEPTEMBER 2023

by Pape-Dawson Engineers, Inc. TBPE, Firm Registration #470

TABLE OF CONTENTS

PROJECT INFORMATION
GRAVITY SANITARY SEWER PIPING: FLOW & CAPACITY ANALYSIS 4
Odor Control
Flow Calculation
Capacity Calculation
Conclusion
GENERAL STRUCTURAL COMPONENTS12
Project Materials (Pipe and Joints):12
Project Materials (Bedding):
Project Materials (Manholes):
Project Materials (Manhole Covers):14
Minimum and Maximum Slopes14
Backfill14
Trenching
Minimum and Maximum Trench Width15
Corrosion Prevention
Manholes (General)
Manholes (Inverts)16
Manholes (Ventilation)
FLEXIBLE PIPE COMPUTATIONS 17
Live Load Calculations17
Buckling Pressure Calculations 17
Allowable Buckling Pressure:
Pressure Under Installed Conditions 19
Installation Temperature Effects
Wall Crushing

H:\Projects\511\27\42\308 SCS\Modification 2\Working\3. SCS Application\Attachment A-Engineering Design Report.docx

1

WOLF RANCH WEST, SECTION 4G Engineering Design Report

Tensile Strength	
Strain	
Modulus of Soil Reaction	
Zeta Calculation	
Pipe Stiffness	
Deflection	

2

This Engineering Design Report has been prepared to comply with the Texas Commission on Environmental Quality's Design Criteria for Domestic Wastewater Systems (30 TAC 217), and regulations over the Edwards Aquifer Recharge Zone (30 TAC 213). Please note that throughout this application, in the case of multiple regulations, the more stringent shall apply.

PROJECT INFORMATION

Wolf Ranch West, Section 4G is located on approximately 35.85 acres south of the intersection of Wolf Ranch Parkway & Blue Blaze Trail, south of Wolf Ranch West, Section 5 (EAPP11002668), within the city limits of Georgetown in Williamson County, Texas. The project limits are located over the Edwards Aquifer Recharge Zone and Contributing Zone as shown on Attachment B. A Water Pollution Abatement Plan (WPAP) Modification Application for this development was approved on January 20, 2023.

The Wolf Ranch West, Section 4G, SCS Modification Application proposes the construction of approximately 3,991 linear feet of 8-inch gravity wastewater main, 172 linear feet of 27-inch gravity wastewater main, 1,310 linear feet of 30-inch gravity wastewater main, and 1,049 linear feet of 36-inch gravity wastewater main. Approximately 40 LF of the proposed 3,991 LF of 8-inch gravity sewer mains are constructed of PVC, SDR 26, 160 psi pressure-rated pipe, centered on water/sewer-line crossings. This application also includes 1,524 linear feet of double wastewater service laterals for a total of 8,046 linear feet of sewage collection system. Regulated activities proposed include excavation, construction of sewer mains, manhole installation, backfill, and compaction. Approximately 15.05 acres may be disturbed, as identified by the limits of the fifty-foot (50') radius SCS/GA envelope shown on the plans. The SCS proposed with this application will connect to an existing 36-inch wastewater line.

The Guy Tract Geologic Assessment (GA) and Wolf Ranch GA included with this SCS Application states that there are no naturally occurring geologic features within Wolf Ranch West, Section 4G. There are no existing water wells within the Project Boundary submitted with this application.

This SCS application will directly serve a total of 494 LUE's defined as follows:

- Wolf Ranch West, Section 4G (35.85 AC) 77 single family units = 97 LUE's
- Wolf Ranch West, Section 5G (66.99 AC) 217 single family units = 217 LUE's
- Avanta Multifamily (25.98 AC) 266 multi-family units = 200 LUE's

Approximately 154,376 gallons per day (average flow) of domestic wastewater will be generated from the Wolf Ranch West, Section 4G SCS. Sewage flow will be disposed of by conveyance to the existing San Gabriel Wastewater Treatment Plant. The San Gabriel Wastewater Treatment Plant has the capacity to adequately treat the proposed peak flow. Potable water will be provided by the City of Georgetown. Any future wastewater mains will be permitted with their own SCS Application and submitted to the TCEQ for review and approval.

GRAVITY SANITARY SEWER PIPING: FLOW & CAPACITY ANALYSIS

Basis for average flow used for design of collection system (check one or more):

 Per Capita Contributions:

 Service Connections:
 ✓

 Land Area and Use:
 ✓

 Fixture Analysis:

Odor Control

Odor Control is not necessary on this project as it is a gravity line and there will be no conditions where sewage is standing and will become septic.

Flow Calculation

Peaking Factor used for design: Peaking Factor is based on: **Reference Equations A & B below.**

Design Requirements for peak flow (from City of Georgetown, Texas CDM Memorandum on Water & Wastewater System Recommended Design Criteria)

Wolf Ranch West, Section 4G:

Total LUEs = 494*

٠	77 LUE – Residential Single Family , Section 4G	$(BWF = 250 \ gpd)$
٠	217 LUE – Residential Single Family, Section 5G	$(BWF = 250 \ gpd)$

- 200 LUE Residential Multi-Family, Avanta Multifamily
 (BWF = 250 gpd)
 - * Base Wastewater flowrates (BWF) from the City of Georgetown, Texas CDM on Water & Wastewater System Recommended Design Criteria

1 Living Unit Equivalent (LUE) = 250 gallons per day (average wastewater flow) Population = 1,235 persons (Based on an assumed 2.5 persons per unit)

Residential – Single Family, Section 4G

Base Wastewater Flow (BWF) = # of LUEs $x \frac{250 \frac{gal}{day}}{1 \text{ LUE}} = 19,250 \text{ gpd or } 0.01925 \text{ mgd}$

77 LUEs x 250 gpd/LUE = 19,250 gpd

Groundwater Inflow (GWI) = 25% x BWF = 4,813 gpd or **0.00481 mgd**

Average Dry Weather Flowrate (AvgDWF) = BWF + GWI = 24,063 gpd or 0.02406 mgd

Peaking Factor = $2.8 \times AvgDWF^{-0.0732} = 3.68$

Equation A

Peak Dry Weather Flow = $3.68 \times 24,063 \text{ gpd } x \frac{1 \text{ day}}{24 \text{ hr}} x \frac{1 \text{ hr}}{60 \text{ min}} = 61.5 \text{ gpm}$

Peak Wet Weather $Flow = Q_{PW} = Peak Dry Weather Flow + Infiltration$ Equation B

Infiltration = 1,000 gallons per day per acre served

$$=\frac{[(1,000 gpd/acre)x \ 15.05 \ acres]}{1,440}=\mathbf{10.5} \ gpm$$

 $Q_{PW} = 61.5 \ gpm + 10.5 \ gpm = 72.0 \ gpm$

Residential – Single Family, Section 5G

Base Wastewater Flow (BWF) = # of LUEs $x \frac{250 \frac{gal}{day}}{1 LUE} = 54,250 \text{ gpd or } 0.05425 \text{ mgd}$ 217 LUEs x 250 gpd/LUE = 54,250 gpdGroundwater Inflow (GWI) = 25% x BWF = 13,563 gpd or 0.01356 mgdAverage Dry Weather Flowrate (AvgDWF) = BWF + GWI = 67,813 gpd or 0.06781 mgd

Peaking Factor =
$$2.8 \times AvgDWF^{-0.0732} = 3.41$$
Equation APeak Dry Weather Flow = $3.41 \times 67,813 \text{ gpd } x \frac{1 \text{ day}}{24 \text{ hr}} x \frac{1 \text{ hr}}{60 \text{ min}} = 160.6 \text{ gpm}$ Peak Wet Weather Flow = Q_{PW} = Peak Dry Weather Flow + InfiltrationEquation BInfiltration = $1,000 \text{ gallons per day per acre served}$ $= \frac{[(1,000 \text{ gpd/acre})x 66.99 \text{ acres}]}{1,440} = 46.5 \text{ gpm}$ Q_{PW} = 160.6 gpm + 46.5 gpm = 207.1 gpmResidential – Multi-Family, Avanta Multi-FamilyBase Wastewater Flow (BWF) = # of LUEs $x \frac{250 \text{ gal}}{1 \text{ LUE}} = 50,000 \text{ gpd or } 0.05 \text{ mgd}$ 200 LUEs $x 250 \text{ gpd/LUE} = 50,000 \text{ gpd}$ Groundwater Inflow (GWI) = $25\% x$ BWF = $12,500 \text{ gpd or } 0.0125 \text{ mgd}$

Average Dry Weather Flowrate (AvgDWF) = BWF + GWI = 62,500 gpd or 0.0625 mgd

Peaking Factor =
$$2.8 \times A \times gDWF^{-0.0732} = 3.43$$
 Equation A

Peak Dry Weather Flow = 3.43 x 62,500 gpd $x \frac{1 \text{ day}}{24 \text{ hr}} x \frac{1 \text{ hr}}{60 \text{ min}} = 148.9 \text{ gpm}$

Peak Wet Weather
$$Flow = Q_{PW} = Peak Dry Weather Flow + Infiltration Equation B$$

Infiltration = 1,000 gallons per day per acre served

$$=\frac{[(1,000 gpd/acre)x 25.98 acres]}{1,440}=18 gpm$$

 $Q_{PW} = 148.9 \ gpm + 18 \ gpm = 166.9 \ gpm$

Capacity Calculation

<u>Characteristics of 6" ASTM D3034, SDR 26, PVC Sewer Pipe:</u> Nominal Size = 6" Outer Diameter $(D_o) = 6.275$ " Minimum Wall Thickness (t) = 0.241" Inner Diameter $(D_i) = 5.793$ "

H:\Projects\511\27\42\308 SCS\Modification 2\Working\3. SCS Application\Attachment A-Engineering Design Report.docx

<u>Characteristics of 8" ASTM D3034, SDR 26, PVC Sewer Pipe:</u> Nominal Size = 8" Outer Diameter $(D_o) = 8.40$ " Minimum Wall Thickness (t) = 0.323" Inner Diameter $(D_i) = 7.754$ " <u>Characteristics of 8" ASTM 2241, Class 160, SDR 26, PVC Sewer Pipe:</u> Nominal Size = 8" Outer Diameter $(D_o) = 8.625$ " Minimum Wall Thickness (t) = 0.332" Inner Diameter $(D_i) = 7.921$ "

<u>Characteristics of 27" ASTM F679, PS 115, PVC Sewer Pipe:</u> Nominal Size = 27" Outer Diameter $(D_o) = 27.953$ " Minimum Wall Thickness (t) = 1.077" Inner Diameter $(D_i) = 26.254$ "

<u>Characteristics of 30" ASTM F679, PS 115, PVC Sewer Pipe:</u> Nominal Size = 30" Outer Diameter $(D_o) = 32.000$ " Minimum Wall Thickness (t) = 1.233" Inner Diameter $(D_i) = 30.055$ "

Characteristics of 36" ASTM F679, PS 115, PVC Sewer Pipe: Nominal Size = 36" Outer Diameter $(D_o) = 38.300$ " Minimum Wall Thickness (t) = 1.373" Inner Diameter $(D_i) = 35.464$ "

H:\Projects\511\27\42\308 SCS\Modification 2\Working\3. SCS Application\Attachment A-Engineering Design Report.docx

PAPE-DAWSON Engineers

Manning's Equation: $Q = (k/n)(A)(R^{2/3})(S^{1/2})$ v = Q/A

Where:

Q = Discharge (cfs) $k = Constant [(1.49 ft^{1/3})/sec.]$ n = Manning's roughness coefficient (unitless) = 0.013 [as required by 30 TAC 213.53 A(i)] $A = Flow area (ft^2)$ $R = Hydraulic Radius (ft) = A/P = Cross sectional area of flow (ft^2)/Wetted perimeter (ft.)$ S = Slope (ft/ft) v = Velocity of flow (ft/s)

<u>Calculations for 6" ASTM D3034, SDR 26, PVC Sewer Pipe:</u> $A = \pi(D_i^2)/4 = \pi(5.793 \text{ in})^2/4 = 0.18 \text{ ft}^2$ $P = \pi(D_i) = \pi(5.793 \text{ in}) = 1.52 \text{ ft}$ $R = A/P = 0.20 \text{ ft}^2/1.52 \text{ ft} = 0.12 \text{ ft}$ S = 0.01 $Q = [(1.49 \text{ ft}^{1/3}/\text{sec})/0.013)](0.18 \text{ ft}^2)(0.12 \text{ ft})^{2/3}(0.01)^{1/2}$ $Q = 0.50 \text{ cfs} = 224 \text{ gpm} = Q_{\text{full}}$ $v = 0.50 \text{ cfs}/0.18 \text{ ft}^2 = 2.78 \text{ ft/s}$ Qmax = 0.50 cfs (0.80)(7.48 gallons/1 cf)(60 sec/1 min.) = 179.5 gpm

<u>Calculations for 8" ASTM D3034, SDR 26, PVC Sewer Pipe:</u> $A = \pi(D_i^2)/4 = \pi(7.754 \text{ in})^2/4 = 0.33 \text{ ft}^2$ $P = \pi(D_i) = \pi(7.754 \text{ in}) = 2.03 \text{ ft}$ $R = A/P = 0.33 \text{ ft}^2/2.03 \text{ ft} = 0.16 \text{ ft}$ S = 0.005 $Q = [(1.49 \text{ ft}^{1/3}/\text{sec})/0.013)](0.33 \text{ ft}^2)(0.16 \text{ ft})^{2/3}(0.005)^{1/2}$ $Q = 0.79 \text{ cfs} = 355 \text{ gpm} = Q_{full}$ $v = 0.79 \text{ cfs}/0.35 \text{ ft}^2 = 2.39 \text{ ft/s}$ Qmax = 0.79 cfs (0.80)(7.48 gallons/1 cf)(60 sec/1 min.) = 283.6 gpm

Calculations for 8" ASTM 2241, Class 160, SDR 26, PVC Sewer Pipe.

$$A = \pi(D_i^2)/4 = \pi(7.921 \text{ in})^2/4 = 0.34 \text{ ft}^2$$

 $P = \pi(D_i) = \pi(7.921 \text{ in}) = 2.07 \text{ ft}$
 $R = A/P = 0.35 \text{ ft}^2/2.09 \text{ ft} = 0.16 \text{ ft}$
 $S = 0.005$
 $Q = [(1.49 \text{ ft}^{1/3}/\text{sec})/0.013)](0.34 \text{ ft}^2)(0.16 \text{ ft})^{2/3}(0.005)^{1/2}$
 $Q = 0.81 \text{ cfs} = 364 \text{ gpm} = Q_{full}$
 $v = 0.81 \text{ cfs}/0.34 \text{ ft}^2 = 2.38 \text{ ft/s}$
 $Qmax = 0.81 \text{ cfs} (0.80)(7.48 \text{ gallons/1 cf})(60 \text{ sec/1 min.}) = 290.8 \text{ gpm}$

Calculations for 27" ASTM F679, PS115, PVC Sewer Pipe: $A = \pi(D_i^2)/4 = \pi(26.254 \text{ in})^2/4 = 3.76 \text{ ft}^2$ $P = \pi(D_i) = \pi(26.254 \text{ in}) = 6.87 \text{ ft}$ $R = A/P = 3.76 \text{ ft}^2/6.87 \text{ ft} = 0.55 \text{ ft}$ S = 0.005 $Q = [(1.49 \text{ ft}^{1/3}/\text{sec})/0.013)](0.34 \text{ ft}^2)(0.16 \text{ ft})^{2/3}(0.005)^{1/2}$ $Q = 20.46 \text{ cfs} = 9,182 \text{ gpm} = Q_{full}$ $v = 20.46 \text{ cfs}/3.76 \text{ ft}^2 = 5.44 \text{ ft/s}$ Qmax = 20.46 cfs (0.80)(7.48 gallons/1 cf)(60 sec/1 min.) = 7,346 gpm

Calculations for 30" ASTM F679, PS115, PVC Sewer Pipe: $A = \pi(D_i^2)/4 = \pi(30.055 \text{ in})^2/4 = 4.93 \text{ ft}^2$ $P = \pi(D_i) = \pi(30.055 \text{ in}) = 7.87 \text{ ft}$ $R = A/P = 4.93 \text{ ft}^2/7.87 \text{ ft} = 0.63 \text{ ft}$ S = 0.005 $Q = [(1.49 \text{ ft}^{1/3}/\text{sec})/0.013)](0.34 \text{ ft}^2)(0.16 \text{ ft})^{2/3}(0.003)^{1/2}$ $Q = 29.36 \text{ cfs} = 13,176.8 \text{ gpm} = Q_{\text{full}}$ $v = 29.36 \text{ cfs}/4.93 \text{ ft}^2 = 5.96 \text{ ft/s}$ Qmax = 29.36 cfs (0.80)(7.48 gallons/1 cf)(60 sec/1 min.) = 10,541 gpm

<u>Calculations for 36" ASTM F679, PS115, PVC Sewer Pipe:</u> $A = \pi(D_i^2)/4 = \pi(35.454 \text{ in})^2/4 = 6.86 \text{ ft}^2$ $P = \pi(D_i) = \pi(35.454 \text{ in}) = 9.28 \text{ ft}$ $R = A/P = 6.86 \text{ ft}^2/9.28 \text{ ft} = 0.74 \text{ ft}$ S = 0.003 $Q = [(1.49 \text{ ft}^{1/3}/\text{sec})/0.013)](0.34 \text{ ft}^2)(0.16 \text{ ft})^{2/3}(0.003)^{1/2}$ $Q = 35.23 \text{ cfs} = 15,811 \text{ gpm} = Q_{full}$ $v = 35.23 \text{ cfs}/6.86 \text{ ft}^2 = 5.14 \text{ ft/s}$ Qmax = 35.23 cfs (0.80)(7.48 gallons/1 cf)(60 sec/1 min.) = 12,649.0 gpm

Nominal Main Size (in)	Inner Diameter (in)	Minimum Slope	Area (ft ²)	Hydraulic Radius (A/P)	R ^{2/3}	S ^{1/2}	Q-Full (cfs)	Max Pipe (%)	Velocity (ft/s)	Q-Max (gpm)
6	5.793	0.01	0.18	0.12	0.24	0.10	0.50	80	2.78	179.5
8	7.754	0.005	0.33	0.16	0.29	0.07	0.79	80	2.39	283.6
8	7.921	0.005	0.34	0.16	0.29	0.07	0.81	80	2.38	290.8
27	26.254	0.005	3.76	0.55	0.67	0.07	20.46	80	5.44	7,346
30	30.055	0.005	4.93	0.63	0.73	0.07	29.36	80	5.96	10,541
36	35.454	0.003	6.86	0.74	0.82	0.05	35.23	80	5.14	12,649

Conclusion

The proposed pipe sizes at the minimum slopes listed in the immediately preceding table have sufficient capacity to convey the projected average and peak flows.

GENERAL STRUCTURAL COMPONENTS

Project Materials (Pipe and Joints):

Nominal Pipe Diameter (in)	Linear Feet	Pipe Material	National Standard Specification for Pipe Material	National Standard for Pipe Joints
6	1,524	PVD SDR 26	ASTM D3034	ASTM D3212
8	3,951	PVC SDR 26	ASTM D3034	ASTM D3212
8	40	PVC SDR 26	ASTM 2241, Class 160	ASTM D3139
27	172	PVC PS115	ASTM F679	ASTM D3139
30	1,310	PVC PS115	ASTM F679	ASTM D3139
36	1,049	PVC PS115	ASTM F679	ASTM D3212

Note: Section 217.53 (j)(4) requires a minimum pipe diameter of 6 inches for all gravity sanitary sewer collection system piping.

Watertight, size on size resilient connectors conforming to ASTM C-923 have been specified for connecting pipe to manholes.

Where a collection system parallels a water supply pipe and a nine-foot separation distance cannot be achieved, Section 217.53 (d)(3)(A)(i) requires a collection system pipe be constructed of cast iron, ductile iron, or PVC meeting ASTM specifications with at least a 150 pounds per square inch (psi) rating for both the pipe and joints. The proposed project will comply with these requirements. Where a collection system pipe crosses a water supply line and a nine-foot separation distance cannot be achieved, Section 217.53(d)(3)(B)(i) requires the collection system pipe be constructed of cast iron, ductile iron, or PVC with a minimum pressure rating of 150 psi. The proposed project will comply with this requirement and that of 30 TAC 217.53(d)(3)(B)(iii).

Project Materials (Bedding):

The specified bedding will comply with ASTM D2321-11 Class I, II or III for materials and densification. A minimum of 6 inches of bedding is required for all pipes.

Pipe Diameter (in)	Pipe Material	Bedding Class
6	PVC	Class I & Class III
8	PVC	Class I & Class III
27	PVC	Class I & Class III
30	PVC	Class I & Class III
36	PVC	Class I & Class III

Initial backfill for the pipe sizes shown above will be Class I. Secondary backfill will be Class III. See Table 2 of ASTM D2321-11 "Soil Classes" in Appendix A of this subsection.

Project Materials (Manholes):

Section 217.55 (f) prohibits the use of bricks to adjust a manhole cover to grade or construct a manhole. The proposed project will comply with this requirement.

The inside diameter of a manhole must be no less than 48 inches.

Section 217.55 (n) requires watertight, size-on-size resilient connectors that allow for differential settlement and must conform to American Society for Testing and Materials C-923. The proposed project complies with this requirement.

Under 30 TAC 213.5(C)(3)(A), all manholes over the Recharge Zone must be watertight, with watertight rings and covers. The proposed project complies with this requirement.

The materials specified for manhole construction are precast concrete.

Project Materials (Manhole Covers):

Manhole covers must be constructed of impervious materials. If personnel entry is required, a minimum 30-inch diameter clear opening must be provided. Inclusion of steps in a manhole is prohibited. If a manhole must be located within a 100-year floodplain, then a means of preventing inflow is required. A manhole cover that is in a roadway must meet or exceed the American Association of State Highways and Transportation Officials Standard M-306 for load bearing.

Under 30 TAC 213.5 (c)(3)(A), all manholes over the Edwards Aquifer Recharge Zone must be watertight, with watertight rings and covers. This proposed project complies with this requirement.

Minimum and Maximum Slopes

Note: All pipes are designed with a slope that will provide a velocity of at least 2 ft/s flowing full, as calculated using Manning's equation with an "n" value of 0.013. Additionally, the collection system is designed to ensure that, with pipes flowing full, the velocities will be less than 10 feet per second.

The following are the minimum and maximum slopes for each pipe diameter:

Pipe Diameter: : <u>6''(NR)</u>	Min. Slope: <u>1.00%</u> Max. Slope: <u>8.30%</u>
Pipe Diameter: <u>8''(NR)</u>	Min. Slope: <u>0.50%</u> Max. Slope: <u>8.40%</u>
Pipe Diameter: <u>8" (160 psi)</u>	Min. Slope: <u>0.50%</u> Max. Slope: <u>8.40%</u>
Pipe Diameter: <u>27" (NR)</u>	Min. Slope: <u>0.50%</u> Max. Slope: <u>0.50%</u>
Pipe Diameter: <u>30" (NR)</u>	Min. Slope: <u>0.50%</u> Max. Slope: <u>0.50%</u>
Pipe Diameter: <u>36" (NR)</u>	Min. Slope: <u>0.30%</u> Max. Slope: <u>0.30%</u>

Backfill

Note: The backfill will be free of stones greater than 6 inches in diameter and free of organic or any other unstable material.

Trenching

Note: The trench width will be minimized while still allowing adequate width for proper compaction of backfill, and while still ensuring that at least 6 inches of backfill exists below and on each side of the pipe. The trench walls will be vertical to at least one foot above the pipe.

Minimum and Maximum Trench Width

Based on 30 TAC 217.54:

Pipe Diameter: <u>6'' (NR)</u> Min. Trench Width: <u>18"</u> Max. Trench Width: <u>30"</u>
Pipe Diameter: <u>8'' (NR)</u> Min. Trench Width: <u>20"</u> Max. Trench Width: <u>32"</u>
Pipe Diameter: <u>8'' (160 psi)</u> Min. Trench Width: <u>21"</u> Max. Trench Width: <u>33"</u>
Pipe Diameter: <u>27'' (NR)</u> Min. Trench Width: <u>52"</u> Max. Trench Width: <u>64"</u>
Pipe Diameter: <u>30'' (NR)</u> Min. Trench Width: <u>56"</u> Max. Trench Width: <u>68"</u>
Pipe Diameter: <u>36'' (NR)</u> Min. Trench Width: <u>62"</u> Max. Trench Width: <u>74''</u>

These trench widths account for the bell diameter.

Corrosion Prevention

Proposed collection system components (pipes, manholes, etc.) will not be susceptible to deterioration through the corrosive effects of an anaerobic sewage environment. Manholes shall be constructed of or lined with a corrosion resistant material. Where new construction ties into an existing manhole, the existing manholes must be lined, coated, or replaced with a corrosion resistant material.

Manholes (General)

Note: Manholes are provided at all changes in size, grade or alignment of pipe, at the intersection of all pipes and at the end of all lines that may be extended at a future date. A clean-out with

watertight plugs may be installed instead of a manhole if no extensions are anticipated. Clean outs must pass all testing requirements outlined for gravity collection pipes.

The project complies with the maximum manhole spacing allowed by the TCEQ:

Pipe Diameter (in)	Max. Manhole Spacing (ft)
6 - 15	500
18 - 30	800
36 - 48	1000
54 or larger	2000

Manhole Spacing:

Pipe Diameter: 6		Max. Spacing: 500 LF
Pipe Diameter: <u>8</u> '		Max. Spacing: 500 LF
Pipe Diameter: 27", 3	<u>30", & 36"</u>	Max. Spacing: 500 LF

Manholes (Inverts)

The bottom of a manhole must contain a U-shaped channel which is a smooth continuation of the inlet and outlet pipes. The bench above the channel must be sloped a minimum of 0.5 inches per foot. See the City of Georgetown Detail No. WW06 which complies with these requirements. Note, a manhole connected to a pipe less than 15 inches in diameter must have a channel depth equal to at least half the largest pipe's diameter.

Manholes (Ventilation)

Manholes located within the 100-year floodplain are gasketed and bolted to prevent inflow. Under 30 TAC 217.55 (n), the collection system must be vented at least every 1,500 feet. The proposed project complies with this requirement.

Reduction of Inflow

Connection of storm water or roof drains to the sewage collection system is prohibited in accordance with 30 TAC 217.55(j)(6).

FLEXIBLE PIPE COMPUTATIONS

Please note, all flexible pipe computations are based on engineering principles and practices for the design of buried PVC pipe systems. Equations used can be found in "The Uni-Bell PVC Pipe Association Handbook of PVC Pipe: Design and Construction" and <u>Buried Pipe Design</u>, 3rd <u>Edition</u> by Moser and Folkman. Please note, the equations used may be in a different format than shown in the Uni-Bell Handbook or <u>Buried Pipe Design</u>, 3rd <u>Edition</u>. Throughout this application "160 psi" pipe refers to the pressure rating of the ASTM 2241, Class 160, SDR 26 pipe used at water/sewer crossings.

Live Load Calculations

No influence of live loads on the performance of the SCS are anticipated. The average burial depth for this line is such that the influence of live loads is negligible.

Buckling Pressure Calculations

This area of the Edwards Aquifer is unsaturated; consequently, there are no anticipated areas where sewer pipe will be placed below the water table. The value of $h_w = 0$ as there will be no height or time period of perched water or groundwater above the pipe crowns of the proposed sewer line. No geotechnical borings were done for this line.

The value of H for use in these calculations is 23' as it exceeds the maximum burial depth for this line. The value of γ_s equals 143 pcf is a conservative value based on a dry unit weight of 135 pcf and a moisture content of 6%. This value is conservative as it corresponds to saturated unit weights of commonly used backfill materials.

Allowable Buckling Pressure:

$$\begin{array}{l} q_{a} = 0.4 * \sqrt{32 * R_{w} * B' * E_{b} * (E * I/D^{3})} & Equation \ 1 \\ q_{a} = 0.4 * \sqrt{32 * 1 * 0.46 * 400 * (400,000 * 0.001/6.03^{3})} = 41.5 \ psi \ (6" \ PVC \ SDR \ 26) \\ q_{a} = 0.4 * \sqrt{32 * 1 * 0.46 * 400 * (400,000 * 0.003/8.08^{3})} = 46.4 \ psi \ (8" \ PVC \ SDR \ 26) \\ q_{a} = 0.4 * \sqrt{32 * 1 * 0.46 * 400 * (400,000 * 0.003/8.29^{3})} = 44.6 \ psi \ (8" \ PVC \ SDR \ 26, \ 160 \ psi) \\ q_{a} = 0.4 * \sqrt{32 * 1 * 0.53 * 400 * (400,000 * 0.104/26.88^{3})} = 48.1 \ psi \ (27" \ PVC \ PS115) \\ q_{a} = 0.4 * \sqrt{32 * 1 * 0.53 * 400 * (400,000 * 0.156/30.77^{3})} = 48.1 \ psi \ (30" \ PVC \ PS115) \\ q_{a} = 0.4 * \sqrt{32 * 1 * 0.53 * 400 * (400,000 * 0.216/36.93^{3})} = 43.0 \ psi \ (36" \ PVC \ PS115) \end{array}$$

$$R_W = 1 - 0.33 * (h_w/h)$$

$$R_W = 1 - 0.33 * (0/360) = 1$$

Equation 2

$$B' = \frac{1}{1 + 4 * e^{-0.065H}}$$

$$B' = \frac{1}{1 + 4 * e^{-0.065(19)}} = 0.53$$

$$Equation 3$$

$$6'' \& 8'' PVC$$

$$B' = \frac{1}{1+4*e^{-0.065(23)}} = 0.53$$
 27", 30", & 36" PVC

$$I = (t^{3}/12) * (inches^{4}/linear inch)$$

$$I = (0.241^{3}/12) = 0.001in^{3} (6" PVC, SDR 26)$$

$$I = (0.323^{3}/12) = 0.003in^{3} (8" PVC, SDR 26)$$

$$I = (0.332^{3}/12) = 0.003in^{3} (8" PVC, SDR 26, 160 psi)$$

$$I = (1.077^{3}/12) = 0.104in^{3} (27" PVC, PS115)$$

$$I = (1.233^{3}/12) = 0.156in^{3} (30" PVC, PS115)$$

$$I = (1.373^{3}/12) = 0.216in^{3} (36" PVC, PS115)$$

H:\Projects\511\27\42\308 SCS\Modification 2\Working\3. SCS Application\Attachment A-Engineering Design Report.docx

Equation 4

Equation 5

 $D = D_o - t$ D = 6.275 inches - 0.241 inches = 6.03 inches (6"PVC, SDR 26) D = 8.40 inches - 0.323 inches = 8.08 inches (8"PVC, SDR 26) D = 8.625 inches - 0.332 inches = 8.29 inches (8"PVC, SDR 26, 160 psi) D = 27.953 inches - 1.077 inches = 26.88 inches (27"PVC, PS115) D = 32.0 inches - 1.233 inches = 30.77 inches (30"PVC, PS115)D = 38.300 inches - 1.373 inches = 36.93 inches (36"PVC, PS115)

Where:

- q_a = Allowable buckling pressure, pounds per square inch (psi)
- h = Height of soil surface above top of pipe in inches (in)
- h_w = Height of water surface above top of pipe in inches (in) (groundwater elevation)
- R_w = Water buoyancy factor. If hw = 0, Rw = 1. If $0 \le hw \le h$ (groundwater elevation is between the top of the pipe and the ground surface), calculate Rw with Equation 2
- H = Depth of burial in feet (ft) from ground surface to crown of pipe.
- B' = Empirical coefficient of elastic support
- E_b = Modulus of soil reaction for the bedding material (psi)
- E = Modulus of elasticity of the pipe material (psi)
- I = Moment of inertia of the pipe wall cross section per linear inch of pipe, inch⁴/lineal inch = inch³. For solid wall pipe, "I" is calculated with Equation 4
- t = Pipe structural wall thickness (in)
- D = Mean pipe diameter (in)
- D_o = Pipe outer diameter (in)

Pressure Under Installed Conditions

$$q_{p} = \gamma_{w} * h_{w} + R_{w} * (W_{c}/D) + L_{I}$$
$$q_{p} = 0.0361 * 0 + 1 * \left(\frac{143.3}{6.03}\right) + 0 = 23.75 \text{ psi } (6"PVC, \text{SDR 26})$$

Equation 6

PAPE-DAWSON

$$q_{p} = 0.0361 * 0 + 1 * \left(\frac{191.9}{8.08}\right) + 0 = 23.75 \text{ psi } (8"PVC, SDR 26)$$

$$q_{p} = 0.0361 * 0 + 1 * \left(\frac{197.0}{8.29}\right) + 0 = 23.76 \text{ psi } (8"PVC, SDR 26,160 \text{ psi})$$

$$q_{p} = 0.0361 * 0 + 1 * \left(\frac{638.5}{26.88}\right) + 0 = 23.76 \text{ psi } (27" PVC, PS115)$$

$$q_{p} = 0.0361 * 0 + 1 * \left(\frac{730.9}{30.77}\right) + 0 = 23.76 \text{ psi } (30" PVC, PS115)$$

$$q_{p} = 0.0361 * 0 + 1 * \left(\frac{874.8}{36.93}\right) + 0 = 23.69 \text{ psi } (36" PVC, PS115)$$

Where:

- q_p = Pressure applied to pipe under installed conditions (psi)
- $\gamma_w = 0.0361$ pounds per cubic inch (pci), specific weight of water
- W_c = Vertical soil load on the pipe per unit length in pounds per linear inch (lb/in)
- $L_l = Live load (lbs)$

$$\begin{split} W_c &= \gamma_s * H * (D + t)/144 \qquad Equation \\ W_c &= 143 * 19 * (6.03 + 0.241)/144 = 118.4 \, lb/in \, (6"\, \text{PVC}, \text{SDR 26}) \\ W_c &= 143 * 19 * (8.08 + 0.323)/144 = 158.5 \, lb/in \, (8"\, \text{PVC}, \text{SDR 26}) \\ W_c &= 143 * 19 * (8.29 + 0.332)/144 = 162.7 \, lb/in \, (8"\, \text{PVC}, \text{SDR 26}, 160\text{psi}) \\ W_c &= 143 * 23 * (26.88 + 1.077)/144 = 638.5 \, lb/in \, (27"\, \text{PVC}, PS115) \\ W_c &= 143 * 23 * (30.77 + 1.233)/144 = 730.9 \, lb/in \, (30"\, \text{PVC}, PS115) \\ W_c &= 143 * 23 * (36.93 + 1.373)/144 = 874.8 \, lb/in \, (36"\, \text{PVC}, PS115) \end{split}$$

Where:

 γ_s = Specific weight of soil in pounds per cubic foot (pcf)

D = Mean pipe diameter (in)

Pipe Diameter: 6'' (NR)Pipe Material: PVC, SDR 26 q_a : 44.34 q_p : 23.75Pipe Diameter: 8'' (NR)Pipe Material: PVC, SDR 26 q_a : 49.58 q_p : 23.75Pipe Diameter: 8'' (160 psi)Pipe Material: PVC, SDR 26 q_a : 47.66 q_p : 23.75Pipe Diameter: 27'' (NR)Pipe Material: PVC, F679 q_a : 48.10 q_p : 23.76Pipe Diameter: 30'' (NR)Pipe Material: PVC, F679 q_a : 48.10 q_p : 23.76

7

Pipe Diameter: <u>36'' (NR)</u> Pipe Material: <u>PVC, F679</u> q_a: <u>43.04</u> q_p: <u>23.69</u>

Since $q_a \ge q_p$, the specified pipe is acceptable for the proposed installation.

Installation Temperature Effects

Flexible pipe will be installed under favorable ambient conditions, per pipe manufacturer's specifications.

Wall Crushing

Tensile Strength

The information below is from "The Uni-Bell Handbook of PVC Pipe: Design and Construction" Table 2.1 pages 14-15.

Pipe Material: PVC SDR 26	Tensile Strength: 7,000	Cell Class (PVC only) 12454
Pipe Material: PVC F679	Tensile Strength: 6,000	Cell Class (PVC only) 12364

Strain

The conditions of this installation are such that strain-related failure will not be a problem. Strain is generally not a performance-limiting factor for buried PVC pipe or a design-limiting criterion for PVC pipes according to the Uni-Bell Handbook of PVC Pipe (Chapter VII, Pages 255 and 257). As pipe deflection will be below 5%, strain-related failure is not anticipated.

Modulus of Soil Reaction

The modulus of soil reaction for the bedding material, E_b , is <u>400 psi</u>.

This value was determined using the "Table 1: Soil Classification Chart" and "Table 2: Soil Classes" from ASTM D2321-11 and Table 7.3 "Average Values of Modulus of Soil Reaction, E" from "The Uni-Bell Handbook of PVC Pipe: Design and Construction" attached in Appendix A of this subsection. Class III material was chosen. As the secondary backfill (Class III) has a lower Modulus of Soil Reaction than initial backfill (Class I), its value was used in the calculations that

follow. Class III on Table 2 corresponds to coarse-grained soils with fines (GM, GC, SM or SC) and sandy or gravelly fine-grained soils (CL or ML). On Table 7.3, coarse-grained soils with fines at a slight compaction have an E' equal to 400 psi.

The modulus of soil reaction for the in-situ soil, E'n, is 3,000 psi.

This value was determined using the "Table 1: Soil Classification Chart" and "Table 2: Soil Classes" from ASTM D 2321-11 and Table 7.3 "Average Values of Modulus of Soil Reaction, E" from "The Uni-Bell Handbook of PVC Pipe: Design and Construction" attached in Appendix A of this subsection. Class I material was chosen, which includes crushed rock as shown on Table 2. Compacted crushed rock on Table 7.3 has an E' equal to 3,000 psi. Values in Table 7.3 are based on empirical data and derived from laboratory and field tests for buried pipe.

Bedding to in-situ soil modulus of soil reaction ratio = $E_b/E'_n = 400 \text{ psi/3,000 psi} = 0.13$

Zeta Calculation

Where native soil is significantly weaker than bedding material, or where predicted deflection approaches 5%, the effect of native soil must be quantified using Leonhardt's Zeta factor. If the ratio of bedding modulus to soil modulus is not equal to 1.0, a zeta factor must be calculated using the equations below. Zeta is a factor, which corrects for the effect of in-situ soil on pipe stability (Uni-Bell Handbook of Pipe, page 267). To calculate zeta, directly use the formulas below.

$$zeta = \frac{1.44}{f + (1.44 - f) * (E_b/E_{in})}$$
Equation 9

$$zeta = \frac{1.44}{0.94 + (1.44 - 0.94) * (0.13)} = 1.43 (6" PVC, SDR 26)$$

$$zeta = \frac{1.44}{0.78 + (1.44 - 0.78) * (0.13)} = 1.66 (8" PVC, SDR 26)$$

$$zeta = \frac{1.44}{0.80 + (1.44 - 0.80) * (0.13)} = 1.62 (8" PVC, SDR 26, 160 psi)$$

H:\Projects\511\27\42\308 SCS\Modification 2\Working\3. SCS Application\Attachment A-Engineering Design Report.docx

PAPE-DAWSON

$$zeta = \frac{1.44}{0.56 + (1.44 - 0.56) * (0.13)} = 2.13 (27" PVC, PS115)$$
$$zeta = \frac{1.44}{0.50 + (1.44 - 0.50) * (0.13)} = 2.29 (30" PVC, PS115)$$
$$zeta = \frac{1.44}{0.43 + (1.44 - 0.43) * (0.13)} = 2.54 (36" PVC, PS115)$$

$$f = \frac{b/d_a - 1}{1.154 + 0.444 * (b/d_a - 1)}$$
Equation 10
$$f = \frac{18/6.275 - 1}{1.154 + 0.444 * (20/6.275 - 1)} = 0.94 (6" PVC, SDR 26)$$

$$f = \frac{20/8.40 - 1}{1.154 + 0.444 * (20/8.40 - 1)} = 0.78 (8" PVC, SDR 26)$$

$$f = \frac{21/8.625 - 1}{1.154 + 0.444 * (21/8.625 - 1)} = 0.80 (8" PVC, SDR 26, 160 psi)$$

$$f = \frac{52/27.953 - 1}{1.154 + 0.444 * (52/27.953 - 1)} = 0.56 (27" PVC, PS115)$$

$$f = \frac{56/32.000 - 1}{1.154 + 0.444 * (56/32.000 - 1)} = 0.50 (30" PVC, PS115)$$

$$f = \frac{62/38.300 - 1}{1.154 + 0.444 * (62/38.300 - 1)} = 0.43 (36" PVC, PS115)$$

Where:

f = Pipe/trench width coefficient

b = Trench width (in)

 d_a = Pipe diameter (in)

 E_b = Modulus of soil reaction for the bedding material (psi)

 E'_n = Modulus of soil reaction for the in-situ soil (psi)

Pipe Diameter: 6'' (NR)Trench Width: 18''Zeta: 1.43Pipe Diameter: 8'' (NR)Trench Width: 20''Zeta: 1.66

H:\Projects\511\27\42\308 SCS\Modification 2\Working\3. SCS Application\Attachment A-Engineering Design Report.docx

Pipe Diameter: <u>8" (160 psi)</u>	Trench Width: 21"	Zeta: 1.62
Pipe Diameter: 27'' (NR)	Trench Width: 52"	Zeta: 2.13
Pipe Diameter: 30'' (NR)	Trench Width: 56"	Zeta: 2.29
Pipe Diameter: <u>36'' (NR)</u>	Trench Width: 62"	Zeta: 2.54

Pipe Stiffness

Pipe stiffness is based on National Reference Standards and manufacturer's data. Please see Table 7.1 of the "The Uni-Bell Handbook of PVC Pipe: Design and Construction" listing the pipe stiffness of 8" PVC SDR 26 as 115 psi for E = 400,000 psi.

Pipe Diameter: <u>6''</u>	Pipe Material: <u>PVC SDR 20</u>	<u>6</u> Ps: <u>115 psi</u>
Pipe Diameter: <u>8''</u>	Pipe Material: <u>PVC SDR 20</u>	<u>6</u> Ps: <u>115 psi</u>
Pipe Diameter: <u>27''</u>	Pipe Material: <u>PVC PS115</u>	Ps: <u>115 psi</u>
Pipe Diameter: <u>30''</u>	Pipe Material: <u>PVC PS115</u>	Ps: <u>115 psi</u>
Pipe Diameter: <u>36''</u>	Pipe Material: <u>PVC PS115</u>	Ps: <u>115 psi</u>

Deflection

Maximum allowable deflection in installed lines is 5% (per 30 TAC 217), as determined by the deflection analysis and verified by a mandrel test. The percent of vertical deflection must be below this range.

Note: Per Table 7.2 attached in Appendix A of the SCS Application, K = 0.096 when the bedding angle is 90 degrees.

$$\Delta Y/D(\%) = \frac{K * (L_P + L_l) * 100}{(0.149 * P_s) + (0.061 * zeta * E_b)}$$

$$\Delta Y/D(\%) = \frac{(0.096)(18.87) * 100}{(0.149 * 115) + (0.061 * 1.43 * 400)} = 3.48\% \text{ for } 6" \text{ NR psi pipe}$$

$$\Delta Y/D(\%) = \frac{(0.096)(18.87) * 100}{(0.149 * 115) + (0.061 * 1.66 * 400)} = 3.15\% \text{ for } 8" \text{ NR psi pipe}$$

$$\Delta Y/D(\%) = \frac{(0.096)(18.87) * 100}{(0.149 * 115) + (0.061 * 1.62 * 400)} = 3.19\% \text{ for 8" 160 psi pipe}$$

$$\Delta Y/D(\%) = \frac{(0.096)(22.84) * 100}{(0.149 * 115) + (0.061 * 2.13 * 400)} = 3.18\% \text{ for 27" NR psi pipe}$$

$$\Delta Y/D(\%) = \frac{(0.096)(22.84) * 100}{(0.149 * 115) + (0.061 * 2.29 * 400)} = 3.00\% \text{ for 30" NR psi pipe}$$

$$\Delta Y/D(\%) = \frac{(0.096)(22.84) * 100}{(0.149 * 115) + (0.061 * 2.54 * 400)} = 2.77\% \text{ for 36" NR psi pipe}$$

$$\begin{split} L_P &= \frac{\gamma_S * H}{144} \\ L_P &= \frac{143*19}{144} = 18.87 \text{ psi for 6" and 8" pipe} \\ L_P &= \frac{143*23}{144} = 22.84 \text{ psi for 27", 30", and 36" pipe} \end{split}$$

Where:

 $\Delta Y/D$ (%) = Predicted % vertical deflection under load

 ΔY = Change in vertical pipe diameter under load

D = Undeflected mean pipe diameter (in)

K = Bedding angle constant

 γ_s = Unit weight of soil (pcf)

H = Depth of burial (ft) from ground surface to crown of pipe

 L_p = Prism load (psi)

	Type of Pipe Material	P _s (psi)	Zeta Factor Assumed or Calculated	E _b (psi)	% Deflection
Pipe Diameter 1	6" PVC SDR 26 (NR)	115	1.43	400	3.48
Pipe Diameter 2	8'' PVC SDR 26 (NR)	115	1.66	400	3.15
Pipe Diameter 3	8'' PVC SDR 26 (160 psi)	115	1.62	400	3.19
Pipe Diameter 4	27'' PVC PS115 (NR)	115	2.13	400	3.18
Pipe Diameter 5	30'' PVC PS115 (NR)	115	2.29	400	3.00
Pipe Diameter 6	36'' PVC PS115 (NR)	115	2.54	400	2.77

Equation 12

APPENDIX A

Appendix A-Flow Velocity Table

Flow Velocity (Flowing Full) All gravity sewer lines on the Edwards Aquifer Recharge Zone shall be designed and constructed with hydraulic slopes sufficient to give a velocity when flowing full of not less than 2.0 feet per second, and not greater than 10 feet per second. The grades shown in the following table are based on Manning's formula and an n factor of 0.013 and shall be the minimum and maximum acceptable slopes unless provisions are made otherwise.

Pipe Diameter(Inches)	% Slope required for minimum flow velocity of 2.0 fps	% Slope which produces flow velocity of 10.0 fps
6	0.50	12.35
8	0.33	8.40
10	0.25	6.23
12	0.20	4.88
15	0.15	3.62
18	0.11	2.83
21	0.09	2.30
24	0.08	1.93
27	0.06	1.65
30	0.055	1.43
33	0.05	1.26
36	0.045	1.12
39	0.04	1.01
>39	*	*

Table 10 - Slope Velocity

*For lines larger than 39 inches in diameter, the slope may be determined by Manning's formula (as shown below) to maintain a minimum velocity greater than 2.0 feet per second when flowing full and a maximum velocity less than 10 feet per second when flowing full.

$$v = \frac{1.49}{n} \times R_h^{0.67} \times \sqrt{S}$$

Figure 1 - Manning's Formula

Where:

v = velocity (ft/sec) n = Manning's roughness coefficient (0.013) Rh = hydraulic radius (ft) S = slope (ft/ft)

January 14, 2009

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane P.O. Box 690287, San Antonio, TX 78269-0287 (210) 699-9090 • FAX (210) 699-6426 www.rkci.com

Charles P. "Frosty" Forster, P.E., P.G. Pape Dawson Engineers 555 East Ramsey San Antonio, Texas 78216

RE: Soil Unit Weight Values for Backfill Materials Various Projects San Antonio, Texas

Dear Mr. Forster:

Raba-Kistner Consultants Inc. (R-K) is pleased to submit this letter providing general guidance for selecting design soil unit weights for use in utility trench design.

In general, the following table contains a list of the frequently used trench backfill materials in the San Antonio area. The table also contains approximate values for the soil dry unit weight, moist unit weight and saturated unit weight for these materials assuming 90 to 95 percent compaction utilizing a standard Proctor (ASTM D 698.)

MATERIAL DESCRIPTION	DRY UNIT WEIGHT, PCF	MOIST UNIT WEIGHT, PCF	SATURATED UNIT WEIGHT, PCF
TxDOT TEX-113E Type A, Gr. 1 or 2	130	137	143
TxDOT TEX-113E Type A, Gr. 3 thru 5	128	135	143
Limestone Millings	115	124	134
Gravelly Clay	110	120	132
Clay	100	120	127
Clayey Sand	95	106	123
Gravel (Clean)	115	120	134
Sand (Clean)	92	98	120
Pit Run Gravel	127	137	142

We appreciate the opportunity to be of service to you. If you have any questions or need additional assistance, please call.

Very truly yours, RABA-KISTNER CONSU Chris L. Schultz, P Senior Vice Presider CLS/mem

SOIL CLASSIFICATION CHART

From ASTM D2321-11: Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications

TABLE 1 Soil Classification Chart (see Classification D2487)

	Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ⁴				Soil Classification	
					Group Symbol	Group Name ^B
Coarse-Grained Soils	Gravels	Clean gravels	C <u>></u> 4 and 1 <u><</u> Cc <u><</u> 3 ^{<i>c</i>}		GW	Well-graded gravel ^D
More than 50% retained on No. 200 sieve	More than 50% of coarse fraction retained on No. 4 sieve	Less than 5% of fines ^{<i>E</i>}	Cu < 4 and/or 1> Cc>3 ^c		GP	Poorly graded gravel ¹
	-	Gravels with	Fines classify as ML or MH		GM	Silty gravel DFG
		more than 12% fines ^E	Fines classify as CL or CH		GC	Clayey gravel ^{DFG}
	Sands	Clean sands	Cu \geq 6 and 1 \leq Cc \leq 3 ^{<i>c</i>}		SW	Well-graded sand ^H
	50% or more of coarse fraction passes on No. 4 sieve	Less than 5% fines ¹	Cu < 6 and/or 1 > Cc > 3^{C}		SP	Poorly graded sand ^H
	-	Sand with fines	Fines classify as ML or MH		SM	Silty sand FGH
	-	More than 12% fines [/]	Fines classify as CL or CH		SC	Clayey sand ^{FGH}
Fine-Grained Soils	Silts and clays	Inorganic	PI > 7 and plots on or above "A" line ^J		CL	Lean clay ^{KLM}
50% or more passes the No. 200 Sieve	Liquid limit less than 50	-	PI < 4 and plots below "A" line ^J		ML	silt ^{KLM}
	-	Organic	Liquid Limit-Oven dried	<0.75	OL	Organic clay ^{KLMN}
		-	Liquid Limit-Not dried			Organic silt ^{KLMO}
	Silts and clays	Inorganic	PI plots on or above "A" line	_	СН	Fat clay ^{KLM}
	Liquid limit 50 or more	-	Plots below "A" line	_	MH	Elastic silt ^{KLM}
	-	Organic	Liquid Limit-Oven Dried	<0.75	OH	Organic clay ^{KLMP}
		-	Liquid Limit-Not Dried			Organic silt ^{KLMQ}
Highly organic soils	Primarily organic matter, dark in c	olor, and organic odor			PT	peat

^A Based on the material passing the 3-in. (75-mm) sieve.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

 C Cu = D₆₀ / D₁₀

$$Cc = \frac{\left(D_{30}\right)^2}{D_{10}xD_{60}}$$

 $^{\scriptscriptstyle D}$ If soil contains $\geq\!15$ % sand, add "with sand" to group name.

^EGravels with 5 to 12 % fines require dual symbols:

GW-GM well-graded gravel with silt:

GW-GC well-graded gravel with clay

- GP-GM poorly graded gravel with silt
- GP-GC poorly graded gravel with clay

^F If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^G If fines are organic, add "with organic fines" to group name.

^{*H*} If soil contains \geq 15 % gravel, add "with gravel" to group name.

'Sands with 5 to $\overline{12}$ % fines require dual symbols:

SW-SM well graded sand with silt

SW-SC well-graded sand with clay

SP-SM poorly graded sand with silt

SP-SC poorly graded sand with clay

^J If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay (see Test Method D4318).

^K If soil contains 15 to 29 % plus No. 200, add "with sand" or "with gravel", whichever is predominant.

^L If soil contains ≥ 30 % plus No. 200, predominantly sand, add "sandy" to group name.

^{*M*} If soil contains \geq 30 % plus No. 200, predominantly gravel, add "gravelly" to group name.

^N PI \geq 4 and plots on or above "A" line.

 O PI < 4 or plots below "A" line.

^P PI plots on or above "A" line.

^Q PI plots below "A" line.

SOIL CLASSIFICATION CHART

From ASTM D2321-11: Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications

Soil Group ^{A,B}	Soil Class	American Association of State Highway and Transportation Officials (AASHTO) Soil Groups ^C
Crushed rock, angular ^{<i>D</i>} , 100% passing 1-1/2 in. sieve, =15 %<br passing #4 sieve, = 25 % passing 3/8<br in. sieve and = 12 % passing #200<br sieve	Class I	
Clean, coarse grained soils: SW, SP, GW, GP or any soil beginning with one of these symbols with = 12<br % passing #200 sieve ^{<i>E</i>,<i>F</i>}	Class II	A1, A3
Coarse grained soils with fines: GM, GC, SM, SC or any soil beginning with one of these symbols, containing > 12 % passing #200 sieve; Sandy or gravelly fine-grained soils: CL, ML, or any soil beginning with one of these symbols, with >/= 30 % retained on #200 sieve	Class III	A-2-4, A-2-5, A-2-6, or A-4 or A-6 soils with more than 30% retained on #200 sieve
Fine-grained soils: CL, ML, or any soil beginning with one of these symbols, with <30 % retained on #200 sieve	Class IV	A-2-7, or A-4, or A-6 soils with 30% or less retained on #200 sieve
MH, CH, OL, OH, PT	Class V Not for use as embedment	A5, A7

TABLE 2 Soil Classes

^A See Classification D2487, Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).

^{*B*} Limits may be imposed on the soil group to meet project or local requirements if the specified soil remains within the group. For example, some project applications require a Class I material with minimal fines to address specific structural or hydraulic conditions and the specification may read "Use Class I soil with a maximum of 5% passing the #200 sieve."

^c AASHTO M145, Classification of Soils and Soil Aggregate Mixtures.

^D All particle face shall be fractured.

^{*E*} Materials such as broken coral, shells, and recycled concrete, with $\leq = 12\%$ passing a No. 200 sieve, are considered to be Class II materials. These materials should only be used when evaluated and approved by the Engineer.

^{*F*} Uniform fine sands (SP) with more than 50% passing a No. 100 sieve (0.006 in., 0.15 mm) are very sensitive to moisture and should not be used as backfill unless specifically allowed in the contract documents. If use of these materials is allowed, compaction and handling procedures should follow the guidelines for Class III materials.

SOIL CLASSIFICATION CHART

From ASTM D2321-11: Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications

TABLE 3 Recommendations for Installation and Use of Soils and Aggregates for Foundation and Pipe-Zone Embedment

Soil Class ^A	Class I ^B	Class II	Class III	Class IV
General Recommendations and Restrictions	Acceptable and common where no migration is probable or when combined with a geotextile filter media. Suitable for use as a drainage blanket and under drain where adjacent material is suitably graded or when used with a geotextile filter fabric (see X1.8).	Where hydraulic gradient exists check gradation to minimize migration. Clean groups are suitable for use as a drainage blanket and underdrain (see Table 2). Uniform fine sands (SP) with more than 50 % passing a #100 sieve (0.006 in., 0.15 mm) behave like silts and should be treated as Class IV soils.	Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less.	Difficult to achieve high-soil stiffness. Do not use where water conditions in trench prevent proper placement and compaction. Not recommended for use with pipes with stiffness of 9 psi or less.
Foundation	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above.	Suitable as foundation and for replacing over-excavated and unstable trench bottom as restricted above. Install and compact in 12 in. (300 mm) maximum layers.	Suitable for replacing over- excavated trench bottom as restricted above. Install and compact in 6 in. (150 mm) maximum layers.	Suitable for replacing over- excavated trench bottom as restricted above. Install and compact in 6-in (150 mm) maximum layers.
Pipe Embedment	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Work material under pipe to provide uniform haunch support.	Suitable as restricted above. Difficult to place and compact in the haunch zone.	Suitable as restricted above. Difficult to place and compact in the haunch zone.
Embedment Compaction: Min Recommended Percent Compaction, SPD ^D	See Note ^c	85 % (SW and SP soils) For GW and GP soils See Note [£]	90 %	95 %
Relative Compactive Effort Required to Achieve Minimum Percent Compaction	Low	Moderate	High	Very high
Compaction Methods	Vibration or impact	Vibration or impact	Impact	Impact
Required Moisture Control	None	None	Maintain near optimum to minimize compactive effort	Maintain near optimum to minimize compactive effort

^A Class V materials are unsuitable as embedment. They may be used as final backfill as permitted by the engineer.
^B Class I materials have higher stiffness than Class II materials, but data on specific soil stiffness of placed, uncompacted Class I materials can be taken equivalent to Class II materials compacted to 95% of maximum standard Proctor density (SPD95), and the soil stiffness of compacted Class I materials can be taken equivalent to Class II materials compacted to 100% of maximum standard Proctor density (SPD100). Even if placed uncompacted (that is, dumped), Class I materials should always be worked into the haunch zone to assure completed placement. ^c Suitable compaction typically achieved by dumped placement (that is, uncompacted but worked into haunch zone to ensure complete placement).

^D SPD is standard Proctor density as determined by Test Method D698.

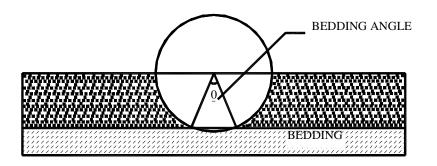

^E Place and compact GW and GP soils with at least two passes of compaction equipment.

TABLE 6.6 LIVE LOADS ON PVC PIPE From Uni-Bell Handbook of PVC Pipe: Design and Construction, Fourth Edition (2001)

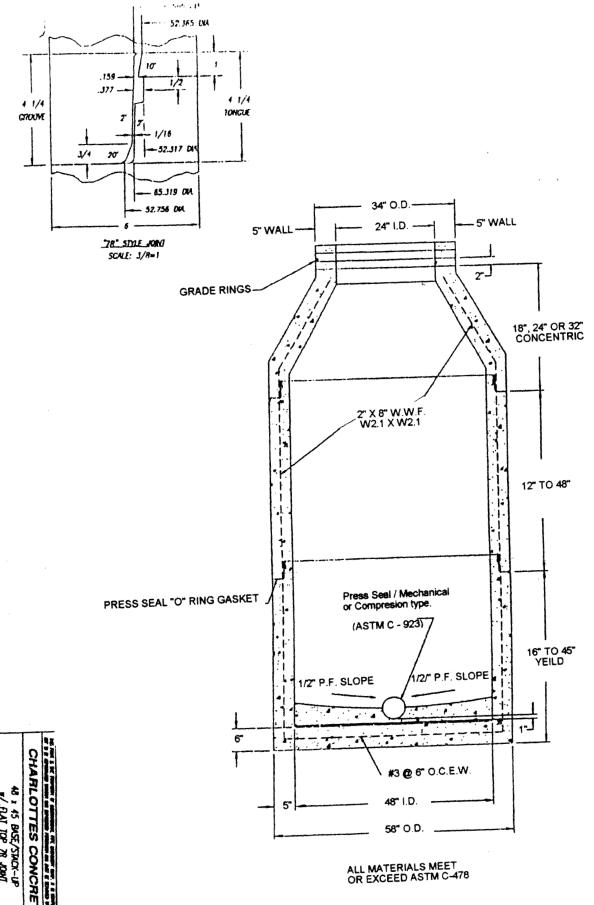
Height	Live Load Transferred to Pipe, lb/in ²		Height	Live	Live Load Transferred to Pipe, lb/in ²		
of Cover (ft)	Highway H20 ¹	Railway E80 ²	Airport 3	of Cover (ft)	Highway H20 ¹	Railway E80 ²	Airport 3
1	12.50			14	*	4.17	2.00
1	12.50			14		4.17	3.06
2	5.56	26.39	13.14	16	*	3.47	2.29
3	4.17	23.61	12.28	18	*	2.78	1.91
4	2.78	18.40	11.27	20	*	2.08	1.53
5	1.74	16.67	10.09	22	*	1.91	1.14
6	1.39	15.63	8.79	24	*	1.74	1.05
7	1.22	12.15	7.85	26	*	1.39	*
8	0.69	11.11	6.93	28	*	1.04	*
10	*	7.64	6.09	30	*	0.69	*
12	*	5.56	4.76	35	*	*	*
				40	*	*	*

 ¹ Simulates 20 ton truck traffic + impact (Source: ASTM A 796)
 ² Simulates 80,000 lb/ft railway load + impact (Source: ASTM A 796)
 ³ 180,000 lbs. dual tandem gear assembly. 26 inch spacing between tires and 66 inch center-to-center spacing between fore and aft tires under a rigid pavement 12 inches thick + impact. * Negligible live load influence.

FIGURE 7.4 BEDDING ANGLE From Uni-Bell Handbook of PVC Pipe: Design and Construction, Fourth Edition (2001)

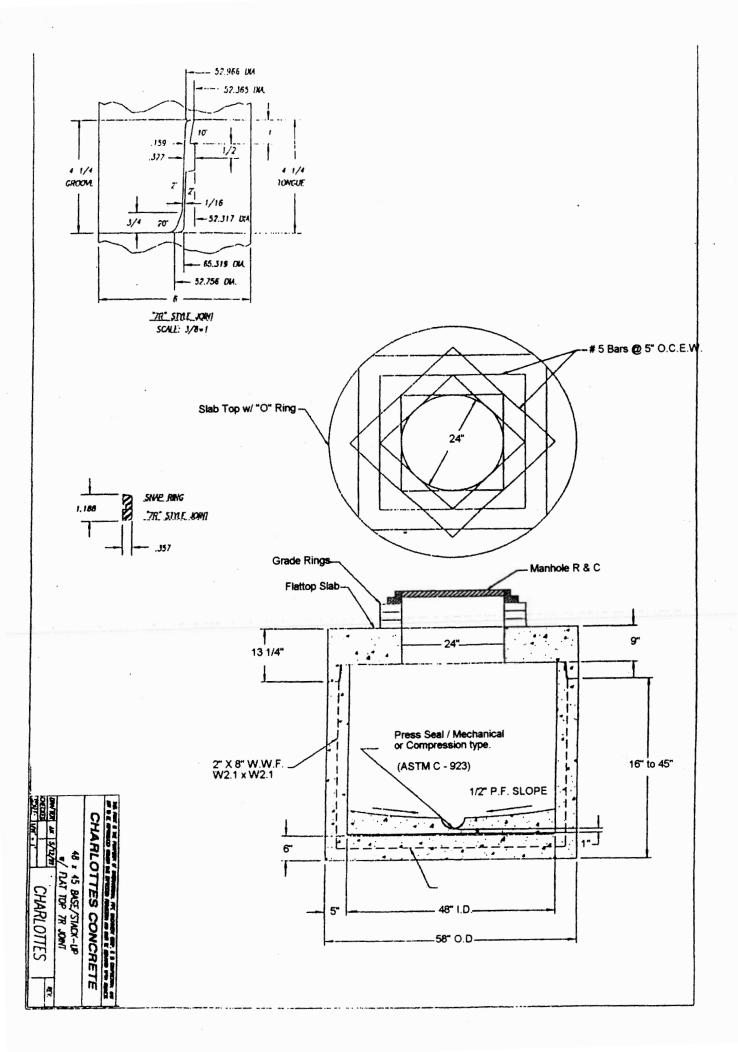
TABLE 7.2VALUES OF BEDDING CONSTANT, K

BEDDING ANGLE (DEGREES)	<u>K</u>
0	0.110
30	0.108
45	0.105
60	0.102
90	0.096
120	0.090
180	0.083

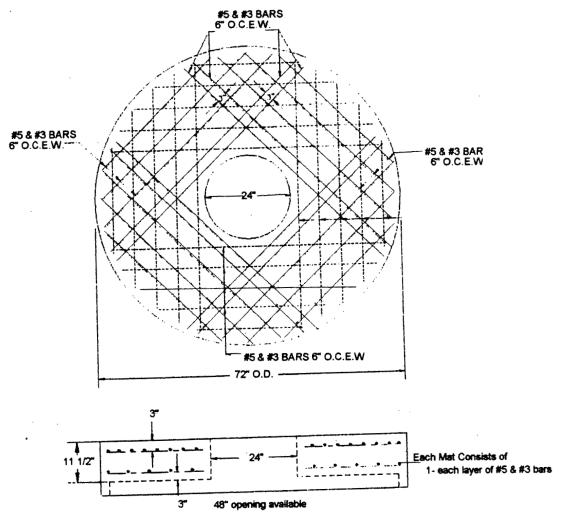

TABLE 7.3AVERAGE VALUES OF MODULUS OF SOIL REACTION, E'
(For Initial Flexible Pipe Deflection)From Uni-Bell Handbook of PVC Pipe: Design and Construction, Fourth Edition (2001)

	E' for Degree of Compaction of Bedding, in pounds per square inch					
Soil type-pipe bedding material (Unified Classification System ^a)	i Dumped	Slight, < 85% Proctor, <40% relative	square inch Moderate, 85%-95% Proctor, 40%-70% relative density	High, >95% Proctor, >70% relative density		
(1)	(2)	density (3)	(4)	(5)		
Fine-grained Soils (LL>50) ^b Soils with medium to high plasticity, CH, MH, CH-MH	(2) (3) (4) (5) No data available; consult a competent soils engineer; Otherwise use E' = 0					
Fine-grained Soils (LL<50) Soils with medium to no plasticity, CL, ML, ML-CL, with less than 25% coarse- grained particles	50	200	400	1,000		
Fine-grained Soils (LL<50) Soils with medium to no plasticity, CL, ML, ML-CL, with more than 25% coarse-grained particles Coarse-grained Soils with Fines GM, GC, SM, SC ^c contains more than 12% fines	100	400	1,000	2,000		
Coarse-grained Soils with Little or no Fines GW, GP, SW, SP ^c contains less than 12% fines	200	1,000	2,000	3,000		
Crushed Rock	1,000	3,000	3,000	3,000		
Accuracy in Terms of Percentage Deflection ^d	± 2	±2	±1	± 0.5		
 ^aASTM Designation D 2487, USBR Designation E-3. ^bLL = Liquid limit. ^cOr any borderline soil beginning with one of these symbols (i.e. GM-GC, GC-SC). ^dFor ± 1% accuracy and predicted deflection of 3%, actual deflection would be between 2% and 4% Note: Values applicable only for fills less than 50 ft (15 m). Table does not include any safety factor. For use in predicting initial deflections only, appropriate Deflection Lag Factor must be applied for long-term deflections. If bedding falls on the borderline between two compaction categories, select lower E' value or average the two values. Percentage Proctor 						

(598,000 J/m³) (ASTM D 698, AASHTO T-99, USBR Designation E-11). 1 psi = 6.9 kPa. SOURCE: "Soil Reaction for Buried Flexible Pipe" by Amster K. Howard, U.S. Bureau of Reclamation, Denver, Colorado. Reprinted with permission from American Society of Civil Engineers.

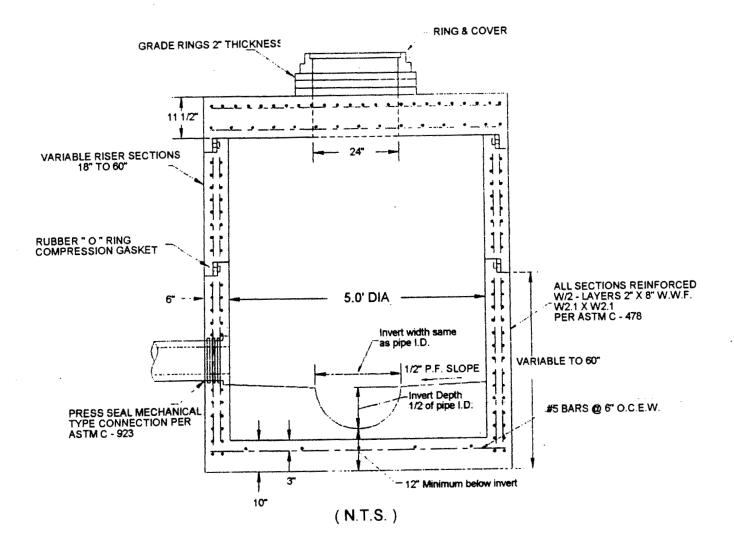

based on laboratory maximum dry density from test standards using about 12,500 ft-lb/cu ft

PRE-CAST MANHOLE DRAWINGS & SPECIFICATIONS

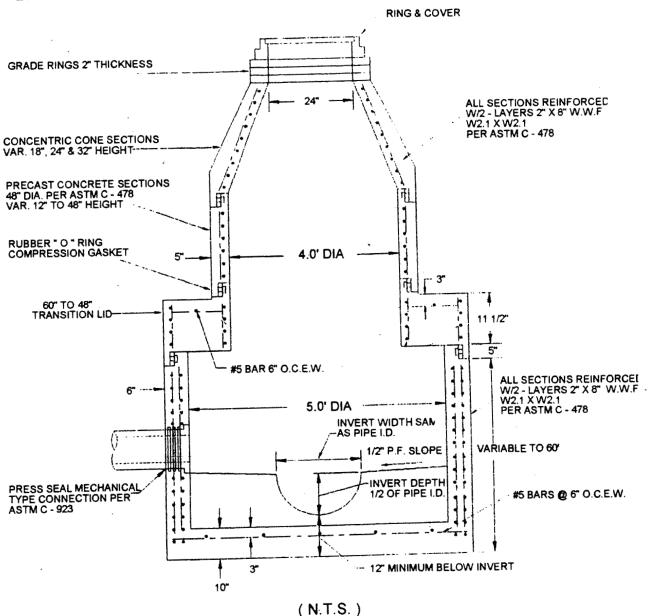


CHARLOTTES CONCRETE 48 = 45 BUSE/STACK-UP CHARLOTTES 3

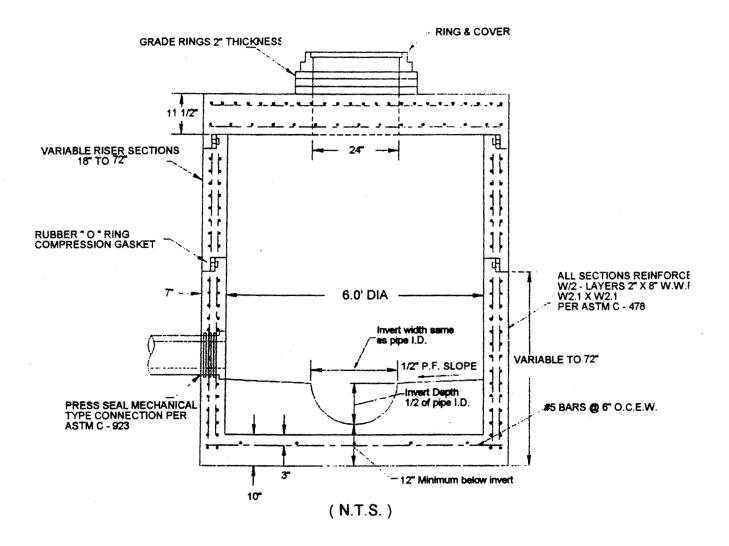
à,


Concrete @ 4000 psi Steel Grade 60 ASTM C - 478 H - 20 Traffic Rated

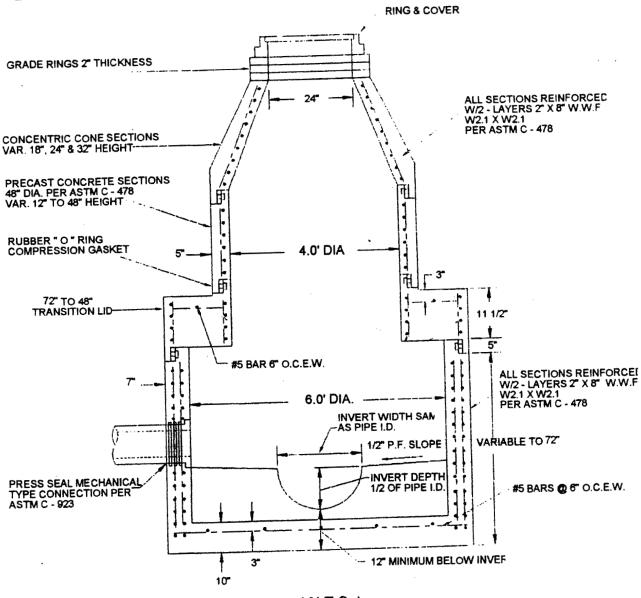
(N.T.S.)


Charlotte's Concrete, Inc.

60 " I.D. FLATTOP SLAB

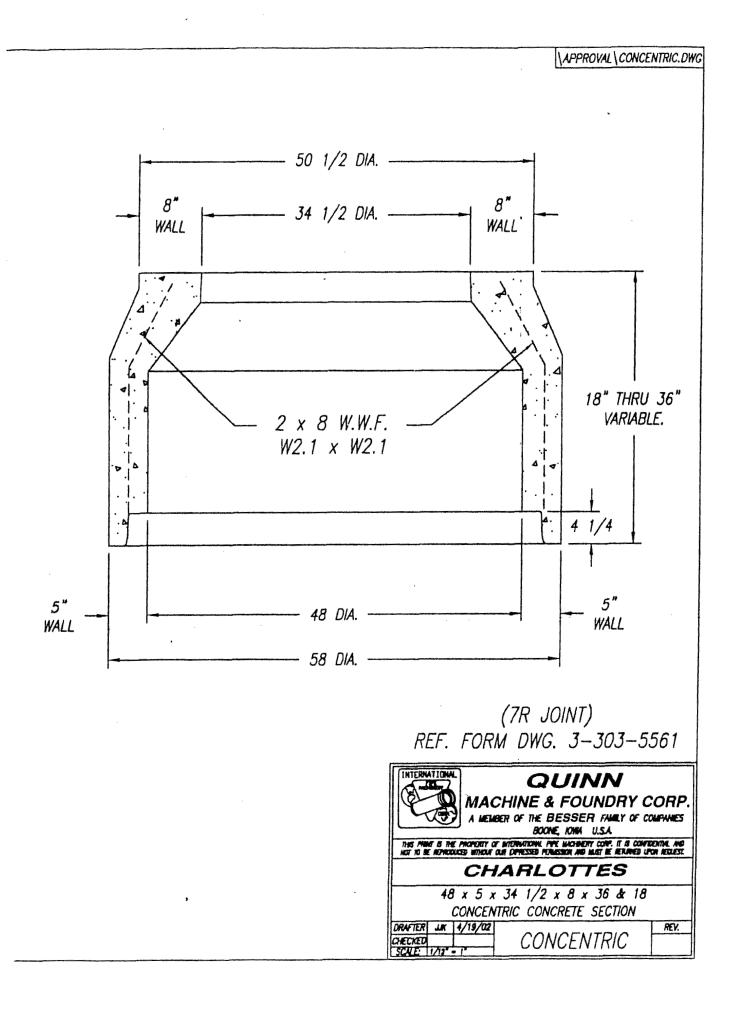

Charlotte's Concrete, Inc.

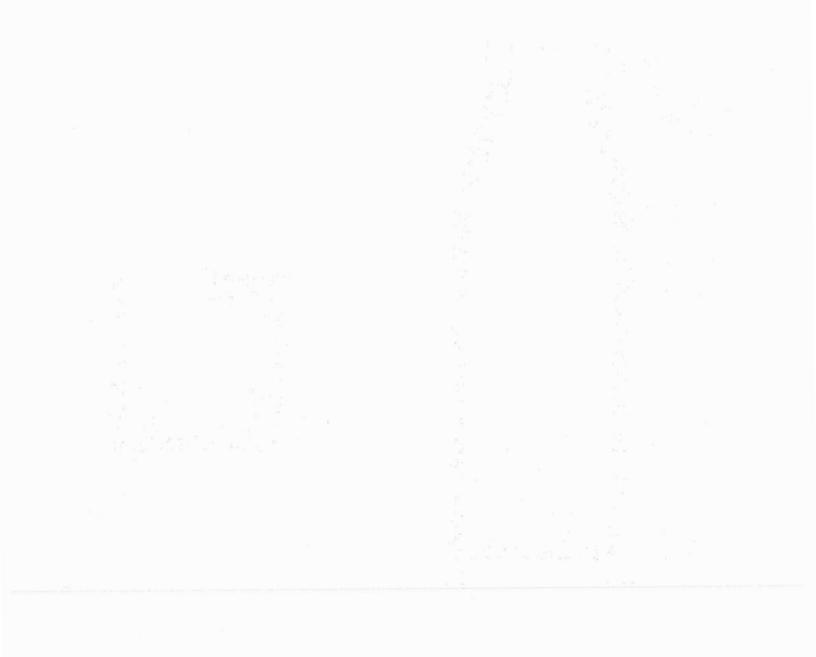
60" DIA. MANHOLE W/ FLATTOP


Charlotte's Concrete, Inc.

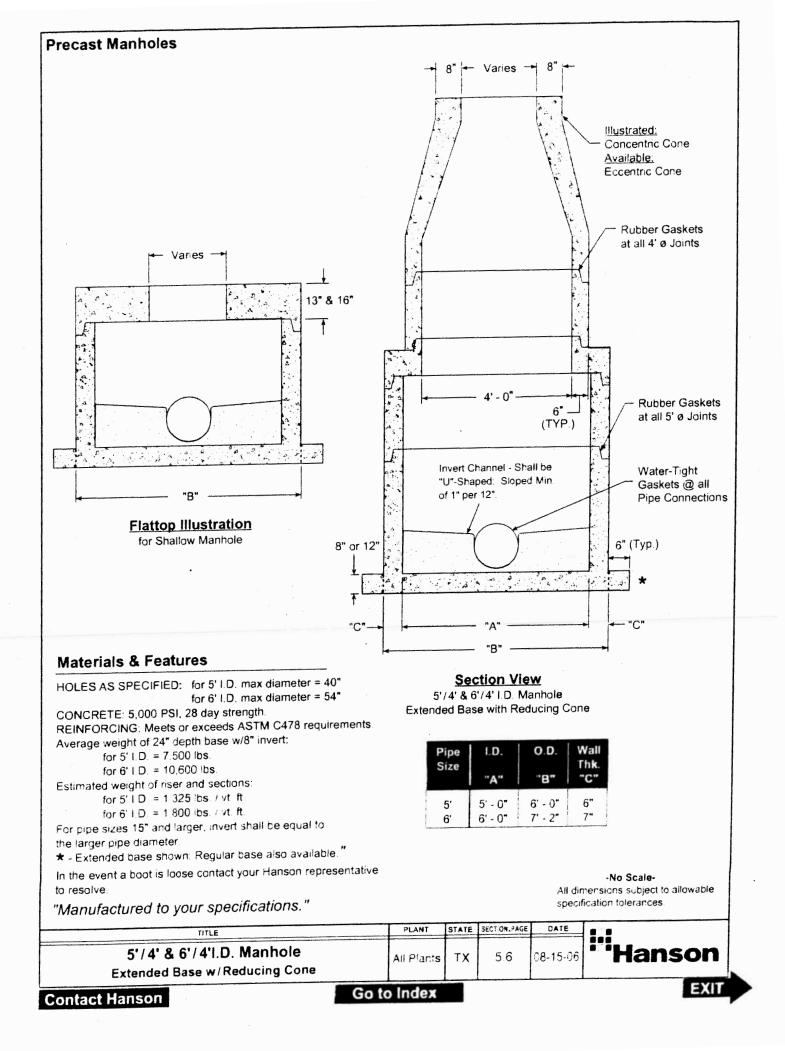
60" DIA. M.H. TO 48" DIA. M.H.

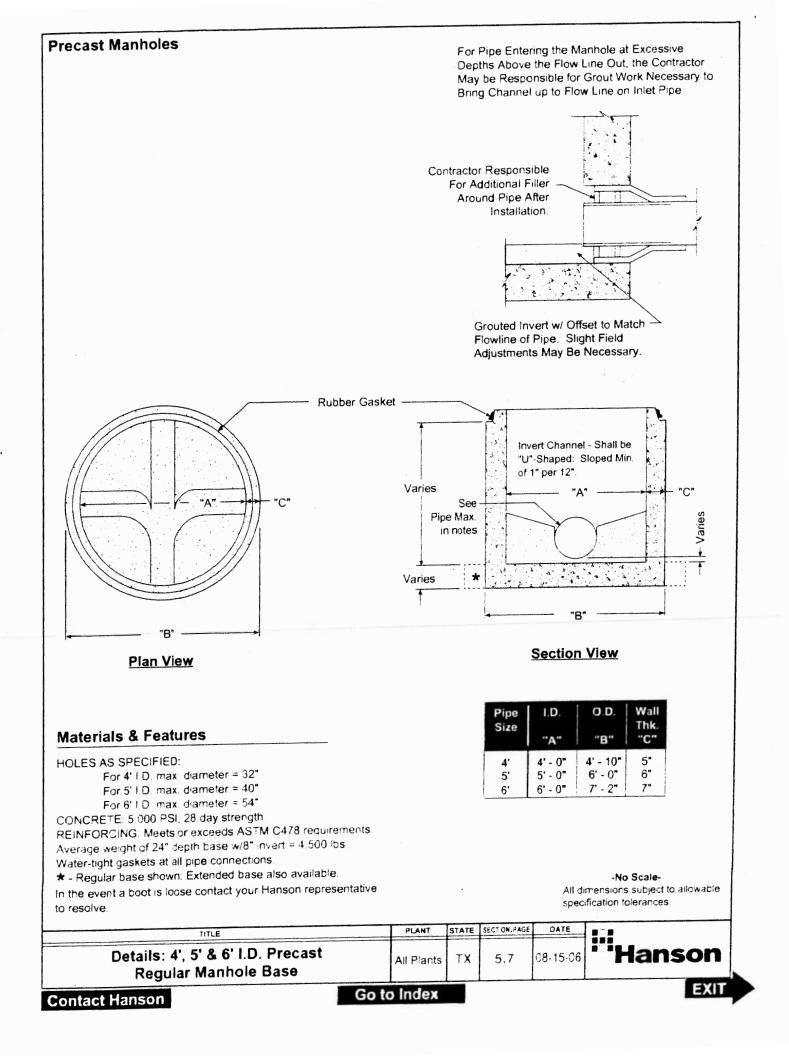
Charlotte's Concrete, Inc.

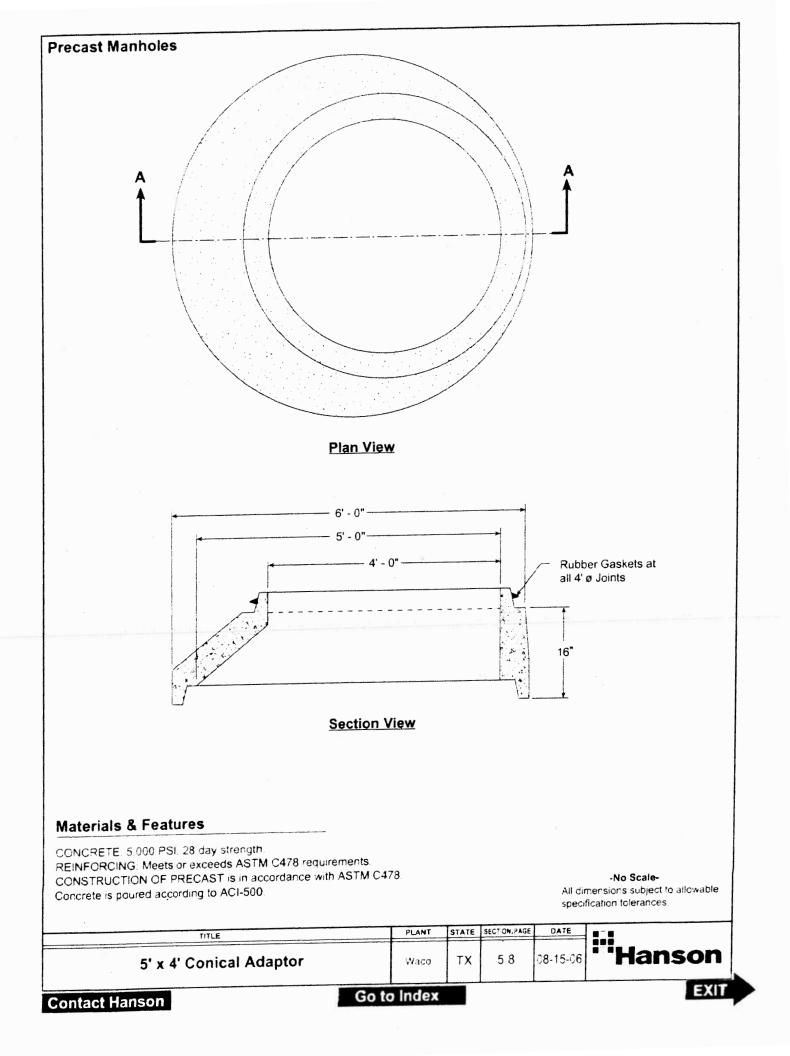

72" DIA. MANHOLE W/ FLATTOP

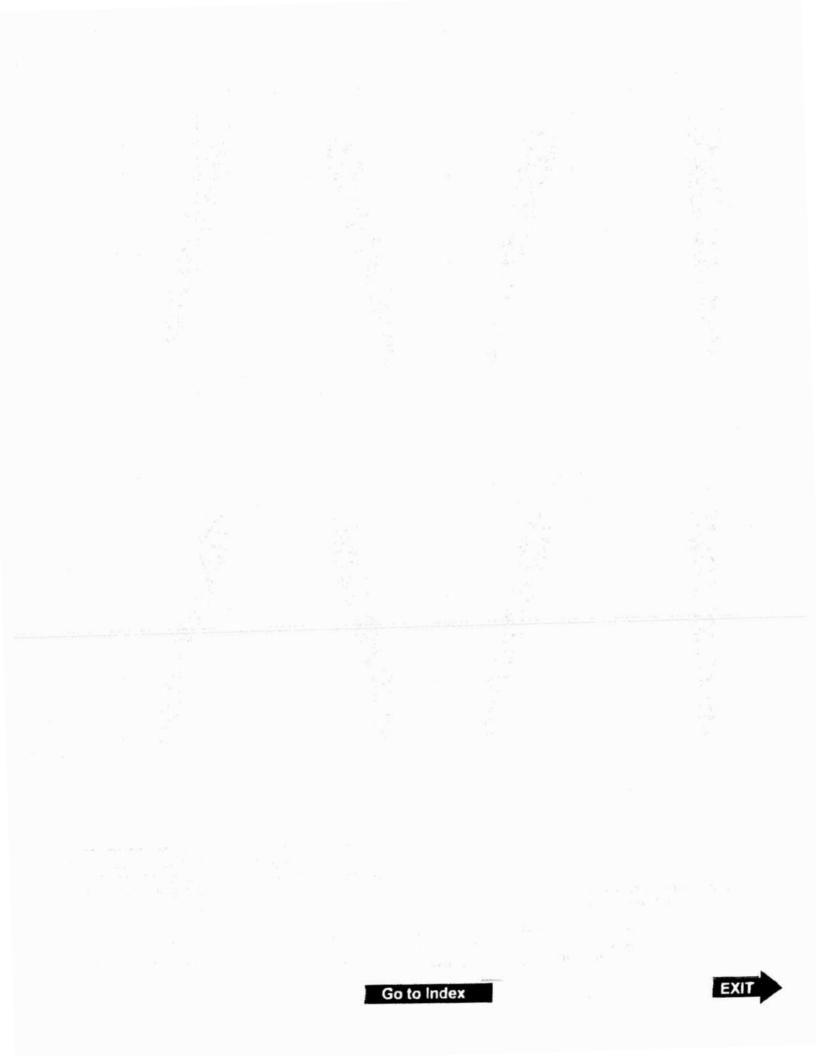


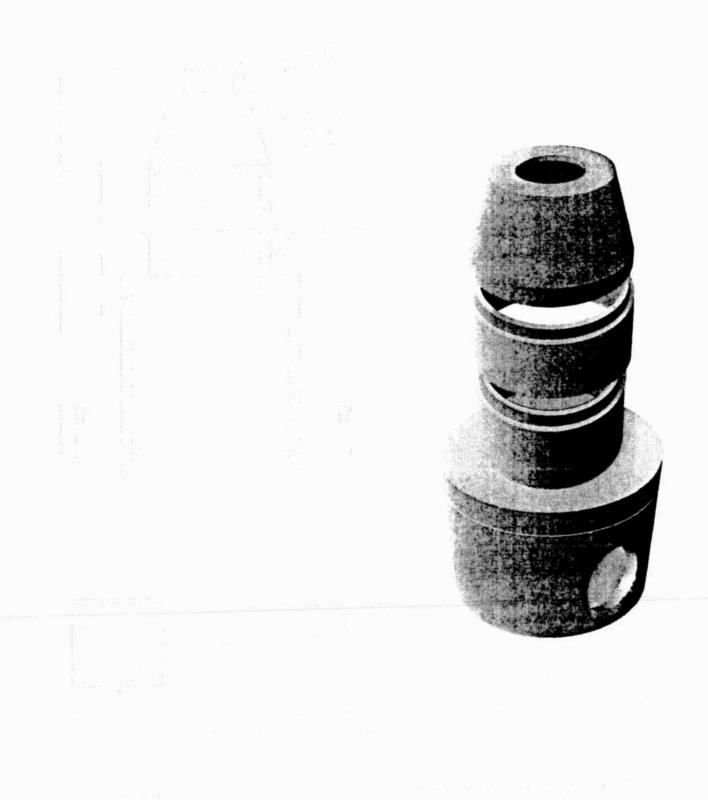
(N.T.S.)


Charlotte's Concrete, Inc.

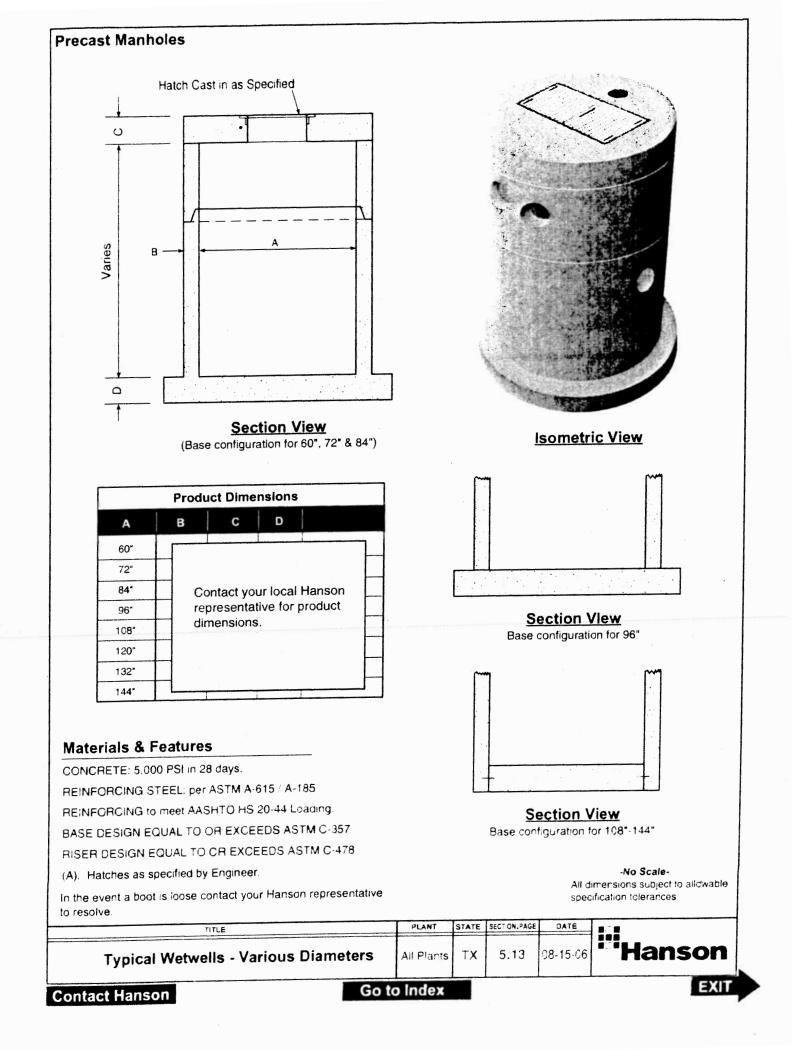

72" DIA. M.H. TO 48" DIA. M.H.



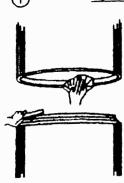



Go to Index

Go to Index



Go to Index


n

"O"-Ring Gasket

Carefully clean all dirt & loreign objects from the joining surface of the bell or groove end of pipe.

Carefully clean spigot or tongue end of pipe, including the gasket recess. Inspect the bell and spigot ends of each section to make sure they are free from cracks, chips or voids that will interfere with gasket.

Improperly prepared bell and spigot surfaces may prevent homing of the pipe or keep the gasket from sealing.

IMPORTANT

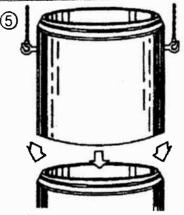
Fit the gasket carefully, equalizing the rubber gasket stretch by running a smooth, round object (inserted between the gasket & spigot) around the entire circumference several times.

Unequal stretch could cause bunching of the gasket and may cause leaks in the joint or crack the bell.

Profile Gasket

- Manhole sections should be handed with extreme caution to avoid chipping of the bell or spigot ends. Proper lifting devices must be used on all sections.
- Inspect gasket sealing area for any voids or rough edges that may interfere with the seal.
- 3. Place the 4-G Gasket in the step of the spigot. (Making sure that the pointed end of the gasket is toward the end of the pipe as shown in Fig A.)
- 4. **IMPORTANI ** Equalize the stretch on the gasket by pulling the sealing lube away from the spigot at least one inch and then releasing the gasket. Repeat this every three or lour inches around the circumference of the pipe. Equalization of stretch makes sure that the gasket has the same stretched crosssection and tension throughout. **Do not iube the gasket or spigot end of the pipe.**
- Remove all dirt and other foreign matter from the inside surface of the bell. Apply lube to the inner surface of the bell including the

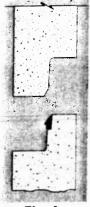
lead-in taper surface on the outer edge of the bell. Align spigot with the bell. Gasket should touch lead-in taper around the entire circumference before pushing the pipe home.


- Push the manhole section carefully, until the spigot is all the way home. (Fig B) Do not lorce sections together. If sections do not seat properly, unstack and contact your Hanson Sales Representative.
- 7. Every manhole will not come home exactly the same. Differences in application, consistency of lubricants, dimensions in the spigot and groove will cause variations in installation. If joining problems arise, please contact the manhole manufacturer immediately rather than forcing manhole sections together with subsequent damage to the manhole.
- All testing should be performed prior to backfill of the manhole. Problems can not be detected after the manhole is backfilled. <u>Testing the manhole after backfill voids all</u> warranties.

Lubricate bell joint surface liberally. covering entire inside surface using proper pipe gasket lubricant.

Lubricate the gasket throughly before it is placed on the spigot or tongue.

Bell and Gasket not lubricated or improperly lubricated may cause the gasket to roll and leak or possibly damage the bell.



2

Align the bell & spigot to be joined. Before homing the joint, check that the gasket is in contact with the bell end entrance taper around the entire circumference.

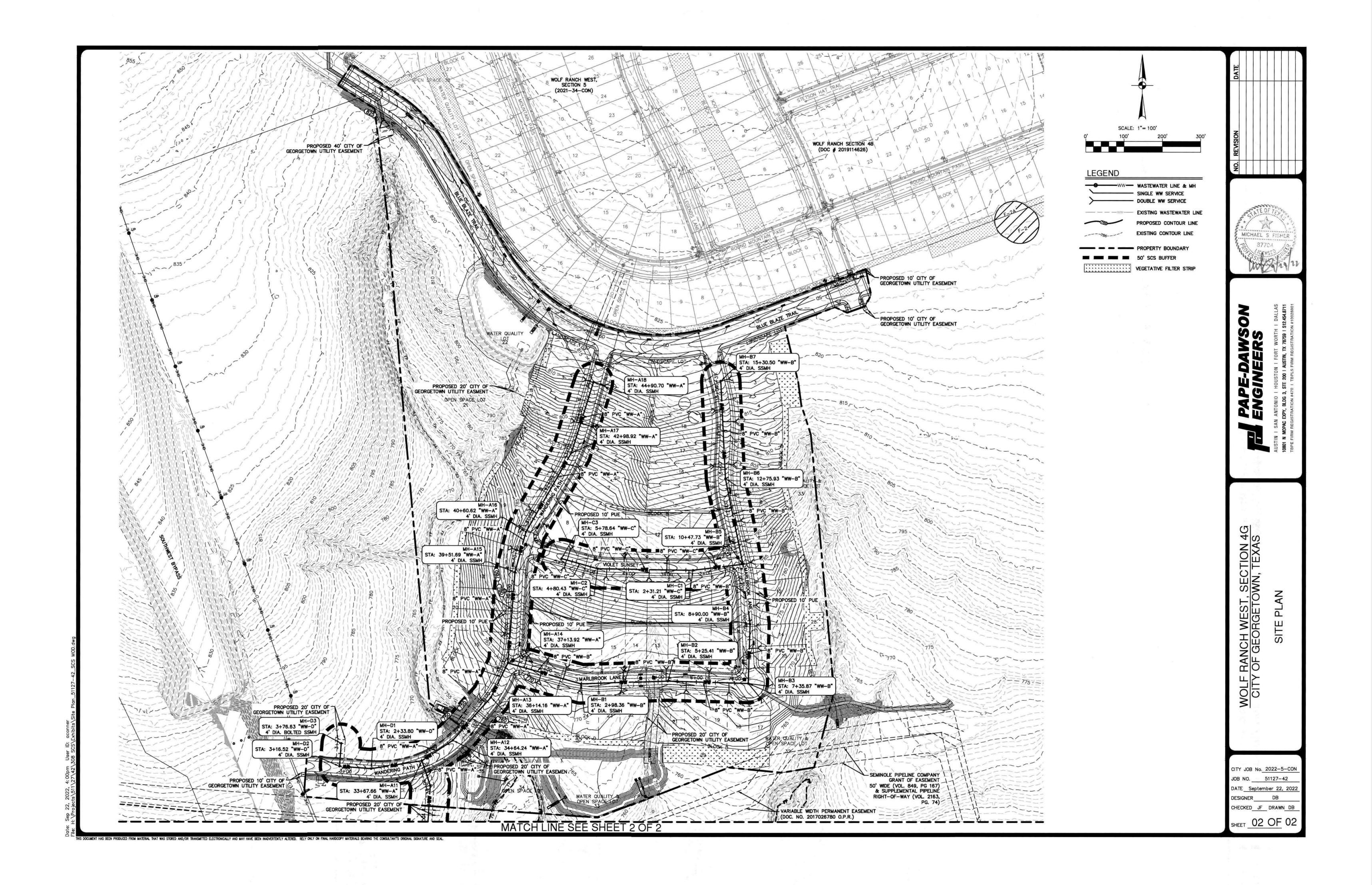
Do not force sections together. If sections do not seat properly, unstack and contact your Hanson Sales Representative.

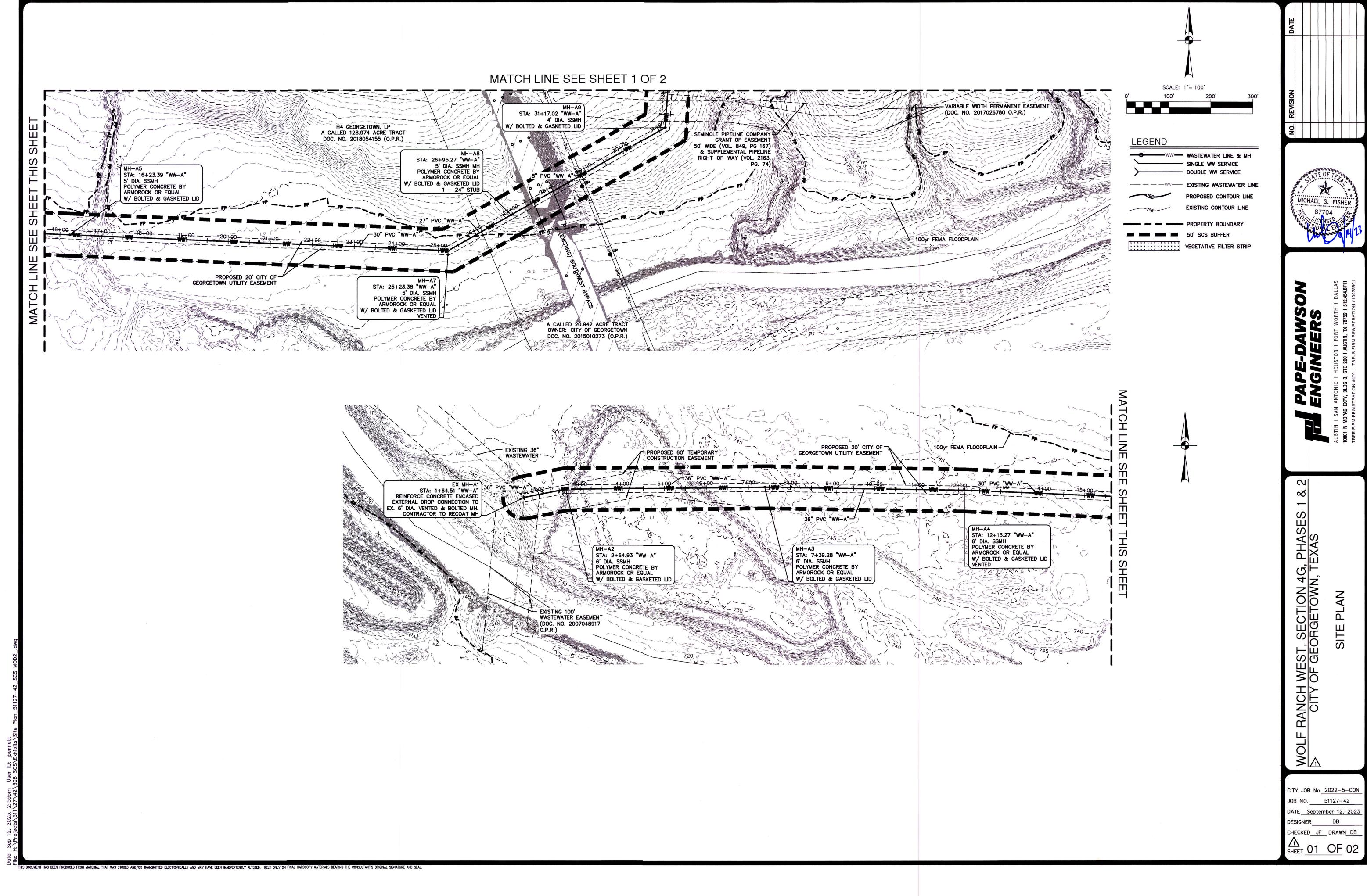
Improper alignment can disiodge gasket, causing leaks or possibly breaking the bell.

Note: Manholes in excess of 30' in depth must be vacuum tested prior to backfill. The loads presented by soils and possible groundwater at 30' in addition to the load from the vacuum may exceed the design capacity of the pipe to manhole connector.

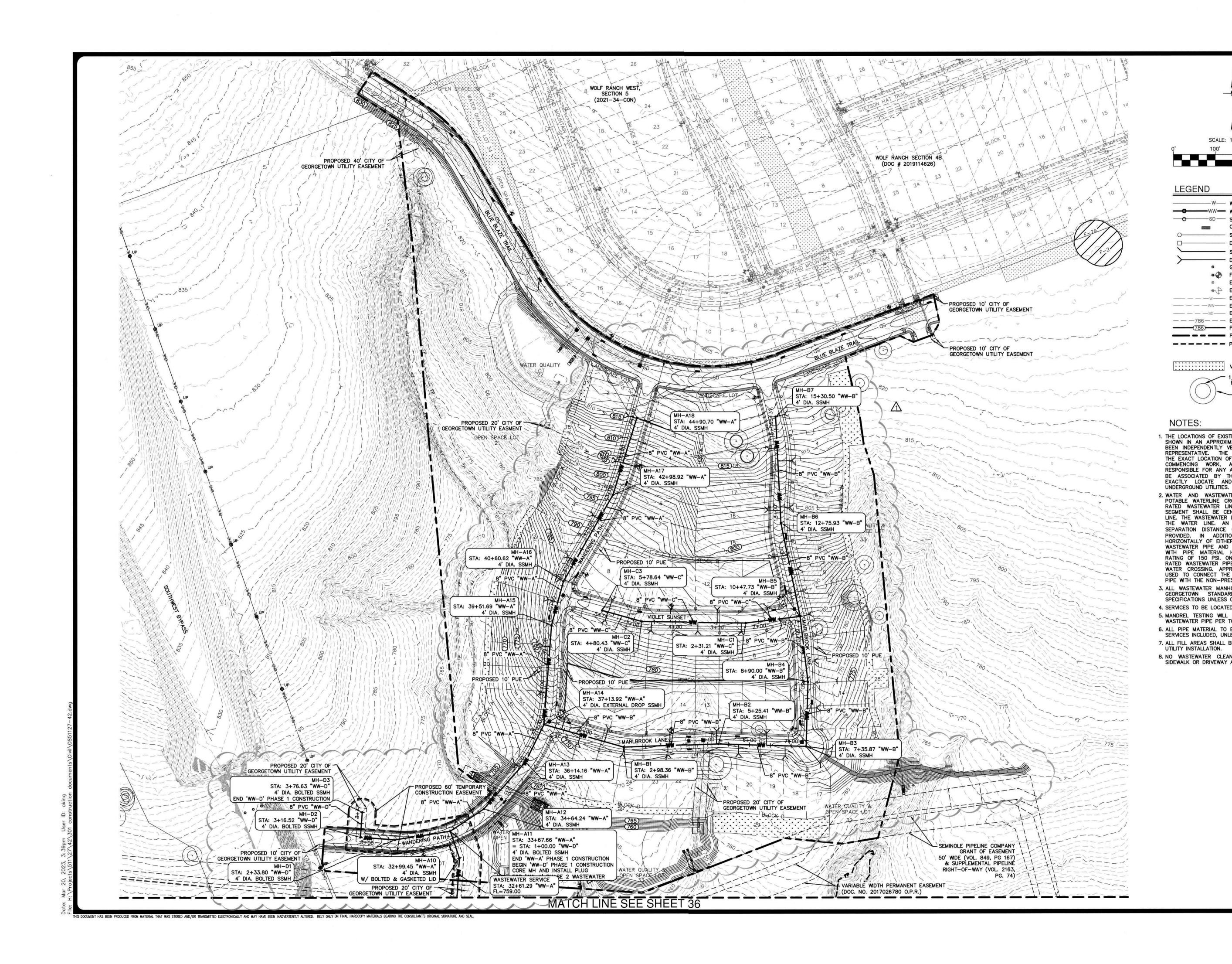
TITLE			SECT ON. PAGE		
O-Ring & Profile Gasket Installation on Manholes	All Plants	тх	5.14	08-15-06	Hanson
Contact Hanson	Go to Index				EXIT

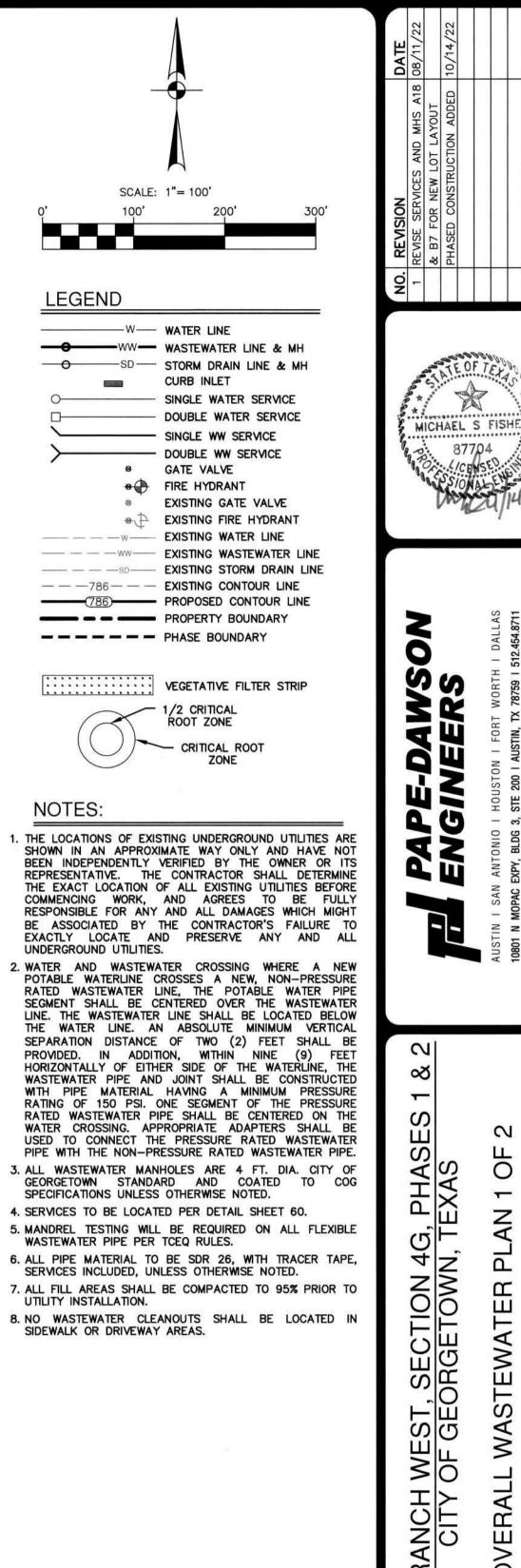
Precast Manholes Step Three Step Two Step One Re-torque All Torque Torque Torque Clamp Bolts All Inner All Outer Clamp Bolt to 60 lb/in Clamp Bolts Clamp Bolts to 60 lb/in to 60 lb/in to 60 lb/in Multiple Clamps Single Clamp

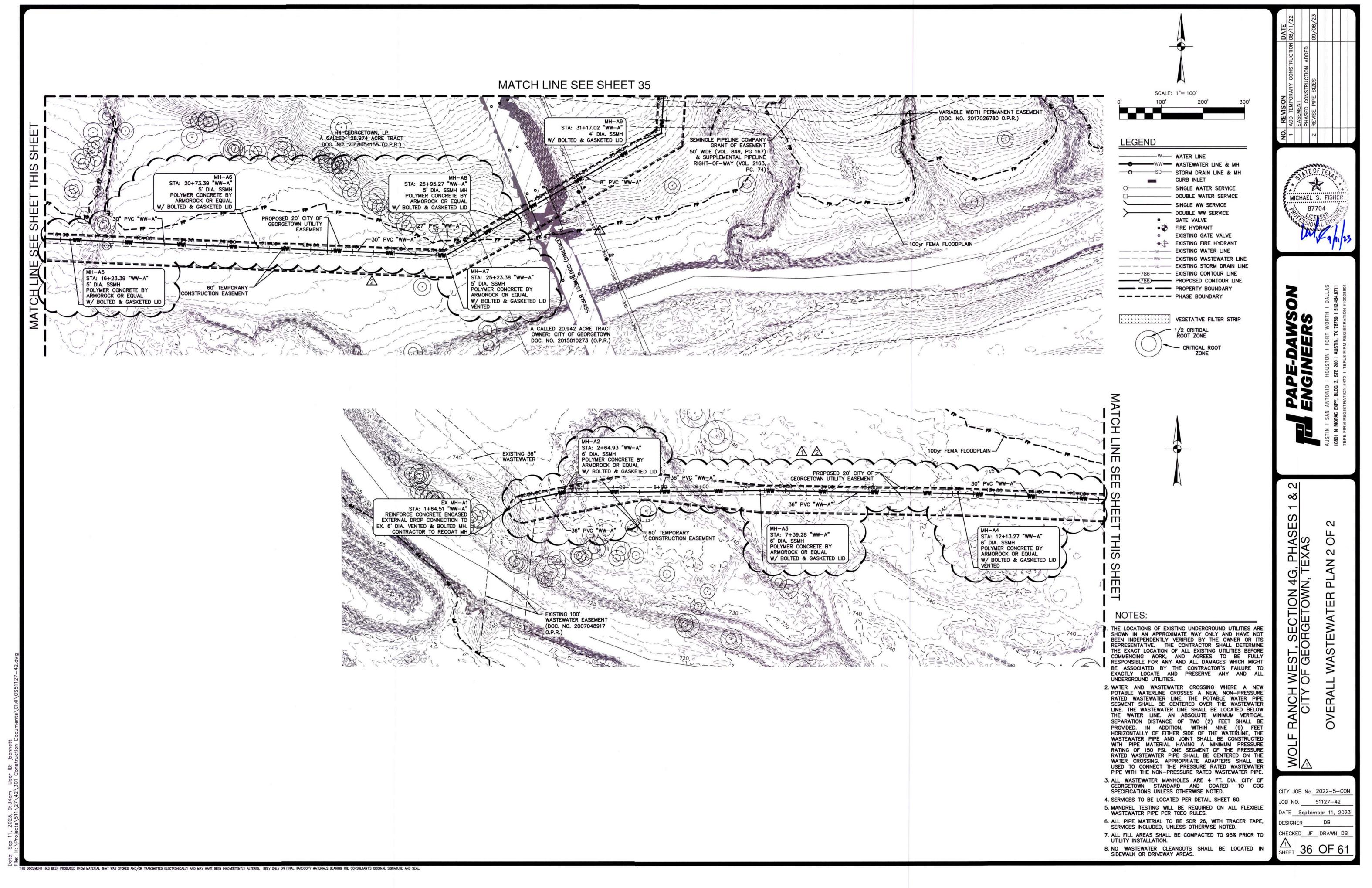

Instructions

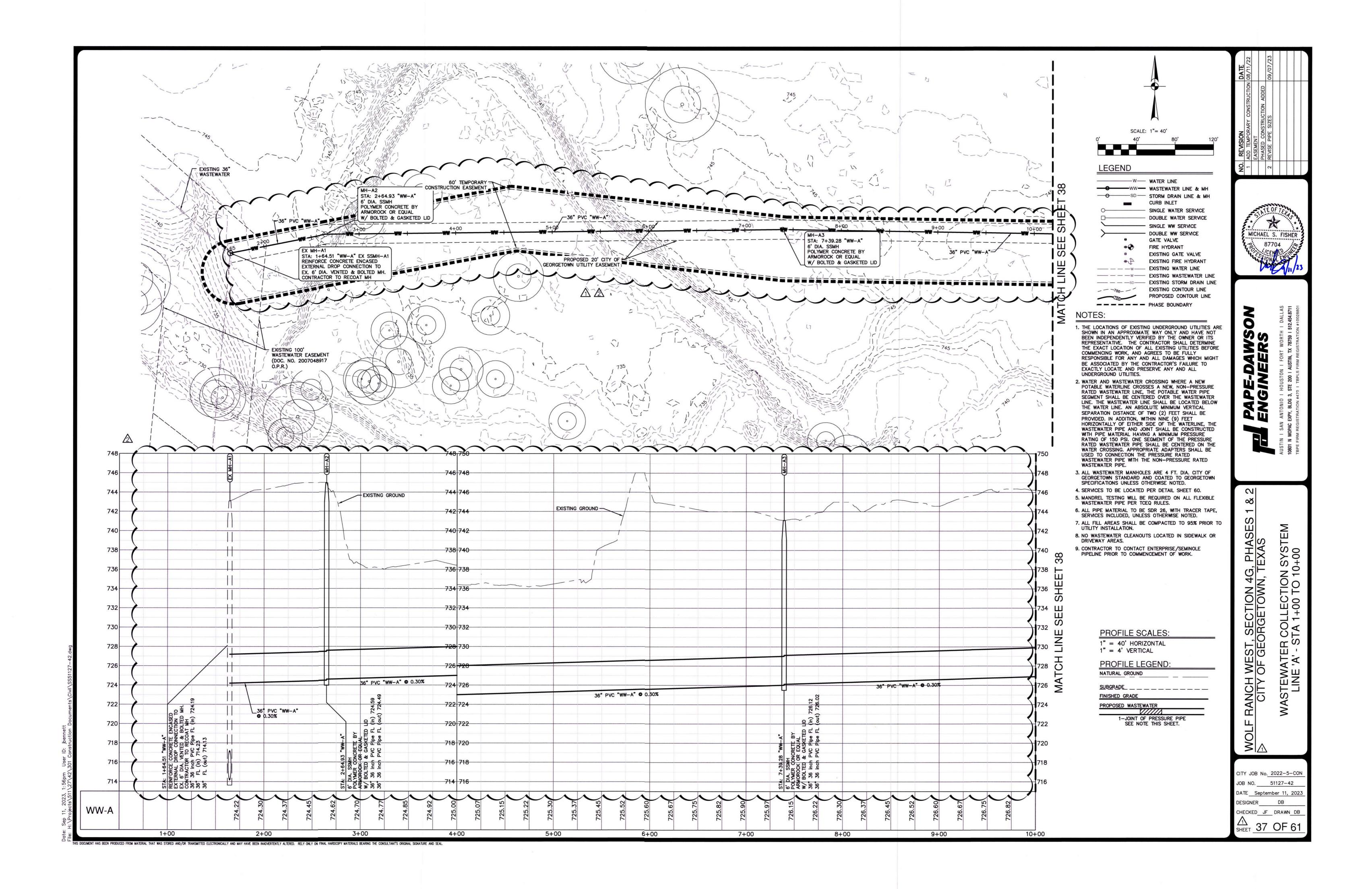

- 1. Clean pipe and boot to ensure no dirt or foreign materials are present.
- 2. Clamping surface on pipe must be clean and smooth.
- 3. Center pipe in opening and insert until pipe is at least equal to the inside plane of the manhole.
- Attach take-up clamps(s) and stagger screw(s) of clamps(s) around the groove of the gasket so that take-up pressure will be equalized. Make sure each clamp is completely in the correct groove.
- 5. Using a torque ratchet or torque wrench, gradually tighten all screw(s) of clamp(s) in an alternating pattern to 60 lbs/in torque.
- 6. After reaching 60 lbs/in torque on final screw, <u>check all screws again</u> to ensure equal compression of all clamps.
- If system is to be tested, testing shall be completed prior to backfilling, following all recommendations and requirements of the test system manufacturer. Vacuum testing shall be conducted in accordance with ASTM C-1244.
- 8. Adjust pipe to line and grade. Use proper bedding, backfill materials and techniques so that pipe deflection and deformation is minimized.
- 9. Any pipe stubs installed in the manhole must be positively restrained from movement.
- 10. Vacuum testing after backfill voids warranty.

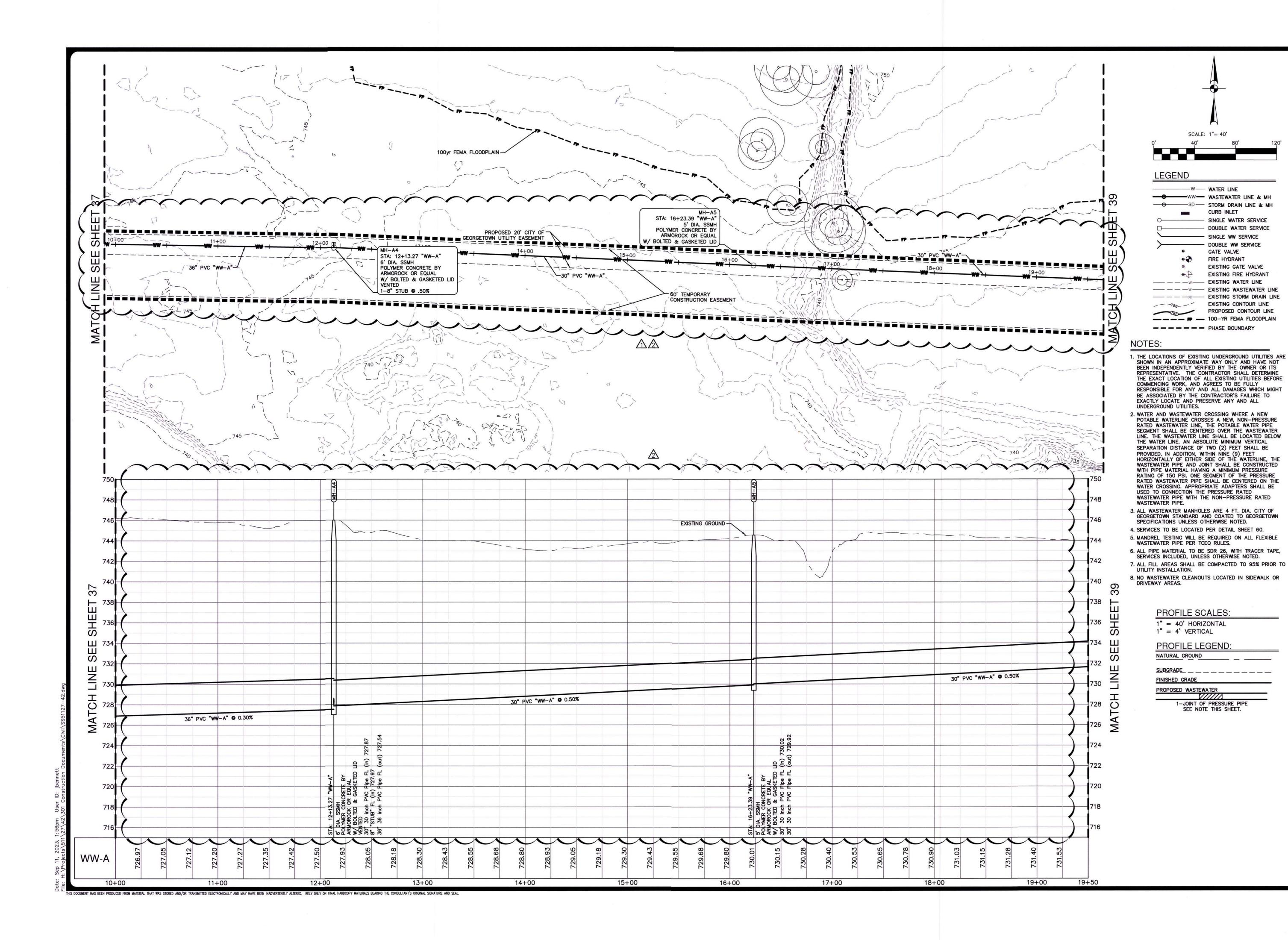
For more information contact yor local Hanson Representative.

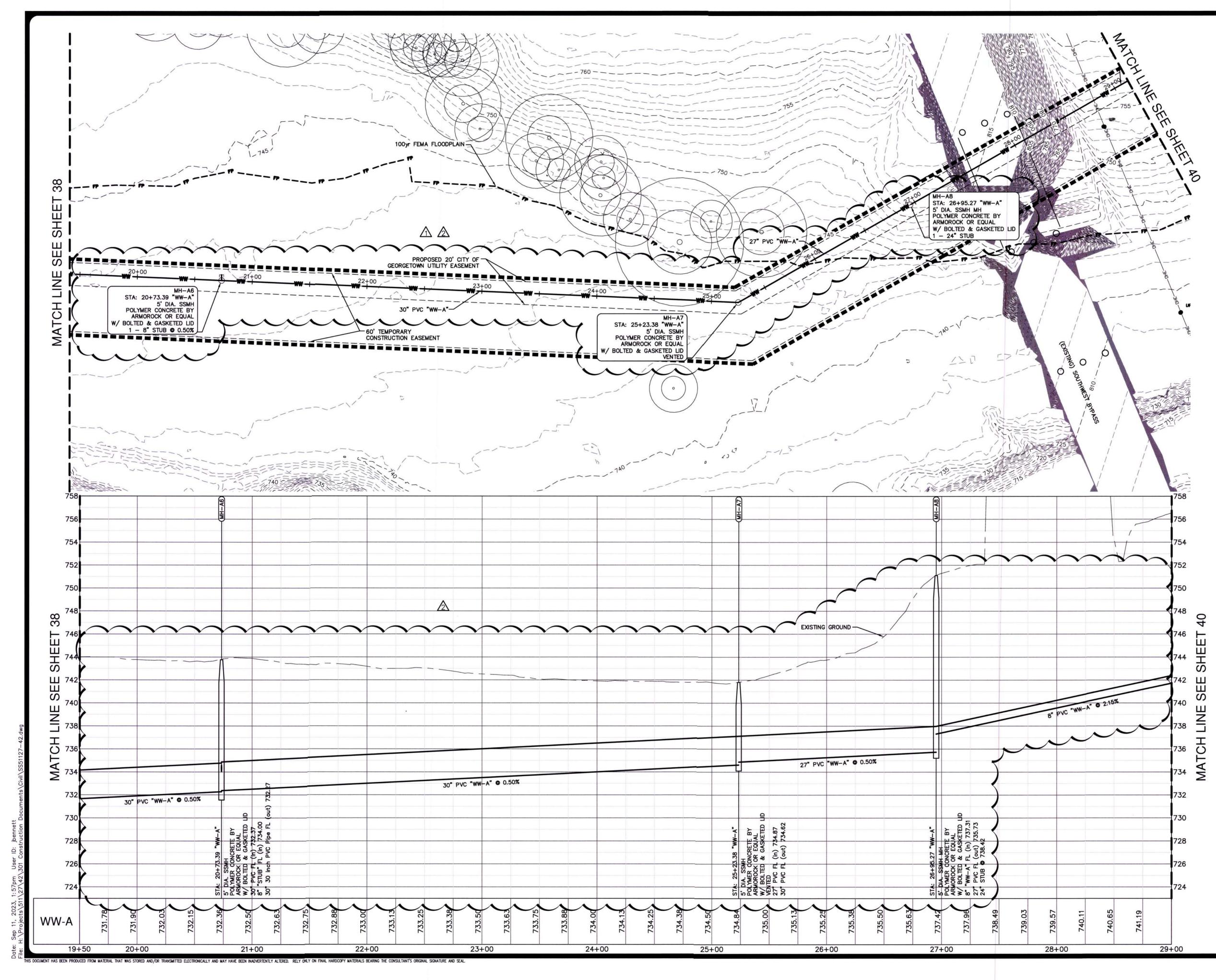

TITLE	PLANT	STATE	SECTION. PAGE	DATE		
Pipe to Manhole Connector Installation Guide	All Plants	т х	5.15	08-15-06	"Hanson	
Contact Hanson	Go to Index				EXIT	

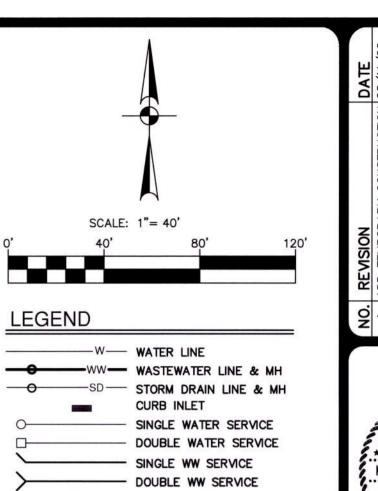

SITE PLAN




FINAL PLAN AND PROFILE SHEETS




MICHAEL S 877 10 10 10 10 10 10 10 10 10 10 10 10 10	FISHER 5ED 4 5ED 4 7 4 7 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7
ENGINEERS	AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS	OVERALL WASTEWATER PLAN 1 OF 2
CITY JOB No. 2 JOB NO. 5 DATE <u>March</u> DESIGNER CHECKED JF SHEET 35	1127-42 20, 2023 DB DRAWN_DB



GATE VALVE

FIRE HYDRANT

PROPOSED CONTOUR LINE

---- PHASE BOUNDARY

----- P - 100-YEAR FEMA FLOODPLAIN

EXISTING GATE VALVE

EXISTING FIRE HYDRANT

EXISTING CONTOUR LINE

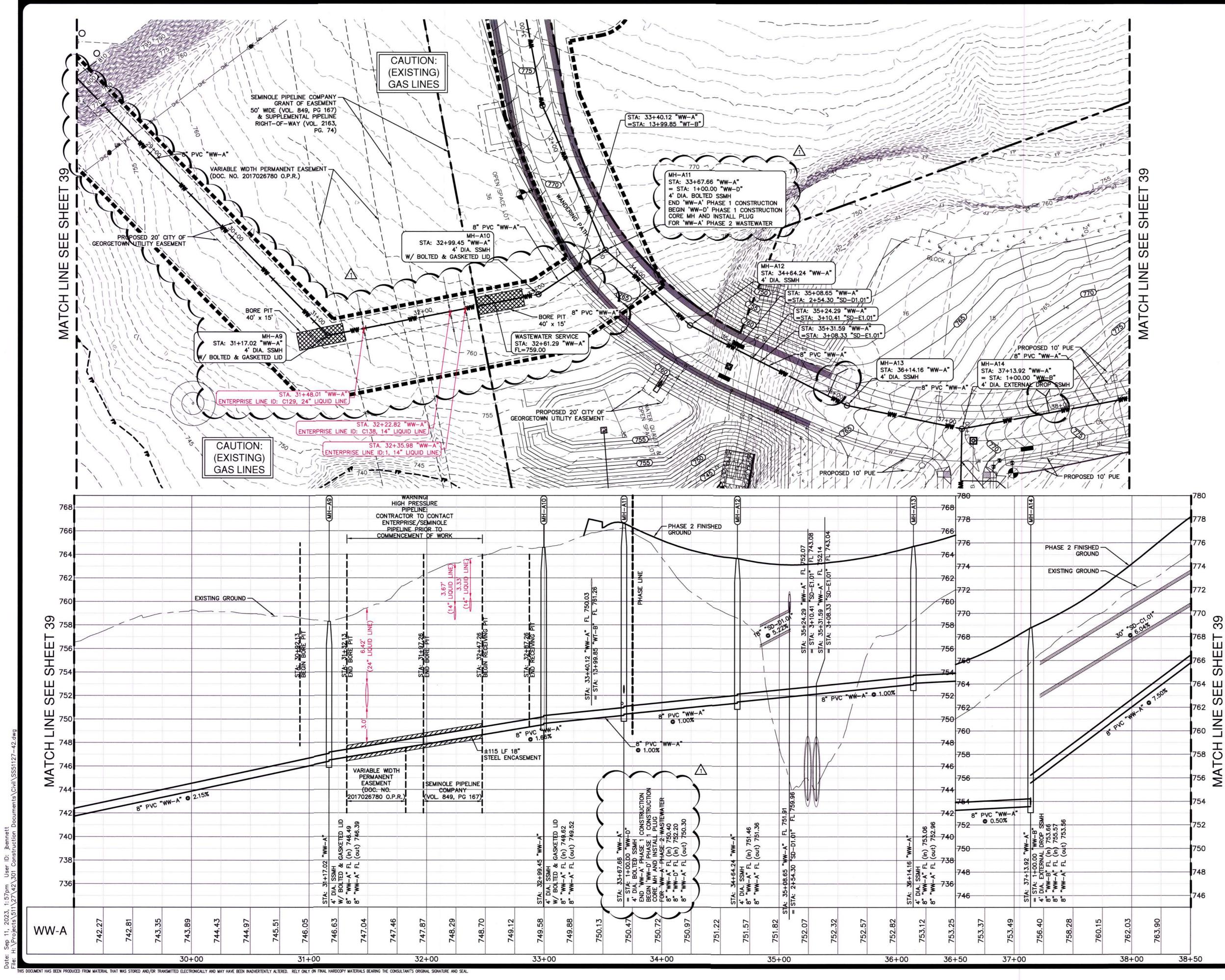
.

•

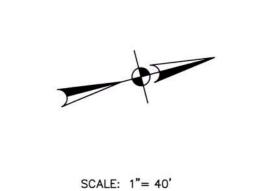
8 P

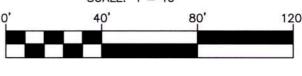
- -786- ----

× 4 4 4

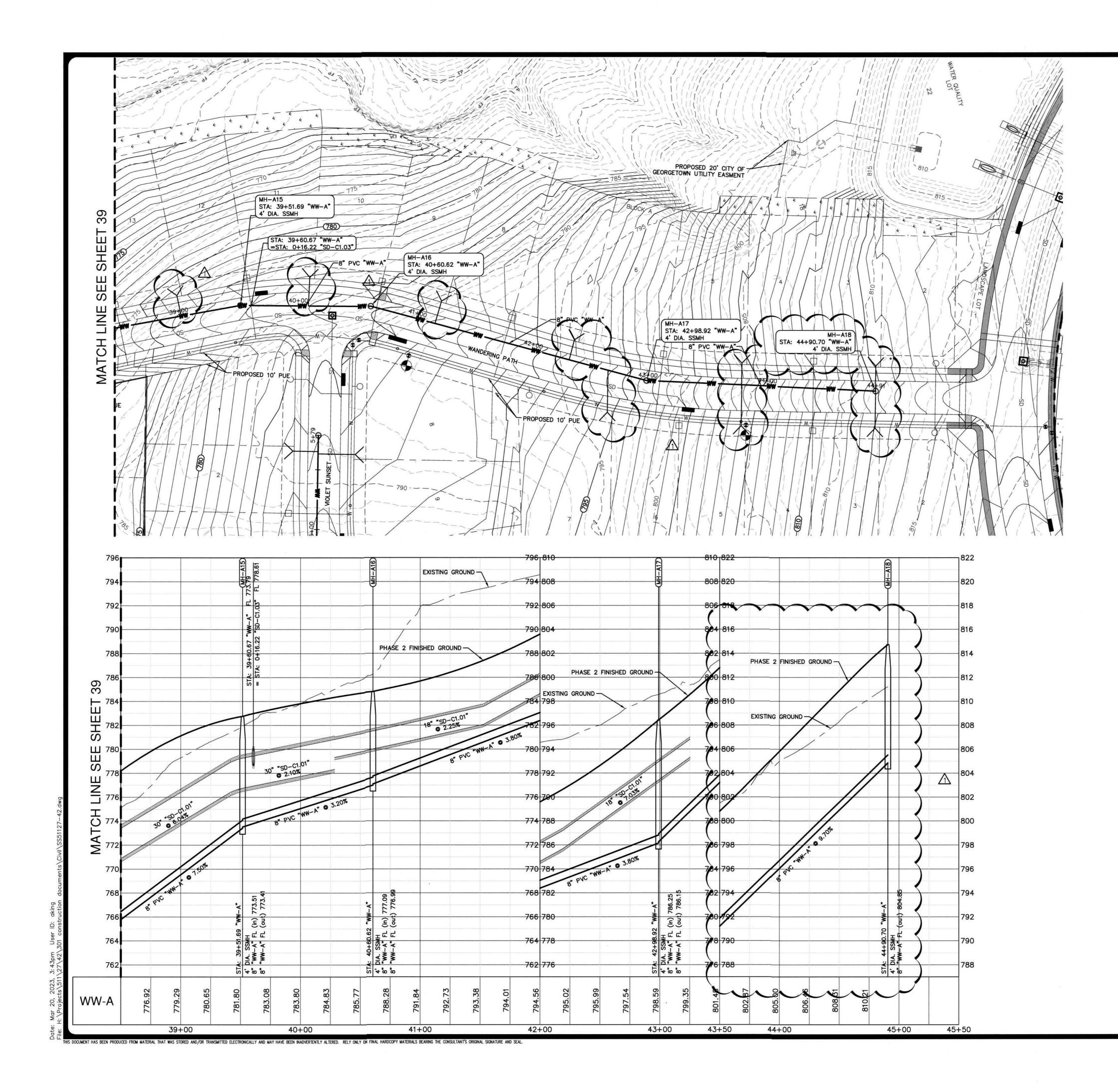


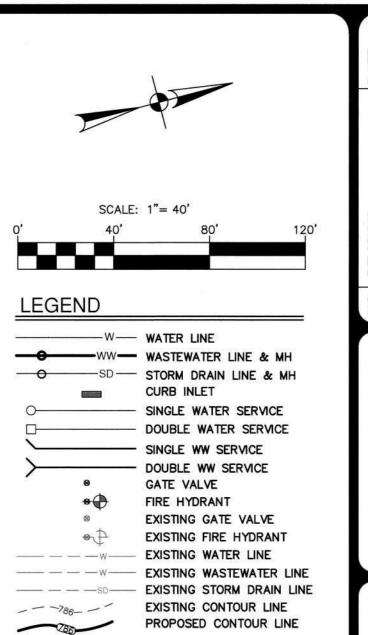
NOTES:


- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60. 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE
- WASTEWATER PIPE PER TCEQ RULES. 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE,
- SERVICES INCLUDED, UNLESS OTHERWISE NOTED. 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.



LEGE	ND	
	w	WATER LINE
		WASTEWATER LINE & MH
-0	SD	STORM DRAIN LINE & MH CURB INLET
0		SINGLE WATER SERVICE
D		DOUBLE WATER SERVICE


0	- SINGLE WATER SERVICE
D	- DOUBLE WATER SERVICE
<u> </u>	- SINGLE WW SERVICE
\rightarrow	- DOUBLE WW SERVICE
	GATE VALVE
•	FIRE HYDRANT
8	EXISTING GATE VALVE
e P	EXISTING FIRE HYDRANT
w	- EXISTING WATER LINE
w	- EXISTING WASTEWATER LINE
<u> </u>	- EXISTING STORM DRAIN LINE
	EXISTING CONTOUR LINE
CEO	PROPOSED CONTOUR LINE
	- PHASE BOUNDARY


NOTES:

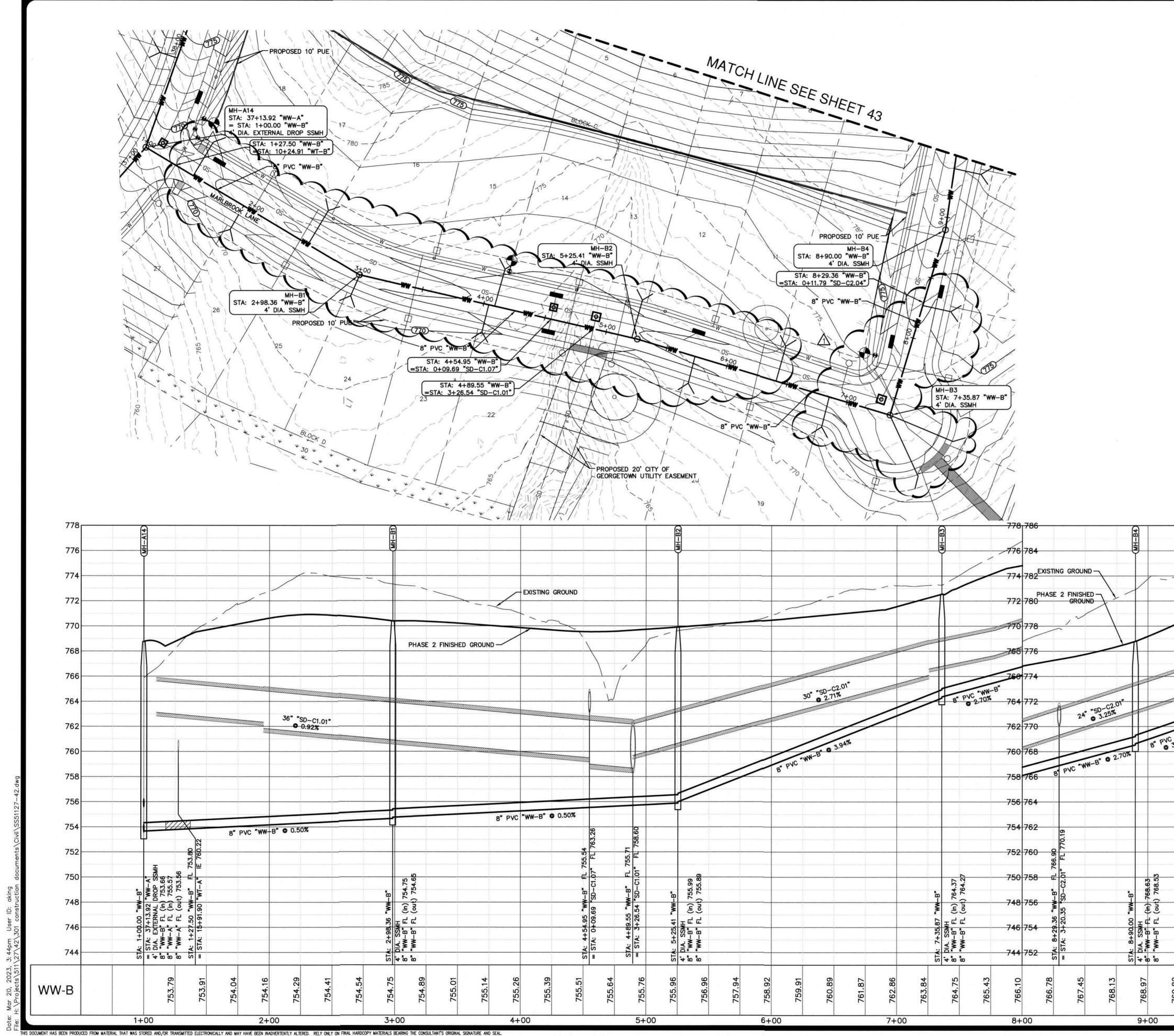
- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED. 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60.
- 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE
- WASTEWATER PIPE PER TCEQ RULES. 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE,
- SERVICES INCLUDED, UNLESS OTHERWISE NOTED. 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.
- 9. THE WASTEWATER COLLECTION LINE WITHIN THE STEEL ENCASEMENT SHALL BE CONSTRUCTED OF AT LEAST 150 PSI PRESSURE CLASS PIPE.
- 10. THE STEEL ENCASEMENT PIPE SHALL BE SEALED AT BOTH ENDS WITH CEMENT GROUT OR A MANUFACTURED SEAL.
- 11. THE WASTEWATER COLLECTION LINE WITHIN THE STEEL ENCASEMENT SHALL BE SUPPORTED BY SPACERS BETWEEN THE COLLECTION SYSTEM PIPE AND THE STEEL ENCASEMENT AT A MAXIMUM OF FIVE-FOOT INTERVAL CONSISTENT WITH CITY OF GEORGETOWN DETAIL W14.

PROFILE SCALES:
1" = 40' HORIZONTAL 1" = 4' VERTICAL
PROFILE LEGEND:
NATURAL GROUND
<u>SUBGRADE</u>
FINISHED GRADE
PROPOSED WASTEWATER
1-JOINT OF PRESSURE PIPE SEE NOTE THIS SHEET.

NOTES:

- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- SERVICES TO BE LOCATED PER DETAIL SHEET 60.
 MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE WASTEWATER PIPE PER TCEQ RULES.
- 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.

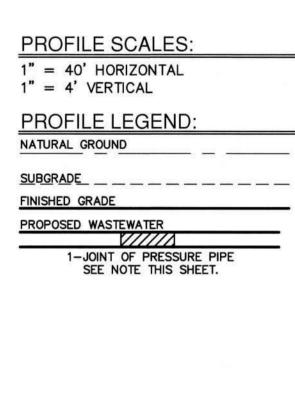
PROFILE SCALES:
1" = 40' HORIZONTAL 1" = 4' VERTICAL
PROFILE LEGEND:
NATURAL GROUND
<u>SUBGRADE</u>
FINISHED GRADE
PROPOSED WASTEWATER
1-JOINT OF PRESSURE PIPE SEE NOTE THIS SHEET.



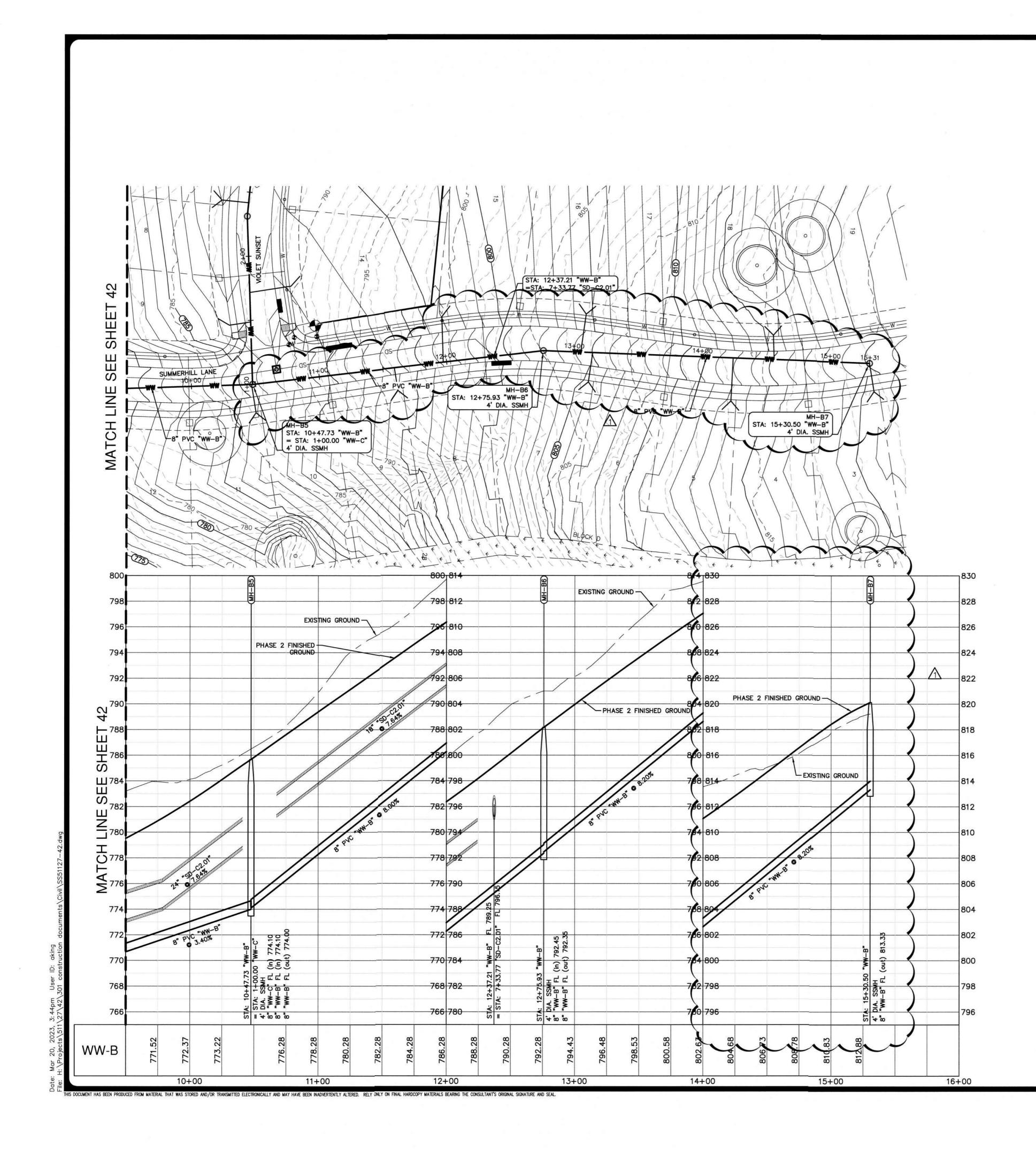
DATE _____ March 20, 2023

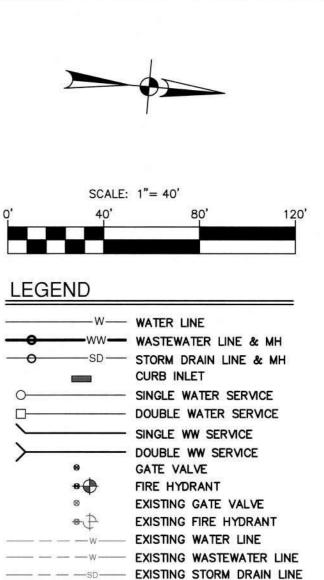
CHECKED JF DRAWN DB

Δ1 OF 61


DESIGNER DB

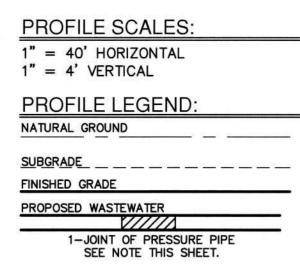
	DATE 08/11/22	
SCALE: 1"= 40' 0' 40' 80' 120' LEGEND	NO. REVISION 1 REVISE SERVICE LOCATIONS	
W WATER LINE WW WASTEWATER LINE & MH SD STORM DRAIN LINE & MH CURB INLET SINGLE WATER SERVICE DOUBLE WATER SERVICE DOUBLE WATER SERVICE DOUBLE WW SERVICE SINGLE WW SERVICE GATE VALVE FIRE HYDRANT EXISTING GATE VALVE EXISTING FIRE HYDRANT W EXISTING WATER LINE W EXISTING STORM DRAIN LINE VW EXISTING STORM DRAIN LINE VW EXISTING CONTOUR LINE VB PROPOSED CONTOUR LINE	MICHAEL	

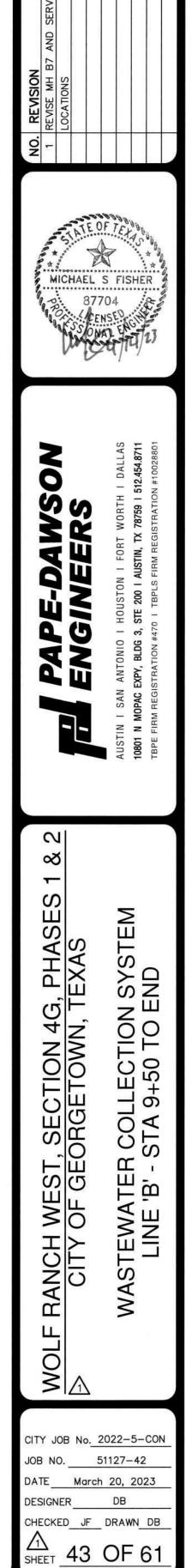

NOTES:

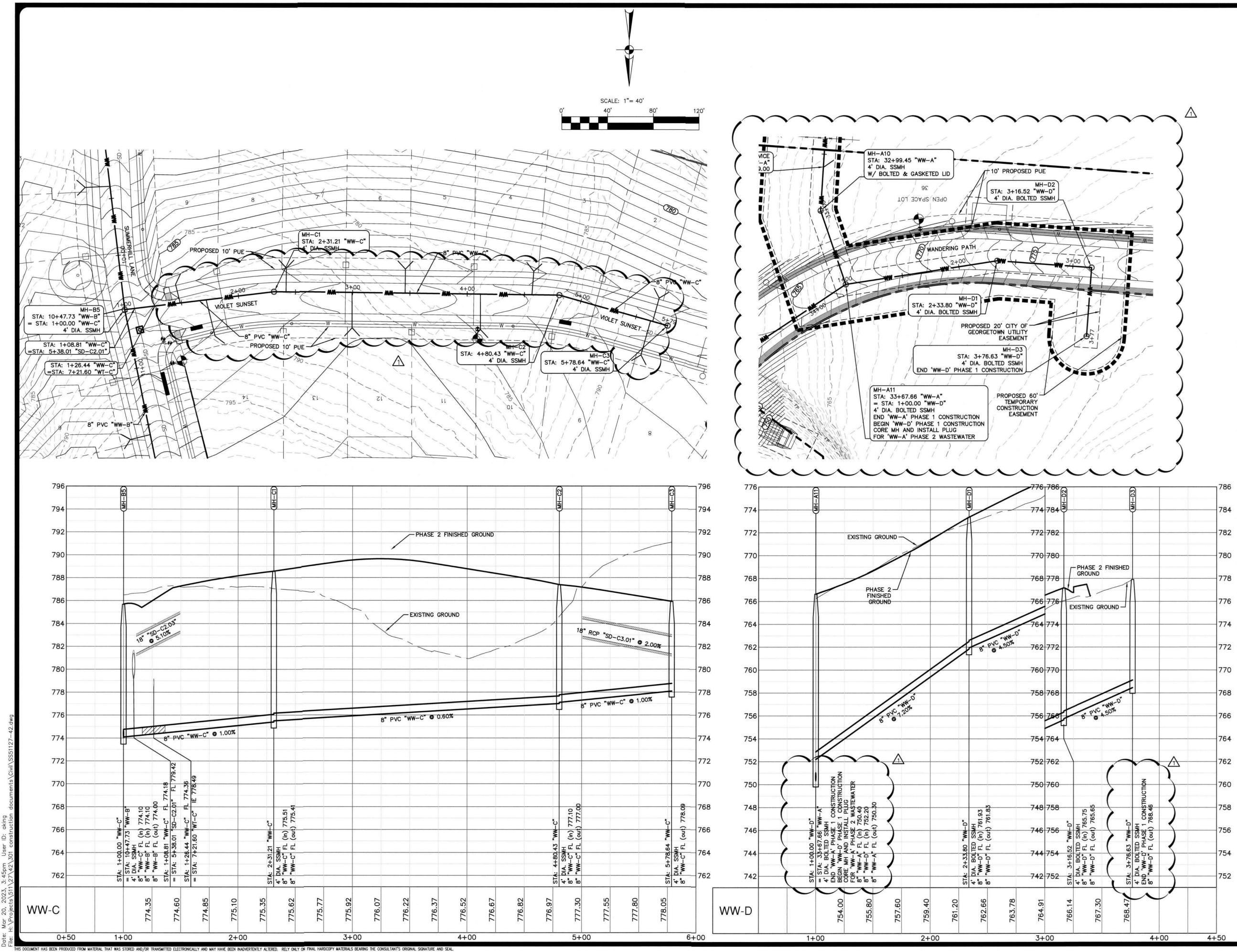

- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60.
- 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE WASTEWATER PIPE PER TCEQ RULES.
- 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.

42 OF 61

NOTES:


285


1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.


EXISTING CONTOUR LINE

PROPOSED CONTOUR LINE

- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60. 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE
- WASTEWATER PIPE PER TCEQ RULES. 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.

5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE WASTEWATER PIPE PER TCEQ RULES.

- 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 772 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.

 - 1" = 40' HORIZONTAL1'' = 4' VERTICAL

PROFILE LEGEND:

NATURAL	GROUND		-
SUBGRADE	L		
FINISHED	GRADE		
PROPOSED	WASTEW	ATER	
	V	$///\Lambda$	
1-	JOINT OF	PRESSU	RE PIPE

TEMPORARY STORMWATER

Temporary Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Temporary Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

Print Name of Customer/Agent: Austin Conner, PE

Date: 08/31/2023

Signature of Customer/Agent:

Regulated Entity Name: Wolf Ranch West, Section 4G

Project Information

Potential Sources of Contamination

Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.

1. Fuels for construction equipment and hazardous substances which will be used during construction:

The following fuels and/or hazardous substances will be stored on the site: <u>oil and</u> <u>petroleum products and substances</u>

These fuels and/or hazardous substances will be stored in:

Aboveground storage tanks with a cumulative storage capacity of less than 250 gallons will be stored on the site for less than one (1) year.

TCEQ-0602 (Rev. 02-11-15)

Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year.

- Aboveground storage tanks with a cumulative storage capacity of 500 gallons or more will be stored on the site. An Aboveground Storage Tank Facility Plan application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.
-] Fuels and hazardous substances will not be stored on the site.
- 2. Attachment A Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
- 3. Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
- 4. Attachment B Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.

Sequence of Construction

5. Attachment C - Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.

For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given.

- For each activity described, include a description of appropriate temporary control measures and the general timing (or sequence) during the construction process that the measures will be implemented.
- 6. Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: <u>South Fork San Gabriel River</u>

Temporary Best Management Practices (TBMPs)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.

7. Attachment D – Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

	 A description of how BMPs and measures will prevent pollution of surface water, groundwater or stormwater that originates upgradient from the site and flows across the site. A description of how BMPs and measures will prevent pollution of surface water or groundwater that originates on-site or flows off site, including pollution caused by contaminated stormwater runoff from the site. A description of how BMPs and measures will prevent pollutants from entering surface streams, sensitive features, or the aquifer. A description of how, to the maximum extent practicable, BMPs and measures will maintain flow to naturally-occurring sensitive features identified in either the geologic assessment, TCEQ inspections, or during excavation, blasting, or construction.
8. 🔀	The temporary sealing of a naturally-occurring sensitive feature which accepts recharge to the Edwards Aquifer as a temporary pollution abatement measure during active construction should be avoided.
	 Attachment E - Request to Temporarily Seal a Feature. A request to temporarily seal a feature is attached. The request includes justification as to why no reasonable and practicable alternative exists for each feature. There will be no temporary sealing of naturally-occurring sensitive features on the site.
9. 🔀	Attachment F - Structural Practices. A description of the structural practices that will be used to divert flows away from exposed soils, to store flows, or to otherwise limit runoff discharge of pollutants from exposed areas of the site is attached. Placement of structural practices in floodplains has been avoided.
10. 🖂	Attachment G - Drainage Area Map. A drainage area map supporting the following requirements is attached:
	 For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin will be provided. For areas that will have more than 10 acres within a common drainage area disturbed at one time, a smaller sediment basin and/or sediment trap(s) will be used. For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin or other equivalent controls are not attainable, but other TBMPs and measures will be used in combination to protect down slope and side slope boundaries of the construction area. There are no areas greater than 10 acres within a common drainage area that will be used in combination with other erosion and sediment controls within each disturbed at one time. A smaller sediment basin and/or sediment trap(s) will be used in combination with other erosion and sediment controls within each disturbed area.

There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. Erosion and sediment controls other than sediment basins or sediment traps within each disturbed drainage area will be used.
Attachment H - Temporary Sediment Pond(s) Plans and Calculations. Temporary sediment pond or basin construction plans and design calculations for a proposed temporary BMP or measure have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer. All construction plans and design information must be signed, sealed, and dated by the Texas Licensed Professional Engineer. Construction plans for the proposed temporary BMPs and measures are attached.
N/A
Attachment I - Inspection and Maintenance for BMPs. A plan for the inspection of each temporary BMP(s) and measure(s) and for their timely maintenance, repairs, and, if necessary, retrofit is attached. A description of the documentation procedures, recordkeeping practices, and inspection frequency are included in the plan and are specific to the site and/or BMP.
All control measures must be properly selected, installed, and maintained in accordance with the manufacturer's specifications and good engineering practices. If periodic inspections by the applicant or the executive director, or other information indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations.
If sediment escapes the construction site, off-site accumulations of sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality (e.g., fugitive sediment in street being washed into surface streams or sensitive features by the next rain).
Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50%. A permanent stake will be provided that can indicate when the sediment occupies 50% of the basin volume.

16. Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from becoming a pollutant source for stormwater discharges (e.g., screening outfalls, picked up daily).

Soil Stabilization Practices

Examples: establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, or preservation of mature vegetation.

17. Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices. A schedule of the interim and permanent soil stabilization practices for the site is attached.

- 18. Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 19. Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

Administrative Information

- 20. \square All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
- 21. If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
- 22. Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

ATTACHMENT A

Spill Response Actions

In the event of an accidental leak or spill:

- Onsite personnel will be trained to follow the spill response actions for the site.
- Spill must be contained and cleaned up immediately.
- Spills will not be merely buried or washed with water.
- Contractor shall take action to contain spill. Contractor may use sand or other absorbent material stockpiled on site to absorb spill. Absorbent material should be spread over the spill area to absorb the spilled product.
- In the event of an uncontained discharge the contractor shall utilize onsite equipment to construct berms downgradient of the spill with sand or other absorbent material to contain and absorb the spilled product.
- Spill containment/absorbent materials along with impacted media must be collected and stored in such a way so as not to continue to affect additional media (soil/water). Once the spill has been contained, collected material should be placed on poly or plastic sheeting until removed from the site. The impacted media and cleanup materials should be covered with plastic sheeting and the edges weighed down with paving bricks or other similarly dense objects as the material is being accumulated. This will prevent the impacted media and cleanup materials from becoming airborne in windy conditions or impacting runoff during a rain event. The stockpiled materials should not be located within an area of concentrated runoff such as along a curb line or within a swale.
- Contaminated soils and cleanup materials will be sampled for waste characterization. When the analysis results are known the contaminated soils and cleanup materials will be removed from the site and disposed in a permitted landfill in accordance with applicable regulations.
- The contractor will be required to notify the owner, who will in turn contact TCEQ to notify them in the event of a significant hazardous/reportable quantity spill. Additional notifications as required by the type and amount of spill will be conducted by owner or owner's representative.

In the event of an accidental significant or hazardous spill:

- The contractor will be required to report significant or hazardous spills in reportable quantities as soon as possible and within 24 hours to:
 - the National Response Center at (800) 424-8802
 - the TCEQ Regional Office (512) 339-2929 (if during business hours: 8 AM to 5 PM) or
 - the State Emergency Response Center (800) 832-8224 (if after hours)

- reportable quantities can be found at the following link: <u>https://www.tceq.texas.gov/response/spills/spill_rq.html</u>
- Contaminated soils will be sampled for waste characterization. When the analysis results are known the contaminated soils will be removed from the site and disposed in a permitted landfill in accordance with applicable regulations.

Additional guidance can be obtained from TCEQ's Technical Guidance Manual (TGM) RG-348 (2005) Section 1.4.16. Contractor shall review this section.

ATTACHMENT B

POTENTIAL SOURCES OF CONTAMINATION

- Potential Source Asphalt products used on this project.
 - Preventative Measure After placement of asphalt, emulsion or coatings, the contractor will be responsible for immediate cleanup should an unexpected rain occur. For the duration of the asphalt product curing time, the contractor will maintain standby personnel and equipment to contain any asphalt wash-off should an unexpected rain occur. The contractor will be instructed not to place asphalt products on the ground within 48 hours of a forecasted rain.
- Potential Source
 Oil, grease, fuel and hydraulic fluid contamination from construction equipment and vehicle dripping.
 - Preventative Measure Vehicle maintenance when possible will be performed within the construction staging area.
 - Construction vehicles and equipment shall be checked regularly for leaks and repaired immediately.
- Potential Source
 Accidental leaks or spills of oil, petroleum products and substances listed under 40 CFR parts 110, 117, and 302 used or stored temporarily on site.

Page 1 of 2

- Preventative Measure Contractor to incorporate into regular safety meetings, a discussion of spill prevention and appropriate disposal procedures.
 - Contractor's superintendent or representative overseer shall enforce proper spill prevention and control measures.
 - Hazardous materials and wastes shall be stored in covered containers and protected from vandalism.

- A stockpile of spill cleanup materials shall be stored on site where it will be readily accessible.
- Miscellaneous trash and litter from construction workers and material wrappings.
 - Preventive Measure Trash containers will be placed throughout the site to encourage proper trash disposal.
- Potential Source Construction debris.
 - Preventive Measure
 Construction debris will be monitored daily by contractor. Debris
 will be collected weekly and placed in disposal bins.
 Situations requiring immediate attention will be addressed
 on a case by case basis.
- Potential Source Spills/Overflow of waste from portable toilets
 - Preventative Measure
- Portable toilets will be placed away from high traffic vehicular areas and storm drain inlets.
- Portable toilets will be placed on a level ground surface.
- Portable toilets will be inspected regularly for leaks and will be serviced and sanitized at time intervals that will maintain sanitary conditions.

ATTACHMENT C

SEQUENCE OF MAJOR ACTIVITIES

The sequence of major activities which disturb soil during construction on this site are listed below.

- 1) Set erosion controls approximately 10,586 LF of silt fence, 349 LF of diversion dike, approximately 53 SY of rock rip-rap, and 96 SY of rock berm.
- 2) Clear and grub streets approximately 6.76 acres
- 3) Rough grade streets approximately 6.76 acres
- 4) Pond excavation approximately 1.60 acres
- 5) Trench utilities approximately 16,660 LF
- 6) Install water, wastewater, and storm approximately 15,204 LF
- 7) Install subbase/base for streets approximately 4.28 acres
- 8) Pave streets approximately 3.44 acres
- 9) Pond completion approximately 1.60 acres
- 10) Site cleanup approximately 35.85 acres
- 11) Remove erosion controls approximately 10,586 LF of silt fence, 349 LF of diversion dike, approximately 53 SY of rock rip-rap, and 96 SY of rock berm.

ATTACHMENT D

TEMPORARY BEST MANAGEMENT PRACTICES AND MEASURES

Please see the Erosion Control sheets included in the Construction Plans Section for TBMP layout and the responses below for more details.

There are no offsite areas up gradient from the site that will flow onto the project area.

Site preparation, which is the initiation of all activity on the project, will disturb the largest amount of soil. Therefore, before any of this work can begin, the clearing and grading contractor will be responsible for the installation of all on-site control measures. The methodology for pollution prevention of on-site stormwater will include: (1) erection of silt fences along the downgradient boundary of construction activities for temporary erosion and sedimentation controls, (2) installation of stabilized construction entrance/exit(s) to reduce the dispersion of sediment from the site, and (3) installation of construction staging area(s).

Prior to the initiation of construction, all previously installed control measures will be repaired or reestablished for their designed or intended purpose. This work, which is the remainder of all activities on the project, may also disturb additional soil. The construction contractor will be responsible for the installation of all remaining on-site control measures that includes installation of the concrete truck washout pit(s), as construction phasing warrants.

Temporary measures are intended to provide a method of slowing the flow of runoff from the construction site in order to allow sediment and suspended solids to settle out of the runoff. By containing the sediment and solids within the site, they will not enter the aquifer, surface streams and/or sensitive features that may exist downstream of the site.

The South Fork of the San Gabriel River is located south of the site. A combination of TBMPs including silt fence is proposed to capture sediment from on-site stormwater runoff and preserve the quality of the river.

Temporary measures are intended to provide a method of slowing the flow of runoff from the construction site in order to allow sediment and suspended solids to settle out of the runoff. By

containing the sediment and solids within the site, they will not enter the aquifer, surface streams and/or sensitive features that may exist downstream of the site. BMP measures utilized in this plan are intended to allow stormwater to continue downstream after passing through the BMPs. This will allow stormwater runoff to continue downgradient to streams or features that may exist downstream of the site. Features discovered during construction will be reported and assessed in accordance with applicable regulations.

ATTACHMENT F

STRUCTURAL PRACTICES

The following structural measures will be installed prior to the initiation of site preparation activities:

- Erection of silt fences along the downgradient boundary of construction activities and rock berms for secondary protection, as located on the Erosion Control Plan sheets and illustrated on the Construction Details Erosion Control sheet.
- Installation of stabilized construction entrance/exit(s) and construction staging area(s), as located on the Erosion Control Plan sheets and illustrated on the Construction Details -Erosion Control sheet.

The following structural measures will be installed at the initiation of construction activities or as appropriate based on the construction sequencing:

- Installation of inlet protection, as required and located on the Erosion Control Plan sheets and illustrated on the Construction Details Erosion Control sheet.
- Installation of concrete truck washout pit(s), as required and located on the Erosion Control Plan sheets and illustrated on the Construction Details - Erosion Control sheet.

Page 1 of 1

ATTACHMENT I

INSPECTIONS & MAINTENANCE

Designated and qualified person(s) shall inspect Pollution Control Measures weekly and within 24 hours after a storm event. An inspection report that summarizes the scope of the inspection, names and qualifications of personnel conducting the inspection, date of the inspection, major observations, and actions taken as a result of the inspection will be recorded and maintained as part of Storm Water TPDES data for a period of three years after the Notice of Termination (NOT) has been filed. A copy of the Inspection Report Form is provided in this Sewage Collection System application.

As a minimum, the inspector shall observe: (1) significant disturbed areas for evidence of erosion, (2) storage areas for evidence of leakage from the exposed stored materials, (3) structural controls (rock berm outlets, silt fences, drainage swales, etc.) for evidence of failure or excess siltation (over 6 inches deep), (4) vehicle exit point for evidence of off-site sediment tracking, (5) vehicle storage areas for signs of leaking equipment or spills, (6) concrete truck rinse-out pit for signs of potential failure, (7) embankment, spillways, and outlet of sediment basin (where applicable) for erosion damage, and (8) sediment basins (where applicable) for evidence that basin has accumulated 50% of its volume in silt. Deficiencies noted during the inspection will be corrected and documented within seven calendar days following the inspection or before the next anticipated storm event if practicable. Temporary sediment basins and permanent basins will be inspected until final stabilization of 70% within the basin watershed is achieved.

BMP inspection and maintenance requirements from sections 1.3 and 1.4 of TCEQ's Technical Guidance Manual are detailed below.

Temporary Construction Entrance/Exit

- The entrance should be maintained in a condition, which will prevent tracking or flowing of sediment onto public rights-of-way. This may require periodic top dressing with additional stone as conditions demand and repair and/or cleanout of any measures used to trap sediment.
- All sediment spilled, dropped, washed or tracked onto public rights-of-way should be removed immediately by contractor.
- When necessary, wheels should be cleaned to remove sediment prior to entrance onto public right-of-way.
- When washing is required, it should be done on an area stabilized with crushed stone that drains into an approved sediment trap or sediment basin.
- All sediment should be prevented from entering any storm drain, ditch or water course by using approved methods.

Silt Fence

- Inspect all fencing weekly, and after any rainfall.
- Remove sediment when buildup reaches 6 inches.
- Replace any torn fabric or install a second line of fencing parallel to the torn section.
- Replace or repair any sections crushed or collapsed in the course of construction activity. If a section of fence is obstructing vehicular access, consider relocating it to a spot where it will provide equal protection, but will not obstruct vehicles. A triangular filter dike may be preferable to a silt fence at common vehicle access points.
- When construction is complete, the sediment should be disposed of in a manner that will not cause additional siltation and the prior location of the silt

fence should be revegetated. The fence itself should be disposed of in an approved landfill.

Rock Berms

- Inspection should be made weekly and after each rainfall by the responsible party. For installations in streambeds, additional daily inspections should be made.
- Remove sediment and other debris when buildup reaches 6 inches and dispose of the accumulated silt in an approved manner that will not cause any additional siltation.
- Repair any loose wire sheathing.
- The berm should be reshaped as needed during inspection.
- The berm should be replaced when the structure ceases to function as intended due to silt accumulation among the rocks, washout, construction traffic damage, etc.
- The rock berm should be left in place until all upstream areas are stabilized and accumulated silt removed.

Inlet Protection

- Inspection should be made weekly and after each rainfall. Repair or replacement should be made promptly as needed by the contractor.
- Remove sediment when buildup reaches a depth of 3 inches. Removed sediment should be deposited in a suitable area and in such a manner that it will not erode.
- Check placement of device to prevent gaps between device and curb.
- Inspect filter fabric and patch or replace if torn or missing. 1-100

• Structures should be removed and the area stabilized only after the remaining drainage area has been properly stabilized.

Concrete Washout Areas

- Incorporate requirements for concrete waste management into material supplier and subcontractor agreements.
- Avoid mixing excess amounts of fresh concrete.
- Perform washout of concrete trucks in designated areas only.
- Do not wash out concrete trucks into storm drains, open ditches, streets, or streams.
- Do not allow excess concrete to be dumped onsite, except in designated areas.
- Locate washout area at least 50 feet from sensitive features, storm drains, open ditches, or water bodies. Do not allow runoff from this area by constructing a temporary pit or bermed area large enough for liquid and solid waste.
- Wash out wastes into the temporary pit where the concrete can set, be broken up, and then disposed properly.

Pollution	د الحقاق Corrective Action Required		d	
Prevention	Inspected in Compliance		Date	
Measure	omp	Description	Completed	
		(use additional sheet if necessary)		
Best Management Practice	es			
Natural vegetation buffer strips				
Temporary vegetation				
Permanent vegetation				
Sediment control basin				
Silt fences				
Rock berms				
Gravel filter bags				
Drain inlet protection				
Other structural controls				
Vehicle exits (off-site tracking)				
Material storage areas (leakage)				
Equipment areas (leaks, spills)				
Concrete washout pit (leaks, failure)				
General site cleanliness				
Trash receptacles				
Evidence of Erosion				
Site preparation				
Roadway or parking lot construction				
Utility construction				
Drainage construction				
Building construction				
Major Observations				
Sediment discharges from site				
BMPs requiring maintenance				
BMPs requiring modification				
Additional BMPs required				

A brief statement describing the qualifications of the inspector is included in this SWP3.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in acc ordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

"I further certify I am an authorized signatory in accordance with the provisions of 30 TAC §305.128."

Inspector's l	Name
---------------	------

Inspector's Signature

Date

PROJECT MILESTONE DATES

Date when major site grading activities begin:

Construction Activity	Date
Installation of BMPs	
Dates when construction activities temporarily or perm	anently cease on all or a portion of the
project:	
Construction Activity	Date
Dates when stabilization measures are initiated:	
Stabilization Activity	Date
Removal of BMPs	

ATTACHMENT J

SCHEDULE OF INTERIM AND PERMANENT SOIL STABILIZATION PRACTICES

Interim on-site stabilization measures, which are continuous, will include minimizing soil disturbances by exposing the smallest practical area of land required for the shortest period of time and maximizing use of natural vegetation. As soon as practical, all disturbed soil will be stabilized via permanent revegetation. Details, such as installation, irrigation, and maintenance are provided below.

Installation:

- Final grading must be completed prior to seeding, minimizing all steep slopes. In addition, all necessary erosion structures such as dikes, swales, diversions, should also be installed.
- Seedbed should be well pulverized, loose, and uniform.
- Fertilizer should be applied at the rate of 40 pounds of nitrogen and 40 pounds of phosphorus per acre, which is equivalent to about 1.0 pounds of nitrogen and phosphorus per 1000 square feet. Compost can be used instead of fertilizer and applied at the same time as the seed.

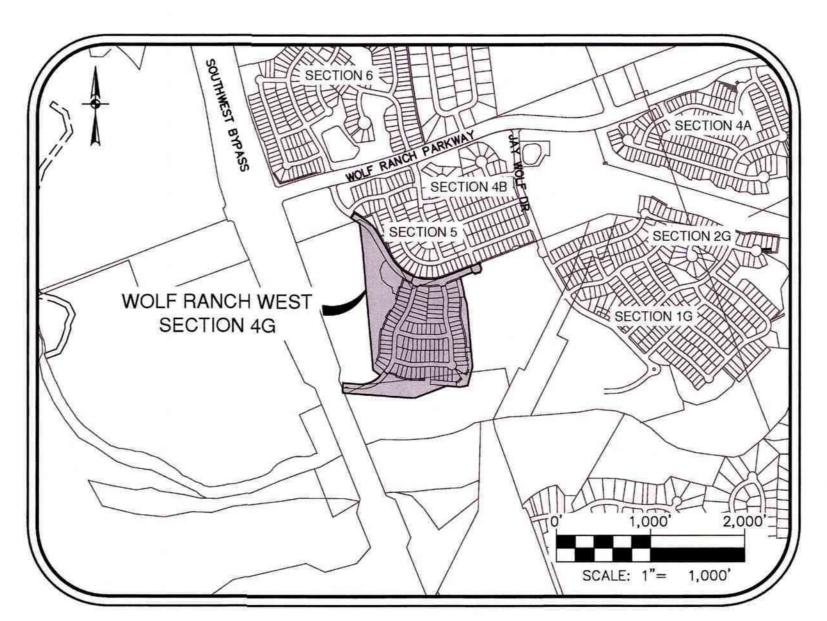
Irrigation:

 Temporary irrigation should be provided according to the schedule described below, or to replace moisture loss to evapotranspiration (ET), whichever is greater. Significant rainfall (on-site rainfall of ¹/₂" or greater) may allow watering to be postponed until the next scheduled irrigation.

Time Period	Irrigation Amount and Frequency
Within 2 hours of installation	Irrigate entire root depth, or to germinate seed
During the next 10 business days	Irrigate entire root depth every Monday, Wednesday, and Friday
During the next 30 business days or until Substantial Completion	Irrigate entire root depth a minimum of once per week, or as necessary to ensure vigorous growth
During the next 4 months or until Final Acceptance of the Project	Irrigate entire root depth once every two weeks, or as necessary to ensure vigorous growth

Inspection and Maintenance Guidelines:

- Permanent vegetation should be inspected weekly and after each rain event to locate and repair any erosion.
- Erosion from storms or other damage should be repaired as soon as practical by regrading the area and applying new seed.
- If the vegetated cover is less than 80%, the area should be reseeded.


Stabilization measures will be initiated as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, and except as provided below, will be initiated no more than fourteen (14) days after the construction activity in that portion of the site has temporarily or permanently ceased. Where construction activity on a portion of the site is temporarily ceased, and earth disturbing activities will be resumed within twenty-one (21) days, temporary stabilization measures do not have to be initiated on that portion of site. In areas experiencing droughts where the initiation of stabilization measures by the 14th day after construction activity has temporarily or permanently ceased is precluded by seasonably arid conditions, stabilization measures must be initiated as soon as practicable.

CONSTRUCTION PLANS

No.	REVISIONS Revision Description	Sheet(s) Effected:	Prepared by: (Date)	
	REVISE LOT LAYOUT AND SUPPORTIN	33-44, 47-48	A. CONNER 08/11/22	V
	REVISE LOT GRADING AND VIOLET SUNSET GRADING ADD POST EROSION CONTROL	7, 11, 18, 19, 29, 31 9	A. CONNER 02/20/23	-
				CTDEET
				STREET
	GENERAL NOTES			
	CONCURRENCE OF COMPLIANCE	E, THE PLANS FOR CONSTRUCTION	OF THE PROPOSED PROJECT ARE HE	NGINEER. THEREFORE, BASED ON THE ENGINE REBY APPROVED SUBJECT TO THE STANDARD FEDERAL REQUIREMENTS AND CODES.
	3. ALL ELECTRIC DISTRIBUTION LI	NES AND INDIVIDUAL SERVICE LINES	S SHALL BE INSTALLED UNDERGROUNI	BMITTAL OF THE PROJECT TO THE CITY. D. IF OVERHEAD LINES EXISTED PRIOR TO
	UNDERGROUND INSTALLATION, UNDERGROUND INFRASTRUCTUR	SUCH POLES, GUY WIRES, AND REI RE.	ATED STRUCTURES SHALL BE REMOV	ED FOLLOWING CONSTRUCTION OF THE
		ATION INFRASTRUCTURE SHALL CON HIS APPLICATION IS SUBJECT TO T	IPLY WITH UDC SECTION 13.06. HE WATER QUALITY REGULATIONS OF	THE CITY OF GEORGETOWN.
	6. A GEOLOGIC ASSESSMENT, IN		EORGETOWN WATER QUALITY REGULAT	TONS, WAS COMPLETED IN SEPTEMBER OF 201
				ND THE CITY OF GEORGETOWN UNDER DOCUM AND EXECUTED ON AUGUST 26, 2014.
	AGRICULTURE (AG) DISTRICT T	O PLANNED UNIT DEVELOPMENT (P		THE OFFICIAL ZONING MAP TO BE REZONED DD, APPROVED BY THE CITY OF GEORGETOWN
	COUNCIL ON NOVEMBER 13, 20	J18.		
	SUBMITTED BY: 1, michael s. fisher, p.e. #	187704, DO HEREBY CERTIFY THAT	THE ENGINEERING WORK	
	BEING SUBMITTED HEREIN ENGINEERING PRACTICE ACT, I MISREPRESENTATION REGARDI	COMPLIES WITH ALL THE PRO INCLUDING 131.152 (e). I HEREBY NG THIS CERTIFICATION CONSTITUT	VISION OF THE TEXAS ACKNOWLEDGE THAT ANY ES A VIOLATION OF THE	
	ACT, AND MAY RESULT IN CH ME, AS AUTHORIZED BY THE	RIMINAL, CIVIL AND/OR ADMINISTRA	TIVE PENALTIES AGAINST	
		STATE OF TEXAS		
		MICHAEL S FISHER		
		87704 207 L/CENS	.11	
	PAPE-DAWSON ENGINEERS	The second se	6/20/22 DATE	
	MICHAEL S. FISHER, P.E. #877 SR.VICE PRESIDENT TBPE FIRM REGISTRATION #470			
	APPROVED BY:			
	S hane Potter		01/30/2023	

OLF RANCH WEST SECTION 4G, PHASES 1 & 2 DRAINAGE, WATER, & WASTEWATER IMPROVEMENTS WILLIAMSON COUNTY MUD 29 (2022-5-CON)

THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

ENGINEER:

10801 N MOPAC EXPY BLDG. 3, STE. 200

AUSTIN, TEXAS 78759

(512) 454-8711

PAPE-DAWSON ENGINEERS, INC.

PROJECT ACREAGE: 34.41

OWNER: H4 GEORGETOWN PHASE 4G, LLC 3000 TURTLE CREEK BLVD. DALLAS, TX 75219 (972) 201-2984

APPLICANT: PAPE-DAWSON ENGINEERS, INC. 10801 N MOPAC EXPY BLDG. 3, STE. 200 AUSTIN, TEXAS 78759 (512) 454-8711

AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 | TBPLS FIRM REGISTRATION #10028801

SURVEY:

PAPE-DAWSON ENGINEERS, INC. 10801 N MOPAC EXPY BLDG. 3, STE. 200 AUSTIN, TEXAS 78759 (512) 454-8711

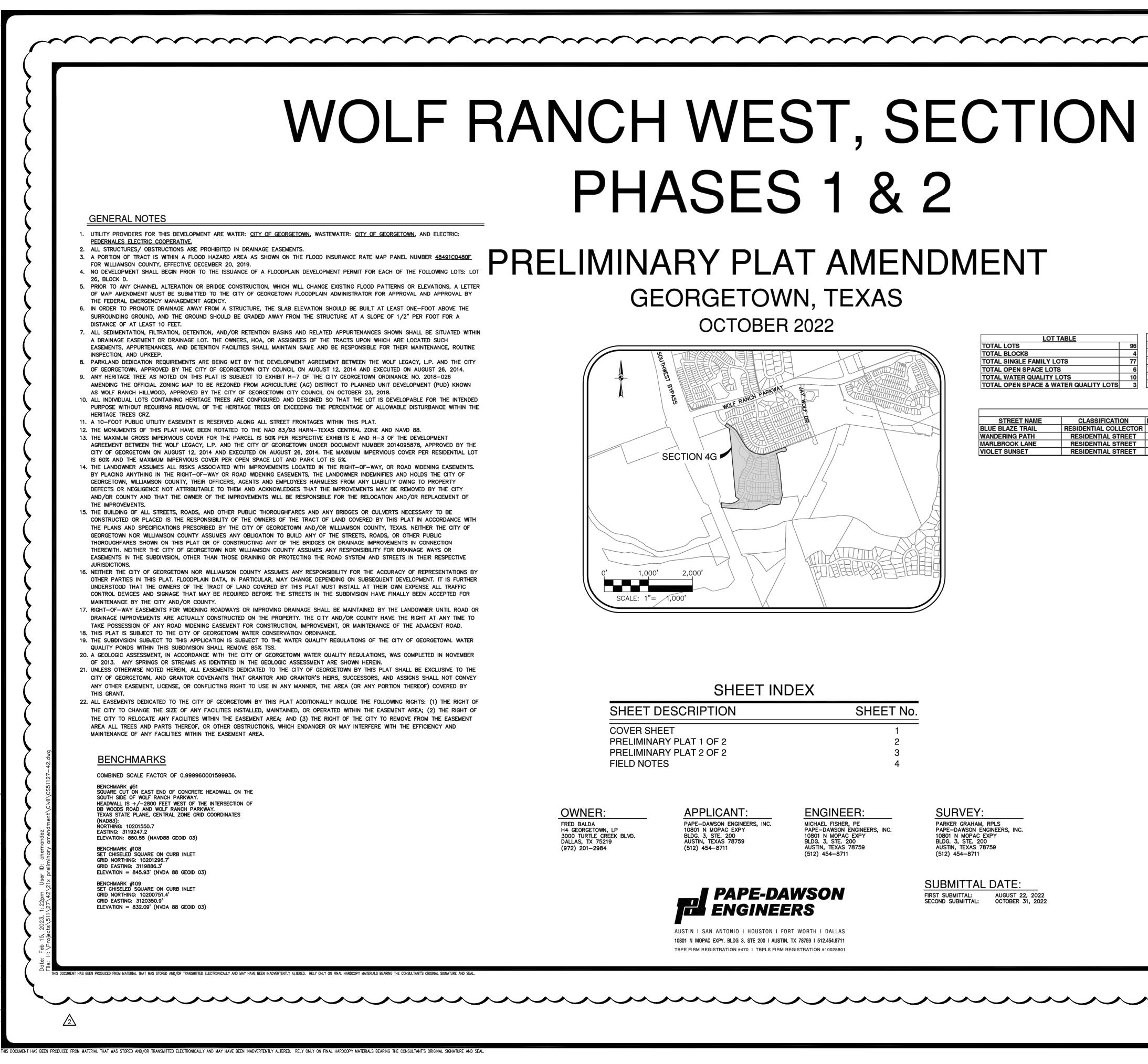
SUBMITT/	AL DATE:
1 ST SUBMITTAL:	FEB 14, 2022
2 ND SUBMITTAL:	APRIL 4, 2022
3 RD SUBMITTAL:	MAY 2, 2022
4 TH SUBMITTAL:	MAY 23, 2022

$\mathbf{\Lambda}$
\sum

Sheet Number	Sheet List Table
	Sheet Title
01	COVER SHEET PRELIMINARY PLAT 1 OF 4
02	PRELIMINARY PLAT 2 OF 4
05	PRELIMINARY PLAT 3 OF 4
05	PRELIMINARY PLAT 4 OF 4
06	
EROSION CONTROL	
07	EROSION CONTROL PLAN 1 OF 2
08	EROSION CONTROL PLAN 2 OF 2
09 TRAFFIC CONTROL	POST CONSTRUCTION EROSION CONTROL PLAN
10	SIGNAGE & STRIPING PLAN
GRADING	
11	OVERALL GRADING PLAN
STREET PLAN & F	rofiles
12	BLUE BLAZE TRAIL (1 of 2)
13	BLUE BLAZE TRAIL (2 of 2)
14	WANDERING PATH (1 of 2)
15	WANDERING PATH (2 of 2)
16	MARLBROOK LANE (1 of 2)
10	MARLBROOK LANE (1 of 2)
17	VIOLET SUNSET
18	MARLBROOK LANE
DRAINAGE	
20	OVERALL DRAINAGE STUDY
20	DRAINAGE CALCULATIONS
22	OVERALL STORM DRAINAGE PLAN
STORM PLAN & P	
23	SD-A1_FULL BUILD - STA 1+00 - END
24	SD-B1_FULL BUILD - STA 1+00 - END
25	SD-A3_4G - STA 1+00 - END
26	SD-C1.01 - STA 1+00 - 8+00
27	SD-C1.01 - STA 8+00 - END
28	SD-C2.01 - STA 1+00 - END
29	SD-C3.01 & SD-D1.01 - STA 1+00 - END
30	STORM DRAIN LATERALS 1 OF 2
31	STORM DRAIN LATERALS 2 OF 2
WATER DISTRIBUTION	
32	OVERALL WATER PLAN
33	WATER LINE 'A' - STA 5+50 TO 15+00
34	WATER LINE 'A' - STA 15+00 TO END
WASTEWATER COLL	
35	OVERALL WASTEWATER PLAN 1 OF 2
36	OVERALL WASTEWATER PLAN 2 OF 2
	LINE 'A' - STA 1+00 TO 10+00
37	LINE 'A' - STA 10+00 TO 19+50
37 38	LINE 'A' - STA 10+00 TO 19+50 LINE 'A' - STA 19+50 TO 29+00
37 38 39	
37 38 39 40	LINE 'A' - STA 19+50 TO 29+00
37 38 39 40 41	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50
37 38 39 40 41 42	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END
37 38 39 40 41 42 43	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50
37 38 39 40 41 42 43 44	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END
37 38 39 40 41 42 43 44 WATER QUALITY	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END
37 38 39 40 41 42 43 44 WATER QUALITY 45	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY: N	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY: N 46	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY: V 46 47	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY: N 46 47 48	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY: V 46 47 48 49	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY 46 47 48 49 50	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY: N 46 47 48 49 50 CONSTRUCTION DE	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY 46 47 48 49 50 CONSTRUCTION DE 51	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY: N 46 47 48 49 50 CONSTRUCTION DE 51 52	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY 46 47 48 49 50 CONSTRUCTION DE 51 52 53	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY 46 47 48 49 50 CONSTRUCTION DE 51 52 53 54	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY: N 46 47 48 49 50 CONSTRUCTION DE 51 52 53 54 55	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2 STREET DETAILS 1 OF 3
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY 46 47 48 49 50 CONSTRUCTION DE 51 52 53 54 55 56	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2 STREET DETAILS 1 OF 3 STREET DETAILS 1 OF 3
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY: N 46 47 48 49 50 CONSTRUCTION DE 51 52 53 54 55 56 57	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2 STORM DRAIN DETAILS 2 OF 2 STREET DETAILS 1 OF 3 STREET DETAILS 2 OF 3 STREET DETAILS 3 OF 3
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY 46 47 48 49 50 CONSTRUCTION DE 51 52 53 54 55 56 57 58	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2 STORM DRAIN DETAILS 2 OF 2 STREET DETAILS 1 OF 3 STREET DETAILS 2 OF 3 STREET DETAILS 3 OF 3 WATER DETAILS 1 OF 2
37 38 39 40 41 42 43 43 44 WATER QUALITY 45	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2 STREET DETAILS 1 OF 3 STREET DETAILS 1 OF 3 STREET DETAILS 2 OF 3 STREET DETAILS 1 OF 2 WATER DETAILS 1 OF 2
37 38 39 40 41 42 43 44 WATER QUALITY 45 WATER QUALITY 45 WATER QUALITY 46 47 48 49 50 CONSTRUCTION DE 51 52 53 54 55 56 57 58 59	LINE 'A' - STA 19+50 TO 29+00 LINE 'A' - STA 29+00 TO 38+50 LINE 'A' - STA 38+50 TO END LINE 'B' - STA 1+00 TO 9+50 LINE 'B' - STA 9+50 TO END LINE 'C & 'D' - STA 1+00 TO END WATER QUALITY DRAINAGE AREA MAP WATER QUALITY POND POND 1 PLAN VIEW POND 1 DETAILS 1 OF 2 POND 1 DETAILS 2 OF 2 POND 2 PLAN VIEW POND 2 DETAILS TAILS EROSION CONTROL DETAILS STORM DRAIN DETAILS 1 OF 2 STORM DRAIN DETAILS 1 OF 2 STREET DETAILS 1 OF 3 STREET DETAILS 1 OF 3 STREET DETAILS 1 OF 3 STREET DETAILS 1 OF 2 WATER DETAILS 1 OF 2 WATER DETAILS 1 OF 2 WATER DETAILS 1 OF 2 WATER DETAILS 1 OF 3

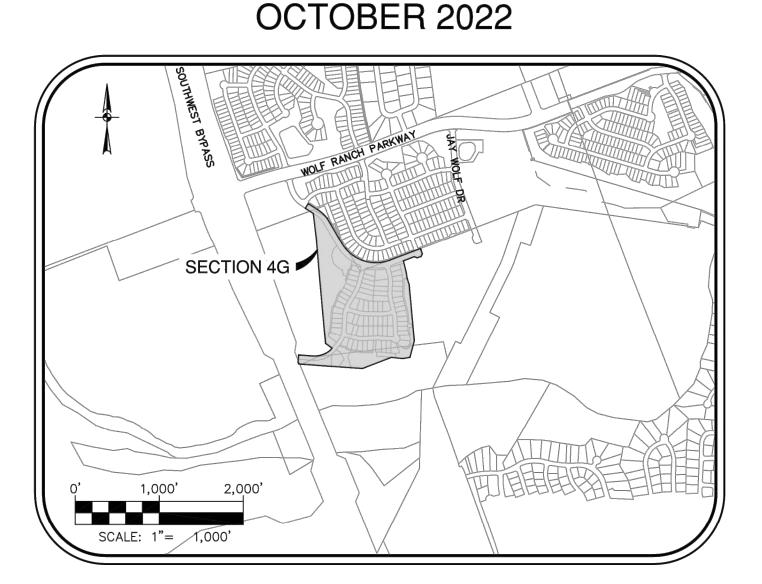
9N JOB

2022-5-CON


 Λ

sheet ___01 OF 61

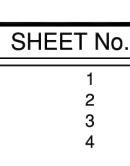
REVISION 1 1ST SUBMITTAL: 2ND SUBMITTAL: REVISION 2 1ST SUBMITTAL:


OCTOBER 17, 2022 FEBRUARY 21, 2023

AUGUST 22, 2022

WOLF RANCH WEST, SECTION PHASES 1 & 2

PRELIMINARY PLAT AMENDMENT GEORGETOWN, TEXAS



LOT TABLE	
TOTAL LOTS	96
TOTAL BLOCKS	4
TOTAL SINGLE FAMILY LOTS	77
TOTAL OPEN SPACE LOTS	6
TOTAL WATER QUALITY LOTS	10
TOTAL OPEN SPACE & WATER QUALITY LOTS	3

STREET NAME	CLASSIFICATION
BLUE BLAZE TRAIL	RESIDENTIAL COLLECTOR
WANDERING PATH	RESIDENTIAL STREET
MARLBROOK LANE	RESIDENTIAL STREET
VIOLET SUNSET	RESIDENTIAL STREET

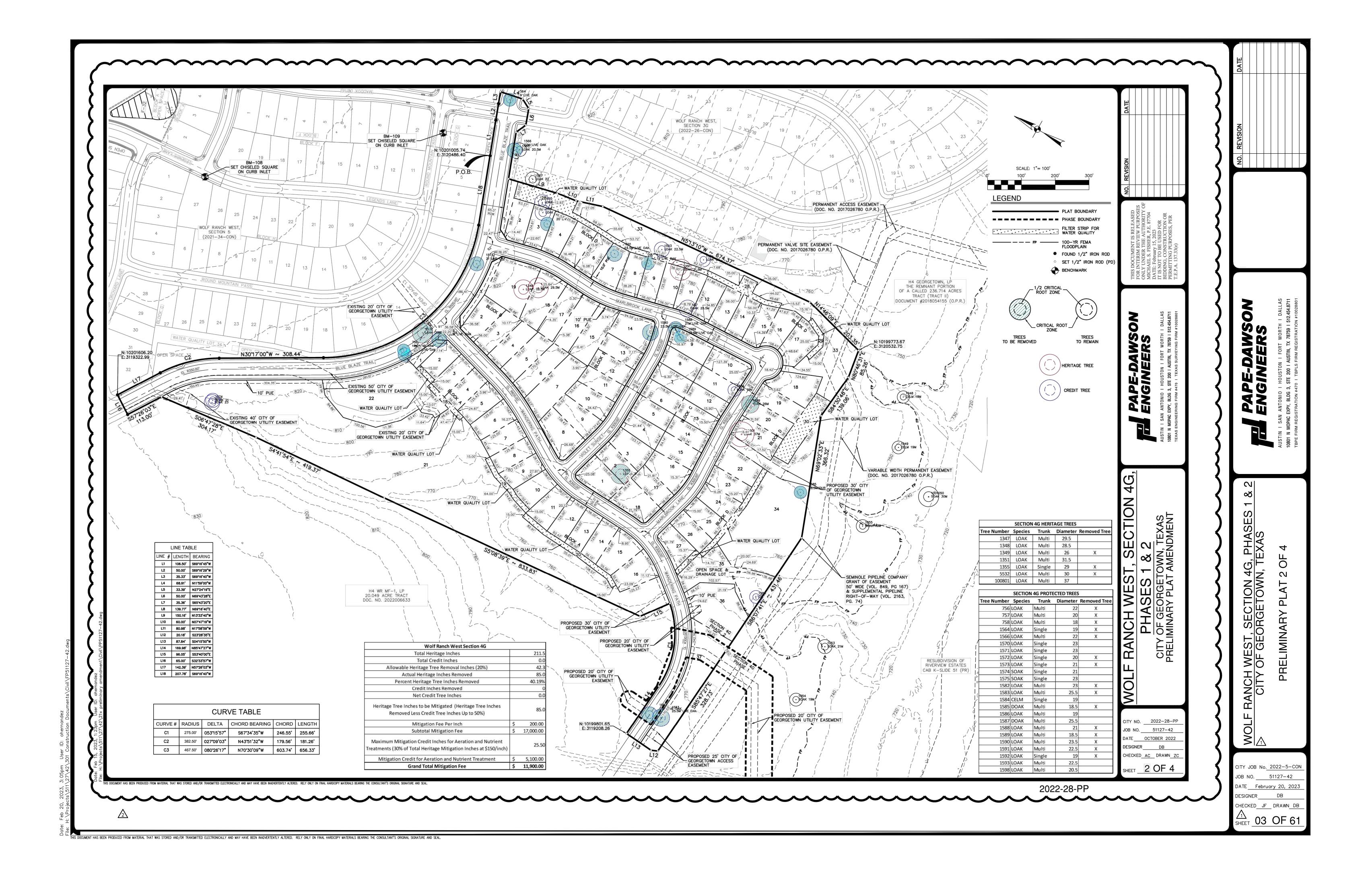
SHEET INDEX	
SHEET DESCRIPTION	

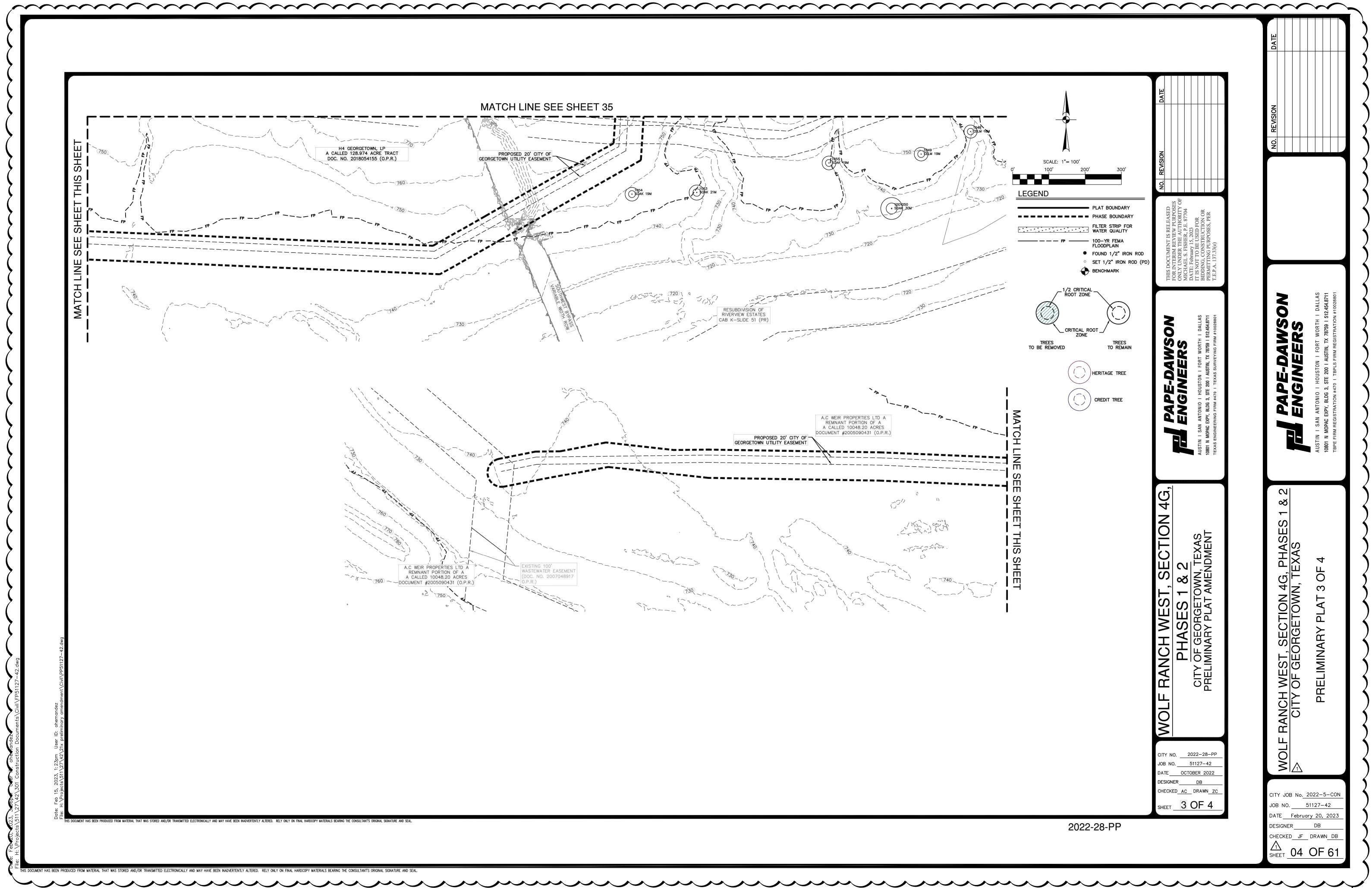
COVER SHEET PRELIMINARY PLAT 1 OF 2 PRELIMINARY PLAT 2 OF 2 FIELD NOTES

OWNER: FRED BALDA H4 GEORGETOWN, LP 3000 TURTLE CREEK BLVD. DALLAS, TX 75219 (972) 201–2984

APPLICANT: PAPE-DAWSON ENGINEERS, INC. 10801 N MOPAC EXPY BLDG. 3, STE. 200 AUSTIN, TEXAS 78759 (512) 454–8711

ENGINEER: MICHAEL FISHER, PE PAPE-DAWSON ENGINEERS, INC. 10801 N MOPAC EXPY BLDG. 3, STE. 200 AUSTIN, TEXAS 78759 (512) 454–8711

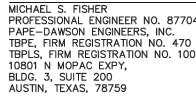


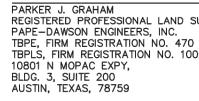

AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801

SURVEY: PARKER GRAHAM, RPLS PAPE-DAWSON ENGINEERS, INC. 10801 N MOPAC EXPY BLDG. 3, STE. 200 AUSTIN, TEXAS 78759 (512) 454-8711

SUBMITTAL DATE: AUGUST 22, 2022 FIRST SUBMITTAL: SECOND SUBMITTAL: OCTOBER 31, 2022

		NO. REVISION DATE
LAND USE ACREAGE		
Instruction Instruction RIGHT-OF-WAY 6.766 TOTAL SINGLE FAMILY LOTS 14.66 TOTAL OPEN SPACE LOTS 7.32 TOTAL OPEN SPACE & WATER QUALITY LOTS 2.20 TOTAL OPEN SPACE & WATER QUALITY LOTS 3.48 TOTAL 34.42 STREET TABLE ROW DIMENSION AVENUENT WIDTH PEDESTRIAN CLEAR ZONE CURB TYPE DESIGN SPEED 65' ROW 37' BOC-BOC S-FEET 6'' STANDARD 30 MPH 50' ROW 28' BOC-BOC 5-FEET 6'' STANDARD 30 MPH 50' ROW 28' BOC-BOC 5-FEET 6'' STANDARD 30 MPH 50' ROW 28' BOC-BOC 5-FEET 6'' STANDARD 30 MPH 50' ROW 28' BOC-BOC 5-FEET 6'' STANDARD 30 MPH	PHASES 1 & 2	PapelbadysonPapelbadysonPapelbadysonPaustin I san antonio I houston I fort worth I dallas10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
	WOLF RANCH WEST, SECTION 4G,	CH WEST, SECTION 4G, PHASES 1 & 2 TY OF GEORGETOWN, TEXAS PRELIMINARY PLAT 1 OF 4
THIS DOCUMENT IS RELEASED FOR THE PURPOSE OF REVIEW UN THE AUTHORITY OF MICHAEL S. FISHER, PROFESSIONAL ENGINE 87704 ON February 15, 2023. IT IS NOT TO BE USED FOR BIDDING, PI OR CONSTRUCTION. SHEET 1 OF 4 2022-28-PP		CITY JOB No. 2022-5-CON JOB NO. 51127-42 DATE February 20, 2023 DESIGNER DB CHECKED JF DRAWN DB \overleftrightarrow{A} SHEET 02 OF 61




LOT No. BLOCK SQFT ACRES	LOT No. BLOCK SQFT ACRES	FIELD NOTES FOR	
1 BLOCK A 3,156.09 0.07 2 BLOCK A 6,752.26 0.16	1 BLOCK C 9,926.56 0.23 2 BLOCK C 7,000.21 0.16	A 34.423 TRACT OF LAND BEING ALL OF A CALLED 0.644 ACRE TRACT (TRACT 6) AND A CALLED 0.217 ACRE TRACT (TRACT 5) CONVEYED TO H4 GEORGETOWN,	
3 BLOCK A 7,014.81 0.16	3 BLOCK C 8,489.47 0.19	LP, RECORDED IN DOCUMENT NO. 2022006590 OF THE OFFICIAL PUBLIC RECORDS OF WILLIAMSON COUNTY, TEXAS, AND BEING OUT OF A REMNANT PORTION OF A CALLED 236.714 ACRE TRACT CONVEYED TO H4 GEORGETOWN, LP, RECORDED IN DOCUMENT NO. 2018054155 OF SAID OFFICIAL PUBLIC RECORDS, AND OUT OF A CALLED 50.285 ACRE TRACT CONVEYED TO H4 GEORGETOWN PHASE 1, LCC, RECORDED IN DOCUMENT NO. 2020157115 OF SAID OFFICIAL PUBLIC RECORDS, AND	ENGINEER'S CERTIFICATION
BLOCK A 7,020.96 0.16 BLOCK A 7,910.01 0.18	4 BLOCK C 7,287.39 0.17 5 BLOCK C 6,714.52 0.15	BEING OUT OF A CALLED 20.049 ACRE TRACT CONVEYED TO H4 WR MF—1, LP, RECORDED IN DOCUMENT NO. 2022006633 OF SAID OFFICIAL PUBLIC RECORDS, SITUATED IN THE JOSEPH THOMPSON SURVEY, ABSTRACT NO. 608, WILLIAMSON COUNTY, TEXAS. SAID 34.423 ACRE TRACT BEING MORE FULLY DESCRIBED AS FOLLOWS, WITH BEARINGS BASED ON THE TEXAS COORDINATE SYSTEM ESTABLISHED FOR THE CENTRAL ZONE FROM THE NORTH AMERICAN DATUM OF 1983 NAD	I, MICHAEL S. FISHER, REGISTE
BLOCK A 8,013.39 0.18	6 BLOCK C 6,659.72 0.15	83 (NA2011) EPOCH 2010.00;	HEREBY CERTIFY THAT THIS W RECHARGE ZONE AND A PORT DENOTED HEREIN, AND AS DEI
BLOCK A 7,230.44 0.17	7 BLOCK C 6,605.33 0.15	BEGINNING at a ½" iron rod with yellow cap marked "Pape—Dawson" found on a point in the east right—of—way line of Southwest Bypass, a variable width right—of—way, described as a called 20.942 acre tract of land conveyed to the City of Georgetown, recorded in Document No. 2015010273 of said Official	FLOOD HAZARD BOUNDARY MA DECEMBER 20, 2019, AND THA
CK A 7,074.87 0.16	8 BLOCK C 6,693.35 0.15	Public Records, same being the south corner of said 20.049 acre tract, and same being a northwest corner of the Remnant Portion of said 236.714 acre tract for the POINT OF BEGINNING hereof;	REGULATIONS.
OCK A 7,031.45 0.16 OCK A 7,493.48 0.17	* 9 BLOCK C 8,224.24 0.19 10 BLOCK C 9,272.95 0.21	THENCE N 0415'50" E, departing the east right—of—way line of said Southwest Bypass, with the south boundary line of said 20.049 acre tract, same being the north boundary line of the Remnant Portion of said 236.714—acre tract, in part through the interior of said 20.049 acre tract, a distance of 87.84 feet to a	THE FULLY DEVELOPED, CON HUNDRED (100) YEAR FREQU SHOWN AND/OR PUBLIC RIGHT
BLOCK A 8,593.50 0.20	11 BLOCK C 7,043.62 0.16	½" iron rod with yellow cap marked "Pape—Dawson" set for an angle point hereof;	TO CERTIFY WHICH, WITNESS N
BLOCK A 7,385.39 0.17	12 BLOCK C 6,865.07 0.16	THENCE continuing through the interior of said 20.049 acre tract, the following two (2) courses and distances:	OF
3 BLOCK A 7,000.00 0.16 4 BLOCK A 7,114.11 0.16	13 BLOCK C 6,837.01 0.16 14 BLOCK C 6,957.78 0.16	1.S 85°47'27" E, a distance of 169.98 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" set for a calculated point of tangent curvature hereof, 2.along the arc of a curve to the left, having a radius of 275.00 feet, a central angle of 53°15′57, a chord bearing and distance of N 67°34'35" E 246.55	MICHAEL S. FISHER, PROFESS BE USED FOR BIDDING, PERMI
5 BLOCK A 9,748.55 0.22	15 BLOCK C 7,837.28 0.18	feet, for an arc length of 255.66 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for a point of tangency on the southeast corner of said 20.049 acre tract, same being a northwest corner of the Remnant Portion of said 236.714 hereof,	
BLOCK A 9,526.87 0.22	16 BLOCK C 9,062.82 0.21	THENCE with the east boundary line of said 20.049 acre tract, same being the west boundary line of the Remnant Portion of said 236.714 acre tract, the following four (4) courses and distances:	
BLOCK A 920.89 0.02	17 BLOCK C 7,006.82 0.16	1.N 53°40'00" W, a distance of 96.05 feet to a ½" iron rod with yellow cap marked "Pape-Dawson" found for an angle point hereof,	
BLOCK A 2,052.66 0.05 BLOCK A 2,979.75 0.07	18 BLOCK C 10,050.57 0.23	2.N 05°08'39" W, a distance of 833.83 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof,	
BLOCK A 5,133.79 0.12		3.N 04°41'54" W, a distance of 419.37 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof, and	
BLOCK A 255,817.76 5.87		4.N 06°47'28" W, a distance of 304.17 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof,	MICHAEL S. FISHER
BLOCK A 44,181.65 1.01		THENCE N 57°47'28" W, continuing with the with the east boundary line of said 20.049 acre tract, same being the west boundary line of the Remnant Portion of said 236.714 acre tract, in part being with the east boundary line of a called 6.551 acre tract, recorded in Document No. 2022006634 of the said Official	PROFESSIONAL ENGINEER NO. PAPE-DAWSON ENGINEERS, IN
	PARCEL TABLE	Public Records, same being the west boundary line of said 0.217 acre tract, a distance of 113.00 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found on an interior ell corner of said 6.551 acre tract, same being the northwest corner of said 0.217 acre tract for an angle point hereof;	TBPE, FIRM REGISTRATION NO TBPLS, FIRM REGISTRATION N
	LOT No. BLOCK SQFT ACRES	THENCE N 32*33'57" E, continuing with the east boundary line of said 6.551 acre tract, same being the west boundary line of said 0.217 acre tract, a distance of 65.00 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found on the west boundary line of a called 18.852 acre tract, recorded in Document	10801 N MOPAC EXPY, BLDG. 3, SUITE 200 AUSTIN, TEXAS, 78759
	1 BLOCK D 3,560.62 0.08	of 53.00 feet to a ½ iron roa with yellow cap marked. Pape—Dawson found on the west boundary line of a called 18,852 acre tract, recorded in Document No. 2022024798 of said Official Public Records, same being an east corner of said 6.551 acre tract, also being the north corner of said 0.217 acre tract for the northernmost north corner hereof:	AUGTIN, TEAAG, 70700
	2 BLOCK D 7,644.42 0.18 3 BLOCK D 7,554.48 0.17	THENCE S 57*26'03" E, departing the east boundary line of said 6.551 acre tract, with the west boundary line of said 18.852 acre tract, same being the east	SURVEYOR'S CERTIFICATION
PARCEL TABLE	4 BLOCK D 7,994.25 0.18	boundary line of said 0.217 acre tract, a distance of 142.39 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for a point of tangent curvature hereof;	STATE OF TEXAS
No. BLOCK SQFT ACRES	5 BLOCK D 7,665.18 0.18	THENCE, continuing with the west boundary line of said 18.852 acre tract, same being the east boundary line of said 0.217 acre tract, in part with the east boundary line of the Remnant Portion of said 236.714 acre tract, along the arc of a curve to the right, having a radius of 382.50 feet, a central angle of	COUNTY OF
BLOCK B 4,561.37 0.10	6 BLOCK D 6,998.48 0.16	27°09'03", a chord bearing and distance of S 43°51'32" E 179.56 feet, for an arc length of 181.26 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for a point of tangency hereof;	I. PARKER GRAHAM. REGISTE
BLOCK B 8,631.60 0.20 BLOCK B 7,907.27 0.18	7 BLOCK D 8,780.50 0.20 8 BLOCK D 7,605.88 0.17	THENCE, S 3017'00" E, continuing with the west boundary line of said 18.852 acre tract, same being the east boundary line of the Remnant Portion of said 236.714 acre tract, a distance of 308.44 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for a point of tangent curvature hereof;	HEREBY CERTIFY THAT THIS MADE ON THE GROUND OF
BLOCK B 8,518.19 0.20	9 BLOCK D 7,000.00 0.16	THENCE, continuing with the west boundary line of said 18.852 acre tract, same being the east boundary line of the Remnant Portion of said 236.714 acre	NO APPARENT DISCREPANO LINES OR ROADS IN PLACE CORNER MONUMENTS SHOW
BLOCK B 9,166.30 0.21	10 BLOCK D 7,000.00 0.16	tract, in part with the northeast boundary line of said 0.644 acre tract, along the arc of a curve to the left, having a radius of 467.50 feet, a central angle of 80°26'17", a chord bearing and distance of S 70°30'09" E 603.74 feet, for an arc length of 656.33 feet to a ½" iron rod with yellow cap marked	ACCORDANCE WITH THE SU
6 BLOCK B 10,038.78 0.23 7 BLOCK B 15,010.52 0.34	11 BLOCK D 8,021.39 0.18 12 BLOCK D 7,453.07 0.17	"Pape—Dawson" found on the southeast corner of said 0.644 acre tract, same being on the south boundary line of said 18.852 acre tract, also being the north boundary line of the Remnant Portion of said 236.714 acre tract for a point of tangency hereof; THENCE N 69"16'40" E, departing the southeast corner of said 0.644 acre tract, with the south boundary line of said 18.852 acre tract, also being the north	TO CERTIFY WHICH, WITNES OF
BLOCK B 10,997.90 0.25	13 BLOCK D 7,000.00 0.16	boundary line of the Remnant Portion of said 236.714 acre tract, in part with the south boundary line on Wolf Ranch West, Section 4B, Phase 2, a subdivision according to the plat recorded in Document No. 2019114626 of said Official Public Records, same being the north boundary line of said 50.285 acre tract, a	THIS DOCUMENT IS RELEASE
OCK B 8,969.85 0.21	14 BLOCK D 7,000.00 0.16	distance of 399.61 feet to a ½" iron rod with yellow cap marked "Pape-Dawson" found for the easternmost northeast corner hereof;	PARKER J. GRAHAM, REGISTE IT IS NOT TO BE USED FOR
BLOCK B 8,088.63 0.19	15 BLOCK D 7,255.52 0.17	THENCE, departing the south line of Wolf Ranch West, Section 4B, Phase 2, through the interior of said 50.285 acre tract, the following four (4) courses and distances:	
1 BLOCK B 7,127.29 0.16 2 BLOCK B 7,000.50 0.16	16 BLOCK D 7,707.79 0.18 17 BLOCK D 9,984.93 0.23	1. S 11*59'00" E, a distance of 68.90 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof,	
BLOCK B 7,000.73 0.16	19 BLOCK D 8,124.63 0.19	2.S 2718'29" W, a distance of 33.44 feet to a ½" iron rod with yellow cap marked "Pape-Dawson" found for an angle point hereof,	
BLOCK B 10,452.51 0.24	20 BLOCK D 7,972.62 0.18	3.S 69°48'42" W, a distance of 50.00 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof, and 4.N 65°43'20" W, a distance of 35.36 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof,	
15 BLOCK B 12,164.40 0.28	21 BLOCK D 9,818.71 0.23	THENCE S 69°16'40" W, continuing through the interior of said 50.285 acre tract, in part with a north boundary line of said 50.285, same being a south	
16 BLOCK B 9,564.15 0.22 17 BLOCK B 9,404.86 0.22	22 BLOCK D 9,117.92 0.21 23 BLOCK D 7,103.61 0.16	boundary line of the Remnant Portion of said 236.714 acre tract, a distance of 139.77 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof;	PARKER J. GRAHAM
18 BLOCK B 12,753.20 0.29	24 BLOCK D 7,545.45 0.17	THENCE, departing the south line of the Remnant Portion of said 236.714 acre tract, through the interior of said 50.285 acre tract, the following two (2) courses and distances:	REGISTERED PROFESSIONAL PAPE-DAWSON ENGINEERS,
19 BLOCK B 17,609.73 0.40	25 BLOCK D 7,325.39 0.17	1.S 13°33'40" E, a distance of 150.16 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof, and	TBPE, FIRM REGISTRATION N TBPLS, FIRM REGISTRATION I 10801 N MOPAC EXPY,
	26 BLOCK D 7,014.54 0.16 28 BLOCK D 20,873.84 0.48	2.S 07°47'19" E, a distance of 60.00 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found on the west boundary line of said 50.285 acre	BLDG. 3, SUITE 200 AUSTIN, TEXAS, 78759
	28 BLOCK D 20,873.84 0.48 29 BLOCK D 2,055.79 0.05	tract, same being the east boundary line of the Remnant Portion of said 236.714 acre tract for an angle point hereof, THENCE, with the west boundary line of said 50.285 acre tract, same being the east boundary line of the Remnant Portion of said 236.714 acre tract, the	
	30 BLOCK D 11,289.95 0.26	following three (3) courses and distances:	
	31 BLOCK D 4,751.05 0.11	1. S 17°58'59" E, a distance of 80.98 feet to a ½" iron rod with yellow cap marked "Pape-Dawson" found for an angle point hereof,	
	32 BLOCK D 1,371.79 0.03 33 BLOCK D 61,939.18 1.42	2.S 0513'10" E, a distance of 674.37 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" found for an angle point hereof, 3.S 14°46'09" W, a distance of 203.35 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" set for the southeast corner hereof,	
	33 BLOCK D 61,939.16 1.42 34 BLOCK D 68,179.60 1.57	THENCE, departing the west boundary line of said 50.285 acre tract, through the interior of the Remnant Portion of said 236.714 acre tract, the following five (5) courses and distances:	
	35 BLOCK D 23,538.69 0.54	1.S 80°46'31" W, a distance of 85.26 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" set for an angle point hereof,	
	36 BLOCK D 21,381.42 0.49	2.N 84*30'48" W, a distance of 139.06 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" set for an angle point hereof,	
	37 BLOCK D 28,409.60 0.65	3.S 69°02'33" W, a distance of 366.32 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" set for an angle point hereof,	
		4.N 86°07'41" W, a distance of 431.46 feet to a ½" iron rod with yellow cap marked "Pape—Dawson" set for an angle point hereof,	
		5.N 85°47'27" W, a distance of 329.15 feet to the POINT OF BEGINNING hereof and containing 34.423 acres in the City of Georgetown, Williamson County Texas. Said tract being described in accordance with q preliminary plat prepared under job no. 51127—42 by Pape—Dawson Engineers, Inc.	
NOTE: * DENOTES SMALLEST F	ESIDENTIAL LOT		
	D ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTAN	NT'S ORIGINAL SIGNATURE AND SEAL	

IS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.

 \sim

FIELD NOTES FOR

PARCEL TABLE RES LOT No. BLOCK SQFT ACRES 07 1 BLOCK C 9,926.56 0.23 16 2 BLOCK C 7,000.21 0.16 16 3 BLOCK C 8,489.47 0.19 16 4 BLOCK C 7,287.39 0.17 18 6 BLOCK C 6,659.72 0.15 17 7 BLOCK C 6,605.33 0.15	FIELD NOTES FOR A 34.423 TRACT OF LAND BEING ALL OF A CALLED 0.644 ACRE TRACT (TRACT 6) AND A CALLED 0.217 ACRE TRACT (TRACT 5) CONVEYED TO H4 GEORGETOWN, LP, RECORDED IN DOCUMENT NO. 2022006590 OF THE OFFICIAL PUBLIC RECORDS OF WILLMANSON COUNTY, TEXAS, AND BEING OUT OF A REMNANT PORTION OF A CALLED 250.714 ACRE TRACT CONVEYED TO H4 GEORGETOWN, LP, RECORDED IN DOCUMENT NO. 2018054155 OF SAID OFFICIAL PUBLIC RECORDS, AND BEING OUT OF A CALLED 20.049 ACRE TRACT CONVEYED TO H4 GEORGETOWN PHASE 1, LCC, RECORDED IN DOCUMENT NO. 20220157115 OF SAID OFFICIAL PUBLIC RECORDS, STULATED IN THE JOSEPH THOMPSON SURVEY, ABSTRACT NO. 608, WILLIAMSON COUNTY, TEXAS. SAID 34.423 ACRE TRACT BEING MORE FULLY DESCRIBED AS FOLLOWS, WITH BEARINGS BASED ON THE TEXAS COORDINATE SYSTEM ESTABLISHED FOR THE CENTRAL ZONE FROM THE NORTH AMERICAN DATUM OF 1983 NAD 83 (NA2011) EPOCH 2010.00; BEGINNING at a ½" iron rod with yellow cap marked "Pape-Dawson" found on a point in the east right—of—way line of Southwest Bypass, a variable width	ENGINEER'S CERTIFICATION I, MICHAEL S. FISHER, REGISTERED PROFESSIONAL ENGINEER IN THE STATE OF TEXAS, DO HEREBY CERTIFY THAT THIS WOLF RANCH WEST, SECTION 4G IS IN THE EDWARDS AQUIFER RECHARGE ZONE AND A PORTION OF THIS TRACT IS WITHIN A FLOOD HAZARD ZONE, AS DENOTED HEREIN, AND AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT ADMINISTRATION FLOOD HAZARD BOUNDARY MAP, COMMUNITY PANEL NUMBER 4849100480F, EFFECTIVE DATE	LE VISION	NO. REVISION
7 BLOCK C 6,605.33 0.15 6 8 BLOCK C 6,693.35 0.15 * 9 BLOCK C 8,224.24 0.19 7 10 BLOCK C 9,272.95 0.21 11 BLOCK C 7,043.62 0.16 7 12 BLOCK C 6,837.01 0.16 13 BLOCK C 6,837.01 0.16 14 BLOCK C 6,957.78 0.16 15 BLOCK C 9,062.82 0.21 17 BLOCK C 7,006.82 0.16 18 BLOCK C 10,050.57 0.23 77 BLOCK D 3,560.62 0.08 2 37 1 BLOCK D 3,560.62 1 BLOCK D 7,554.48 0.17 4 BLOCK D 7,665.18 0.18 5 BLOCK D 7,665.18 0.18 6 BLOCK D 7,605.88 0.17 9 BLOCK D 7,000.00 0.16 10 BLOCK D 7,000.00 0.1	right-of-exy, described as a called 20.942 one tool of and conveyed to the City of Georgroup, recorded in Document No. 2015010273 of ealth Official Pable Records more back the easth common of eald 20.849 one troot, and sense baking a northwest concret of the Remain Portion of eald 20.82.714 oner troot for the FORT OF BEDMINIG hereof. THENCE Northwest Pay-Document Pay Document Pay	Incomparing the construction with the construction of the constructions. THE FULL DEVELOPED, CONCENTRATED STORMWATER RUNOFF RESULTING FROM THE ONE HUNDRED (100) YEAR FREQUENCY STORM IS CONTAINED WITHIN THE DRAINAGE EASEMENTS SHOWN AND/OR PUBLIC RECHTS-0WAY DEDICATED BY THIS PLAT. TO CERTIFY WHICH, WITNESS MY HAND AND SEAL AT TRAVIS, COUNTY, TEXAS THIS DAY OF	Image: State Stat	PAPE-DAWSON
12 BLOCK D 7,453.07 0.17 13 BLOCK D 7,000.00 0.16 14 BLOCK D 7,255.52 0.17 16 BLOCK D 7,707.79 0.18 17 BLOCK D 9,984.33 0.23 19 BLOCK D 7,972.62 0.18 21 BLOCK D 9,117.92 0.21 23 BLOCK D 7,103.61 0.16 24 BLOCK D 7,325.39 0.17 25 BLOCK D 7,014.54 0.16 24 BLOCK D 7,015.39 0.17 25 BLOCK D 7,015.51 0.16 28 BLOCK D 20,873.34 0.48 29 BLOCK D 20,873.34 0.48 29 BLOCK D 20,873.84 0.48 29 BLOCK D 23,538.69 0.54 36 BLOCK D	 TRENCE & GPT407 E, adjusting the sculture is come of add 0.844 does not add the scale address the of add 1.8352 does not address addr	TAS DOCUMENT IS RELEASED FOR BIDDING, PERMIT OR CONSTRUCTION. THIS NOT TO BE USED FOR BIDDING, PERMIT OR CONSTRUCTION. PARKER J. GRAHAM REDISTRED PROFESSIONAL LAND SURVEYOR NO. 5556 PARE-DAVGO REUNING TPT, FIRIN REGISTRATION NO. 470 TPT, FIRIN REGISTRATION NO. 10028001 DG01 N MORA EXPYN. NO. 10028001 AUSTIN, TEXAS, 78759	VOLF RANCH VEST NOLF RANCH VEST NOLF RANCH VEST NOLF RANCH VEST PHASES 1 & 2 CITV OF GEORGETOWN, TEXAS PRELIMINARY PLAT AMENDMENT DESIGNEEOB CHECKEDA OF 4	WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2

GENERAL NOTES	
1. THESE CONSTRUCTION PLANS WERE PREPARED, SEALED, SIGNED AND DATED BY A TEXAS LICENSED PROFESSIONAL ENGINEER. THEREFORE BASED ON THE ENGINEER'S CONCURRENCE OF COMPLIANCE, THE CONSTRUCTION PLANS FOR CONSTRUCTION OF THE PROPOSED PROJECT ARE HEREBY APPROVED SUBJECT TO THE STANDARD CONSTRUCTION SPECIFICATIONS AND DETAILS MANUAL AND ALL OTHER APPLICABLE CITY, STATE, AND FEDERAL REQUIREMENTS AND CODES.	6. IF SEDIMENT ESCAPES THE CONSTRUCTION SI MUST BE REMOVED AT A FREQUENCY SUFFICIEN QUALITY (E.G., FUGITIVE SEDIMENT IN STREET BE SENSITIVE FEATURES BY THE NEXT RAIN).
2. THIS PROJECT IS SUBJECT TO ALL CITY STANDARD SPECIFICATIONS AND DETAILS AND UDC REGULATIONS IN EFFECT AT THE TIME OF SUBMITTAL OF THE PROJECT TO THE CITY.	7. SEDIMENT MUST BE REMOVED FROM SEDIMENT THAN WHEN DESIGN CAPACITY HAS BEEN REDUC PROVIDED THAT CAN INDICATE WHEN THE SEDIM
 THE SITE CONSTRUCTION PLANS SHALL MEET ALL REQUIREMENTS OF THE APPROVED SITE PLAN. WASTEWATER MAINS AND SERVICE LINES SHALL BE SDR 26 PVC. 	8. LITTER, CONSTRUCTION DEBRIS, AND CONSTRUCTION DEBRIS, AND CONSTRUCTION SHALL BE PREVENTED FROM BECOMING A POLLU
 WASTEWATER MAINS AND SERVICE LINES SHALL BE SDR 26 PVC. WASTEWATER MAINS SHALL BE INSTALLED WITHOUT HORIZONTAL OR VERTICAL BENDS. 	(E.G., SCREENING OUTFALLS, PICKED UP DAILY).9. ALL SPOILS (EXCAVATED MATERIAL) GENERAT
6. MAXIMUM DISTANCE BETWEEN WASTEWATER MANHOLES IS 500 FEET.	STORED ON SITE WITH PROPER E&S CONTROLS. AT ANOTHER SITE ON THE EDWARDS AQUIFER
7. WASTEWATER MAINS SHALL BE LOW PRESSURE AIR TESTED AND MANDREL TESTED BY THE CONTRACTOR ACCORDING TO CITY OF GEORGETOWN AND TCEQ REQUIREMENTS.	MUST RECEIVE APPROVAL OF A WATER POLLUTIO OF FILL MATERIAL OR MASS GRADING PRIOR TO SITE.
8. WASTEWATER MANHOLES SHALL BE VACUUM TESTED AND COATED BY THE CONTRACTOR ACCORDING TO CITY OF GEORGETOWN AND TCEQ REQUIREMENTS.	10. STABILIZATION MEASURES SHALL BE INITIATE OF THE SITE WHERE CONSTRUCTION ACTIVITIES F
9. WASTEWATER MAINS SHALL BE CAMERA TESTED BY THE CONTRACTOR AND SUBMITTED TO THE CITY IN DVD FORMAT PRIOR TO PAVING THE STREETS.	CEASED, BUT IN NO CASE MORE THAN 14 DAYS THAT PORTION OF THE SITE HAS TEMPORARILY INITIATION OF STABILIZATION MEASURES BY THE
10. PRIVATE WATER SYSTEM FIRE LINES SHALL BE TESTED BY THE CONTRACTOR TO 200 PSI FOR 2 HOURS.	TEMPORARY OR PERMANENTLY CEASE IS PRECLU STABILIZATION MEASURES SHALL BE INITIATED A CONSTRUCTION ACTIVITY ON A PORTION OF THE
11. PRIVATE WATER SYSTEM FIRE LINES SHALL BE DUCTILE IRON PIPING FROM THE WATER MAIN TO THE BUILDING SPRINKLER SYSTEM, AND 200 PSI C900 PVC FOR ALL OTHERS.	DISTURBING ACTIVITIES WILL BE RESUMED WITHIN MEASURES DO NOT HAVE TO BE INITIATED ON T EXPERIENCING DROUGHTS WHERE THE INITIATION
12. PUBLIC WATER SYSTEM FIRE LINES SHALL BE 150 PSI C900 PVC AND TESTED BY THE CONTRACTOR AT 150 PSI FOR 4 HOURS.	DAY AFTER CONSTRUCTION ACTIVITY HAS TEMPO PRECLUDED BY SEASONAL ARID CONDITIONS, STA AS SOON AS PRACTICABLE.
13. ALL BENDS AND CHANGES IN DIRECTIONS ON WATER MAINS SHALL BE RESTRAINED AND THRUST BLOCKED. 14. LONG FIRE HYDRANT LEADS SHALL BE RESTRAINED.	11. THE FOLLOWING RECORDS SHALL BE MAINTAI UPON REQUEST: THE DATES WHEN MAJOR GRA
15. ALL WATER LINES ARE TO BE BACTERIA TESTED BY THE CONTRACTOR ACCORDING TO THE CITY STANDARDS AND SPECIFICATIONS.	CONSTRUCTION ACTIVITIES TEMPORARILY OR PER SITE; AND THE DATES WHEN STABILIZATION MEA 12. THE HOLDER OF ANY APPROVED EDWARDS A
16. WATER AND SEWER MAIN CROSSINGS SHALL MEET ALL REQUIREMENTS OF THE TCEQ AND THE CITY.	APPROPRIATE REGIONAL OFFICE IN WRITING AND DIRECTOR PRIOR TO INITIATING ANY OF THE FOLI A. ANY PHYSICAL OR OPERATIONAL MODIF
17. FLEXIBLE BASE MATERIAL FOR PUBLIC STREETS SHALL BE TXDOT TYPE A GRADE 1. 18. HOT MIX ASPHALTIC CONCRETE PAVEMENT SHALL BE TYPE D UNLESS OTHERWISE SPECIFIED AND SHALL BE A	STRUCTURE(S), INCLUDING BUT NOT LIMITE TREATMENT PLANTS, AND DIVERSIONARY S
MINIMUM OF 2 INCHES THICK ON PUBLIC STREETS AND ROADWAYS. 19. ALL SIDEWALK RAMPS AND PUBLIC AREA SIDEWALKS (I.E., NOT ADJACENT TO INDIVIDUAL LOTS) ARE TO BE	B. ANY CHANGE IN THE NATURE OR CHAI THAT WHICH WAS ORIGINALLY APPROVED IMPACT THE ABILITY OF THE PLAN TO PR
INSTALLED WITH THE PUBLIC INFRASTRUCTURE. 20. RECORD DRAWINGS OF THE PUBLIC IMPROVEMENTS SHALL BE SUBMITTED TO THE CITY BY THE DESIGN ENGINEER	C. ANY DEVELOPMENT OF LAND PREVIOUS ORIGINAL WATER POLLUTION ABATEMENT
PRIOR TO ACCEPTANCE OF THE PROJECT. THESE DRAWINGS SHALL BE TIFF OR PDF (300P DPI) . IF A DISK IS SUBMITTED, A BOND SET SHALL BE INCLUDED WITH THE DISK.	TEXAS COMMISSION ON ENVIRONMENTAL QUALITY 12100 PARK 35 CIRCLE, BLDG. A, AUSTIN, TX 74 PHONE: (512) 339-2929
GENERAL NOTES - SIDEWALKS 1. SIDEWALKS SHALL BE INSTALLED IN ACCORDANCE WITH THE REQUIREMENTS OF THE T.A.S. AS ADMINISTERED BY	FAX: (512) 339-3795 TCEQ ORGANIZ
THE TDLR ("TDLR COMPLAINT"). 2. SIDEWALKS SHALL BE INSTALLED IN ACCORDANCE WITH THE REQUIREMENTS OF THE UDC, SECTION 12.02.020.	COLLECTION S
GEOMETRIC AND DESIGN STANDARDS FOR SIDEWALKS	GENERAL CONSTRU
DESIGN AND CONSTRUCTION OF SIDEWALKS SHALL OCCUR IN COMPLIANCE WITH THE FOLLOWING STANDARDS:	1. THIS ORGANIZED SEWAGE COLLECTION SYSTEM
A. IN ORDER TO PROVIDE SAFE AND ADEQUATE ACCESS ON CITY SIDEWALKS, ALL SIDEWALKS SHALL MEET MINIMUM CLEAR WIDTH REQUIREMENTS AROUND ALL OBSTRUCTIONS, NATURAL OR MANMADE, AS DESCRIBED HEREIN. CLEAR WIDTH SHALL MEAN THE DISTANCE AS MEASURED FROM THE OUTSIDE EDGE OF THE OBSTRUCTION TO THE OUTSIDE EDGE OF THE SIDEWALK OR FROM THE INSIDE EDGE OF THE OBSTRUCTION TO THE INSIDE EDGE OF THE SIDEWALK. IF THE CLEAR WIDTH IS TO BE OBTAINED BETWEEN THE INSIDE EDGE OF THE SIDEWALK AND OBSTRUCTION,	ACCORDANCE WITH THE TEXAS COMMISSION ON AQUIFER RULES 30 TEXAS ADMINISTRATIVE CODE 30 TAC CHAPTER 217, SUBCHAPTER D, AND TH SPECIFICATIONS.
GIVEN THAT THE SIDEWALK IS PLACED AGAINST THE BACK OF CURB, THE CLEAR WIDTH SHALL BE A MINIMUM OF FIVE FEET. IN ALL OTHER CASES, THE MINIMUM CLEAR WIDTH SHALL BE FOUR FEET. B. ALL SIDEWALKS SHALL MEET CITY STANDARDS AND SPECIFICATIONS. SIDEWALKS MAY BE PLACED SO THAT	2. ALL CONTRACTORS CONDUCTING REGULATED REGULATED PROJECT MUST BE PROVIDED WITH O PLAN AND THE TCEQ LETTER INDICATING THE SF DURING THE COURSE OF THESE REGULATED ACT REQUIRED TO KEEP ON-SITE COPIES OF THE PL
THEY VARY THE DISTANCE FROM BACK OF CURB, PROVIDED THAT THE MINIMUM WIDTH AND DISTANCE FROM BACK OF CURB IS NOT REDUCED. C. GIVEN THAT A COMBINATION OR VARIATION FROM THE TWO PLACEMENT METHODS IS NECESSARY OR DESIRED	3. NO LATER THAN 48 HOURS PRIOR TO COMME
OR THAT AN OBSTRUCTION IS LOCATED WITHIN THE PAVED AREA, THE FOLLOWING CRITERIA SHALL BE SATISFIED: 1. ALL RADII IN THE TRANSITION SECTION SHALL BE A MINIMUM OF TEN FEET.	APPLICANT OR HIS AGENT MUST NOTIFY THE AU DATE ON WHICH THE REGULATED ACTIVITY WILL
20. A MAINTENANCE BOND IS REQUIRED TO BE SUBMITTED TO THE CITY PRIOR TO ACCEPTANCE OF THE PUBLIC IMPROVEMENTS. THIS BOND SHALL BE ESTABLISHED FOR 2 YEAR IN THE AMOUNT OF 10% OF THE COST OF THE PUBLIC IMPROVEMENTS AND SHALL FOLLOW THE CITY FORMAT.	4. ANY MODIFICATION TO THE ACTIVITIES DESCRI FOLLOWING THE DATE OF APPROVAL MAY REQUI MODIFY THIS APPROVAL, INCLUDING THE PAYMEN
21. THE CITY OF GEORGETOWN SHALL BE CONTACTED 48 HOURS IN ADVANCE FOR CONNECTIONS AND TESTING.	INFORMATION NECESSARY FOR ITS REVIEW AND
1. THE SUBGRADE WAS TESTED BY MLA LABS, INC. IN JANUARY OF 2022. THE STREET SECTIONS WERE	5. ALL TEMPORARY EROSION AND SEDIMENTATIO CONSTRUCTION, MUST BE MAINTAINED DURING C SUFFICIENT VEGETATION IS ESTABLISHED TO CON
DESIGNED ACCORDINGLY. THE STREET SECTIONS ARE DESIGNED ACCORDING TO CITY OF GEORGETOWN DESIGN CRITERIA. PAPE-DAWSON ENGINEERS, INC. IS NOT RESPONSIBLE FOR THE BASE AND PAVEMENT DESIGN AS RECOMMENDED BY THE SOILS ENGINEER IN HIS / HER GEOTECHNICAL REPORT.	CONSTRUCTION AREA IS STABILIZED.
2. EMBANKMENT, SUBGRADE, BASE, ASPHALT, AND TESTING MUST MEET ALL REQUIREMENTS IN THE CITY SPECIFICATIONS AND STANDARDS MANUAL.	ALL SEWER PIPES JOINTS MUST MEET THE REQU
NOTE: GEOTECHNICAL ENGINEER TO VERIFY FINAL PAVEMENT DESIGN AFTER ROUGH CUT OF STREETS. THE BELOW TABLE IS BASED ON PRELIMINARY GEOTECHNICAL INVESTIGATION PAVEMENT THICKNESS RECOMMENDATIONS DATED JANUARY 2022	GRAVITY LINES MUST HAVE A SDR 26 OR LESS. HAVE PIPE WITH A MINIMUM WORKING PRESSURE
RECOMMENDATIONS DATED JANUARY 2022 RECOMMENDATIONS - PAVEMENT THICKNESS SECTIONS	THE ASTM, ANSI, OR AWWA SPECIFICATION NUME D3034, ASTM 3212, ASTM D2241 CLASS 160 AN
Street Classification Subgrade Material Subgrade Material Intertone Base, in Geograde Anticipation Subgrade Material Sub	THE PIPE MATERIAL, THE PRESSURE CLASSES, A PVC, SDR 26; PVC, 160 PSI, SDR 26.
Subgrade PI greater than 20 - Option 1 2.0 14 - Local Subgrade PI greater than 20 - Option 2 2.0 8 18** - Streets Subgrade PI greater than 20 - Option 3 2.0 8 - X*	7. IF ANY SENSITIVE FEATURES ARE DISCOVERED ACTIVITIES, ALL REGULATED ACTIVITIES NEAR TH IMMEDIATELY. THE APPLICANT MUST IMMEDIATEL
Subgrade PI less than 20 2.0 8 - Subgrade PI greater than 20 - Option 1 2.0 15 - Residential Collector Subgrade PI greater than 20 - Option 2 2.0 10 18** - Subgrade PI greater than 20 - Option 3 2.0 10 - X*	OF THE TEXAS COMMISSION ON ENVIRONMENTAL GEOLOGIST'S ASSESSMENT OF THE LOCATION AN BE REPORTED TO THAT REGIONAL OFFICE IN WRI
TEXAS COMMISSION ON ENVIRONMENTAL QUALITY	MUST SUBMIT A PLAN FOR ENSURING THE STRU A PLAN FOR ENSURING THE STRUCTURAL INTEGE PROPOSED COLLECTION SYSTEM ALIGNMENT ARO
WATER POLLUTION ABATEMENT PLAN	NEAR THE SENSITIVE FEATURE MAY NOT PROCEE AND APPROVED THE METHODS PROPOSED TO PR EDWARDS AQUIFER FROM ANY POTENTIALLY ADV MAINTAINING THE STRUCTURAL INTEGRITY OF THI
1. WRITTEN CONSTRUCTION NOTIFICATION MUST BE GIVEN TO THE APPROPRIATE TCEQ REGIONAL OFFICE NO LATER	8. SEWER LINES LOCATED WITHIN OR CROSSING WILL BE PROTECTED FROM INUNDATION AND STR
THAN 48 HOURS PRIOR TO COMMENCEMENT OF THE REGULATED ACTIVITY. INFORMATION MUST INCLUDE THE DATE ON WHICH THE REGULATED ACTIVITY WILL COMMENCE, THE NAME OF THE APPROVED PLAN FOR THE REGULATED ACTIVITY, AND THE NAME OF THE PRIME CONTRACTOR AND THE NAME AND TELEPHONE NUMBER OF THE CONTACT PERSON.	AND SCOURING OF BACKFILL. THE TRENCH MUS SCOURING OF BACKFILL, OR THE SEWER LINES N CONCRETE SHALL HAVE A MINIMUM THICKNESS (
2. ALL CONTRACTORS CONDUCTING REGULATED ACTIVITIES ASSOCIATED WITH THIS PROJECT MUST BE PROVIDED WITH COMPLETE COPIES OF THE APPROVED WATER POLLUTION ABATEMENT PLAN AND THE TCEQ LETTER INDICATING THE SPECIFIC CONDITIONS OF ITS APPROVAL. DURING THE COURSE OF THESE REGULATED ACTIVITIES,	9. BLASTING PROCEDURES FOR PROTECTION OF WILL BE IN ACCORDANCE WITH THE NATIONAL FI IS NOT ALLOWED AS BEDDING OR BACKFILL IN T EXISTING SEWER LINES ARE DAMAGED, THE LINES
THE CONTRACTORS ARE REQUIRED TO KEEP ON-SITE COPIES OF THE APPROVED PLAN AND APPROVAL LETTER. 3. IF ANY SENSITIVE FEATURE IS DISCOVERED DURING CONSTRUCTION, ALL REGULATED ACTIVITIES NEAR THE SENSITIVE FEATURE MUST BE SUSPENDED IMMEDIATELY. THE APPROPRIATE TCEQ REGIONAL OFFICE MUST BE	10. ALL MANHOLES CONSTRUCTED OR REHABILITA WATERTIGHT SIZE ON SIZE RESILIENT CONNECTOR
IMMEDIATELY NOTIFIED OF ANY SENSITIVE FEATURES ENCOUNTERED DURING CONSTRUCTION. THE REGULATED ACTIVITIES NEAR THE SENSITIVE FEATURE MAY NOT PROCEED UNTIL THE TCEQ HAS REVIEWED AND APPROVED THE METHODS PROPOSED TO PROTECT THE SENSITIVE FEATURE AND THE EDWARDS AQUIFER FROM ANY	IF MANHOLES ARE CONSTRUCTED WITHIN THE 10 A GASKET AND BE BOLTED TO THE RING. WHEF FOR MORE THAN THREE MANHOLES IN SEQUENCE
POTENTIALLY ADVERSE IMPACTS TO WATER QUALITY.	MEANS OF VENTING WILL BE PROVIDED. BRICKS MATERIAL FOR ANY PORTION OF THE MANHOLE.

4. NO TEMPORARY ABOVEGROUND HYDROCARBON AND HAZARDOUS SUBSTANCE STORAGE TANK SYSTEM MAY BE INSTALLED WITHIN 150 FEET OF A DOMESTIC, INDUSTRIAL, IRRIGATION, OR PUBLIC WATER SUPPLY WELL, OR OTHER SENSITIVE FEATURE

5. PRIOR TO COMMENCEMENT OF CONSTRUCTION, ALL TEMPORARY EROSION AND SEDIMENTATION (E&S) CONTROL MEASURES MUST BE PROPERLY SELECTED, INSTALLED, AND MAINTAINED IN ACCORDANCE WITH THE MANUFACTURERS SPECIFICATIONS AND GOOD ENGINEERING PRACTICES. CONTROLS SPECIFIED IN THE TEMPORARY STORM WATER SECTION OF THE APPROVED EDWARDS AQUIFER PROTECTION PLAN ARE REQUIRED DURING CONSTRUCTION. IF INSPECTIONS INDICATE A CONTROL HAS BEEN USED INAPPROPRIATELY, OR INCORRECTLY, THE APPLICANT MUST REPLACE OR MODIFY THE CONTROL FOR SITE SITUATIONS. THE CONTROLS MUST REMAIN IN PLACE UNTIL DISTURBED AREAS ARE REVEGETATED AND THE AREAS HAVE BECOME PERMANENTLY STABILIZED.

DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEA

IN THESE PLANS. IS PROHIBITED

UCTION SITE, OFF-SITE ACCUMULATIONS OF SEDIMENT SUFFICIENT TO MINIMIZE OFF-SITE IMPACTS TO WATER STREET BEING WASHED INTO SURFACE STREAMS OR

EEN REDUCED BY 50%. A PERMANENT STAKE MUST BE THE SEDIMENT OCCUPIES 50% OF THE BASIN VOLUME. D CONSTRUCTION CHEMICALS EXPOSED TO STORMWATER G A POLLUTANT SOURCE FOR STORMWATER DISCHARGES UP DAILY).

GENERATED FROM THE PROJECT SITE MUST BE CONTROLS. FOR STORAGE OR DISPOSAL OF SPOILS AQUIFER RECHARGE ZONE, THE OWNER OF THE SITE POLLUTION ABATEMENT PLAN FOR THE PLACEMENT PRIOR TO THE PLACEMENT OF SPOILS AT THE OTHER

BE INITIATED AS SOON AS PRACTICABLE IN PORTIONS CTIVITIES HAVE TEMPORARILY OR PERMANENTLY 14 DAYS AFTER THE CONSTRUCTION ACTIVITY IN PORARILY OR PERMANENTLY CEASED. WHERE THE S BY THE 14TH DAY AFTER CONSTRUCTION ACTIVITY IS PRECLUDED BY WEATHER CONDITIONS.

NITIATED AS SOON AS PRACTICABLE. WHERE N OF THE SITE IS TEMPORARILY CEASED, AND EARTH ED WITHIN 21 DAYS, TEMPORARY STABILIZATION TED ON THAT PORTION OF THE SITE. IN AREAS INITIATION OF STABILIZATION MEASURES BY THE 14TH AS TEMPORARILY OR PERMANENTLY CEASED IS TIONS, STABILIZATION MEASURES SHALL BE INITIATED

E MAINTAINED AND MADE AVAILABLE TO THE TCEQ AJOR GRADING ACTIVITIES OCCUR; THE DATES WHEN Y OR PERMANENTLY CEASE ON A PORTION OF THE ATION MEASURES ARE INITIATED.

DWARDS AQUIFER PROTECTION PLAN MUST NOTIFY THE TING AND OBTAIN APPROVAL FROM THE EXECUTIVE THE FOLLOWING:

NAL MODIFICATION OF ANY WATER POLLUTION ABATEMENT NOT LIMITED TO PONDS, DAMS, BERMS, SEWAGE SIONARY STRUCTURES;

OR CHARACTER OF THE REGULATED ACTIVITY FROM PPROVED OR A CHANGE WHICH WOULD SIGNIFICANTLY LAN TO PREVENT POLLUTION OF THE EDWARDS AQUIFER; PREVIOUSLY IDENTIFIED AS UNDEVELOPED IN THE

BATEMENT PLAN. QUALITY

STIN, TX 78753

GANIZED SEWAGE ION SYSTEM (SCS) NSTRUCTION NOTES

ON SYSTEM MUST BE DESIGNED AND CONSTRUCTED IN SSION ON ENVIRONMENTAL QUALITY'S (TCEQ) EDWARDS ATIVE CODE (TAC) §§213.5(C) AND 217.51-217.70 AND , AND THE CITY OF GEORGETOWN STANDARD

EGULATED ACTIVITIES ASSOCIATED WITH THIS PROPOSED DED WITH COPIES OF THE SEWAGE COLLECTION SYSTEM NG THE SPECIFIC CONDITIONS OF ITS APPROVAL. ATED ACTIVITIES, THE CONTRACTORS MUST BE OF THE PLAN AND THE APPROVAL LETTER.

COMMENCING ANY REGULATED ACTIVITY. THE Y THE AUSTIN REGIONAL OFFICE, IN WRITING, OF THE VITY WILL BEGIN.

IES DESCRIBED IN THE REFERENCED SCS APPLICATION MAY REQUIRE THE SUBMITTAL OF AN SCS APPLICATION TO HE PAYMENT OF APPROPRIATE FEES AND ALL NEW AND APPROVAL.

IMENTATION CONTROLS MUST BE INSTALLED PRIOR TO DURING CONSTRUCTION, AND MUST BE REMOVED WHEN ED TO CONTROL THE EROSION AND SEDIMENTATION AND THE

SHOWING THE CROSS SECTION WITH THE DIMENSIONS, PIPE ONS ARE INCLUDED ON PLAN SHEET 50 of 52 OF THESE PLANS. THE REQUIREMENTS IN 30 TAC §§217.53(C) AND 217.65.

OR LESS. PRESSURIZED SEWER SYSTEMS MUST PRESSURE RATING OF 150 PSI.

TION NUMBERS FOR THE PIPE(S) AND JOINTS ARE: ASTM SS 160 AND ASTM D3139 LASSES, AND THE SDR AND/OR DR DESIGNATIONS ARE:

DISCOVERED DURING THE WASTEWATER LINE TRENCHING NEAR THE SENSITIVE FEATURE MUST BE SUSPENDED IMMEDIATELY NOTIFY THE APPROPRIATE REGIONAL OFFICE ONMENTAL QUALITY OF THE FEATURE DISCOVERED. A CATION AND EXTENT OF THE FEATURE DISCOVERED MUST ICE IN WRITING WITHIN TWO WORKING DAYS. THE APPLICANT

THE STRUCTURAL INTEGRITY OF THE SEWER LINE OR SUBMI RAL INTEGRITY OF THE SEWER LINE OR FOR MODIFYING THE MENT AROUND THE FEATURE. THE REGULATED ACTIVITIES OT PROCEED UNTIL THE EXECUTIVE DIRECTOR HAS REVIEWED SED TO PROTECT THE SENSITIVE FEATURE AND THE IALLY ADVERSE IMPACTS TO WATER QUALITY WHILE ITY OF THE LINE.

CROSSING THE 5-YEAR FLOODPLAIN OF A DRAINAGE WAY AND STREAM VELOCITIES WHICH COULD CAUSE EROSION RENCH MUST BE CAPPED WITH CONCRETE TO PREVENT ER LINES MUST BE ENCASED IN CONCRETE. ALL HICKNESS OF SIX (6) INCHES.

CTION OF EXISTING SEWER LINES AND OTHER UTILITIES TIONAL FIRE PROTECTION ASSOCIATION CRITERIA. SAND CKFILL IN TRENCHES THAT HAVE BEEN BLASTED. IF ANY THE LINES MUST BE REPAIRED AND RETESTED.

REHABILITATED ON THIS PROJECT MUST HAVE CONNECTORS ALLOWING FOR DIFFERENTIAL SETTLEMENT IN THE 100-YEAR FLOODPLAIN, THE COVER MUST HAVE NG. WHERE GASKETED MANHOLE COVERS ARE REQUIRED SEQUENCE OR FOR MORE THAN 1500 FEET, ALTERNATE BRICKS ARE NOT AN ACCEPTABLE CONSTRUCTION

THE DIAMETER OF THE MANHOLES MUST BE A MINIMUM OF FOUR FEET AND THE MANHOLE FOR (2) INFILTRATION/EXFILTRATION TEST. ENTRY MUST HAVE A MINIMUM CLEAR OPENING DIAMETER OF 30 INCHES. THESE DIMENSIONS AND OTHER DETAILS SHOWING COMPLIANCE WITH THE COMMISSION'S RULES CONCERNING MANHOLES AND SEWER LINE/MANHOLE INVERTS DESCRIBED IN 30 TAC \$217.55 ARE INCLUDED

IT IS SUGGESTED THAT ENTRANCE INTO MANHOLES IN EXCESS OF FOUR FEET DEEP BE ACCOMPLISHED BY MEANS OF A PORTABLE LADDER. THE INCLUSION OF STEPS IN A MANHOLE

11. WHERE WATER LINES AND NEW SEWER LINE ARE INSTALLED WITH A SEPARATION DISTANCE CLOSER THAN NINE FEET (I.E., WATER LINES CROSSING WASTEWATER LINES, WATER LINES PARALLELING WASTEWATER LINES, OR WATER LINES NEXT TO MANHOLES) MUST NOT EXCEED 50 GALLONS PER INCH DIAMETER PER MILE OF PIPE PER 24 HOURS AT A MINIMUM TEST HEAD OF TWO FEET ABOVE THE CROWN OF A PIPE AT AN DISTANCE CLOSER THAN NINE FEET (I.E., WATER LINES CROSSING WASTEWATER LINES, THE INSTALLATION MUST MEET THE REQUIREMENTS OF 30 TAC \$217.53(D) (PIPE SEDIMENT TRAPS OR SEDIMENTATION PONDS NOT LATER DESIGN) AND 30 TAC \$290.44(E) (WATER DISTRIBUTION).

> 12. WHERE SEWERS LINES DEVIATE FROM STRAIGHT ALIGNMENT AND UNIFORM GRADE ALL CURVATURE OF SEWER PIPE MUST BE ACHIEVED BY THE FOLLOWING PROCEDURE WHICH IS RECOMMENDED BY THE PIPE MANUFACTURER.

IF PIPE FLEXURE IS PROPOSED, THE FOLLOWING METHOD OF PREVENTING DEFLECTION OF THE JOINT MUST BE USED.

SPECIFIC CARE MUST BE TAKEN TO ENSURE THAT THE JOINT IS PLACED IN THE CENTER ORDER TO REDUCE THE INFILTRATION OR EXFILTRATION TO AN AMOUNT WITHIN THE OF THE TRENCH AND PROPERLY BEDDED IN ACCORDANCE WITH 30 TAC §217.54.

13. NEW SEWAGE COLLECTION SYSTEM LINES MUST BE CONSTRUCTED WITH STUB OUTS FOR THE CONNECTION OF ANTICIPATED EXTENSIONS. THE LOCATION OF SUCH STUB OUTS MUST BE MARKED ON THE GROUND SUCH THAT THEIR LOCATION CAN BE EASILY DETERMINED AT THE TIME OF CONNECTION OF THE EXTENSIONS. SUCH STUB OUTS MUST BE MANUFACTURED WYES OR TEES THAT ARE COMPATIBLE IN SIZE AND MATERIAL WITH BOTH THE SEWER LINE AND THE EXTENSION. AT THE TIME OF ORIGINAL CONSTRUCTION, NEW STUB-OUTS MUST BE CONSTRUCTED SUFFICIENTLY TO EXTEND BEYOND THE END OF THE STREET PAVEMENT. AL STUB-OUTS MUST BE SEALED WITH A MANUFACTURED CAP TO PREVENT LEAKAGE. EXTENSIONS THAT WERE NOT ANTICIPATED AT THE TIME OF ORIGINAL CONSTRUCTION OR THAT ARE TO BE CONNECTED TO AN EXISTING SEWER LINE NOT FURNISHED WITH STUB OUTS MUST BE CONNECTED USING A MANUFACTURED SADDLE AND IN ACCORDANCE WITH ACCEPTED PLUMBING TECHNIQUES.

IF NO STUB-OUT IS PRESENT AN ALTERNATE METHOD OF JOINING LATERALS IS SHOWN IN THE DETAIL ON PLAN SHEET 50 of 52 (FOR POTENTIAL FUTURE LATERALS). THE PRIVATE SERVICE LATERAL STUB-OUTS MUST BE INSTALLED AS SHOWN ON THE PLAN AND PROFILE SHEETS ON PLAN SHEET N/A AND MARKED AFTER BACKFILLING AS SHOWN IN THE DETAIL ON PLAN SHEET N/A.

14. TRENCHING, BEDDING AND BACKFILL MUST CONFORM WITH 30 TAC §217.54. THE BEDDING AND BACKFILL FOR FLEXIBLE PIPE MUST COMPLY WITH THE STANDARDS OF ASTM D-2321, CLASSES IA, IB, II OR III. RIGID PIPE BEDDING MUST COMPLY WITH THE REQUIREMENTS OF ASTM C 12 (ANSI A 106.2) CLASSES A, B OR C.

15. SEWER LINES MUST BE TESTED FROM MANHOLE TO MANHOLE. WHEN A NEW SEWER LINE IS CONNECTED TO AN EXISTING STUB OR CLEAN-OUT, IT MUST BE TESTED FROM EXISTING MANHOLE TO NEW MANHOLE. IF A STUB OR CLEAN-OUT IS USED AT THE END OF THE PROPOSED SEWER LINE, NO PRIVATE SERVICE ATTACHMENTS MAY BE CONNECTED BETWEEN THE LAST MANHOLE AND THE CLEANOUT UNLESS IT CAN BE CERTIFIED AS CONFORMING WITH THE PROVISIONS OF 30 TAC \$213.5(C)(3)(E).

16. ALL SEWER LINES MUST BE TESTED IN ACCORDANCE WITH 30 TAC §217.57. THE ENGINEER MUST RETAIN COPIES OF ALL TEST RESULTS WHICH MUST BE MADE AVAILABLE TO THE EXECUTIVE DIRECTOR UPON REQUEST. THE ENGINEER MUST CERTIFY IN WRITING THAT ALL WASTEWATER LINES HAVE PASSED ALL REQUIRED TESTING TO THE APPROPRIATE REGIONAL OFFICE WITHIN 30 DAYS OF TEST COMPLETION AND PRIOR TO USE OF THE NEW COLLECTION SYSTEM. TESTING METHOD WILL BE:

(a) FOR A COLLECTION SYSTEM PIPE THAT WILL TRANSPORT WASTEWATER BY GRAVITY FLOW, THE DESIGN MUST SPECIFY AN INFILTRATION AND EXFILTRATION TEST OR A LOW-PRESSURE AIR TEST. A TEST MUST CONFORM TO THE FOLLOWING REQUIREMENTS:

(1) LOW PRESSURE AIR TEST.

WHERE:

- (A) A LOW PRESSURE AIR TEST MUST FOLLOW THE PROCEDURES DESCRIBED IN AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) C-828, ASTM C-924. OR ASTM F-1417 OR OTHER PROCEDURE APPROVED BY THE EXECUTIVE DIRECTOR, EXCEPT AS TO TESTING TIMES AS REQUIRED IN TABLE C.3 IN SUBPARAGRAPH (C) OF THIS PARAGRAPH OR EQUATION C.3 IN SUBPARAGRAPH (B)(II) OF THIS PARAGRAPH.
- (B) FOR SECTIONS OF COLLECTION SYSTEM PIPE LESS THAN 36 INCH AVERAGE INSIDE DIAMETER, THE FOLLOWING PROCEDURE MUST APPLY, UNLESS A PIPE IS TO BE TESTED AS REQUIRED BY PARAGRAPH (2) OF THIS SUBSECTION.
- (I) A PIPE MUST BE PRESSURIZED TO 3.5 POUNDS PER SQUARE INCH (PSI) GREATER THAN THE PRESSURE EXERTED BY GROUNDWATER ABOVE THE PIPE.
- (II) ONCE THE PRESSURE IS STABILIZED, THE MINIMUM TIME ALLOWABLE FOR THE PRESSURE TO DROP FROM 3.5 PSI GAUGE TO 2.5 PSI GAUGE IS COMPUTED FROM THE FOLLOWING EQUATION:
 - $T = 0.085 \times D \times K$ (EQ. C.3)
- T = TIME FOR PRESSURE TO DROP 1.0 POUND PER SQUARE
- INCH GAUGE IN SECONDS K = 0.000419 X D X L. BUT NOT LESS THAN 1.0
- D = AVERAGE INSIDE PIPE DIAMETER IN INCHES L = LENGTH OF LINE OF SAME SIZE BEING TESTED, IN FEET
- Q = RATE OF LOSS, 0.0015 CUBIC FEET PER MINUTE PERSQUARE FOOT INTERNAL SURFACE
- (C) SINCE A K VALUE OF LESS THAN 1.0 MAY NOT BE USED, THE MINIMUM TESTING TIME FOR EACH PIPE DIAMETER IS SHOWN IN THE FOLLOWING

PIPE DIAMETER (INCHES)	MINIMUM TIME (SECONDS)	MAXIMUM LENGTH FOR MINIMUM TIME (FEET)	TIME FOR LONGER LENGTH (SECONDS/ FOOT)
6	340	398	0.855
8	454	298	1.520
10	567	239	2.374
12	680	199	3.419
15	850	159	5.342
18	1020	133	7.693
21	1190	114	10.471
24	1360	100	13.676
27	1530	88	17.309
30	1700	80	21.369
33	1870	72	25.856

(E) (D) AN OWNER MAY STOP A TEST IF NO PRESSURE LOSS HAS OCCURRED DURING THE FIRST 25% OF THE CALCULATED TESTING TIME.

- (E) IF ANY PRESSURE LOSS OR LEAKAGE HAS OCCURRED DURING THE FIRST 25% OF A TESTING PERIOD, THEN THE TEST MUST CONTINUE FOR THE (F) ENTIRE TEST DURATION AS OUTLINED ABOVE OR UNTIL FAILURE
- (F) WASTEWATER COLLECTION SYSTEM PIPES WITH A 27 INCH OR LARGER (G) AVERAGE INSIDE DIAMETER MAY BE AIR TESTED AT EACH JOINT INSTEAD OF FOLLOWING THE PROCEDURE OUTLINED IN THIS SECTION.
- (G) A TESTING PROCEDURE FOR PIPE WITH AN INSIDE DIAMETER GREATER THAN 33 INCHES MUST BE APPROVED BY THE EXECUTIVE DIRECTOR.

THE TOTAL EXFILTRATION, AS DETERMINED BY A HYDROSTATIC HEAD (A) THE TOTAL EXFILTRATION, AS DETERMINED BY A HYDROSTATIC HEAD TEST, MUST NOT EXCEED 50 GALLONS PER INCH OF DIAMETER PER MILE OF PIPE PER SANITARIAN, OR APPROPRIATE CITY INSPECTOR MUST VISUALLY INSPECT THE PRIVATE 24 HOURS AT A MUNICINA TEST HEAD OF 2.0 FEET ADOVE THE CROWN OF A PIPE PER SERVICE LATERAL AND THE CONNECTION TO THE SEWAGE COLLECTION SYSTEM, AND 24 HOURS AT A MINIMUM TEST HEAD OF 2.0 FEET ABOVE THE CROWN OF A PIPE AT AN UPSTREAM MANHOLE.

AN OWNER SHALL USE AN INFILTRATION TEST IN LIEU OF AN EXFILTRATION TEST WHEN PIPES ARE INSTALLED BELOW THE GROUNDWATER LEVEL.

(C) THE TOTAL EXFILTRATION, AS DETERMINED BY A HYDROSTATIC HEAD TEST, UPSTREAM MANHOLE, OR AT LEAST TWO FEET ABOVE EXISTING GROUNDWATER LEVEL, WHICHEVER IS GREATER.

(D) FOR CONSTRUCTION WITHIN A 25-YEAR FLOOD PLAIN, THE INFILTRATION OR EXFILTRATION MUST NOT EXCEED 10 GALLONS PER INCH DIAMETER PER MILE OF PIPE PER 24 HOURS AT THE SAME MINIMUM TEST HEAD AS IN SUBPARAGRAPH (C) OF THIS PARAGRAPH.

(E) IF THE QUANTITY OF INFILTRATION OR EXFILTRATION EXCEEDS THE MAXIMUM QUANTITY SPECIFIED, AN OWNER SHALL UNDERTAKE REMEDIAL ACTION IN LIMITS SPECIFIED. AN OWNER SHALL RETEST A PIPE FOLLOWING A REMEDIATION ACTION.

(b) IF A GRAVITY COLLECTION PIPE IS COMPOSED OF FLEXIBLE PIPE, DEFLECTION TESTING IS ALSO REQUIRED. THE FOLLOWING PROCEDURES MUST BE FOLLOWED:

DEFLECTION MEASUREMENT REQUIRES A RIGID MANDREL. (A) MANDREL SIZING.

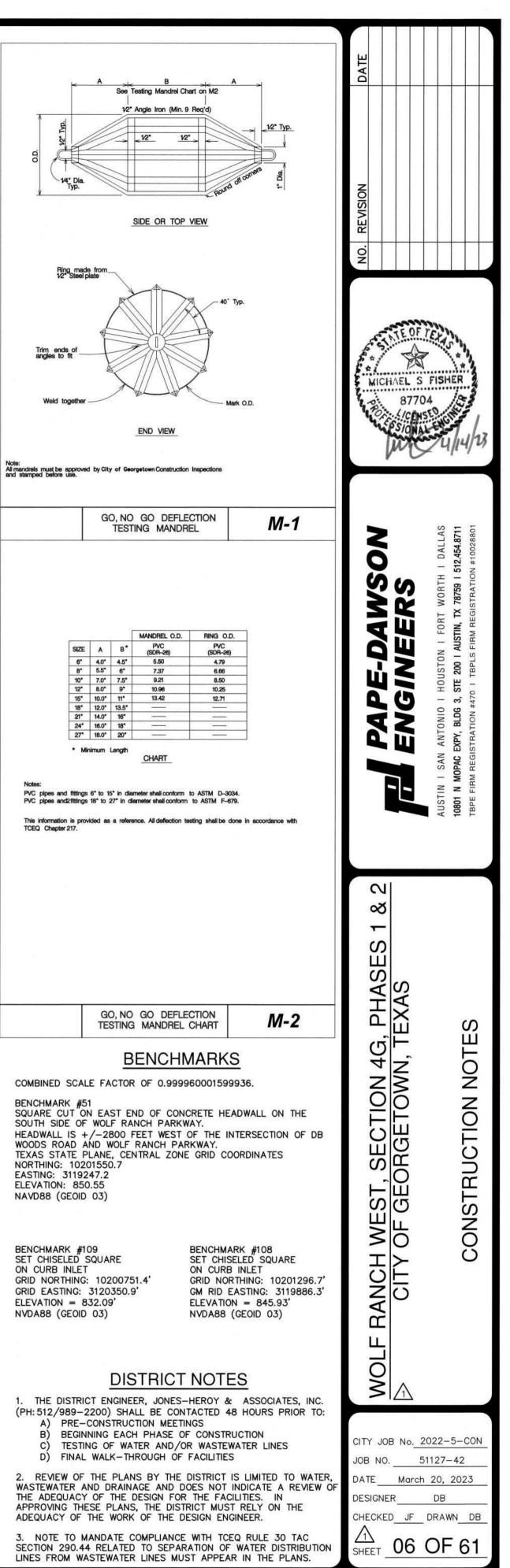
> INSTITUTE, OR ANY RELATED APPENDIX. OF A PIPE. IN THIS CASE, THE ID OF THE PIPE, FOR THE PURPOSE OF DETERMINING THE OD OF THE MANDREL, MUST EQUAL BE THE AVERAGE OUTSIDE DIAMETER MINUS TWO MINIMUM WALL THICKNESSES FOR OD

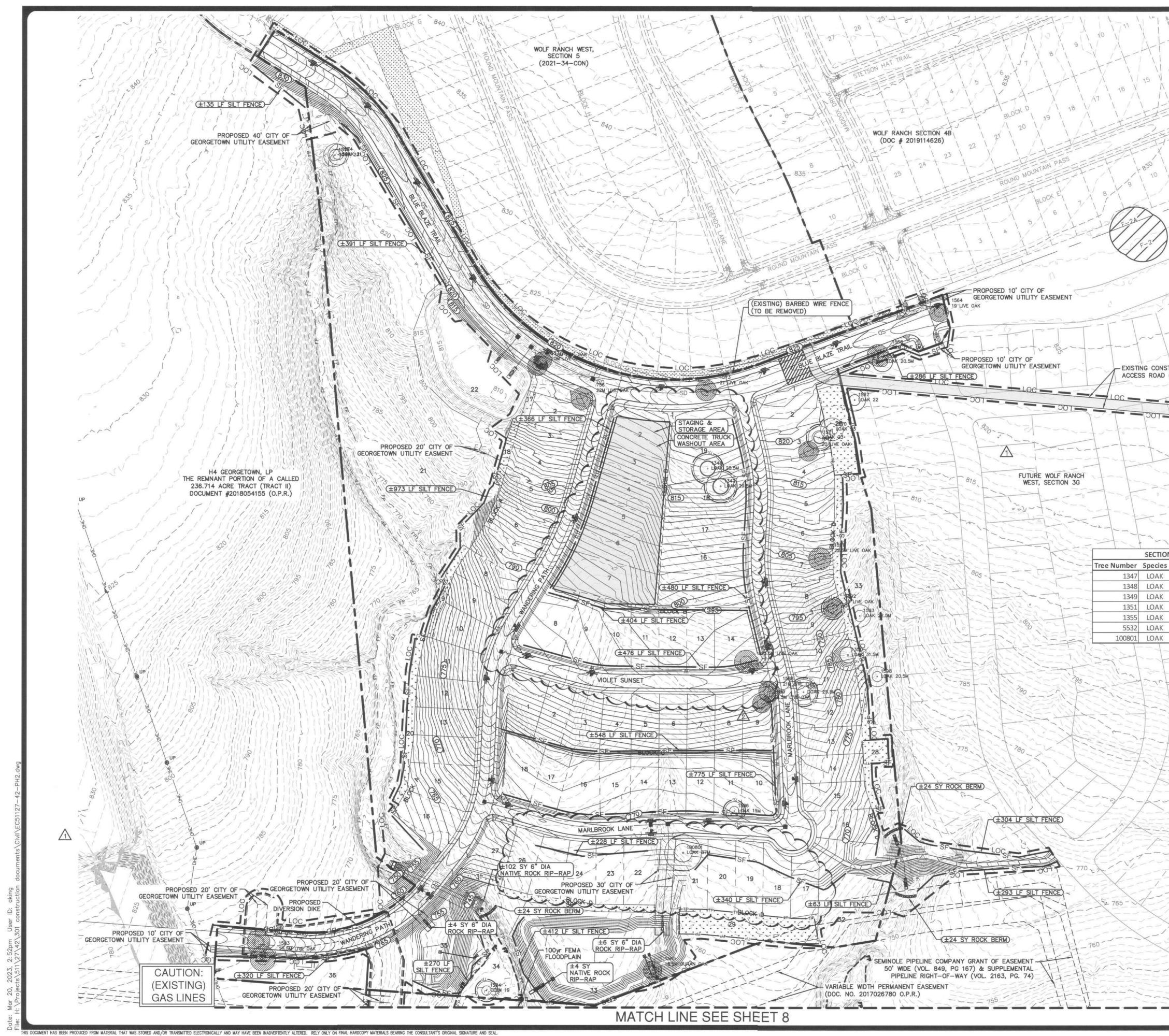
- (III) ALL DIMENSIONS MUST MEET THE APPROPRIATE STANDARD. (B) MANDREL DESIGN.
- DIAMETER OF A PIPE.
- (C) METHOD OPTIONS.
- (I) AN ADJUSTABLE OR FLEXIBLE MANDREL IS PROHIBITED. DEFLECTION TEST.

CASE-BY-CASE BASIS.

- (2) FOR A GRAVITY COLLECTION SYSTEM PIPE WITH AN INSIDE DIAMETER 27 INCHES AND GREATER, OTHER TEST METHODS MAY BE USED TO DETERMINE VERTICAL DEFLECTION.
- (3) A DEFLECTION TEST METHOD MUST BE ACCURATE TO WITHIN PLUS OR MINUS 0.2% DEFLECTION.
- (4) AN OWNER SHALL NOT CONDUCT A DEFLECTION TEST UNTIL AT LEAST 30 DAYS AFTER THE FINAL BACKFILL.
- (5%)
- IN PLACE AT LEAST 30 DAYS.
- 17. ALL MANHOLES MUST BE TESTED TO MEET OR EXCEED THE REQUIREMENTS OF 30 TAC §217.58.
- (a) ALL MANHOLES MUST PASS A LEAKAGE TEST.
- (b) AN OWNER SHALL TEST EACH MANHOLE (AFTER ASSEMBLY AND BACKFILLING) FOR LEAKAGE, SEPARATE AND INDEPENDENT OF THE COLLECTION SYSTEM PIPES, BY HYDROSTATIC EXFILTRATION TESTING, VACUUM TESTING, OR OTHER METHOD APPROVED BY THE EXECUTIVE DIRECTOR.
- (1) HYDROSTATIC TESTING.

(B)


(A)

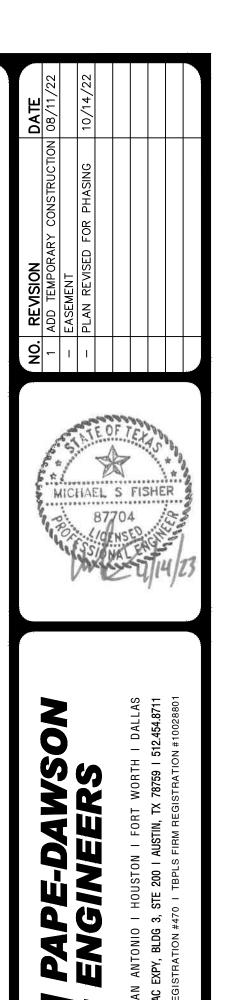

(D)

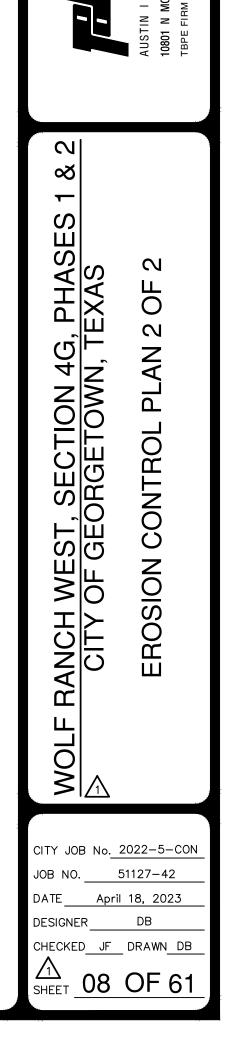
- THE MAXIMUM LEAKAGE FOR HYDROSTATIC TESTING OR ANY ALTERNATIVE TEST PER HOUR.
- WASTEWATER PIPES COMING INTO A MANHOLE WITH AN INTERNAL PIPE PLUG, FILL THE MANHOLE WITH WATER, AND MAINTAIN THE TEST FOR AT LEAST ONE HOUR.
- (C) A TEST FOR CONCRETE MANHOLES MAY USE A 24-HOUR WETTING PERIOD BEFORE TESTING TO ALLOW SATURATION OF THE CONCRETE. (2) VACUUM TESTING.
- TO PERFORM A VACUUM TEST, AN OWNER SHALL PLUG ALL LIFT HOLES AND MANHOLE.
- NO GROUT MUST BE PLACED IN HORIZONTAL JOINTS BEFORE TESTING. (B)
- (C) MOVEMENT WHILE A VACUUM IS DRAWN.
- AN OWNER SHALL USE A MINIMUM 60 INCH/LB TORQUE WRENCH TO TIGHTEN THE EXTERNAL CLAMPS THAT SECURE A TEST COVER TO THE TOP OF A MANHOLE.
- A TEST HEAD MUST BE PLACED AT THE INSIDE OF THE TOP OF A CONE RECOMMENDATIONS.
- PERFORM A VALID TEST.
- A TEST DOES NOT BEGIN UNTIL AFTER THE VACUUM PUMP IS OFF.
- CLOSED, THE VACUUM IS AT LEAST 9.0 INCHES OF MERCURY.

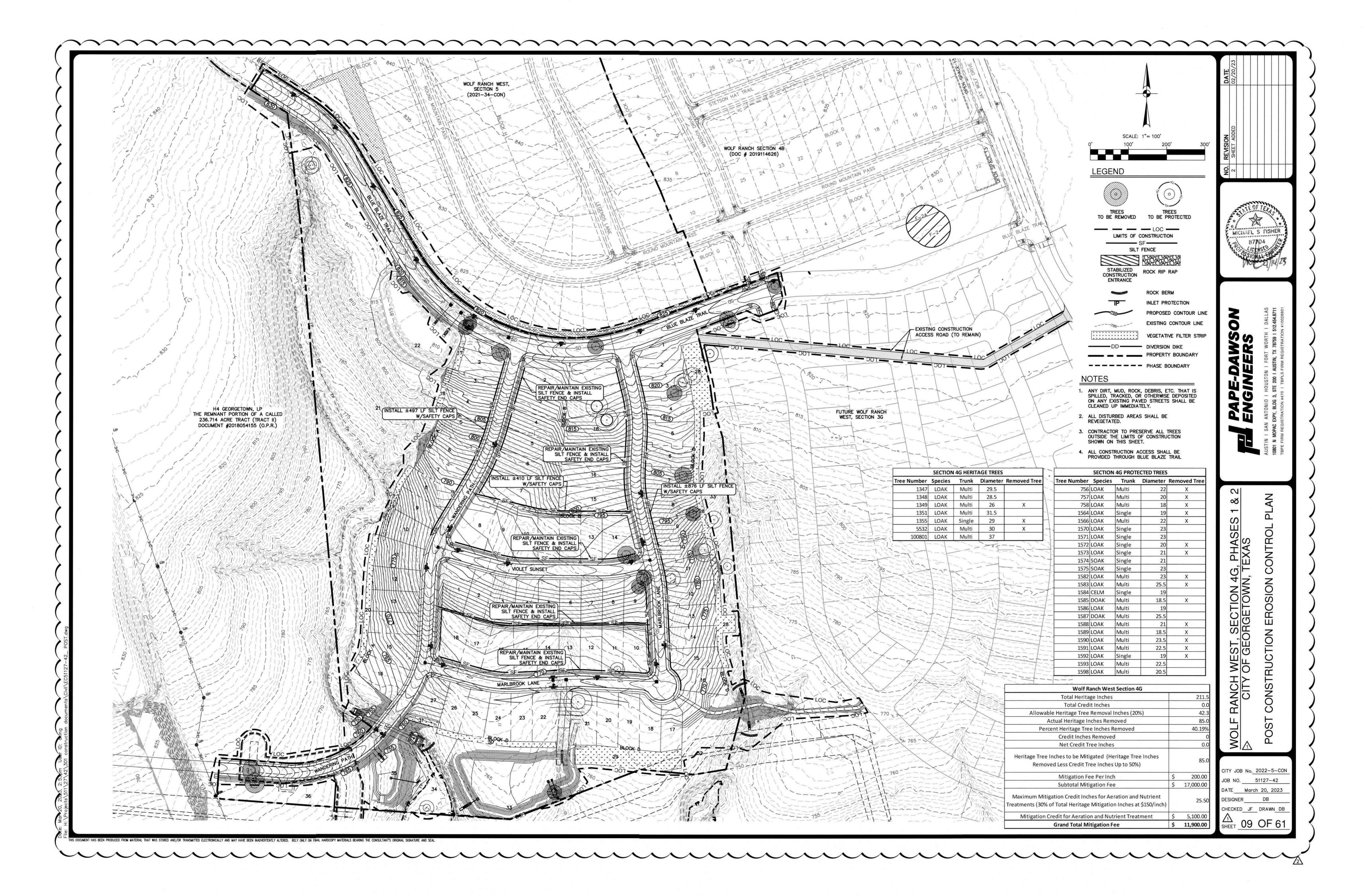
18. ALL PRIVATE SERVICE LATERALS MUST BE INSPECTED AND CERTIFIED IN ACCORDANCE WITH 30 TAC §213.5(C)(3)(I). AFTER INSTALLATION OF AND, PRIOR TO COVERING AND CONNECTING A PRIVATE SERVICE LATERAL TO AN EXISTING ORGANIZED SEWAGE COLLECTION SYSTEM, A TEXAS LICENSED PROFESSIONAL ENGINEER, TEXAS REGISTERED CERTIFY THAT IT IS CONSTRUCTED IN CONFORMITY WITH THE APPLICABLE PROVISIONS OF THIS SECTION. THE OWNER OF THE COLLECTION SYSTEM MUST MAINTAIN SUCH CERTIFICATIONS FOR FIVE YEARS AND FORWARD COPIES TO THE APPROPRIATE REGIONAL OFFICE UPON REQUEST. CONNECTIONS MAY ONLY BE MADE TO AN APPROVED SEWAGE COLLECTION SYSTEM.

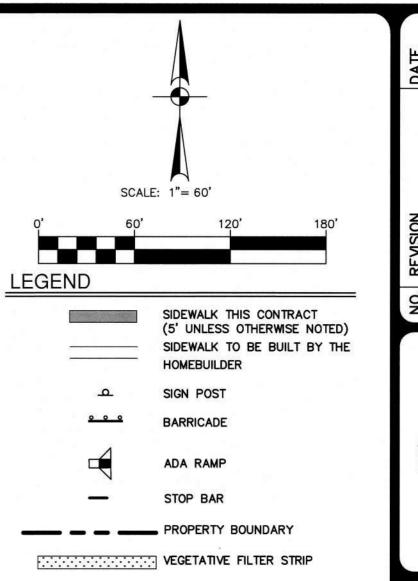
(1) FOR A COLLECTION PIPE WITH INSIDE DIAMETER LESS THAN 27 INCHES, (I) A RIGID MANDREL MUST HAVE AN OUTSIDE DIAMETER (OD) NOT LESS THAN 95% OF THE BASE INSIDE DIAMETER (ID) OR AVERAGE ID OF A PIPE, AS SPECIFIED IN THE APPROPRIATE STANDARD BY THE ASTM, AMERICAN WATER WORKS ASSOCIATION, UNI-BELL, OR AMERICAN NATIONAL STANDARDS (II) IF A MANDREL SIZING DIAMETER IS NOT SPECIFIED IN THE APPROPRIATE STANDARD, THE MANDREL MUST HAVE AN OD EQUAL TO 95% OF THE ID CONTROLLED PIPE AND THE AVERAGE INSIDE DIAMETER FOR ID CONTROLLED I) A RIGID MANDREL MUST BE CONSTRUCTED OF A METAL OR A RIGID PLASTIC MATERIAL THAT CAN WITHSTAND 200 PSI WITHOUT BEING DEFORMED. (II) A MANDREL MUST HAVE NINE OR MORE ODD NUMBER OF RUNNERS OR (III) A BARREL SECTION LENGTH MUST EQUAL AT LEAST 75% OF THE INSIDE (IV) EACH SIZE MANDREL MUST USE A SEPARATE PROVING RING. (II) A TEST MAY NOT USE TELEVISION INSPECTION AS A SUBSTITUTE FOR A III) IF REQUESTED, THE EXECUTIVE DIRECTOR MAY APPROVE THE USE OF A DEFLECTOMETER OR A MANDREL WITH REMOVABLE LEGS OR RUNNERS ON A (5) GRAVITY COLLECTION SYSTEM PIPE DEFLECTION MUST NOT EXCEED FIVE PERCENT (6) IF A PIPE SECTION FAILS A DEFLECTION TEST, AN OWNER SHALL CORRECT THE PROBLEM AND CONDUCT A SECOND TEST AFTER THE FINAL BACKFILL HAS BEEN METHODS IS 0.025 GALLONS PER FOOT DIAMETER PER FOOT OF MANHOLE DEPTH TO PERFORM A HYDROSTATIC EXFILTRATION TEST, AN OWNER SHALL SEAL ALL EXTERIOR JOINTS WITH A NON-SHRINK GROUT AND PLUG ALL PIPES ENTERING A STUB-OUTS, MANHOLE BOOTS, AND PIPE PLUGS MUST BE SECURED TO PREVENT SECTION, AND THE SEAL INFLATED IN ACCORDANCE WITH THE MANUFACTURER'S THERE MUST BE A VACUUM OF 10 INCHES OF MERCURY INSIDE A MANHOLE TO A MANHOLE PASSES THE TEST IF AFTER 2.0 MINUTES AND WITH ALL VALVES

100.1


10000


CARAMALI ALLA SLAVE DAMANI ST


The second secon				100'	1"= 100' 201	0' 300'	NO.REVISIONDATE1REVISE LOT LAYOUT08/11/22-PLAN REVISED FOR PHASING10/14/222REVISE LOT GRADING02/20/23	
	BLAZE TRAL			SILT ABILIZED STRUCTION TRANCE	TO BE P	RAP	MICHAEL BOX SIO	S FISHER
ISTRUCTION D (TO REMAIN)				RT, MUD, R D, TRACKED	EXISTING VEGETATI DIVERSION PROPERT PHASE BU	OTECTION D CONTOUR LINE CONTOUR LINE VE FILTER STRIP N DIKE Y BOUNDARY OUNDARY S, ETC. THAT IS	PE-DAWSON GINEERS	I HOUSTON I FORT WORTH I DALLAS 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 #470 I TBPLS FIRM REGISTRATION #10028801
			CLEANE 2. ALL DIS REVEGE 3. CONTRA OUTSIDI SHOWN	ED UP IMME STURBED AI ETATED. ACTOR TO F	DIATELY. REAS SHALL PRESERVE A IS OF CONS	LL TREES	EN EN	'IN I SAN ANTONIO I H N MOPAC EXPY, BLDG 3, S FIRM REGISTRATION #470
es Trunk Diameter K Multi 29.5	Removed Tree		PROVID SECTION Species LOAK	ED THROUG	22	AZE TRAIL Removed Tree X		AUSTIN 10801 N TBPE FIR
	σ	756 757 758 1564 1566 1570 1571 1572 1573 1574 1574 1575 1582 1583	PROVID SECTION Species LOAK LOAK LOAK LOAK LOAK LOAK LOAK SOAK SOAK LOAK LOAK	ED THROUG 4G PROTEC Trunk Multi Multi Multi Single Single Single Single Single Single Single Single Multi Multi Multi	BLUE BL/ CTED TREES Diameter 22 20 18 19 22 23 23 23 20 21 21 21 23 23 20 21 23 23 23 23 23 23 23 23 23 23 23 23	AZE TRAIL Removed Tree	N 4G, PHASES 1 & 2 VN, TEXAS	1 OF 2
EsTrunkDiameterMulti29.5Multi28.5Multi26Multi31.5Single29Multi30	Removed Tree X X X	756 757 758 1564 1566 1570 1571 1572 1573 1573 1574 1575 1582 1583 1584 1584 1585 1586 1586 1587 1588 1588 1588 1589 1590 1591	PROVID SECTION Species LOAK LOAK LOAK LOAK LOAK LOAK LOAK SOAK SOAK	ED THROUG 4G PROTEC Trunk Multi Multi Multi Single Single Single Single Single Single Single Single Single Multi	H BLUE BL/E CTED TREES Diameter 22 20 19 22 23 23 20 21 21 23 21 23 21 23	AZE TRAIL Removed Tree X X X X X X X X X X X X X X X X X X	WEST, SECTION 4G, PHASES 1 & OF GEORGETOWN, TEXAS	PLAN 1 OF 2
EsTrunkDiameterMulti29.5Multi28.5Multi26Multi31.5Single29Multi30	Removed Tree X X X X X Allowable Allowable Allowable Heritage Tree Ir	756 757 758 1564 1566 1570 1571 1572 1573 1574 1575 1582 1583 1584 1585 1586 1587 1588 1587 1588 1589 1590 1591 1592 1593 1593 1593 1598 Credit Heritage Tree tual Heritage Tree tual Heritage Tree Credit Inches Net Credit Tree	PROVID SECTION Species LOAK Be Inches R	ED THROUG 4G PROTEC Trunk Multi Multi Multi Single Single Single Single Single Single Single Single Multi	CTED TREES Diameter 22 200 18 19 22 23 23 23 23 23 23 23 23 23 23 23 23 23 24 25.5 19 18.5 21 18.5 25.5 21 18.5 25.5 21 18.5 25.5 21 18.5 22.5 21 18.5 22.5 20.5 3 4 19 22.5 20.5 3 4 6)	AZE TRAIL Removed Tree X X X X X X X X X X X X X X X X X X	WOLF RANCH WEST, SECTION 4G, PHASES 1 & CITY OF GEORGETOWN, TEXAS	1 OF 2



SIGNAGE NOTES:

1. STREET SIGNS TO INCLUDE BLOCK NUMBERS.

WALL AND FENCING

- 2. ALL SIGNAGE AND STRIPING TO COMPLY WITH THE TEXAS MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES.
- 3. SIDEWALKS ARE 5' MIDE UNLESS OTHERWISE NOTED.
- 4. REFERENCE SHEET 56 FOR CUSTOM STREET SIGN DETAIL.
- 5. ON SUBDIVISION STREETS WHERE PARKING IS NOT ALLOWED ON ONE SIDE OR BOTH SIDES OF THE STREET, FIRE LANES ARE REQUIRED AND SHALL BE MARKED AND MAINTAINED IN THE FOLLOWING
- MANNER: 5.1. A SIGN 12-INCHES WIDE AND 18-INCHES IN HEIGHT WITH RED LETTING ON A WHITE REFLECTIVE BACKGROUND AND BORDER IN RED STATING "FIRE LANE - TOW AWAY ZONE", ALONG WITH THE WORDS "THIS SIDE OF THE STREET". THE WORDS "FIRE LANE" BY THEMSELVES ARE NOT ACCEPTABLE. SIGN SHALL BE MOUNTED CONSPICUOUSLY ALONG THE EDGE OF THE FIRE LANE. SIGN MUST BE AT THE BEGINNING OF A STREET AND SPACED NO MORE THAN 250 FEET APART AT A MINIMUM HEIGHT OF 7 FEET ABOVE FINISHED GRADE. THIS PROJECT WILL ONLY HAVE PARKING ON ONE SIDE OF THE ROAD.

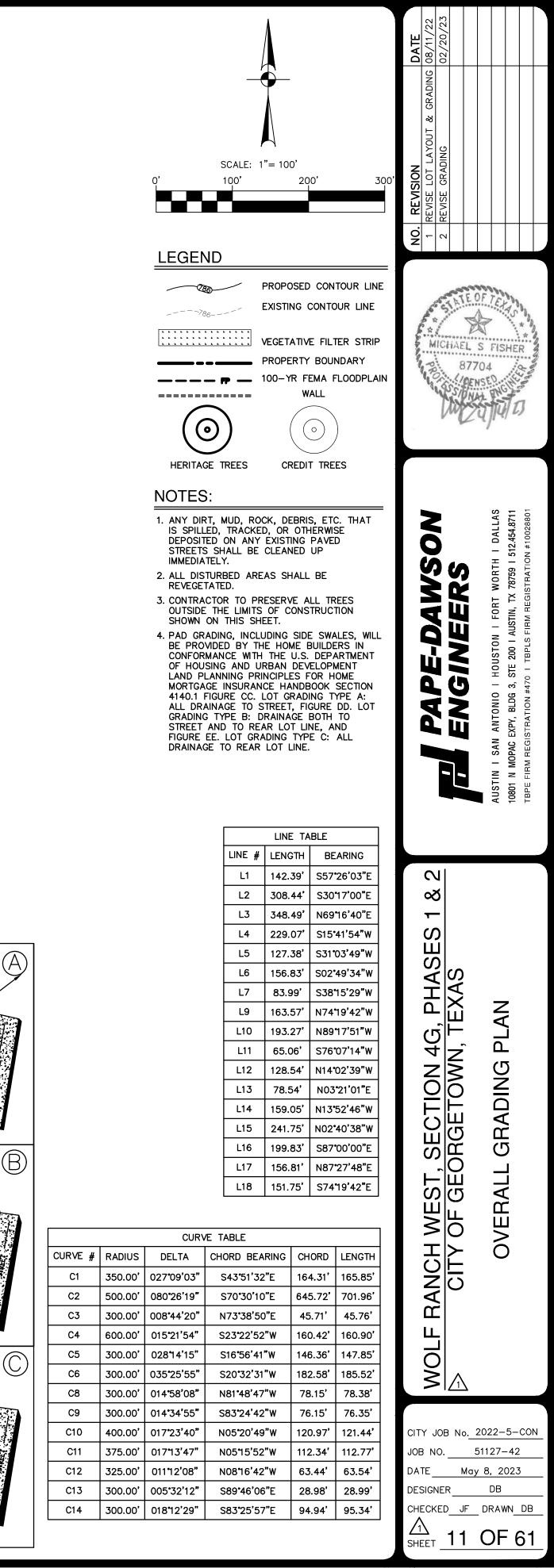
SIDEWALK NOTES:

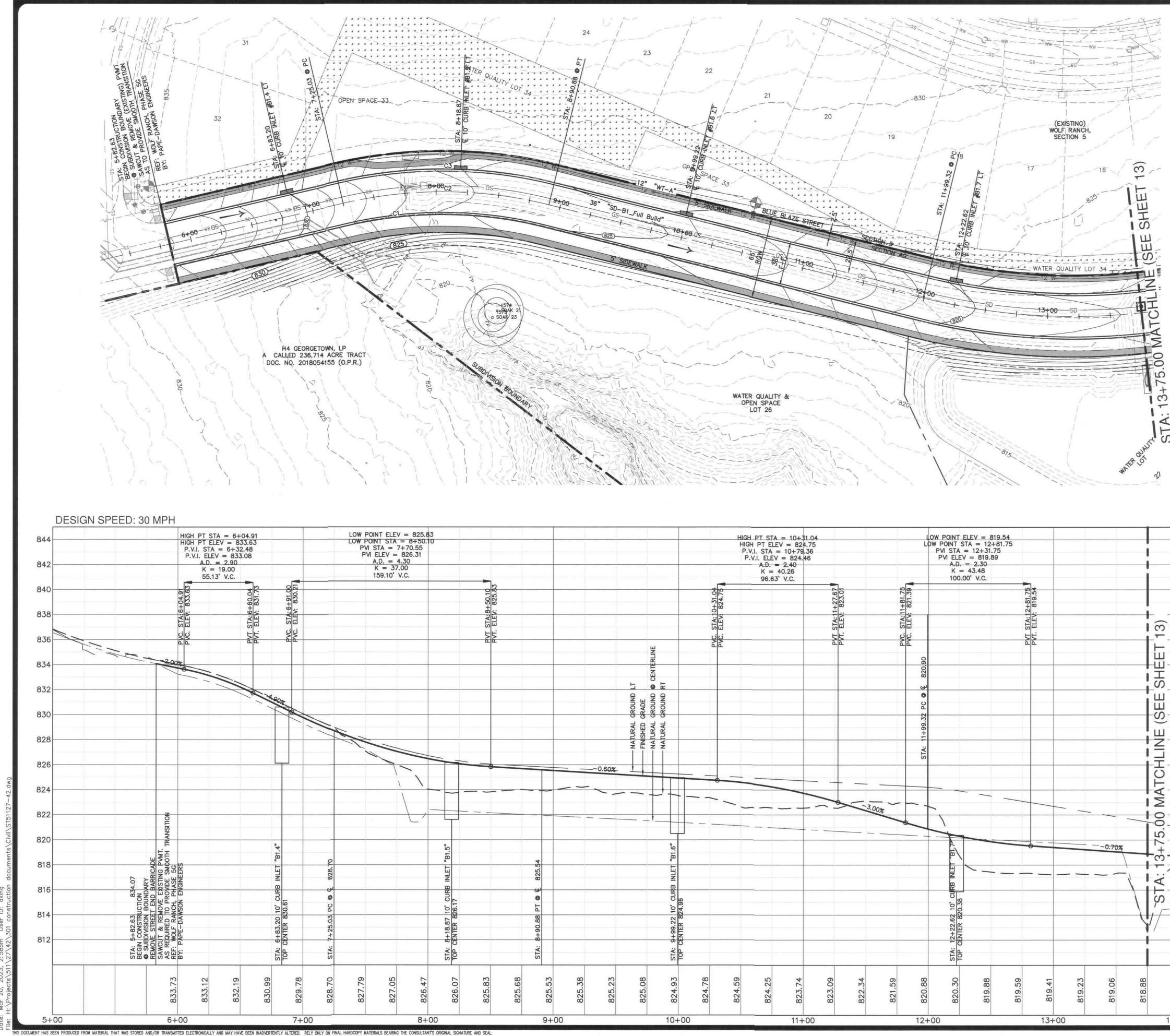
- 1. SIDEWALKS ADJACENT TO SINGLE FAMILY LOTS ARE TO BE CONSTRUCTED CONCURRENTLY WITH EACH SINGLE FAMILY HOUSE.
- 2. SIDEWALKS ADJACENT TO PUBLIC SPACES ARE TO BE CONSTRUCTED WITH THESE SUBDIVISION IMPROVEMENTS AS NOTED BY SHADING.
- 3. REFER TO TYPICAL CURB RAMP AND PEDESTRIAN CROSSING DETAIL FOR CURB RAMP LOCATION AND PEDESTRIAN CROSSING REQUIREMENTS. ALL CURB RAMPS ARE TYPE I CURB RAMPS UNLESS OTHERWISE NOTED.

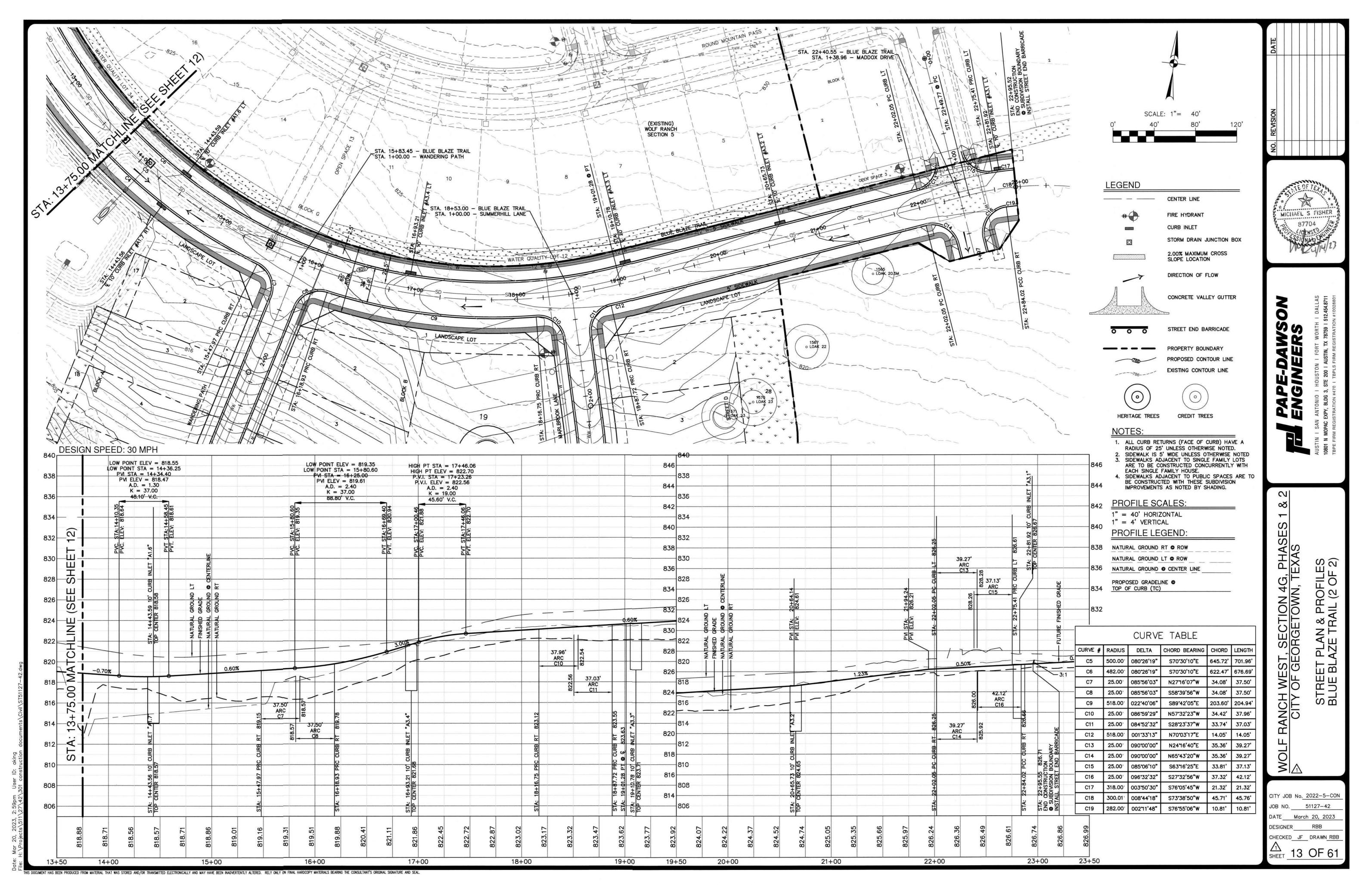
LIGHTING NOTES:

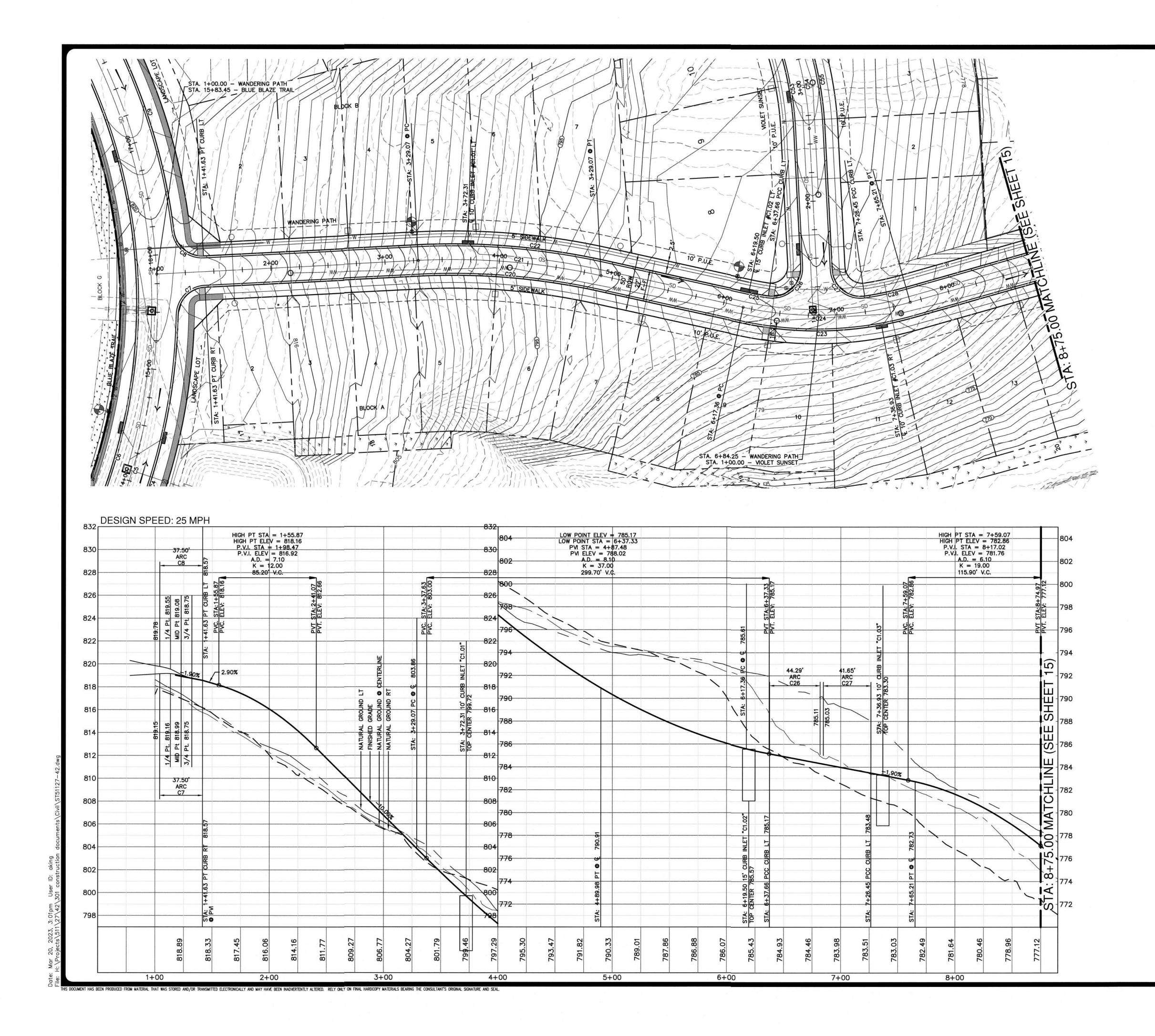
- 1. STREETLIGHTS TO BE SELUX CATALOG NUMBER SACL-R3-1-5G105-40-18-BK-120-PCT. STREETLIGHT POLE TO BE SELUX CATALOG NUMBER S35-16-BK. STREETLIGHTS TO MATCH WOLF RANCH WEST, SECTION 1A STREETLIGHTS. PHOTOCELLS TO BE INCLUDED WITH STREETLIGHT INSTALLATION.
- STREET LIGHTS SHALL NOT BE CONSTRUCTED IN THE SIDEWALK.

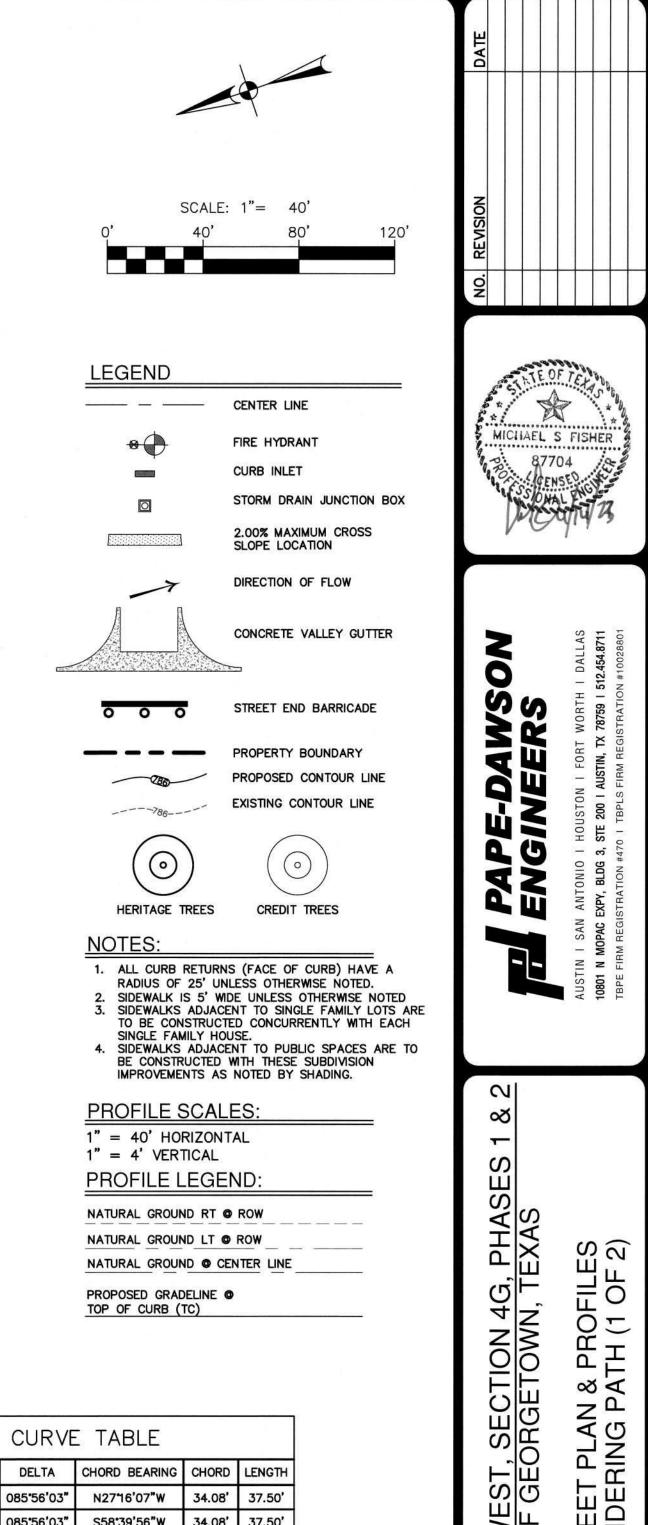
FIRE LANE	
TOW AWAY	
ZONE THIS	18
SIDE OF	
THE	
STREET	
	TOW AWAY ZONE THIS SIDE OF THE


FIRE LANE PARKING SIGN DETAIL NOTE: • A SIGN 12-INCHES WIDE & 18-INCHES IN

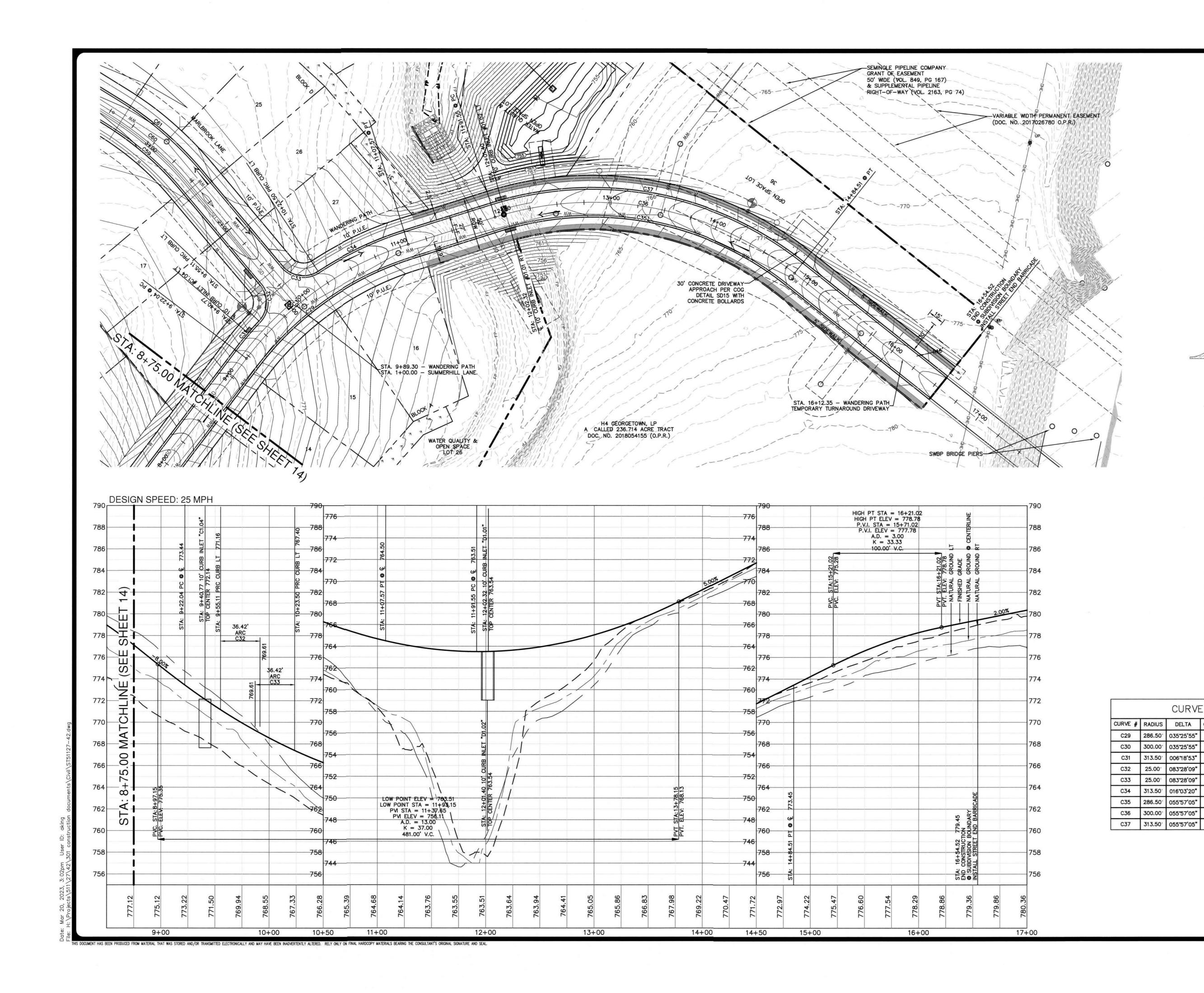

- HEIGHT WITH RED LETTERING ON A WHITE REFLECTIVE BACKGROUND AND BORDER IN RED STATING "FIRE LANE - TOW AWAY ZONE", ALONG WITH "THIS SIDE OF THE STREET" OR "BOTH SIDES OF THE STREET"
- THE WORDS "FIRE LANE" BY THEMSELVES ARE NOT ACCEPTABLE
- SIGN SHALL BE MOUNTED CONSPICUOUSLY ALONG THE EDGE OF THE FIRE LANE. SIGN MUST BE AT THE BEGINNING OF THE STREET AND SPACED NO MORE THAN 250-FEET APART AT A MINIMUM HEIGHT OF 7-FEET ABOVE FINISHED GRADE

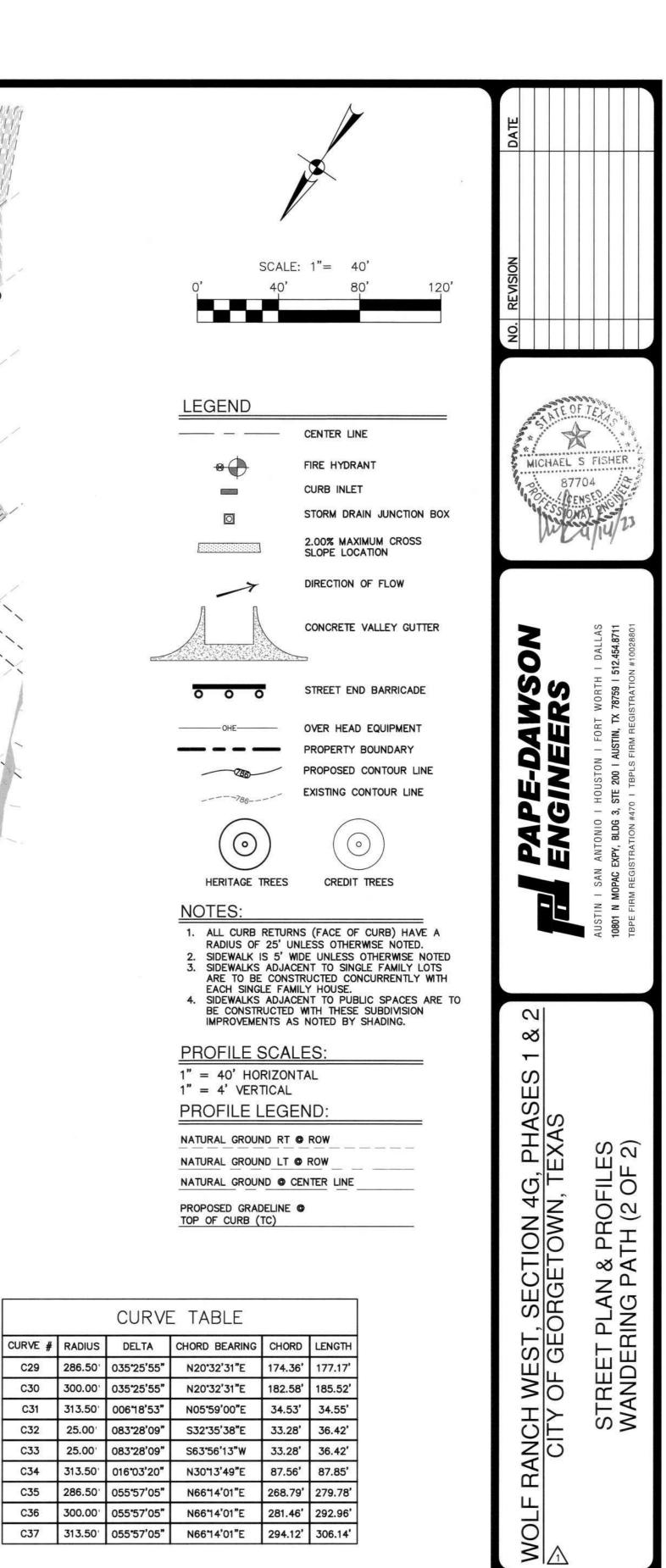

SHEET 10 OF 61




SCALE: $1'' = 40'$ 0' 40' 80' 120'	NO. REVISION DATE
LEGEND CENTER LINE FIRE HYDRANT CURB INLET STORM DRAIN JUNCTION BOX 2.00% MAXIMUM CROSS SLOPE LOCATION DIRECTION OF FLOW	MICHAEL S FISHER BORNSED SIGNAL ENGLASS
CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTER PROPERTY BOUNDARY PROPOSED CONTOUR LINE EXISTING CONTOUR LINE CREDIT TREES CREDIT TREES CREDIT TREES CREDIT TREES CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTER PROPERTY BOUNDARY PROPOSED CONTOUR LINE EXISTING CONTOUR LINE CREDIT TREES CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTER PROPERTY BOUNDARY PROPOSED CONTOUR LINE EXISTING CONTOUR LINE CREDIT TREES CONCRETE VALLEY GUTTER PROPERTY BOUNDARY PROPOSED CONTOUR LINE EXISTING CONTOUR LINE CREDIT TREES CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTER PROPERTY BOUNDARY PROPOSED CONTOUR LINE EXISTING CONTOUR LINE CREDIT TREES CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTER PROPERTY BOUNDARY PROPOSED CONTOUR LINE EXISTING CONTOUR LINE CREDIT TREES CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTER PROPERTY BOUNDARY PROPOSED CONTOUR LINE EXISTING CONTOUR LINE CREDIT TREES CREDIT TREES CONCRETE VALLEY GUTTER CONCRETE VALLEY GUTTE	A CONTRACTOR OF A CONTRACTOR A CONTACTOR A CONTRACTOR A CONTACTOR A CON
A BE CONSTRUCTED WITH THESE SUBDIVISION IMPROVEMENTS AS NOTED BY SHADING. PROFILE SCALES: 1" = 40' HORIZONTAL 1" = 4' VERTICAL PROFILE LEGEND: NATURAL GROUND RT @ ROW NATURAL GROUND RT @ ROW NATURAL GROUND LT @ ROW NATURAL GROUND @ CENTER LINE PROPOSED GRADELINE @ TOP OF CURB (TC) CURVE TABLE CURVE # RADIUS DELTA CHORD BEARING CHORD LENGTH CI 332.00 027'09'03" N43'51'32"W 155.86' 157.33' C2 350.00' 027'09'03" N43'51'32"W 164.31' 165.85' C3 368.00' 027'09'03" N43'51'32"W 172.76' 174.38' C4 518.00' 039'57'08" S50'15'34"E 353.93' 361.20' C5 500.00' 080'26'19" S70'30'10"E 645.72' 701.96' C6 482.00' 080'26'19" S70'30'10"E 645.72' 701.96'	WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS STREET PLAN & PROFILES BLUE BLAZE TRAIL (1 OF 2)
	CITY JOB No. 2022-5-CON JOB NO. 51127-42 DATE March 20, 2023 DESIGNER RBB CHECKED JF DRAWN RBB A SHEET 12 OF 61

a



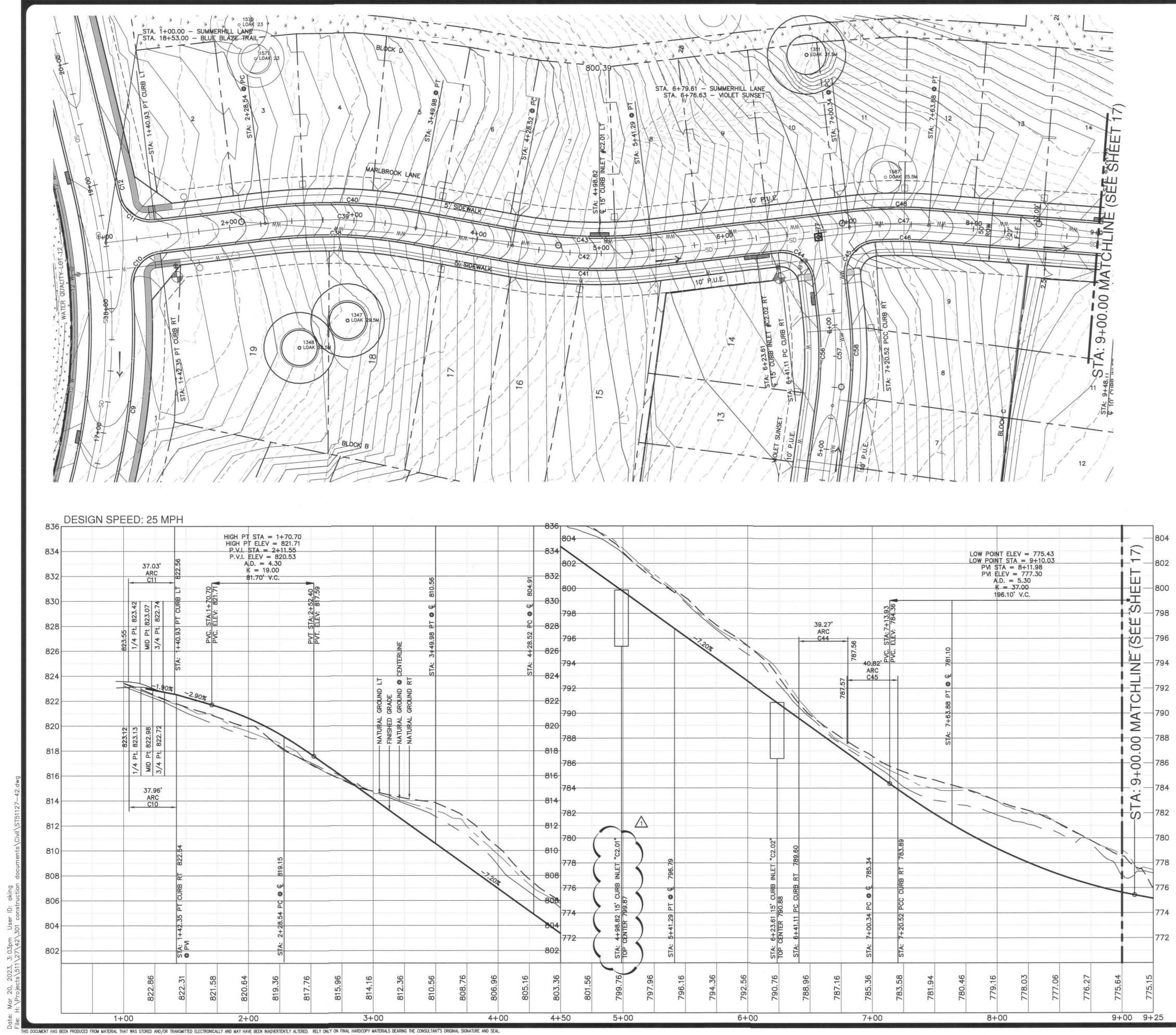

.....

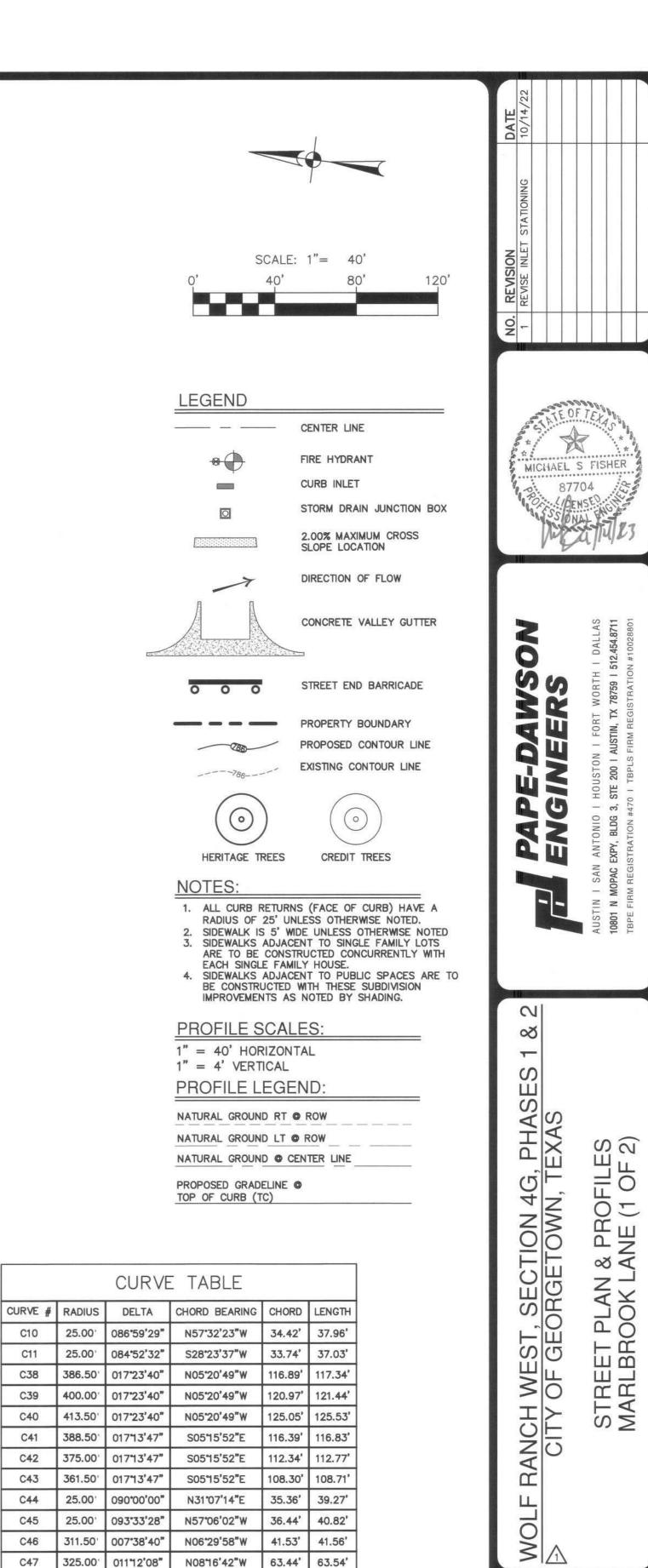
CURVE #	RADIUS	DELTA	CHORD BEARING	CHORD	LENGTH
C7	25.00 [,]	085*56'03"	N27"16'07"W	34.08'	37.50'
C8	25.00'	085*56'03"	S58*39'56"W	34.08'	37.50'
C20	586.50	015*21'54"	N23°22'52"E	156.81'	157.28'
C21	600.00	015*21'54"	N23°22'52"E	160.42'	160.90'
C22	613.50 [,]	015°21'54"	N23°22'52"E	164.03'	164.52'
C23	313.50'	02814'15"	S16*56'41"W	152.95'	154.50'
C24	300.00'	02814'15"	S16*56'41"W	146.36'	147.85'
C25	286.50	003*52'42"	S29'07'28"W	19.39'	19.39'
C26	25.00	101°30'50"	S23°34'18"E	38.72'	44.29'
C27	25.00	095*26'34"	S57*57'01"W	36.99'	41.64'
C28	286.50	007*24'10"	S06*31'39"W	36.99'	37.02'

ON MICHAEL S BORNA	FISHER FISHER
ENGINEERS	AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS	STREET PLAN & PROFILES WANDERING PATH (1 OF 2)
CITY JOB No. 2 JOB NO. <u>5</u> DATE <u>March</u> DESIGNER CHECKED JF CHECKED JF SHEET 14	1127–42 20, 2023 RBB

CITY JOB No. 2022-5-CON

CHECKED JF DRAWN RBB


SHEET 15 OF 61


RBB

JOB NO. 51127-42 DATE March 20, 2023

DESIGNER

 $\overline{1}$

C46 311.50' 007*38'40"

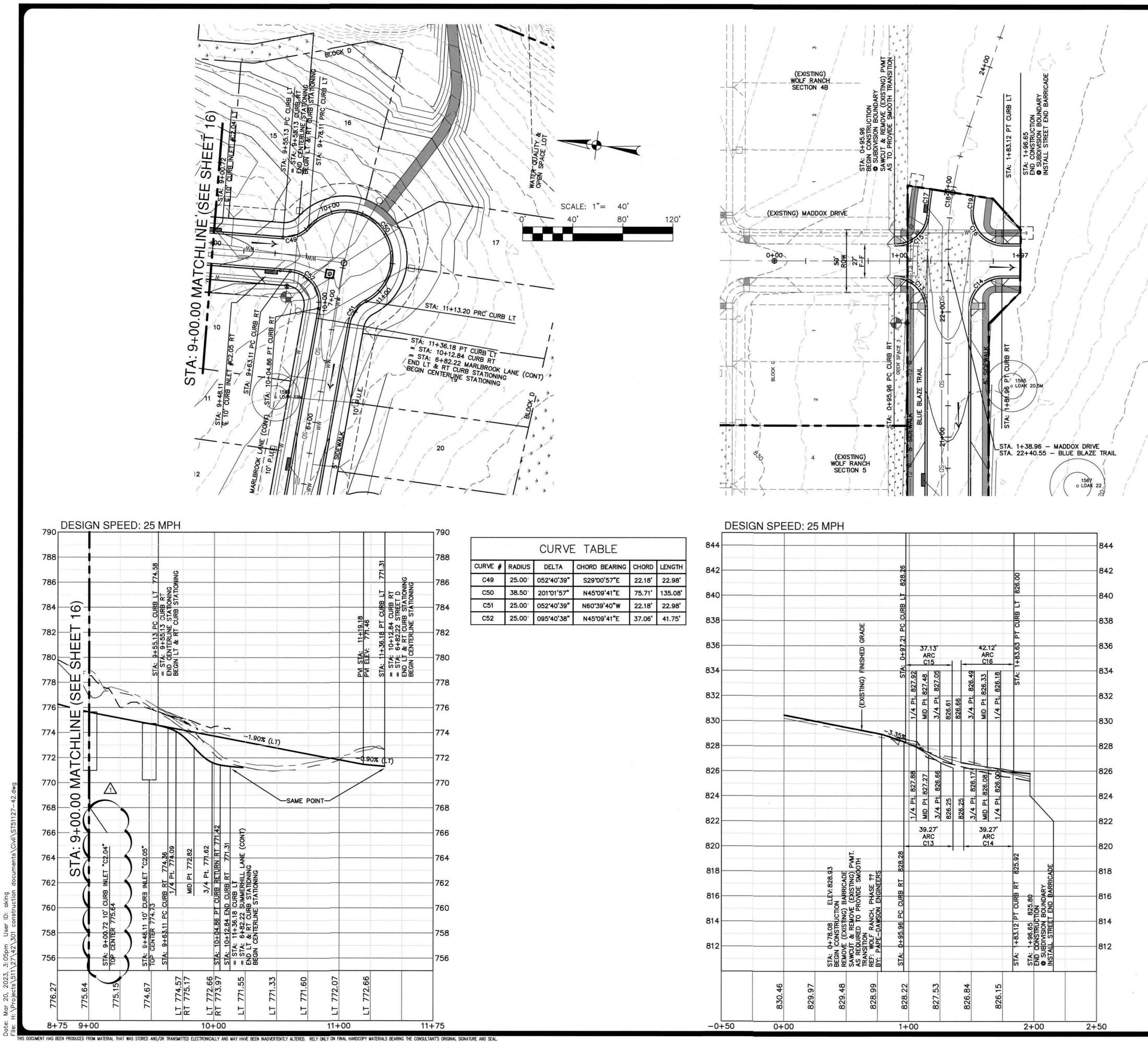
C47 325.00 01112'08"

N06°29'58"W 41.53' 41.56'

N0816'42"W 63.44' 63.54'

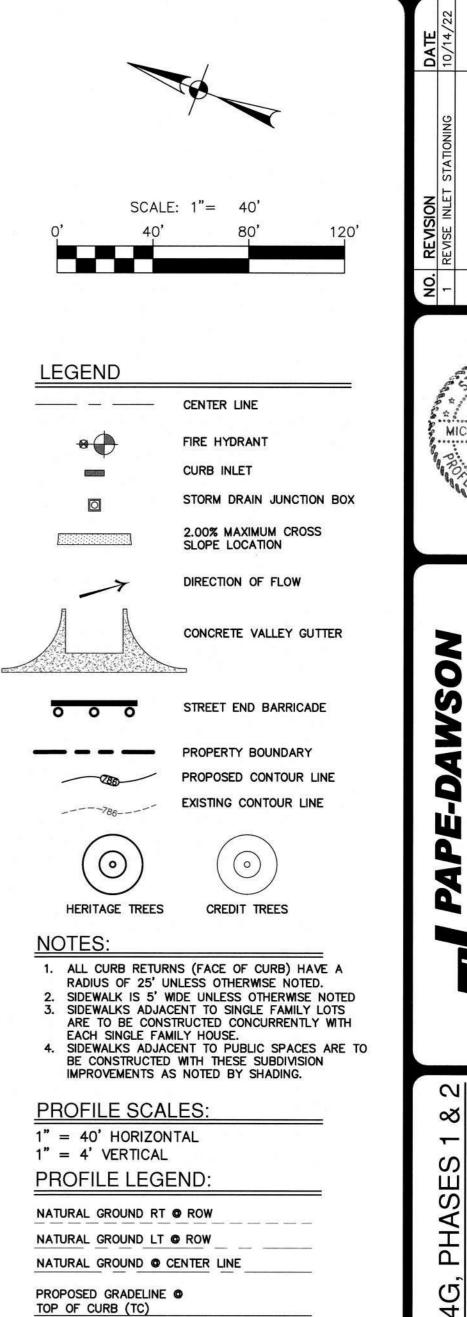
CITY JOB No. 2022-5-CON

JOB NO. 51127-42

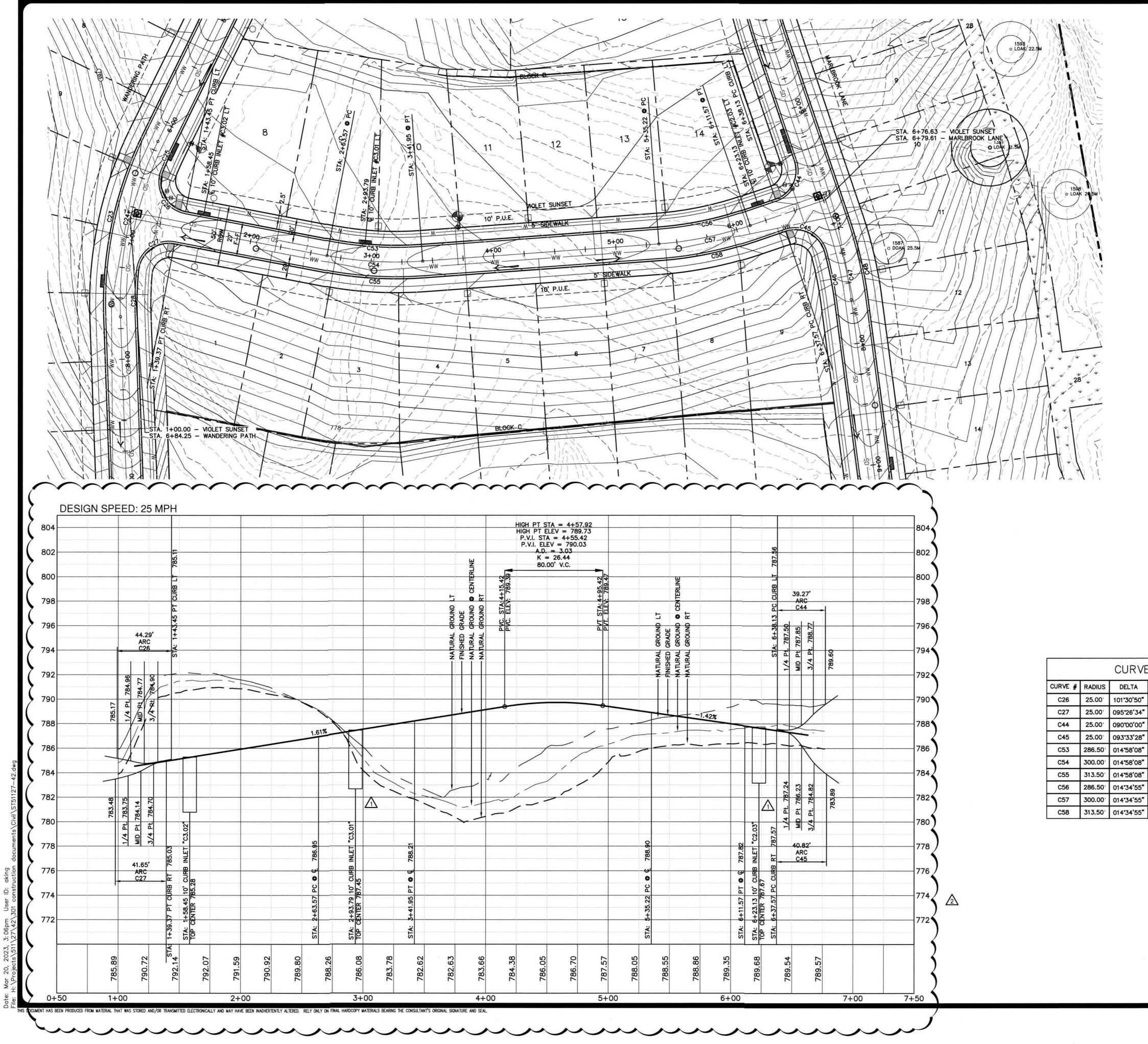

DESIGNER RBB

DATE _____ March 20, 2023

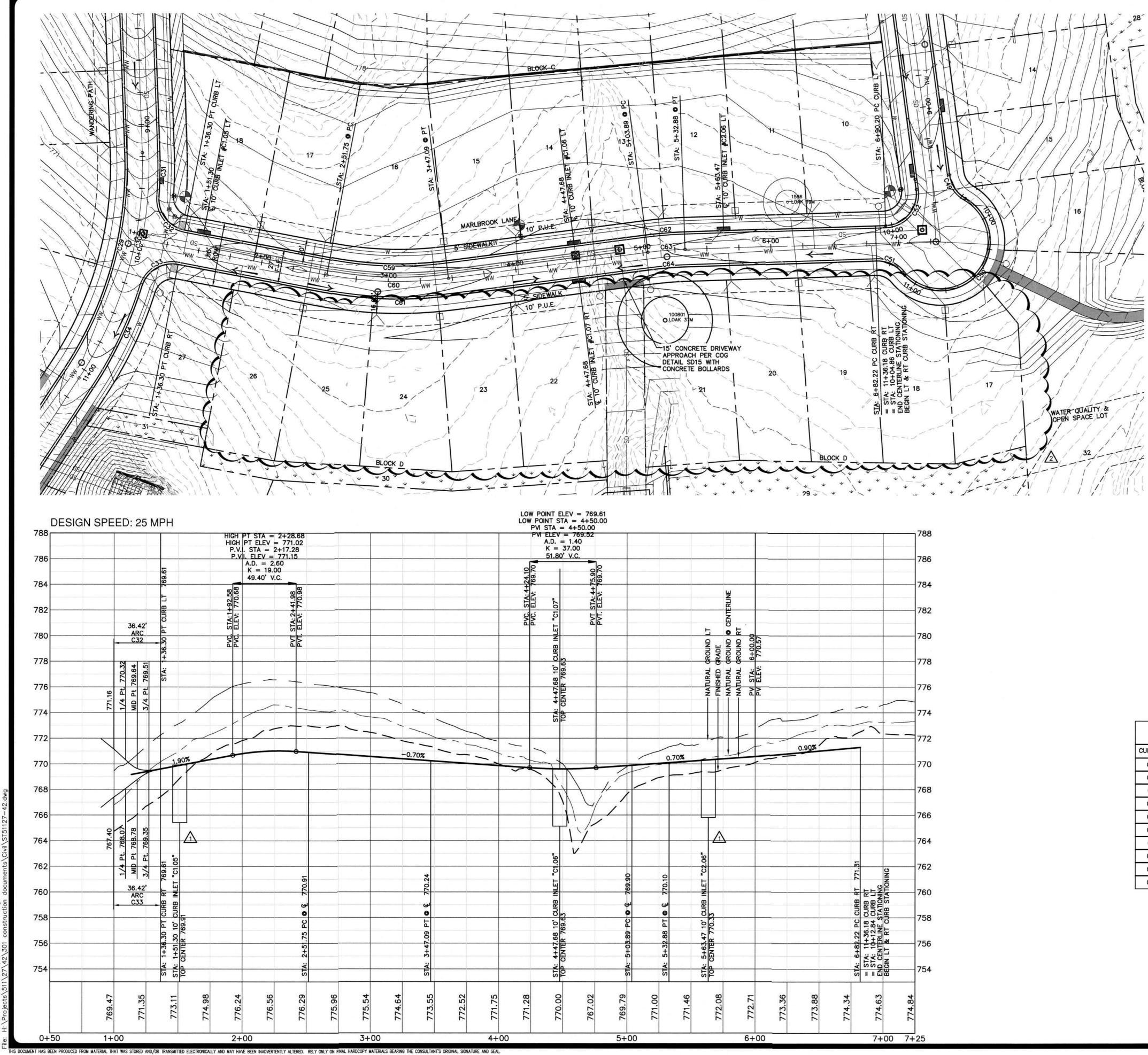
CHECKED JF DRAWN RBB


A 16 OF 61

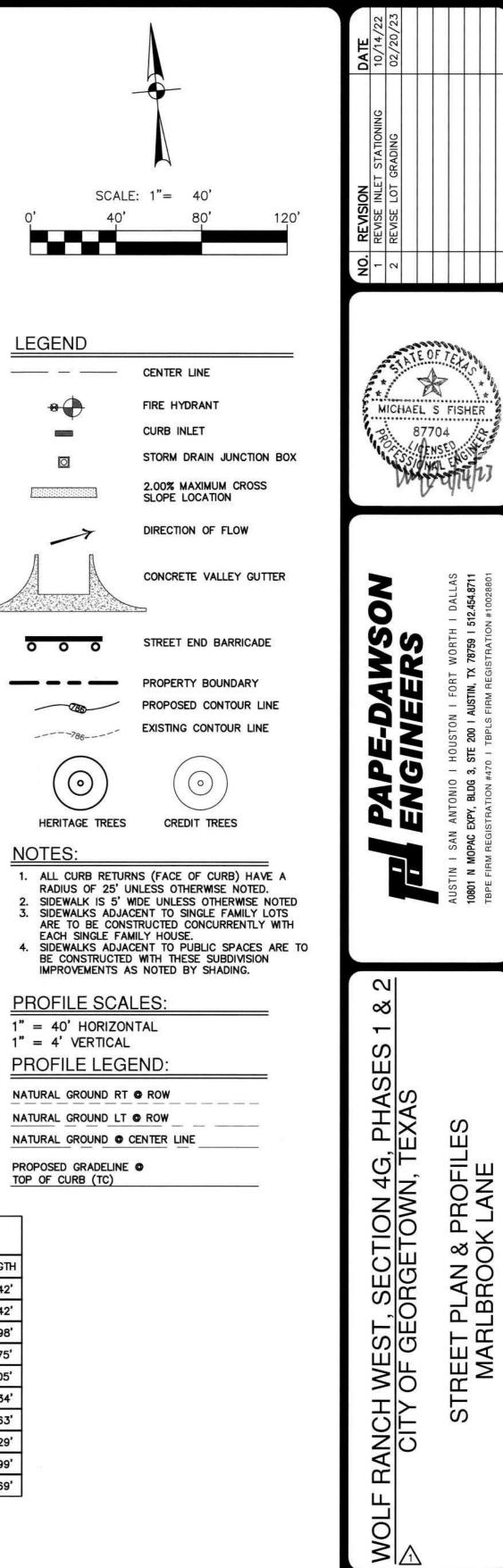
C48 338.50' 011"2'08" N08"6'42"W 66.08' 66.18'


110000

C

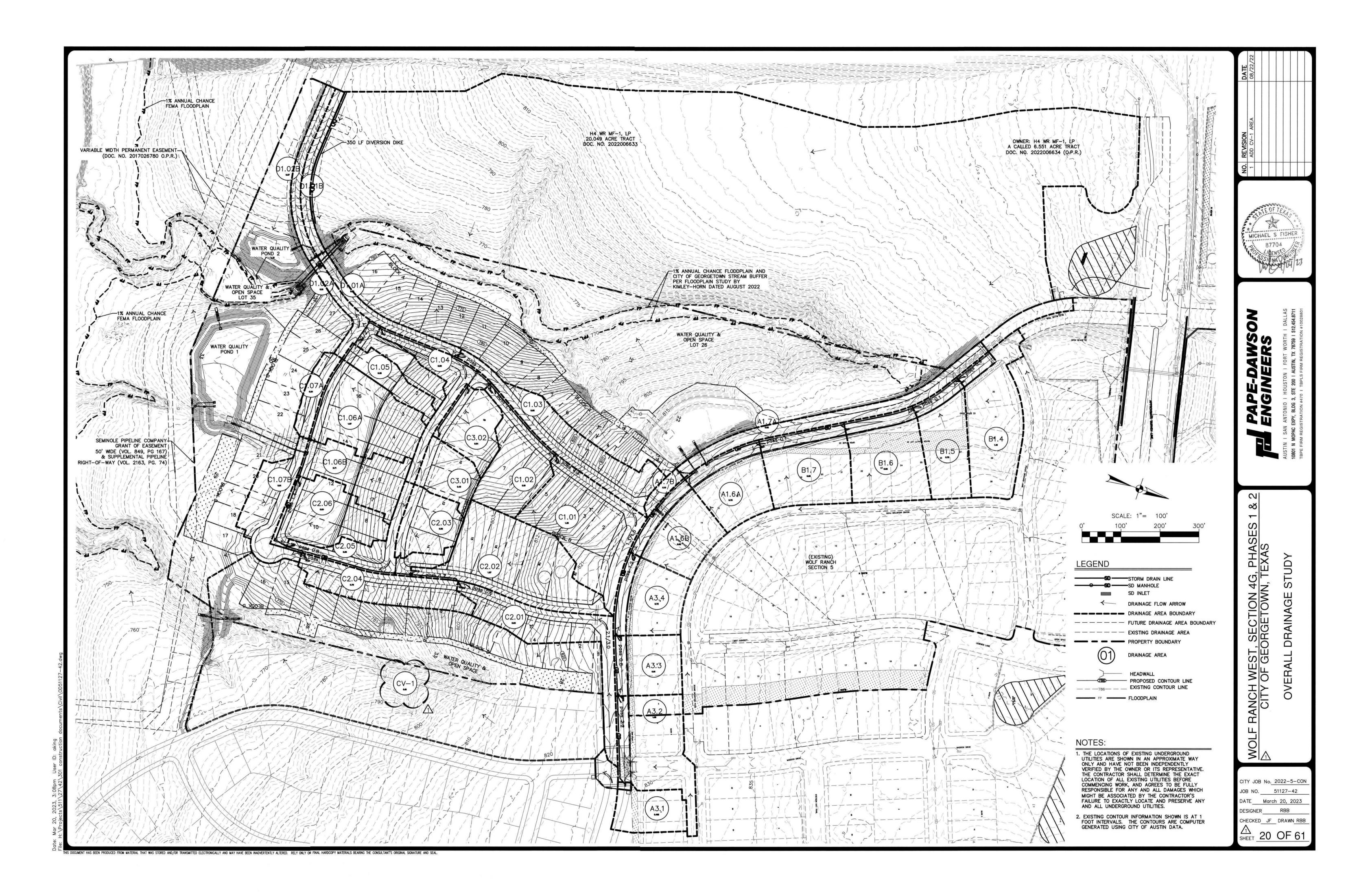

		CURVE	TABLE	1 ·	
URVE #	RADIUS	DELTA	CHORD BEARING	CHORD	LENGTH
C13	25.00'	090°00'00"	N2416'40"E	35.36'	39.27'
C14	25.00'	090°00'00"	N65*43'20"W	35.36'	39.27'
C15	25.00'	085*06'10"	S6316'25"E	33.81'	37.13'
C16	25.00'	096*32'32"	S27*32'56"W	37.32'	42.12'
C17	318.00'	003*50'30"	S76*05'45*W	21.32'	21.32'
C18	300.01	008*44'18"	S73*38'50"W	45.71'	45.76'
C19	282.00	00211'48"	S76*55'06"W	10.81'	10.81'

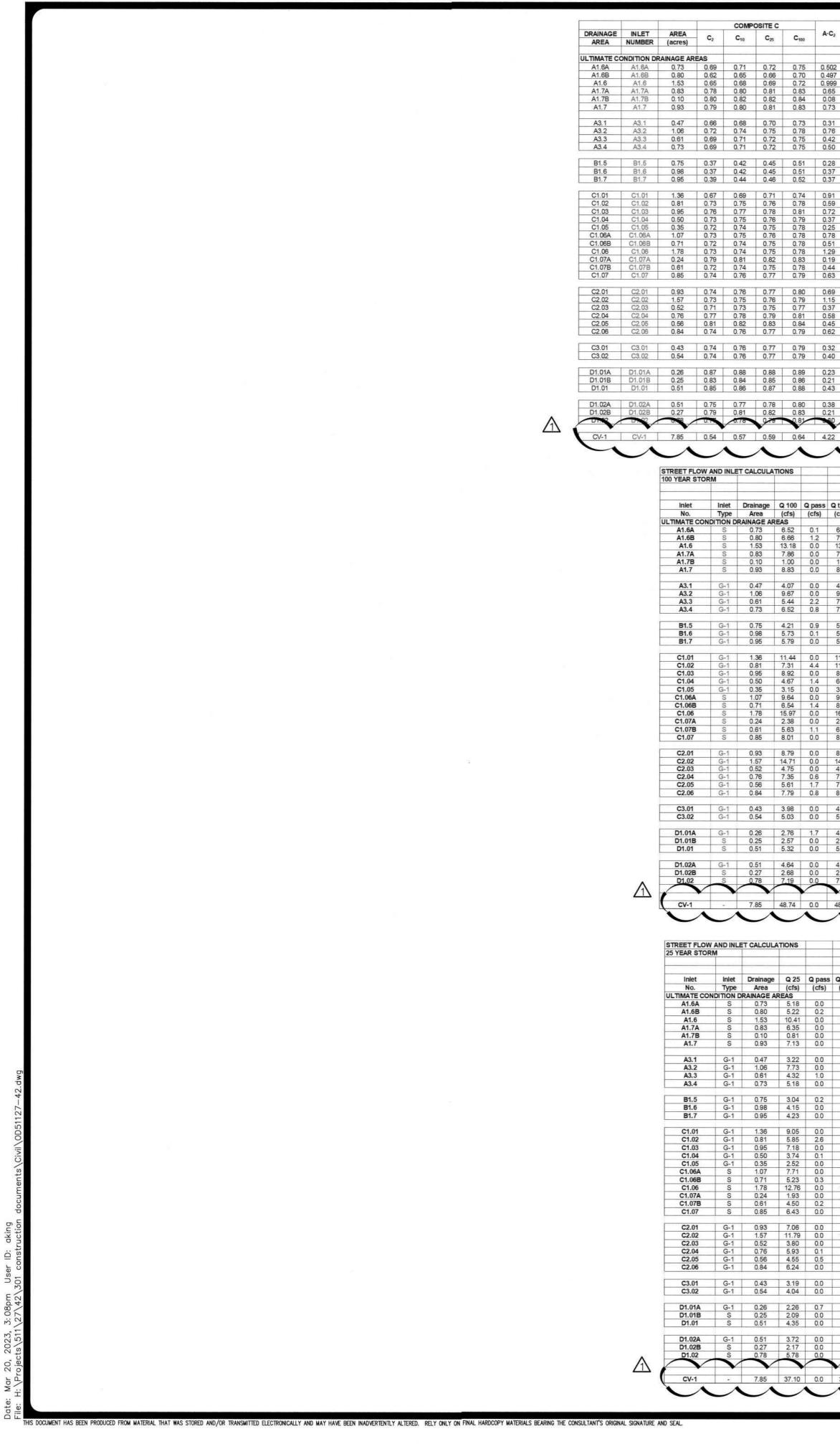
NO. REVISION 1 REVISE INLET STATIONING 10/14/22 10/14/22	OF TEL TS S FISHER
E ENGINEERS	AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS	STREET PLAN & PROFILES MARLBROOK LANE (2 OF 2)
JOB NO DATE Mar DESIGNER CHECKED JF	ch 20, 2023



Έ	TABLE		
ĺ	CHORD BEARING	CHORD	LENGTH
•	S23'34'18"E	38.72'	44.29'
	S57*57'01"W	36.99'	41.64'
*	N31°07'14"E	35.36'	39.27'
"	N57'06'02"W	36.44'	40.82'
	S81*48'47"E	74.64'	74.85'
	S81*48'47"E	78.15'	78.38'
	S81*48'47"E	81.67'	81.90'
	N83°24'42"E	72.72'	72.92'
,	N83'24'42"E	76.15'	76.35'
	N83°24'42"E	79.57'	79.79'

CURVE #	RADIUS	DELTA	CHORD BEARING	CHORD	LENGTH
	RADIUS		CHORD BEARING		School School and School Schoo
C32	25.00	083*28'09"	S32*35'38"E	33.28'	36.42'
C33	25.00'	083*28'09"	S63*56'13"W	33.28'	36.42'
C51	25.00	052*40'39"	N60°39'40"W	22.18'	22.98'
C52	25.00	095*40'38"	N45'09'41"E	37.06'	41.75'
C59	286.50	01872'29"	S83*25'57"E	90.66'	91.05'
C60	300.00'	01812'29"	S83*25'57"E	94.94'	95.34'
C61	313.50'	018"12'29"	S83*25'57"E	99.21'	99.63'
C62	313.50 [°]	005*32'12"	N89*46'06"W	30.28'	30.29'
C63	300.00'	005*32'12"	N89*46'06"W	28.98'	28.99'
C64	286.50	005*32'12"	N89*46'06"W	27.67'	27.69'

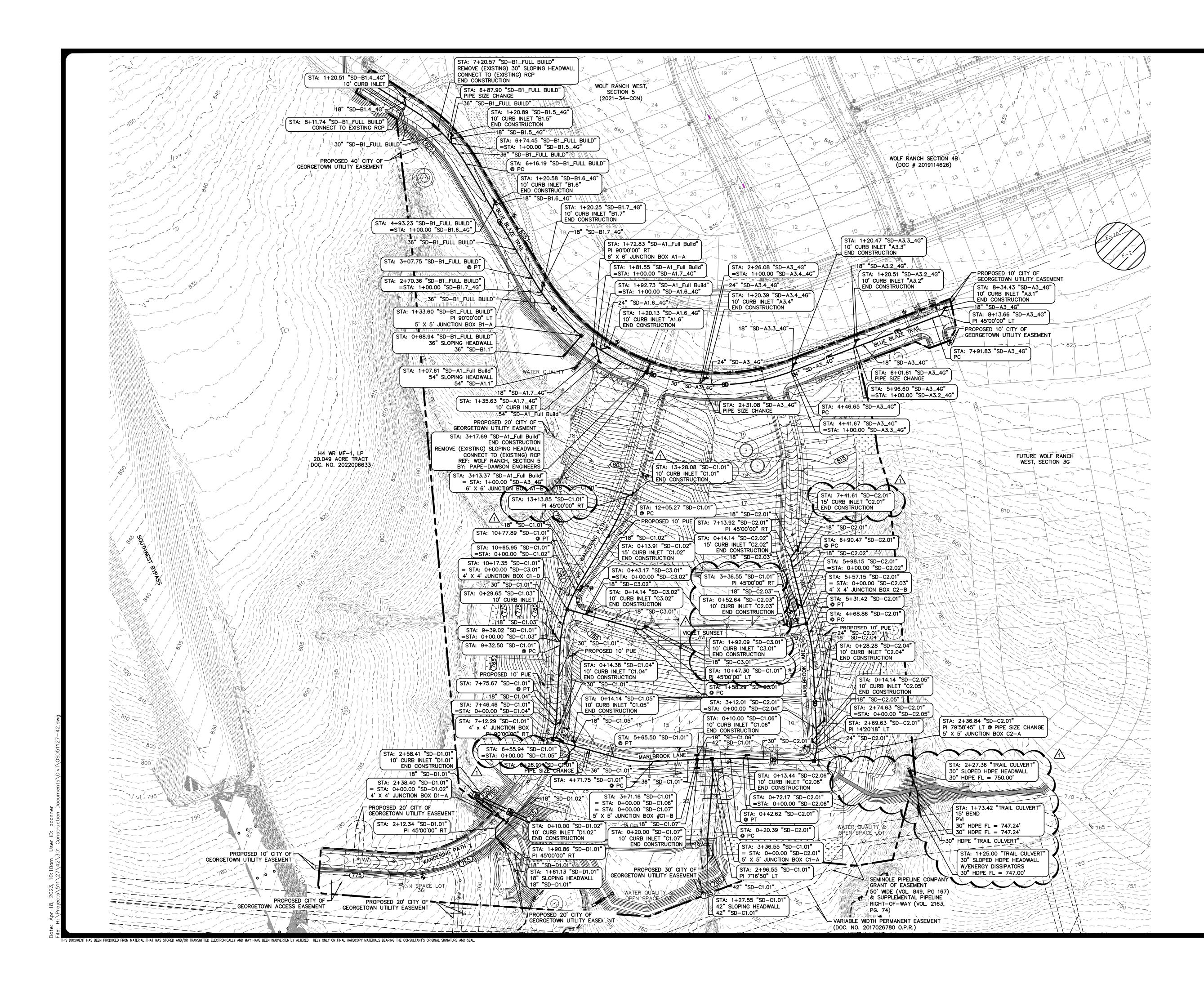


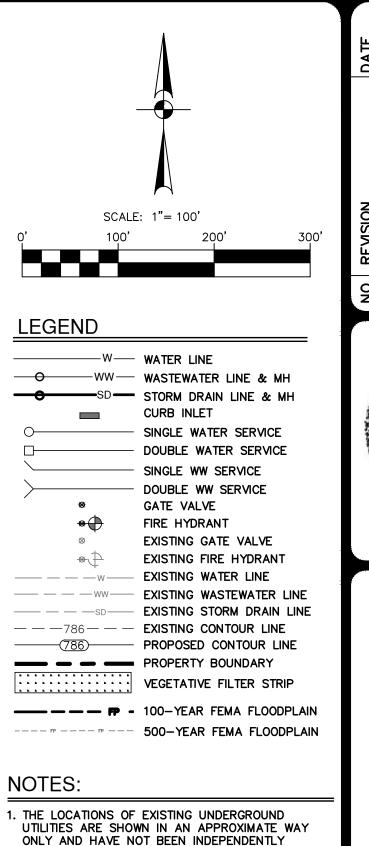

CITY JOB No. 2022-5-CON

CHECKED_JF_DRAWN_RBB

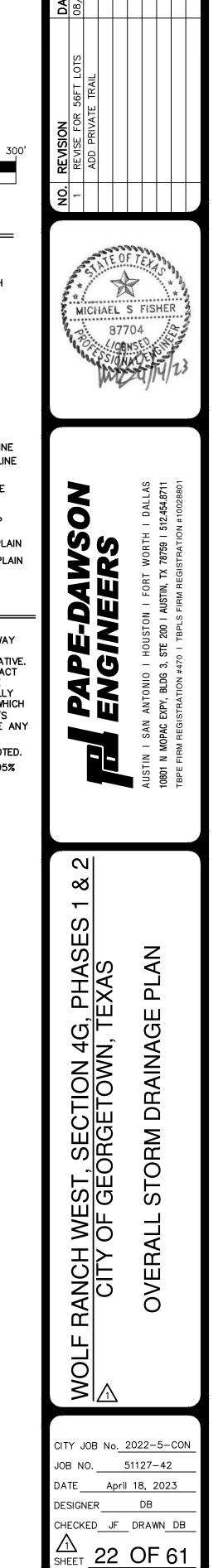
^{∠1∆} 19 OF 61

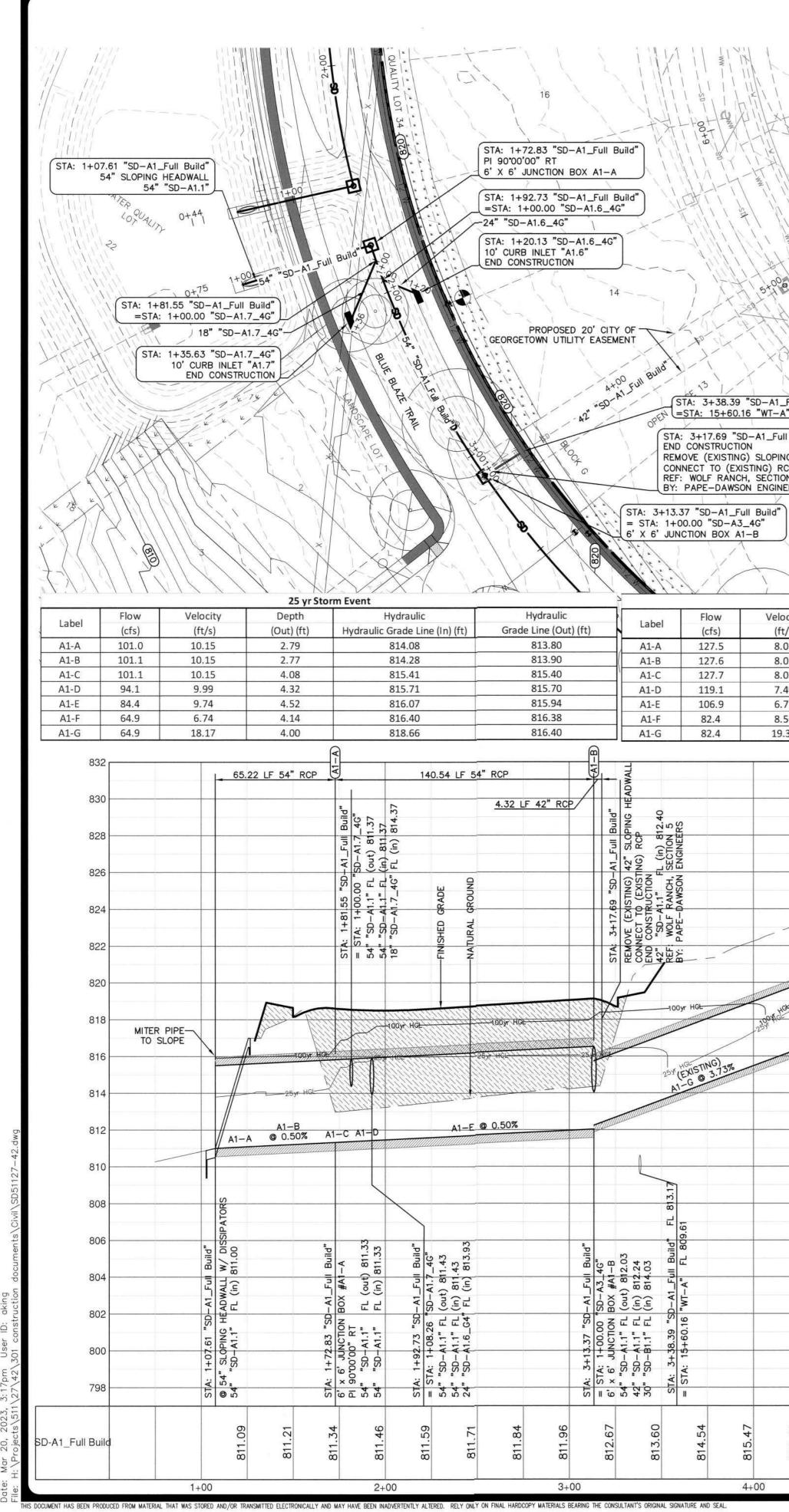
JOB NO. 51127-42 DATE March 20, 2023 DESIGNER RBB

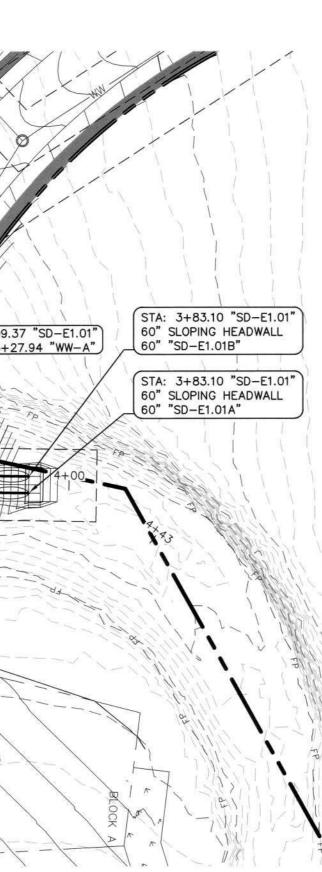


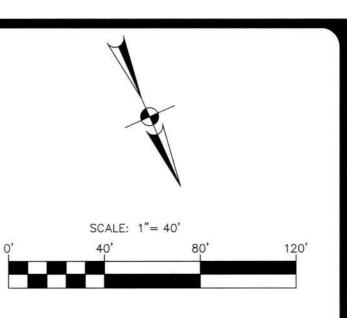

OMPO	SITE C							SHEET F	LOW		SHALL	OW CONCE	NTRATED	FLOW		CHANN	ELIZED FL	.ow		Cumulative		INTER	VISITY			DISCH	ARGE	
1	C25	C100	A·C2	A.C.10	A.C25	A.C.100	Length	Manning's	Slope	Tc	Length	Manning's	Slope	Tc	Length	Manning's	Slope	Velocity	Tc	Тс	I 2yr	l 10yr	l 25yr	I 100yr	Q 2	Q 10	Q 25	Q 10
10	v 25	€100					(ft)	(n)	ft/ft	(min)	(ft)	(n)	ft/ft	(min)	(ft)	(n)	ft/ft	ft/s	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(cfs)	(cfs)	(cfs)	(cfs
74	0.70	0.75	0.500	0.540	0.507	0.540			0.100																			
71	0.72	0.75	0.502		0.527	0.549	20	0.30	0.100	0.45	120	0.30	0.042	2.93	130	0.016	0.007	3.0	0.718	5.00	6.48	8.64	9.84	11.88	3.3	4.5	5.2	6.5
65	0.66	0.70	0.497	0.518	0.531	0.560	20	0.30	0.100	0.45	120	0.30	0.047	2.77	228	0.016	0.006	2.8	1.360	5.00	6.48	8.64	9.84	11.88	3.2	4.5	5.2	6.7
68 80	0.89	0.72	0.999	0.66	0.67	0.69	0	0.30	0.020	0.00	0	0.30	0.020	0.00	1107	0.016	0.007	3.0	6.11	5.00	6.48 6.19	8.64 8.29	9.84	11.88 11.46	6.5	9.0 5.5	10.4	13.
82	0.82	0.84	0.08	0.08	0.08	0.08	0	0.30	0.020	0.00	0	0.30	0.020	0.00	139	0.016	0.006	2.8	0.83	5.00	6.48	8.64	9.47	11.40	0.5	0.7	6.3 0.8	7.9
30	0.81	0.83	0.73		0.75	0.77	-	-	-	-	-	-	-	0.00	-	-		2.0		6.11	6.19	8.29	9.47	11.46	4.5	6.2	7.1	8.8
	0.01		0.70	0.111	0.10	0.11												-	-	0.11	0.10	0.20	0.47	11.40	4.0	0.2	1.1	0.0
68	0.70	0.73	0.31	0.32	0.33	0.34	20	0.30	0.020	1.01	120	0.30	0.045	2.83	110	0.016	0.005	2.6	0.72	5.00	6.48	8.64	9.84	11.88	2.0	2.8	3.2	4.1
74	0.75	0.78	0.76	0.78	0.80	0.82	20	0.30	0.030	0.82	120	0.30	0.023	3.96	150	0.016	0.012	4.0	0.62	5.40	6.37	8.51	9.70	11.72	4.9	6.7	7.7	9.7
71	0.72	0.75	0.42	0.43	0.44	0.46	20	0.30	0.023	0.94	120	0.30	0.035	3.21	150	0.016	0.006	2.8	0.89	5.04	6.47	8.63	9.82	11.86	2.7	3.7	4.3	5.4
1	0.72	0.75	0.50	0.52	0.53	0.55	20	0.30	0.025	0.91	120	0.30	0.032	3.35	220	0.016	0.030	6.2	0.59	5.00	6.48	8.64	9.84	11.88	3.2	4.5	5.2	6.5
12	0.45	0.51	0.28		0.34	0.38	20	0.30	0.020	1.01	235	0.30	0.038	6.03	110	0.016	0.017	4.7	0.39	7.43	5.89	7.92	9.07	11.00	1.7	2.5	3.0	4.2
42	0.45	0.51	0.37	0.41	0.44	0.50	20	0.30	0.028	0.85	200	0.30	0.059	4.13	165	0.016	0.005	2.6	1.06	6.04	6.21	8.31	9.49	11.48	2.3	3.4	4.2	5.7
14	0.46	0.52	0.37	0.41	0.44	0.50	20	0.30	0.035	0.77	160	0.30	0.044	3.81	193	0.016	0.007	3.0	1.07	5.65	6.31	8.43	9.62	11.63	2.4	3.5	4.2	5.8
																	1											
9	0.71	0.74	0.91		0.96	1.01	43	0.30	0.065	1.20	143	0.30	0.021	4.93	154	0.016	0.100	11.4	0.23	6.36	6.13	8.22	9.39	11.37	5.6	7.8	9.0	11.
5	0.76	0.78	0.59	0.61	0.61	0.64	37	0.30	0.118	0.77	159	0.30	0.028	4.75	182	0.016	0.034	6.7	0.45	5.97	6.23	8.33	9.52	11.51	3.7	5.0	5.8	7.3
7	0.78	0.81	0.72	0.74	0.74	0.77	15	0.30	0.018	0.80	70	0.30	0.015	2.86	580	0.016	0.019	5.0	1.94	5.60	6.32	8.45	9.64	11.65	4.6	6.2	7.2	8.9
5	0.76	0.79	0.37		0.38	0.39	0	0.30	0.018	0.00	0	0.30	0.020	0.00	525	0.016	0.076	10.0	0.88	5.00	6.48	8.64	9.84	11.88	2.4	3.2	3.7	4.7
4	0.75	0.78	0.25	0.26	0.26	0.27	20	0.30	0.040	0.71	255	0.30	0.067	4.93	45	0.016	0.019	5.0	0.15	5.79	6.27	8.39	9.57	11.58	1.6	2.2	2.5	3.2
75	0.76	0.78	0.78	0.80	0.81	0.84	20	0.30	0.040	0.71	235	0.30	0.067	4.54	230	0.016	0.019	5.0	0.77	6.02	6.21	8.32	9.50	11.49	4.9	6.7	7.7	9.6
74	0.75	0.78	0.51	0.52	0.53	0.55	20	0.30	0.100	0.45	235	0.30	0.077	4.23	94	0.016	0.019	5.0	0.32	5.00	6.48	8.64	9.84	11.88	3.3	4.5	5.2	6.5
31	0.75	0.83	0.19	0.19	0.20	0.20	0	0.30	0.020	0.00		-	-	-	-	-	-	-	- 0.75	6.02	6.21	8.32	9.50	11.49	8.0	11.0	12.8	16.
74	0.82	0.78	0.19	0.45	0.46	0.20	0	0.30	0.020	0.00	0 50	0.30	0.020	0.00	225	0.016	0.019	5.0	0.75	5.00	6.48 6.48	8.64	9.84	11.88	1.2	1.7	1.9	2.4
76	0.77	0.79	0.63	0.45	0.65	0.47	-	0.50	0.020	0.00	UC	0.50	0.015	2.04	370	0.016	0.019	5.0	1.24	5.00	6.48	8.64 8.64	9.84 9.84	11.88 11.88	4.1	5.6	6.4	5.6
•	0.77	0.70	0.00	0.04	0.00	0.07	-					•		-	-	19 • 0				5.00	0,40	0.04	9.04	11.00	4.1	0.0	0,4	0.0
6	0.77	0.80	0.69	0.71	0.72	0.74	0	0.30	0.020	0.00	51	0.30	0.046	1.19	261	0.016	0.080	10.2	0.43	5.00	6.48	8.64	9.84	11.88	4.5	6.1	7.1	8.8
75	0.76	0.79	1.15	1.18	1.20	1.24	55	0.30	0.020	1.76	60	0.30	0.048	1.08	312	0.016	0.080	10.2	0.43	5.00	6.48	8.64	9.84	11.88	7.5	10.2	11.8	14.
3	0.75	0.77	0.37	0.38	0.39	0.40	33	0.30	0.039	1.19	97	0.30	0.020	3.43	128	0.016	0.014	4.3	0.50	5.12	6.45	8.60	9.80	11.83	2.4	3.3	3.8	4.8
8	0.79	0.81	0.58	0.60	0.60	0.62	68	0.30	0.079	1.73	25	0.30	0.098	0.40	379	0.016	0.019	5.0	1.27	5.00	6.48	8.64	9.84	11.88	3.8	5.1	5.9	7.4
2	0.83	0.84	0.45	0.46	0.46	0.47	30	0.30	0.047	0.99	40	0.30	0.300	0.37	300	0.016	0.019	5.0	1.01	5.00	6.48	8.64	9.84	11.88	2.9	4.0	4.6	5.6
6	0.77	0.79	0.62	0.63	0.64	0.66	20	0.30	0.042	0.70	251	0.30	0.074	4.60	30	0.016	0.019	5.0	0.10	5.40	6.37	8.51	9.70	11.72	4.0	5.4	6.2	7.8
																1 878 78.	1		1 2003			1		1				1
6	0.77	0.79	0.32	0.33	0.33	0.34	40	0.30	0.035	1.53	100	0.30	0.020	3.54	114	0.016	0.016	4.6	0.42	5.48	6.35	8.49	9.68	11.69	2.0	2.8	3.2	4.0
6	0.77	0.79	0.40	0.41	0.41	0.43	55	0.30	0.060	1.60	89	0.30	0.020	3.15	103	0.016	0.010	3.6	0.48	5.23	6.42	8.57	9.76	11.79	2.6	3.5	4.0	5.0
_																												
8	0.88	0.89	0.23	0.23	0.23	0.23	0	0.30	0.020	0.00	0	0.30	0.020	0.00	450	0.016	0.010	3.6	2.08	5.00	6.48	8.64	9.84	11.88	1.5	2.0	2.3	2.8
34	0.85	0.86	0.21	0.21	0.21	0.22	0	0.30	0.020	0.00	0	0.30	0.020	0.00	454	0.016	0.010	3.6	2.10	5.00	6.48	8.64	9.84	11.88	1.3	1.8	2.1	2.6
36	0.87	0.88	0.43	0.44	0.44	0.45	-	-			-	-	-	-	-	-		-	-	5.00	6.48	8.64	9.84	11.88	2.8	3.8	4.3	5.3
	6																											
7	0.78	0.80	0.38	0.39	0.40	0.41	20	0.30	0.040	0.71	255	0.30	0.067	4.93	240	0.016	0.019	5.0	0.80	6.44	6.11	8.19	9.37	11.34	2.3	3.2	3.7	4.6
31	0.82	0.83	0.21	0.22	0.22	0.23	0	0.30	0.020	0.00	0	0.30	0.020	0.00	454	0.016	0.010	3.6	2.10	5.00	6.48	8.64	9.84	11.88	1.4	1.9	2.2	2.7
8	079	0.81	0.60	0.01	0.82	9.63				1	1		1	~	-		-	-	1.	6 44	\$11	0.10	9.31	11.34	3.7		0.0	7.2
	•	•	•		•	*	V	•		-	•	V	Y	Y	6 9			•	•	V	V	v	3	•	V	V	9	-
57	0.59	0.64	4.22	4.48	4.64	4.99	100	0.30	0.020	5.05	323	0.30	0.089	5.41	703	0.016	0.067	9.3	1.26	11.72	5.08	6.92	8.00	9.76	21.4	31.0	37.1	48.

T CALCULA	TIONS																		-						
							STREET	T CAPAC	TV		-					NIETON	CRADE	CARACIT	~					ETCADI	ACITY
				Street	Crown	Curb	Gutter	CAPACI	11	Crown	Ponded					NLEION	GRADE	CAPACIT	Y			5	-	ET CAPA	
Drainage	Q 100	Q pass	Ototal	Width F-F				-	Yo				01	0	0.	1.7		-	0	0	Dess to Inlat	Otatal		1	epression)
Area	(cfs)	(cfs)	(cfs)		Туре	Height	Slope	a (ft)	(ft)	Height	Width (-)	Eo	S'w	Sx	Se	LT	L	E	Qi	Qpass	Pass to Inlet #	Qtotal	Length	-	d (ft)
RAINAGE A		(015)	(CIS)	(ft)		(ft)	(%)	(11)	(11)	(ft)	(ft)					-				(cfs)	#	(cfs)	(ft)	a (II)	(d≤h+a)
0.73	6.52	0.1	6.6	36	P	0.50	0.70%	0.42	0.45	0.50	12.24	0.36	0.28	0.03	0.13	12.31	10	0.95	6.3	0.3			-		
0.80	6.66	1.2	7.9	36	P	0.50	0.60%	0.42	0.49	0.50	15.90	0.30	0.28	0.03	0.10	14.43	10	0.95	6.9	0.9		-	-		-
1.53	13.18	0.0	13.2		P	0.00	-	0.46	0,40	0.50	10.00	0.21	0.20	0.00	0.10	-	10	0.00	0.5	0.0		13.2	10	0.59	0.59
0.83	7.86	0.0	7.9	36	P	0.50	0.70%	0.42	0.48	0.50	14.33	0.30	0.28	0.03	0.11	14.38	10	0.88	6.9	0.9		10.2	10	0.00	0.55
0.10	1.00	0.0	1.0	36	P	0.50	0.60%	0.42	0.23	0.50	4.72	0.85	0.28	0.03	0.26	3.44	10	1.00	1.0	0.0				•	
0.93	8.83	0.0	8.8	-	P	-		-		0.50	-		-	-	-	-	10	-	-	-		8.8	10	0.45	0.45
		1																							
0.47	4.07	0.0	4.1	36	P	0.50	0.50%	0.42	0.40	0.50	9.89	0.46	0.28	0.03	0.16	8.04	10	1.00	4.1	0.0		2			
1.06	9.67	0.0	9.7	36	P	0.50	1.24%	0.42	0.47	0.50	13.25	0.33	0.28	0.03	0.12	17.89	10	0.77	7.5	2.2	A3.3	-	-		-
0.61	5.44	2.2	7.6	36	P	0.50	0.60%	0.42	0.49	0.50	15.23	0.28	0.28	0.03	0.11	13.98	10	0.90	6.9	0.8	A3.4	-			-
0.73	6.52	0.8	7.3	36	P	0.50	3.00%	0.42	0.35	0.50	8.31	0.57	0.28	0.03	0.19	15.80	10	0.84	6.1	1.2	A1.6B	-	-		-
											1		1			1			1			í.			
0.75	4.21	0.9	5.1	36	P	0.50	1.68%	0.42	0.34	0.50	7.98	0.60	0.28	0.03	0.20	11.09	10	0.98	5.0	0.1	B1.6	-	-		-
0.98	5.73	0.1	5.8	36	P	0.50	0.52%	0.42	0.45	0.50	12.44	0.35	0.28	0.03	0.13	10.77	10	0.99	5.8	0.0				-	
0.95	5.79	0.0	5.8	36	P	0.50	0.70%	0.42	0.43	0.50	11.13	0.40	0.28	0.03	0.14	11.05	10	0.99	5.7	0.1	A1.6A			-	-
1.36	11.44	0.0	11.4	27	P	0.50	10.00%		0.37	0.50	6.70	0.70	0.28	0.04	0.23	24.11	10	0.62	7.1	4.4	C1.02	-	-		-
0.81	7.31	4.4	11.7	27	P	0.50	3.44%	0.42	0.46	0.50	9.64	0.45	0.28	0.04	0.16	21.78	15	0.88	10.2	1.4	C1.04	*			-
0.95	8.92	0.0	8.9	27	P	0.50	1.90%	0.42	0.46	0.50	9.88	0.44	0.28	0.04	0.16	16.50	10	0.81	7.3	1.7	D1.01A				
0.50	4.67	1.4	6.1	27	P	0.50	7.64%	0.42	0.31	0.50	5.18	0.85	0.28	0.04	0.27	15.44	15	1.00	6.1	0.0		-			-
0.35	3.15	0.0	3.2	27	P	0.50	1.90%	0.42	0.31	0.50	5.27	0.85	0.28	0.04	0.27	7.71	10	1.00	3.2	0.0		-			
1.07	9.64	0.0	9.6	27	P	0.50	1.90%	0.42	0.48	0.50	10.66	0.40	0.28	0.04	0.15	17.71	10	0.78	7.5	2.2		-		-	
0.71	6.54	1.4	8.0	27	P	0.50	1.90%	0.42	0.44	0.50	9.01	0.49	0.28	0.04	0.17	14.97	10	0.86	6.9	1.1			-	-	-
1.78	15.97	0.0	16.0	-	P	-	-	-		0.50	-	-	•		•		10	•		•		16.0	10	0.67	0.67
0.24	2.38	0.0	2.4	27	P	0.50	1.90%	0.42	0.28	0.50	4.60	0.85	0.28	0.04	0.27	6.85	10	1.00	2.4	0.0					-
0.61	5.63	1.1	6.7	27	P	0.50	1.90%	0.42	0.42	0.50	7.99	0.56	0.28	0.04	0.19	13.01	10	0.93	6.2	0.5		•	-		
0.85	8.01	0.0	8.0	-	P	•	•	-		0.50					•	•	10		•	•		8.0	10	0.42	0.42
0.02	0.70	0.0	0.0	07		0.50	0.000/	0.40	0.05	0.50	0.17	0.77	0.00	0.04	0.05	10.10	15		0.0		00.01		-		
0.93	8.79	0.0	8.8	27	P	0.50	8.00%	0.42	0.35	0.50	6.17	0.77	0.28	0.04	0.25	19.16	15	0.94	8.2	0.6	C2.04	-			
1.57 0.52	4.75	0.0	14.7 4.8	27	P	0.50	8.00%	0.42	0.43	0.50	8.36	0.53	0.28	0.04	0.19	28.59	20	0.89	13.0	1.7	C2.05		-	-	-
0.52	7.35	0.6	7.9	27	P	0.50	1.90%	0.42	0.39	0.50	7.11 8.97	0.65	0.28	0.04	0.22	9.59 14.89	10	1.00	4.8 6.8	0.0	C1.07B			•	
0.56	5.61	1.7	7.3	27	P	0.50	1.90%	0.42	0.43	9,50	8.97	0.49	0.28	0.04	0.17		10	the second se	6.5	0.8	C2.06			-	
0.84	7.79	0.8	8.5	27	P	0.50	1.90%	0.42	0.46	0.50	9.52	0.55	0.28	0.04		13.94	10	0.90	7.1		the second se		8		-
0.04	1.10	0.0	0.0	41	F	0.00	1.0070	0.42	0.40	0.50	9.02	0.40	0.20	0.04	0.16	15.88	10	0.83	1.1	1.4	C1.06B	•	-		-
0.43	3.98	0.0	4.0	27	P	0.50	1.60%	0.42	0.35	0,50	6.21	0.77	0.28	0.04	0.25	8.50	10	1.00	4.0	0.0	C3.02		1.12	0.825	7152
0.54	5.03	0.0	5.0	27	P	0.50	1.00%	0.42	0.42	0.50	8.18	0.55	0.28	0.04	0.19	9.64	10	1.00	5.0	0.0	C1.04	-	-	-	-
0.01	0.00	0.0	0.0			0.00	1.0070	0.74	0.12	4.00	0.10	0.00	0.20	0.04	0.10	0.04	10	1.00	0.0	0.0	01.04	-			-
0.26	2.76	1.7	4.4	27	P	0.50	1.00%	0.42	0.40	0.50	7.54	0.60	0.28	0.04	0.20	8.71	10	1.00	4.4	0.0					
0.25	2.57	0.0	2.6	27	P	0.50	1.00%	0.42	0.33	0,50	5.58	0.85	0.28	0.04	0.27	5.83	10	1.00	2.6	0.0			-	-	-
0.51	5.32	0.0	5.3	-	P	-	-	-	-	0.50	-	-	-	-	-	-	10	-	-	-		5.3	10	0.32	0.32
																								0.02	
0.51	4.64	0.0	4.6	27	P	0.50	1.90%	0.42	0.36	0.50	6.44	0.73	0.28	0.04	0.24	9.77	10	1.00	4.6	0.0				-	
0.27	2.68	0.0	2.7	27	P	0.50	1.00%	0.42	0.33	0.50	5.70	0.85	0.28	0.04	0.27	5.93	10	1.00	2.7	0.0			-	-	
0.78	7,19	0.0	7.2		P	-				0.50	-	-	-			-	10					7.2	10	0.39	0.39
			V	V	V				V	V		V				V					V			V	
																-			1			1			1
7.85	48.74	0.0	48.7		-	-						<u> </u>				-	-						-		-
				٨	٠		•											2							-

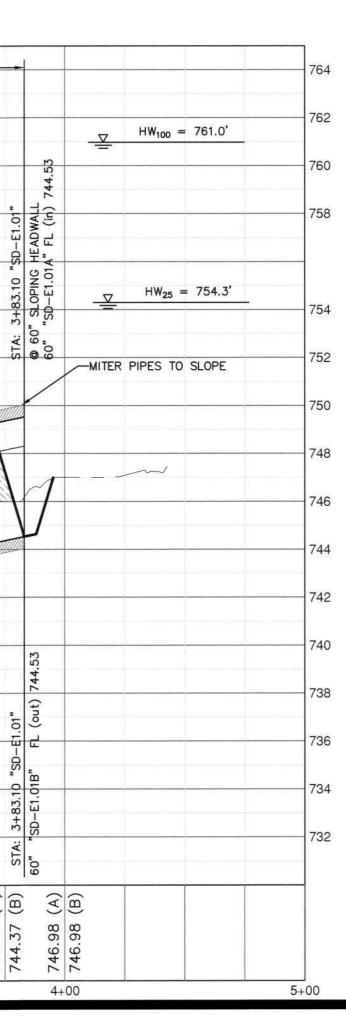

÷	T CALCULA	TIONS																								
+								STREET	CAPAC	YT	_		-	-		INI	ET ON G		APACITY				e		ETCARA	CITY
+					Street	Crown	Curb	Gutter			Crown	Ponded			1			NADE C								epression)
T	Drainage	Q 25	Q pass	Q total	Width F-F	Type	Height	Slope	a	Yo	Height	Width	Eo	S'w	Sx	Se	LT	L	E	Qi	Onass	Pass to inlet	Qtotal	Length	(d (ft)
1	Area	(cfs)	(cfs)	(cfs)	(ft)	ijpe	(ft)	(%)	(ft)	(ft)	(ft)	(ft)		•••	-				-	Ser	(cfs)	#	(cfs)	(ft)	d (ft)	(d≤h+a
DR	AINAGE AF		()	11	1.4	-	1.4	(10)	1.4	1.4	(14)	(14)			-		-	-			(0.0)		(0.0)	1.4	and	la = II · a
T	0.73	5.18	0.0	5.2	36	P	0.50	0.70%	0.42	0.41	0.50	10.36	0.44	0.28	0.03	0.15	10.12	10	1.00	5.2	0.0		1944		1	-
1	0.80	5.22	0.2	5.5	36	P	0.50	0.60%	0.42	0.43	0.50	11.27	0.40	0.28	0.03	0.14	10.36	10	1.00	5.4	0.0		1	1		
1	1.53	10.41	0.0	10.4	-	P	-	-	-		0.50				-	-	-	10	-	-	-		10.4	10	0.50	0.50
	0.83	6.35	0.0	6.3	36	P	0.50	0.70%	0.42	0.44	0.50	11.88	0.37	0.28	0.03	0.13	11.91	10	0.96	6.1	0.2			-		-
	0.10	0.81	0.0	0.8	36	P	0.50	0.60%	0.42	0.21	0.50	4.30	0.85	0.28	0.03	0.26	3.15	10	1.00	0.8	0.0			-		-
	0.93	7.13	0.0	7.1	-	P	-		•		0.50	-			-		(in the second se	10	-	-	-		7.1	10	0.39	0.39
							1					1														
	0.47	3.22	0.0	3.2	36	P	0.50	0.50%	0.42	0.36	0.50	8.65	0.55	0.28	0.03	0.18	6.71	10	1.00	3.2	0.0		-	-	÷ .	-
4	1.06	7.73	0.0	7.7	36	P	0.50	1.24%	0.42	0.43	0.50	11.16	0.40	0.28	0.03	0.14	14.83	10	0.87	6.7	1.0	A3.3		-	5	-
_	0.61	4.32	1.0	5.3	36	P	0.50	0.60%	0.42	0.43	0.50	11.12	0.40	0.28	0.03	0.14	10.20	10	1.00	5.3	0.0	A3.4		-		
	0.73	5.18	0.0	5.2	36	P	0.50	3.00%	0.42	0.31	0.50	6.96	0.72	0.28	0.03	0.23	12.16	10	0.96	5.0	0.2	A1.6B			•	
1						-																				
+	0.75	3.04	0.2	3.2	36	P	0.50	1.68%	0.42	0.29	0.50	6.38	0.81	0.28	0.03	0.25	7.89	10	1.00	3.2	0.0	B1.6	-	-	<u> </u>	-
-	0.98	4.15	0.0	4.2	36	P	0.50	0.52%	0.42	0.40	0.50	9.90	0.46	0.28	0.03	0.16	8.21	10	1.00	4.2	0.0					•
+	0.95	4.23	0.0	4.2	36	P	0.50	0.70%	0.42	0.38	0.50	9.17	0.51	0.28	0.03	0.17	8.63	10	1.00	4.2	0.0	A1.6A		•		
-	1.00	0.05		0.0	07		0.50	40.000/	0.40	0.04																
+	1.36	9.05	0.0	9.0	27	P	0.50	10.00%	0.42	0.34	0.50	5.90	0.82	0.28	0.04	0.26	20.15	10	0.71	6.4	2.6	C1.02		•	-	
+	0.81	5.85	2.6	8.5	27	P	0.50	3.44%	0.42	0.41	0.50	7.69	0.59	0.28	0.04	0.20	16.78	15	0.98	8.3	0.1	C1.04	-	-	-	
+	0.95	7.18	0.0	7.2	27	P	0.50	1.90%	0.42	0.43	0.50	8.37	0.53	0.28	0.04	0.19	13.75	10	0.90	6.5	0.7	D1.01A	•	•		
+	0.35	3.74	0.1	3.9 2.5	27	P	0.50	7.64%	0.42	0.26	0.50	4.19	0.85	0.28	0.04	0.27	12.79	15	1.00	3.9	0.0				-	
+	1.07	7.71	0.0	7.7	27	P	0.50	1.90%	0.42	0.29	0.50	4.73	0.85	0.28	0.04	0.27	7.02	10	1.00	2.5	0.0					
+	0.71	5.23	0.3	5.5	27	P	0.50	1.90%	0.42	0.39	0.50	8.80	0.50	0.28	0.04	0.18	14.58 11.21	10	0.88	6.8 5.4	1.0				-	•
+	1.78	12.76	0.0	12.8	21	P	0.50	1.00%	0.42	0.00	0.50	7.12	0.05	0.20	0.04	0.22	11.21	10	0.96	5.4	0.1		- 12.8	- 10	0.58	0.58
+	0.24	1.93	0.0	1.9	27	P	0.50	1.90%	0.42	0.26	0.50	4.17	0.85	0.28	0.04	0.27	6.27	10	1.00	1.9	0.0		12.0		0.56	0.56
+	0.61	4.50	0.2	4.7	27	P	0.50	1.90%	0.42	0.37	0.50	6.52	0.72	0.28	0.04	0.24	9.94	10	1.00	4.7	0.0					
+	0.85	6.43	0.0	6.4	-	P	-		-	-	0.50	-	-	0.20	0.04	0.24	-	10	-		-		6.4	10	0.36	0.36
	0.00	0.10	0.0	.		1	1				0.00	08	100					10	-		1		0.4	10	0.00	0.00
T	0.93	7.06	0.0	7.1	27	P	0.50	8.00%	0.42	0.32	0.50	5.51	0.85	0.28	0.04	0.27	16.65	15	0.98	7.0	0.1	C2.04	-	-	-	-
	1.57	11.79	0.0	11.8	27	P	0.50	8.00%	0.42	0.39	0.50	7.27	0.63	0.28	0.04	0.21	24.02	20	0.96	11.3	0.5	C2.05		-	2	
1	0.52	3.80	0.0	3.8	27	P	0.50	1.40%	0.42	0.36	0.50	6.28	0.76	0.28	0.04	0.25	8.07	10	1.00	3.8	0.0					-
	0.76	5.93	0.1	6.0	27	P	0.50	1.90%	0.42	0.40	0.50	7.49	0.61	0.28	0.04	0.21	11.99	10	0.96	5.8	0.2	C1.07B	-	-	-	-
	0.56	4.55	0.5	5.0	27	P	0.50	1.90%	0.42	0.37	0.50	6.73	0.69	0.28	0.04	0.23	10.40	10	1.00	5.0	0.0	C2.06		-	-	-
	0.84	6.24	0.0	6.3	27	P	0.50	1.90%	0.42	0.41	0.50	7.66	0.59	0.28	0.04	0.20	12.33	10	0.95	5.9	0.3	C1.06B		-	-	-
	0.43	3.19	0.0	3.2	27	P	0.50	1.60%	0.42	0.33	0.50	5.53	0.85	0.28	0.04	0.27	7.36	10	1.00	3.2	0.0	C3.02		-	-	-
	0.54	4.04	0.0	4.0	27	P	0.50	1.00%	0.42	0.39	0.50	7.13	0.65	0.28	0.04	0.22	8.11	10	1.00	4.0	0.0	C1.04		-	-	-
-																									12	
-	0.26	2.26	0.7	2.9	27	P	0.50	1.00%	0.42	0.35	0.50	6.00	0.80	0.28	0.04	0.26	6.37	10	1.00	2.9	0.0		×.	•	-	
	0.25	2.09	0.0	2.1	27	P	0.50	1.00%	0.42	0.30	0.50	5.04	0.85	0.28	0.04	0.27	5.35	10	1.00	2.1	0.0			-	-	-
	0.51	4.35	0.0	4.3	•	P	-			-	0.50	-	-	-	-	-	-	10	-	-	-		4.3	10	0.28	0.28
+		0.75				-		1.0.001																		
+	0.51	3.72	0.0	3.7	27	P	0.50	1.90%	0.42	0.33	0.50	5.73	0.85	0.28	0.04	0.27	8.26	10	1.00	3.7	0.0			•	-	
+	0.27	2.17	0.0	2.2	27	P	0.50	1.00%	0.42	0.31	0.50	5.13	0.85	0.28	0.04	0.27	5.43	10	1.00	2.2	0.0		-	-	-	-
	0.78	5.78	0.0	5.8	1	P	-	-	-		0.50				·	·		10		i			5.8	10	0.34	0.34
1	V			V	V	V	V			V	V	V	V	V			V	V	V			V		V	V	
+	7.05	27.40	0.0	27.4		2.	1	1000	11000			1.00	1997 - 19				1.5	85					85	-		1
1	7.85	37.10	0.0	37.1	-	-	•	•				-	-		•	-	-						•	-	-	· ·


	NO. REVISION DATE 1 ADD CV-1 AREA 08/22/22 1 ADD CV-1 AREA 08/22/22
	MICHAEL S FISHER 87704 SS CHALLAG
	THE FIRM REGISTRATION #10 I TERLE STORY FOR THE FIRM REGISTRATION #100 I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TEPE FIRM REGISTRATION #100 28801
	WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS DRAINAGE CALCULATIONS
×	CITY JOB No. 2022-5-CON JOB NO. 51127-42 DATE March 20, 2023 DESIGNER RBB CHECKED JF DRAWN RBB SHEET 21 OF 61

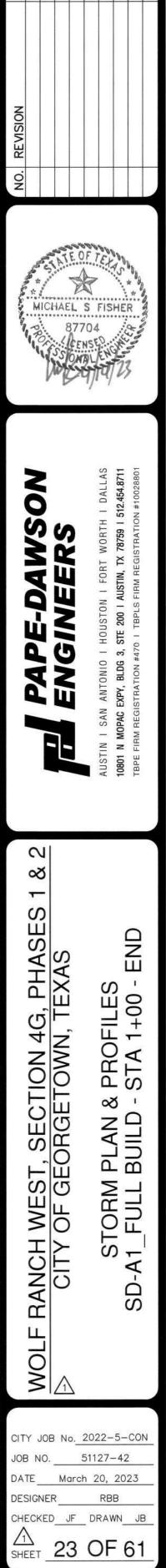


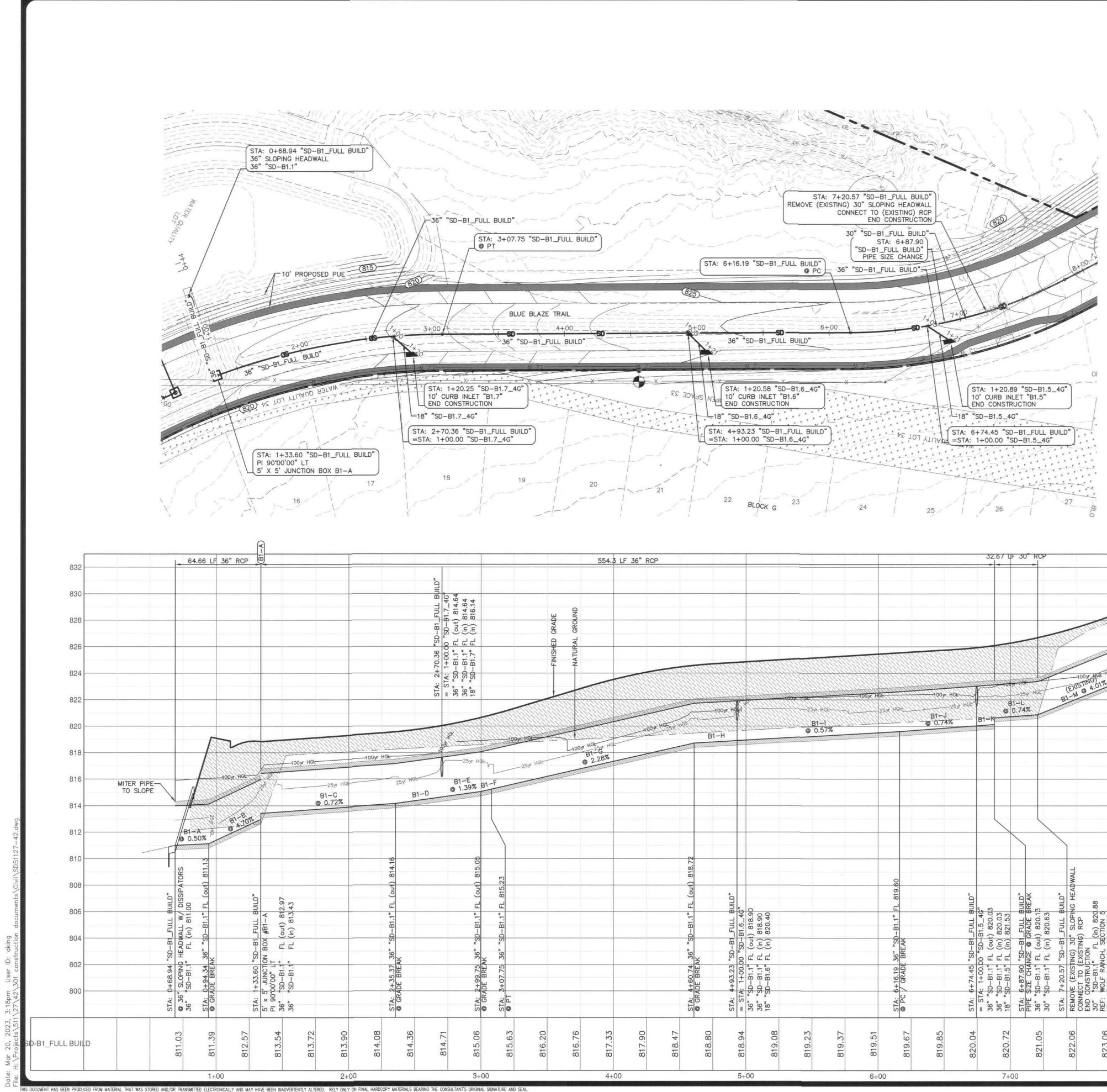

- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- ALL RCP IS CLASS III UNLESS OTHERWISE NOTED.
 ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.

1_Full Build" 1_Full Build" 1_Full Build" 1_Full Build" 1_A" 10 10 10 10 10 10 10 10 10 10	16 5C, 40 16 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 5C, 40 10 10 5C, 40 10 10 5C, 40 10 10 10 10 10 10 10 10 10 10 10 10 10		120'	STA: 2 60" STA: 2 60" 102 102 102 102 102 102 102 102 102 102	AdS N3d0 2+06.27 "SD-E1.01" SLOPING HEADWALL 60" "SD-E1.018" 2+06.27 "SD-E1.01" SLOPING HEADWALL 60" "SD-E1.01A" SY 6" DIA. NATIVE ROCK RIP-RAP		52	-E1.01" "WT-A"			STA: 34	+09.3
	830		764 762 760				60" SLOPING HEADWALL W/ DISSIPATORS 60" "SD-E1.01A" FL (in) 741.25		6.83 LF 60"		FINISHED GRADE	
	826 824		758			-E1.01	ADWALL W/ FL (in) 74		(Q100	TOTAL = 570.0		
	822		756		TW ₁₀₀ = 753.9'	-06.27 *SD-	LOPING HE		Q V = s	TOTAL = 570.0 Q100 = 285.0 cfs = 14.51 ft/s f = 1.20%		
Har	820		752		TW ₂₅ = 750.6'	STA: 2+	@ 60" S					
	816		750	<u>*</u>	MITER PIPES T							T
	814		748		60" RCP (HODY HOL	100%	104	
	812		744				\mathbf{T}				E1.01B 2.00%	11111111
	810		742	10:	2 SY 6" DIA. ROCK RI	P-RAP		E1.01A © 2.007	<u>III</u>			
	806		740				41.25 41.39 41.39		L 742.39	- 743.05 - 752.10		
	804		738			- <u>E</u> 1.01"	7 (14		<u></u>	01" FL		
	802		734			6.27 "SD-			04 "SC 76.47	.37 "SD-E1.(
	800		732			STA: 2+0	60" "SD-E1.01B" STA: 2+26.27 "S 60" "SD-E1.01A" 60" "SD-E1.01A"		= STA: 2+76.	STA: 3+09.37 = STA: 35+27:		
816.40 817.33			SD-E1.01				741.38 (A) 5 741.38 (B) 60" 60"	(B)	(B)	(B) (B)	743.87 (A) 743.87 (B)	744.37 (A)
	50	,		1+00		2+00		74		00 74 74	74	74



NOTES:


- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. 2. ALL RCP IS CLASS III UNLESS OTHERWISE NOTED.
- 3. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.




LEGEND	
W 	WATER LINE WASTEWATER LINE & MH STORM DRAIN LINE & MH CURB INLET
o	SINGLE WATER SERVICE DOUBLE WATER SERVICE
	SINGLE WW SERVICE DOUBLE WW SERVICE GATE VALVE
	FIRE HYDRANT EXISTING GATE VALVE EXISTING FIRE HYDRANT
	EXISTING WATER LINE EXISTING WASTEWATER LINE EXISTING STORM DRAIN LINE
	EXISTING CONTOUR LINE PROPOSED CONTOUR LINE
	PROPOSED BOUNDARY LINE
P P -	100-YEAR FEMA FLOODPLAIN 500-YEAR FEMA FLOODPLAIN

PROFILE SCALES:	
1" = 40' HORIZONTAL 1" = 4' VERTICAL PROFILE LEGEND:	
NATURAL GROUND	
FINISHED GRADE	
SUBGRADE	
PROPOSED STORM DRAIN	
8	
25-YR HGL25yr HGL	
100-YR HGL 100yr HGL 100yr HGL	

554.3 LF 36	" RCP										32.67 L	- 30" RCF	,		
					-									A ALANDARIAN	
							11111								
												ATTOL		100yr 864 HGL EXISTING) 1% M @ 4.01%	
			DOUT HEAT		у нас. 25ук н			E 15yr HGE		A HER	0////	-25yr HGE 1-L 0.74%	BI	Me	
	1000 HGt 259	B1-	-H		<u>B1-</u> © 0.5	57%			B1−J © 0.74%		B1→K <u>m///////</u>				
64 1-25 HG 2.28%					_										
<u>IIIIIIII</u>									_						
													$\overline{\ }$		
		818.72													
		(out) 818				3		819.60						EADWALL	
		1" FL (- BUILD" 46"	1.90 40				교		BUILD"	.46" 0.03 03 53	6+87.90 "SD-B1_FULL BUILD" SIZE CHANGE © GRADE BREAK 'SD-B1.1" FL (out) 820.13	53 BUILD'	PING HE 20.88 55 55 55 55	
		"SD-B1.1"	31_FULI	ut) 818 (1) 818.5 (1) 820.4				SD-B1.1"		"SD-B1_FULL BUI	"SD-B1.5_46" (out) 820.03 (in) 820.03 (in) 821.53) "SD-B1_FULL BUI ANCE @ CRADE BRI FL (out) 820.13	1) 820.(31_FULI	30" SLO VG) RCF (in) 8 SECTION SECTION	
		. 36" , AK	"SD-E	년 년 년 (j.j.)				36" "4		"SD-E	00 "SD FL (o FL (ir	"SD-E NGE @	FL (ir "SD-E	(EXISTIN CTION CTION "FL NNCH, S WSON 1	
		+60.74)E BRE	+93.23	0-81.1 [*] 0-81.1 [*] 0-81.6 [*]				+16.19 GRADI		6+74.45	1+00.)-B1.1")-B1.1")-B1.5"	+87.90 ZE CH/ D-B1.1")-B1.1 [*] +20.57	E (EXIS NNSTRU SD-B1. PE-DA	
		STA: 4+60.74 36" © GRADE BREAK	STA: 4 = STA:	36" "\$D-B1.1" FL (out) 818.9D 36" "\$D-B1.1" FL (in) 818.90 18" "\$D-B1.6" FL (in) 820.40				STA: 6+16.19 36" "SD © PC / GRADE BREAK		STA: 6	= STA: 1+00.00 " 36" "SD-B1.1" FL 36" "SD-B1.1" FL 18" "SD-B1.1" FL	STA: 6+87.90 ¹ PIPE SIZE CHAN 36" "SD-B1.1" 1	30" "SI STA: 7	REMOVE (EXISTING) 30" SLOPING HEADWALL CONNECT TO (EXISTING) RCP END GONSTRUCTION 30" "SD-B1.1" FL (in) 820.88 REF: WOLF RANCH, SECTION 5 BY: PAPE-DAWSON ENGINEERS	
817.33	817.90 818.47	80	818.94		819.23	819.37	819.51	819.67	819.85	820.04	820.72	821.05		822.06 823.06	824 DF

Velocity

(ft/s)

1.88

18.15

9.08

11.65

11.33

13.55

13.55

8.12

7.88

8.68

8.44

8.40

Velocity

(ft/s)

8.11

8.11

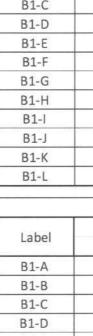
8.12

8.13

7.37

7.37

15.25


8.80

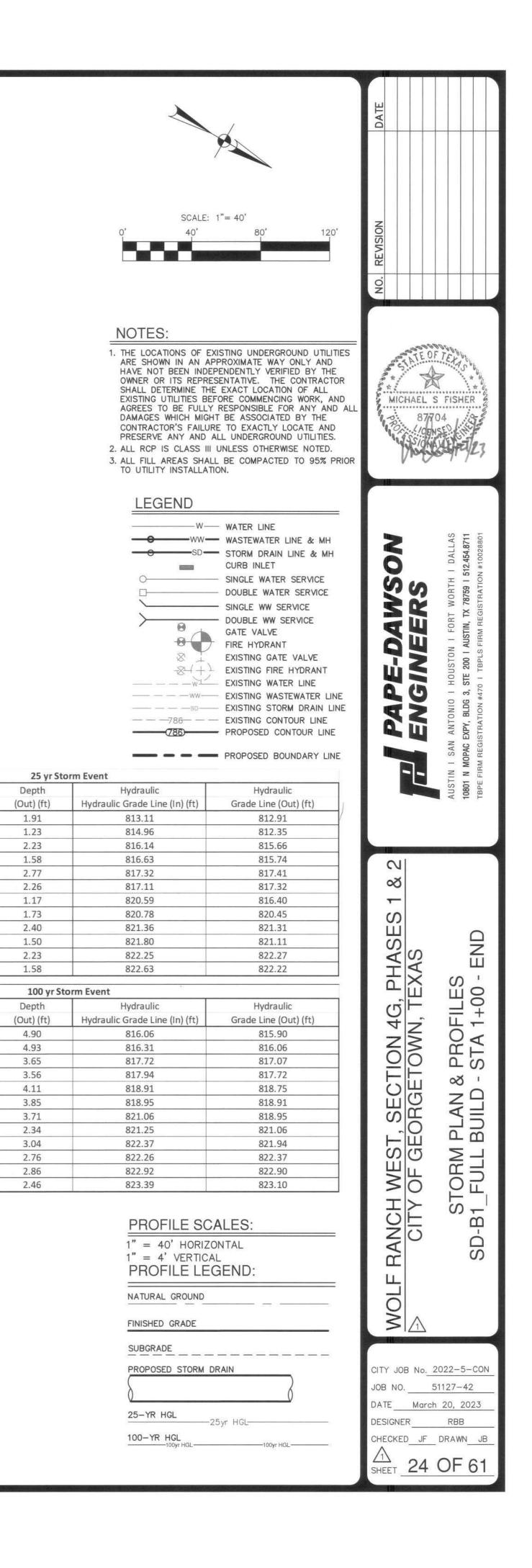
8.68

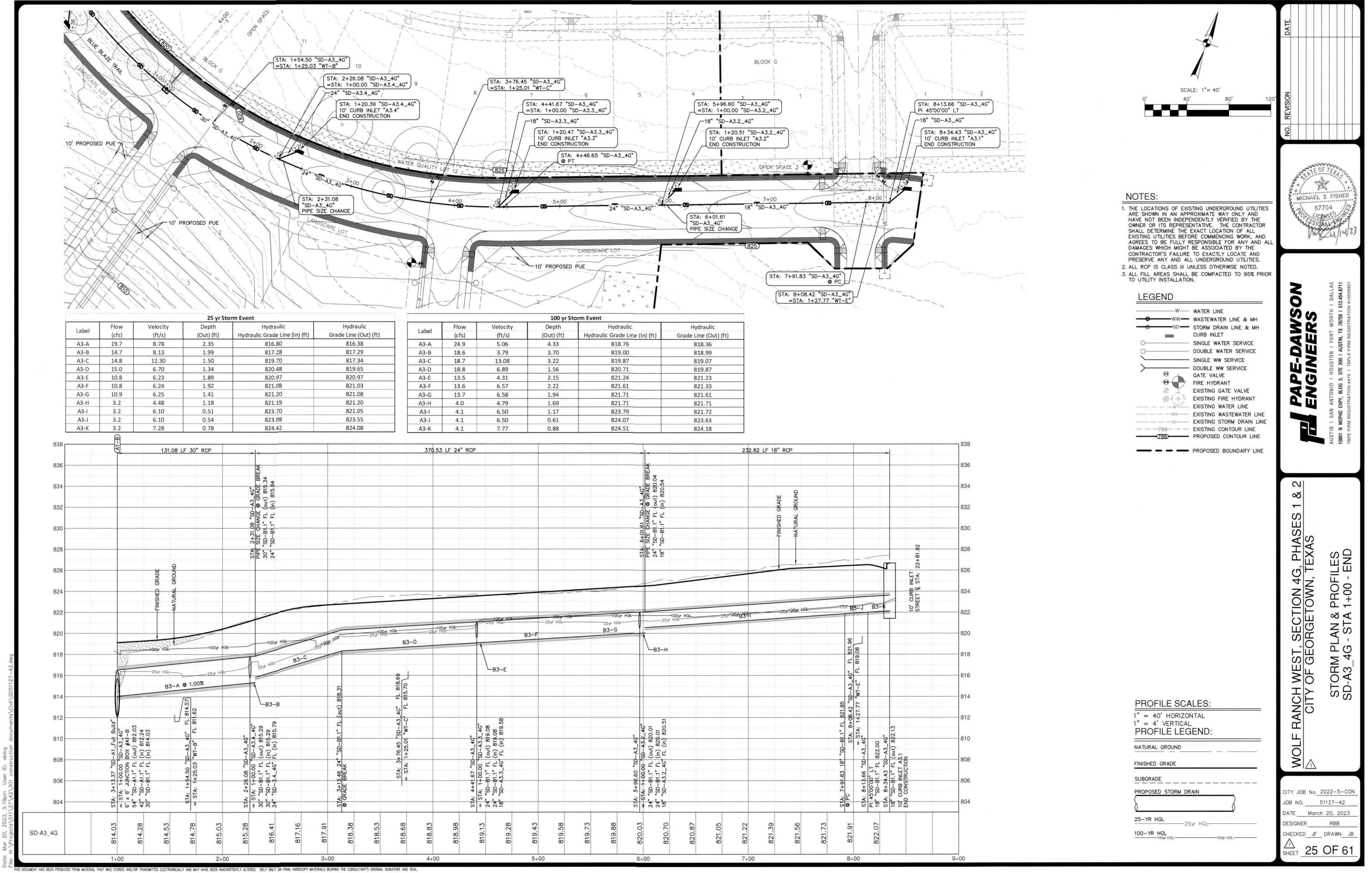
9.65

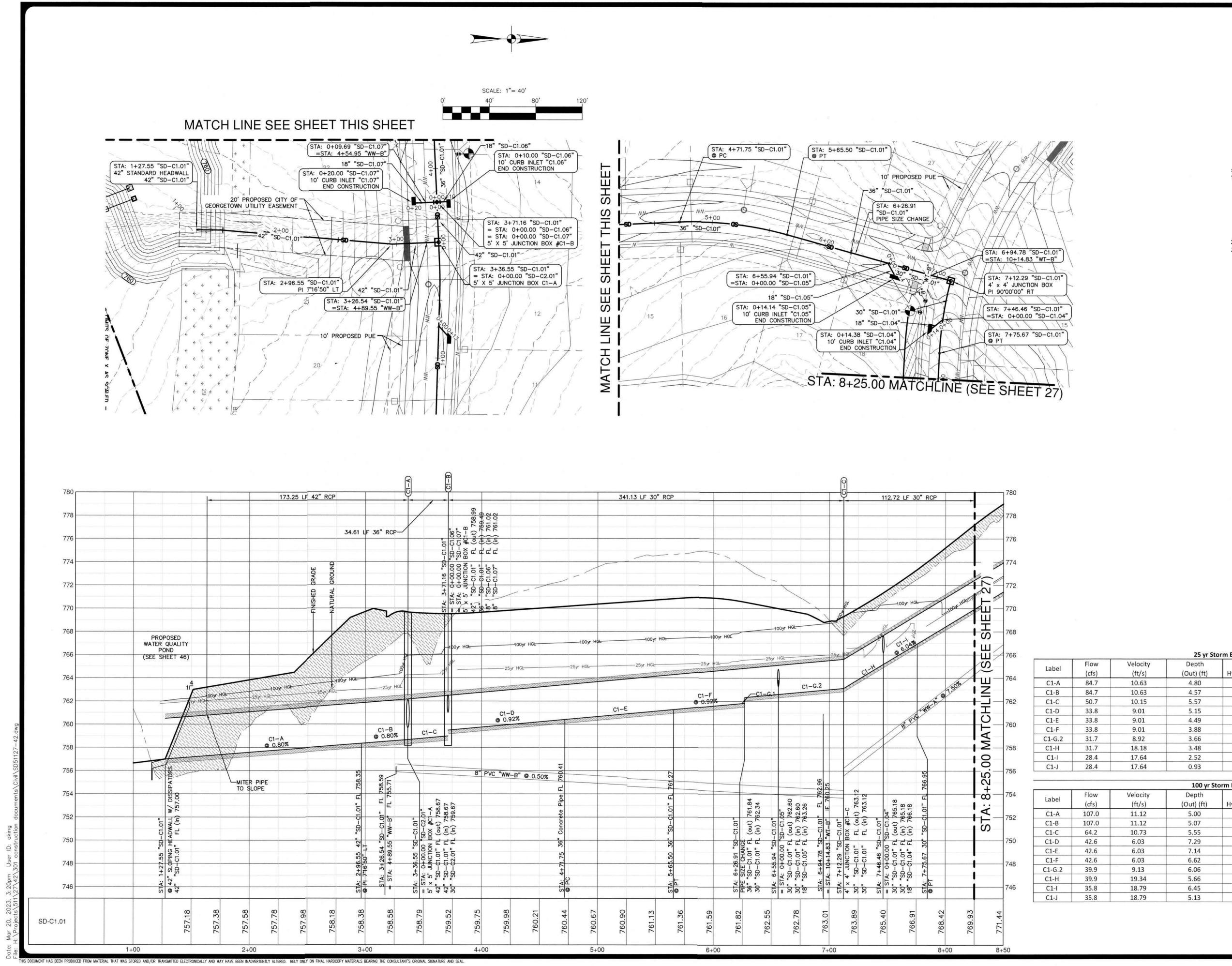
9.46

8.65

B1-E B1-F B1-G


57.5 52.1 52.1 52.1 52.1 46.7


B1-H B1-I


B1-J 46.7 B1-K 42.5

42.5

B1-L

Flow	Velocity	Depth	Hydraulic	Hydraulic
(cfs)	(ft/s)	(Out) (ft)	Hydraulic Grade Line (In) (ft)	Grade Line (Out) (ft)
107.0	11.12	5.00	763.80	762.22
107.0	11.12	5.07	764.22	763.80
64.2	10.73	5.55	766.00	765.87
42.6	6.03	7.29	766.97	766.54
42.6	6.03	7.14	767.37	766.97
42.6	6.03	6.62	767.60	767.37
39.9	9.13	6.06	767.83	767.80
39.9	19.34	5.66	770.01	769.66
35.8	18.79	6.45	770.67	770.43
35.8	18.79	5.13	778.49	770.67

-

25 yr Storm Event

100 yr Storm Event

Depth

4.80

4.57

5.57

5.15

4.49

3.88

3.66

3.48

2.52

0.93

Velocity

(ft/s)

10.63

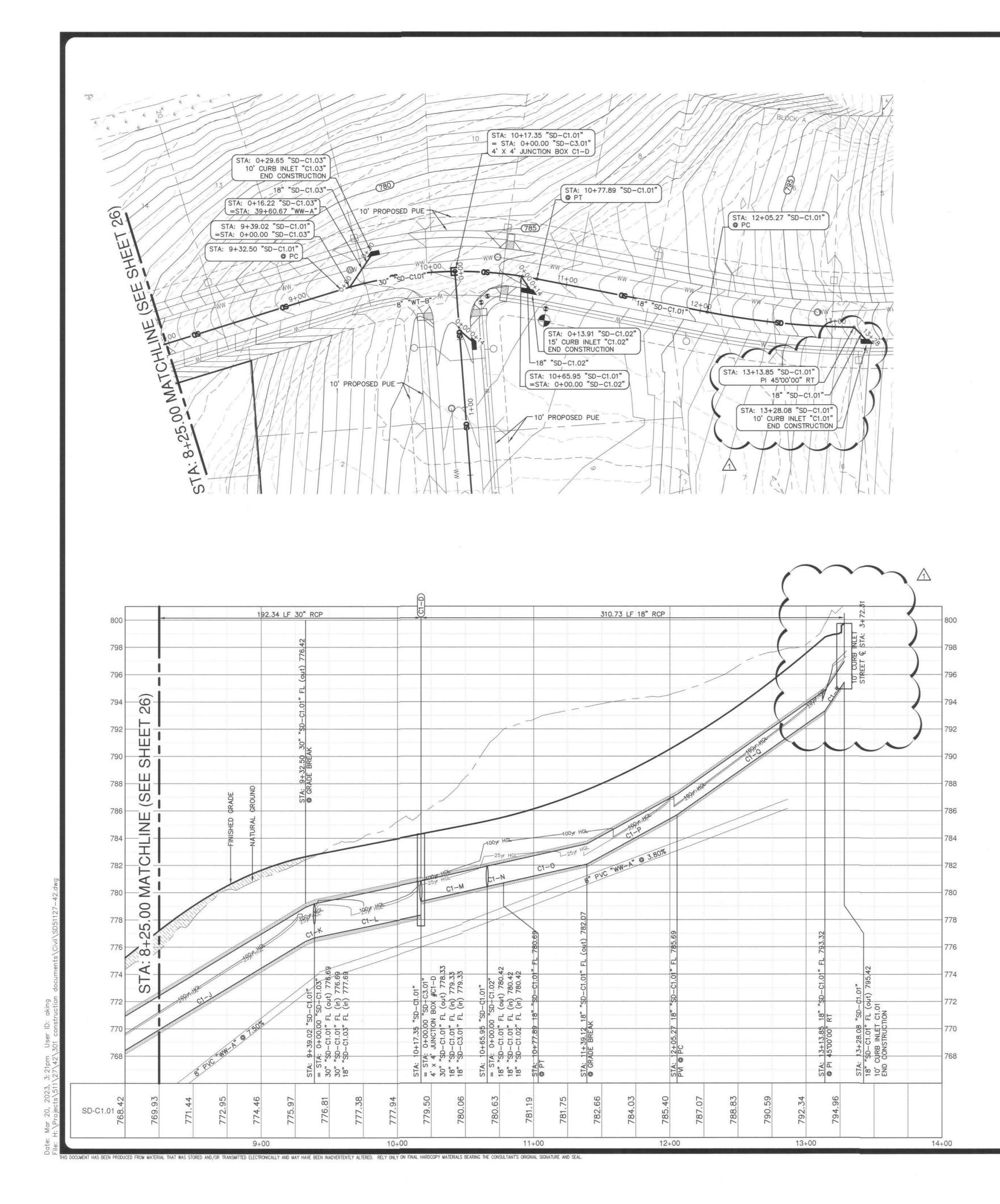
10.63

10.15

9.01

9.01

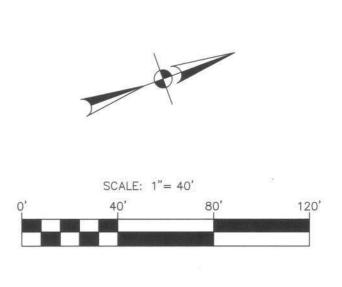
9.01


8.92

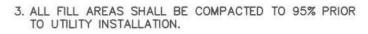
18.18

17.64

17.64


ENGINEERS	AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS	STORM PLAN & PROFILES SD-C1.01 - STA 1+00 - 8+00
CITY JOB No. 2 JOB NO. 5 DATE <u>March</u> DESIGNER CHECKED JF	1127-42 20, 2023 RBB

1.0.0


			25 yr Sto	orm Event	
Label	Flow	Velocity	Depth	Hydraulic	Hydraulic
Label	(cfs)	(ft/s)	(Out) (ft)	Hydraulic Grade Line (In) (ft)	Grade Line (Out) (ft)
C1-J	28.4	17.64	0.93	778.28	767.88
C1-K	28.4	15.28	1.53	778.54	777.95
C1-L	21.5	11.13	2.49	779.97	779.17
C1-M	14.7	10.13	1.15	781.81	780.48
C1-N	9.1	9.24	2.21	782.71	782.63
C1-0	9.1	9.24	2.01	783.19	782.71
C1-P	9.1	12.89	0.62	786.81	782.69
C1-Q	9.1	14.10	0.56	794.45	786.25
C1-R	9.1	18.43	0.50	796.54	794.64

			100 yr St	orm Event	
Label	Flow (cfs)	Velocity (ft/s)	Depth (Out) (ft)	Hydraulic Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
C1-J	35.8	18.79	5.13	778.49	770.67
С1-К	35.8	16.25	3.59	778.75	778.17
C1-L	27.3	11.85	1.71	780.18	779.48
C1-M	18.6	10.55	2.76	782.23	780.78
C1-N	11.6	9.75	1.46	783.53	783.41
C1-0	11.6	9.75	3.03	784.17	783.53
C1-P	11.6	13.71	2.39	786.94	784.17
C1-Q	11.6	15.04	0.67	794.58	786.33
C1-R	11.6	19.72	1.57	796.67	794.83

NOTES:

1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. 2. ALL RCP IS CLASS III UNLESS OTHERWISE NOTED.

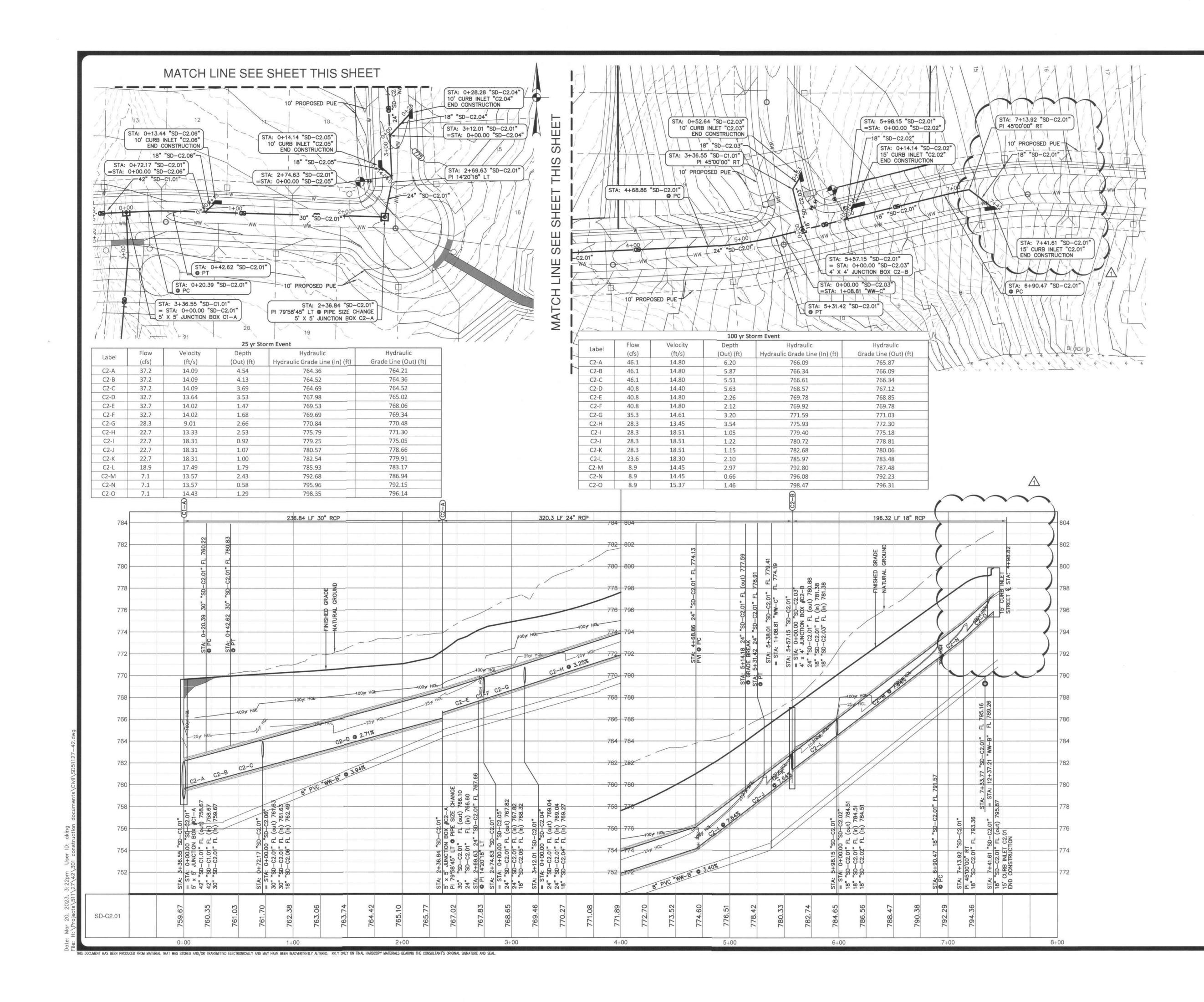
LEGEND

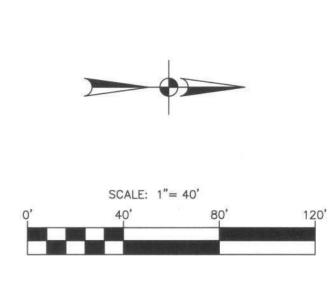
W	WATER LINE
	WASTEWATER LINE & MH
- C SD	STORM DRAIN LINE & MH
	CURB INLET
0	SINGLE WATER SERVICE
D	DOUBLE WATER SERVICE
	SINGLE WW SERVICE
\rightarrow	DOUBLE WW SERVICE
0	GATE VALVE
⊗()	FIRE HYDRANT
× I	EXISTING GATE VALVE
-8-(+)-	EXISTING FIRE HYDRANT
	EXISTING WATER LINE
WW	EXISTING WASTEWATER LINE
	EXISTING STORM DRAIN LINE
<u> </u>	EXISTING CONTOUR LINE
	PROPOSED CONTOUR LINE
	PROPOSED BOUNDARY LINE

PROFILE SCALES:
" = 40' HORIZONTAL " = 4' VERTICAL PROFILE LEGEND:
IATURAL GROUND
INISHED GRADE
SUBGRADE
PROPOSED STORM DRAIN
25-YR HGL 25yr HGL
00-YR HGL 100yr HGL

NO. REVISION 1 SHIFT INLET FOR REVISED 08/11/22 LOT LAYOUT LOT LAYOUT	TELAS SALES
H PAPE-DAWSON ENGINEERS	AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
F RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS	STORM PLAN & PROFILES SD-C1.01 - STA 8+00 - END

MOLF


CITY JOB No. 2022-5-CON


JOB NO. 51127-42

DATE March 20, 2023 DESIGNER RBB

CHECKED_JF_DRAWN_JB

A 27 OF 61

NOTES:

1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. 2. ALL RCP IS CLASS III UNLESS OTHERWISE NOTED.

WOLF

DESIGNER_____

CITY JOB No. 2022-5-CON

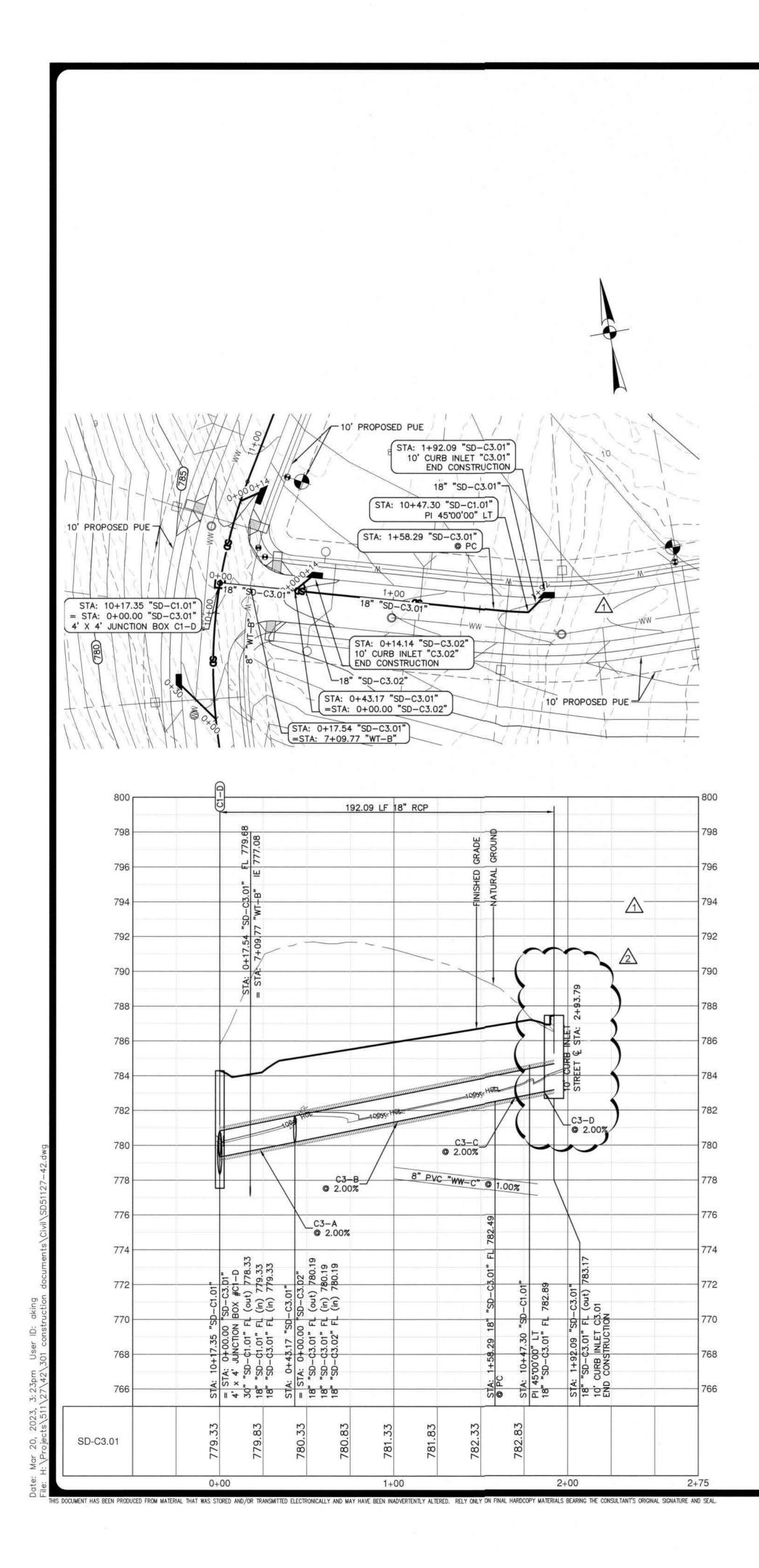
CHECKED JF DRAWN JB

A 28 OF 61

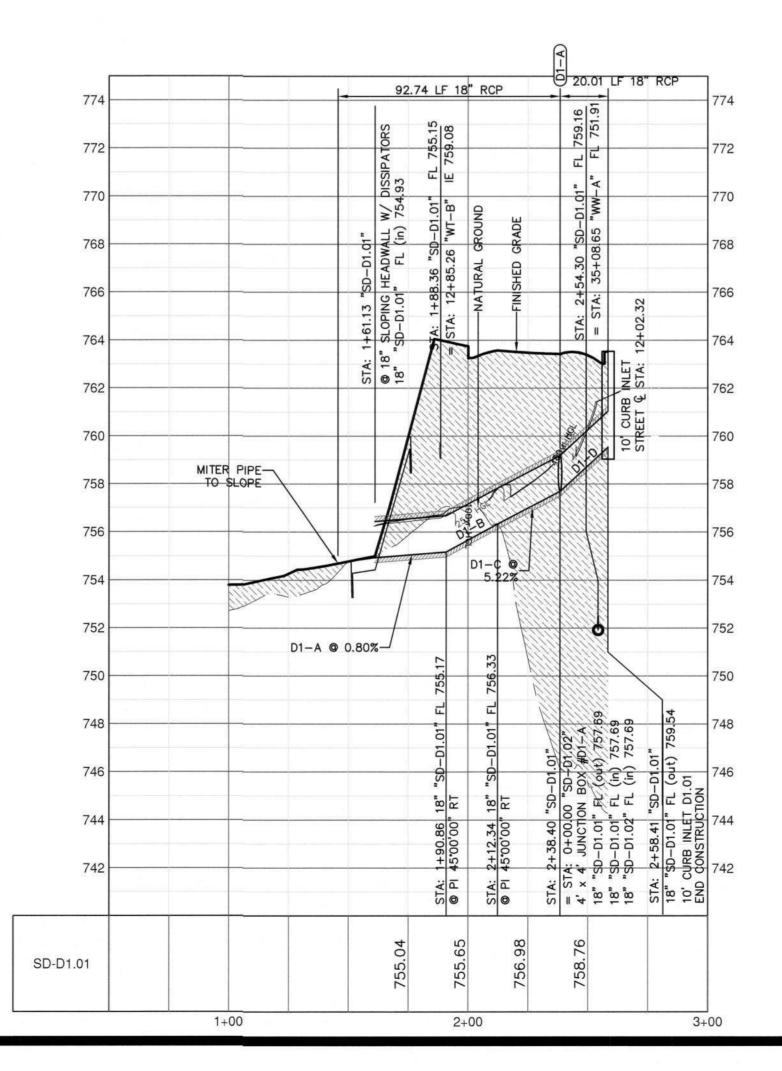
RBB

JOB NO. 51127-42 DATE March 20, 2023

LEGEND W-W WATER LINE SD STORM DRAIN LINE & MH Constant of the

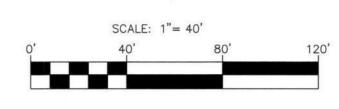

TO UTILITY INSTALLATION.

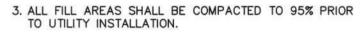

/	0 +
	$\Theta()$
	8
	Q(1)
	60


CURB INLET SINGLE WATER SERVICE DOUBLE WATER SERVICE SINGLE WW SERVICE DOUBLE WW SERVICE GATE VALVE FIRE HYDRANT EXISTING GATE VALVE EXISTING FIRE HYDRANT EXISTING WATER LINE EXISTING WASTEWATER LINE EXISTING STORM DRAIN LINE EXISTING CONTOUR LINE PROPOSED CONTOUR LINE

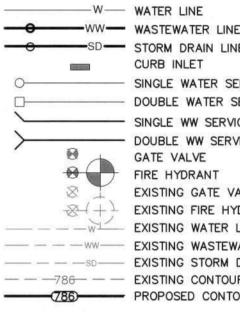
----- PROPOSED BOUNDARY LINE

PROFILE SCALES:
" = 40' HORIZONTAL " = 4' VERTICAL PROFILE LEGEND:
NATURAL GROUND
FINISHED GRADE
SUBGRADE
PROPOSED STORM DRAIN
06
25-YR HGL25yr HGL
100-YR HGL




Label	Flow	
Label	(cfs)	
C3-A	7.1	
C3-B	3.2	
C3-C	3.2	
C3-D	3.2	
D1-A	10.2	
D1-B	10.2	
D1-C	10.2	
D1-D	4.4	

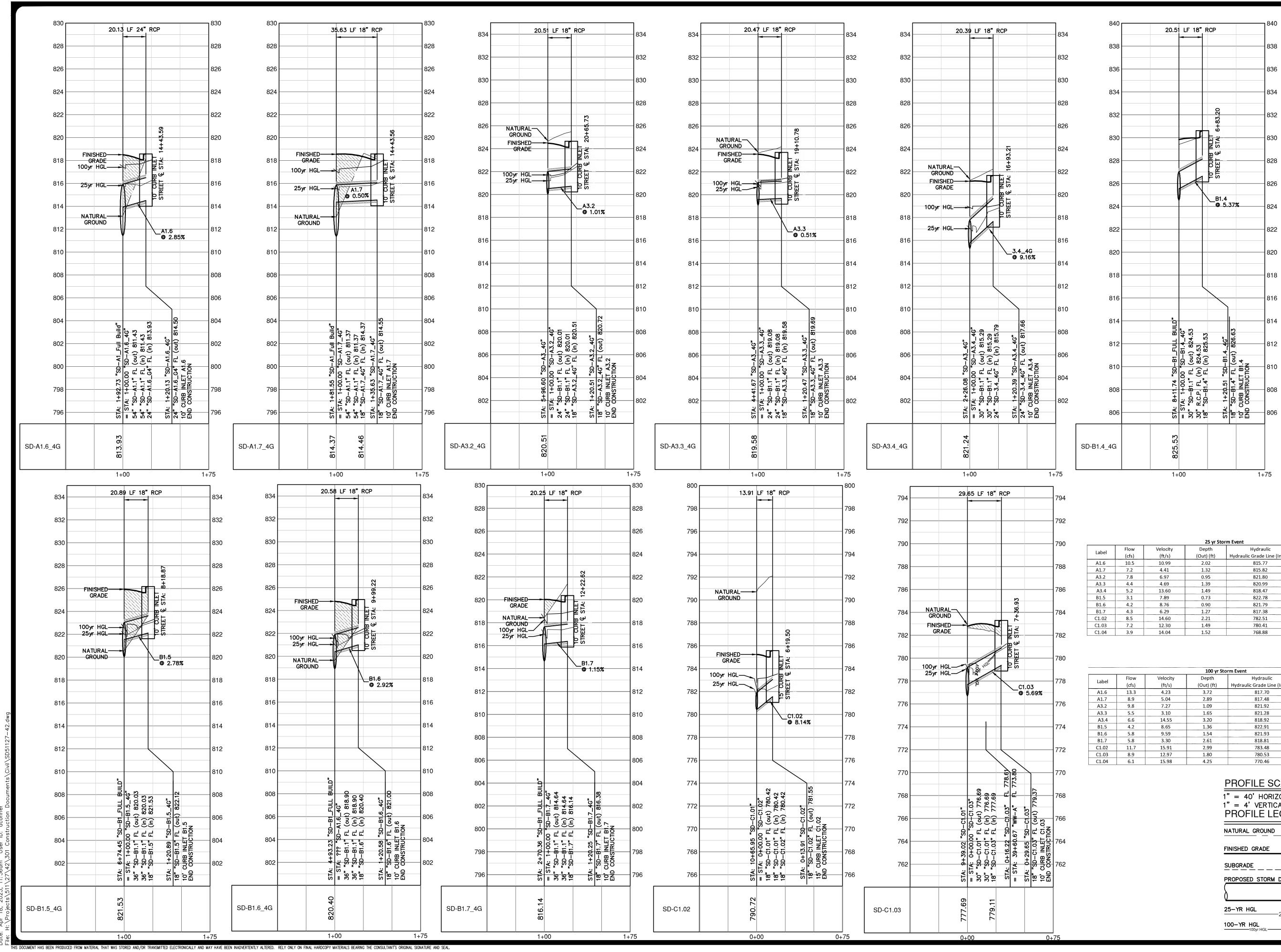
Label	Flow	
Laber	(cfs)	
C3-A	9.0	
C3-B	4.0	
C3-C	4.0	
C3-D	4.0	
D1-A	12.1	
D1-B	12.1	
D1-C	12.1	
D1-D	5.3	



NOTES:

- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. ALL RCP IS CLASS III UNLESS OTHERWISE NOTED.

SD-SD-STORM DRAIN LINE & MH CURB INLET - SINGLE WATER SERVICE - DOUBLE WATER SERVICE SINGLE WW SERVICE - DOUBLE WW SERVICE EXISTING GATE VALVE EXISTING FIRE HYDRANT EXISTING WATER LINE ----- EXISTING WASTEWATER LINE


----- PROPOSED BOUNDARY LINE

	25 yr Ste	orm Event	
Velocity (ft/s)	Depth (Out) (ft)	Hydraulic Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
8.31	1.17	780.98	780.49
6.70	1.77	781.78	781.53
6.70	0.74	782.21	781.65
6.71	0.77	784.18	783.85
5.76	1.23	756.51	756.16
13.17	1.54	757.56	756.71
13.02	1.46	758.92	757.79
14.77	1.86	761.35	759.55

	100 yr St	corm Event	
Velocity (ft/s)	Depth (Out) (ft)	Hydraulic Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
8.81	1.33	781.35	780.66
7.13	2.21	782.39	781.97
7.13	1.48	782.38	782.39
7.14	0.09	784.31	783.94
6.82	1.32	756.73	756.25
13.77	1.80	757.65	756.97
13.61	1.61	759.01	757.94
15.54	2.09	761.43	759.78

PROFILE SCALES: 1" = 40' HORIZONTAL 1" = 4' VERTICAL PROFILE LEGEND:	
NATURAL GROUND	
FINISHED GRADE	
SUBGRADE	
PROPOSED STORM DRAIN	
8	8
25-YR HGL25yr HGL	
100-YR HGL	

Hydraulic Hydraulic Grade Line (In) (ft) Grade Line (Out) (ft) 817.64 817.26 821.61 821.23 818.99 822.90 821.94 818.75 783.41 779.48 770.43

> PROFILE SCALES: $1^{"} = 40' HORIZONTAL$

> 1" = 4' VERTICAL PROFILE LEGEND:

Hydraulic

Grade Line (Out) (ft)

815.94

815.70

821.46

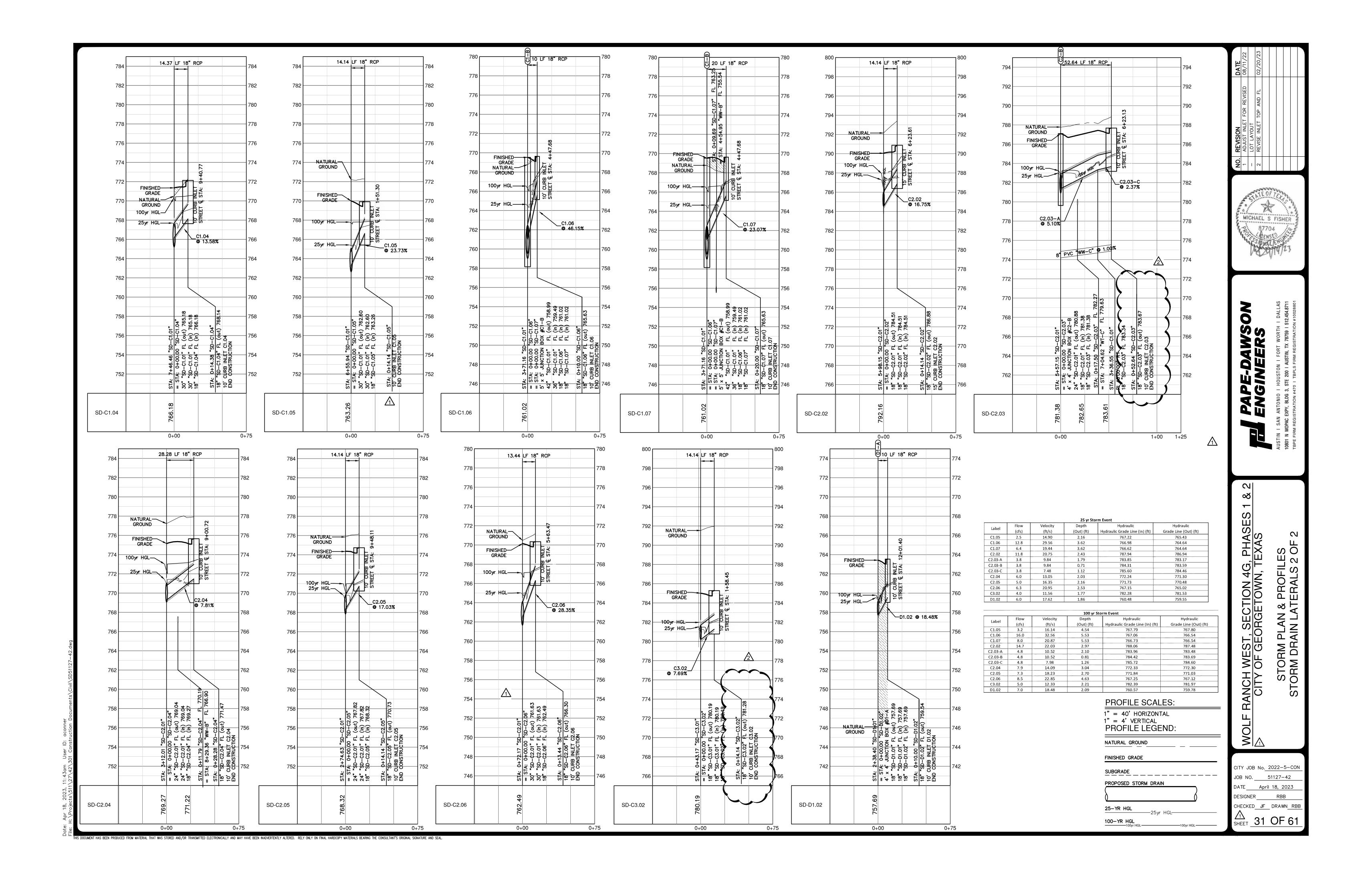
817.29

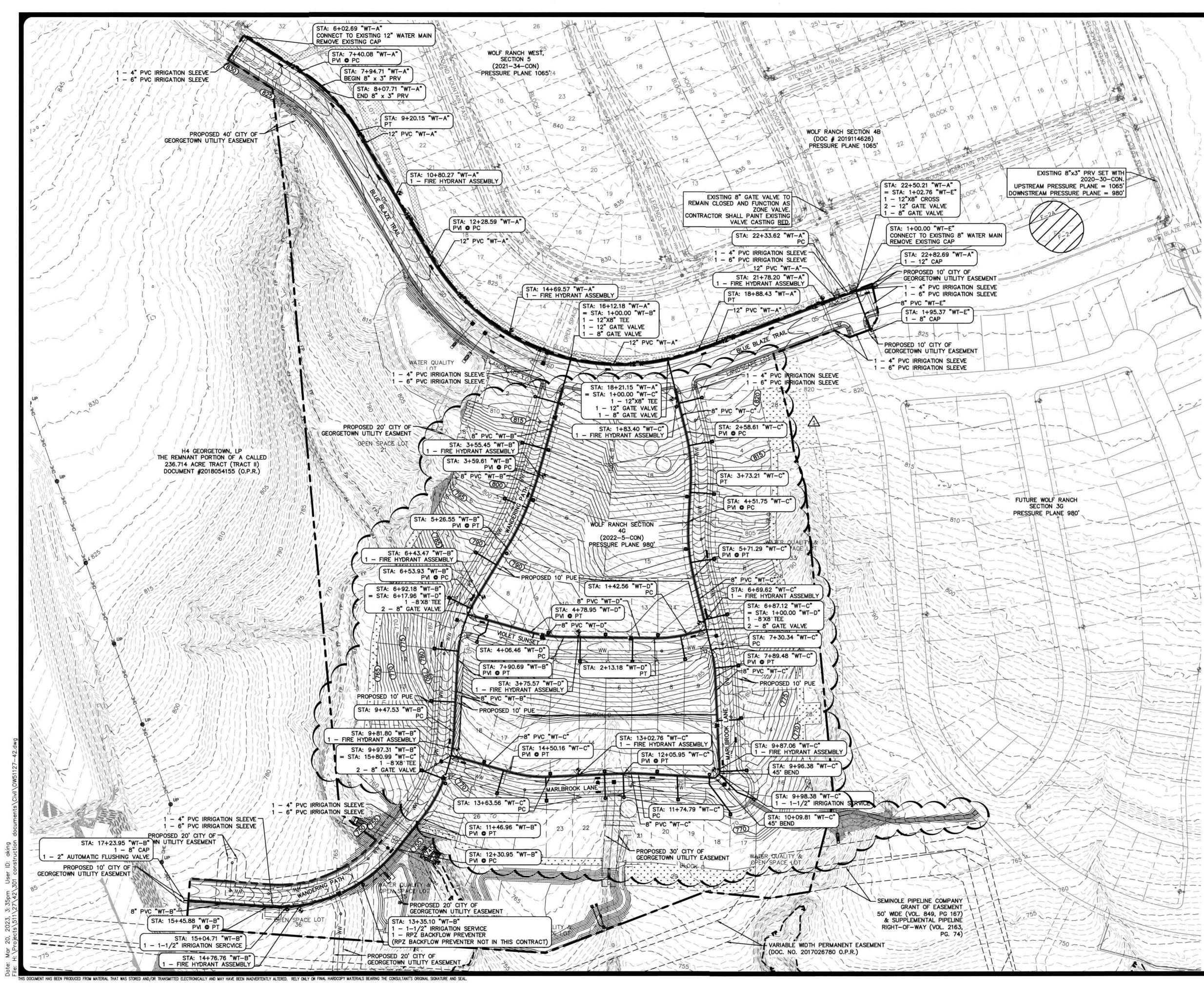
822.27

821.31

782.63

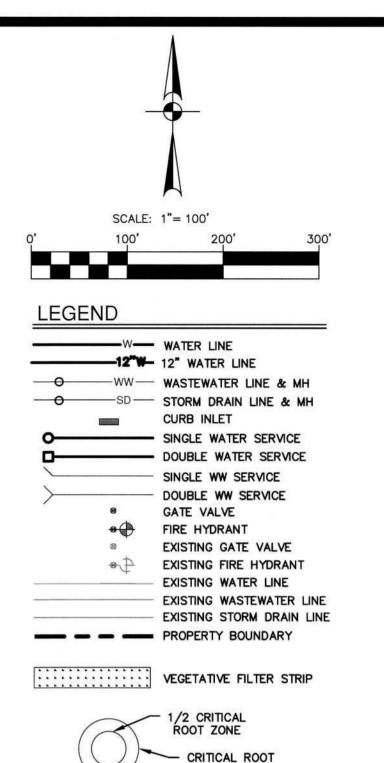
779.17


767.70


817.41

820.97

PROPOSED STORM DRAIN

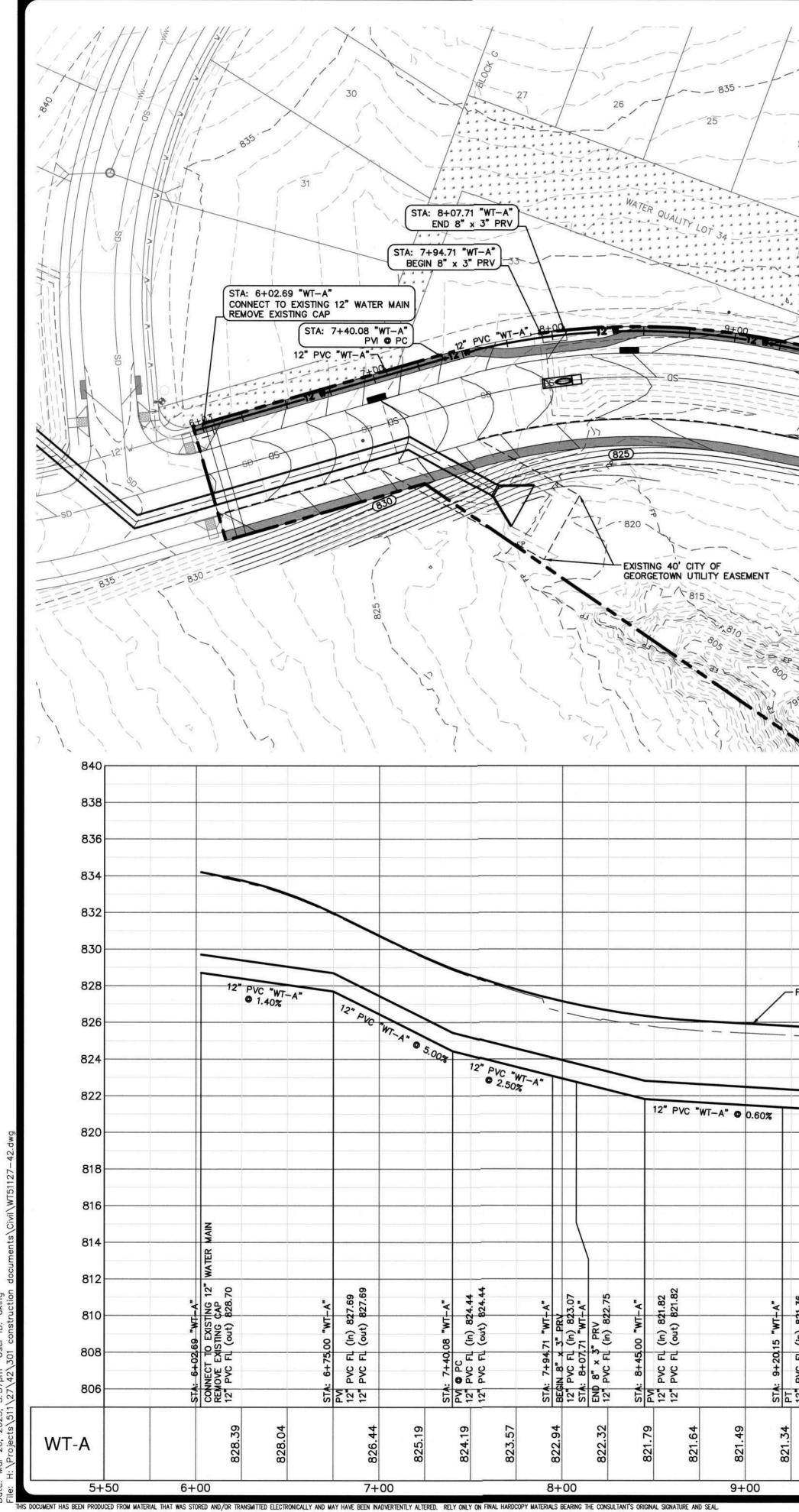

—25yr HGL— 100yr HGL

×

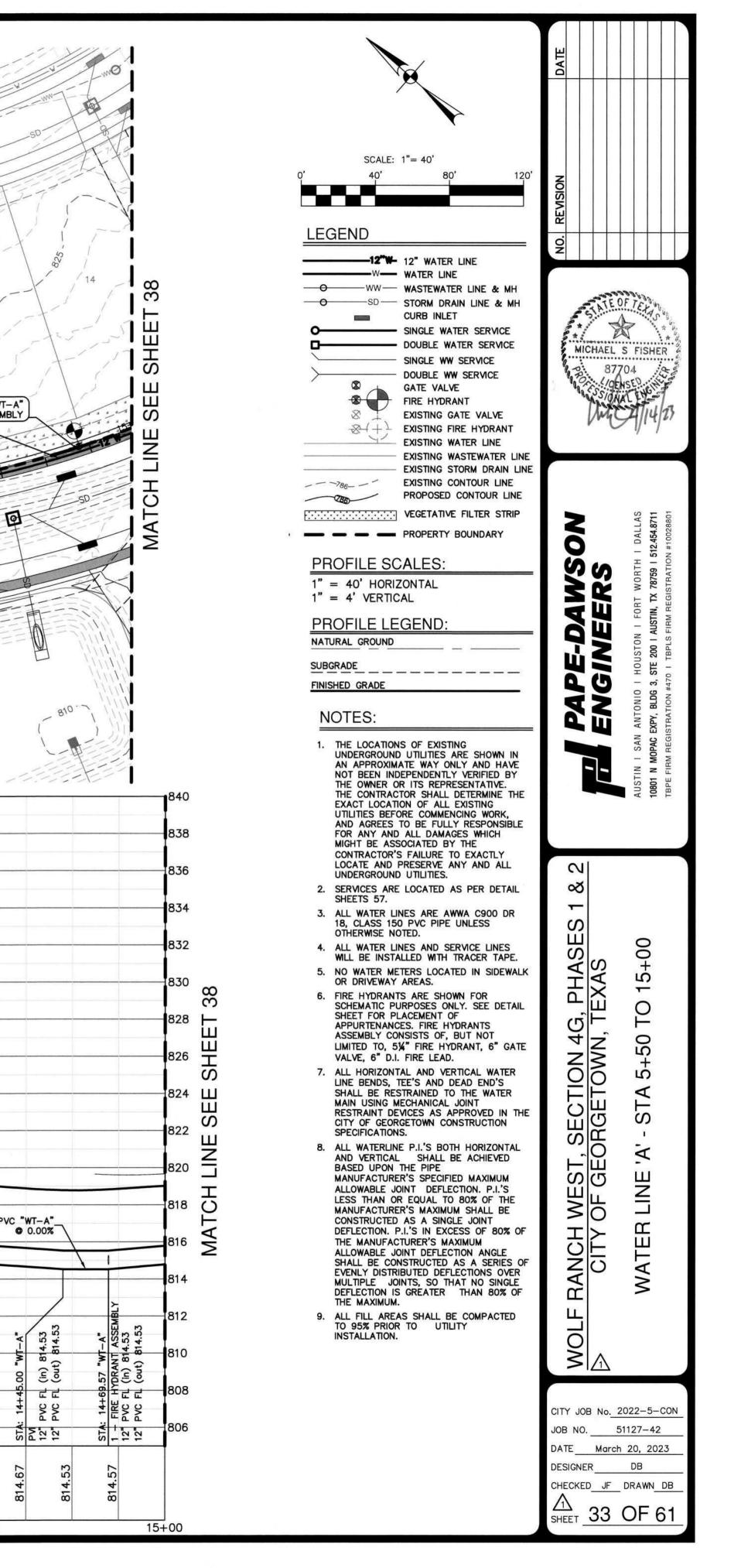
100.1

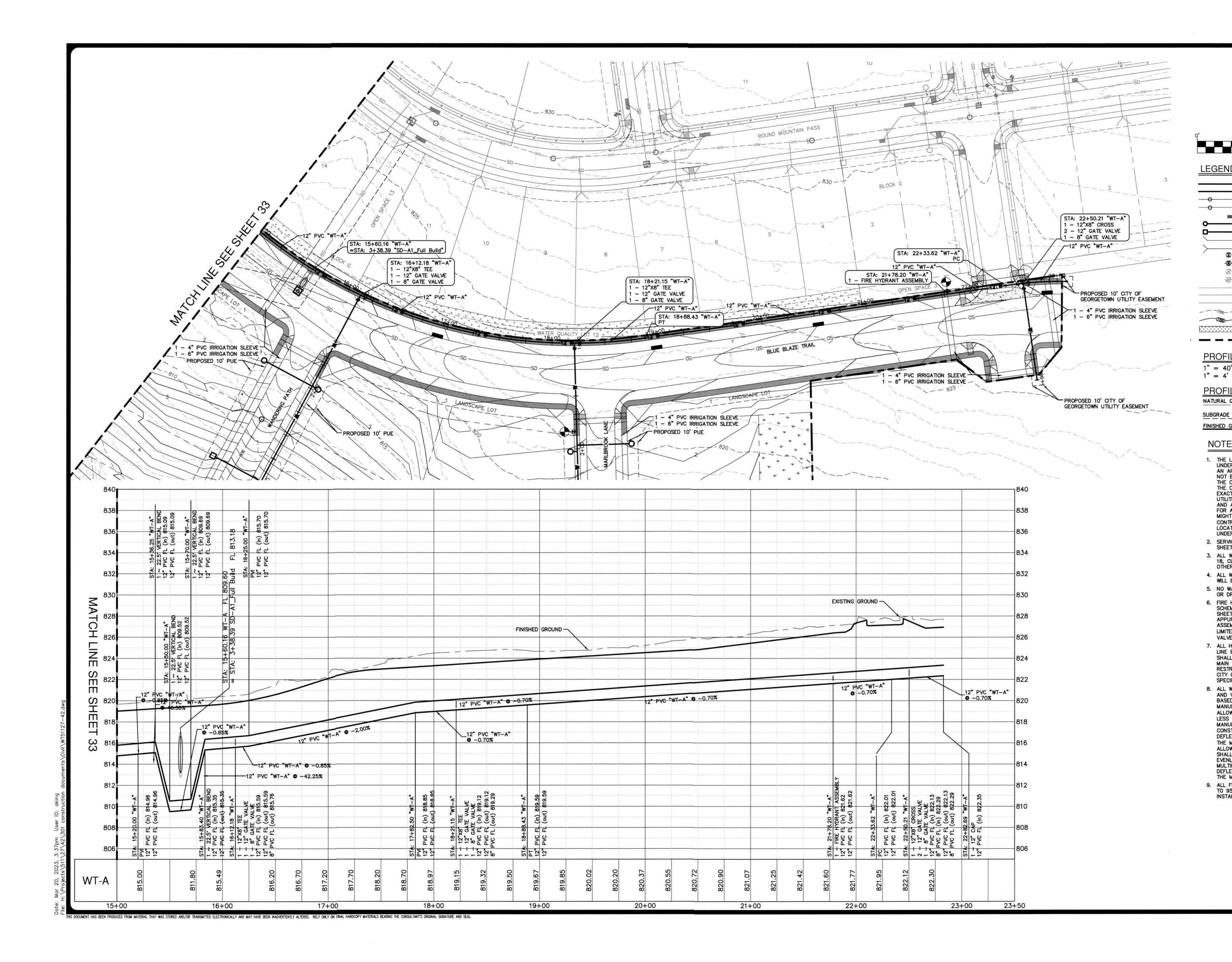
NOTES:

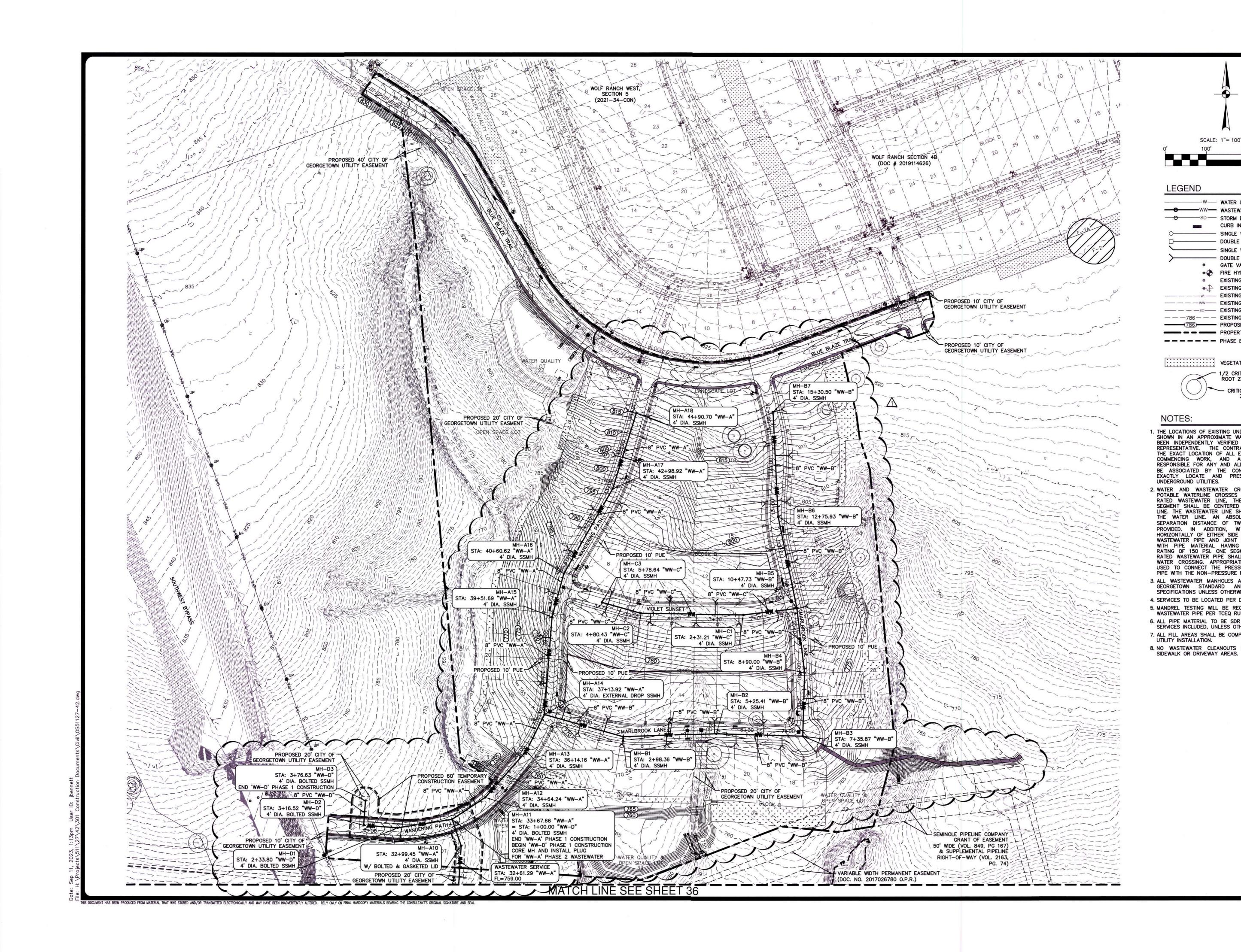
I. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BI FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

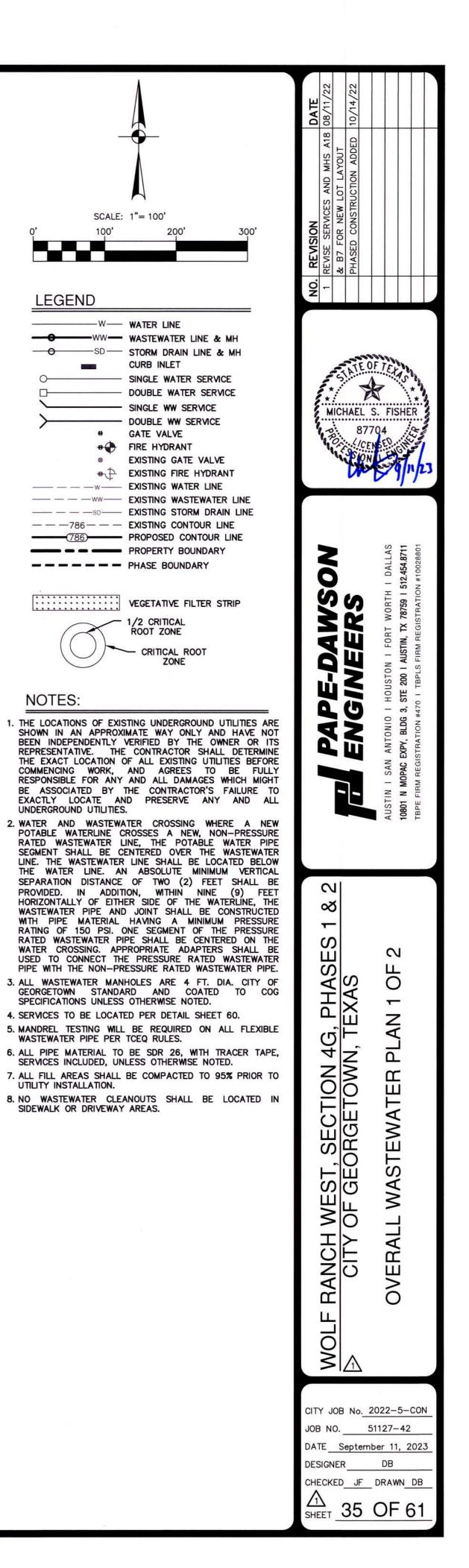

ZONE

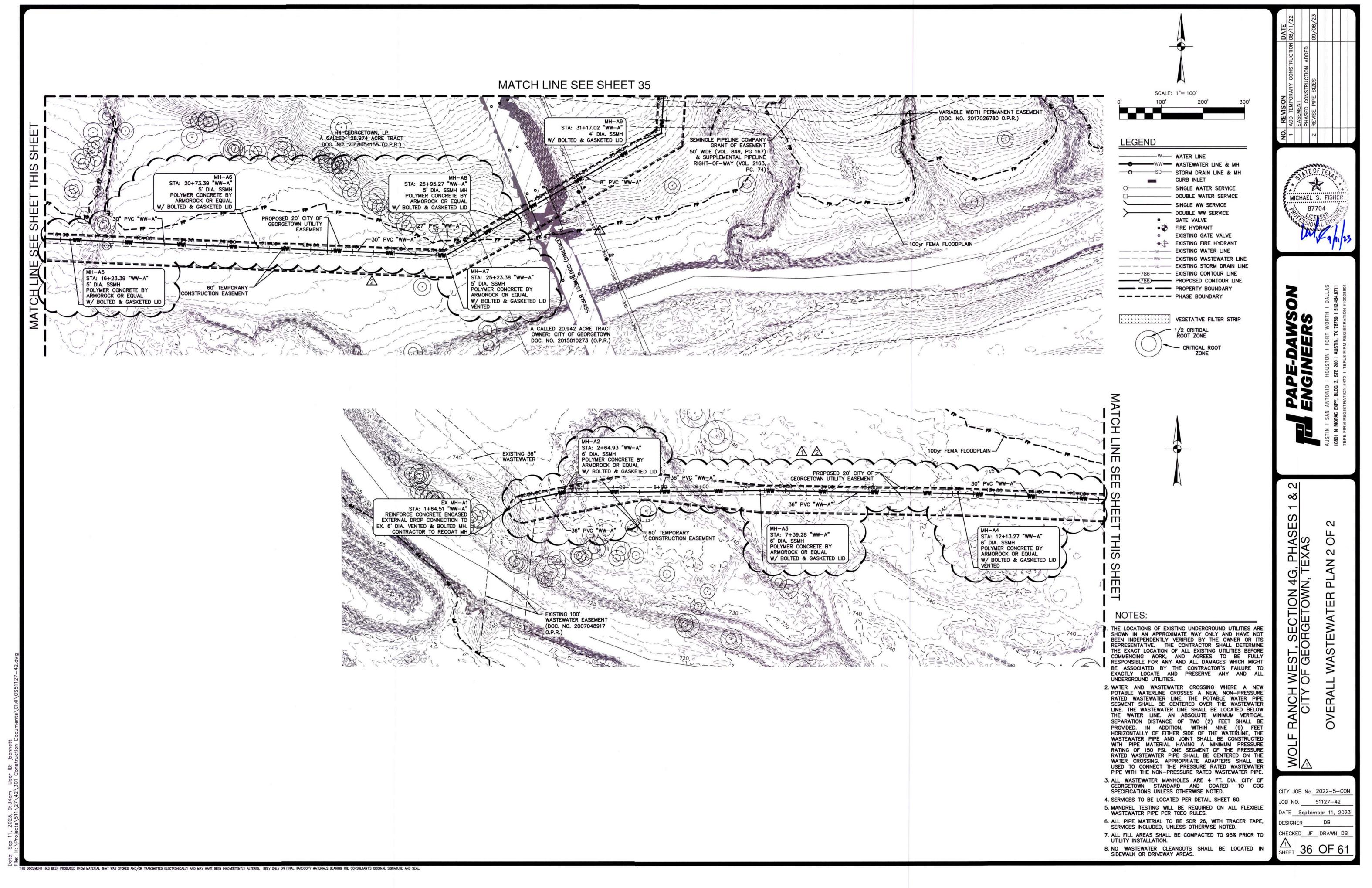
- SERVICES ARE LOCATED AS PER DETAIL SHEETS 57.
 ALL WATER LINES ARE AWWA C900 DR 18, CLASS 150 PVC PIPE UNLESS OTHERWISE NOTED.
- 4. ALL WATER LINES AND SERVICE LINES WILL BE INSTALLED WITH TRACER TAPE.
- NO WATER METERS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.
 FIRE HYDRANTS ARE SHOWN FOR SCHEMATIC PURPOSES ONLY. SEE DETAIL SHEET FOR PLACEMENT OF APPURTENANCES. FIRE HYDRANTS ASSEMBLY CONSISTS OF, BUT NOT LIMITED TO, 5¼" FIRE HYDRANT, 6" GATE VALVE, 6" D.I. FIRE LEAD.
- 7. ALL HORIZONTAL AND VERTICAL WATER LINE BENDS, TEE'S AND DEAD END'S SHALL BE RESTRAINED TO THE WATER MAIN USING MECHANICAL JOINT RESTRAINT DEVICES AS APPROVED IN THE CITY OF GEORGETOWN CONSTRUCTION SPECIFICATIONS.
- ALL WATERLINE P.I.'S BOTH HORIZONTAL AND VERTICAL SHALL BE ACHIEVED BASED UPON THE PIPE MANUFACTURER'S SPECIFIED MAXIMUM ALLOWABLE JOINT DEFLECTION. P.I.'S LESS THAN OR EQUAL TO 80% OF THE MANUFACTURER'S MAXIMUM SHALL BE CONSTRUCTED AS A SINGLE JOINT DEFLECTION. P.I.'S IN EXCESS OF 80% OF THE MANUFACTURER'S MAXIMUM ALLOWABLE JOINT DEFLECTION ANGLE SHALL BE CONSTRUCTED AS A SERIES OF EVENLY DISTRIBUTED DEFLECTIONS OVER MULTIPLE JOINTS, SO THAT NO SINGLE DEFLECTION IS GREATER THAN 80% OF THE MAXIMUM.
 ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 10. AT THE CONCLUSION OF CONSTRUCTION AND AS PART OF THE PROCESS FOR THE CITY TO ACCEPT THIS PHASE, THE FIRE HYDRANTS SHALL BE FLOWED AND TESTED. A COPY OF THE REPORT SHALL BE EMAILED INTO THE FIRE DEPARTMENT AND THE HYDRANTS SHALL BE PAINTED AND COLOR CODED.
- IF PRESSURE REDUCING VALVES WERE INSTALLED IN THIS PHASING, THEY MUST BE SET PRIOR TO FIRE HYDRANT FLOW TESTING
 ALL PRIVATE HYDRANT BARRELS WILL BE PAINTED RED WITH THE
- BONNET PAINTED USING THE HYDRANT FLOW CODING STANDARDS SHOWN ON THIS SHEET
- 13. ALL PRIVATE FIRE HYDRANTS SHOULD BE TESTED ANNUALLY AND SHALL BE COLOR CODED TO INDICATE THE EXPECTED FIRE FLOW FROM THE HYDRANT DURING NORMAL OPERATION. SUCH COLOR SHALL BE APPLIED TO THE FIRE HYDRANT BY PAINTING THE BONNET THE APPROPRIATE COLOR FOR THE EXPECTED FLOW CONDITION.

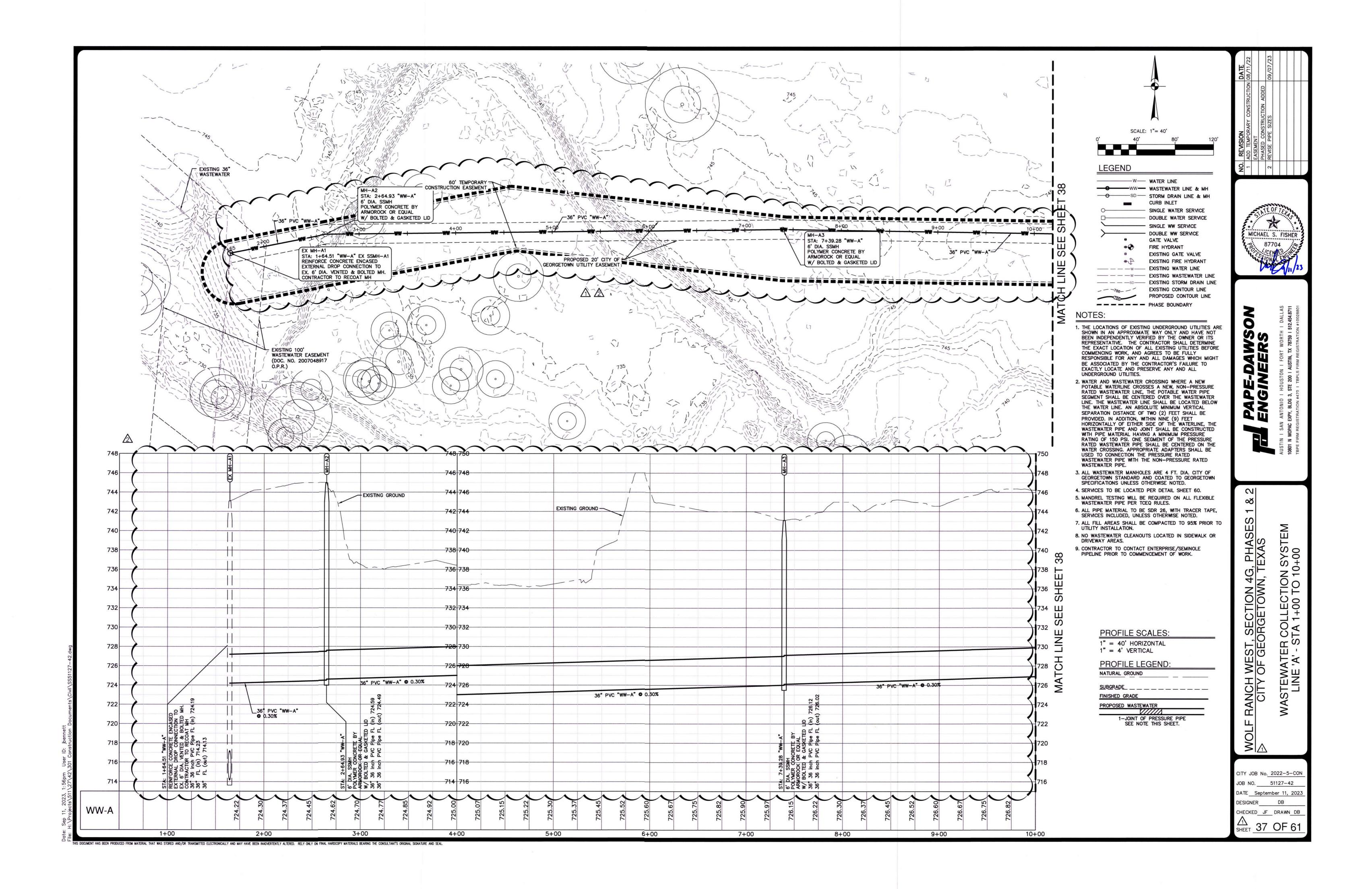

14. PUBLIC HYDRANTS WILL HAVE THE BONNETS PAINTED SILVER, THE HYDRANTS WILL BE FLOW TESTED, AND THE BONNET PAINTED USING THE HYDRANT FLOW CODING STANDARDS SHOWN ON THIS SHEET

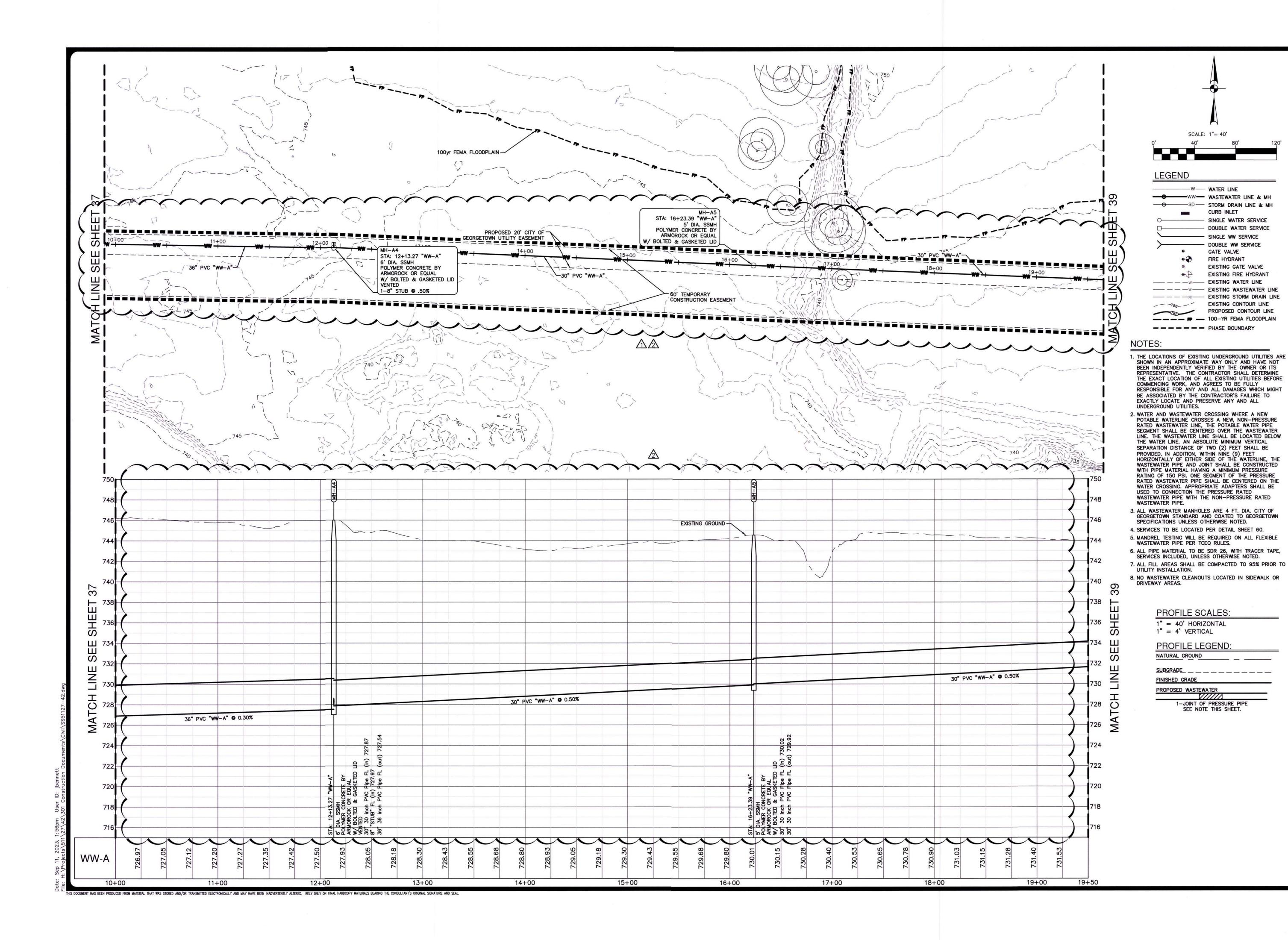

> STATIC PRESSURE SUMMARY (HIGHEST LOT): PRESSURE PLANE = 980'HIGHEST LOT = LOT 25, BLOCK B FINISHED FLOOR = 826.50' STATIC PRESSURE = 66.45 PSI STATIC PRESSURE SUMMARY (LOWEST LOT): PRESSURE PLANE = 980' LOWEST LOT =LOT 27, BLOCK C FINISHED FLOOR = 744.03 STATIC PRESSURE = 102.15 PSI FLOW > 1500 GPM BLUE 1000-1500 GPM GREEN 500-999 GPM ORANGE < 500 GPM RFD BLACK OR BAGGED NOT WORKING

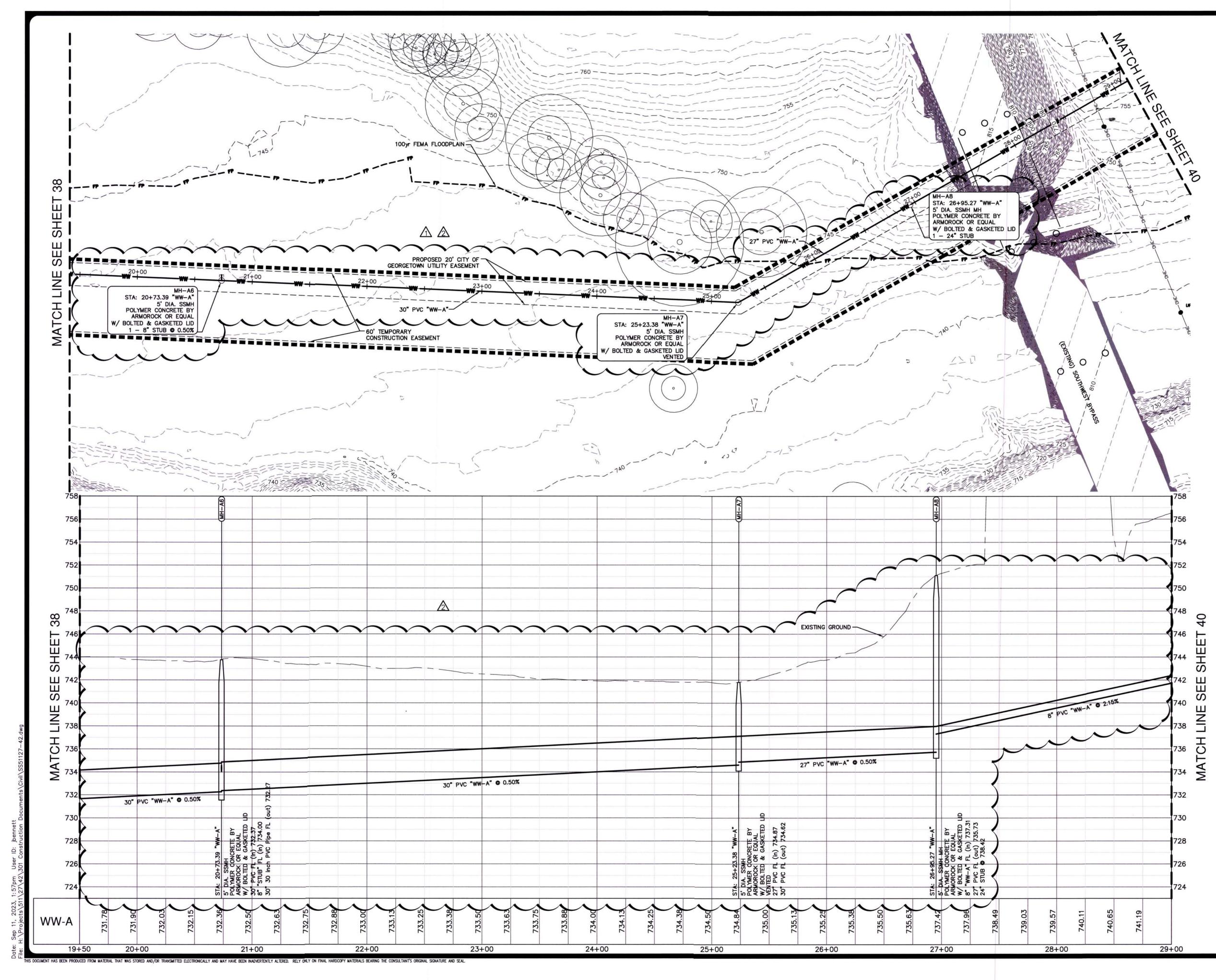

12 100			
40.120	L PT		
	PVC FL	FII	
	12" PVC FL (out) 821.36	NIS	
		SHE	
821.19			
		GRC	
			9+
821.04			
			-
820.89			~
820 74			
	2"		1 1 1
60.020		3 G	
	/T	ROI	
	A"	JND	
11.070	STA: 10+80.27 "WT-A"		
	1 - FIRE HYDRANT ASSEMBLY		
	12 PVC FIL (in) 820.40		
	STA: 11+00.00 "WT-A"		2" P
810 46	PV 12 PVC		
0.00	12" PVC FL (out) 820.29		20 B0.22
			7 "
818.64			
			ASS ALL AND AL
			114 1
817.81			
816.99			White and the second se
			LF F SE
816.16	CT4. 401.00 E0 "UT		ANCCITION -34
	PVI C PC		-00
	12" PVC FL (in) 816.04		AEST ON) 8
815.89	12 PVC FL		
815 72			
71.01			
815.54			
	12"		
815.37			
815 10			
2.13			
815.02		*	
			: "w
814.84			
814.67	STA: 14+45.00 "WT-A"		

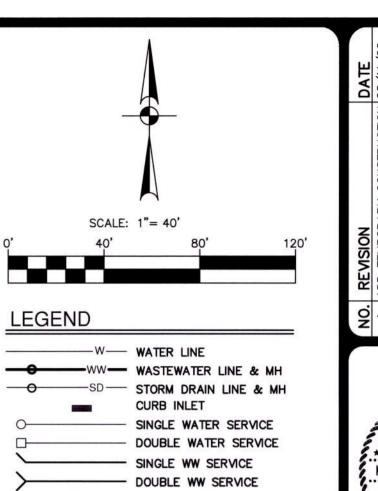





12-101 (1) (**#**101 (**#**11))


	DATE
SCALE: 1"= 40' 40' 80' 120'	REVISION
ID	о <mark>.</mark>
	MICHAEL S FISHER 87704 Sional Hur 23
EXISTING STORM DRAIN LINE EXISTING CONTOUR LINE PROPOSED CONTOUR LINE PROPOSED CONTOUR LINE VEGETATIVE FILTER STRIP PROPERTY BOUNDARY <u>ILE SCALES:</u> O' HORIZONTAL VERTICAL <u>ILE LEGEND:</u> GROUND GROUND E SCOUND SCOUND E SCOUND E SCOUND SCOU	A DESTRUCTION & CONTRUCTION &
TRACTOR'S FAILURE TO EXACTLY ATE AND PRESERVE ANY AND ALL ERGROUND UTILITIES. ACES ARE LOCATED AS PER DETAIL ETS 44. WATER LINES ARE AWWA C900 DR CLASS 150 PVC PIPE UNLESS ERWISE NOTED. WATER LINES AND SERVICE LINES BE INSTALLED WITH TRACER TAPE. WATER METERS LOCATED IN SIDEWALK ORIVEWAY AREAS. HYDRANTS ARE SHOWN FOR EMATIC PURPOSES ONLY. SEE DETAIL ET FOR PLACEMENT OF JRTENANCES. FIRE HYDRANTS EMBLY CONSISTS OF, BUT NOT ED TO, 5¼" FIRE HYDRANT, 6" GATE (#, 6" D.I. FIRE LEAD. HORIZONTAL AND VERTICAL WATER BENDS, TEE'S AND DEAD END'S L BE RESTRAINED TO THE WATER USING MECHANICAL JOINT TRAINT DEVICES AS APPROVED IN THE OF GEORGETOWN CONSTRUCTION DIFICATIONS. WATERLINE P.I.'S BOTH HORIZONTAL VERTICAL SHALL BE ACHIEVED ED UPON THE PIPE UFACTURER'S SPECIFIED MAXIMUM WWABLE JOINT DEFLECTION. P.I.'S 5 THAN OR EQUAL TO 80% OF THE UFACTURER'S MAXIMUM SHALL BE STRUCTED AS A SINGLE JOINT ECTION. P.I.'S IN EXCESS OF 80% OF MANUFACTURER'S MAXIMUM SHALL BE STRUCTED AS A SINGLE JOINT ECTION. P.I.'S IN EXCESS OF 80% OF MANUFACTURER'S MAXIMUM WABLE JOINT DEFLECTION ANGLE L BE CONSTRUCTED AS A SERIES OF ILY DISTRIBUTED DEFLECTION ANGLE L BE CONSTRUCTED AS A SERIES OF ILY DISTRIBUTED DEFLECTION ANGLE L BE CONSTRUCTED AS A SERIES OF ILY DISTRIBUTED DEFLECTION SOVER TIPLE JOINTS, SO THAT NO SINGLE ECTION IS GREATER THAN 80% OF MAXIMUM. FILL AREAS SHALL BE COMPACTED D'5% PRIOR TO UTILITY ALLATION.	WOLF RANCH WEST, SECTION 4G, PHASES 1 & 2 CITY OF GEORGETOWN, TEXAS WATER LINE 'A' - STA 15+00 TO END
	CITY JOB No. 2022-5-CON JOB NO. 51127-42 DATE March 20, 2023 DESIGNER DB CHECKED JF DRAWN DB SHEET 34 OF 61





.

GATE VALVE

FIRE HYDRANT

PROPOSED CONTOUR LINE

---- PHASE BOUNDARY

----- P - 100-YEAR FEMA FLOODPLAIN

EXISTING GATE VALVE

EXISTING FIRE HYDRANT

EXISTING CONTOUR LINE

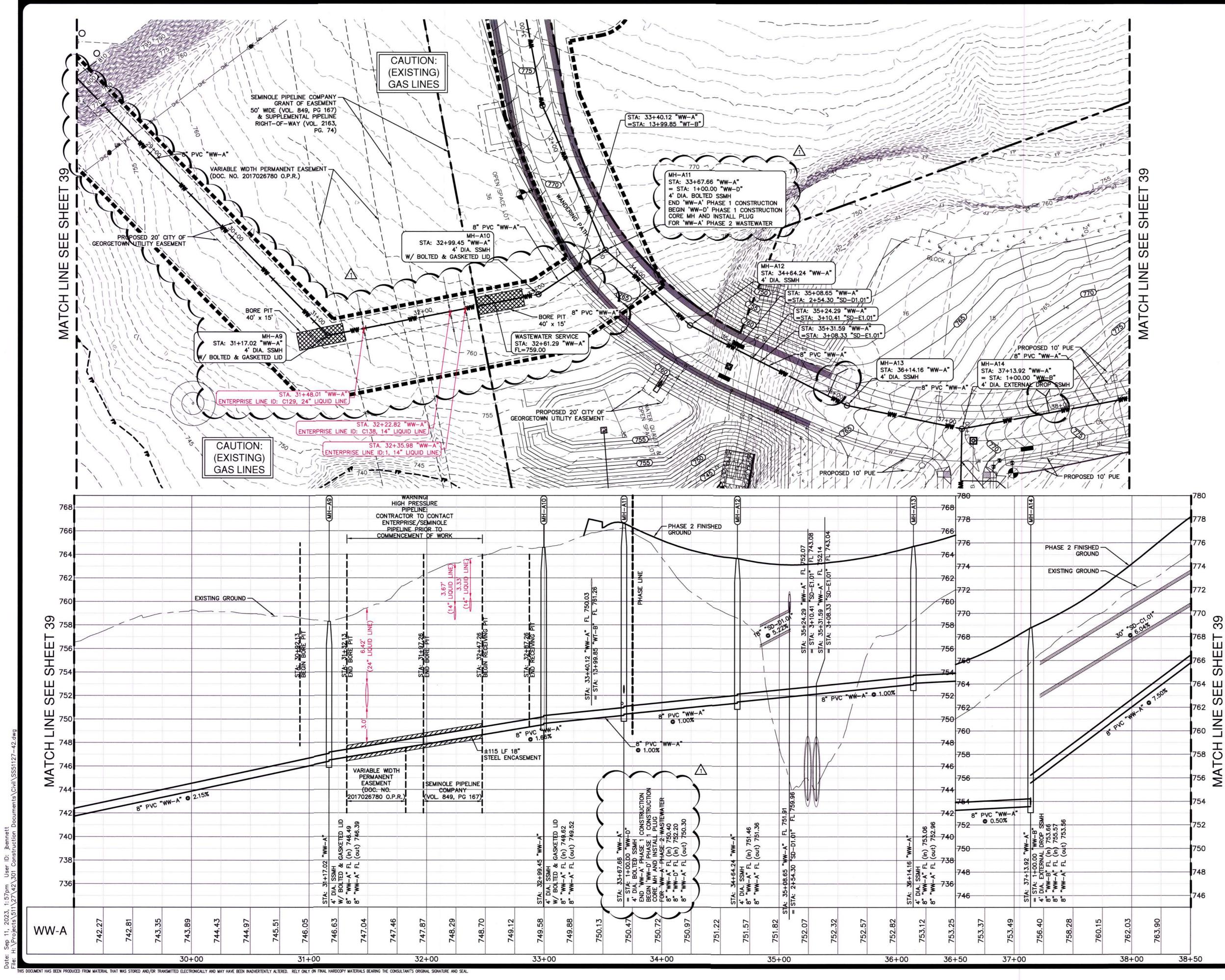
.

•

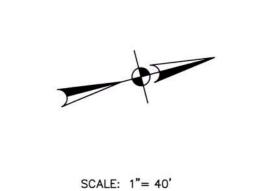
8 P

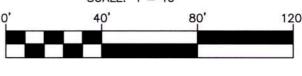
- -786- ----

× 4 4 4

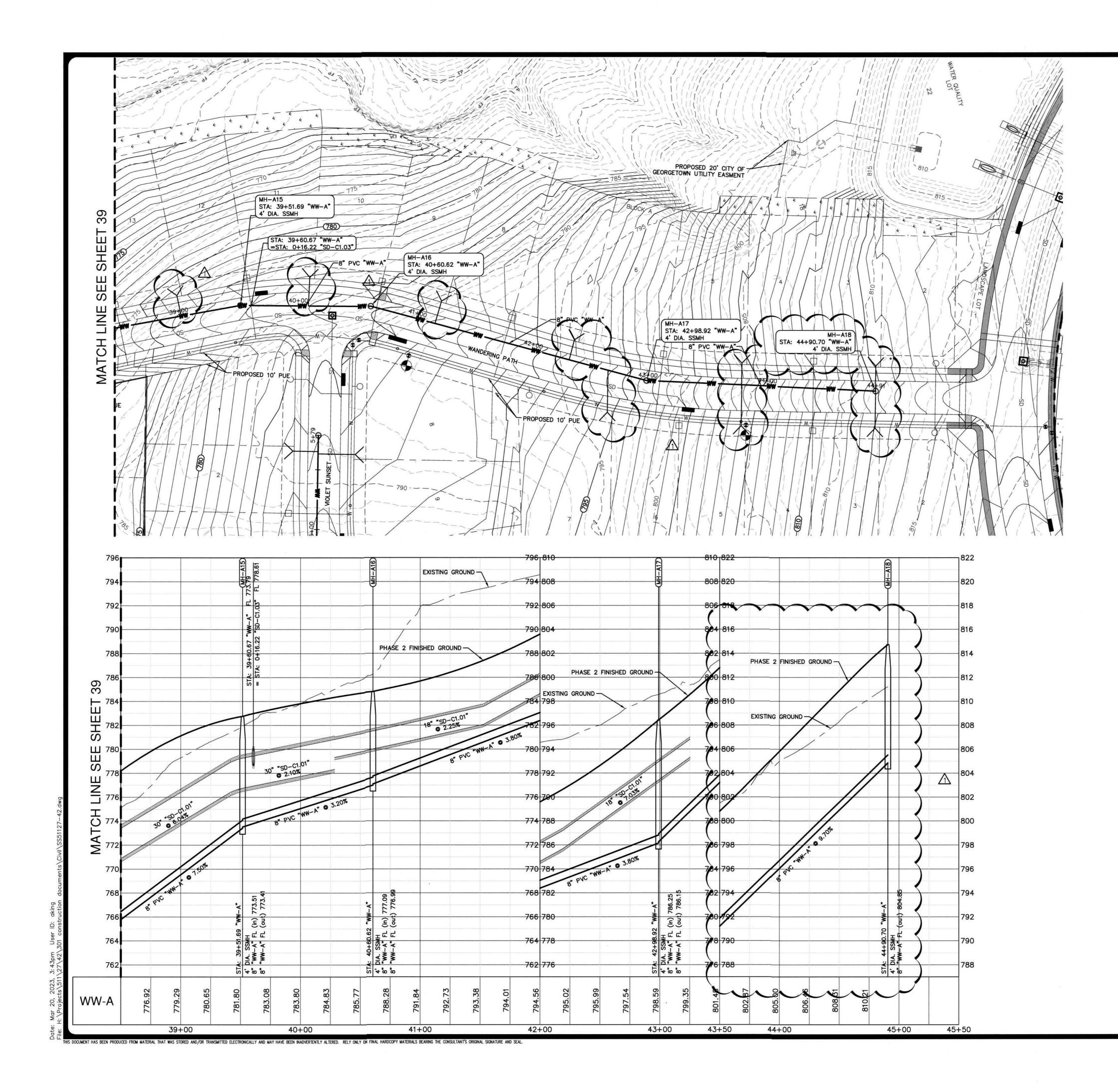


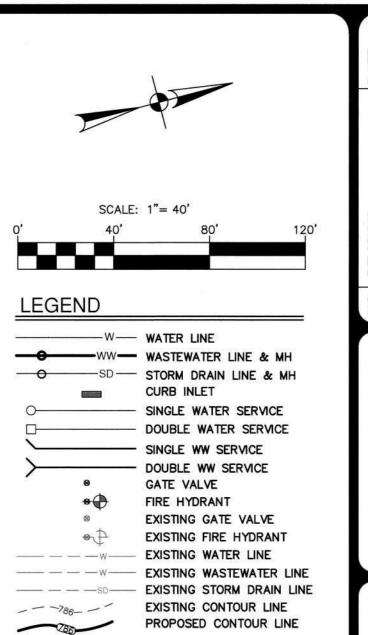
NOTES:


- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60. 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE
- WASTEWATER PIPE PER TCEQ RULES. 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE,
- SERVICES INCLUDED, UNLESS OTHERWISE NOTED. 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.



LEGE	ND	
	w	WATER LINE
		WASTEWATER LINE & MH
-0	SD	STORM DRAIN LINE & MH CURB INLET
0		SINGLE WATER SERVICE
D		DOUBLE WATER SERVICE


0	- SINGLE WATER SERVICE
D	- DOUBLE WATER SERVICE
<u> </u>	- SINGLE WW SERVICE
\rightarrow	- DOUBLE WW SERVICE
	GATE VALVE
•	FIRE HYDRANT
8	EXISTING GATE VALVE
e P	EXISTING FIRE HYDRANT
w	- EXISTING WATER LINE
w	- EXISTING WASTEWATER LINE
<u> </u>	- EXISTING STORM DRAIN LINE
	EXISTING CONTOUR LINE
CEO	PROPOSED CONTOUR LINE
	- PHASE BOUNDARY


NOTES:

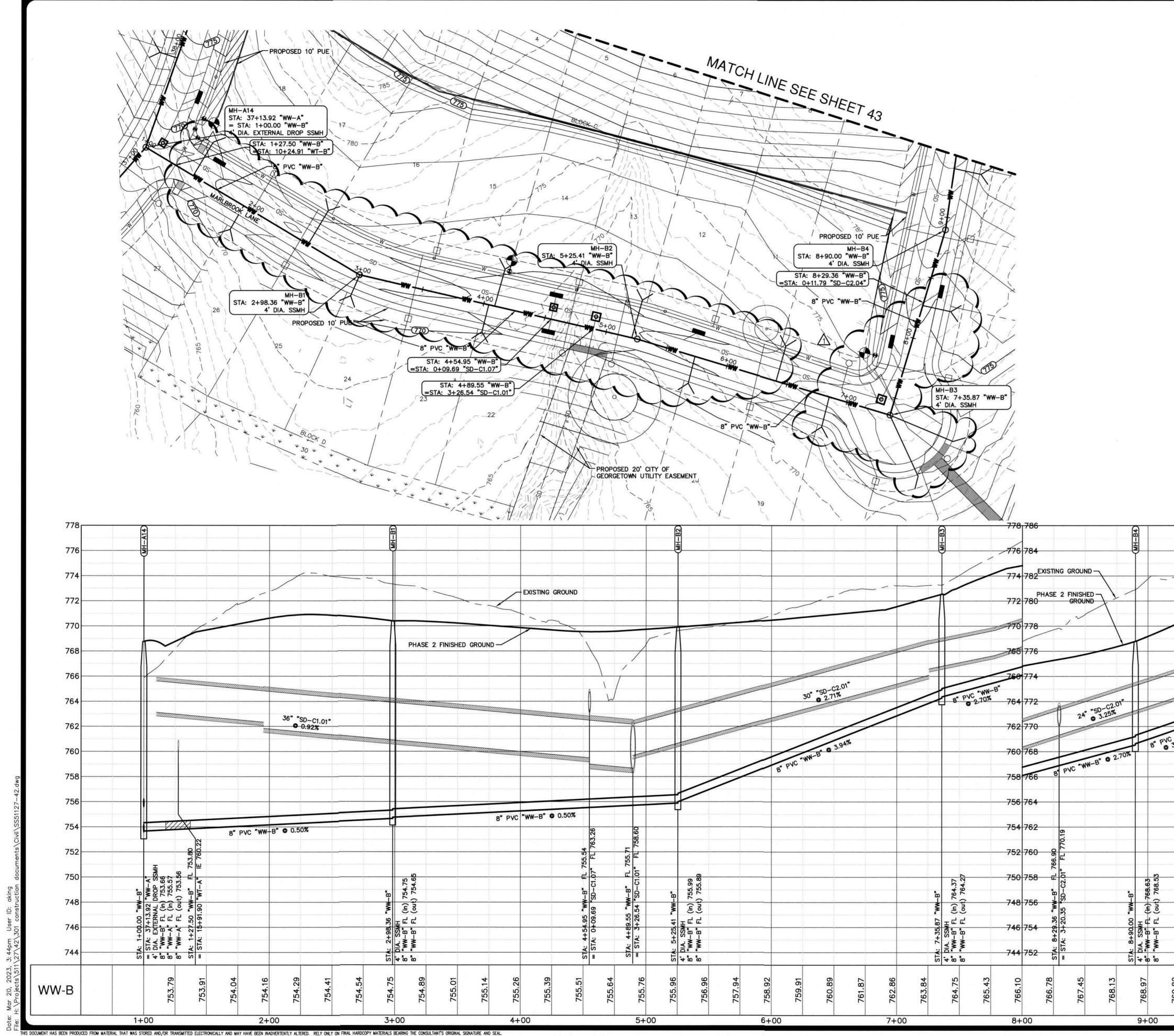
- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED. 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60.
- 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE
- WASTEWATER PIPE PER TCEQ RULES. 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE,
- SERVICES INCLUDED, UNLESS OTHERWISE NOTED. 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.
- 9. THE WASTEWATER COLLECTION LINE WITHIN THE STEEL ENCASEMENT SHALL BE CONSTRUCTED OF AT LEAST 150 PSI PRESSURE CLASS PIPE.
- 10. THE STEEL ENCASEMENT PIPE SHALL BE SEALED AT BOTH ENDS WITH CEMENT GROUT OR A MANUFACTURED SEAL.
- 11. THE WASTEWATER COLLECTION LINE WITHIN THE STEEL ENCASEMENT SHALL BE SUPPORTED BY SPACERS BETWEEN THE COLLECTION SYSTEM PIPE AND THE STEEL ENCASEMENT AT A MAXIMUM OF FIVE-FOOT INTERVAL CONSISTENT WITH CITY OF GEORGETOWN DETAIL W14.

PROFILE SCALES:
1" = 40' HORIZONTAL 1" = 4' VERTICAL
PROFILE LEGEND:
NATURAL GROUND
<u>SUBGRADE</u>
FINISHED GRADE
PROPOSED WASTEWATER
1-JOINT OF PRESSURE PIPE SEE NOTE THIS SHEET.

NOTES:

- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- SERVICES TO BE LOCATED PER DETAIL SHEET 60.
 MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE WASTEWATER PIPE PER TCEQ RULES.
- 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.

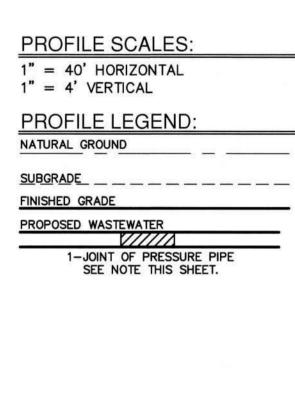
PROFILE SCALES:
1" = 40' HORIZONTAL 1" = 4' VERTICAL
PROFILE LEGEND:
NATURAL GROUND
<u>SUBGRADE</u>
FINISHED GRADE
PROPOSED WASTEWATER
1-JOINT OF PRESSURE PIPE SEE NOTE THIS SHEET.



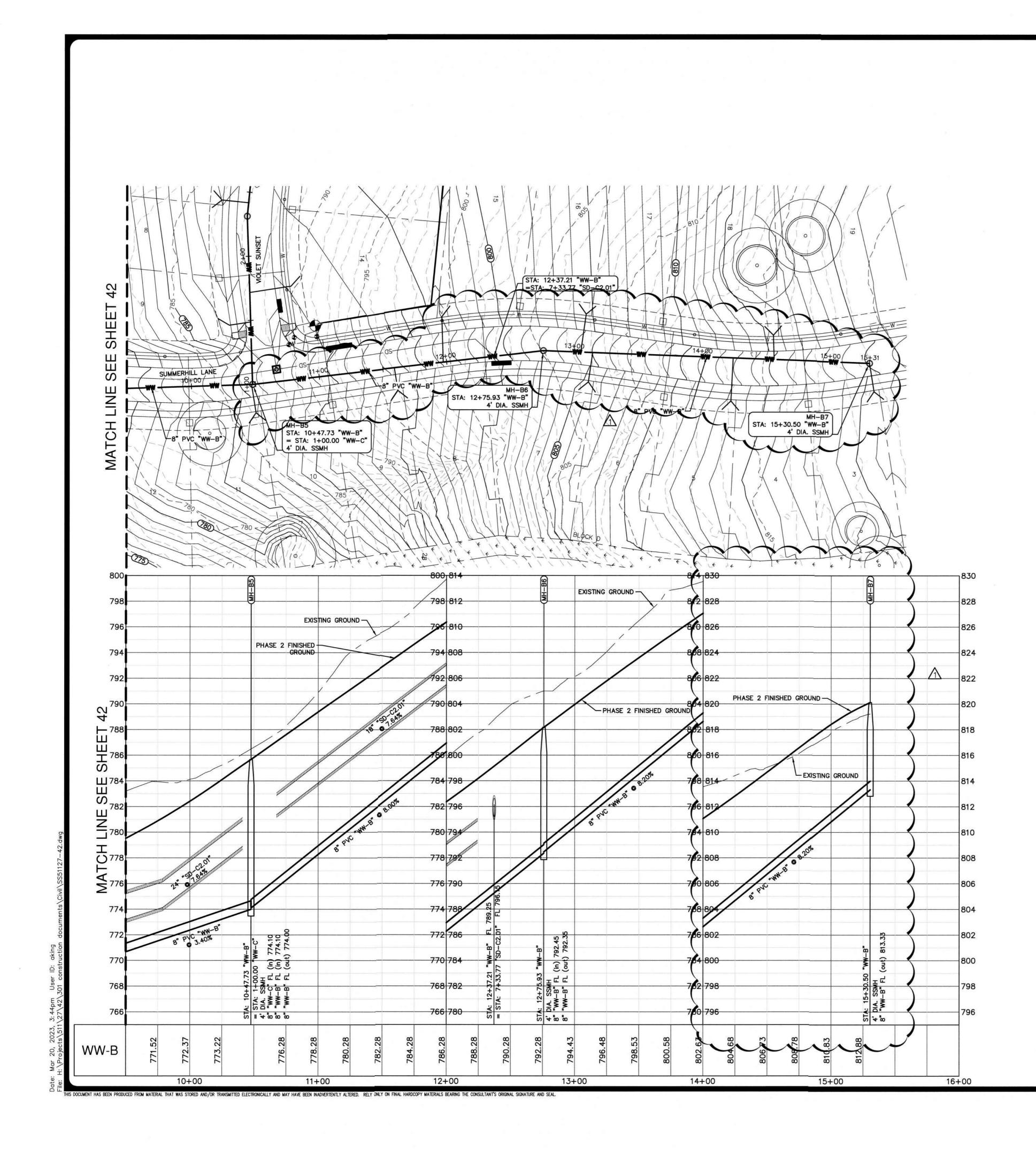
DATE _____ March 20, 2023

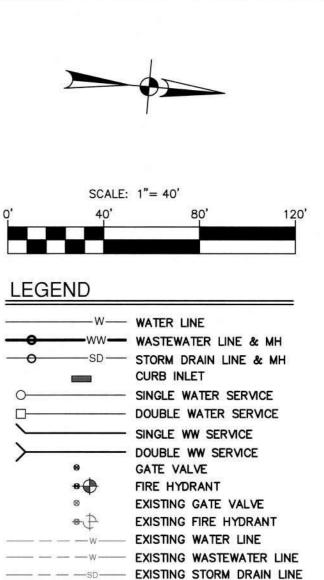
CHECKED JF DRAWN DB

Δ1 OF 61


DESIGNER DB

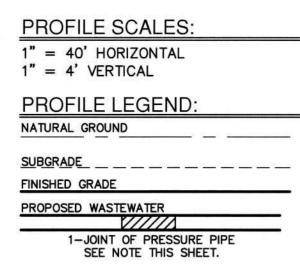
	DATE 08/11/22	
SCALE: 1"= 40' 0' 40' 80' 120' LEGEND	NO. REVISION 1 REVISE SERVICE LOCATIONS	
W WATER LINE WW WASTEWATER LINE & MH SD STORM DRAIN LINE & MH CURB INLET SINGLE WATER SERVICE DOUBLE WATER SERVICE DOUBLE WATER SERVICE DOUBLE WW SERVICE SINGLE WW SERVICE GATE VALVE FIRE HYDRANT EXISTING GATE VALVE EXISTING FIRE HYDRANT W EXISTING WATER LINE W EXISTING STORM DRAIN LINE VW EXISTING STORM DRAIN LINE VW EXISTING CONTOUR LINE VB PROPOSED CONTOUR LINE	MICHAEL BROCK SSIO	

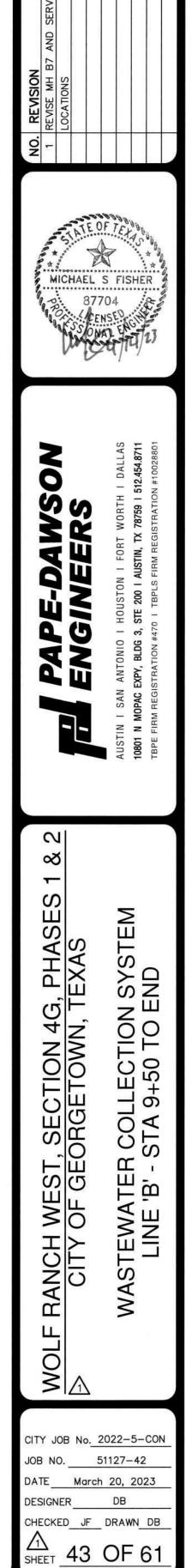

NOTES:

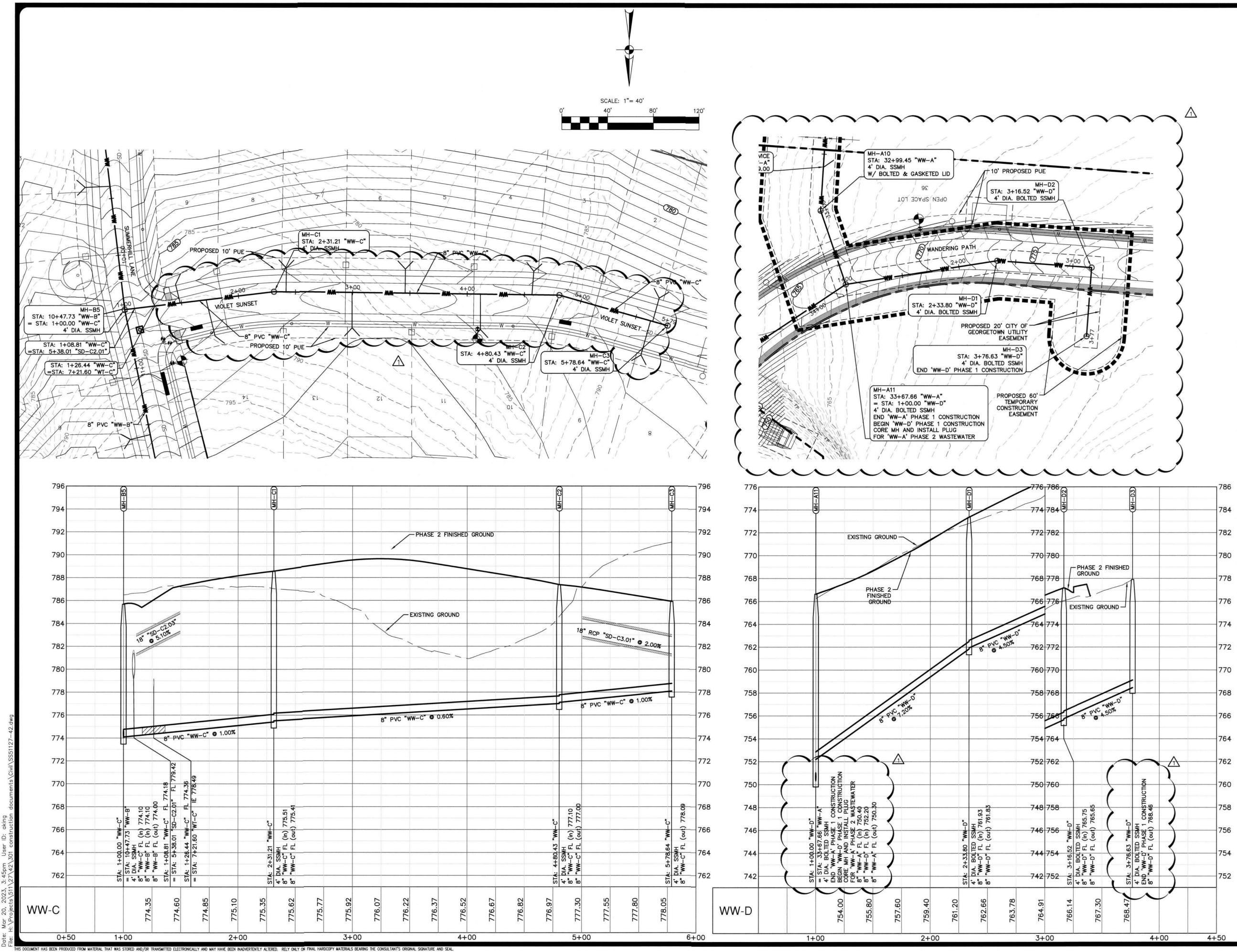

- 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60.
- 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE WASTEWATER PIPE PER TCEQ RULES.
- 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.

42 OF 61

NOTES:

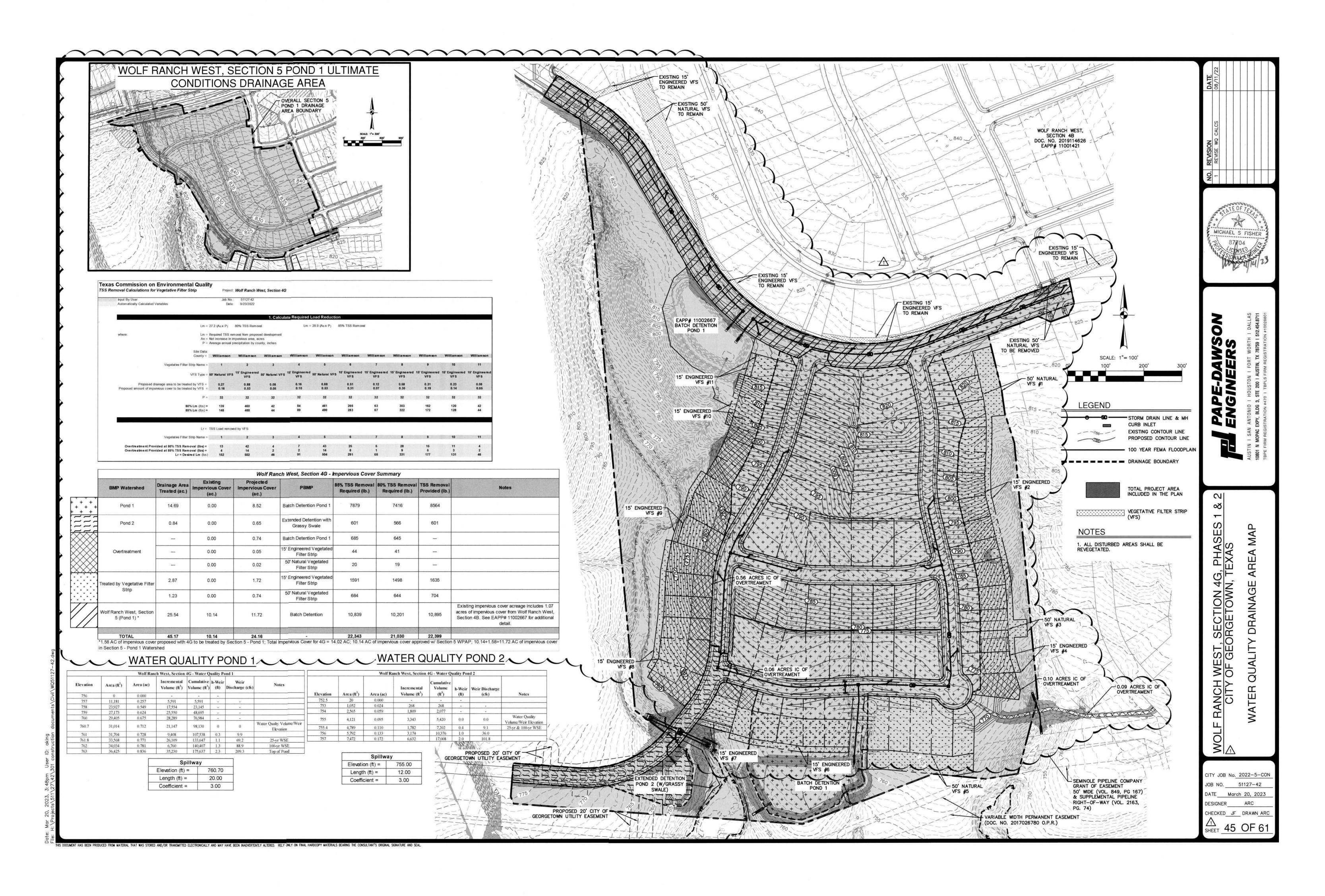

285

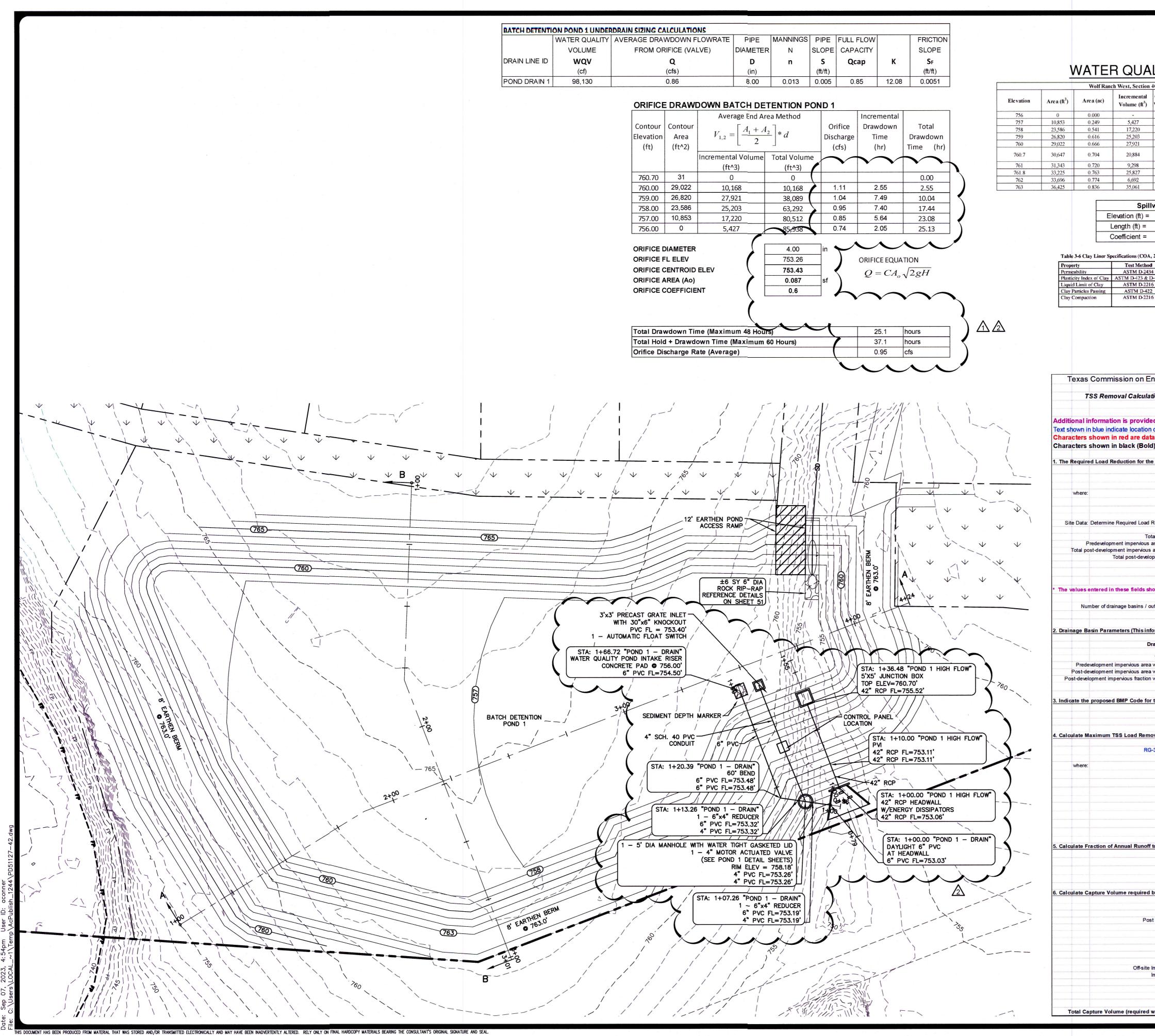

1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE ASSOCIATED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.


EXISTING CONTOUR LINE

PROPOSED CONTOUR LINE

- 2. WATER AND WASTEWATER CROSSING WHERE A NEW POTABLE WATERLINE CROSSES A NEW, NON-PRESSURE RATED WASTEWATER LINE, THE POTABLE WATER PIPE SEGMENT SHALL BE CENTERED OVER THE WASTEWATER LINE. THE WASTEWATER LINE SHALL BE LOCATED BELOW THE WATER LINE. AN ABSOLUTE MINIMUM VERTICAL SEPARATION DISTANCE OF TWO (2) FEET SHALL BE PROVIDED. IN ADDITION, WITHIN NINE (9) FEET HORIZONTALLY OF EITHER SIDE OF THE WATERLINE, THE WASTEWATER PIPE AND JOINT SHALL BE CONSTRUCTED WITH PIPE MATERIAL HAVING A MINIMUM PRESSURE RATING OF 150 PSI. ONE SEGMENT OF THE PRESSURE RATED WASTEWATER PIPE SHALL BE CENTERED ON THE WATER CROSSING. APPROPRIATE ADAPTERS SHALL BE USED TO CONNECTION THE PRESSURE RATED WASTEWATER PIPE WITH THE NON-PRESSURE RATED WASTEWATER PIPE.
- 3. ALL WASTEWATER MANHOLES ARE 4 FT. DIA. CITY OF GEORGETOWN STANDARD AND COATED TO GEORGETOWN SPECIFICATIONS UNLESS OTHERWISE NOTED.
- 4. SERVICES TO BE LOCATED PER DETAIL SHEET 60. 5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE
- WASTEWATER PIPE PER TCEQ RULES. 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.
- 8. NO WASTEWATER CLEANOUTS LOCATED IN SIDEWALK OR DRIVEWAY AREAS.

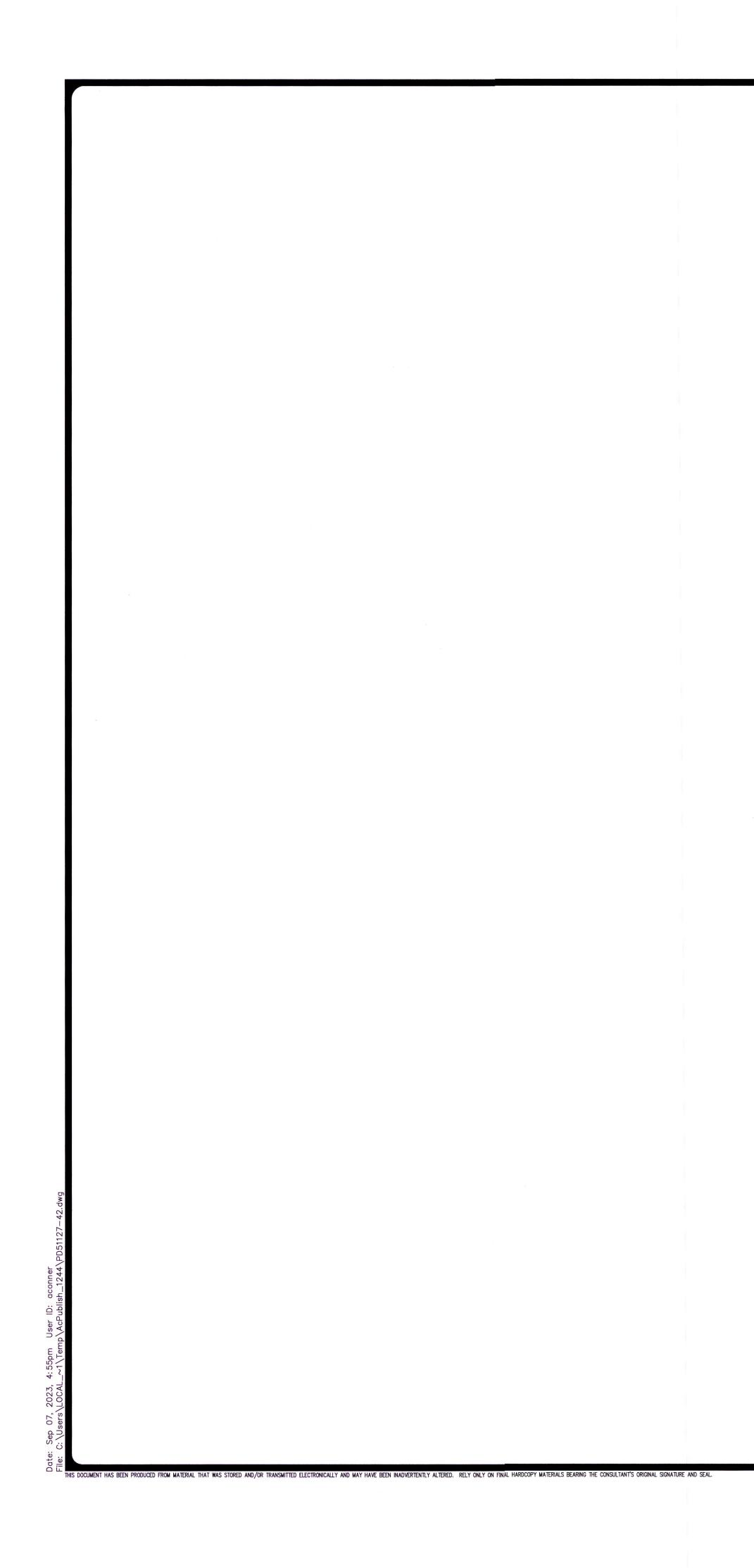

5. MANDREL TESTING WILL BE REQUIRED ON ALL FLEXIBLE WASTEWATER PIPE PER TCEQ RULES.


- 6. ALL PIPE MATERIAL TO BE SDR 26, WITH TRACER TAPE, SERVICES INCLUDED, UNLESS OTHERWISE NOTED.
- 772 7. ALL FILL AREAS SHALL BE COMPACTED TO 95% PRIOR TO UTILITY INSTALLATION.

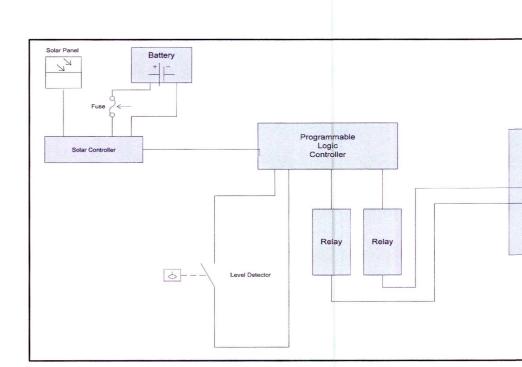
 - 1" = 40' HORIZONTAL1'' = 4' VERTICAL

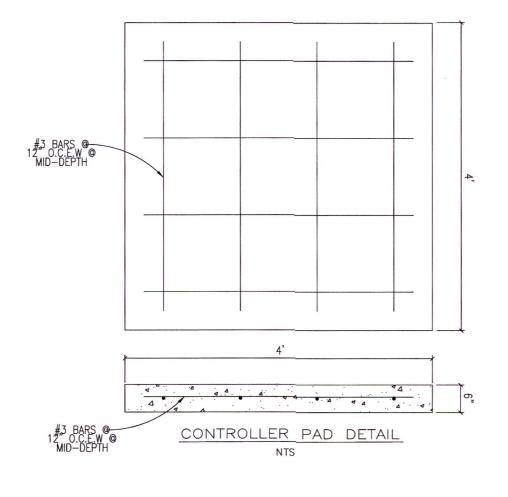
PROFILE LEGEND:

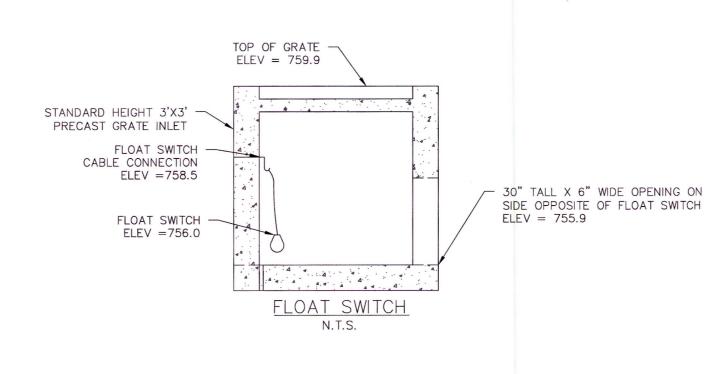

NATURAL	GROUND		
SUBGRADE			
FINISHED	GRADE		
PROPOSED	WASTEW	ATER	
	V	$///\Lambda$	
1-	JOINT OF	PRESSUR	RE PIPE

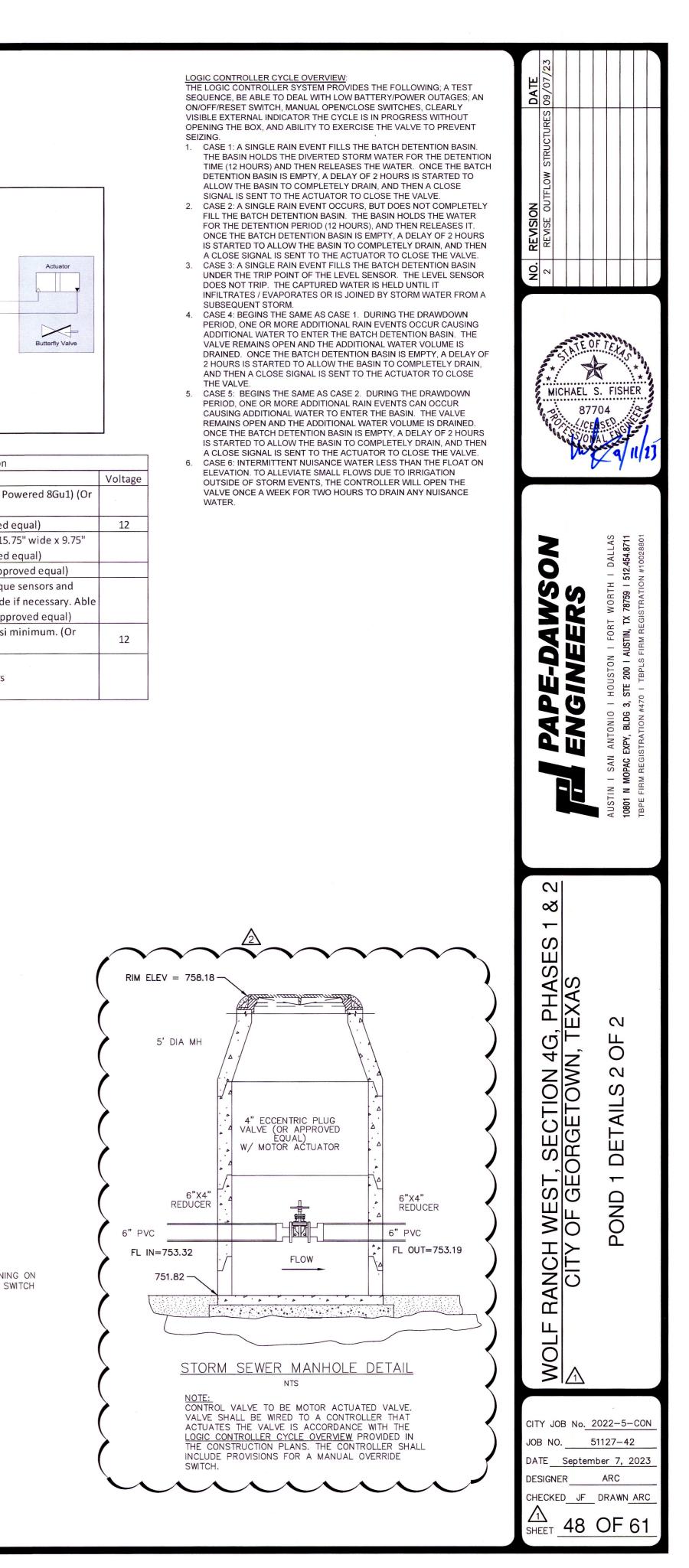


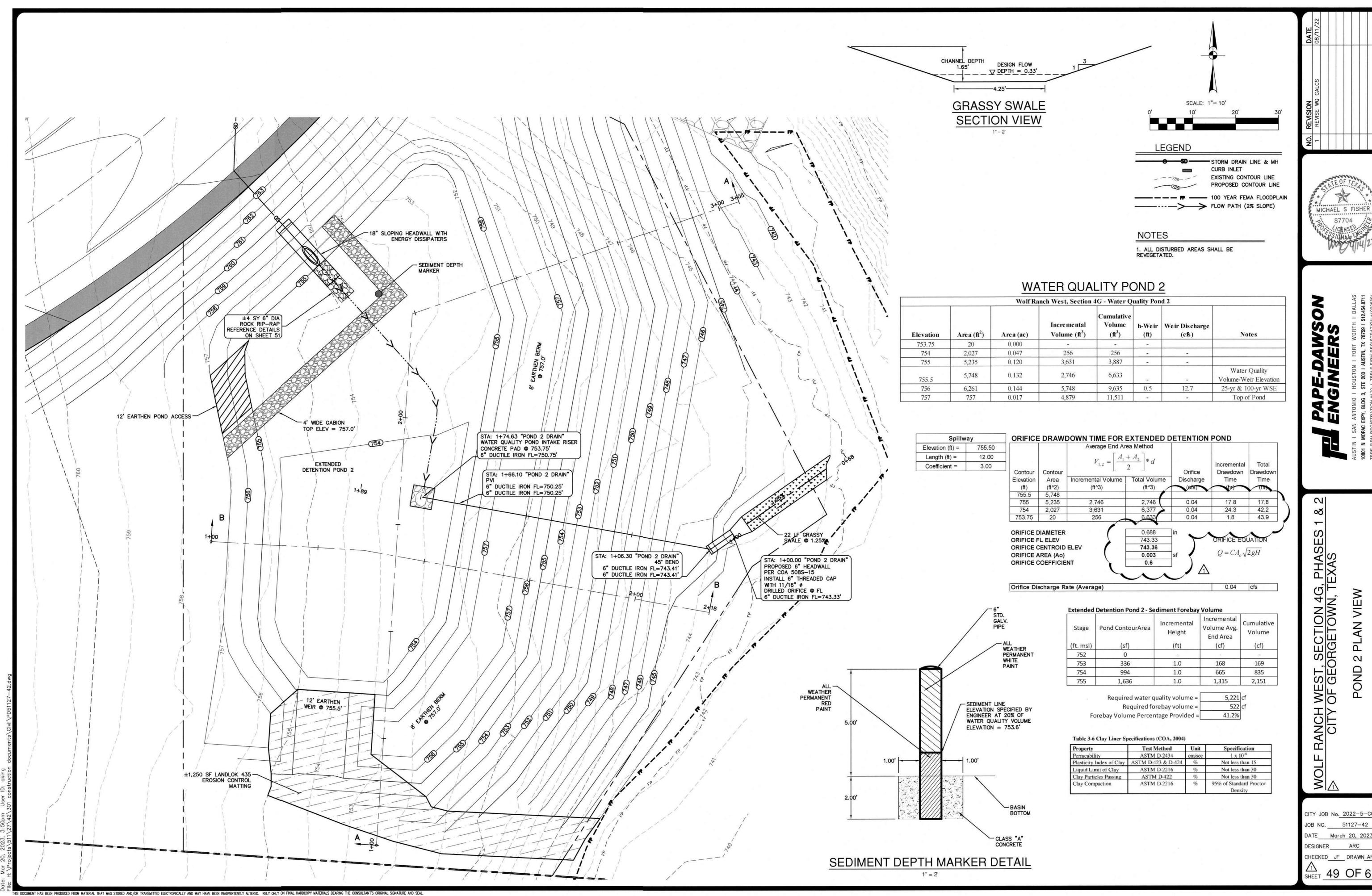
								E 1/22 7/23
								DATE 08/11, 09/07
4	LITY	PO	ND 1				- 6 -	JURES
n 4	G - Water (Quality Po	ond 1					STRUCTURES
	Cumulative Volume (ft ³)		Weir Discharge (cfs) Notes				N WQ CALCS OUTFLOW S
	5,427	-	-				E: 1"= 20' 40' 60'	
	47,849 75,770	-	-	Water Qualty Volume/	Wair	0' 20'		REVISE W
	96,654 105,953	0	0 9.9	Elevation	weir			
	131,780 138,472 173,533	1.1 1.3 2.3	69.2 88.9 209.3	25-yr WSE 100-yr WSE Top of Pond		LEGEND		
	way		7					12966
=	76	0.70	-			786	PROPOSED CONTOUR LINE	STATE OF TEXAS
		.00				— — — — // —	- 100 YEAR FEMA FLOODPLAIN	MICHAEL S. FISHER
A, od	2004) Unit	-	Specification				(VFS)	87704
134	424 %	N	1 x 10 ⁻⁶ ot less than 15 ot less than 30		N	OTES		A SSIONAL CLAR
22	%	N	of less than 30 of less than 30 of Standard Procto Density	or		ALL DISTURBED ARE. VEGETATED.	AS SHALL BE	var el al al a
			Density					
								ALLAS 4.8711 328801
_						1		H I D/ 1 512.45 ON #10(
	ivironme		uality			Drainat Nama	Wolf Danch Mast Casting 10. Part 1	FILLE PAPE-DAWSON ENGINEERS AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAG EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
аŭ	0/15 U4-Z	-2009				Date Prepared:	Wolf Ranch West, Section 4G, Pond 1 9/23/2022	E-DAM INEER INSTON I FORT W TTE 200 I AUSTIN, TX 71 I TBPLS FIRM REGIST
n	of instructi	ons in t		e in the upper righ Guidance Manual -		Place the cursor ove	er the cell.	CLD INE OUSTON I TE 200 I AUS
ata	entry fie	lds.				nove the equations us	sed in the spreadsheet.	HOUST RE 200
he	total proje	ct:		Calculations from RG-34	18		Pages 3-27 to 3-30	FAPE ENGI IN I SAN ANTONIO I HO N MOPAC EXPY, BLDG 3, STE FIRM REGISTRATION #470 I
	Page 3-	29 Equat	tion 3.3: $L_M = 2$	28.9(A _N x P)				ANTON XPY, BL
		L _{M TO}	and the second s	Required TSS removal re Net increase in impervio		n the proposed development the project	t = 85% of increased load	AUSTIN I SAN ANTONIO I 10801 N MOPAC EXPY, BLDG 3, TBPE FIRM REGISTRATION #47
4 6	emoral Bas	ed on the	P = /	Average annual precipita	ition, inches	B		3TIN - I
ota	al project are	ea include	County = ed in plan * =	Williamson 47.13	acres			AUST 10801 TBPE
IS a	area within t	he limits	of the plan * = of the plan* = er fraction * =		acres acres			
			P =		inches			
sho	ould be for		OTAL PROJECT =		lbs.	ADJUSTED FOR 85% TS	S REMOVAL	8 2
ou	tfalls areas	leaving th	ne plan area =	2				<u>–</u>
nfo	ormation sh	ould be	provided for	each basin):				ES
			II Area No. =	1				IASE AS
a	within draina	ige basin	/outfall area = /outfall area =	0.00	acres acres			H H H H H
		ige basin	/outfall area = /outfall area = -M THIS BASIN =	0.58	acres lbs.	ADJUSTED FOR 85% TS	S REMOVAL	ũ, _H ≥
or	this basin.			<u> </u>	•)		NN, VN, 1EV
			posed BMP = I al efficiency =	Batch Detention 91	percent			
no	ved (L _R) for	r this Dra	ainage Basin I	by the selected BMP T	ype.			
G-	348 Page 3-	-33 Equat		(BMP efficiency) x P x (VEST, SECTION 4G F GEORGETOWN, POND 1 PLAN VIEW
			A ₁ = 1	Total On-Site drainage a Impervious area propose Pervious area remaining	d in the BM	IP catchment area		
	analas an		A _P =			^o catchment area nent area by the proposed E	ВМР	
			A _C = A ₁ =		acres acres	X		\geq 0
			A _P = L _R =		acres Ibs			기다
ff t	o Treat the	drainag	ge basin / outf	all area				RANCH CITY
		Desired I	-mithis basin =	8564	lbs.			
ч ,	w the BMB	Type fr	F =	0.99 e bash (outfall rea.	<u> </u>	Calculations from RG-348	Pages 3-34 to 3-36	DLF
a t	y une BMP					Calculations from KG-348		
ost		nt Runoff	ainfall Depth = Coefficient = ality Volume =	0.41	inches cubic feet			
						Dages 2.26 to 2.07		CITY JOB No. 2022-5-CON
			ing to BMP =		l8 acres	Pages 3-36 to 3-37		JOB NO. <u>51127-42</u>
	mpervious co mpervious fra	over drain action of	off-site area =	0.00 0 0.00	acres			DATE September 7, 2023 DESIGNER ARC
	Off-site W	/ater Qua	ality Volume =	0	cubic feet			CHECKED JF DRAWN ARC
d w			or Sediment = e(s) x 1.20) =	15858 95151	cubic feet			SHEET 46 OF 61
-								


THIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.




CONTROLLER CIRCUIT DIAGRAM

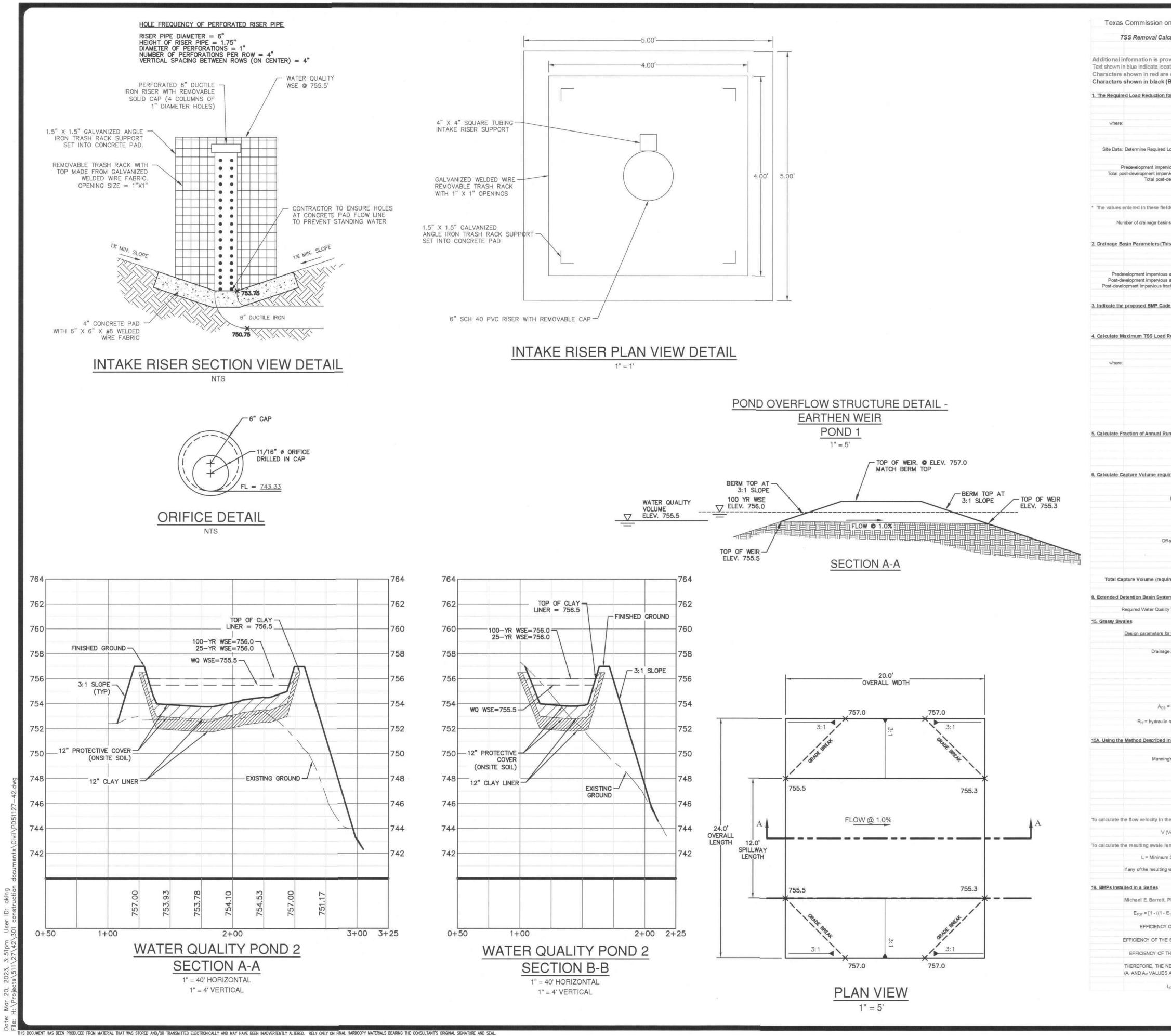

- CONTROLLER NOTES:
 1. REFER TO THE LOGIC CONTROLLER CYCLE OVERVIEW.
 2. CLEARLY VISIBLE ALARM SYSTEM TO BE PROVIDED TO INDICATE SYSTEM MALFUNCTION.
- 3. SIGN TO BE POSTED WITH PHONE NUMBERS OF THE OWNER AND APPROPRIATE TCEQ REGIONAL OFFICE.



В	atch Detention Pond Controller Information
Component	Description
Devue a Cuerte as	Solar Charged 12 VDC Battery (Model MK Powered
Power System	approved equal)
Logic Controller	IDEC FL1C-H12RCE (Or approved equal)
Danta Frazila auro	Southwest Photovoltaic Model BBG-1 (15.75" wide
Parts Enclosure	deep x 11.75" tall) (Or approved equal)
Nature of Event Sensing	Anchor Scientific Float Switch (Or approved ec
	4" Eccentric Plug Valve with over torque sensor
Valve Type	mechanical hand crank for physical override if neces
	to withstand 100 psi minimum. (Or approved e
Astustan	EPI-6 12 VDC. Able to withstand 100 psi minimur
Actuator	approved equal)
Power Consumption (actuator, controller, relay, PLC)	242.58 W, 46.5 W-hours

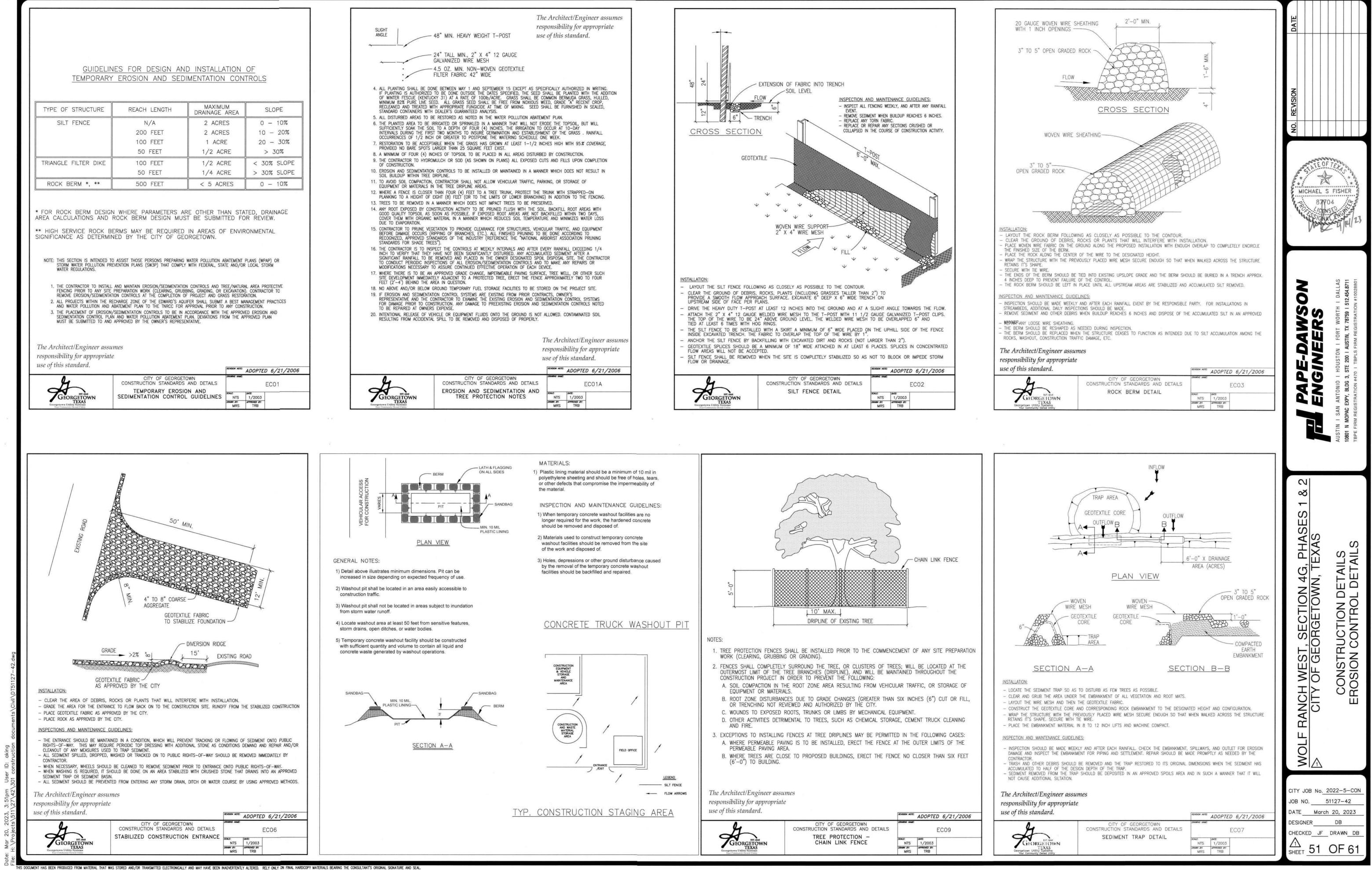
101

Extended	Detention Pond 2 - Se	diment Forebay	y Volume
Stage	Pond ContourArea	Incremental Height	Incremental Volume Avg End Area

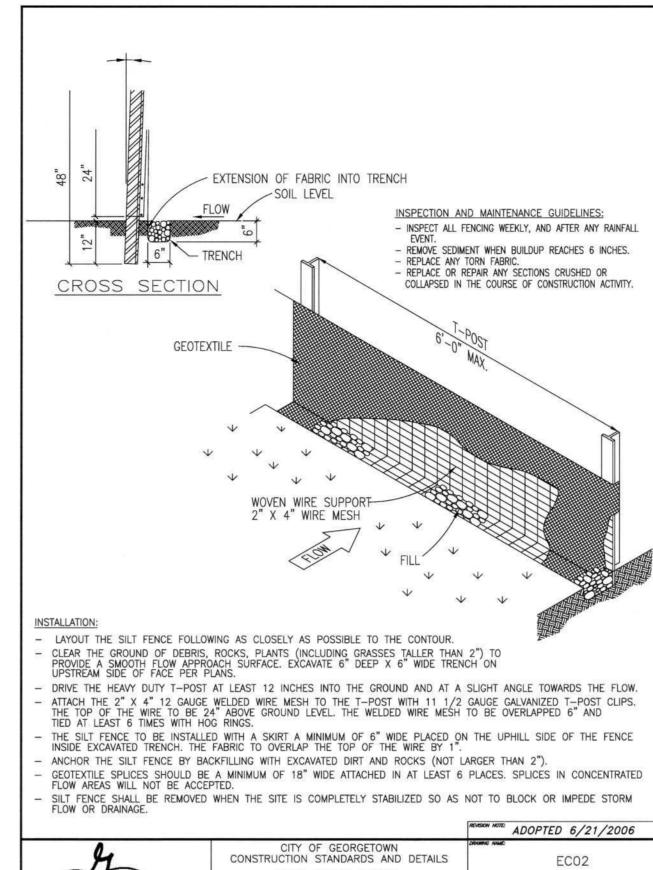

(ft. msl)	(sf)	(ft)	(cf)	(cf)
752	0	-	-	
753	336	1.0	168	169
754	994	1.0	665	835
755	1,636	1.0	1,315	2,151

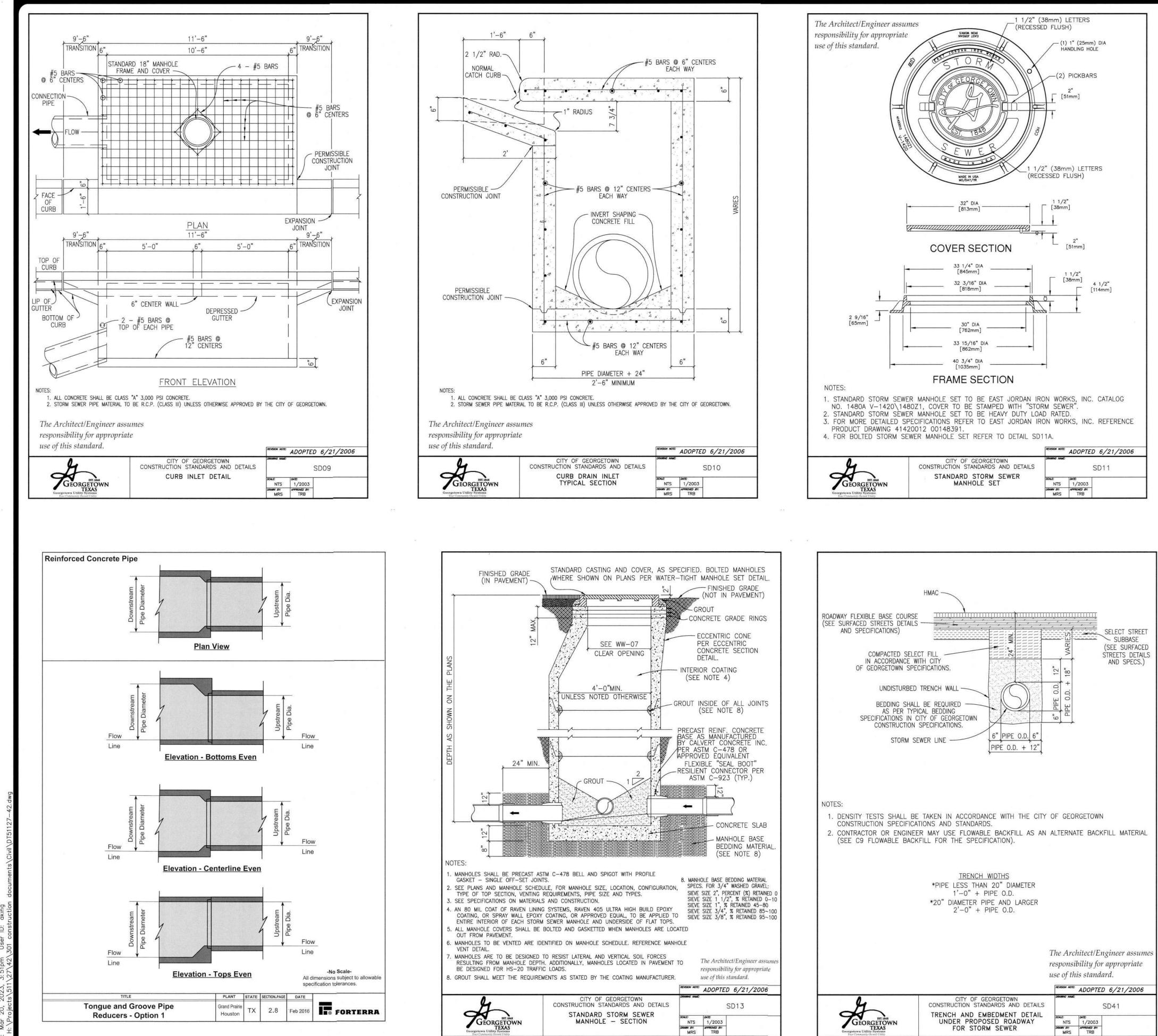
Clay	Liner	Specifications	(COA,	2004)

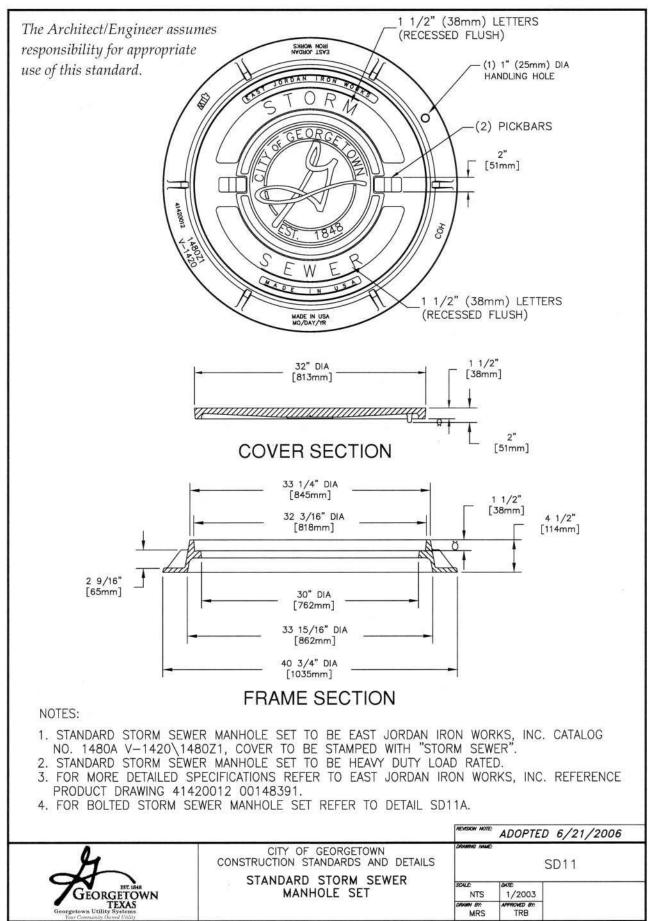
Property	Test Method	Unit	Specification
Permeability	ASTM D-2434	cm/sec	1 x 10 ⁻⁶
Plasticity Index of Clay	ASTM D-423 & D-424	%	Not less than 15
Liquid Limit of Clay	ASTM D-2216	%	Not less than 30
Clay Particles Passing	ASTM D-422	%	Not less than 30
Clay Compaction	ASTM D-2216	%	95% of Standard Proctor Density

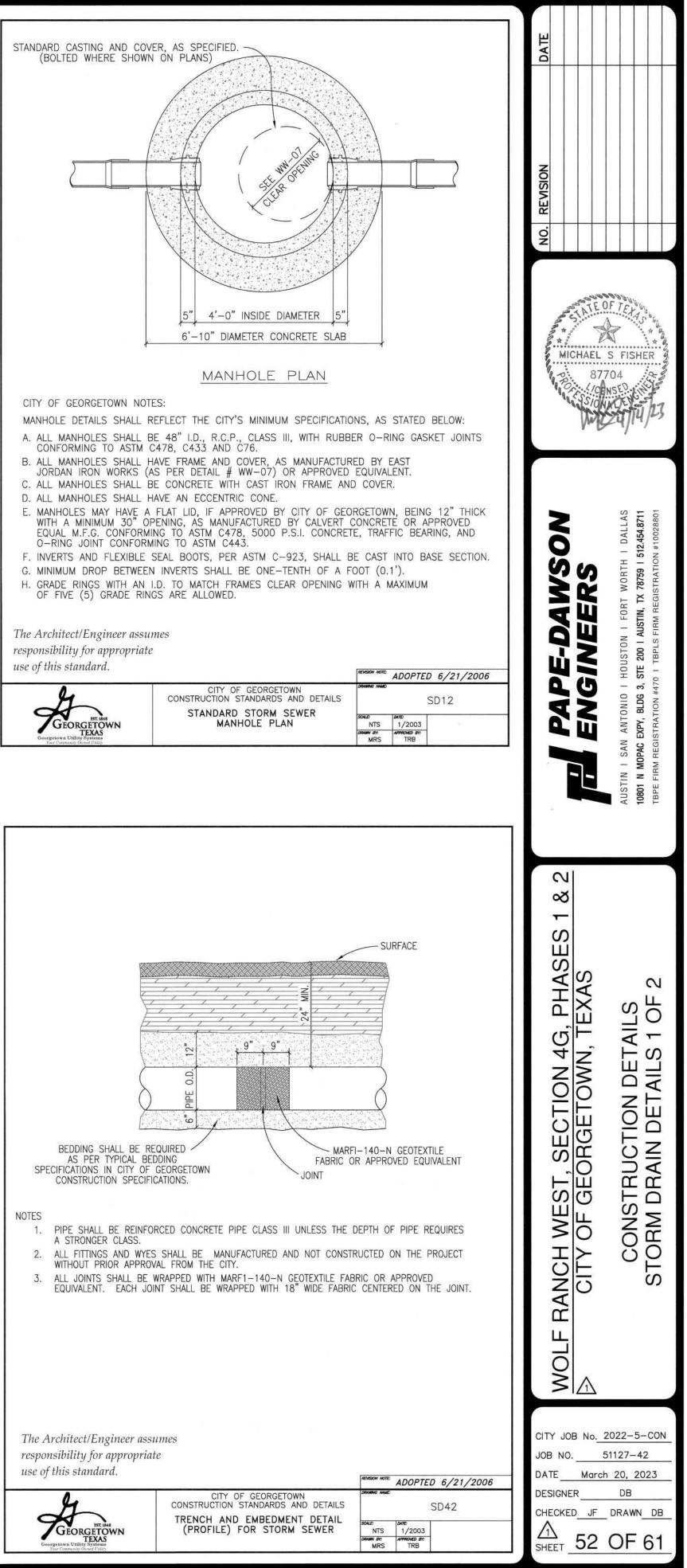

AS 200 STE PLAN VIEW 2 POND CITY JOB No. 2022-5-CON

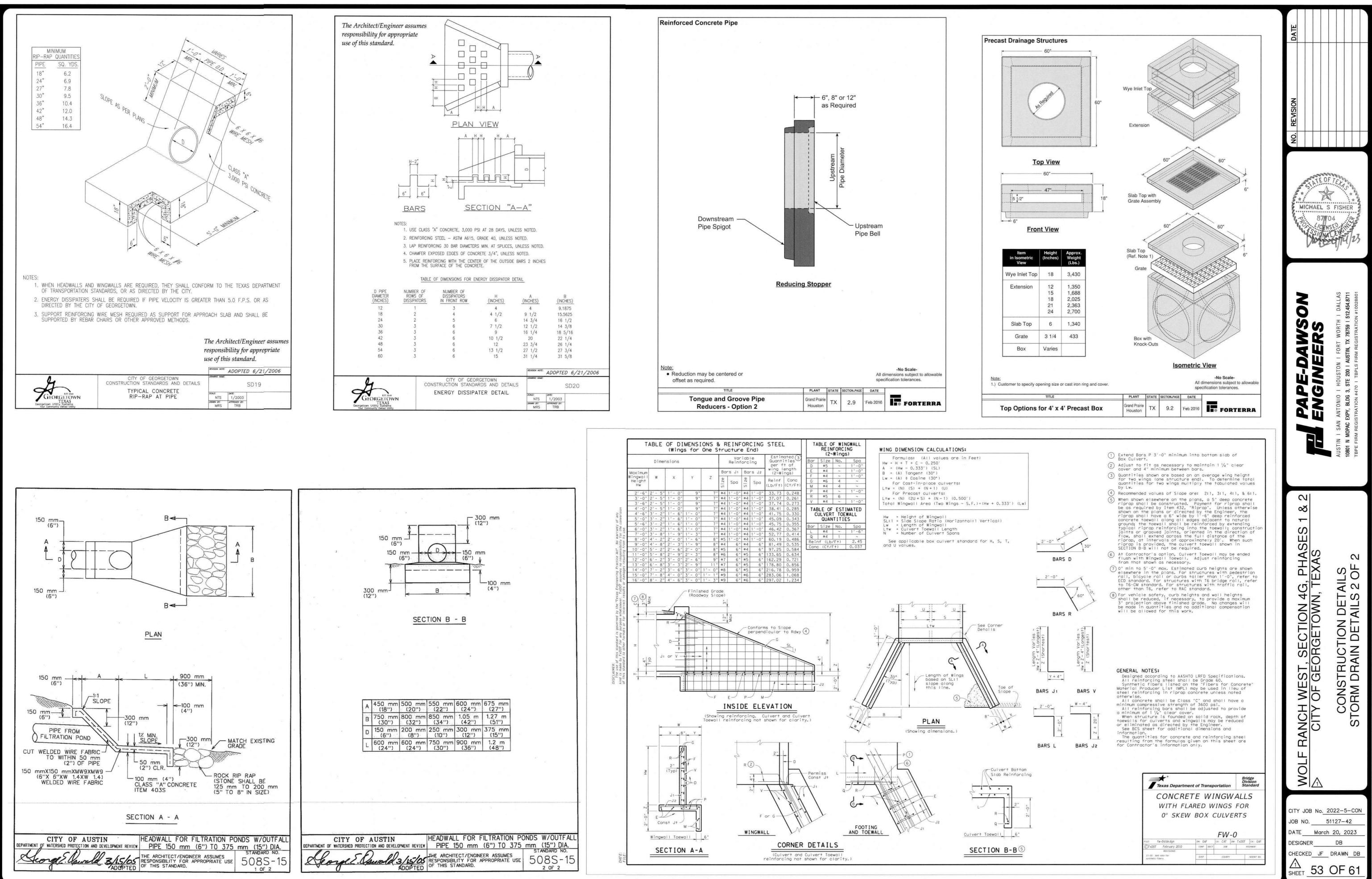
JOB NO. 51127-42 DATE March 20, 2023 ARC CHECKED JF DRAWN ARC A SHEET 49 OF 61

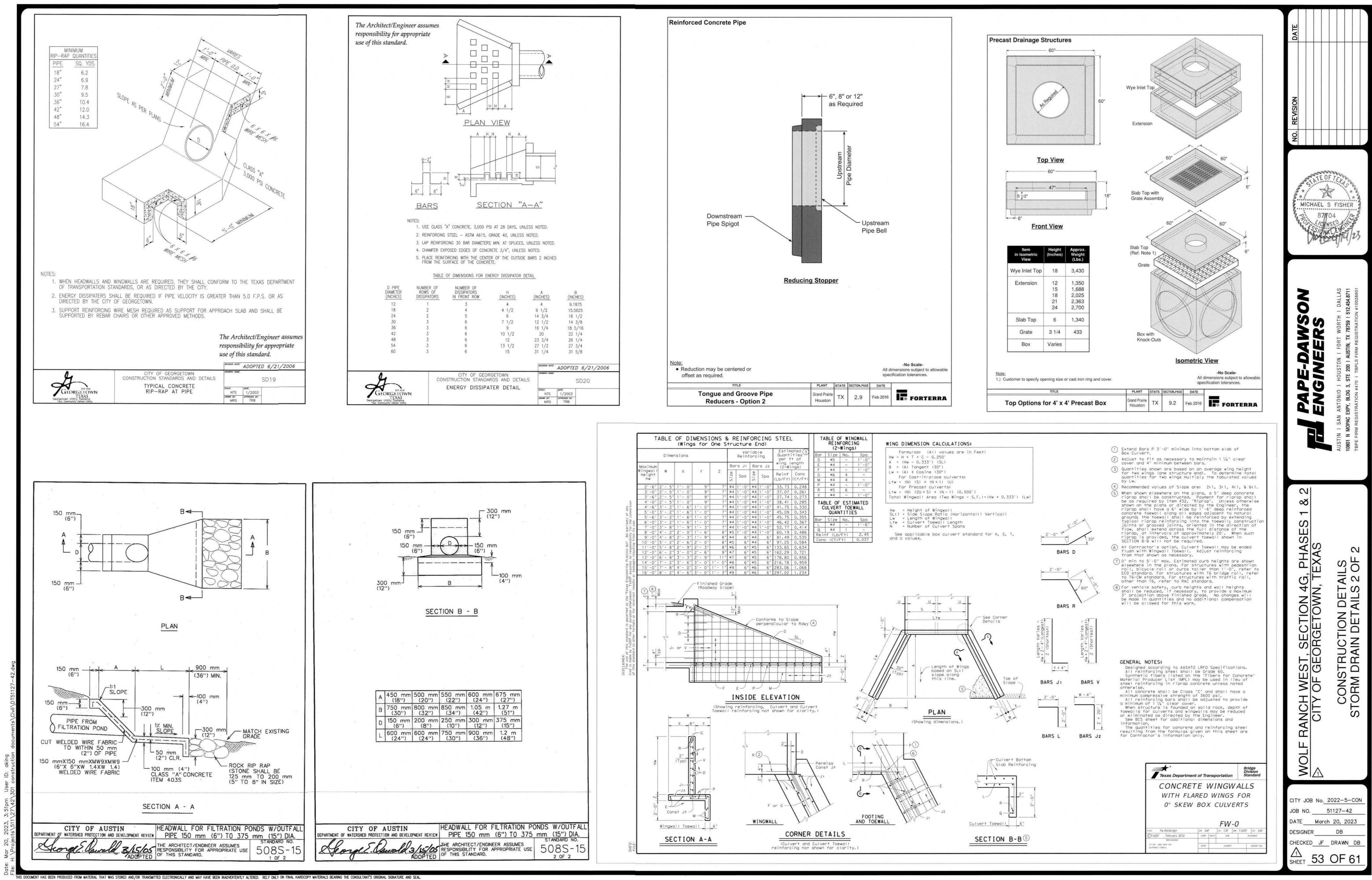



on Environmental Quality						DATE 08/11/22	
culations 04-20-2009			Date Prepared	Wolf Ranch West, Section 4G, Pond 2 9/23/2022		08/	
ovided for cells with a red triang ation of instructions in the Technica a data entry fields. (Bold) are calculated fields. Cha	al Guidance Manual -	- RG-348.					
for the total project:	Calculations from RG-3		nove the equat	Pages 3-27 to 3-30		CALCS	
Page 3-29 Equation 3.3; L _M =	28.9(A _N x P)						
				elopment = 85% of increased load		SION SE WQ	
	Net increase in impervic Average annual precipit					REVISE W	
Load Removal Based on the Entire Project County =	Williamson					NON-	
Total project area included in plan * = vious area within the limits of the plan * = rvious area within the limits of the plan* =	0.00	acres acres					
development impervious cover fraction * = P =		inches					
LM TOTAL PROJECT =		Ibs.	ADJUSTED FOR	85% TSS REMOVAL		18880000	
ids should be for the total project area						STATE OF TET	ASTR
ns / ouriails alleas leaving the plan alea -		-				* X	*
is information should be provided for)			MICHAEL S FI	SHER
Drainage Basin/Outfall Area No. = Total drainage basin/outfall area =		acres	<			POR LICINSED	
s area within drainage basin/outfall area = s area within drainage basin/outfall area = action within drainage basin/outfall area =	0.00 0.65	acres acres				STONIACY	前23
LM THIS BUSIN		Ibs.	DJUSTED FOR	85% TSS REMOVAL			
de for this basin,	Extended Detention		Grassy Swale				
Removal efficiency =	86	percent	Grassy Swale				
Removed (L _R) for this Drainage Basin RG-348 Page 3-33 Equation 3.7: L _R =			An x 0 54)			NC	8711
	Total On-Site drainage a		ľ.	a		VSOA SS	200 I AUSTIN, TX 78759 I 512.454.8711 TBPLS FIRM REGISTRATION #10028801
	Impervious area propose Pervious area remaining					So E	59 1 5
La ²	TS8 Load I maved from		ment area by the pro	oposed BMP			TX 787.
Ac = A =	0.65	acres acres				DAW EER	STIN, T
Ap = L _R =		acres Ibs	1				LS FIR
unoff to Treat the drainage bisin / out	tall area	-				E-DAWS INEERS	
Desired L _{M THIS BASIN} =		lbs.				0.00 -	G 3, S #470
F =			Calculations from	RG-348	Pages 3-34 to 3-36	PAL	(, BLD ATION
Rainfall Depth =	2.60	inches					10801 N MOPAC EXPY, BLDG 3, STE TBPE FIRM REGISTRATION #470 1
Post Development Runoff Coefficient = On-site Water Quality Volume =	0.36	cubic feet				-	MOPA RM RE
	Calculations from RG-3	48	Pages 3-36 to 3-3	7		AUSTIN	10801 N TBPE FIF
Off-site area draining to BMP = f-site Impervious cover draining to BMP =		acres				A	÷ -
Impervious fraction of off-site area = Off-site Runoff Coefficient = Off-site Water Quality Volume =	0.00	cubic feet					
Storage for Sediment =							
ired water quality volume(s) x 1.20) =	5237	cubic feet				8	
em	Designed as Required in			Pages 3-46 to 3-51			
y Volume for extended detention basin =	5237 Designed as Required in	n RG-348		Pages 3-51 to 3-54		S	
or the swale:						PHASE	
e Area to be Treated by the Swale = A =		acres				AS	
Impervious Cover in Drainage Area = Rainfall intensity = i = Swale Slope =	1.1 0.01	in/hr ft/ft					
Side Slope (z) = Design Water Depth = y = Weighted Runoff Coefficient = C =	0.33	ft				ہ N, TE	
						AN -	
= cross-sectional area of flow in Swale = P _W = Wetted Perimeter = c radius of flow cross-section = A _{CS} /P _W =	1.00 4.11 0.24	feet					
n = Manning's roughness coefficient =						그 그 그	í l
In the RG-348						EST, SECTION 4 GEORGETOWN	J L
g's Equation: $Q = \frac{1.49}{n} A_{CS} R_{H}^{2/3} S^{0.5}$						S U	
0.494 - 0	2.00	fact	For provident o	result is nerative. Value and to 0.00	guidance	ST, SE(5
$b = \frac{0.134 \times Q}{y^{1.67} S^{0.5}} - zy =$	2.00	nutal.	, or provided Q, I	result is negative. Value set to 2.00 as per	ganaanoe		
Q = CIA =	0.04	cfs	Average orifice f	low rate from Pond 2		N N	
(Velocity of Flow in the swale) = Q/A _{CS} =	0.04	ft/sec				지.	
ength:						CIT	
n Swale Length = V (ft/sec) * 300 (sec) =	12.00					RA	
values do not meet the design requireme			arameters must be			WOLF RANCH WEST	
Ph.D., P.E. recommended that the co	Designed as Required in		0.5 to 0.65 on Mar	Pages 3-32		0	
E ₁) X (1 - 0.65E ₂) x (1 - 0.25E ₃))] X 100 =		percent		OF THE BMPs IN THE SERIES		\leq	
OF FIRST BMP IN THE SERIES = E ₁ =		percent					
E SECOND BMP IN THE SERIES = E_2 =	70.00	percent				CITY JOB No. 2022-	5-CON
THE THIRD BMP IN THE SERIES = $E_3 =$	0.00	percent				JOB NO. 51127-	
NET LOAD REMOVAL WOULD BE: S ARE FROM SECTION 3 ABOVE)						DATE <u>March 20,</u> DESIGNER ARC	
$L_{R} = E_{TOT} X P X (A_{I} X 34.6 X A_{P} X 0.54) =$	630.88	lbs				CHECKED JF DRAV	
						SHEET 50 OF	
						SHEET JU UF	

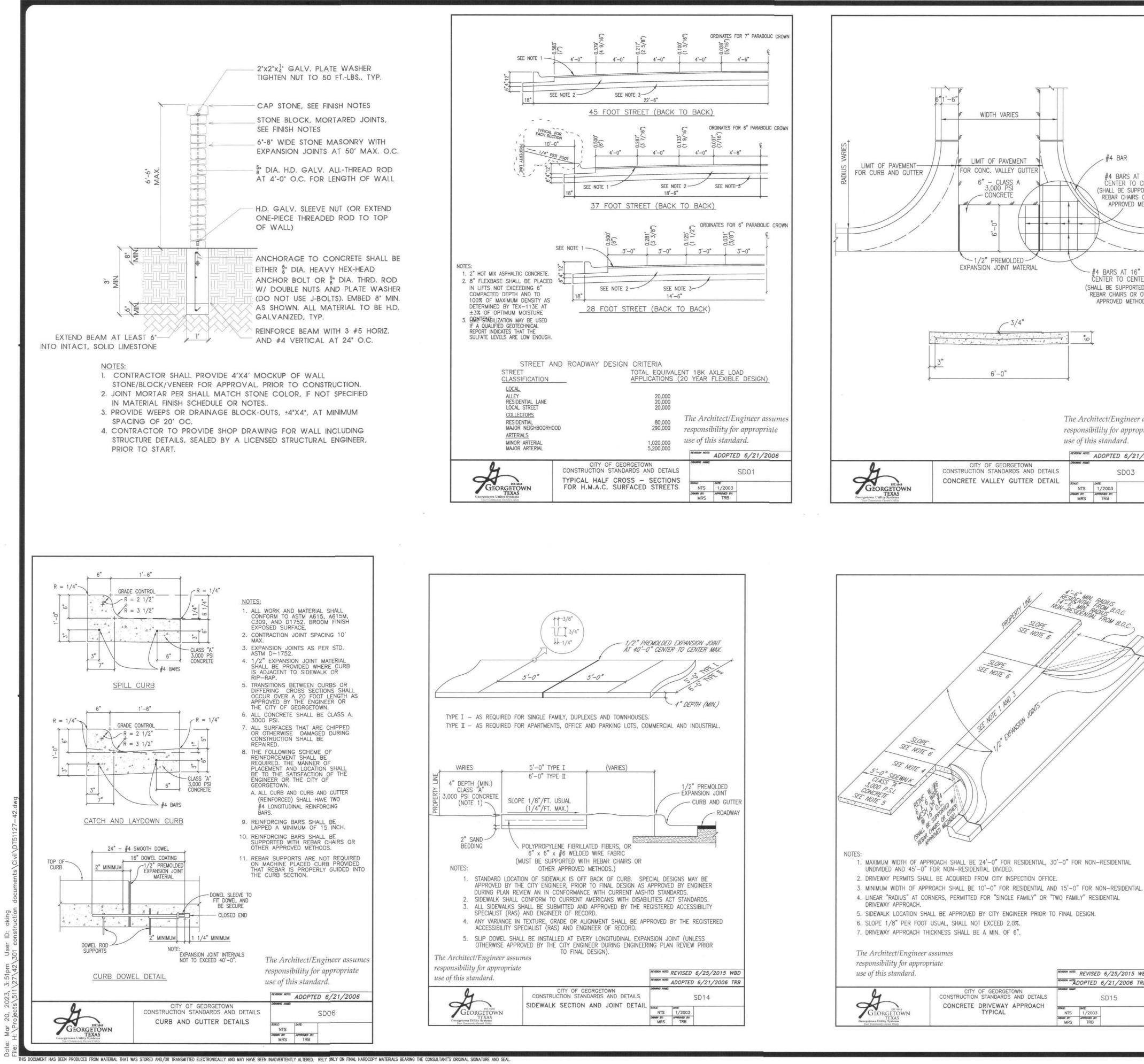

STRUCTION STANDARDS AND DETAILS		E	EC01A	
TREE PROTECTION NOTES	NTS	анте 1/2003		
	DRAMIN BY: MRS	APPROVED BY: TRB		

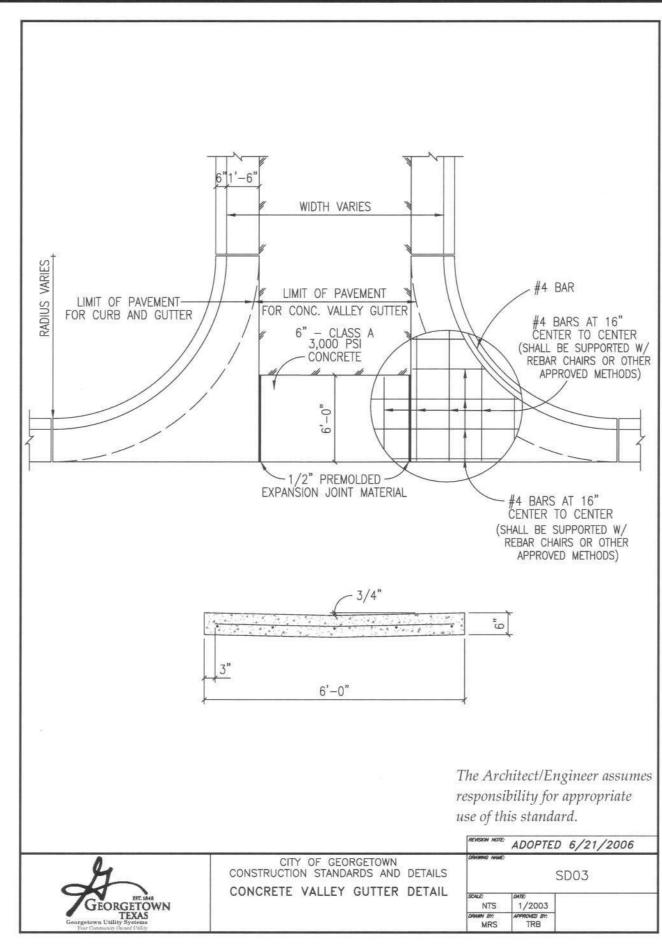

100.1





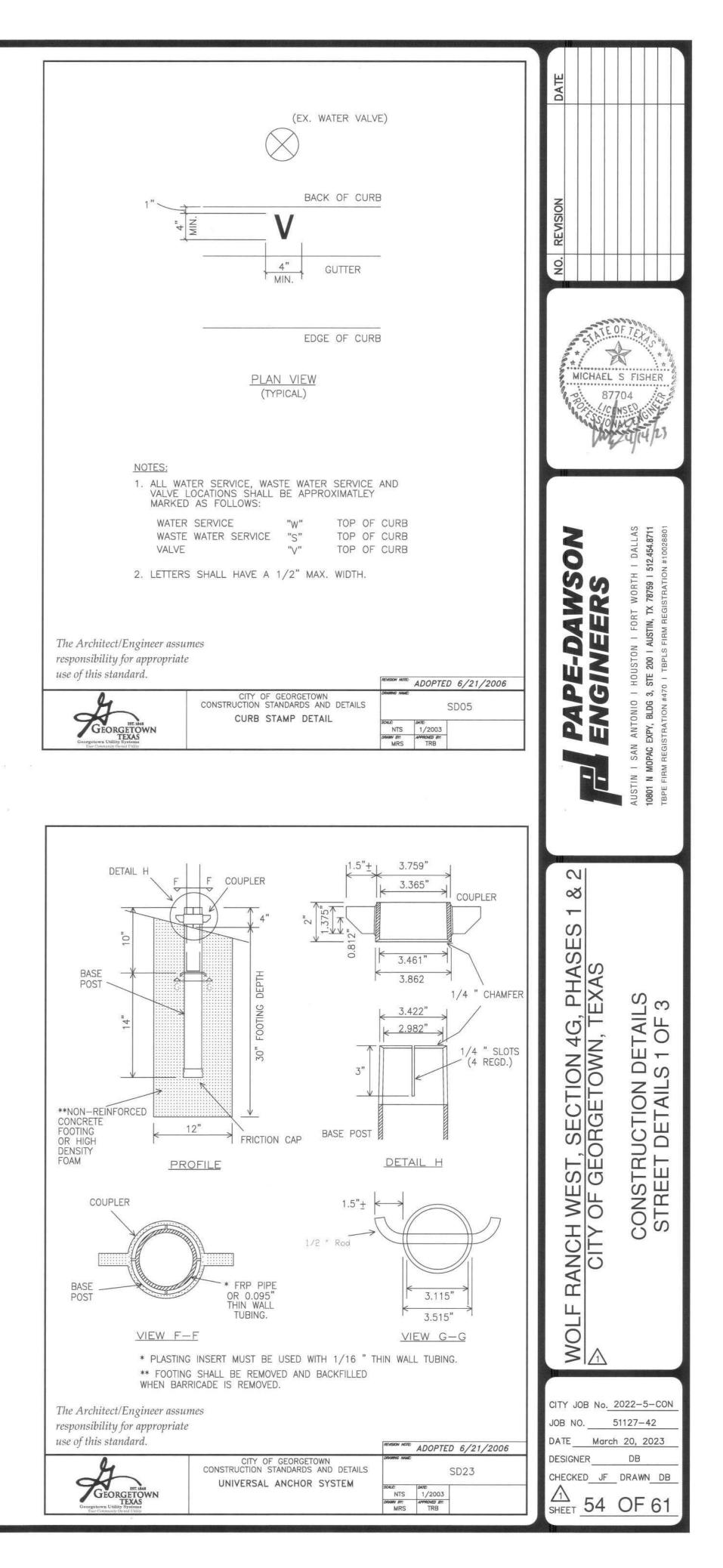
THIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.

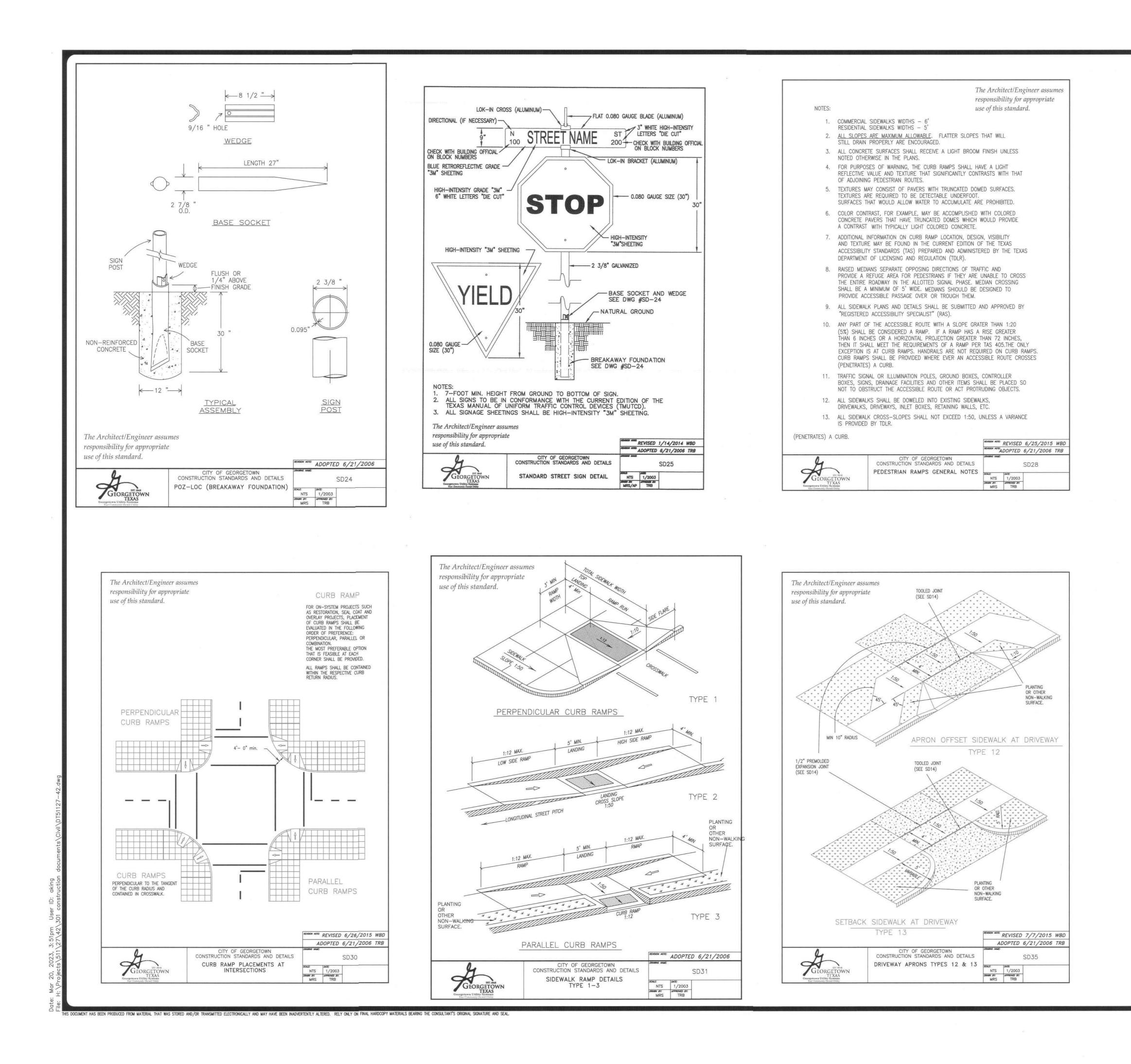


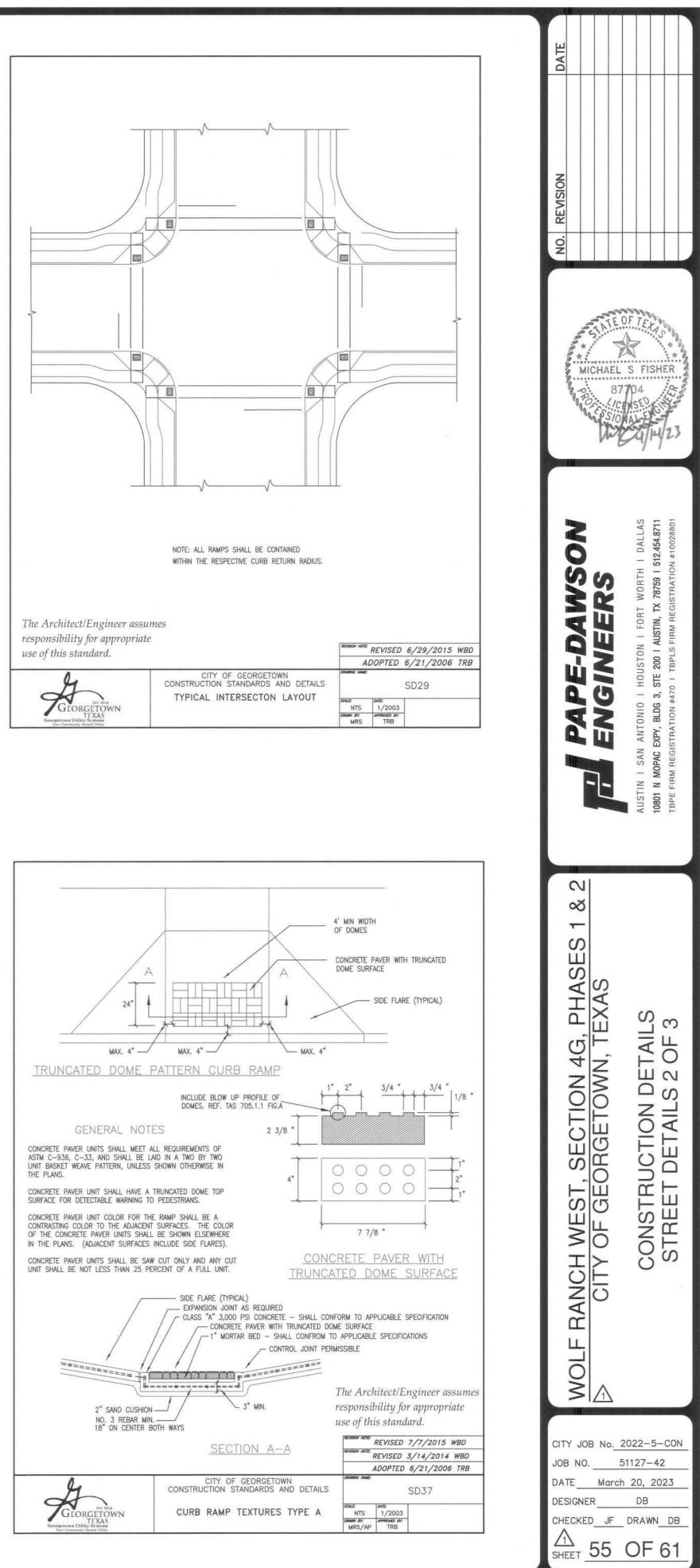


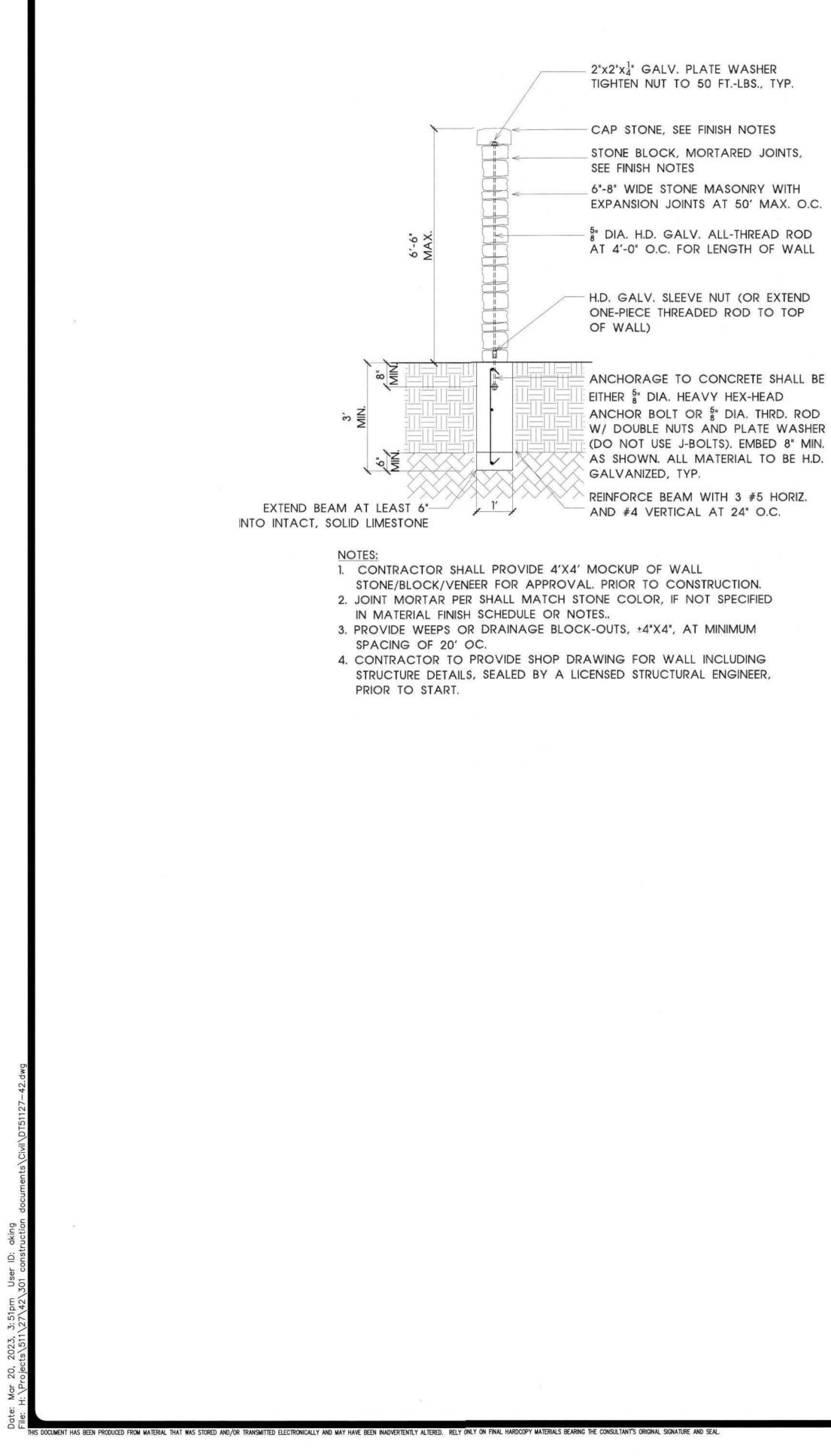
100.1

FROM B.O.C.

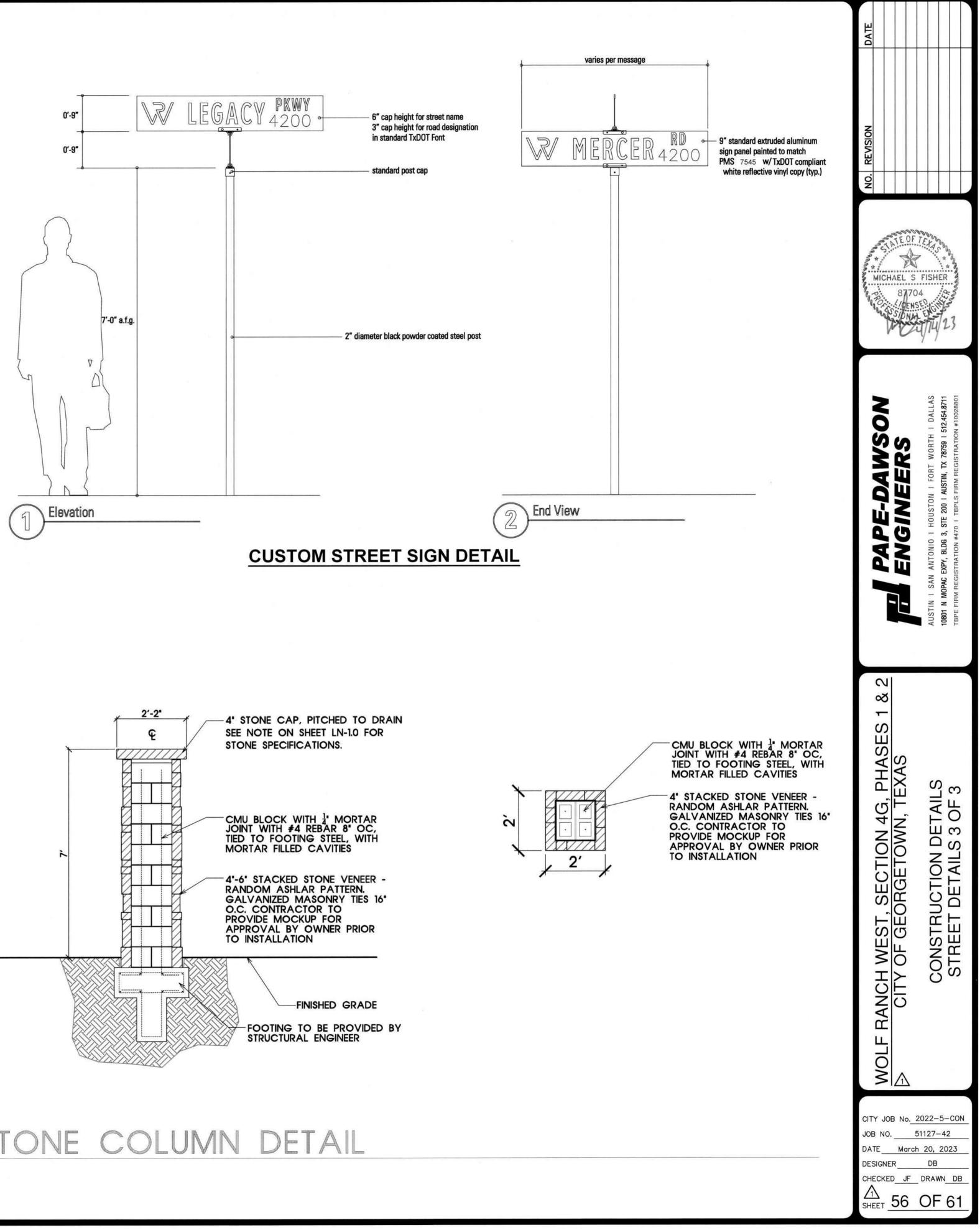

REVISED 6/25/2015 WBL

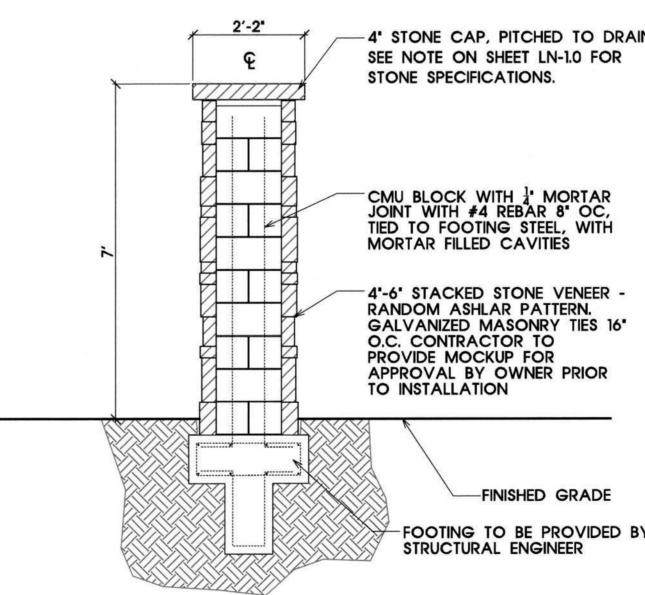

ADOPTED 6/21/2006 TRE

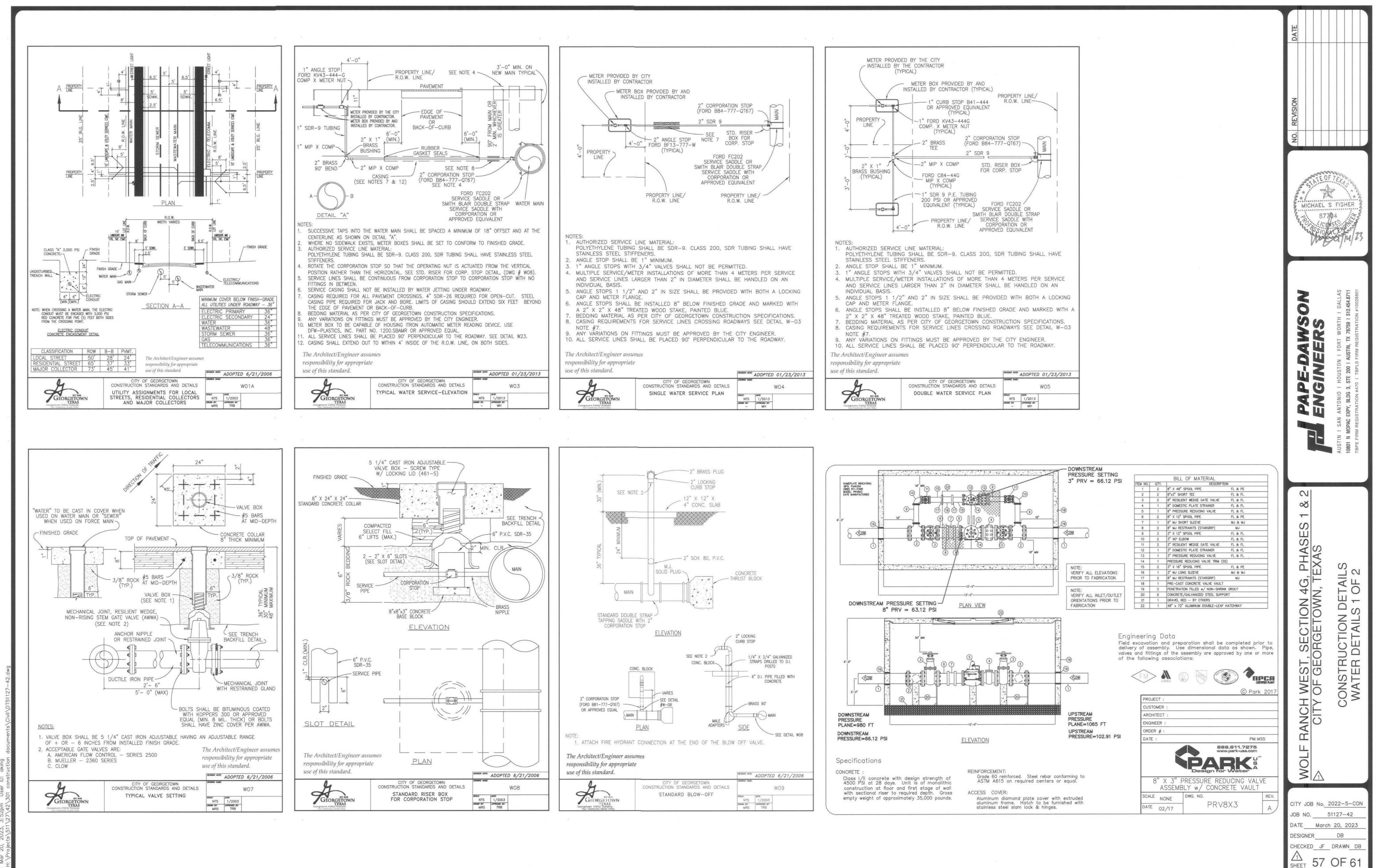

1/2003


MRS TRR

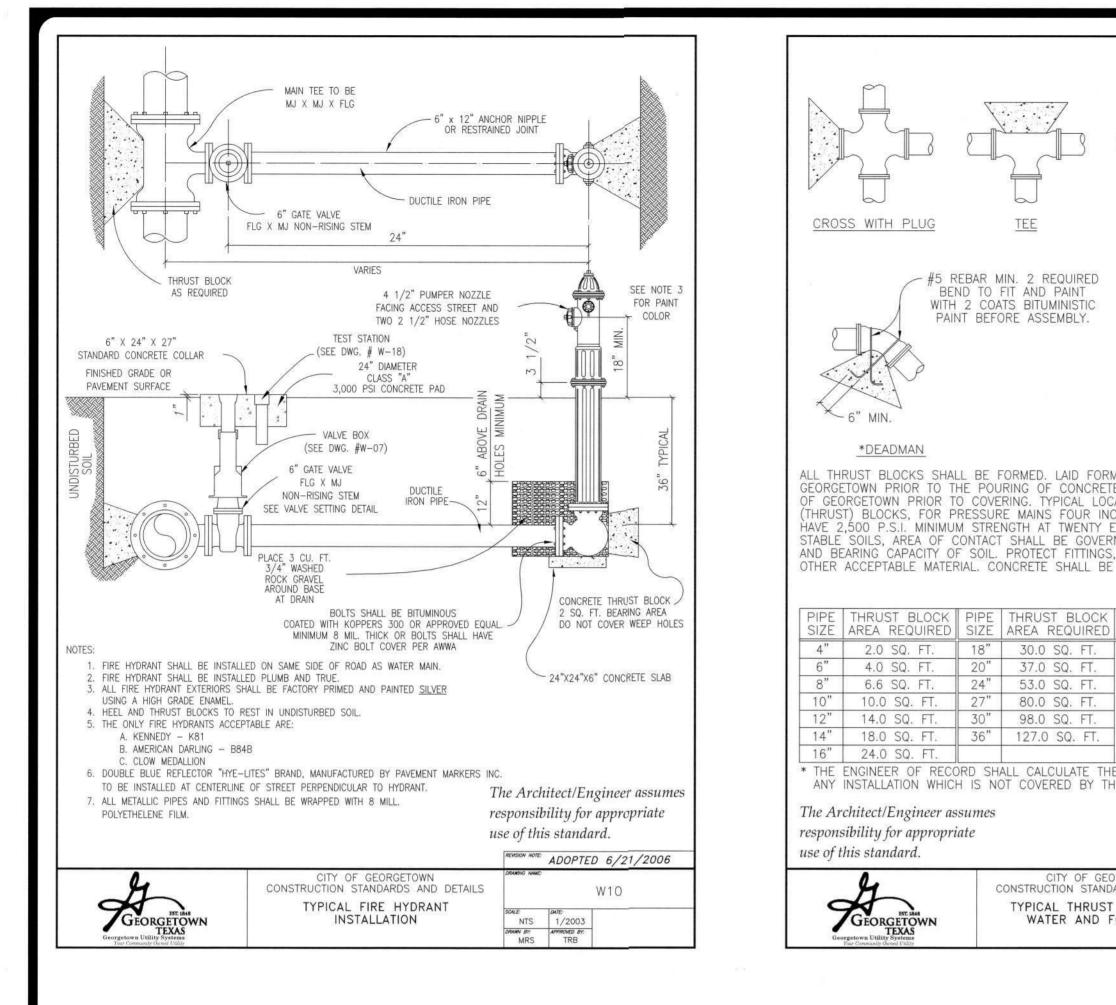
SD15

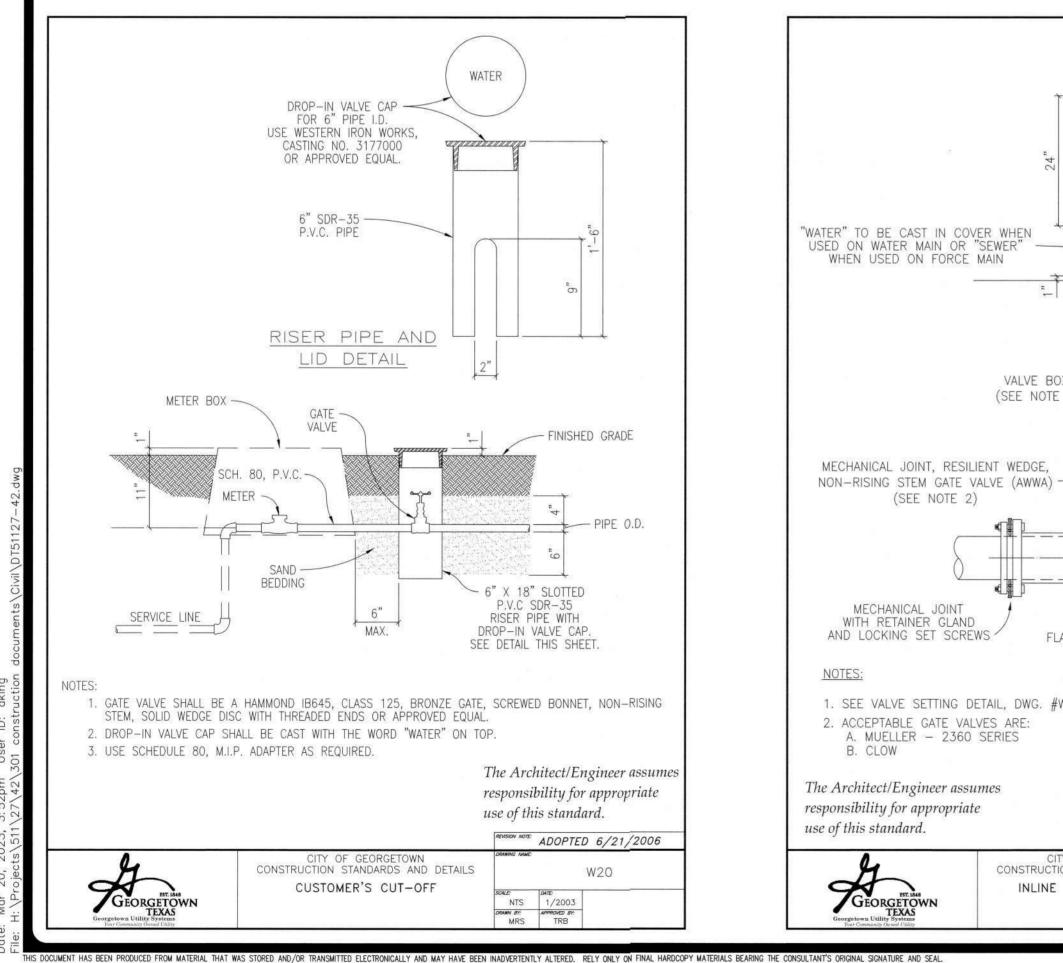




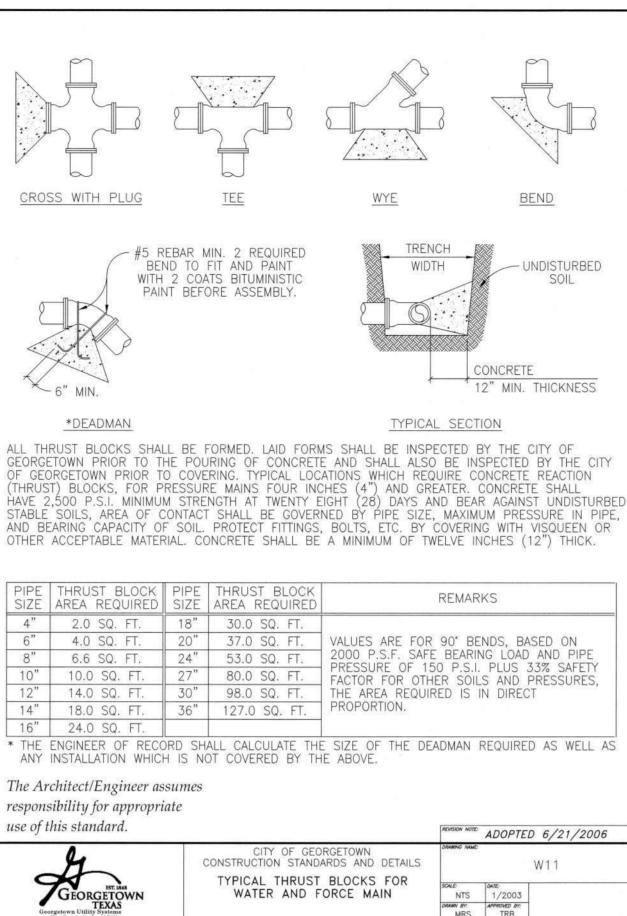


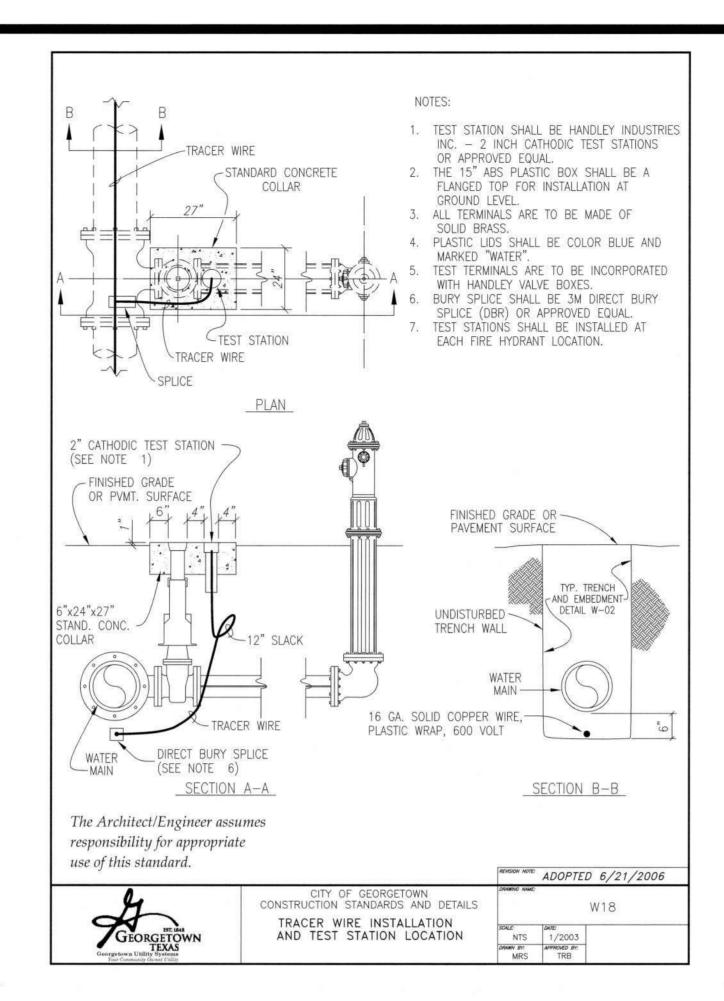
1.000

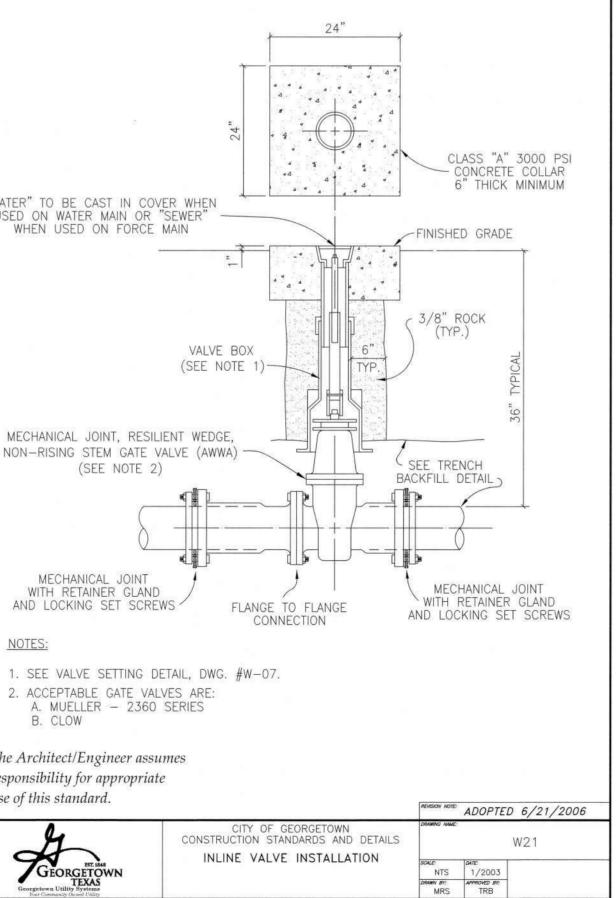


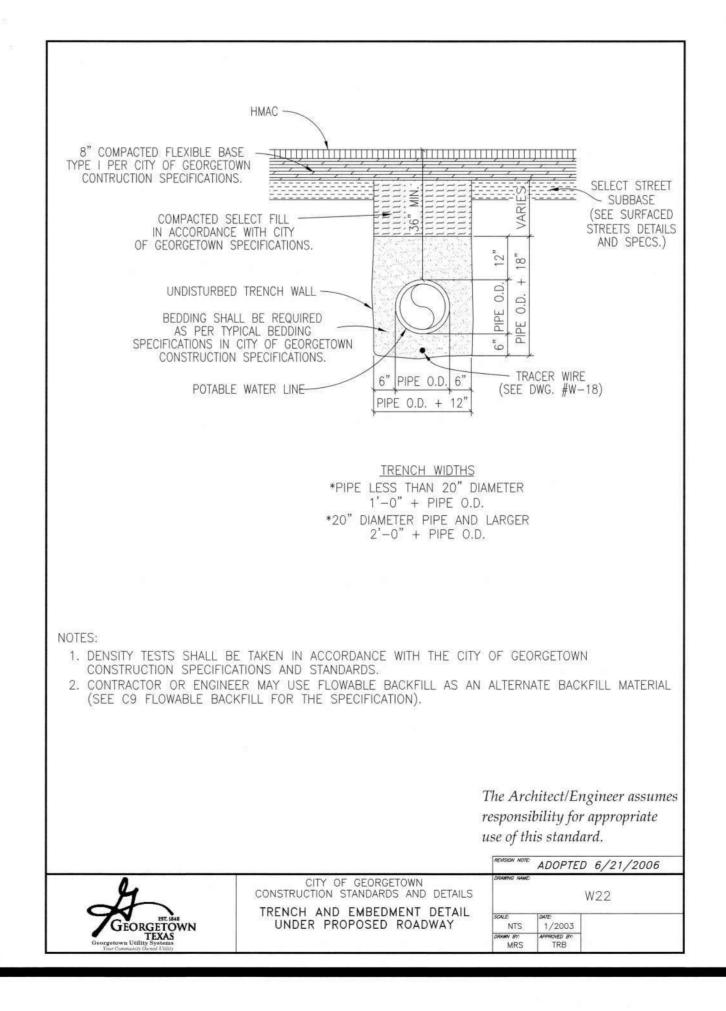

STONE COLUMN DETAIL

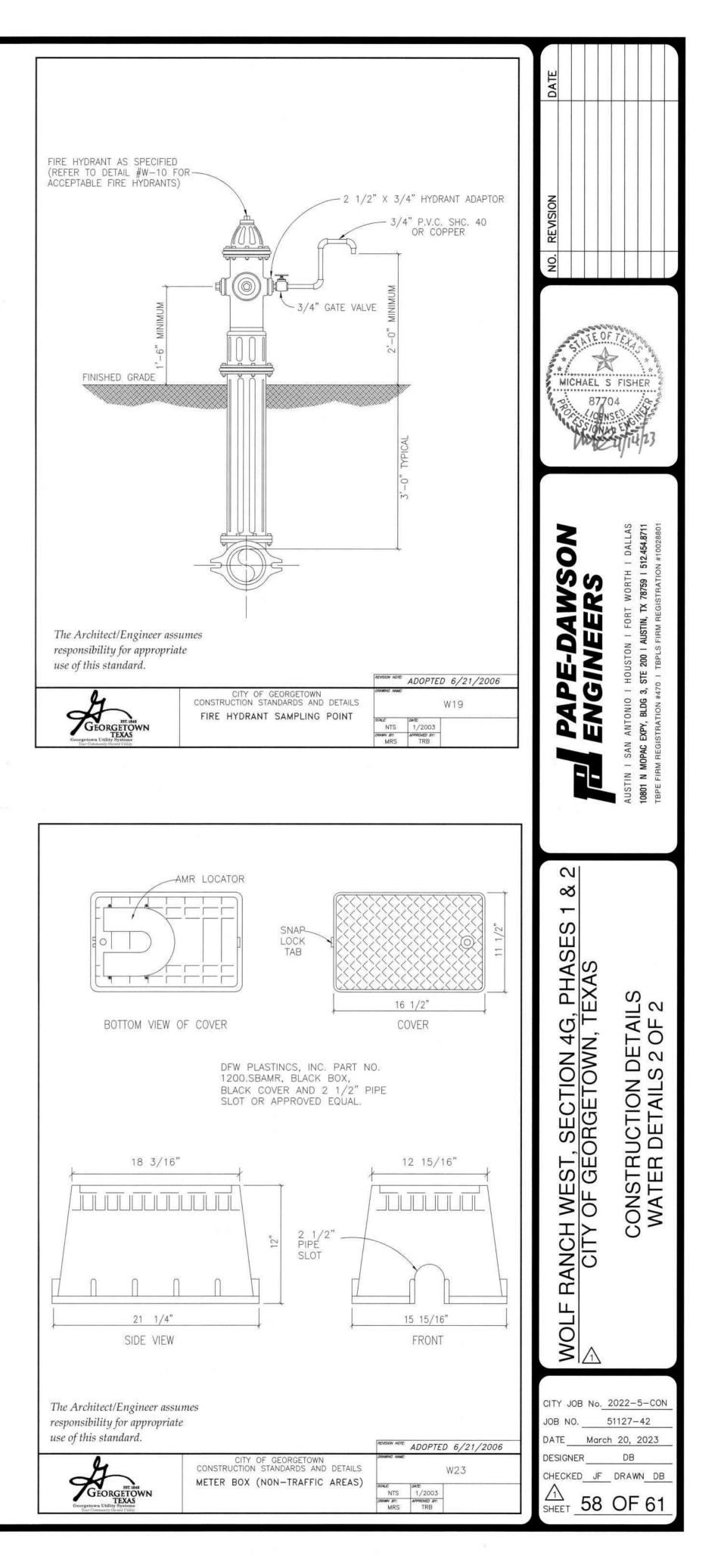
HIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL

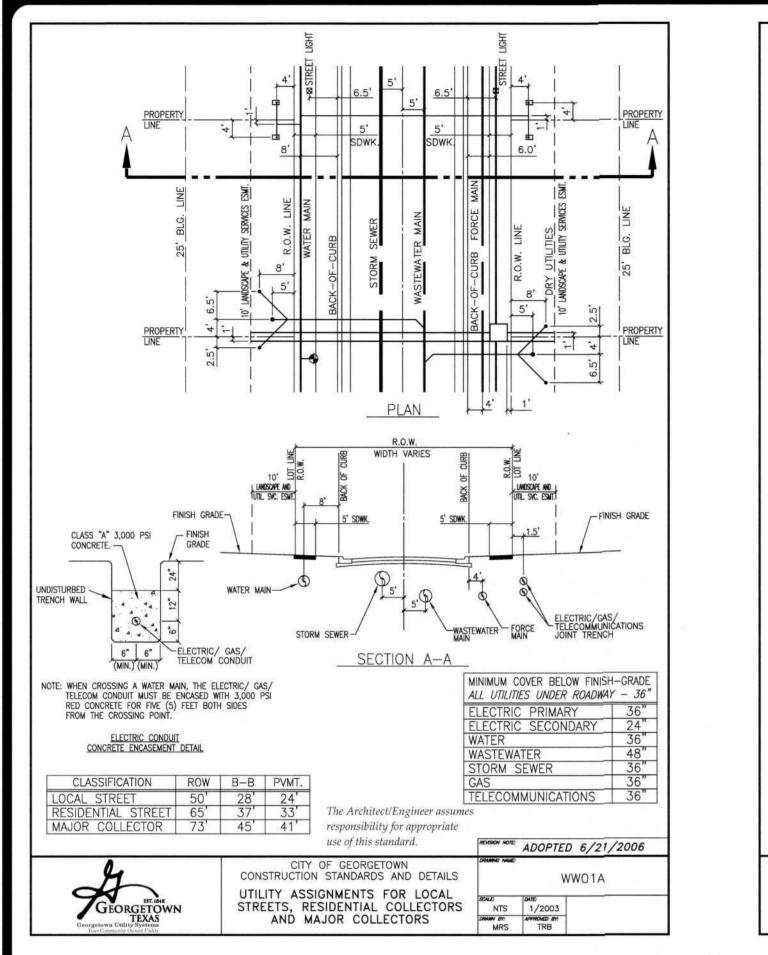


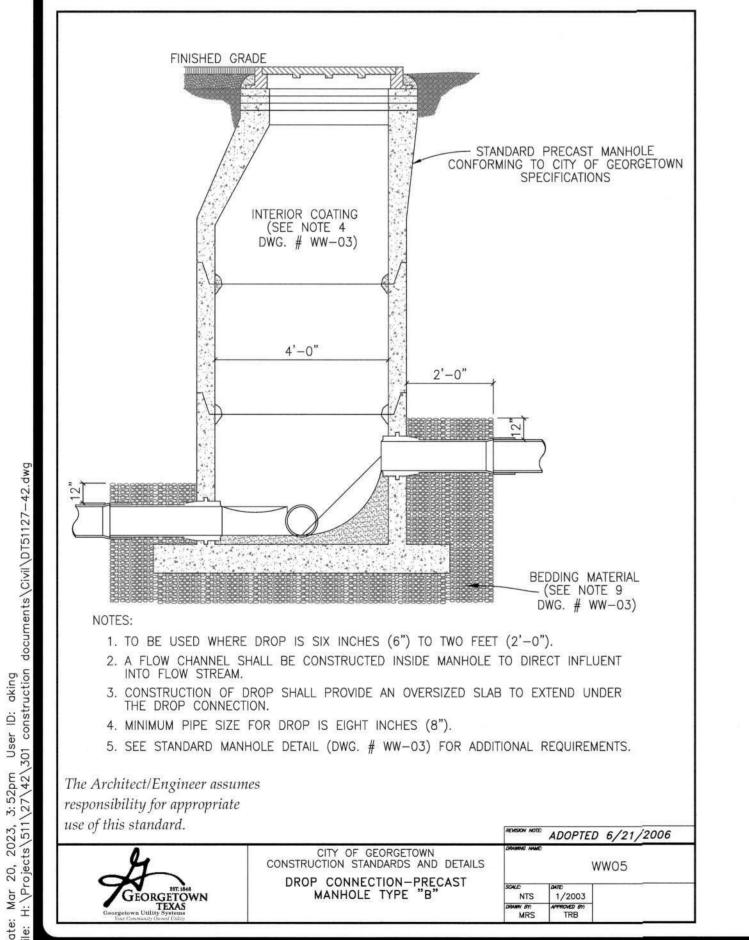


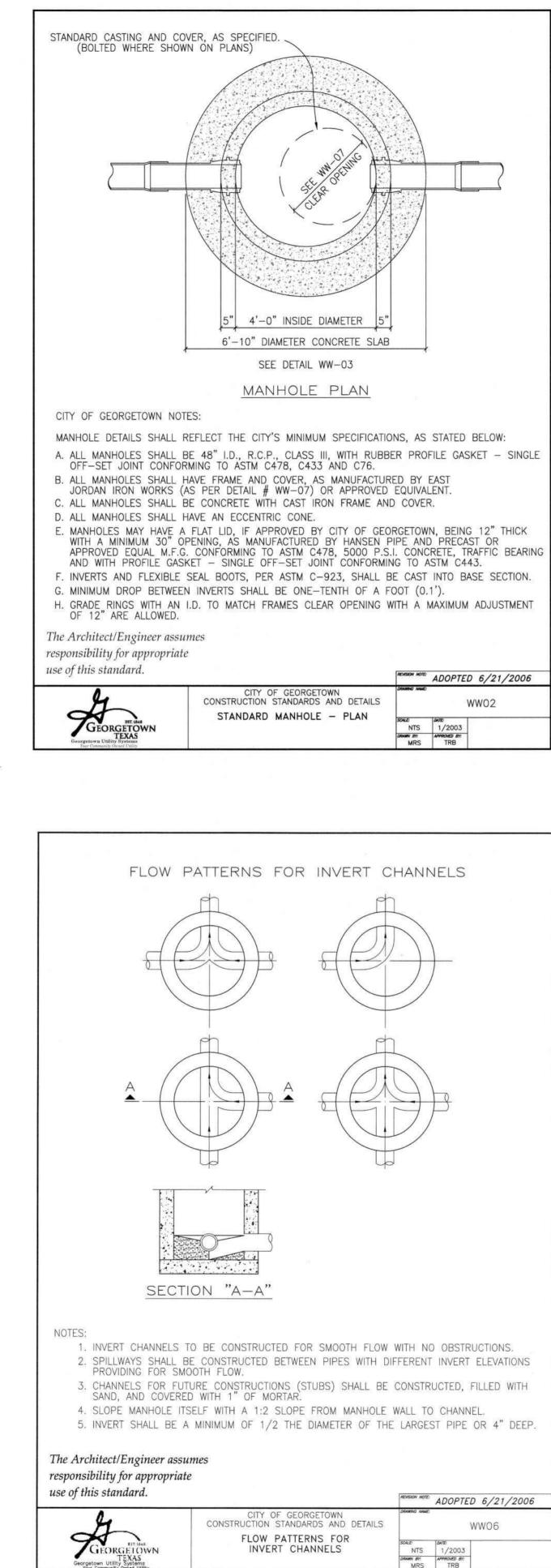


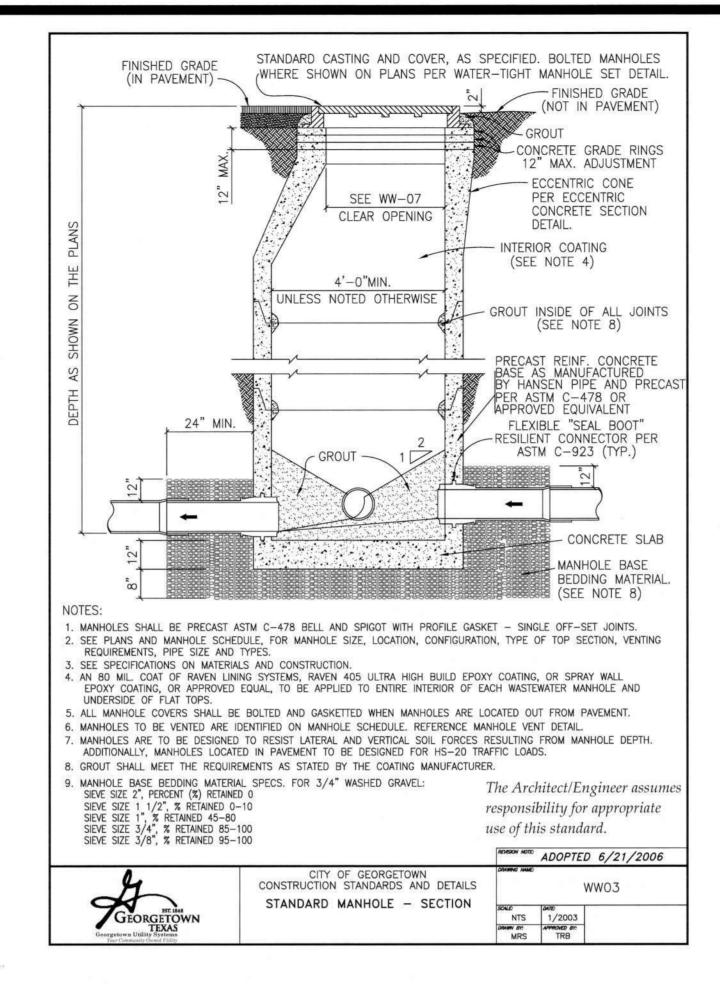

GEORGETOWN TEXAS

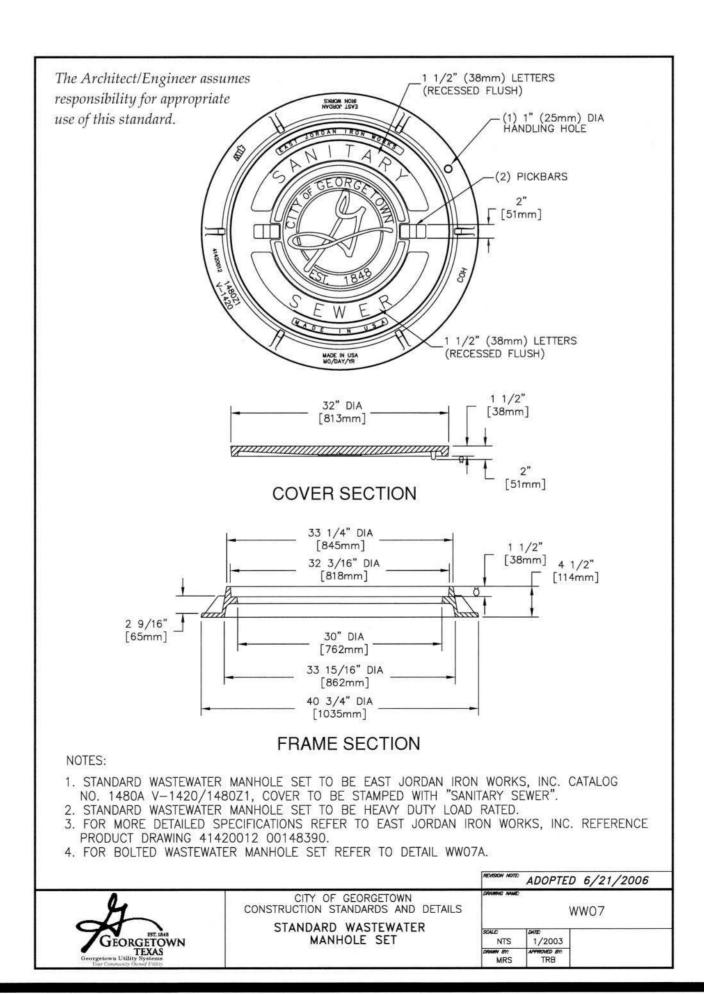

(SEE NOTE 2)

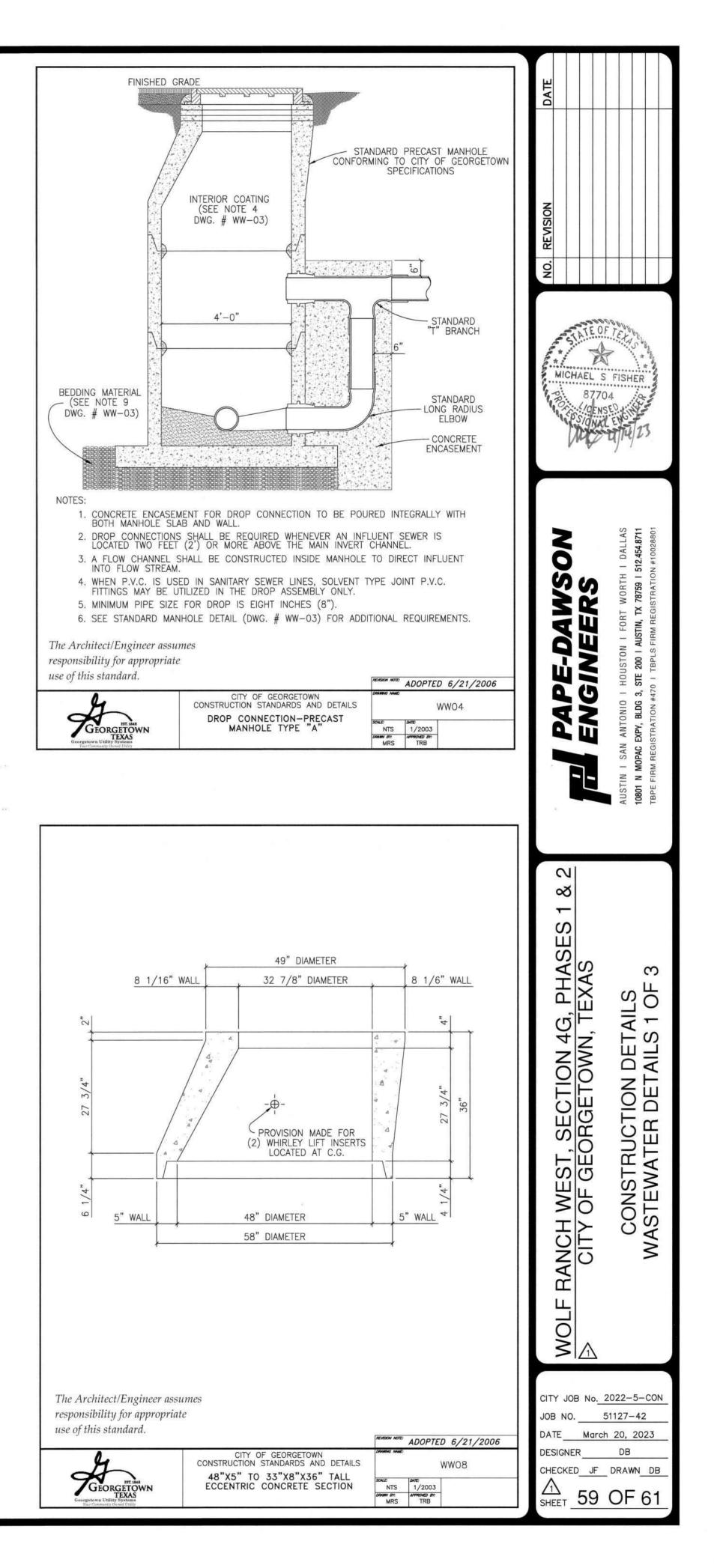


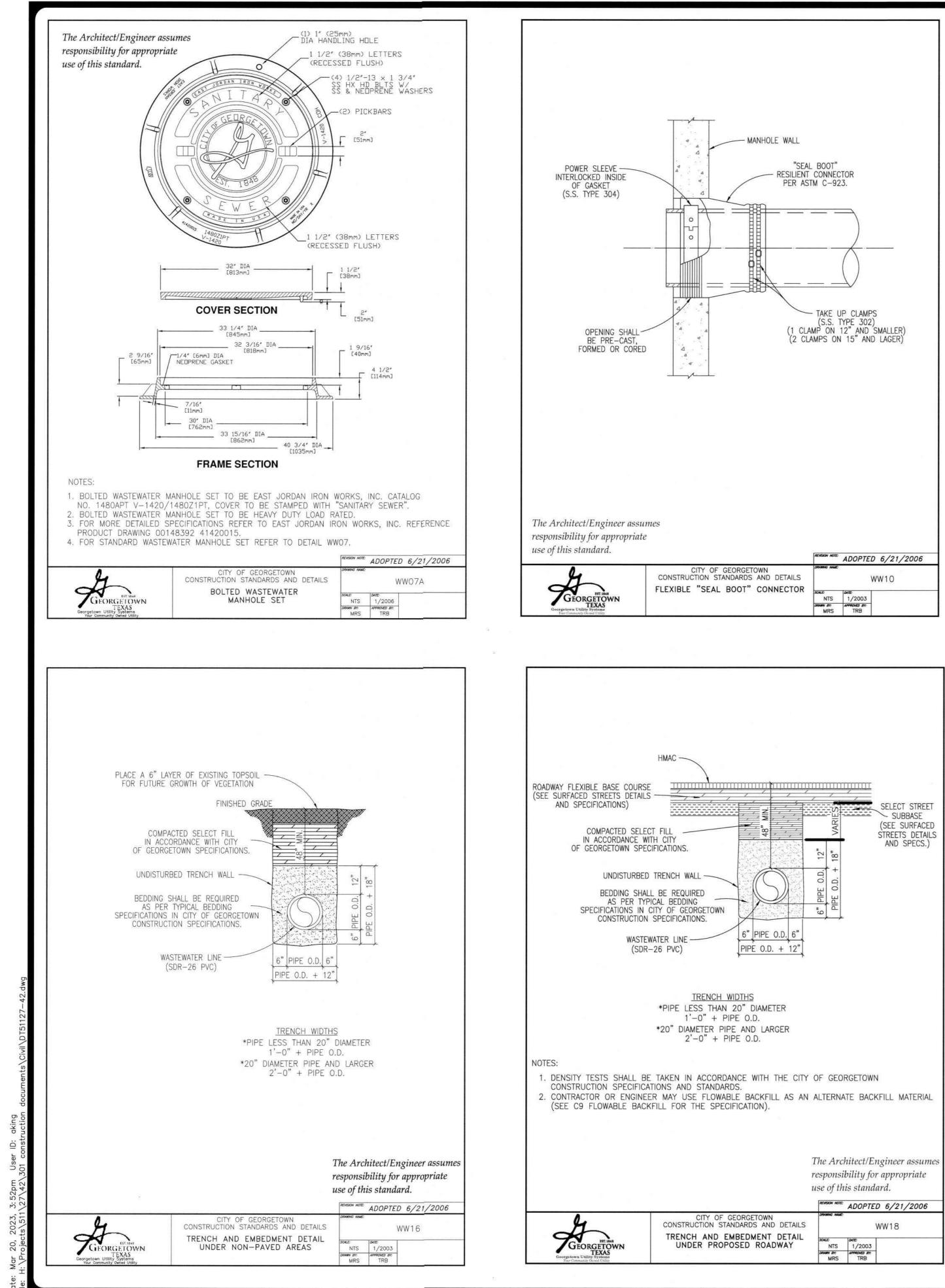




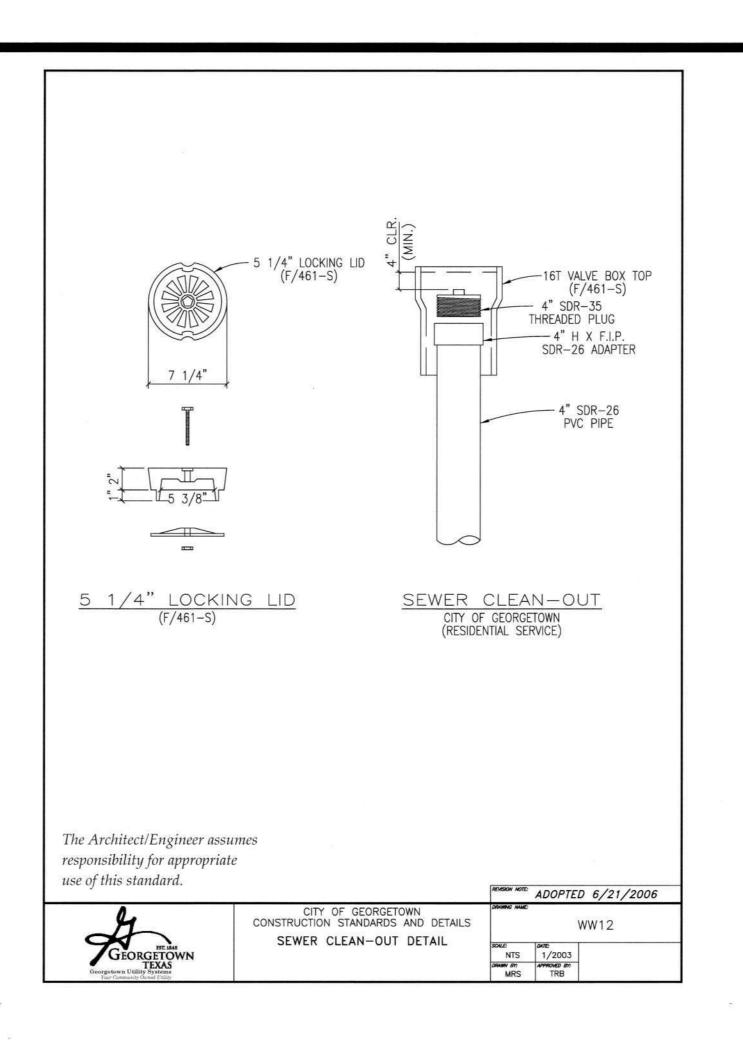


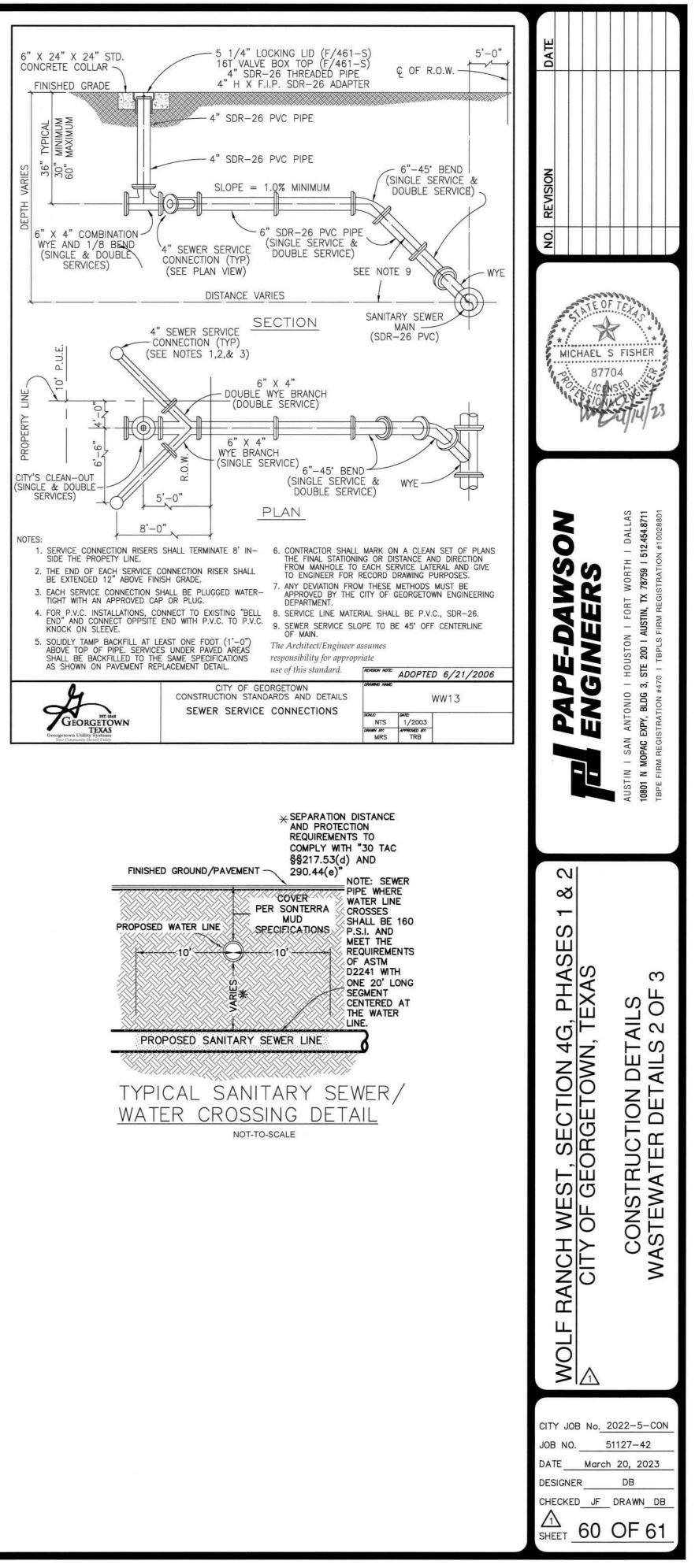


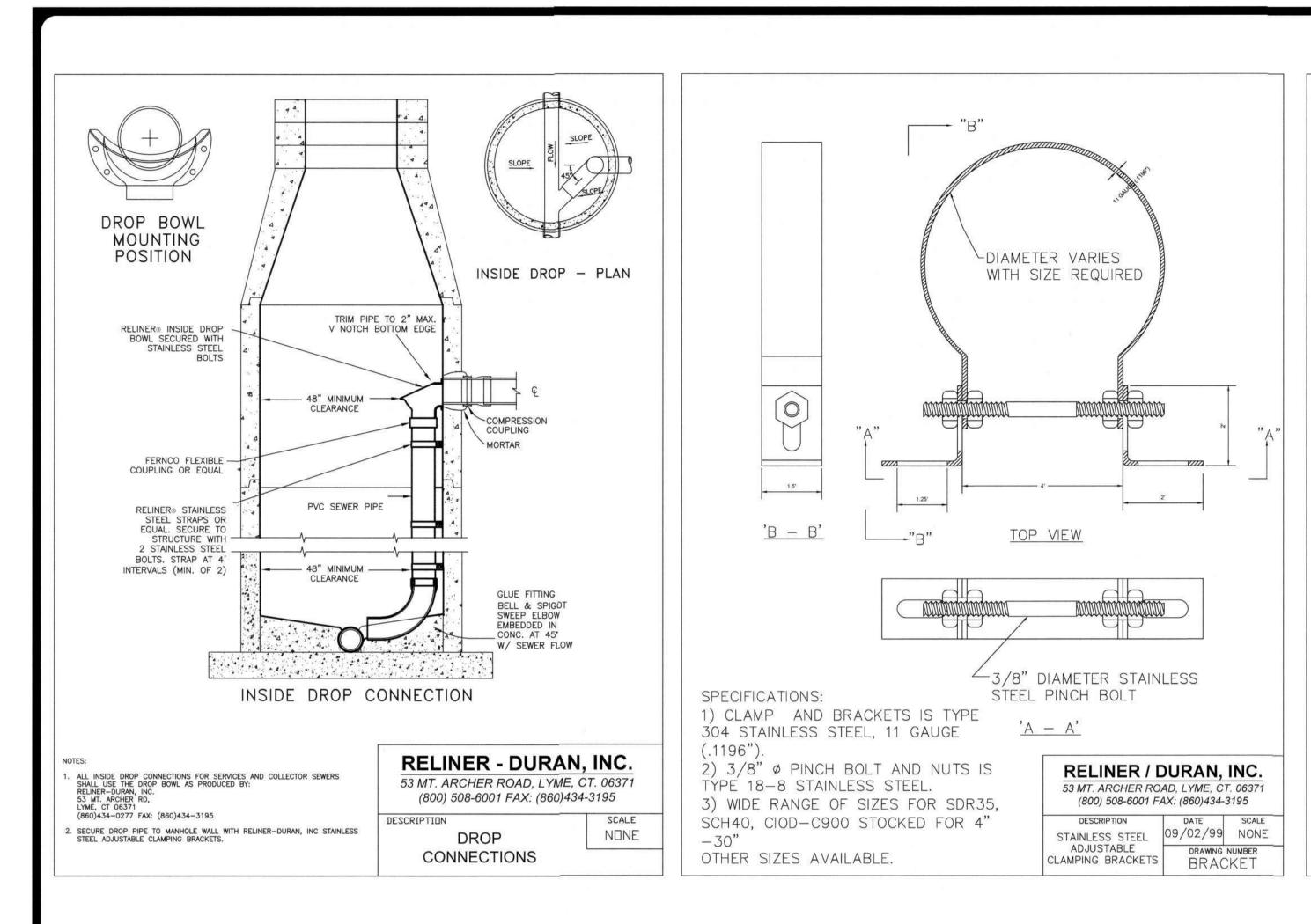




THIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.







IS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.

10.1

RELINER® INSIDE DROP SYSTEM SPECIFICATIONS

1. PRODUCT NAME

RELINER[®] INSIDE DROP SYSTEM U.S. Patent 6074130 Canadian Patent # 2269565 All RELINER Products are proudly made in the U.S.A.

2. MANUFACTURER

RELINER[®]/Duran Inc. 53 Mount Archer Rd. Lyme CT 06371 Phone: (800) 508-6001, (860) 434-0277 Fax: (860) 434-3195 E Mail: duran@reliner.com Web site: http://www.reliner.com

3. PRODUCT DESCRIPTION

Basic Application: RELINER® INSIDE DROP SYSTEM is a plastic composite collection device that facilitates the controlled drop of effluent into the main stream flow of a sanitary manhole. The Drop Bowl permits easy inspection and cleaning without the need to enter the structure. The custom made adjustable stainless steel straps fully support the drop pipe.

Advantages of the INSIDE DROP SYSTEM by RELINER®:

- Reduce maintenance Eliminate confined space entry
- Speed Inspection
- Simplify cleaning
- Reduce turbulence and odor
- Solids and liquids remain together
- Erosion of structure eliminated
- High corrosion resistance
- Allow workers to enter structure without risk of effluent contact
- Increase pump life in Wet Wells

Composition and Materials: RELINER® DROP BOWL is hand fabricated in the USA from marine grade fiberglass. The clamping pipe supports are of 304 stainless steel with 18-8 stainless nuts and bolts

These materials have extremely high resistance to sewer acids while providing very smooth, low maintenance assemblies. The open design allows for grade level inspection and cleaning while containing the

incoming material and conducting it smoothly into the main flow of the system. The RELINER Drop system is compatible with virtually all types of manhole construction and rehabilitation technologies and materials.

RELINER® US Patent # 5553973 Drop Bowl US Patent # 6074130 Canadian DB Patent # 2269565 3/30/10

DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.

RELINER[®] INSIDE DROP SYSTEM SPECIFICATIONS

4. TECHNICAL DATA

RELINER[®] INSIDE DROP components consist of 1) Standard size composite Drop Bowls

properties:

Physical Properties of	of Unsaturated Polyester Resin Rei	nforced Laminates
(33 / 6)	6 Glass / Resin 1.5 oz mat Lamii	nates .125 in.)
Flexural Strength (psi) AS	5TM D-790	27,100
Flexural Modulus (psi) AS	5TM D-790	1,157,000
Tensile Strength (psi) AS	TM D-638	16,700
Tensile Modulus (psi) AS	TM D-638	1,457,000
Tensile Elongation (%) AS	TM D-638	1.54
Hardness, Barcol 934.1 AS	STM D-2583	55 - 60
Physica	al Properties of ISO Gel Coat Room Temperature Cured for 45 hours	Post Cured at 50_ for 24 hours
Tensile Strength		
	6,218	6,581
Elongation, %	6,218 2.70	6,581 1.90
Elongation, %	2.70	1.90

Stainless steel clamping bracket materials: 304 series non-magnetic stainless steel - 11GA 18-8 series non-magnetic stainless steel 3/8 x 18

All new and/or existing manhole structures employing inside drop connections for services and collector sewers shall use the RELINER® Inside Drop Bowl components as produced by RELINER® / Duran Inc. 53 Mt. Archer Rd. Lyme CT 06371 (800) 508-6001, fax (860) 434-3195 or equal. Bowl size shall be determined by incoming pipe sizes and flow rates. The bowl shall be installed as per manufacturer's instructions using stainless steel fasteners. The drop pipe of SDR 35, Schedule 40 or other shall be securely attached to the manhole wall using stainless steel RELINER® Adjustable Clamping Brackets and stainless steel fasteners. Bracket interval shall be 4 feet maximum (minimum of 2 brackets). The connection of Drop Bowl to drop pipe shall be by flexible external pipe coupler. The turn-out at the base end of the drop pipe shall be accomplished with an appropriately angled PVC pipe elbow (45 degree recommended).

RELINER® US Patent # 5553973 Drop Bowl US Patent # 6074130 Canadian DB Patent # 2269565 3/30/10

OPTIONAL HOOD FOR "B" SERIES HOOD ATTACHES WITH 4 STAINLESS STEEL BOLTS. FITS B8 & B10 -18 0" 8.6" 11.5" 8.9" RELINER STAINLESS STEEL ANCHOR BOLT 8.1" ASSEMBLY B-8" DROP BOWL -13.0"---11.5" 8.9" 1.8″ -10 1"-"B-10" DROP BOWL MODEL # 18" DROP BOWL WITH 8" OUTLET - USE FOR 4' - 5' DIA MH 18" DROP BOWL WITH 8" OUTLET - USE FOR 6' - 8' DIA MH 18" DROP BOWL WITH 8" OUTLET - USE FOR 9' - 12' DIA MH 18" DROP BOWL WITH 10" OUTLET - USE FOR 4' - 5' DIA MH 18" DROP BOWL WITH 10" OUTLET - USE FOR 6' - 8' DIA MH 18" DROP BOWL WITH 10" OUTLET - USE FOR 9' -12' DIA MH B8DB B8DBR84 B8DBR144 MADE IN U.S.A. U.S. PAT. # 6074130 B10DB B10R96 B10R144 CANADIAN PAT. # 2269565 THE "B-8" BOWL WILL SERVICE UP THROUGH FULL 10" INLETS. THE "B-10" BOWL WILL SERVICE UP THROUGH FULL 12" INLETS. CAN BE RELINER / DURAN, INC. USED FOR 15" AND 16" INLET MODERATE FLOWS. ALL SIZES ARE FOR RETROFIT OR NEW 53 MT. ARCHER ROAD, LYME, CT. 0637 CONSTRUCTION. FABRICATED IN MARINE GRADE (800) 508-6001 FAX: (860)434-3195 FIBERGLASS AND FINISHED IN BRIGHT WHITE GEL WWW.RELINER.COM 008 T4 RELINER ANCHOR ASSEMBLIES TO ATTACH DROP BOWL TO MANHOLE WALL. USE DATE DESCRIPTION SCALE RELINER STAINLESS STEEL PIPE BRACKETS TO 10/8/15 NONE B8 & B10 SUPPORT DOWN PIPE. EXTERNAL PIPE COUPLER REQUIRED. DROP BOWLS DRAWING NUMBER FOR ROUND WALLS B8DB B10DF PROVIDE SWEEP AT DOWN PIPE OUTLET.

2) Stainless steel adjustable clamping brackets

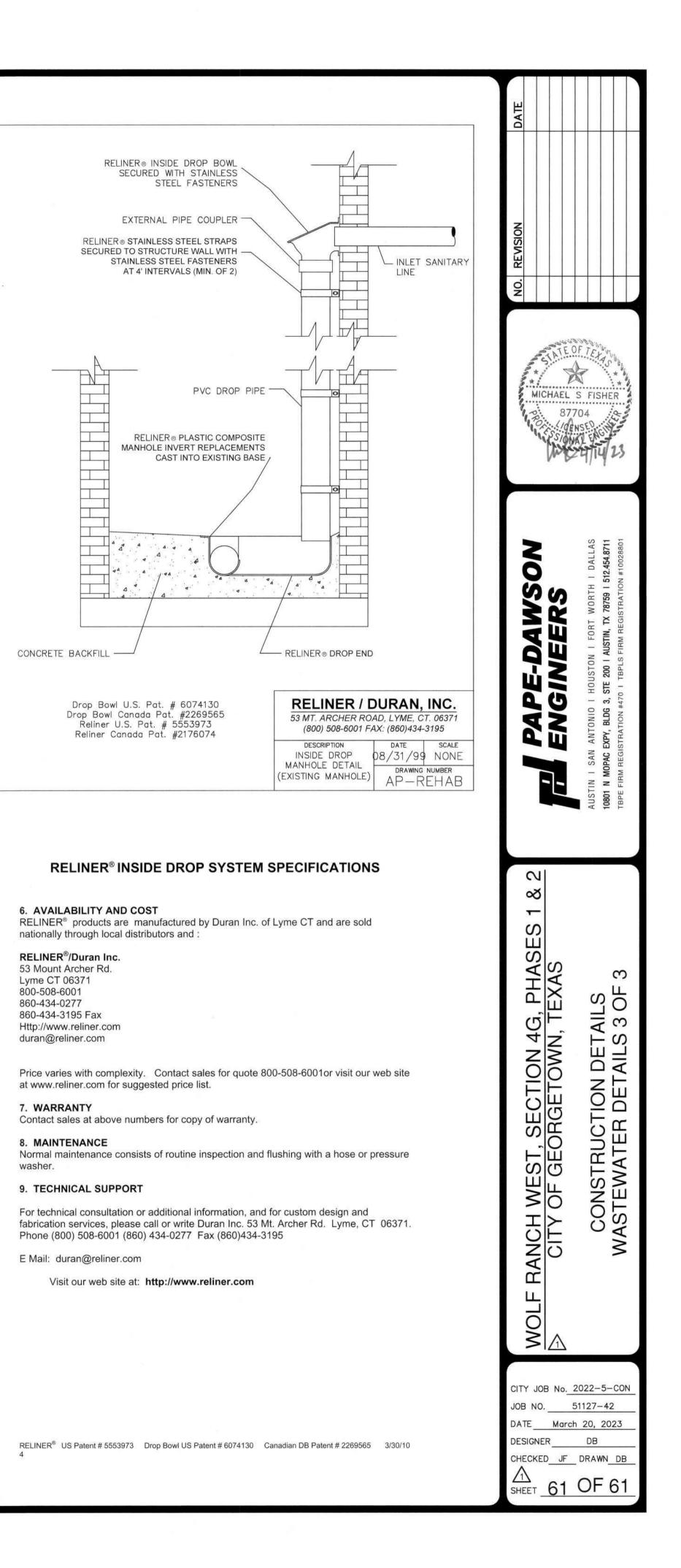
RELINER composite components are hand and chopper gun laminations of these

Sample Specification for RELINER® INSIDE DROP SYSTEM:

RELINER[®] INSIDE DROP SYSTEM SPECIFICATIONS

5. INSTALLATION

- 1. Select Drop Bowl of size appropriate to flow rate and pipe diameter. Examples: (The "A" Bowl with 4" outlet will service up through full 6" inlets. The "A" Bowl with 6" outlet will service up through full 8" inlets. Can be used for 10" & 12" inlet moderate flows. The "B" Bowl with 8" outlet will service up through full 10" inlets. The "B" Bowl with 10" outlet will service up through full 12" inlets. Can be used for 15" and 16" moderate flows. Larger sizes and flat configurations are also available) A pipe downsize is possible for most applications.
- 2a. Trim incoming pipe so that only 2" maximum protrudes into manhole.


2b. For improved flow control, cut a "V" shaped notch at bottom edge of incoming pipe.

- 3. Center Drop Bowl directly under incoming pipe, allow approximately 1" clearance between pipe and bowl.
- 4. Attach Drop Bowl to manhole wall with four 3/8" diameter stainless steel bolts in lead expansion anchors. (See following instructions).
- (1) Drill a 3/4"hole into the base material to the required depth (approximately 1-
- 1/4" deep.)
- (2) Blow the hole clean of dust and other material. (3) Insert the anchor into the hole (Lead shield out).
- (4) Position a setting tool or a 9/16 socket against the anchor outer cone. (The
- outer rim of the tool or socket should seat onto the lead shield rim.) (5) Using the tool or socket, set the anchor by driving the lead sleeve over the
- cone using several sharp hammer blows. (Be sure the anchor is at the
- required embedment depth.) (6) Position the fixture, insert screw or bolt and tighten.
- 5. Cut and mount drop pipe of diameter appropriate to Drop Bowl size and flow using RELINER adjustable stainless steel clamping brackets. Use a minimum of 2 brackets with a maximum spacing of 4 feet. (RELINER clamping brackets will adjust to allow drop pipe to maintain correct stand off from wall). We recommend the use of SDR 35 PVC pipe for a drop pipe but we produce pipe brackets for most types of drop pipe.
- 6. Connection from Drop Bowl to drop pipe shall be by flexible external pipe connector ("Fernco" recommended.)
- 7. Install appropriate pipe elbow to provide smooth transition into channel flow.

Our Drop Bowl warranty is void if the drop pipe is not installed with the correct RELINER pipe support brackets as these brackets fully support the drop pipe and hold it off the wall the correct distance.

- OPTIONAL DROP BOWL INSTALLATION ANCHORS: These parts are shipped assembled. 3/8 X 1" X 16 18-8 stainless hex cap screw full thread 3/8 18-8 stainless washers
- 3/8 16 x 1-1/4 lead tamp-in expansion anchors

RELINER[®] US Patent # 5553973 Drop Bowl US Patent # 6074130 Canadian DB Patent # 2269565 3/30/10

PLANNING AND ZONING COMMISSION CERTIFICATE OF APPROVAL

June 7, 2022
2022-5-CON
H4 Georgetown LP – John Tatum
Blue Blaze Trl and Wandering Path 34.41 acres in the Thompson J. Survey AW0608.
Approval based on the findings that the request meets the City of Georgetown ordinances, rules and regulations identified in the Exhibits.

The above referenced request was <u>APPROVED</u> by the Georgetown Planning and Zoning Commission ("Commission") on June 7, 2022, by a vote of $\underline{\Psi}$ in favor and $\underline{0}$ in opposition with $\underline{1}$ abstaining.

COMMISSION:

R. Travis Perthuis, Chair

ATTEST:

Steve Dickey,

Steve Dickey, Secretary

PLANNING AND ZONING COMMISSION CERTIFICATE OF APPROVAL

DATE:	November 1, 2022
CASE NUMBER:	2022-5-CON
PROPERTY OWNER:	H4 Georgetown LP – John Tatum
LOCATION: LEGAL DESCRIPTION:	Blue Blaze Trl and Wandering Path 34.41 acres in the Thompson J. Survey AW0608.
REQUEST:	Approval based on the findings that the request meets the City of Georgetown ordinances, rules and regulations identified in the Exhibits.

The above referenced request was <u>APPROVED</u> by the Georgetown Planning and Zoning Commission ("Commission") on November 1, 2022, by a vote of <u>5</u> in favor and <u>0</u> in opposition with <u>2</u> abstaining.

COMMISSION:

R. 2 - 1

R. Travis Perthuis, Chair

ATTEST:

Steve Dickey,

Secretary

PLANNING AND ZONING COMMISSION **CERTIFICATE OF APPROVAL**

DATE:	March 21, 2023
CASE NUMBER:	2022-5-CON
PROPERTY OWNER:	H4 Georgetown Phase 4G, LLC – John Tatum
LOCATION:	Blue Blaze Trl and Wandering Path
LEGAL DESCRIPTION:	34.41 acres in the Thompson J. Survey AW0608
REQUEST:	Approval based on the findings that the request meets the City of Georgetown ordinances, rules and regulations identified ir the Exhibits.

The above referenced request was APPROVED by the Georgetown Planning and Zoning Commission ("Commission") on March 21, 2023, by a vote of _____ in favor and _____ in opposition with <u>O</u> abstaining.

COMMISSION:

spt f. 2

R. Travis Perthuis, Chair

ATTEST:

Steve Dickey,

Secretary

AGENT AUTHORIZATION

Agent Authorization Form For Required Signature Edwards Aquifer Protection Program Relating to 30 TAC Chapter 213 Effective June 1, 1999 Duke Kerrigan 1 Print Name Austin General Manager Title - Owner/President/Other of H4 Georgetown Phase 4G, LLC Corporation/Partnership/Entity Name have authorized ______ Print Name of Agent/Engineer Pape-Dawson Engineers, Inc. of Print Name of Firm

to represent and act on the behalf of the above-named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:

Applicant's Signature

-30-23

Date

THE STATE OF TEXAS §

County of Williamson §

BEFORE ME, the undersigned authority, on this day personally appeared Doke Kenigen known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this 30 day of August, 2023.

NOTARY PUBLIC Tori Bith Striff Typed or Printed Name of Notary

MY COMMISSION EXPIRES: June 2024

	Agent Authorization Form For Required Signature Edwards Aquifer Protection Program Relating to 30 TAC Chapter 213 Effective June 1, 1999	
1	Duke Kerrigan	
	Print Name	
	Austin General Manager Title - Owner/President/Other	,
2		
of	H4 Georgetown Phase 1, LLC	,
	Corporation/Partnership/Entity Name	
have authorized	Austin Conner, P.E.	
	Print Name of Agent/Engineer	
of	Pape-Dawson Engineers, Inc.	
01	Print Name of Firm	-

to represent and act on the behalf of the above-named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE: Applicant's Signature

Date

THE STATE OF TEXAS § County of Williams on §

BEFORE ME, the undersigned authority, on this day personally appeared Duke, Vernaau known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this 30 day of August , 2023

NOTARY Ton Both Streff Typed or Printed Name of Notary

ine 12024 MY COMMISSION EXPIRES:

Agent Authorization Form For Required Signature Edwards Aquifer Protection Program Relating to 30 TAC Chapter 213 Effective June 1, 1999

Duke Kerrigan , Print Name , Austin General Manager , Title - Owner/President/Other , of H4 Georgetown LP Corporation/Partnership/Entity Name , have authorized Austin Conner, P.E. Print Name of Agent/Engineer , of Pape-Dawson Engineers, Inc. Print Name of Firm ,

to represent and act on the behalf of the above-named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:	
Applicant's Signature	
\smile	

8-30-23	
---------	--

Date

THE STATE OF Texas § County of Williauson §

1

BEFORE ME, the undersigned authority, on this day personally appeared <u>Dolke Kenngen</u>known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this <u>30</u> day of <u>August</u>, <u>2023</u> TORI BETH STREFF Notary ID #128797649 My Commission Expires June 1, 2024 MY COMMISSION EXPIRES: <u>June 1, 2024</u>

Agent Authorization Form For Required Signature Edwards Aquifer Protection Program Relating to 30 TAC Chapter 213 Effective June 1, 1999 Duke Kerrigan Print Name Austin General Manager Title - Owner/President/Other of _____ H4 WR MR-1. LP Corporation/Partnership/Entity Name have authorized _____ Print Name of Agent/Engineer Pape-Dawson Engineers, Inc. of Print Name of Firm

to represent and act on the behalf of the above-named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

SIGNATURE PAGE:	
\cap	
h d.hul M	
Applicant's Signature	
U	

8 30 23

THE STATE OF Toxas § County of Militanson §

BEFORE ME, the undersigned authority, on this day personally appeared <u>Dolle Levin authority</u> known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this 30 day of Sectember, 2023.

NOTARY PUBLIC Soft

Ton Both Streff Typed or Printed Name of Notary

MY COMMISSION EXPIRES: June 1, 202-1

APPLICATION FEE FORM

Application Fee Form

Texas Commission on Environmental Quality								
Name of Proposed Regulated Entity: Wolf Ranch West, Section 4G								
Regulated Entity Location: SW of the intersection of Wolf Ranch Parkway & Legends Lane								
Name of Customer: <u>H4 Georgetown Phase 4G, LLC</u>								
Contact Person: <u>Duke Kerrigan</u>	Phon	e: <u>(972) 201-2897</u>						
Customer Reference Number (if issued):CN 605990142								
Regulated Entity Reference Number (if issued):RN <u>111446985</u>								
Austin Regional Office (3373)								
Hays	Travis	⊠w	illiamson					
San Antonio Regional Office (336								
	-							
Bexar	Medina		valde					
Comal	Kinney							
Application fees must be paid by o								
Commission on Environmental Q	-	•	•					
form must be submitted with you	ur fee payment . This pa	ayment is being submi	itted to:					
🔀 Austin Regional Office	Sa	an Antonio Regional O	office					
Mailed to: TCEQ - Cashier		vernight Delivery to: 1						
Revenues Section 12100 Park 35 Circle								
Mail Code 214		uilding A, 3rd Floor						
P.O. Box 13088		ustin, TX 78753						
Austin, TX 78711-3088		512)239-0357						
Site Location (Check All That App		,						
· · · ·		Transi	tion Zono					
🔀 Recharge Zone	Contributing Zone		tion Zone					
Type of Pla	n	Size	Fee Due					
Water Pollution Abatement Plan,	Contributing Zone							
Plan: One Single Family Residentia	al Dwelling	Acres	\$					
Water Pollution Abatement Plan,	Contributing Zone							
Plan: Multiple Single Family Reside		Acres	\$					
Water Pollution Abatement Plan,	Contributing Zone							
Plan: Non-residential		Acres	\$					
Sewage Collection System		2,531 L.F.	\$ 1,265.50					
Lift Stations without sewer lines		Acres	\$					
Underground or Aboveground Sto	orage Tank Facility	Tanks	\$					
Piping System(s)(only)		Each	\$					
Exception		Each	\$					
Extension of Time		Each	\$					
200	R							
Signature:	Date	08/31/2023						

Application Fee Schedule

Texas Commission on Environmental Quality

Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)

Water Pollution Abatement Plans and Modifications

Contributing Zone Plans and Modifications

Project	Project Area in Acres	Fee
One Single Family Residential Dwelling	< 5	\$650
Multiple Single Family Residential and Parks	< 5	\$1,500
	5 < 10	\$3,000
	10 < 40	\$4,000
	40 < 100	\$6,500
	100 < 500	\$8,000
	≥ 500	\$10,000
Non-residential (Commercial, industrial, institutional,	< 1	\$3,000
multi-family residential, schools, and other sites	1 < 5	\$4,000
where regulated activities will occur)	5 < 10	\$5,000
	10 < 40	\$6,500
	40 < 100	\$8,000
	≥ 100	\$10,000

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee
Sewage Collection Systems	\$0.50	\$650 - \$6,500

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	\$650	\$650 - \$6,500

Exception Requests

Project	Fee
Exception Request	\$500

Extension of Time Requests

Project	Fee
Extension of Time Request	\$150

CORE DATA FORM

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason fo	r Submis	sion (If other is c	hecked please	descr	ibe in s	pace p	orovide	ed.)				
New Per	mit, Regis	tration or Authori	zation (Core D	ata Fo	rm sho	ould be	subm	nitted v	vith t	the program application	n.)	
Renewal	l (Core Da	ta Form should b	e submitted w	ith the	renewa	al form)		☑ Other SCS Modification				
2. Customer	Referenc	e Number <i>(if iss</i>	ued)			k to sea		3. Re	egul	ated Entity Reference	Number (i	f issued)
CN 605990142						number egistry**		RN	N 11	11446985		
SECTION	II: Cu	stomer Info	ormation									
4. General Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy) 2/28/2022						022						
New Cust				•		tomer l				•	Regulated E	ntity Ownership
	<u> </u>									er of Public Accounts)		
			-	-				•		sed on what is cur	rent and	active with the
Texas Sec	retary of	f State (SOS)	or Texas C	ompti	roller	of Pu	blic	Acco	oun	ts (CPA).		
6. Customer	Legal Nar	ne (If an individual	l, print last name	e first: e	g: Doe,	John)		<u> </u>	lf nev	w Customer, enter previo	ous Custome	<u>er below:</u>
H4 Georgetown Phase 4G, LLC												
7. TX SOS/CPA Filing Number 8. TX State T				Tax ID (11 digits)				9. Federal Tax ID (9 digits) 10. DUNS Number			S Number (if applicable)	
080432074	40		32081987	7979				4	26-'	772514		
11. Type of C	ustomer:	🛛 Corporati	on			Individu	Jal			Partnership: 🛛 Genera	al 🗌 Limited	
Government:	City 🗌 🤇	County 🗌 Federal 🗌] State 🗌 Other			Sole Pr	roprie	torship	p	Other:		
12. Number o ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	of Employ] 21-100	ees	251-500		501 an	nd highe	er	1		ndependently Owned (es 🛛 🖂 No	and Opera	ted?
14. Custome	r Role (Pro	posed or Actual) -	- as it relates to	the Reg	gulated l	Entity lis	sted or	n this fo	orm.	Please check one of the f	ollowing	
⊠Owner		Operat	or		🗌 0v	wner &	Opera	ator				
	nal License	ee 🗌 Respo	nsible Party		🗌 Va	oluntary	/ Clea	inup A	pplic	cant Other:		
	3000 T	Turtle Creek	Blvd.									
15. Mailing Address:												
Address.	City	Dallas		S	tate	ΤХ		ZIP 75219 ZIP + 4				
16. Country I	Mailing Inf	formation (if outsi	de USA)				17. E	E-Mail	Add	dress (if applicable)		
							Dul	ke.K	erri	igan@Hillwood.c	om	
18. Telephon	e Number	ſ		19. Ex	xtensio	on or C	ode			20. Fax Number	· (if applicab	le)
(972) 20	1-2897									(972) 201-	2959	

SECTION III: Regulated Entity Information

 21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)

 New Regulated Entity
 Update to Regulated Entity Name

 Update to Regulated Entity
 Update to Regulated Entity Name

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC).

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Wolf Ranch West, Section 4G

23. Street Address of	Not yet a	assigned						
the Regulated Entity:								
<u>(No PO Boxes)</u>	City	Georgetown	State	TX	ZIP	78628	ZIP + 4	
24. County								

	E	nter Physical	Location Descript	ion if	no street addres	s is pro	ovided.		
25. Description to Physical Location:	South o	f the interse	ection of Wolf	Ran	ch Parkway &	z Blue	e Blaze T	rail	
26. Nearest City	•					State		N	earest ZIP Code
Georgetown						ΤХ		7	8628
27. Latitude (N) In Decimal: 30.622875					28. Longitude (W) In Decimal: -97.7			-97.714	760
Degrees	Minutes		Seconds		Degrees		Minutes		Seconds
30	37 22.35				-97		2	12	53.14
79 Primary SIL Loge (4 digits) 30 Secondary SIL Loge (4 digits)					Primary NAICS (or 6 digits)	Code	32. S (5 or 6		IAICS Code
1521	16	23		23	6115		237	10	
33. What is the Primary	Business o	f this entity?	(Do not repeat the SIC	or NA	ICS description.)				
Single-family resid	ential de	velopment							
				30	00 Turtle Creek	Blvd			
34. Mailing									
Address									

Address.	City	Dallas	State	тх	ZIP	75219	ZIP + 4		
35. E-Mail Address:		Fred.Balda@Hillwood.com							
36. Telephone Number			37. Extension or Code 38. Fax Number (if applicable)					cable)	
(972) 201-2897						(972) 201-2959			

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste	
		11003329			
Municipal Solid Waste	New Source Review Air	□ OSSF	Petroleum Storage Tank	D PWS	
Sludge	Storm Water	Title V Air	Tires	Used Oil	
Voluntary Cleanup	Waste Water	Wastewater Agriculture	U Water Rights	Other:	

SECTION IV: Preparer Information

40. Name:	Alletin Connor DH			41. Title:	Project Manager	
42. Telephone Number 43. Ext./Code 44. Fax Number			44. Fax Number	45. E-Mail Address		
(512)	454-8711		() -	AConner@Pape-Dawson.com		

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Pape-Dawson Engineers, Inc.	Job Title:	Project N	oject Manager		
Name (In Print):	Austin Conner, PE				(512) 454- 8711	
Signature:	Unite 200			Date:	08/31/2023	