

Sewage Collection System (SCS)

Parkside Peninsula Phase 3

CITY OF GEORGETOWN WILLIAMSON COUNTY, TEXAS

September 18, 2024

HR Green Project No: 2302005

Prepared For: HM 2243 Development, Inc. 1011 North Lamar Boulevard Austin, Texas 78703

Prepared By: HR Green Development TX, LLC 5508 Highway 290 West, Suite 150 Austin, Texas 78735 TBPE Firm No. F-16384

HR Green® | Building Communities. Improving Lives.

TABLE OF CONTENTS

Edwards Aquifer Application Cover Page (TCEQ-20705)1
General Information Form (TCEQ-0587)2
Attachment A - Road Map Attachment B - USGS Quadrangle Map Attachment C - Project Narrative
Geologic Assessment Form (TCEQ-0585)
Attachment A – Project Figures: Stratigraphic Column (Figure 5) Attachment B – Site Geologic Map Attachment C – Geologic Assessment Table (TCEQ-0585-Table) Attachment D – Site Photographs
Organized Sewage Collection System Plan (TCEQ-0582)4
Attachment A – Engineering Design Report
Temporary Stormwater Section (TCEQ-0602)5
Attachment A – Spill Response Actions Attachment B – Potential Sources of Contamination Attachment C – Sequence of Major Activities Attachment D – Temporary Best Management Practices and Measures Attachment F – Structural Practices Attachment G – Drainage Area Map Attachment H – Temporary Sediment Pond(s) Plans and Calculations Attachment I – Inspection and Maintenance for BMPs Attachment J – Schedule of Interim and Permanent Soil Stabilization Practices
Agent Authorization Form (TCEQ-0599) – Authorizing HR Green Development TX, LLC6
Application Fee Form (TCEQ-0574)7
Core Data Form (TCEQ-10400)

Texas Commission on Environmental Quality Edwards Aquifer Application Cover Page

Our Review of Your Application

The Edwards Aquifer Program staff conducts an administrative and technical review of all applications. The turnaround time for administrative review can be up to 30 days as outlined in 30 TAC 213.4(e). Generally administrative completeness is determined during the intake meeting or within a few days of receipt. The turnaround time for technical review of an administratively complete Edwards Aquifer application is 90 days as outlined in 30 TAC 213.4(e). Please know that the review and approval time is directly impacted by the quality and completeness of the initial application that is received. In order to conduct a timely review, it is imperative that the information provided in an Edwards Aquifer application include final plans, be accurate, complete, and in compliance with <u>30 TAC 213</u>.

Administrative Review

1. <u>Edwards Aquifer applications</u> must be deemed administratively complete before a technical review can begin. To be considered administratively complete, the application must contain completed forms and attachments, provide the requested information, and meet all the site plan requirements. The submitted application and plan sheets should be final plans. Please submit one full-size set of plan sheets with the original application, and half-size sets with the additional copies.

To ensure that all applicable documents are included in the application, the program has developed tools to guide you and web pages to provide all forms, checklists, and guidance. Please visit the below website for assistance: <u>http://www.tceq.texas.gov/field/eapp</u>.

- 2. This Edwards Aquifer Application Cover Page form (certified by the applicant or agent) must be included in the application and brought to the administrative review meeting.
- 3. Administrative reviews are scheduled with program staff who will conduct the review. Applicants or their authorized agent should call the appropriate regional office, according to the county in which the project is located, to schedule a review. The average meeting time is one hour.
- 4. In the meeting, the application is examined for administrative completeness. Deficiencies will be noted by staff and emailed or faxed to the applicant and authorized agent at the end of the meeting, or shortly after. Administrative deficiencies will cause the application to be deemed incomplete and returned.

An appointment should be made to resubmit the application. The application is re-examined to ensure all deficiencies are resolved. The application will only be deemed administratively complete when all administrative deficiencies are addressed.

- 5. If an application is received by mail, courier service, or otherwise submitted without a review meeting, the administrative review will be conducted within 30 days. The applicant and agent will be contacted with the results of the administrative review. If the application is found to be administratively incomplete, it can be retrieved from the regional office or returned by regular mail. If returned by mail, the regional office may require arrangements for return shipping.
- 6. If the geologic assessment was completed before October 1, 2004 and the site contains "possibly sensitive" features, the assessment must be updated in accordance with the *Instructions to Geologists* (TCEQ-0585 Instructions).

Technical Review

- 1. When an application is deemed administratively complete, the technical review period begins. The regional office will distribute copies of the application to the identified affected city, county, and groundwater conservation district whose jurisdiction includes the subject site. These entities and the public have 30 days to provide comments on the application to the regional office. All comments received are reviewed by TCEQ.
- 2. A site assessment is usually conducted as part of the technical review, to evaluate the geologic assessment and observe existing site conditions. The site must be accessible to our staff. The site boundaries should be

clearly marked, features identified in the geologic assessment should be flagged, roadways marked and the alignment of the Sewage Collection System and manholes should be staked at the time the application is submitted. If the site is not marked the application may be returned.

- 3. We evaluate the application for technical completeness and contact the applicant and agent via Notice of Deficiency (NOD) to request additional information and identify technical deficiencies. There are two deficiency response periods available to the applicant. There are 14 days to resolve deficiencies noted in the first NOD. If a second NOD is issued, there is an additional 14 days to resolve deficiencies. If the response to the second notice is not received, is incomplete or inadequate, or provides new information that is incomplete or inadequate, the application must be withdrawn or will be denied. Please note that because the technical review is underway, whether the application is withdrawn or denied **the application fee will be forfeited**.
- 4. The program has 90 calendar days to complete the technical review of the application. If the application is technically adequate, such that it complies with the Edwards Aquifer rules, and is protective of the Edwards Aquifer during and after construction, an approval letter will be issued. Construction or other regulated activity may not begin until an approval is issued.

Mid-Review Modifications

It is important to have final site plans prior to beginning the permitting process with TCEQ to avoid delays.

Occasionally, circumstances arise where you may have significant design and/or site plan changes after your Edwards Aquifer application has been deemed administratively complete by TCEQ. This is considered a "Mid-Review Modification". Mid-Review Modifications may require redistribution of an application that includes the proposed modifications for public comment.

If you are proposing a Mid-Review Modification, two options are available:

- If the technical review has begun your application can be denied/withdrawn, your fees will be forfeited, and the plan will have to be resubmitted.
- TCEQ can continue the technical review of the application as it was submitted, and a modification application can be submitted at a later time.

If the application is denied/withdrawn, the resubmitted application will be subject to the administrative and technical review processes and will be treated as a new application. The application will be redistributed to the affected jurisdictions.

Please contact the regional office if you have questions. If your project is located in Williamson, Travis, or Hays County, contact TCEQ's Austin Regional Office at 512-339-2929. If your project is in Comal, Bexar, Medina, Uvalde, or Kinney County, contact TCEQ's San Antonio Regional Office at 210-490-3096

Please fill out all required fields below and submit with your application.

1. Regulated Entity N Phase 3	arksi	de Per	insul	2. Regulated Entity No.:							
3. Customer Name: H	lopmer	nt, Inc	•	4. Cu	4. Customer No.: CN605986272						
5. Project Type: (Please circle/check one)	New X		Modification				ision	Exception			
6. Plan Type: (Please circle/check one)			AST	EXP EXT		Technical Clarification	Optional Enhanced Measures				
7. Land Use: (Please circle/check one)	Resider X	ntial	Non-r	esiden	tial		8. Sit	e (acres):	28.22		
9. Application Fee:	\$2,245.	.50	10. Pe	ermar	nent I	BMP(s	5):	Batch Detention Ponds, Vegetative Filter Strips			
11. SCS (Linear Ft.):	1. SCS (Linear Ft.): 4,491 12. AST/UST (N						nks):	N/A			
13. County:	Williams County	son	14. W	aters	hed:			Turkey Creek	-Brushy Creek		

Application Distribution

Г

Instructions: Use the table below to determine the number of applications required. One original and one copy of the application, plus additional copies (as needed) for each affected incorporated city, county, and groundwater conservation district are required. Linear projects or large projects, which cross into multiple jurisdictions, can require additional copies. Refer to the "Texas Groundwater Conservation Districts within the EAPP Boundaries" map found at:

http://www.tceq.texas.gov/assets/public/compliance/field_ops/eapp/EAPP%20GWCD%20map.pdf

For more detailed boundaries, please contact the conservation district directly.

	Austin Region											
County:	Hays	Travis	Williamson									
Original (1 req.)			<u>_X</u>									
Region (1 req.)		_	<u>_X</u>									
County(ies)			<u>_X</u>									
Groundwater Conservation District(s)	Edwards Aquifer Authority Barton Springs/ Edwards Aquifer Hays Trinity Plum Creek	Barton Springs/ Edwards Aquifer	NA									
City(ies) Jurisdiction	Austin Buda Dripping Springs Kyle Mountain City San Marcos Wimberley Woodcreek	Austin Bee Cave Pflugerville Rollingwood Round Rock Sunset Valley West Lake Hills	Austin Cedar Park Florence X_Georgetown Jerrell Leander Liberty Hill Pflugerville Round Rock									

	Sa	an Antonio Region			
County:	Bexar	Comal	Kinney	Medina	Uvalde
Original (1 req.)					
Region (1 req.)					
County(ies)					
Groundwater Conservation District(s)	Edwards Aquifer Authority Trinity-Glen Rose	Edwards Aquifer Authority	Kinney	EAA Medina	EAA Uvalde
City(ies) Jurisdiction	Castle Hills Fair Oaks Ranch Helotes Hill Country Village Hollywood Park San Antonio (SAWS) Shavano Park	Bulverde Fair Oaks Ranch Garden Ridge New Braunfels Schertz	NA	San Antonio ETJ (SAWS)	NA

I certify that to the best of my knowledge, that the application is complete and accurate. This application is hereby submitted to TCEQ for administrative review and technical review.

Christine Campbell Print Name of Customer/Authorized Agent

Signature of Customer/Authorized Agent

09/18/2024

Date

FOR TCEQ INTERNAL USE ONL	X						
Date(s)Reviewed:		Date Adn	ninistratively Complete:				
Received From:		Correct N	Number of Copies:				
Received By:		Distribut	tion Date:				
EAPP File Number:		Complex	:				
Admin. Review(s) (No.):		No. AR Rounds:					
Delinquent Fees (Y/N):		Review T	Time Spent:				
Lat./Long. Verified:		SOS Cust	tomer Verification:				
Agent Authorization Complete/Notarized (Y/N):		Fee	Payable to TCEQ (Y/N):				
Core Data Form Complete (Y/N):		Check:	Signed (Y/N):				
Core Data Form Incomplete Nos.:		1	Less than 90 days old (Y/N):				

General Information Form

Texas Commission on Environmental Quality

For Regulated Activities on the Edwards Aquifer Recharge and Transition Zones and Relating to 30 TAC §213.4(b) & §213.5(b)(2)(A), (B) Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **General Information Form** is hereby submitted for TCEQ review. The application was prepared by:

Print Name of Customer/Agent: Christine Campbell, P.E.

Date: 09/18/2024

Signature of Customer/Agent:

That Confull

Project Information

- 1. Regulated Entity Name: Parkside Peninsula Phase 3
- 2. County: Williamson
- 3. Stream Basin: Brazos River Basin
- 4. Groundwater Conservation District (If applicable): N/A
- 5. Edwards Aquifer Zone:

6. Plan Type:

WPAP	AST
⊠ scs	UST UST
Modification	Exception Request

7. Customer (Applicant):

Contact Person: <u>Blake Magee</u> Entity: <u>HM 2243 Development, Inc.</u> Mailing Address: <u>1011 North Lamar Boulevard</u> City, State: <u>Austin, TX</u> Telephone: <u>512-481-0303</u> Email Address: <u>Blake@blakemageeco.com</u>

Zip: <u>78703</u> FAX: _____

8. Agent/Representative (If any):

Contact Person: Christine CampbellEntity: HR Green Development TX, LLCMailing Address: 5508 US Highway 290 West, Suite #150City, State: Austin, TXZip: 78735Telephone: 512-872-6696FAX: _____Email Address: christine.campbell@hrgreen.com

9. Project Location:

The project site is located inside the city limits of _____

The project site is located outside the city limits but inside the ETJ (extra-territorial jurisdiction) of <u>Georgetown</u>.

- The project site is not located within any city's limits or ETJ.
- 10. The location of the project site is described below. The description provides sufficient detail and clarity so that the TCEQ's Regional staff can easily locate the project and site boundaries for a field investigation.

Located along Cypress Paul Street. Southwest of Parkside Peninsula Sections 1 & 2.

- 11. Attachment A Road Map. A road map showing directions to and the location of the project site is attached. The project location and site boundaries are clearly shown on the map.
- 12. Attachment B USGS / Edwards Recharge Zone Map. A copy of the official 7 ½ minute USGS Quadrangle Map (Scale: 1" = 2000') of the Edwards Recharge Zone is attached. The map(s) clearly show:

Project site boundaries.

USGS Quadrangle Name(s).

Boundaries of the Recharge Zone (and Transition Zone, if applicable).

Drainage path from the project site to the boundary of the Recharge Zone.

- 13. The TCEQ must be able to inspect the project site or the application will be returned. Sufficient survey staking is provided on the project to allow TCEQ regional staff to locate the boundaries and alignment of the regulated activities and the geologic or manmade features noted in the Geologic Assessment.
 - Survey staking will be completed by this date: <u>August 09, 2024</u>

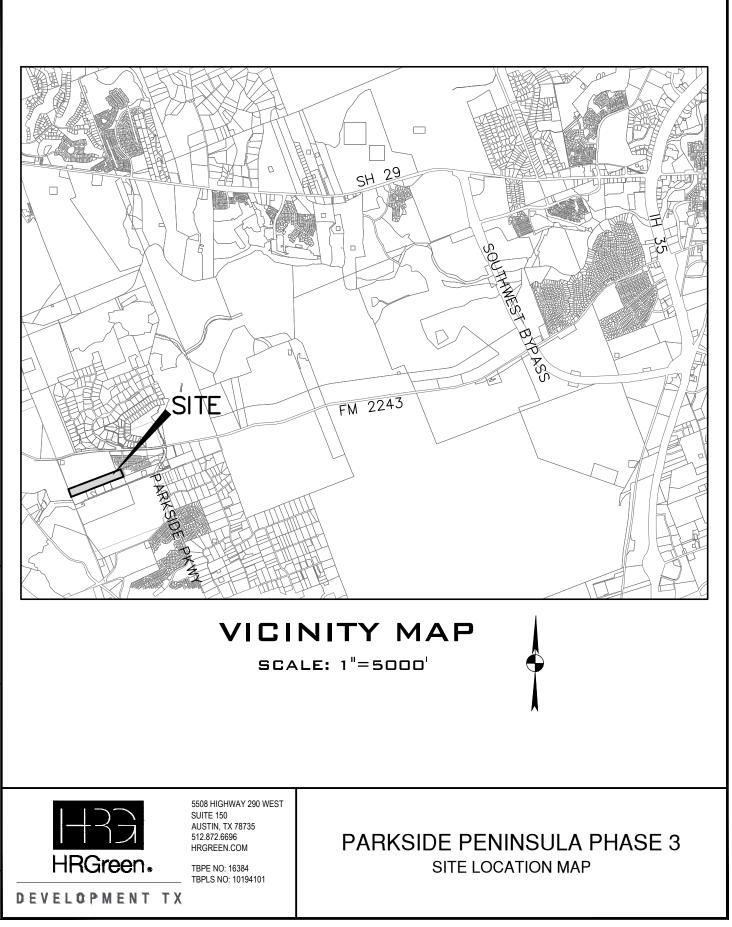
- 14. Attachment C Project Description. Attached at the end of this form is a detailed narrative description of the proposed project. The project description is consistent throughout the application and contains, at a minimum, the following details:
 - Area of the site
 Offsite areas
 Impervious cover
 Permanent BMP(s)
 Proposed site use
 Site history
 Previous development
 - Area(s) to be demolished
- 15. Existing project site conditions are noted below:
 - Existing commercial site
 Existing industrial site
 Existing residential site
 Existing paved and/or unpaved roads
 Undeveloped (Cleared)
 Undeveloped (Undisturbed/Uncleared)
 Other: _____

Prohibited Activities

- 16. I am aware that the following activities are prohibited on the Recharge Zone and are not proposed for this project:
 - (1) Waste disposal wells regulated under 30 TAC Chapter 331 of this title (relating to Underground Injection Control);
 - (2) New feedlot/concentrated animal feeding operations, as defined in 30 TAC §213.3;
 - (3) Land disposal of Class I wastes, as defined in 30 TAC §335.1;
 - (4) The use of sewage holding tanks as parts of organized collection systems; and
 - (5) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41(b), (c), and (d) of this title (relating to Types of Municipal Solid Waste Facilities).
 - (6) New municipal and industrial wastewater discharges into or adjacent to water in the state that would create additional pollutant loading.
- 17. I am aware that the following activities are prohibited on the Transition Zone and are not proposed for this project:
 - (1) Waste disposal wells regulated under 30 TAC Chapter 331 (relating to Underground Injection Control);
 - (2) Land disposal of Class I wastes, as defined in 30 TAC §335.1; and

(3) New municipal solid waste landfill facilities required to meet and comply with Type I standards which are defined in §330.41 (b), (c), and (d) of this title.

Administrative Information


- 18. The fee for the plan(s) is based on:
 - For a Water Pollution Abatement Plan or Modification, the total acreage of the site where regulated activities will occur.
 - For an Organized Sewage Collection System Plan or Modification, the total linear footage of all collection system lines.
 - For a UST Facility Plan or Modification or an AST Facility Plan or Modification, the total number of tanks or piping systems.
 - A request for an exception to any substantive portion of the regulations related to the protection of water quality.
 - A request for an extension to a previously approved plan.
- 19. Application fees are due and payable at the time the application is filed. If the correct fee is not submitted, the TCEQ is not required to consider the application until the correct fee is submitted. Both the fee and the Edwards Aquifer Fee Form have been sent to the Commission's:

🔀 TCEQ cashier

Austin Regional Office (for projects in Hays, Travis, and Williamson Counties)

San Antonio Regional Office (for projects in Bexar, Comal, Kinney, Medina, and Uvalde Counties)

- 20. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 21. No person shall commence any regulated activity until the Edwards Aquifer Protection Plan(s) for the activity has been filed with and approved by the Executive Director.

Texas Commission on Environmental Quality Edwards Aquifer Protection Program TCEQ

Regulatory Zones

30 TAC Chapter 213- Edwards Aquifer Effective May 1985

This map was produced by the Groundwater Planning and Assessment Team of the Texas Commission on Environmental Quality to detail the boundaries of the regulatory zones of the Edwards Aquifer Protection Program, as described in Texas Administrative Code Title 30, Part 1, §213.3. No other claims are made to the accuracy or completeness of the data or to its suitability for a particular use. For more information about the Edwards Aquifer Protection Program, please contact the TCEQ Regional Offices in San Antonio or Austin. Printed June 2006.

ATTACHMENT C – PROJECT NARRATIVE

The Parkside Peninsula Phase 3 development is a proposed single-family residential development tract, including associated right-of-way, drainage, and utilities located in the City of Georgetown and Williamson County. The project site is located within the Edwards Aquifer Recharge Zone, and within the San Gabriel River watershed. The overall project site encompasses a 28.22-acre tract of land located along Cypress Paul Street, southwest of Parkside Peninsula Sections 1 & 2. There will be roughly 28.22-acres of disturbed land.

The project site is primarily undeveloped wooded land with grass. Runoff flows north to south across the property. No portion of the project site is located within the 100-year floodplain as defined by FEMA FIRM Panel No. 48491C0460F, dated December 20, 2019.

The proposed site's SCS system will be composed of a total of 4,491 LF of wastewater line. There is 2,933 LF of 8-inch (8") 115 psi (ASTM D3034) gravity wastewater pipe and 1,558 LF of 6-inch (6") gravity wastewater pipe. The proposed improvements will tie into the existing 8" wastewater stub on Cypress Paul Street, constructed with Parkside Peninsula Sections 1 & 2. This line flows to the existing Lift Station constructed with Parkside Peninsula Sections 1 & 2. This line flows to the approved SCS. It then flows through the wastewater lines constructed with Parkside on the River Phase 1A, which connects to the Barton Tributary Wastewater Line project, which connects to the San Gabriel River Interceptor and ultimately flows to the Dove Springs WWTP. The Dove Springs Wastewater Treatment Plant has the capacity to adequately treat the proposed peak flow.

The proposed development results in an impervious cover of approximately 41.0% and will have the associated runoff treated by three proposed batch detention ponds, two proposed vegetative filter strips, and the existing batch detention pond approved with Parkside Peninsula Sections 1 & 2. Of the 28.22 acres of the proposed Parkside Peninsula Phase 3 property, there is approximately 11.58 acres of post-development impervious cover. Based on the 80% TSS removal requirement by TCEQ, we need to provide 10,079 lbs of TSS removal for the proposed development. As shown in the calculations, the batch detention ponds and vegetative filter strips satisfy the TSS removal requirement. The 85% TSS removal requirement by the City of Georgetown is also satisfied by the batch detention ponds.

The proposed conditions for the overall area includes approximately 27.95 acres of post-development impervious cover, of which 16.37 acres are existing from Parkside Peninsula Sections 1 & 2, and 11.58 acres are proposed with Parkside Peninsula Phase 3. Based on the 80% TSS removal requirement by TCEQ, 24,328 lbs of TSS removal need to provided in the proposed case. As shown in the calculations, the three proposed batch detention ponds, the two proposed vegetative filter strips, and the approved, existing Parkside Peninsula Sections 1 & 2 BMPs (batch detention ponds) satisfy this requirement. The 85% TSS removal requirement by the City of Georgetown is also satisfied for the batch detention ponds. In the proposed condition, the proposed batch detention pond A (BDP-A) will treat approximately 1.86 acres of impervious cover from Phase 3 and provide 1,842 lbs of TSS removal. The proposed batch detention pond B (BDP-B) will treat approximately 2.14 acres of impervious cover from Phase 3 and provide 2,095 lbs of TSS removal. The proposed batch detention pond C (BDP-C) will treat approximately 3.28 acres of impervious cover from Phase 3 and provide 3,283 lbs of TSS removal. The proposed vegetative filter strips (VFS-01 and VFS-02) will treat approximately 1.65 acres of impervious cover from Phase 3 and provide 1,581 lbs of TSS removal. The approved, existing Parkside Peninsula Sections 1 & 2 batch detention pond A (BDP-A (EX)) will treat a total of approximately 17.03 acres of impervious cover (15.30 acres of existing impervious cover from Sections 1 & 2, and 1.73 acres of proposed impervious cover from Phase 3) and provide 16,720 lbs of TSS removal. Approximately 0.92 acres of impervious cover proposed with Phase 3 is bypassing treatment. The BMPs are overtreating to account for the bypass impervious cover.

Refer to the construction plans for the water quality calculations and batch detention pond designs. Refer to the attached Parkside Peninsula Sections 1 & 2 plans for the existing batch detention pond design. Refer to the table below for the proposed sedimentation treatment breakdown provided.

A tree demolition schedule is included in the construction plans.

The associated combination of roadway, drainage, water quality, water, and wastewater improvements will be designed and built to serve this residential development.

				PA	RKSIDE PEN	IINSULA PHASE 3	- TSS REMO	OVAL SUMM	IARY				
DRAINAGE		MAX TSS	BASIN AREA	PRE- DEVELOPMENT	PARKSIDE PENINSULA	PROPOSED I.C.	POST-DEVEL	OPMENT I.C.	TCEQ REQUIRED 80% TSS LOAD	CITY OF GEORGETOWN REQUIRED 85%	PROVIDED TSS LOAD	VOLUME	VOLUME
AREA	BMP TYPE	REMOVAL EFFICIENCY		I.C.	SECTIONS 1 & 2	PARKSIDE PENINSULA Phase 3				POND TSS LOAD REMOVAL		REQUIRED	PROVIDED
			AC	AC		AC	AC	%	LB	LB	LB	CF	CF
BDP-A	BATCH DETENTION POND	91%	4.68			1.86	1.86	40%	1,619	1,720	1,842	17,447	20,209
BDP-B	BATCH DETENTION POND	91%	4.52			2.14	2.14	47%	1,863	1,979	2,095	18,926	20,681
BDP-C	BATCH DETENTION POND	91%	11.55			3.28	3.28	28%	2,855	3,033	3,283	35,193	44,784
VFS-01	VEGETATIVE FILTER STRIP	85%	1.96			0.82	0.82	42%	714		788		
VFS-02	VEGETATIVE FILTER STRIP	85%	1.62			0.83	0.83	51%	722		793		
BP-01	BY-PASS	0%	1.17			0.50	0.50	43%	435				
BP-02	BY-PASS	0%	1.11			0.08	0.08	7%	70				
BP-03	BY-PASS	0%	0.81			0.08	0.08	10%	70				
BP-04	BY-PASS	0%	0.66			0.26	0.26	39%	226				
BDP-A (EX)	BATCH DETENTION POND	91%	39.35		15.30	1.73	17.03	43%	14,823	15,749	16,720	143,844	151,783
BDP-C (EX)	BATCH DETENTION POND	91%	2.13		0.36		0.36	17%	313	333	350	2,838	3,344
BP (EX)	BY-PASS	0%	1.91		0.71		0.71	37%	618				
	TOTAL:		71.47	0.00	16.37	11.58	27.95	39%	24,328		25,871		

Narrative Description of Site Specific Geology for the Approximately 50-Acre Tract Near the Intersection of FM 2243 (Leander Road) and CR 176 in Georgetown, Williamson County, Texas

Prepared for:

Blake Magee Company

Prepared by:

Cambrian Environmental

January 2018

NARRATIVE DESCRIPTION OF SITE SPECIFIC GEOLOGY FOR THE APPROXIMATELY 50-ACRE TRACT NEAR THE INTERSECTION OF FM 2243 (LEANDER ROAD) AND CR 176 IN GEORGETOWN, WILLIAMSON COUNTY, TEXAS

Prepared for

BLAKE MAGEE COMPANY 1011 North Lamar Boulevard Austin, Texas 78703

Prepared by

Ashley Wall

Craig Crawford, P.G.

CAMBRIAN ENVIRONMENTAL

4422 Pack Saddle Pass Suite 204 Austin, Texas 78745

Texas Geoscience Firm Registration # 50484

As a licensed professional geoscientist I attest that the contents of this report are complete and accurate to the best of my knowledge.

January 10, 2018

Geologic Assessment

Texas Commission on Environmental Quality

For Regulated Activities on The Edwards Aquifer Recharge/transition Zones and Relating to 30 TAC §213.5(b)(3), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

Print Name of Geologist: Craig Crawford, PG

Telephone: 512-705-5541

Date: 10 January 2018

Fax:

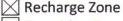
AST

UST

Representing: Cambrian Environmental (Tx Geo Firm #50484) (Name of Company and TBPG or **TBPE** registration number)

Signature of Geologist:

Regulated Entity Name: Approximately 50-acre Tract near the intersection of FM 2243 (Leander Road) and CR 176


Project Information

- 1. Date(s) Geologic Assessment was performed: 8, 9 January 2017
- 2. Type of Project:

\times	WPAP
	505

2	
1	272
	505

Location of Project:

Transition Zone

Contributing Zone within the Transition Zone

CRAIG CRAWFORD GEOLOGY

TCEQ-0585 (Rev.02-11-15)

- 4. X Attachment A Geologic Assessment Table. Completed Geologic Assessment Table (Form TCEQ-0585-Table) is attached.
- Soil cover on the project site is summarized in the table below and uses the SCS Hydrologic Soil Groups* (Urban Hydrology for Small Watersheds, Technical Release No. 55, Appendix A, Soil Conservation Service, 1986). If there is more than one soil type on the project site, show each soil type on the site Geologic Map or a separate soils map.

Soil Name	Group*	Thickness(feet)
Eckrant (EeB and EaD)	D	< 2
Georgetown (GsB)	D	< 4

Table 1 - Soil Units, Infiltration Characteristics and Thickness

* Soil Group Definitions (Abbreviated)

- A. Soils having a high infiltration rate when thoroughly wetted.
- B. Soils having a moderate infiltration rate when thoroughly wetted.
- C. Soils having a slow infiltration rate when thoroughly wetted.
- D. Soils having a very slow infiltration rate when thoroughly wetted.
- 6. Attachment B Stratigraphic Column. A stratigraphic column showing formations, members, and thicknesses is attached. The outcropping unit, if present, should be at the top of the stratigraphic column. Otherwise, the uppermost unit should be at the top of the stratigraphic column.
- 7. Attachment C Site Geology. A narrative description of the site specific geology including any features identified in the Geologic Assessment Table, a discussion of the potential for fluid movement to the Edwards Aquifer, stratigraphy, structure(s), and karst characteristics is attached.
- 8. Attachment D Site Geologic Map(s). The Site Geologic Map must be the same scale as the applicant's Site Plan. The minimum scale is 1": 400'

Applicant's Site Plan Scale: 1" = <u>100</u>' Site Geologic Map Scale: 1" = <u>100</u>' Site Soils Map Scale (if more than 1 soil type): 1" = <u>600</u>'

9. Method of collecting positional data:

Global Positioning System (GPS) technology.

Other method(s). Please describe method of data collection:

10. The project site and boundaries are clearly shown and labeled on the Site Geologic Map.

TCEQ-0585 (Rev.02-11-15)

2 of 3

11.	$\overline{\langle}$	Surface	geologic unit	s are shown	and labeled	on the	Site	Geologic Map.
-----	----------------------	---------	---------------	-------------	-------------	--------	------	---------------

12. Geologic or manmade features were discovered on the project site during the field investigation. They are shown and labeled on the Site Geologic Map and are described in the attached Geologic Assessment Table.

Geologic or manmade features were not discovered on the project site during the field investigation.

- 13. The Recharge Zone boundary is shown and labeled, if appropriate.
- 14. All known wells (test holes, water, oil, unplugged, capped and/or abandoned, etc.): If applicable, the information must agree with Item No. 20 of the WPAP Application Section.
 - There are _____ (#) wells present on the project site and the locations are shown and labeled. (Check all of the following that apply.)

The wells are not in use and have been properly abandoned.

The wells are not in use and will be properly abandoned.

] The wells are in use and comply with 16 TAC Chapter 76.

There are no wells or test holes of any kind known to exist on the project site.

Administrative Information

15. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.

NARRATIVE DESCRIPTION OF SITE SPECIFIC GEOLOGY FOR THE APPROXIMATELY 50-ACRE TRACT NEAR THE INTERSECTION OF FM 2243 (LEANDER ROAD) AND CR 176 IN GEORGETOWN, WILLIAMSON COUNTY, TEXAS

PROJECT DESCRIPTION

This narrative Geologic Assessment accompanies the Texas Commission on Environmental Quality (TCEQ) Geologic Assessment form TCEQ-0585 completed for an approximately 50-acre tract located on Farm-to-Market (FM) 2243. The project area is located on the south side of FM 2243, approximately 5.5 miles west of the intersection with Interstate Highway (IH) 35 (see Site Location Map).

METHODOLOGY

A Cambrian Environmental Registered Professional Geoscientist (License # 10791) and 3 karst technicians conducted a field survey for a Geologic Assessment on 8 and 9 January 2018. The pedestrian survey was completed by walking parallel transects spaced approximately 50 feet apart as directed by the TCEQ in the <u>Instructions to Geologists for Geologic Assessments on the Edwards Aquifer Recharge/Transition Zones</u> (Rev. 10-01-04). Closer spacing was used where vegetation inhibited clear observation. All potential karst features, including depressions, holes, and animal burrows, were carefully examined for evidence of subsurface extent. A number of techniques were used for this effort, including probing with a digging implement to determine the thickness and consistency of fill material and feeling for the presence of air flow, which may indicate the presence of a sub-surface void space. Other techniques included making observations of any notable characteristics of the feature site such as the presence of various types of vegetation or a semi-circular burrow mound produced by the activities of small mammals. The locations of any discovered features were recorded with a handheld GPS unit and were also marked on-site with pink flagging tape. We also conducted due diligence activities as called for under the City of Georgetown Edwards Aquifer Recharge Zone Water Quality Ordinance ("the Ordinance"), and related portions of the Unified Development Code (UDC).

RESULTS

<u>Soils</u>

Soils mapped within the project area included the Eckrant (EeB and EaD) and Georgetown (GsB) series soils (see Site Soils Map).¹ The Eckrant and Georgetown series soils are within the "D" classification of the hydrologic soil groups. Type "D" soils have a very slow infiltration rate (very high runoff potential) when thoroughly wet.

Geology

The project area is located within the Edwards Aquifer Recharge Zone. The bedrock lithology underlying the Project Area is Cretaceous in age and consists of the Edwards Limestone (Ked; see Site Geologic Map). The geology of the property has been mapped most recently at a useful scale by Collins (2005), and we find his interpretation of the geology to be generally accurate.²

¹ United States Department of Agriculture, Soil Conservation Service, Soil Survey of Williamson County, Texas, 1983.

² Collins, E.W., 2005, Geologic Map of the West Half of the Taylor 30x60 Quadrangle: Central Texas Urban Corridor, Encompassing Round Rock, Georgetown, Salado, Briggs, Liberty Hill, and Leander. Bureau of Economic Geology, The University of Texas at Austin. Austin, Texas 78713-8924.

Recharge into the aquifer primarily occurs in areas where the Edwards Group and Georgetown Formation are exposed at the surface. Most recharge is from direct infiltration via precipitation and streamflow loss. Recharge occurs predominantly along secondary porosity features such as faults, fractures, and karst features (caves, solution cavities, sinkholes, etc.). Karst features are commonly formed along joints, fractures, and bedding plane surfaces in the Edwards Group. No faults are mapped within the project area, and none were observed during the pedestrian survey.

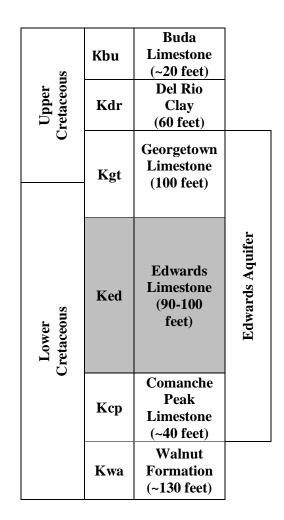
The property appears to have undergone multiple episodes of brush and tree clearing activities, and is evidenced by numerous non-karst closed depressions located on the tract.

A review of the Texas Water Development Board online Groundwater Data Viewer³ did not indicate that there are any documented ground water wells located on the tract, and no wells were discovered during the pedestrian survey.

City of Georgetown Ordinance

The City of Georgetown Ordinance requires buffers around regulated streams and springs, and enhanced water quality measures within the Recharge Zone within the City of Georgetown Extra-Territorial Jurisdiction (ETJ). The Ordinance also requires that the Professional Geoscientist identifies regulated streams and springs in the Geologic Assessment.

No springs or streams were identified within the project area during the pedestrian survey, and therefore no occupied site protection, or spring or stream buffer protection measures will be required for the project.


All regulated activities within the recharge zone must follow water quality best management practices, and development of the project area will need to comply with the water quality protection measures as outlined in Section 8 of the Ordinance.

Feature Descriptions

- **F-1** The feature consists of a sinkhole that measures approximately 8 feet by 4 feet by at least 2 feet deep. The feature is lined with loose limestone cobbles, dark brown clayey loam soil, and leaf litter. Some of the limestone cobbles and slabs in the feature appear to be stacked, so it is possible that this feature may have been backfilled at some point in the past. Although it was barely perceptible, the feature seemed to have slight air flow emitting from the feature. There was no open passage to the feature, however the detected airflow indicates that this feature is karst in origin. The feature is located in a relatively flat area, and the catchment area is less than 50 feet in all directions.
- **F-2** The feature consists of a non-karst closed depression that measures approximately 3 feet in diameter by 1 foot deep. The feature appears to be related to an animal burrow beneath several limestone float slabs. The feature is lined with dark brown clayey loam soil.

³ https://www2.twdb.texas.gov/apps/waterdatainteractive/groundwaterdataviewer

*Shaded areas represent lithologies underlying the project area

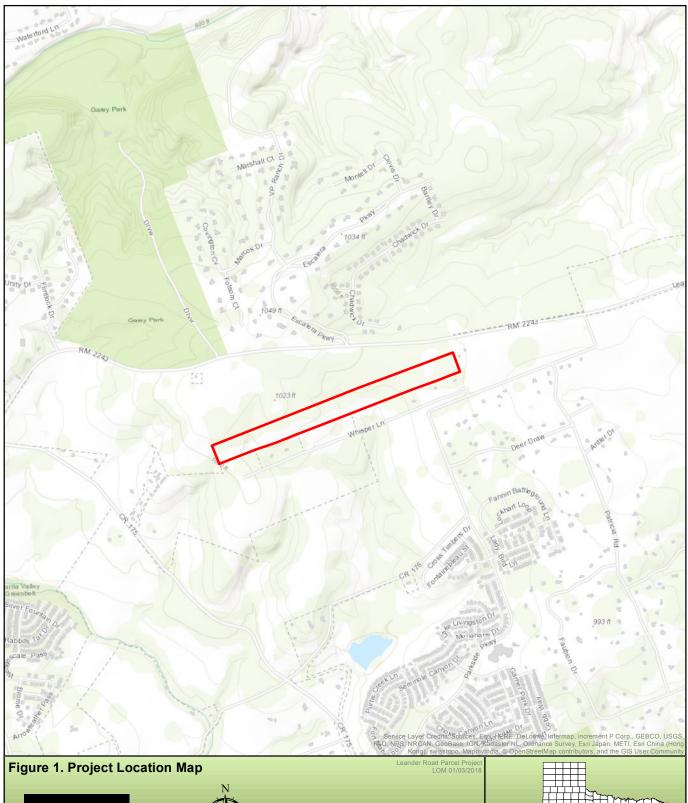
	LOCATIO	N				FEATURE CHARACTERISTICS						S		50-acre						SETTIN
1A	1B*	1C*	2A	2B	3	4 5 5A 6 7 8A 8B									9 10			11		12
FEATURE ID	LATITUDE	LONGITUDE	FEATURE	POINTS	FORMATION	DIME	NSIONS	(FEET)	TREND (DEGREES)	DOM	DENSITY (NO/FT)	APERTURE (FEET)	INFILL	RELATIVE INFILTRATION RATE	TOTAL	SENS	ITIVITY		ENT AREA RES)	TOPOGRAPH
						х	Y	Z		10						<40	>40	<1.6	<u>>1.6</u>	
F-1	30.59385	-97.77616	SH	20	Ked	8	4	2					C,F,O	30	50		Х	Х		Hilltop
F-2	30.5933	-97.77699	CD	5	Ked	3	3	1					F,O	20	25	Х		Х		Hilltop
	· · · · · · · · · · · · · · · · · · ·	-																		
		-																		
DATUM:	WGS84																	<u> </u>		and the second
2A TYPE		TYPE		2	B POINTS						8	A INFILLI	NG							
С	Cave				30		N	None	, exposed	bedr	ock									
SC	Solution cavity				20		с	Coar	se - cobble	es, br	eakdowr	n, sand, g	ravel							
SF	Solution-enlarge	d fracture(s)			20		0	Loos	e or soft m	ud or	soil, org	anics, lea	aves, stick	s, dark color	s					
F	Fault				20		F	Fines	, compact	ed cla	ay-rich s	ediment,	soil profile	e, gray or red	colors					
C	Other natural bee	drock features			5		v	Vege	tation. Giv	e det	ails in na	arrative de	escription							
MB	Manmade feature	e in bedrock			30		FS	Flows	stone, cem	ents,	cave de	posits								
SW	Swallow hole				30		x	Othe	materials								-			
SH	Sinkhole				20															

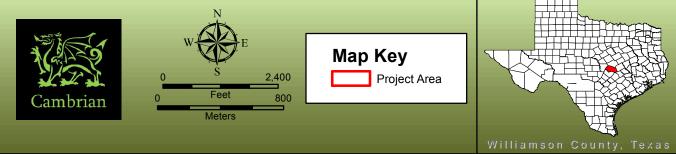
I have read, I understood, and I have followed the Texas Commission on Environmental Quality's Instructions to Geologists. The information presented here complies with that document and is a true representation of the conditions observed in the field. My signature certifies that I am qualified as a geologist as defined by 30 TAC Chapter 213.

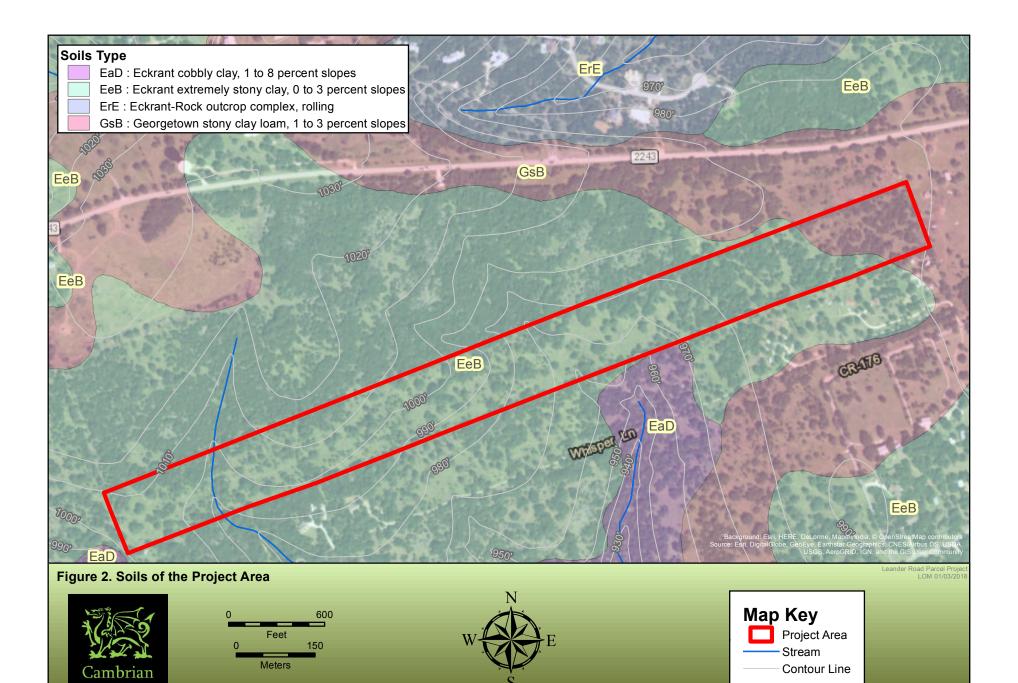
Date 10 January 2018

Sheet 1 of 1

Cliff, Hilltop, Hillside, Drainage, Floodplain, Streambed


30


CRAIG CRAWFORD B GEOLOGY NO. 10791


TCEQ-0585-Table (Rev. 10-01-04)

Zone, clustered or aligned features

z

Organized Sewage Collection System Application

Texas Commission on Environmental Quality

For Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(c), Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Regulated Entity Name: Parkside Peninsula Phase 3

 Attachment A – SCS Engineering Design Report. This Engineering Design Report is provided to fulfill the requirements of 30 TAC Chapter 217, including 217.10 of Subchapter A, §§217.51 – 217.70 of Subchapter C, and Subchapter D as applicable, and is required to be submitted with this SCS Application Form.

Customer Information

 The entity and contact person responsible for providing the required engineering certification of testing for this sewage collection system upon completion (including private service connections) and every five years thereafter to the appropriate TCEQ region office pursuant to 30 TAC §213.5(c) is:

Contact Person: <u>Blake Magee</u> Entity: <u>HM 2243 Development, Inc.</u> Mailing Address: <u>1011 North Lamar Boulevard</u> City, State: <u>Austin, TX</u> Zip: <u>78703</u> Telephone: <u>512-481-0303</u> Fax: _____ Email Address: <u>Blake@blakemageeco.com</u> *The appropriate regional office must be informed of any changes in this information within 30 days of the change.*

3. The engineer responsible for the design of this sewage collection system is:

Contact Person: Christine Campbell, P.E.	
Texas Licensed Professional Engineer's Number: 14	2536
Entity: <u>HR Green Development TX, LLC</u>	
Mailing Address: <u>5508 Highway 290 West, #150</u>	
City, State: <u>Austin, TX</u>	Zip: <u>78735</u>
Telephone: <u>512-872-6696</u>	Fax:
Email Address:christine.campbell@hrgreen.com	

Project Information

4. Anticipated type of development to be served (estimated future population to be served, plus adequate allowance for institutional and commercial flows):

Residential: Number of single-family lots: <u>106</u>
Multi-family: Number of residential units:
Commercial
Industrial
Off-site system (not associated with any development)
Other:

5. The character and volume of wastewater is shown below:

<u>100</u> % Domestic	<u>26,500</u> gallons/day
% Industrial	gallons/day
% Commingled	gallons/day
Total gallons/day: <u>26,500</u>	

- Existing and anticipated infiltration/inflow is <u>28,220 (per City of Georgetown I&I calculations</u> <u>of 1,000 gallons/day/acre</u> gallons/day. This will be addressed by: <u>Using standard</u> <u>manholes and included in/out calculations for pipe design and flow determination</u>.
- 7. A Water Pollution Abatement Plan (WPAP) is required for construction of any associated commercial, industrial or residential project located on the Recharge Zone.

The WPAP application for this development was approved by letter dated _____. A copy of the approval letter is attached.

The WPAP application for this development was submitted to the TCEQ on 09/18/24, but has not been approved.

A WPAP application is required for an associated project, but it has not been submitted. There is no associated project requiring a WPAP application.

8. Pipe description:

Table 1 - Pipe Description

Pipe Diameter(Inches)	Linear Feet (1)	Pipe Material (2)	Specifications (3)
8"	2,933	PVC SDR 26	ASTM D3034
6"	1,558	PVC SDR 26	ASTM D3034

Total Linear Feet: 4,491

- (1) Linear feet Include stub-outs and double service connections. Do not include private service laterals.
- (2) Pipe Material If PVC, state SDR value.

- (3) Specifications ASTM / ANSI / AWWA specification and class numbers should be included.
- 9. The sewage collection system will convey the wastewater to the Dove Springs WWTP (name) Treatment Plant. The treatment facility is:

10. All components of this sewage collection system will comply with:

N The City of Georgetown standard specifications.

Other. Specifications are attached.

- 11. 🖂 No force main(s) and/or lift station(s) are associated with this sewage collection system.
 - A force main(s) and/or lift station(s) is associated with this sewage collection system and the Lift Station/Force Main System Application form (TCEQ-0624) is included with this application.

Alignment

- 12. 🖂 There are no deviations from uniform grade in this sewage collection system without manholes and with open cut construction.
- 13. 🖂 There are no deviations from straight alignment in this sewage collection system without manholes.
 - Attachment B Justification and Calculations for Deviation in Straight Alignment without Manholes. A justification for deviations from straight alignment in this sewage collection system without manholes with documentation from pipe manufacturer allowing pipe curvature is attached.
 - For curved sewer lines, all curved sewer line notes (TCEQ-0596) are included on the construction plans for the wastewater collection system.

Manholes and Cleanouts

14. X Manholes or clean-outs exist at the end of each sewer line(s). These locations are listed below: (Please attach additional sheet if necessary)

Line	Shown on Sheet	Station	Manhole or Clean- out?
A1	57 Of 68	1+06.01	MH
A2	57 Of 68	2+10.48	MH
A3	57 Of 68	4+42.46	MH
A4	57 Of 68	5+43.55	MH
A5	57 Of 68	7+57.80	MH
A6	57 Of 68	8+75.10	MH

Table 2 - Manholes and Cleanouts

Line	Shown on Sheet	Station	Manhole or Clean- out?
A7	58 Of 68	13+52.39	MH
A8	58 Of 68	15+76.75	MH
A9	58 Of 68	18+46.81	MH
A10	59 Of 68	20+81.55	MH

- 15. Manholes are installed at all Points of Curvature and Points of Termination of a sewer line.
- 16. The maximum spacing between manholes on this project for each pipe diameter is no greater than:

Pipe Diameter (inches)	Max. Manhole Spacing (feet)
6 - 15	500
16 - 30	800
36 - 48	1000
≥54	2000

- Attachment C Justification for Variance from Maximum Manhole Spacing. The maximum spacing between manholes on this project (for each pipe diameter used) is greater than listed in the table above. A justification for any variance from the maximum spacing is attached, and must include a letter from the entity which will operate and maintain the system stating that it has the capability to maintain lines with manhole spacing greater than the allowed spacing.
- 17. All manholes will be monolithic, cast-in-place concrete.

The use of pre-cast manholes is requested for this project. The manufacturer's specifications and construction drawings, showing the method of sealing the joints, are attached.

Site Plan Requirements

Items 18 - 25 must be included on the Site Plan.

18. \square The Site Plan must have a minimum scale of 1" = 400'.

```
Site Plan Scale: 1'' = 40'.
```

- 19. The Site Plan must include the sewage collection system general layout, including manholes with station numbers, and sewer pipe stub outs (if any). Site plan must be overlain by topographic contour lines, using a contour interval of not greater than ten feet and showing the area within both the five-year floodplain and the 100-year floodplain of any drainage way.
- 20. Lateral stub-outs:
 - \boxtimes The location of all lateral stub-outs are shown and labeled.

No lateral stub-outs will be installed during the construction of this sewer collection system.

21. Location of existing and proposed water lines:

 \boxtimes The entire water distribution system for this project is shown and labeled.

If not shown on the Site Plan, a Utility Plan is provided showing the entire water and sewer systems.

There will be no water lines associated with this project.

22. 100-year floodplain:

After construction is complete, no part of this project will be in or cross a 100-year floodplain, either naturally occurring or manmade. (Do not include streets or concrete-lined channels constructed above of sewer lines.)

After construction is complete, all sections located within the 100-year floodplain will have water-tight manholes. These locations are listed in the table below and are shown and labeled on the Site Plan. (Do not include streets or concrete-lined channels constructed above sewer lines.)

Table 3 - 100-Year Floodplain

Line	Sheet	Station
	of	to

23. 5-year floodplain:

After construction is complete, no part of this project will be in or cross a 5-year floodplain, either naturally occurring or man-made. (Do not include streets or concrete-lined channels constructed above sewer lines.)

After construction is complete, all sections located within the 5-year floodplain will be encased in concrete or capped with concrete. These locations are listed in the table below and are shown and labeled on the Site Plan. (Do not include streets or concrete-lined channels constructed above sewer lines.)

Table 4 - 5-Year Floodplain

Line	Sheet	Station
	of	to

24. \boxtimes Legal boundaries of the site are shown.

25. The *final plans and technical specifications* are submitted for the TCEQ's review. Each sheet of the construction plans and specifications are dated, signed, and sealed by the Texas Licensed Professional Engineer responsible for the design on each sheet.

Items 26 - 33 must be included on the Plan and Profile sheets.

26. All existing or proposed water line crossings and any parallel water lines within 9 feet of sewer lines are listed in the table below. These lines must have the type of pressure rated pipe to be installed shown on the plan and profile sheets. Any request for a variance from the required pressure rated piping at crossings must include a variance approval from 30 TAC Chapter 290.

There will be no water line crossings.

 \boxtimes There will be no water lines within 9 feet of proposed sewer lines.

Table 5 - Water Line Crossings

Line	Station or Closest Point	Crossing or Parallel	Horizontal Separation Distance	Vertical Separation Distance
			-	
			-	
			-	
			-	
			-	
			-	
			-	

27. Vented Manholes:

No part of this sewer line is within the 100-year floodplain and vented manholes are not required by 30 TAC Chapter 217.

A portion of this sewer line is within the 100-year floodplain and vented manholes will be provided at less than 1500 foot intervals. These water-tight manholes are listed in the table below and labeled on the appropriate profile sheets.

A portion of this sewer line is within the 100-year floodplain and an alternative means of venting shall be provided at less than 1500 feet intervals. A description of the alternative means is described on the following page.

A portion of this sewer line is within the 100-year floodplain; however, there is no interval longer than 1500 feet located within. No vented manholes will be used.

Table 6 - Vented Manholes

Line	Manhole	Station	Sheet

Line	Manhole	Station	Sheet

28. Drop manholes:

There are no drop manholes associated with this project.

Sewer lines which enter new or existing manholes or "manhole structures" higher than 24 inches above the manhole invert are listed in the table below and labeled on the appropriate profile sheets. These lines meet the requirements of 30 TAC §217.55(I)(2)(H).

Table 7 - Drop Manholes

Line	Manhole	Station	Sheet
WWL A	A1	1+06.01	57 OF 68

29. Sewer line stub-outs (For proposed extensions):

The placement and markings of all sewer line stub-outs are shown and labeled.

No sewer line stub-outs are to be installed during the construction of this sewage collection system.

30. Lateral stub-outs (For proposed private service connections):

The placement and markings of all lateral stub-outs are shown and labeled.

] No lateral stub-outs are to be installed during the construction of this sewage collection system.

31. Minimum flow velocity (From Appendix A)

Assuming pipes are flowing full; all slopes are designed to produce flows equal to or greater than 2.0 feet per second for this system/line.

32. Maximum flow velocity/slopes (From Appendix A)

Assuming pipes are flowing full, all slopes are designed to produce maximum flows of less than or equal to 10 feet per second for this system/line.

Attachment D – Calculations for Slopes for Flows Greater Than 10.0 Feet per Second. Assuming pipes are flowing full, some slopes produce flows which are greater than 10 feet per second. These locations are listed in the table below. Calculations are attached.

Line	Profile Sheet	Station to Station	FPS	% Slope	Erosion/Shock Protection

Table 8 - Flows Greater Than 10 Feet per Second

33. Assuming pipes are flowing full, where flows are ≥ 10 feet per second, the provisions noted below have been made to protect against pipe displacement by erosion and/or shock under 30 TAC §217.53(I)(2)(B).

Concrete encasement shown on appropriate Plan and Profile sheets for the locations listed in the table above.

Steel-reinforced, anchored concrete baffles/retards placed every 50 feet shown on appropriate Plan and Profile sheets for the locations listed in the table above.
 N/A

Administrative Information

- 34. The final plans and technical specifications are submitted for TCEQ review. Each sheet of the construction plans and specifications are dated, signed, and sealed by the Texas Licensed Professional Engineer responsible for the design on each sheet.
- 35. Standard details are shown on the detail sheets, which are dated, signed, and sealed by the Texas Licensed Professional Engineer, as listed in the table below:

Standard Details	Shown on Sheet
Lateral stub-out marking [Required]	60 of 68
Manhole, showing inverts comply with 30 TAC §217.55(I)(2) [Required]	60 of 68
Alternate method of joining lateral to existing SCS line for potential future connections [Required]	60 of 68
Typical trench cross-sections [Required]	61 of 68
Bolted manholes [Required]	60 of 68
Sewer Service lateral standard details [Required]	60 of 68
Clean-out at end of line [Required, if used]	N/A of 68
Baffles or concrete encasement for shock/erosion protection [Required, if flow velocity of any section of pipe >10 fps]	N/A of 68
Detail showing Wastewater Line/Water Line Crossing [Required, if crossings are proposed]	61 of 68
Mandrel detail or specifications showing compliance with 30 TAC §217.57(b) and (c) [Required, if Flexible Pipe is used]	N/A of 68

Table 9 - Standard Details

Standard Details	Shown on Sheet
Drop manholes [Required, if a pipe entering a manhole is more than 24 inches above manhole invert]	60 of 68

- 36. All organized sewage collection system general construction notes (TCEQ-0596) are included on the construction plans for this sewage collection system.
- 37. All proposed sewer lines will be sufficiently surveyed/staked to allow an assessment prior to TCEQ executive director approval. If the alignments of the proposed sewer lines are not walkable on that date, the application will be deemed incomplete and returned.
 - Survey staking was completed on this date: August 09, 2024
- 38. Submit one (1) original and one (1) copy of the application, plus additional copies as needed for each affected incorporated city, groundwater conservation district, and county in which the project will be located. The TCEQ will distribute the additional copies to these jurisdictions. The copies must be submitted to the appropriate regional office.
- 39. Any modification of this SCS application will require TCEQ approval, prior to construction, and may require submission of a revised application, with appropriate fees.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Organized Sewage Collection System Application** is hereby submitted for TCEQ review and executive director approval. The system was designed in accordance with the requirements of 30 TAC §213.5(c) and 30 TAC §217 and prepared by:

Print Name of Licensed Professional Engineer: Christine Campbell, P.E.

Date: <u>09/18/24</u>

Place engineer's seal here:

Signature of Licensed Professional Engineer:

Chuth Cmpull

Appendix A-Flow Velocity Table

Flow Velocity (Flowing Full) All gravity sewer lines on the Edwards Aquifer Recharge Zone shall be designed and constructed with hydraulic slopes sufficient to give a velocity when flowing full of not less than 2.0 feet per second, and not greater than 10 feet per second. The grades shown in the following table are based on Manning's formula and an n factor of 0.013 and shall be the minimum and maximum acceptable slopes unless provisions are made otherwise.

% Slope required for minimum flow velocity of 2.0 fps	% Slope which produces flov velocity of 10.0 fps		
0.50	12.35		
0.33	8.40		
0.25	6.23		
0.20	4.88		
0.15	3.62		
0.11	2.83		
0.09	2.30		
0.08	1.93		
0.06	1.65		
0.055	1.43		
0.05	1.26		
0.045	1.12		
0.04	1.01		
*	*		
	minimum flow velocity of 2.0 fps 0.50 0.33 0.25 0.20 0.15 0.11 0.09 0.08 0.055 0.055 0.045		

Table 10 - Slope Velocity

*For lines larger than 39 inches in diameter, the slope may be determined by Manning's formula (as shown below) to maintain a minimum velocity greater than 2.0 feet per second when flowing full and a maximum velocity less than 10 feet per second when flowing full.

$$v = \frac{1.49}{n} \times R_h^{0.67} \times \sqrt{S}$$

Figure 1 - Manning's Formula

Where:

v = velocity (ft/sec)
n = Manning's roughness coefficient
(0.013)
Rh = hydraulic radius (ft)
S = slope (ft/ft)

Attachment A - Engineering Design Report Organized Sewage Collection System

Parkside Peninsula Phase 3

CITY OF GEORGETOWN WILLIAMSON COUNTY, TEXAS

September 18, 2024

HR Green Project No: 2302005

Prepared For: HM 2243 Development, Inc. 1011 North Lamar Boulevard Austin, Texas 78703

Prepared By: HR Green Development TX, LLC 5508 Highway 290 West, Suite 150 Austin, Texas 78735 TBPE Firm No. F-16384

TABLE OF CONTENTS

Introduction	1
Wastewater Collection System Design	1
Proposed Type of Pipe	2
6" SDR-26 Properties	2
8" SDR-26 Properties	2
Structural Calculations	2
Average Values of Modulus of Soil Reaction, E'	3
Pipe Bedding Class and Modulus of Soil Reaction, E_b :	4
Prism Load Determination:	5
Live Load Determinations:	6
Allowable Buckling Pressure (6" PVC):	7
Installed Condition Buckling Pressure (6" PVC):	8
Allowable Buckling Pressure (8" PVC):	9
Installed Condition Buckling Pressure (8" PVC):	10
Wall Crushing (6" PVC):	11
Wall Crushing (8" PVC):	12
Leonhardt's Zeta Factor – Deflection Analysis:	13
6" Pipe	13
8" Pipe	13
Pipe Stiffness:	14
6" Pipe	
8" Pipe	
Predicted Pipe Deflection	15
6" Pipe	15
8" Pipe	
Pipe Strain	17
6" Pipe	17
8" Pipe	18

INTRODUCTION

The SCS and WPAP accompanying this submittal will serve the Parkside Peninsula Phase 3 Subdivision.

Parkside is a master-planned subdivision located in Williamson County, Texas, within the City of Georgetown's ETJ. The Parkside Peninsula Phae 3 property consists of 28.22 acres and 106 single-family lots located within the Edwards Aquifer recharge zone, along Cypress Paul Street and southwest of Parkside Peninsula Sections 1 & 2.

The proposed site's SCS system will be composed of a total of 4,491 LF of wastewater line. There is 2,933 LF of 8-inch (8") 115 psi (ASTM D3034) gravity wastewater pipe and 1,558 LF of 6-inch (6") gravity wastewater pipe. The proposed improvements will tie into the existing 8" wastewater stub on Cypress Paul Street, constructed with Parkside Peninsula Sections 1 & 2. This line flows to the existing Lift Station constructed with Parkside Peninsula Sections 1 & 2. This line flows to the approved SCS. It then flows through the wastewater lines constructed with Parkside on the River Phase 1A, which connects to the Barton Tributary Wastewater Line project, which connects to the San Gabriel River Interceptor and ultimately flows to the Dove Springs WWTP. The Dove Springs Wastewater Treatment Plant has the capacity to adequately treat the proposed peak flow.

WASTEWATER COLLECTION SYSTEM DESIGN

The wastewater collection system was designed based on a wastewater flow rate of 250 gallons per day per LUE per City of Georgetown's Criteria Manual. Based on the flow rate and slopes of the system, 8-inch gravity sewer pipe was selected for the collection system.

The SCS and waterline system will maintain 9 feet of separation as required.

The gravity sewage collection system (all PVC SDR-26) in Parkside Peninsula Phase 3 will remain within the TCEQ minimums for pipe slopes: 0.33 - 8.40% for 8-inch pipe. The proposed slopes on the site range from 0.50% - 4.00% for 8-inch pipe. According to Manning's equation for an 8" pipe with a manning's coefficient of 0.013 at a 0.50% slope, the velocity at full flow is 2.44 feet per second. The velocity of an 8" pipe at a slope of 4.00% is 6.90 feet per second. All gravity sewage pipe in this project will be greater than 2.0 feet per second and less than 10 feet per second when flowing full.

The gravity sewage collection system six-inch (6") PVC SDR-26 pipe used for service laterals will remain within the TCEQ minimum 0.50% and maximum of 12.35%.

PROPOSED TYPE OF PIPE

6" SDR-26 PROPERTIES	
Pipe Compliance:	ASTM D-3034
Joint Compliance:	ASTM D-3212
Minimum Tensile Strength (psi):	7,000
Minimum Modulus of Elasticity (psi):	400,000
Average Inner Diameter (inch):	5.793
Average Outer Diameter (inch):	6.275
Wall Thickness (inch):	0.241
Approximate Trenching Width (feet):	5.583
Minimum Pipe Depth (Cover) used (feet):	9.31
Maximum Pipe Depth (Cover) used (feet):	19.99'
8" SDR-26 PROPERTIES	
	ASTM D-3034
Pipe Compliance:	ASTM D-3034 ASTM D-3212
Pipe Compliance: Joint Compliance:	ASTM D-3212
Pipe Compliance: Joint Compliance: Minimum Tensile Strength (psi):	ASTM D-3212 7,000
Pipe Compliance: Joint Compliance: Minimum Tensile Strength (psi): Minimum Modulus of Elasticity (psi):	ASTM D-3212 7,000 400,000
Pipe Compliance: Joint Compliance: Minimum Tensile Strength (psi): Minimum Modulus of Elasticity (psi): Average Inner Diameter (inch): Average Outer Diameter (inch): Wall Thickness (inch):	ASTM D-3212 7,000 400,000 7.754 8.400 0.323
Pipe Compliance: Joint Compliance: Minimum Tensile Strength (psi): Minimum Modulus of Elasticity (psi): Average Inner Diameter (inch): Average Outer Diameter (inch):	ASTM D-3212 7,000 400,000 7.754 8.400
Pipe Compliance: Joint Compliance: Minimum Tensile Strength (psi): Minimum Modulus of Elasticity (psi): Average Inner Diameter (inch): Average Outer Diameter (inch): Wall Thickness (inch): Approximate Trenching Width (feet):	ASTM D-3212 7,000 400,000 7.754 8.400 0.323
Pipe Compliance: Joint Compliance: Minimum Tensile Strength (psi): Minimum Modulus of Elasticity (psi): Average Inner Diameter (inch): Average Outer Diameter (inch): Wall Thickness (inch):	ASTM D-3212 7,000 400,000 7.754 8.400 0.323 5.583

STRUCTURAL CALCULATIONS

Since the deepest wastewater pipe is greater than 17 feet below ground, structural calculations have been prepared for this SCS application. The structural calculations for 6" and 8" PVC pipe are as follows. Please note, most pipes proposed in the SCS application meet the following requirements listed in 30 TAC 217.53(k)(4):

- (A) Open trench design All pipe construction will be open trench.
- (B) Flexible pipe with a pipe stiffness of 46 psi or greater The pipe stiffness for 8" SDR ASTM D3034 is greater than 46 psi.
- (C) Buried 17 feet or less Gravity pipes are buried greater than 17 feet. The deepest pipes have been evaluated for structural calculations.
- (D) Diameter of 12 inches or less All proposed wastewater pipe is less than 12 inches.
- (E) Modulus of soil reaction for the in-situ soil of 200 psi or greater The modulus of soil reaction is greater than 200 psi.
- (F) No effects on a pipe due to live loads The ring deflection of flexible pipe relieves the pipe of the major portion of the vertical soil load; which is then carried by the surrounding soil through the mechanism of an arching action over the pipe.
- (G) A unit weight of soil of 120 pounds per cubic foot or less The unit weight of soil will be 120 pcf.
- (H) A typical pipe trench width of 36 inches or greater Trench width of 67 inches will be used for manhole or wastewater lines deeper than 17 feet.

AVERAGE VALUES OF MODULUS OF SOIL REACTION, E' TABLE 2

AVERAGE VALUES OF MODULUS OF SOIL REACTION, E' (For Initial Flexible Pipe Deflection)

	E' f	or Degree o Pipe Zone	of Compaction Backfill, psi	n of
Soil type-pipe bedding material (Unified Classification System ^a) (1)	Loose (2)	Slight <85% Proctor, <40% relative density (3)	Moderate 85%-95% Proctor, 40%-70% relative density (4)	High >95% Proctor, >70% relative density (5)
Fine-grained Soils (LL > 50) ^b Soils with medium to high plasticity CH, MH, CH-MH		competent	ilable; consult soils engineer se use E' = 0	
Fine-grained Soils (LL < 50) Soils with medium to no plasticity CL, ML ML-CL, with less than 25% coarse-grained particles	50	200	400	1,000
 Fine-grained Soils (LL < 50) Soils with medium to no plasticity CL, ML, ML-CL, with more than 25% coarse-grained particles Coarse-grained Soils with Fines GM, GC, SM, SC^c contains more than 12% fines 	100	400	1,000	2,000
Coarse-grained Soils with Little or No Fines GW, GP, SW, SP ^c contains less than 12% fines	200	1,000	2,000	3,000
Crushed Rock	1,000	3,000	3,000	3,000
Accuracy in Terms of Percentage Deflectiond	±2	±2	±1	±0.5
^a ASTM Designation D 2487, USBR Designation E-3 ^b LL = Liquid limit. ^c Or any borderline soil beginning with one of these s ^d For±1% accuracy and predicted deflection of 3%, act Note: Values applicable only for fills less than 50 ft predicting initial deflections only, appropriate Deflect bedding falls on the borderline between two compaction Percentage Proctor based on laboratory maximum dry (598,000 J/m ³) (ASTM D 698, AASHTO T-99, USBR SQUBCE: "Soil Reaction for Buried Flexible	ymbols (i.e. ual deflectio (15 m). Tab on Lag Fact n categories density fro Designatio	n would be be ble does not in tor must be ap , select lower om test standa n E-11). 1 psi	etween 2% and 4 nclude any safet pplied for long- E' value or aver ards using about $= 6.9 \text{ kN/m}^2$.	y factor. For use in term deflections. If age the two values. It 12,500 ft-lb/cu ft

SOURCE: "Soil Reaction for Buried Flexible Pipe," by Amster K. Howard, U.S. Bureau of Reclamation, Denver, Colorado. Reprinted with Permission from American Society of Civil Engineers Journal of Geotechnical Engineering Division, January 1977, pp. 33-43.

Modulus of Soil Reaction for the in-situ soil is determined to be 200 psi based on fine-grained soils (CL) with slight to moderate proctor.

PIPE BEDDING CLASS AND MODULUS OF SOIL REACTION, Eb:

Percentage Passing Sieve Sizes Atterberg Limits Coefficients Uni-No. 200 Curva-Soil Group Symbol Description ASTM D 2487 1.5 in No. 4 (0.075 ш PI formity Cu tur C re Class Type (4.75 mm) (40 mm) mm) IA Manufactured Aggregates: Angular, crushed stone or rock, crushed gravel 100% <10% <50L Non Plastic None broken coral, crushed slag, cinders or shells; large void content, contain little or no fines open-graded, clean. 100% ≤50% IB Manufactured, Processed None Angular, crushed stone (or other Class IA ma-<5% Non Plastic terials) and stone/sand mixtures with grada-Aggregates; dense-graded clean. tions selected to minimize migration of adjacent soils; contain little or no fines п Coarse-Grained Soils. GW Non Plastic Well-graded gravels and gravel-sand mixtures; 100% <50% of <5% >4 1 to 3 little or no fines clean Coarse Fraction GP Poorly-graded gravels and gravel-sand mix-tures; little or no fines <4 <1 or >3 SW Well-graded sands and gravelly sands; little or >50% of >6 1 to 3 Coarse Fraction no fines Poorly-graded sands and gravelly sands; little or no fines SP <6 <1 or >3 Coarse-Grained Soils, bor g. GW-GC, 5% to Same as for GW, GP, SW and SP Sands and gravels which are border-line 100% Vanes Non Plastic derline clean to w/fines SP-SM. between clean and with fines 12% ш Coarse-Grained Soils GM Silty gravels, gravel-sand-silt mixtures 100% <50% of >12% to <4 or <"A" Line With Fines Coarse Fraction <50% GC Clayey gravels, gravel-sand-clay mixtures <7 and >"A" Line SM Silty sands, sand-silt mixtures >50% of >4 or <"A" Line Coarse Fraction SC >7 and >"A" Line Clayey sands, sand-clay mixtures **IVA**^A Fine-Grained Soils (inor-ML. Inorganic silts and very fine sands, rock flour 100% 100% >50% <4 or <"A" Line <50 ganic) silty or clayey fine sands, silts with slight plasticity a. Inorganic clays of low to medium plasticity, >7 and >"A" gravely clays, sandy clays, silty clays, lean Line clavs IVB Fine-Grained Soils (inor-MH Inorganic silts, micaceous or diatomaceous 100% 100% >50% >50 <"A" Line ganic) fine sandy or silty soils, elastic silts CH Inorganic clays of high plasticity, fat clays >"A" Line v Organic Soils α, Organic silts and organic silty clays of low 100% 100% >50% <50 <4 or <"A" plasticity Line OH Organic clays of medium to high plasticity, >50 <"A" Line organic silts Highly Organic PT Peat and other high organic soils

TABLE 7 - DESCRIPTION OF MATERIAL CLASSIFICATION

^AIncludes Test Method ASTM D 2487 borderline classifications and dual symbols depending on plasticity index and liquid limits. NOTE: "Coarse Fraction" as used in this table is defined as material retained on a No. 200 sieve.

SOURCE: ASTM D 2321 AND AASHTO M43, AND AS PUBLISHED ON TABLE 7, IN DEFLECTION: THE PIPE/SOIL MECHANISM UNI-TR-1-97, UNI-BELL PVC PIPE ASSOCIATION, PG. 24

Per TCEQ guidelines, a contractor is allowed to use ASTM D 2321 Bedding Class 1A, 1B, II, or III at no less than 85% compaction. The calculations in this Engineering Design Report reflect the use of Bedding Class III, at 85-95% compaction with an E_b value of 1,000 psi. This represents the worst-case bedding class a contractor can choose. All other bedding class options will provide an improved value for the zeta factor as well as pipe deflection.

PRISM LOAD DETERMINATION:

TABLE 3 PRISM LOAD (LBS/IN²)

D		wΗ
r	=	144

Height of Cover	So	il Wt.	(lbs/ft ³	3)	Height of	Se	oil Wt.	(lbs/ft ²	3)
	100	<u>110</u>	120	130	Cover (ft)	100	110	120	130
2 3 4 5 6 7 8 9 10 11 12 13	0.69 1.39 2.08 2.78 3.47 4.17 4.86 5.56 6.25 6.94 7.64 8.33 9.03 9.72	0.76 1.53 2.29 3.06 3.82 4.58 5.35 6.11 6.88 7.64 8.40 9.17 9.93 10.69	0.83 1.67 2.50 3.33 4.17 5.00 5.83 6.67 7.50 8.33 9.17 10.00 10.83 11.67	0.90 1.81 2.71 3.61 4.51 5.42 6.32 7.22 8.13 9.03 9.93 10.83 11.74 12.64	16 17 18 19 20 21 22 23 24 25 26 27 28 29	11.11 11.81 12.50 13.19 13.89 14.58 15.28 15.28 15.97 16.67 17.36 18.06 18.75 19.44 20.14	12.22 12.97 13.75 14.51 15.28 16.04 16.81 17.57 18.33 19.10 19.86 20.63 21.39 22.15	13.33 14.17 15.00 15.83 16.67 17.50 18.33 19.17 20.00 20.83 21.67 22.50 23.33 24.17	14.44 15.35 16.25 17.15 18.06 18.96 19.86 20.76 21.67 22.57 23.47 24.38 25.28 26.18

Prism load is the "dead load" or the pressure acting on the pipe by the weight of the soil column above a given section of the pipe. The following prism load columns are industry standards as referenced from Table 3 in Deflection: The Pipe/Soil Mechanism INI-TR-1-97, Uni-Bell Pipe Association, Pg. 13.

The prism loads are calculated using the Marston Theory of Loads and is calculated using the formula:

$$P = \frac{y_s * H}{144}$$
, where y_s is the unit weight of the backfill material

6" Pipe: Based on the above table, at a maximum burial depth of 19.99' and a backfill soil weight of 120 lbs/ft³, the prism load is approximately 16.66 psi.

8" Pipe: Based on the above table, at a maximum burial depth of 20.43' and a backfill soil weight of 120 lbs/ft³, the prism load is approximately 17.03 psi.

LIVE LOAD DETERMINATIONS:

TABLE 4 LIVE LOADS ON PVC PIPE

Height of	Live Load Transferred to Pipe, 1b/in ²		0	Live Load Transferred to Pipe, lb/in ²			
Cover (ft)	Highway H20 ¹	Railway E80 ²	Airport 3	Cover (ft)	Highway H20 ¹	Railway E80 ²	Airport 3
1	12.50			14	*	4.17	3.06
2	5.56	26.39	13.14	16	*	3.47	2.29
3	4.17	23.61	12.28	18	*	2.78	1.91
4	2.78	18.40	11.27	20	*	2.08	1.53
5	1.74	16.67	10.09	22	*	1.91	1.14
6	1.39	15.63	8.79	24	*	1.74	1.05
7	1.22	12.15	7.85	26	*	1.39	*
1 2 3 4 5 6 7 8	0.69	11.11	6.93	28	*	1.04	*
10	*	7.64	6.09	30	*	0.69	*
12	*	5.56	4.76	35	*	*	*
2020			110.00	40	*	*	*

¹ Simulates 20 ton truck traffic + impact.

2 Simulates 80,000 lb/ft railway load + impact.

³ 180,000 lbs. dual tandem gear assembly. 26 inch spacing between tires and 66 inch center-to-center spacing between fore and aft tires under a rigid pavement 12 inches thick + impact.

* Negligible live load influence.

SOURCE: AASHTO H20 AND E80 LOADS AND AS PUBLISHED ON TABLE 4 IN DEFLECTION: THE PIPE/SOIL MECHANISM UNI-TR-1-197, UNI-BELL PVC PIPE ASSOCIATION PAGE 14.

The pipe depths of this project range from 8.89 feet to 20.43 feet. The streets in this project are not intended for heavy truck traffic.

Live Load for 8.89 feet (8.89') of cover is 0.38 psi in a highway condition. The roads within the subdivision are not designed or intended for highway conditions so this is considered a worst-case scenario for live loads.

The previous page discusses prism loads which is the dead load acting on the pipe due to the weight of the soil above the pipe. The deepest pipe in this system is approximately 20.43', thus, the prism load at that depth (17.03 psi) puts more pressure on the pipe than the live loading and prism loading combined (0.38 psi + 7.41 psi from Prism Load table on the previous page) at a minimum buried depth of 8.89'.

Since the pipes experience the most pressure at their deepest points, 20.43', it is not necessary to evaluate any other scenario.

ALLOWABLE BUCKLING PRESSURE (6" PVC):

Where:

- qa allowable buckling pressure, pound per inch square (psi)
- h height of soil surface above top of pipe in inches (ft / in) = 19.99' / 239.88" max
- B' Empirical coefficient of elastic support
- E_b modulus of soil reaction for the bedding material (psi)
- E modulus of elasticity for the pipe material (psi)
- I moment of inertia of the pipe wall cross section per linear inch of pipe, inch⁴/lineal inch = inch³. For solid wall pipe, I can be calculated with equation 4. If the pipe used is not solid wall pipe (for example a pipe with a ribbed cross section), the proper moment of inertia formula must be obtained from the manufacturer.
- t pipe structural wall thickness (in) = 0.241 in.
- D mean pipe diameter (in) = 6.034 in.

Solving for the Empirical coefficient of elastic support, given by Luscher in 1966, as referenced on *Pg. 113 of Moser, A.P., Buried Pipe Design. 2nd. Ed., McGraw-Hill:*

$$B' = \frac{4(h^2 + Dh)}{1.5(2h + D)^2} = \frac{4(239.88^2 + 6.034 + 239.88)}{1.5(2 + 239.88 + 6.034)^2} = 0.67$$
$$I = \frac{t^3}{12} = \frac{0.241^3}{12} in^3 = 0.001166 in^3$$

Using the Allowable Buckling Pressure Equation as shown in *Moser, A.P., Buried Pipe Design. 2nd. Ed., McGraw-Hill, Pg. 112*, and an initial factor of safety (FS) of 2.5, the Allowable Buckling Pressure is:

$$q_a = \frac{1}{FS} * \sqrt{32 * R_w * B' * E_b * \left(E * \frac{I}{D^3}\right)} pst$$

where Rw = 1 - 0.33 (hw / h)

$$q_a = \frac{1}{2.5} * \sqrt{32 * 1 * 0.67 * 1000 * \left(400,000 * \frac{0.001166}{6.034^3}\right) psi} = 85.14 \, psi$$

INSTALLED CONDITION BUCKLING PRESSURE (6" PVC):

Where:

- q_p buckling pressure applied, pound per inch square (psi)
- h height of soil surface above top of pipe in inches (ft / in) = 19.99' / 239.88" max
- γ_s Specific weight of soil (pcf)
- γ_w Specific weight of water = 0.0361 (pci)
- W_c Vertical Soil Load on the pipe per unit length (lb/Lin)
- WL Live Load as determined from chart
- h_w Height of groundwater above pipe = 0
- D mean pipe diameter (in) = 6.034 in
- D_o outside pipe diameter (in) = 6.275 in

The Vertical Soil Load can be calculated using Equation 6.6 of *Uni-Bell's Handbook of PVC Pipe; Ch. VI* Superimposed Loads on Buried Pipe, Pg. 183.

$$Wc = h * y_s * D_o \frac{lb}{Lin}$$

where $g_s = 120 \text{ pcf}$

$$Wc = 239.88 * \frac{120}{1728} * 6.275 \frac{lb}{Lin} = 104.53 \frac{lb}{Lin}$$

Using the equation on *Pg. 114 of Moser, A.P., Buried Pipe Design. 3rd Ed., McGraw-Hill*, Pressure Applied to Pipe under installed conditions at its deepest installed depth:

$$q_p = (\gamma_w * h_w + R_w * \frac{W_c}{D} + \frac{W_L}{D})psi$$

where Rw = 1 - 0.33 (hw / h)

$$q_p = 0.0361 * 0 + 1 * \frac{104.53}{6.034} + \frac{0}{6.034} psi = 17.32 psi$$

The pressure applied to the pipe under installed conditions is less than the Allowable Buckling Pressure therefore the design is adequate for installation.

ALLOWABLE BUCKLING PRESSURE (8" PVC):

Where:

- qa allowable buckling pressure, pound per inch square (psi)
- h height of soil surface above top of pipe in inches (ft / in) = 20.43' / 245.16" max
- B' Empirical coefficient of elastic support
- E_b modulus of soil reaction for the bedding material (psi)
- E modulus of elasticity for the pipe material (psi)
- I moment of inertia of the pipe wall cross section per linear inch of pipe, inch⁴/lineal inch = inch³. For solid wall pipe, I can be calculated with equation 4. If the pipe used is not solid wall pipe (for example a pipe with a ribbed cross section), the proper moment of inertia formula must be obtained from the manufacturer.
- t pipe structural wall thickness (in) = 0.323 in.
- D mean pipe diameter (in) = 8.077 in.

Solving for the Empirical coefficient of elastic support, given by Luscher in 1966, as referenced on *Pg. 113 of Moser, A.P., Buried Pipe Design. 2nd. Ed., McGraw-Hill:*

$$B' = \frac{4(h^2 + Dh)}{1.5(2h + D)^2} = \frac{4(245.16^2 + 8.077 \cdot 245.16)}{1.5(2 \cdot 245.16 + 8.077)^2} = 0.67$$
$$I = \frac{t^3}{12} = \frac{0.323^3}{12} in^3 = 0.002808 in^3$$

Using the Allowable Buckling Pressure Equation as shown in *Moser, A.P., Buried Pipe Design. 2nd. Ed., McGraw-Hill, Pg. 112*, and an initial factor of safety (FS) of 2.5, the Allowable Buckling Pressure is:

$$q_a = \frac{1}{FS} * \sqrt{32 * R_w * B' * E_b * \left(E * \frac{l}{D^3}\right)} pst$$

where Rw = 1 - 0.33 (hw / h)

$$q_a = \frac{1}{2.5} * \sqrt{32 * 1 * 0.67 * 1000 * \left(400,000 * \frac{0.002808}{8.077^3}\right) psi} = 85.29 \, psi$$

INSTALLED CONDITION BUCKLING PRESSURE (8" PVC):

Where:

- q_p buckling pressure applied, pound per inch square (psi)
- h height of soil surface above top of pipe in inches (ft / in) = 20.43' / 245.16" max
- γ_s Specific weight of soil (pcf)
- γ_w Specific weight of water = 0.0361 (pci)
- W_c Vertical Soil Load on the pipe per unit length (lb/Lin)
- WL Live Load as determined from chart
- h_w Height of groundwater above pipe = 0
- D mean pipe diameter (in) = 8.077 in
- D_o outside pipe diameter (in) = 8.40 in

The Vertical Soil Load can be calculated using Equation 6.6 of *Uni-Bell's Handbook of PVC Pipe; Ch. VI* Superimposed Loads on Buried Pipe, Pg. 183.

$$Wc = h * y_s * D_o \frac{lb}{Lin}$$

where $g_s = 120 \text{ pcf}$

$$Wc = 245.16 * \frac{120}{1728} * 8.40 \frac{lb}{Lin} = 143.01 \frac{lb}{Lin}$$

Using the equation on *Pg. 114 of Moser, A.P., Buried Pipe Design. 3rd Ed., McGraw-Hill*, Pressure Applied to Pipe under installed conditions at its deepest installed depth:

$$q_p = (\gamma_w * h_w + R_w * \frac{W_c}{D} + \frac{W_L}{D})psi$$

where Rw = 1 - 0.33 (hw / h)

$$q_p = 0.0361 * 0 + 1 * \frac{143.01}{8.077} + \frac{0}{8.077} psi = 17.71 psi$$

The pressure applied to the pipe under installed conditions is less than the Allowable Buckling Pressure therefore the design is adequate for installation.

WALL CRUSHING (6" PVC):

Where:

Pc Compressive stress or hydrostatic design basis (HDB). For typical PVC pipe assume 4,000 (psi)

A Surface area of the pipe wall, $in^2/in = 0.241$

- γ_s Specific weight of soil (pcf) = 120 pcf
- D_o outside pipe diameter (in) = 6.275 in
- H Depth of burial (ft) from ground surface to crown of pipe

Using the Wall Crushing and Wall Thrust equations from *Plastic Pipe Design Manual published by Vylon Pipe, Pg. 14*, the wall crushing due to compressive stress can be found using the following:

 $P_c = T / A$, where T = Thrust is calculated as T = $P_y * D / 2$

Substituting T into the thrust wall crushing equation:

$$P_c = \frac{\frac{P_y * D}{2}}{A} = \frac{\frac{P_y * D}{2 * A}}{2 * A}$$

From the Marston equation determining the Prism Load (see previous section), substitute the equation for Py:

$$P_{c} = \frac{\frac{y_{s} * H}{2 * A}}{2 * A}$$

$$288 * A * P_{c} = y_{s} * H * D$$

$$H = \frac{288 * P_{c} * A}{y_{s} * D}$$

$$H = \frac{288 * 4000 * 0.241}{120 * 6.275} = 369 \, ft$$

The wall crushing depth of 369 feet far exceeds the maximum burial depth of 19.99 feet proposed in this project. Design is adequate for wall crushing.

Wall Crushing Depth for 6" Pipe = 369 feet

WALL CRUSHING (8" PVC):

Where:

Pc Compressive stress or hydrostatic design basis (HDB). For typical PVC pipe assume 4,000 (psi)

A Surface area of the pipe wall, $in^2/in = 0.323$

- γ_s Specific weight of soil (pcf) = 120 pcf
- D_o outside pipe diameter (in) = 8.40 in
- H Depth of burial (ft) from ground surface to crown of pipe

Using the Wall Crushing and Wall Thrust equations from *Plastic Pipe Design Manual published by Vylon Pipe, Pg. 14*, the wall crushing due to compressive stress can be found using the following:

 $P_c = T / A$, where T = Thrust is calculated as T = $P_y * D / 2$

Η

Substituting T into the thrust wall crushing equation:

$$P_c = \frac{\frac{P_y * D}{2}}{A} = \frac{\frac{P_y * D}{2 * A}}{2 * A}$$

From the Marston equation determining the Prism Load (see previous section), substitute the equation for Py:

$$P_{c} = \frac{\frac{y_{s} * H}{144 * D}}{2 * A}$$

$$288 * A * P_{c} = y_{s} * H * D$$

$$H = \frac{288 * P_{c} * A}{y_{s} * D}$$

$$= \frac{288 * 4000 * 0.323}{120 * 8.40} = 369 \, ft$$

The wall crushing depth of 369 feet far exceeds the maximum burial depth of 20.43 feet proposed in this project. Design is adequate for wall crushing.

Wall Crushing Depth for 8" Pipe = 369 feet

LEONHARDT'S ZETA FACTOR – DEFLECTION ANALYSIS:

6" PIPE

The Leonhardt's Zeta Factor Equation can be calculated using Equation 7.37 of Uni-Bell's Handbook of PVC Pipe, Ch. VII, Design of Buried PVC Pipe, Pg. 239.

Where:

- E' Modulus of soil reaction for in-situ material (psi) = 200 psi
- E_b modulus of soil reaction for the bedding material (psi) = 1000 psi
- B Trench Width, in = 67 in
- D_o outside pipe diameter (in) = 6.275 in

$$zeta = \frac{1.44}{\mathcal{F} + [1.44 - \mathcal{F}] * \frac{E_b}{E'}}$$

where $\mathcal{F} = \frac{\frac{B}{D_0} - 1}{1.154 + 0.4448[\frac{B}{D_0} - 1]} = 1.773$

$$zeta = \frac{1.44}{1.773 + [1.44 - 1.773] * \frac{1000}{200}} = 13.28$$

8" PIPE

The Leonhardt's Zeta Factor Equation can be calculated using Equation 7.37 of Uni-Bell's Handbook of PVC Pipe, Ch. VII, Design of Buried PVC Pipe, Pg. 239.

Where:

- E' Modulus of soil reaction for in-situ material (psi) = 200 psi
- E_b modulus of soil reaction for the bedding material (psi) = 1000 psi
- B Trench Width, in = 67 in
- D_o outside pipe diameter (in) = 8.40 in

$$zeta = \frac{1.44}{\mathcal{F} + [1.44 - \mathcal{F}] * \frac{E_b}{E'}}$$

where
$$\mathcal{F} = \frac{\frac{B}{D_0} - 1}{1.154 + 0.4448[\frac{B}{D_0} - 1]} = 1.639$$

$$zeta = \frac{1.44}{1.639 + [1.44 - 1.639] * \frac{1000}{200}} = 2.23$$

PIPE STIFFNESS:

6" PIPE Using Equation B.1 in 30 TAC 217.53(k)(3), to calculate pipe stiffness:

Where:

PS Pipe Stiffness in Ibs per in² (psi); for SDR26, pipe stiffness = 115

C Conversion factor; 0.80

- RCS Ring Stiffness constant
- D mean pipe diameter (in) = 6.034 in.

$$PS = C * RSC * \frac{8.337}{D}$$

$$RSC = \frac{PS}{C * \frac{8.337}{D}} = \frac{115}{0.80 * \frac{8.337}{6.034}} = 104.04$$

8" PIPE Using Equation B.1 in 30 TAC 217.53(k)(3), to calculate pipe stiffness:

Where:

PS Pipe Stiffness in Ibs per in² (psi); for SDR26, pipe stiffness = 115

C Conversion factor; 0.80

RCS Ring Stiffness constant

D mean pipe diameter (in) = 8.077 in.

$$PS = C * RSC * \frac{8.337}{D}$$

$$RSC = \frac{PS}{C * \frac{8.337}{D}} = \frac{115}{0.80 * \frac{8.337}{8.077}} = 139.27$$

PREDICTED PIPE DEFLECTION

6" PIPE

Using the Modified Iowa Equation, referenced in the Uni-Bell PVC Pipe Association as Equation 14 of Deflection: The Pipe/Soil Mechanism UNI-TR-1-97, the predicted pipe deflection can be calculated as follows:

Where:

 $\%\Delta Y/D$ Predicted % vertical deflection under load

- P Prism load, psi = 16.66 psi
- K Bedding angle constant, assumed to = 0.096
- W' Live Load, psi = 0 at max depth (negligible per table)
- DR Dimension Ration = 26
- E Modulus of tensile elasticity of the pipe material, psi = 400,000
- E' Modulus of soil Reaction (zeta x Eb) = 13,283 psi
- DL Deflection Lag Factor = 1.5

Using the Modified Iowa Equation:

$$(\%)\frac{\Delta Y}{D} = \frac{DL * K * P + K * W') * 100}{\left[\frac{2E}{3 * (DR - 1)^3}\right] + 0.061 * E'}\%$$

$$(\%)\frac{\Delta Y}{D} = \frac{(1.5*0.096*16.66+0.096*0)*100}{\left[\frac{2*400,000}{3*(26-1)^3}\right] + 0.061*13,283}\% = 0.290\%$$

The anticipated deflection of 0.290% is less than the industry standard of 5%, therefore the pipe design is acceptable.

A deflection factor of 1.0 is typically used for new pipes. A deflection factor of 1.5 represents a conservative factor to take into account its 50-year life.

8" PIPE

Using the Modified Iowa Equation, referenced in the *Uni-Bell PVC Pipe Association as Equation 14 of Deflection: The Pipe/Soil Mechanism UNI-TR-1-97*, the predicted pipe deflection can be calculated as follows:

Where:

 $\Delta Y/D$ Predicted % vertical deflection under load

- P Prism load, psi = 17.03 psi
- K Bedding angle constant, assumed to = 0.096
- W' Live Load, psi = 0 at max depth (negligible per table)
- DR Dimension Ration = 26
- E Modulus of tensile elasticity of the pipe material, psi = 400,000
- E' Modulus of soil Reaction (zeta x Eb) = 2,233 psi
- DL Deflection Lag Factor = 1.5

Using the Modified Iowa Equation:

$$(\%)\frac{\Delta Y}{D} = \frac{DL * K * P + K * W') * 100}{\left[\frac{2E}{3 * (DR - 1)^3}\right] + 0.061 * E'}\%$$

$$(\%)\frac{\Delta Y}{D} = \frac{(1.5*0.096*17.03+0.096*0)*100}{\left[\frac{2*400,000}{3*(26-1)^3}\right] + 0.061*2,233}\% = 1.60\%$$

The anticipated deflection of 1.60% is less than the industry standard of 5%, therefore the pipe design is acceptable.

A deflection factor of 1.0 is typically used for new pipes. A deflection factor of 1.5 represents a conservative factor to take into account its 50-year life.

PIPE STRAIN

6" PIPE

Pipe strain is the elongation of the pipe over the original length of the pipe. Under normal loading conditions, the variable that affects the elongation or straining of the pipe stems from either the flexure or deflection of the pipe within the bedding material or hoop stress within the pipe wall. These are calculated below using Equation 15 and 16 found in *Deflection: The Pipe/Soil Mechanism UNI-TR-1-97, referenced by Uni-Bell PVC Pipe Association:*

Where:

- ε_h Max. Pipe strain due to Hoop Stress, in/in
- ε_f Max. Pipe strain due to Ring Deflection, in/in
- ΔY Vertical decrease in diameter from previous deflection equation, 0.01819 in
- P Pressure on the pipe (Live + Prism Loads), psi = 16.66 psi
- t pipe structural wall thickness (in) = 0.241 in.
- E Modulus of tensile elasticity of the pipe material, psi = 400,000
- Do outside pipe diameter (in) = 6.275 in
- DR Dimension Ration = 26

Hoop Stress

$$\varepsilon_h = \frac{P * D}{2 * t * E} = \frac{16.66 * 6.275}{2 * 0.241 * 400,000} in/in = 5.4E^{-4} in/in$$

Ring Deflection

$$\varepsilon_{f} = \frac{t}{D} \left[\frac{3 * \Delta Y/D}{1 - 2 * \Delta Y/D} \right] in/in = \frac{1}{DR} \left[\frac{3 * \Delta Y}{D - 2 * \Delta Y} \right] in/in$$
$$\varepsilon_{f} = \frac{1}{26} \left[\frac{3 * 0.01819}{6.275 - 2 * 0.01819} \right] = 3.24 in/in$$

8" PIPE

Pipe strain is the elongation of the pipe over the original length of the pipe. Under normal loading conditions, the variable that affects the elongation or straining of the pipe stems from either the flexure or deflection of the pipe within the bedding material or hoop stress within the pipe wall. These are calculated below using Equation 15 and 16 found in *Deflection: The Pipe/Soil Mechanism UNI-TR-1-97, referenced by Uni-Bell PVC Pipe Association:*

Where:

- ϵ_h Max. Pipe strain due to Hoop Stress, in/in
- ϵ_f Max. Pipe strain due to Ring Deflection, in/in
- ΔY Vertical decrease in diameter from previous deflection equation, 0.13437 in
- P Pressure on the pipe (Live + Prism Loads), psi = 17.03 psi
- t pipe structural wall thickness (in) = 0.323 in.
- E Modulus of tensile elasticity of the pipe material, psi = 400,000
- Do outside pipe diameter (in) = 8.40 in
- DR Dimension Ration = 26

Hoop Stress

$$\varepsilon_h = \frac{P * D}{2 * t * E} = \frac{17.03 * 8.40}{2 * 0.323 * 400,000} in/in = 5.5E^{-4} in/in$$

Ring Deflection

$$\varepsilon_{f} = \frac{t}{D} \left[\frac{3 * \Delta Y/D}{1 - 2 * \Delta Y/D} \right] in/in = \frac{1}{DR} \left[\frac{3 * \Delta Y}{D - 2 * \Delta Y} \right] in/in$$
$$\varepsilon_{f} = \frac{1}{26} \left[\frac{3 * 0.13437}{8.40 - 2 * 0.13437} \right] in/in = 1.91E^{-3} in/in$$

Parkside Peninsula Phase 3 Att. A - Engineering Design Report Project No.: 2302005

Should you have any questions regarding this submittal, please email me at christine.campbell@hrgreen.com or call at 512-872-6696.

Sincerely,

Christine Campbell, P.E.

Christine Campbell, P.E. HR Green Development TX, LLC TBPE FIRM #16384

TABLE 2 – MANHOLES AND CLEANOUTS (CONTINUED)

Line	Shown on Sheet	Station	Manhole or Clean-out?
A11	59 OF 68	24+59.65	MH
A12	59 OF 68	28+32.10	MH
A13	59 OF 68	30+33.14	MH

*continued from table on scs application

WASTEWATER FLOWS							Design Parameters																										
Project Name: Parkside Peninsula Phase 3					SF I	SF Residents per Unit 2.5 per																											
oject Number: 230	2005					Cons	mption Per	Capita	70 gpd																								
te Prepared: 09/1	7/2024					Dry \	Veather Infilt	ration	30 gpcd																								
						Wet	Veather Infil	tration	1000 gpd/acre																								
						Ma	nning Coeffi	cient	0.013																								
			LUE's				Ar (C	ea c)	Dry Wea				r Flow			Wet Weather Flow				Design Flow		/ P		Pipe	Full Capacity		Peak Wastewater Flow Condition (WWF)						
Line	Man	nhole	Comments	NMO	TRIBUTARY Cumulative LUE's	Population	Cumulative Population	NMO	RIBUTARY Cumulative Area (ac)	Average Dry Weather Flow (AvgDWF) Dry Weath Factor		Dry Weather Factor	Peak Dry Weather Flow r (DWF)		er Flow	Rainfall dependent Infiltration & Inflow (RDII)	ependent filtration & Peak Wet Weather I (WWF)		er Flow	MAX WW	TRIBUTARY	TOTAL	Pipe Size	Pipe Slope	Full Pipe Velocity	Full Pipe Flow	q/Q	v/V	у/D	Depth	Velocity	Efficienc	
										gpd	gpm	cfs		gpd	gpm	cfs	gpd	gpd	gpm	cfs	cfs	cfs	cfs	in	%	fps	cfs				in	fps	%
	A13	A12	6 LOTS OF PHASE 3	6	6	15	15	1.54	1.54	1,500	1.0	0.00	4.51	6,760	4.7	0.01	1,540	8,300	5.8	0.01	0.01		0.01	8	0.67	2.84	0.99	0.02	0.40	0.10	0.8	1.12	10%
	A12	A11	14 LOTS OF PHASE 3	14	20	35	50	2.73	4.27	5,000	3.5	0.01	4.13	20,633	14.3	0.03	4,270	24,903	17.3	0.04	0.04		0.04	8	0.67	2.84	0.99	0.04	0.49	0.14	1.1	1.38	14%
	A11	A10	9 LOTS OF PHASE 3	9	29	23	73	1.74	6.01	7,300	5.1	0.01	4.01	29,301	20.3	0.04	6,010	35,311	24.5	0.05	0.05		0.05	8	0.50	2.45	0.86	0.07	0.58	0.18	1.4	1.41	18%
	A10	A9	12 LOTS OF PHASE 3	12	41	30	103	2.30	8.31	10,300	7.2	0.02	3.91	40,314	28.0	0.06	8,310	48,624	33.8	0.07	0.07		0.07	8	0.50	2.45	0.86	0.09	0.62	0.20	1.6	1.52	20%
	A9	A8	8 LOTS OF PHASE 3	8	49	20	123	1.87	10.18	12,300	8.5	0.02	3.86	47,521	33.0	0.07	10,180	57,701	40.1	0.09	0.09		0.09	8	0.50	2.45	0.86	0.11	0.66	0.22	1.8	1.61	22%
	A8	A7	10 LOTS OF PHASE 3	10	59	25	148	1.99	12.17	14,800	10.3	0.02	3.81	56,410	39.2	0.09	12,170	68,580	47.6	0.10	0.10		0.10	8	0.50	2.45	0.86	0.13	0.69	0.24	1.9	1.69	24%
Α	A7	A6	17 LOTS OF PHASE 3	17	76	43	190	3.12	15.29	19,000	13.2	0.03	3.74	71,106	49.4	0.11	15,290	86,396	60.0	0.13	0.13		0.13	8	0.50	2.45	0.86	0.16	0.73	0.27	2.2	1.80	27%
	A6	A5	4 LOTS OF PHASE 3	4	80	10	200	0.77	16.06	20,000	13.9	0.03	3.73	74,568	51.8	0.11	16,060	90,628	62.9	0.14	0.14		0.14	8	0.50	2.45	0.86	0.17	0.75	0.28	2.2	1.83	28%
	A5	A4	8 LOTS OF PHASE 3	8	88	20	220	1.73	17.79	22,000	15.3	0.03	3.70	81,455	56.6	0.12	17,790	99,245	68.9	0.15	0.15		0.15	8	0.52	2.50	0.87	0.18	0.76	0.29	2.3	1.90	29%
	A4	A3	4 LOTS OF PHASE 3	4	92	10	230	0.94	18.73	23,000	16.0	0.03	3.69	84,880	58.9	0.13	18,730	103,610	72.0	0.16	0.16		0.16	8	4.00	6.94	2.42	0.07	0.58	0.18	1.4	3.99	18%
	A3	A2	10 LOTS OF PHASE 3	10	102	25	255	2.17	20.90	25,500	17.7	0.04	3.66	93,398	64.9	0.14	20,900	114,298	79.4	0.17	0.17		0.17	8	3.75	6.72	2.35	0.08	0.60	0.19	1.5	4.02	19%
	A2	Al	4 LOTS OF PHASE 3	4	106	10	265	0.85	21.75	26,500	18.4	0.04	3.65	96,788	67.2	0.15	21,750	118,538	82.3	0.18	0.18		0.18	8	2.75	5.76	2.01	0.09	0.62	0.20	1.6	3.57	20%
	Al	EX-A	0 LOTS OF PHASE 3	0	106	0	265	0.05	21.80	26,500	18.4	0.04	3.65	96,788	67.2	0.15	21,800	118,588	82.4	0.18	0.18		0.18	8	0.59	2.67	0.93	0.20	0.78	0.30	2.4	2.08	30%

Temporary Stormwater Section

Texas Commission on Environmental Quality

for Regulated Activities on the Edwards Aquifer Recharge Zone and Relating to 30 TAC §213.5(b)(4)(A), (B), (D)(I) and (G); Effective June 1, 1999

To ensure that the application is administratively complete, confirm that all fields in the form are complete, verify that all requested information is provided, consistently reference the same site and contact person in all forms in the application, and ensure forms are signed by the appropriate party.

Note: Including all the information requested in the form and attachments contributes to more streamlined technical reviews.

Signature

To the best of my knowledge, the responses to this form accurately reflect all information requested concerning the proposed regulated activities and methods to protect the Edwards Aquifer. This **Temporary Stormwater Section** is hereby submitted for TCEQ review and executive director approval. The application was prepared by:

Print Name of Customer/Agent: Christine Campbell, P.E.

Date: 09/18/2024

Signature of Customer/Agent:

That Confull

Regulated Entity Name: Parkside Peninsula Phase 3

Project Information

Potential Sources of Contamination

Examples: Fuel storage and use, chemical storage and use, use of asphaltic products, construction vehicles tracking onto public roads, and existing solid waste.

1. Fuels for construction equipment and hazardous substances which will be used during construction:

The following fuels and/or hazardous substances will be stored on the site: _____

These fuels and/or hazardous substances will be stored in:

Aboveground storage tanks with a cumulative storage capacity of less than 250 gallons will be stored on the site for less than one (1) year.

Aboveground storage tanks with a cumulative storage capacity between 250 gallons and 499 gallons will be stored on the site for less than one (1) year.

- Aboveground storage tanks with a cumulative storage capacity of 500 gallons or more will be stored on the site. An Aboveground Storage Tank Facility Plan application must be submitted to the appropriate regional office of the TCEQ prior to moving the tanks onto the project.
- Fuels and hazardous substances will not be stored on the site.
- 2. Attachment A Spill Response Actions. A site specific description of the measures to be taken to contain any spill of hydrocarbons or hazardous substances is attached.
- 3. Temporary aboveground storage tank systems of 250 gallons or more cumulative storage capacity must be located a minimum horizontal distance of 150 feet from any domestic, industrial, irrigation, or public water supply well, or other sensitive feature.
- 4. Attachment B Potential Sources of Contamination. A description of any activities or processes which may be a potential source of contamination affecting surface water quality is attached.

Sequence of Construction

5. Attachment C - Sequence of Major Activities. A description of the sequence of major activities which will disturb soils for major portions of the site (grubbing, excavation, grading, utilities, and infrastructure installation) is attached.

For each activity described, an estimate (in acres) of the total area of the site to be disturbed by each activity is given.

For each activity described, include a description of appropriate temporary control measures and the general timing (or sequence) during the construction process that the measures will be implemented.

6. Name the receiving water(s) at or near the site which will be disturbed or which will receive discharges from disturbed areas of the project: <u>San Gabriel River</u>

Temporary Best Management Practices (TBMPs)

Erosion control examples: tree protection, interceptor swales, level spreaders, outlet stabilization, blankets or matting, mulch, and sod. Sediment control examples: stabilized construction exit, silt fence, filter dikes, rock berms, buffer strips, sediment traps, and sediment basins. Please refer to the Technical Guidance Manual for guidelines and specifications. All structural BMPs must be shown on the site plan.

7. Attachment D – Temporary Best Management Practices and Measures. TBMPs and measures will prevent pollution of surface water, groundwater, and stormwater. The construction-phase BMPs for erosion and sediment controls have been designed to retain sediment on site to the extent practicable. The following information is attached:

	 A description of how BMPs and measures will prevent pollution of surface water, groundwater or stormwater that originates upgradient from the site and flows across the site. A description of how BMPs and measures will prevent pollution of surface water or groundwater that originates on-site or flows off site, including pollution caused by contaminated stormwater runoff from the site. A description of how BMPs and measures will prevent pollutants from entering surface streams, sensitive features, or the aquifer. A description of how, to the maximum extent practicable, BMPs and measures will maintain flow to naturally-occurring sensitive features identified in either the geologic assessment, TCEQ inspections, or during excavation, blasting, or construction.
8. 🔀	The temporary sealing of a naturally-occurring sensitive feature which accepts recharge to the Edwards Aquifer as a temporary pollution abatement measure during active construction should be avoided.
	 Attachment E - Request to Temporarily Seal a Feature. A request to temporarily seal a feature is attached. The request includes justification as to why no reasonable and practicable alternative exists for each feature. There will be no temporary sealing of naturally-occurring sensitive features on the site.
9. 🔀	Attachment F - Structural Practices. A description of the structural practices that will be used to divert flows away from exposed soils, to store flows, or to otherwise limit runoff discharge of pollutants from exposed areas of the site is attached. Placement of structural practices in floodplains has been avoided.
10. 🖂	Attachment G - Drainage Area Map. A drainage area map supporting the following requirements is attached:
	 For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin will be provided. For areas that will have more than 10 acres within a common drainage area disturbed at one time, a smaller sediment basin and/or sediment trap(s) will be used. For areas that will have more than 10 acres within a common drainage area disturbed at one time, a sediment basin or other equivalent controls are not attainable, but other TBMPs and measures will be used in combination to protect down slope and side slope boundaries of the construction area. There are no areas greater than 10 acres within a common drainage area that will be used in combination with other erosion and sediment controls within each disturbed at one time. A smaller sediment basin and/or sediment trap(s) will be used in combination with other erosion and sediment controls within each disturbed at area.

There are no areas greater than 10 acres within a common drainage area that will be disturbed at one time. Erosion and sediment controls other than sediment basins or sediment traps within each disturbed drainage area will be used.

- 11. Attachment H Temporary Sediment Pond(s) Plans and Calculations. Temporary sediment pond or basin construction plans and design calculations for a proposed temporary BMP or measure have been prepared by or under the direct supervision of a Texas Licensed Professional Engineer. All construction plans and design information must be signed, sealed, and dated by the Texas Licensed Professional Engineer. Construction plans for the proposed temporary BMPs and measures are attached.
 - 🗌 N/A
- 12. Attachment I Inspection and Maintenance for BMPs. A plan for the inspection of each temporary BMP(s) and measure(s) and for their timely maintenance, repairs, and, if necessary, retrofit is attached. A description of the documentation procedures, recordkeeping practices, and inspection frequency are included in the plan and are specific to the site and/or BMP.
- 13. All control measures must be properly selected, installed, and maintained in accordance with the manufacturer's specifications and good engineering practices. If periodic inspections by the applicant or the executive director, or other information indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations.
- 14. If sediment escapes the construction site, off-site accumulations of sediment must be removed at a frequency sufficient to minimize offsite impacts to water quality (e.g., fugitive sediment in street being washed into surface streams or sensitive features by the next rain).
- 15. Sediment must be removed from sediment traps or sedimentation ponds not later than when design capacity has been reduced by 50%. A permanent stake will be provided that can indicate when the sediment occupies 50% of the basin volume.
- 16. 🖂 Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from becoming a pollutant source for stormwater discharges (e.g., screening outfalls, picked up daily).

Soil Stabilization Practices

Examples: establishment of temporary vegetation, establishment of permanent vegetation, mulching, geotextiles, sod stabilization, vegetative buffer strips, protection of trees, or preservation of mature vegetation.

17. Attachment J - Schedule of Interim and Permanent Soil Stabilization Practices. A schedule of the interim and permanent soil stabilization practices for the site is attached.

- 18. Records must be kept at the site of the dates when major grading activities occur, the dates when construction activities temporarily or permanently cease on a portion of the site, and the dates when stabilization measures are initiated.
- 19. Stabilization practices must be initiated as soon as practicable where construction activities have temporarily or permanently ceased.

Administrative Information

- 20. \square All structural controls will be inspected and maintained according to the submitted and approved operation and maintenance plan for the project.
- 21. If any geologic or manmade features, such as caves, faults, sinkholes, etc., are discovered, all regulated activities near the feature will be immediately suspended. The appropriate TCEQ Regional Office shall be immediately notified. Regulated activities must cease and not continue until the TCEQ has reviewed and approved the methods proposed to protect the aquifer from any adverse impacts.
- 22. Silt fences, diversion berms, and other temporary erosion and sediment controls will be constructed and maintained as appropriate to prevent pollutants from entering sensitive features discovered during construction.

ATTACHMENT A – SPILL RESPONSE ACTIONS

The objective of this section is to describe measures to prevent or reduce the discharge of pollutants to drainage systems or watercourses. Measures include reducing the chance for spills, stopping the source of spills, containing and cleaning up spills, properly disposing of spill materials, and training employees.

The following practices will be followed for spill prevention and cleanup:

- Manufacturers' recommended methods for spill cleanup will be clearly posted and site personnel will be made aware of the procedures and the location of the information and cleanup supplies.
- Materials and equipment necessary for spill cleanup will be kept in the material storage area onsite.
 Equipment and materials will include but not be limited to brooms, dustpans, mops, rags, gloves, goggles, kitty litter, sand, sawdust, and plastic and metal trash containers specifically for this purpose.
- All spills will be cleaned up immediately after discovery.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with a hazardous substance.
- Spills of toxic or hazardous material will be reported to the Owner and to the appropriate State or local government agency, regardless of the size.
- The spill prevention plan will be adjusted to include measures to prevent this type of spill from reoccurring and how to clean up the spill if there is another one. A description of the spill, what caused it, and the cleanup measures will also be included.
- The site superintendent responsible for the day-to-day site operations will be the spill prevention and cleanup coordinator. He will designate at least three other site personnel who will receive spill prevention and cleanup training. These individuals will each become responsible for a particular phase of prevention and cleanup. The names of responsible spill personnel will be posted in the material storage area and in the office trailer onsite.
- Any reportable quantity hydrocarbon or hazardous material spill should be reported to the TCEQ at the following 24-hour toll free number 1-800-832-8224.

For a spill of Reportable Quantity:

- Initial notification. Upon the determination that a reportable discharge or spill has occurred, the responsible person shall notify the agency as soon as possible but not later than 24 hours after the discovery of the spill or discharge.
- Method of notification. The responsible person shall notify the agency in any reasonable manner including by telephone, in person, or by any other method approved by the agency. In all cases, the initial notification shall provide, to the extent known, the information listed in subsection (d) of Title 30, Part I, Chapter 327, Rule §327.3. Notice provided under this section satisfies the federal requirement to notify the State Emergency Response Commission in the State of Texas.
- Notification of local government authorities. If the discharge or spill creates an imminent health threat, the responsible person shall immediately notify and cooperate with local emergency authorities. The responsible party will cooperate with the local emergency authority in providing support to implement appropriate notification and response actions. The local emergency authority, as necessary, will implement its emergency management plan, which may include notifying and evacuating affected persons. In the absence of a local emergency authority, the responsible person shall take reasonable measures to notify potentially affected persons of the imminent health threat.
- As soon as possible, but no later than two (2) weeks after discovery of the spill or discharge, the Contractor shall reasonably attempt to notify the Owner (if identifiable) or Occupant of the property upon which the discharge or spill occurred as well as the occupants of any property that the Contractor believes is adversely affected.

More information on spill rules and appropriate responses is available on the TCEQ website at: http://www.tceq.texas.gov /response/

Vehicle and Equipment Maintenance:

- If maintenance must occur onsite, use a designated area and a secondary containment, located away from drainage courses, to prevent the runoff of stormwater and the runoff of spills.
- Regularly inspect onsite vehicles and equipment for leaks and repair immediately.
- Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite.
- Always use secondary containment, such as drain pan or drop cloth, to catch spills or leaks when removing or changing fluids.
 - Place drip pans or absorbent materials under paving equipment when not in use.
 - Use absorbent materials on small spills rather than hosing down or burying the spill. Remove the
 absorbent materials promptly and dispose of properly.
 - Promptly transfer used fluids to the proper waste or recycling drums. Do not leave full drip pans or other containers lying around.
 - Oil filters disposed of in trashcans or dumpsters can leak oil and pollute stormwater. Place the oil filter in a funnel over the waste oil-recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask the oil supplier or recycler about recycling oil filters.
 - Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries even if you think all of the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.

ATTACHMENT B – POTENTIAL SOURCES OF CONTAMINATION

Once grading activities begin, erosion of bare soil during rainfall events is the most common source of contamination. Silt fences will be installed at the beginning of the grading operation to minimize the potential for transport of the soil offsite.

Asphalt products will be used on this project. After placement of asphalt, emulsion, or coatings, the applicant will be responsible for immediate cleanup should an unexpected rain occur. For the duration of the asphalt curing time, the applicant should maintain standby personnel and equipment to contain any asphalt wash-off should an unexpected rain occur.

During construction activities, potential sources of contamination would include petroleum products leaking from construction equipment. The contractor will be advised to keep the equipment in working order and report any spills per the spill response plan.

Other potential sources of contamination include hydraulic fluid and diesel fuel from mechanical equipment and vehicles, as well as paints and chemicals used on site. Any spills shall be handled according to the Spill Response Actions in Attachment A.

ATTACHMENT C – SEQUENCE OF MAJOR ACTIVITIES

The first activity of construction will be to install the erosion control measures, consisting of silt fences, tree protection, storm drains, inlet protection, rock berms, and a stabilized construction entrance. Temporary erosion control measures will remain in place throughout the duration of construction and will be required to be maintained by the contractor to ensure proper functionality, especially after storm events. All disturbed areas to remain pervious will be vegetated using the procedures detailed in the construction plans and all temporary erosion control measures will be removed upon revegetation. Construction activities associated with this application are expected to disturb approximately 28.22 acres of the site.

Major Construction Activities and Sequencing:

The major construction activities for this project will include and be sequenced as follows:

1. Established Best Management Practices shall consist of the following: silt fencing, rock berms, a temporary spoils area, a concrete truck washout pit, and a temporary construction entrance (Estimated area to be disturbed = 0.45 Acres). These items are to remain and be maintained throughout all construction activities.

- Initial site mass grading operation including right-of-way and first grading. (Estimated area to be disturbed = 14.41 Acres)
- 3. Installation of utilities including storm, water, and wastewater (Estimated area to be disturbed = 0.47 Acres)
- Construction of street/driveway pavement including backfill behind curbs (estimated area to be disturbed = 2.50 Acres)
- 5. Total Construction (estimated area to be disturbed = 28.22 Acres)
- 6. Final soil stabilization for the site and removal of temporary BMPs once the soil has been stabilized.

The contractor is responsible for implementing and maintaining the storm water pollution prevention plan which includes maintaining all the necessary erosion controls throughout construction.

ATTACHMENT D – TEMPORARY BEST MANAGEMENT PRACTICES AND MEASURES

As shown on the Construction Erosion Control Plans, temporary BMP practices and measures will include installing silt fences, inlet protection, rock berms, a stabilized construction entrance, a concrete truck washout, and a temporary spoils area prior to beginning grading operations on the site. Temporary measures are intended to provide a method of slowing the upgradient flow, onsite flow or runoff from the construction site in order to allow sediment and suspended solids to settle out of the water. By containing the sediment and solids within the site, they will not enter surface streams and/or sensitive features. As a temporary BMP, silt fences will be installed to reduce pollutants. BMP measures utilized in this plan are intended to allow storm water to continue downstream after passing through for treatment.

Site Preparation:

The methodology for pollution prevention of all on-site stormwater will include a) the erection of silt fences along the downgradient boundary of the construction activities, b) installation of inlet protection at all inlets, c) installation of a stabilized construction entrance to reduce the dispersion of sediment from the site, and d) installation of a construction staging area.

Construction:

All installed erosion control measure will be inspected, and if necessary, repaired before any additional construction begins, as well as periodically throughout the construction process. The contractor will be responsible for all maintenance of erosion control measures, as well as the installation of all remaining on-site control measures, including the concrete truck washout, as necessary.

ATTACHMENT E – REQUEST TO TEMPORARILY SEAL A FEATURE

There are no sensitive features on-site within Parkside Peninsula Phase 3 as shown in the geologic assessment and construction plans. There will be no sealing of sensitive features on the site.

ATTACHMENT F – STRUCTURAL PRACTICES

Most of the site flows and upgradient run off will encounter a batch detention pond. There is roughly 0.92 acres of impervious cover in Parkside Peninsula Phase 3 that will bypass treatment. The BMPs are overtreating to account for the bypass impervious cover.

ATTACHMENT G – DRAINAGE AREA MAPS

Refer to the construction plans attached.

ATTACHMENT H - TEMPORARY SEDIMENT POND(S) PLANS AND CALCULATIONS

The batch detention ponds will act as temporary and permanent sedimentation ponds. Batch detention pond A (BDP-A) provides 20,209 CF of water quality volume. Batch detention pond B (BDP-B) provides 20,681 CF of water quality volume. Batch detention pond C (BDP-C) provides 44,784 CF of water quality volume. The Sections 1 & 2 batch detention pond (BDP-A (EX)) provides 151,783 CF of water quality volume.

The calculated temporary sedimentation pond volume required is calculated below. Calculation: Required Volume = (Rainfall Depth*Runoff Coefficient*Drainage Area*120%) = 2.80 in. * 0.31 * 28.22 acres * 120%

ATTACHMENT I – INSPECTION AND MAINTENANCE FOR BMPS

See construction plans included with this application submittal.

Temporary Best Management Practices (BMPs) and measures will be used during construction to prevent pollution of groundwater, surface water and naturally occurring environmental features. Silt fences, inlet protection, a stabilized construction entrance, tree protection, concrete washout area, and a temporary spoils area will be installed prior to beginning construction and prior to commencement of any of the activities defined in the sequence of construction as Attachment C. Inspection and maintenance of the on-site controls shall be performed during the site clearing and rough grading process. Weekly inspections will be documented in an inspection report. The inspection reports will document maintenance activities, sediment removal, and any modifications to the erosion and sedimentation controls. The perimeter fence shall be regularly monitored to ensure that the buffers remain no-construction zones until the site work has been completed and authorization has been granted by the engineer. Refer to the construction plans attached for specific controls and details.

BMPs and measures will prevent pollution of surface water or groundwater that originates on site or flows off-site, including pollution caused by contaminated stormwater run-off from the site, and through the use of silt fences placed immediately downstream of disturbed areas and inlet protection at all inlets. To minimize destruction to any portion of the Recharge Zone, on-site perimeter silt fence will also be implemented for pertinent areas throughout the entirety of construction. The Contractor is expected to inspect the controls weekly and after significant rainfalls to ensure proper function. When silt accumulates six (6) inches in depth the Contractor shall promptly remove the silt from the controls.

BMPs and measures will prevent pollutants from entering surface streams or the aquifer by intercepting stormwater potentially carrying sediment and other pollutants. BMPs and measures will implement stabilized construction entrances, a construction stockpiling/staging area, and a concrete washout area to help minimize pollutant run-off and erosion generated during construction. Paved streets and driveways adjacent to these sites will be cleaned regularly to remove excess mud, dirt or rock tracked from the site. Sedimentation will be concentrated only in these areas for efficient maintenance. Water trucks will be on-site as necessary to aid be cleaned regularly to remove excess mud, dirt or rock tracked from the site. Sedimentation will be concentrated only in these areas for efficient maintenance. Water trucks will be on-site as necessary to aid in controlling dust. BMPs will be implemented to limit/prevent contaminated inflow from entering surface streams or the aquifer. These practices are to include the following measures: the use of silt fence and inlet protection. The fabricated silt fence barricade will provide help to reduce the likelihood of contaminated runoff from entering the aquifer. If any sensitive features are identified by TCEQ inspections, or during excavation or construction, measures appropriate to the sensitivity of the discovered feature will be enacted. No blasting is proposed.

Temporary Erosion and Sedimentation Notes:

- 1. The Contractor shall maintain, install erosion/sedimentation controls and tree/natural protective fencing prior to any site preparation work (clearing, grubbing or excavation).
- 2. The placement of erosion/sedimentation controls and tree/natural area protective fencing shall be in accordance with the TCEQ Technical Guidance Manual and the approved Erosion and Sedimentation Control Plan. No erosion controls shall be placed beyond the property lines of the site unless written permission has been obtained from adjacent property owners.
- 3. A pre-construction conference shall be held on-site with the Contractor, design engineer/permit applicant and Environmental Inspector after installation of the erosion/sedimentation and tree/natural area protection measures and prior to beginning any site preparation work. The Contractor shall notify the Environmental Inspector at least three (3) days prior to the meeting date.

^{= 106,700} CF

- 4. Any major variation in materials or locations of controls or fences from those shown on the approved plans will require a revision and must be approved by the reviewing engineer, environmental specialist or city arborist as appropriate. Minor changes to be made as field revisions to the Erosion and Sedimentation Control Plan may be required by the Environmental Inspector during the course of construction to correct control inadequacies.
- 5. The Contractor is required to inspect the controls at weekly intervals and after significant rainfall events to ensure that they are functioning properly. The person(s) responsible for maintenance of controls shall immediately make any necessary repairs to damaged areas. Silt accumulation at controls must be removed when the depth reaches six (6) inches.
- 6. Prior to final acceptance by the City, haul roads and waterway crossing constructed for temporary Contractor access must be removed, accumulated sediment removed from the waterway and the area restored to the original grade and revegetated. All land clearing debris shall be disposed of in approved soil disposal sites.
- 7. All work must stop if a void in the rock substrate is discovered, which is one (1) square foot in total area, blows air from within the substrate, and/or consistently received water during any rain event. At this time it is the responsibility of the project manager to immediately contact an Environmental Inspector for further investigation.
- 8. All slopes shall be sodded or seeded with approved grass, grass mixtures or ground cover suitable to the area and season in which they are applied.
- 9. Silt fences, rock berms, sedimentation basins and similarly recognized techniques and materials shall be employed during construction to prevent point source sedimentation loading of downstream facilities. Such installation shall be regularly inspected for effectiveness. Additional measures may be required if, in the opinion of the City Engineer, they are warranted.
- 10. All temporary erosion control measures shall not be removed until final inspection and approval of the project by the engineer. It shall be the responsibility of the Contractor to maintain all temporary erosion control structures and to remove each structure as approved by the engineer.
- 11. Any dirt, mud, rocks, debris, etc., that is spilled, tracked, or otherwise deposited on any existing paved street shall be cleaned up immediately.

Dewatering Operations

- Inspect and verify that activity-based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP area under way, inspect weekly to verify continued BMP implementation.
- 2. Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur.
- 3. Unit-specific maintenance requirements are included with the description of each technology.
- 4. Sediment removed during the maintenance of a dewatering device may be either spread onsite and stabilized, or disposed of at a disposal site.
- 5. Sediment that is commingled with other pollutants must be disposed of in accordance with all applicable laws and regulations.

ATTACHMENT J – SCHEDULE OF INTERIM AND PERMANENT SOIL STABILIZATION PRACTICES

Contractors will ensure that existing vegetation is preserved where attainable and that disturbed portions of the site will be stabilized. Stabilization practices may include but are not limited to temporary seeding, permanent seeding, mulching, geotextiles, sodding, tree protection, preservation of natural vegetation and other appropriate measures. All slopes shall be sodded or seeded with approved grass, grass mixtures or ground cover suitable to the area and season in which they are applied. Except as noted below, stabilization shall be initiated as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the activity has temporarily or permanently ceased. Refer to the construction plans attached for the TCEQ Notes, the Existing Conditions & Tree Survey, and the Erosion & Sedimentation Control Plan.

Agent Authorization Form For Required Signature Edwards Aquifer Protection Program Relating to 30 TAC Chapter 213 Effective June 1, 1999

I	Blake Magee					
	Print Name					
	President	,				
	Title - Owner/President/Other					
of	HM 2243 Development, Inc. Corporation/Partnership/Entity Name	,				
have authorized	Christine Campbell, P.E.					
	Print Name of Agent/Engineer					
of	HR Green Development TX, LLC					
	Print Name of Firm					

to represent and act on the behalf of the above named Corporation, Partnership, or Entity for the purpose of preparing and submitting this plan application to the Texas Commission on Environmental Quality (TCEQ) for the review and approval consideration of regulated activities.

I also understand that:

- 1. The applicant is responsible for compliance with 30 Texas Administrative Code Chapter 213 and any condition of the TCEQ's approval letter. The TCEQ is authorized to assess administrative penalties of up to \$10,000 per day per violation.
- 2. For those submitting an application who are not the property owner, but who have the right to control and possess the property, additional authorization is required from the owner.
- 3. Application fees are due and payable at the time the application is submitted. The application fee must be sent to the TCEQ cashier or to the appropriate regional office. The application will not be considered until the correct fee is received by the commission.
- 4. A notarized copy of the Agent Authorization Form must be provided for the person preparing the application, and this form must accompany the completed application.
- 5. No person shall commence any regulated activity on the Edwards Aquifer Recharge Zone, Contributing Zone or Transition Zone until the appropriate application for the activity has been filed with and approved by the Executive Director.

Blake Magee

9/3/24	
Date	

THE STATE OF TEXAS § County of Cavis 8

BEFORE ME, the undersigned authority, on this day personally appeared Dial Le Mage Cknown to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that (s)he executed same for the purpose and consideration therein expressed.

GIVEN under my hand and seal of office on this 300 day of September 2024

AMY LYNN PAYNE Notary ID #124190357 wy Commission Expires August 18, 2027

Typed or Printed Name of Notary

MY COMMISSION EXPIRES:

Application Fee Form

Texas Commission on Environmental Quality								
Name of Proposed Regulated Entity: Parkside Peninsula Phase 3								
Regulated Entity Location: Located	Regulated Entity Location: Located along Cypress Paul Street. Southwest of Parkside Peninsula							
Sections 1 & 2.								
Name of Customer: HM 2243 Deve	elopment, Inc.							
Contact Person: <u>Blake Magee</u>	Phone	e: <u>512-481-0303</u>						
Customer Reference Number (if is:	sued):CN <u>605986272</u>							
Regulated Entity Reference Number	er (if issued):RN							
Austin Regional Office (3373)								
Hays	Travis	🖂 Wil	liamson					
San Antonio Regional Office (3362								
Bexar	/ Medina		alde					
			ilue					
Comal	Kinney							
Application fees must be paid by c		• • •						
Commission on Environmental Qu	•	•	•					
form must be submitted with you	r fee payment. This pa	yment is being submit	ted to:					
Austin Regional Office	Sa	n Antonio Regional Of	fice					
🔀 Mailed to: TCEQ - Cashier	Ov	vernight Delivery to: T	CEQ - Cashier					
Revenues Section	12	2100 Park 35 Circle						
Mail Code 214	Bu	uilding A, 3rd Floor						
P.O. Box 13088		ustin, TX 78753						
Austin, TX 78711-3088	(5	12)239-0357						
Site Location (Check All That Appl	y):							
🔀 Recharge Zone	Contributing Zone	Transit	ion Zone					
Type of Pla		Size	Fee Due					
Water Pollution Abatement Plan,	-							
Plan: One Single Family Residenti	-	Acres	\$					
Water Pollution Abatement Plan,	•	_						
Plan: Multiple Single Family Resid		Acres	\$					
Water Pollution Abatement Plan, Contributing Zone								
Plan: Non-residential	Acres	\$						
Sewage Collection System	4,491 L.F.	\$ 2,245.50						
Lift Stations without sewer lines	Acres	\$						
Underground or Aboveground Ste	Tanks	\$						
Piping System(s)(only)	Each	\$						
Exception		Each	\$					
Extension of Time	Each	\$						

Signature: Chat Capfull Date: 09/18/2024

Application Fee Schedule

Texas Commission on Environmental Quality

Edwards Aquifer Protection Program 30 TAC Chapter 213 (effective 05/01/2008)

Water Pollution Abatement Plans and Modifications **Contributing Zone Plans and Modifications**

Project	Project Area in Acres	Fee
One Single Family Residential Dwelling	< 5	\$650
Multiple Single Family Residential and Parks	< 5	\$1,500
	5 < 10	\$3,000
	10 < 40	\$4,000
	40 < 100	\$6,500
	100 < 500	\$8,000
	≥ 500	\$10,000
Non-residential (Commercial, industrial,	< 1	\$3,000
institutional, multi-family residential, schools, and	1 < 5	\$4,000
other sites where regulated activities will occur)	5 < 10	\$5,000
	10 < 40	\$6,500
	40 < 100	\$8,000
	≥ 100	\$10,000

Organized Sewage Collection Systems and Modifications

Project	Cost per Linear Foot	Minimum Fee- Maximum Fee
Sewage Collection Systems	\$0.50	\$650 - \$6,500

Underground and Aboveground Storage Tank System Facility Plans and Modifications

Project	Cost per Tank or Piping System	Minimum Fee- Maximum Fee
Underground and Aboveground Storage Tank Facility	\$650	\$650 - \$6,500

Exception Requests

Project	Fee
Exception Request	\$500

Extension of Time Requests

Project	Fee
Extension of Time Request	\$150

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)	
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)	
Renewal (Core Data Form should be submitted with the renewal form) Other	
2. Customer Reference Number (<i>if issued</i>) Follow this link to search 3. Regulated Entity Reference Number (<i>if issued</i>)	
CN 605986272 for CN or RN numbers in Central Registry** RN	
SECTION II: Customer Information	
4. General Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy)	
New Customer Update to Customer Information Change in Regulated Entity Owner Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)	rship
The Customer Name submitted here may be updated automatically based on what is current and active w	ith the
Texas Secretary of State (SOS) or Texas Comptroller of Public Accounts (CPA).	
6. Customer Legal Name (If an individual, print last name first: eg: Doe, John) <u>If new Customer, enter previous Customer below:</u>	
HM 2243 Development, Inc.	
7. TX SOS/CPA Filing Number 8. TX State Tax ID (11 digits) 9. Federal Tax ID (9 digits) 10. DUNS Number (if applicable)
0802923262 32066111579	
11. Type of Customer: Corporation Individual Partnership: General Limited	
Government: City County Federal State Other Sole Proprietorship Other:	
12. Number of Employees 13. Independently Owned and Operated?	
⊠ 0-20 ⊠ 21-100 □ 101-250 □ 251-500 □ 501 and higher ⊠ Yes □ No	
14. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check one of the following:	
Owner Operator Owner & Operator Occupational Licensee Responsible Party Voluntary Cleanup Applicant Other:	
1011 North Lamar Boulevard	
15. Mailing Address:	
City Austin State TX ZIP 78703 ZIP + 4	
16. Country Mailing Information (if outside USA) 17. E-Mail Address (if applicable)	
Blake@blakemageeco.com	
18. Telephone Number 19. Extension or Code 20. Fax Number (if applicable)	
(512) 481-0303 () -	

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application) ○ New Regulated Entity
○ Update to Regulated Entity Name
○ Update to Regulated Entity Information The Regulated Entity Name automatical in order to most TCEO Accords.

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC.)

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Parkside Peninsula Phase 3

	Located along Cypress Paul Street.										
23. Street Address of the Regulated Entity:	Southwest of Parkside Peninsula Sections 1 & 2.										
(No PO Boxes)	City	Georgeto		State	T		ZIP	786	28	ZIP + 4	
24. County	-	0		Otate	11	<u> </u>	211	780.	20	211 • 4	
24. 00unty											
Enter Physical Location Description if no street address is provided. 25. Description to Physical Location: Located along Cypress Paul Street. Southwest of Parkside Peninsula Sections 1 & 2.											
26. Nearest City							-	State		N	earest ZIP Code
Georgetown		1						ΤX		7	8628
27. Latitude (N) In Decir	nal:	30.590922	2			28. L	_ongitude (V	/) In	Decimal:	-97.784	763
Degrees	Minutes		Seco			Degre			Minutes		Seconds
30		35		27.32N			97		2	47	5.15W
29. Primary SIC Code (4 di	igits) 30.	Secondary SI	C Co	de (4 digits)		Prima 6 digits	i ry NAICS Co	ode	32. Se (5 or 6 d		AICS Code
1521					23	6115					
33. What is the Primary B	usiness of	this entity?	Do noi	t repeat the SIC or	NAICS	S descrij	ption.)		1		
Land Development -	- Single F	amily Resid	lent	ial							
	1011 North Lamar Boulevard										
34. Mailing											
Address:	City	City Austin		State		TX ZIP			78703	ZIP + 4	
35. E-Mail Address:					bla	ike@b	lakemageec	o.com			
36. Telepho	one Number		-	37. Extensio	on or	Code		38	. Fax Num	ber <i>(if appl</i>	icable)
(512) 4	81-0303								() -	
39. TCEQ Programs and ID form. See the Core Data Form in	Numbers Cr structions for	eck all Programs additional guidan	and ce.	write in the perm	nits/reg	gistratio	on numbers that	t will be	affected by f	the updates s	submitted on this
Dam Safety	Districts		\boxtimes	Edwards Aquife	er		Emissions	Inventor	y Air [Industrial	Hazardous Waste
Municipal Solid Waste	New Sou	urce Review Air	rce Review Air 🗌 OSSF				Petroleum Storage Tank			PWS	
Sludge	Storm Water Title V Air Tires			Tires		[Used Oil				
Voluntary Cleanup	U Waste W	later		Wastewater Ag	ricultu	re	Water Righ	Its		Other:	

SECTION IV: Preparer Information

40. Name:	Christine Ca	ampbell		41. Title:	Project Manager
42. Telephone	Number	43. Ext./Code	44. Fax Number	45. E-Mail A	Address
(512)872-	6696		() -	christine	campbell@hrgreen.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	HR Green Development TX, LLC	Job Title:	Project M	Project Manager		
Name(In Print) :	Christine Campbell	Phone:	(512) 872-6696			
Signature:	Chuth Confull			Date:	8/30/2024	

CIVIL CONSTRUCTION PLANS WILLIAMSON COUNTY MUNICIPAL UTILITY DISTRICT PARKSIDE PENINSULA PHASE 3

OWNER/DEVELOPER:

HM 2243 DEVELOPMENT, INC. 1011 NORTH LAMAR BLVD. AUSTIN, TX 78703 (512) 481-0303 BLAKE@BLAKEMAGEECO.COM

ENGINEER/SURVEYOR: HR GREEN DEVELOPMENT TX, LLC

HR GREEN DEVELOPMENT TX, LLC 5508 HIGHWAY 290 WEST, SUITE 150 AUSTIN, TEXAS 78735 512.872.6696 CHRISTINE.CAMPBELL@HRGREEN.COM

WATERSHED STATUS:

THIS SITE IS LOCATED IN THE TURKEY CREEK - BRUSHY CREEK WATERSHED. THIS SITE IS LOCATED OVER THE EDWARDS AQUIFER RECHARGE ZONE.

FLOODPLAIN INFORMATION:

NO LOTS WITHIN THIS SUBDIVISION ARE ENCROACHED BY A SPECIAL FLOOD HAZARD AREAS INUNDATED BY THE 100 YEAR FLOOD AS IDENTIFIED BY THE U.S. FEDERAL EMERGENCY MANAGEMENT AGENCY BOUNDARY MAP NUMBER 48491C0460F, EFFECTIVE DATE DECEMBER 20, 2019.

LEGAL DESCRIPTION:

28.22 ACRES OF LAND IN THE JOHN T. CHURCH SURVEY, ABSTRACT NO. 140, WILLIAMSON COUNTY, TEXAS; BEING A PORTION OF A CERTAIN CALLED 49.556 ACRE TRACT OF LAND (EXHIBIT A-2) DESCRIBED IN THE ASSUMPTION SPECIAL WARRANTY DEED TO HM 2243 DEVELOPMENT, INC. OF RECORD IN DOCUMENT NO. 2021190010, OFFICIAL PUBLIC RECORDS OF WILLIAMSON COUNTY, TEXAS

BENCHMARK NOTE:

DATUM NAVD 88 (GEOID 18B)

GPS INFORMATION (2 DAYS OF STATIC) DERIVED FROM NATIONAL GEODETIC SURVEY (NGS) ONLINE POSITIONING USER SERVICE (OPUS)

BM: 1463_05:

3" BRASS DISC ON CONCRETE CURB ON TIP OF CENTERLINE MEDIAN ON ESCALERA PARKWAY, ALONG THE NORTH RIGHT-OF-WAY LINE OF R. M. 2243. REPORTED RECORD ELEVATION IS 1003.72 FEET (NAVD 88) AS SHOWN ON PLAT DOCUMENT NO. 2022134745, O.P.R.W.C.TX. FOUND BENCHMARK ELEVATION TO BE SAME, 1003.72 FEET, BASED UPON GPS RTK TIES AND DIFFERENTIAL LEVEL LOOP.

BM: 1463_02: MAG NAIL W/ WASHER STAMPED "HR GREEN" SET ON TOP OF CURB. ELEVATION = 808.64'

UTILITY PROVIDERS:

WATER & WASTEWATER:	GEORGETOWN UTILITY SYSTEMS 300-1 INDUSTRIAL AVENUE, GEORGETOWN TX 78626 (512) 930-3555 GUS@GEORGETOWN.ORG
ELECTRIC:	PEDERNALES ELECTRIC COOPERATIVE

(877) 372-0391

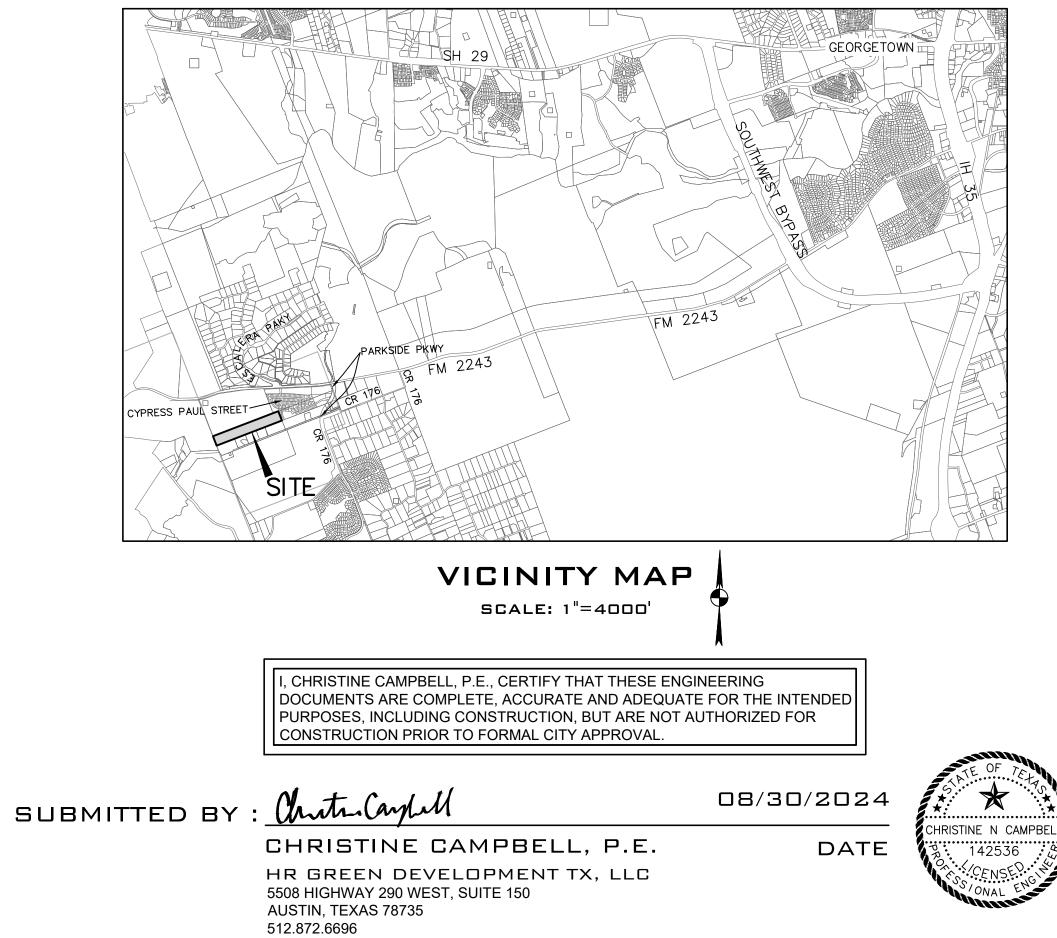
NO LIABILITY NOTE:

LIMITATION OF LIABILITY – HR GREEN DEVELOPMENT TX, LLC ASSUMES NO LIABILITY FOR ANY DESIGN OR DRAWINGS IN THESE PLANS, THAT ARE NOT SIGNED AND SEALED BY A PROFESSIONAL ENGINEER REGISTERED WITH THE TEXAS BOARD OF PROFESSIONAL ENGINEERS AS A MEMBER OF THIS FIRM (#F-16384). OTHER CONSULTANTS WORK SHOWN IN THESE PLANS IS THE RESPONSIBILITY OF THE CONSULTANT WHO PREPARED SUCH WORK, AND IS INCLUDED IN THIS PLAN SET FOR REVIEW REQUIREMENTS ONLY.

SITE PLAN COMPONENTS – ALL BUILDING AND STRUCTURAL IMPROVEMENTS SHOWN HEREON ARE SHOWN FOR CONCEPTUAL PURPOSES ONLY. HR GREEN DEVELOPMENT TX, LLC IS NOT RESPONSIBLE OR LIABLE FOR THE DESIGN OF BUILDING OR STRUCTURAL IMPROVEMENTS BY OTHERS.

STRUCTURAL COMPONENTS - ALL STRUCTURAL DESIGN IS THE RESPONSIBILITY OF THE OWNER'S STRUCTURAL ENGINEER. STRUCTURAL DESIGN SHOWN HEREON IS THE DESIGN OF THE OWNER'S STRUCTURAL ENGINEER.

PAVEMENT DESIGN – PAVEMENT DESIGN SHOWN HEREON IS THE DESIGN OF THE OWNER'S GEOTECHNICAL CONSULTANT. HR GREEN DEVELOPMENT TX, LLC MAKES NO WARRANTY OR GUARANTEE AS TO ITS SUITABILITY, AND ASSUMES NO LIABILITY THEREFORE.


NOTES:

. THESE PLANS WERE PREPARED, SEALED, SIGNED AND DATED BY A TEXAS LICENSED PROFESSIONAL ENGINEER. THEREFORE BASED ON THE			REVISIONS
ENGINEER'S CONCURRENCE OF COMPLIANCE, THE PLANS FOR CONSTRUCTION OF THE PROPOSED PROJECT ARE HEREBY APPROVED	Number	Date	D
SUBJECT TO THE STANDARD CONSTRUCTION SPECIFICATIONS AND DETAILS MANUAL AND ALL OTHER APPLICABLE CITY, STATE AND FEDERAL REQUIREMENTS AND CODES.			
THIS PROJECT IS SUBJECT TO ALL CITY STANDARD SPECIFICATIONS AND DETAILS IN EFFECT AT THE TIME OF SUBMITTAL OF THE PROJECT TO THE CITY.			
THE PROPERTY SUBJECT TO THIS APPLICATION IS SUBJECT TO THE WATER QUALITY REGULATIONS OF THE CITY OF GEORGETOWN			
A GEOLOGIC ASSESSMENT, IN ACCORDANCE WITH THE CITY OF GEORGETOWN WATER QUALITY REGULATIONS, WAS COMPLETED ON JANUARY 2018. ANY SPRINGS AND STREAMS AS IDENTIFIED IN THE GEOLOGIC ASSESSMENT ARE SHOWN HEREIN.			
5. THIS PROJECT IS SUBJECT TO THE 2011 UDC AND THE PARKSIDE ON THE RIVER DEVELOPMENT AGREEMENT (ORDINANCE NOS. 2019-69, 2020-84, 2021-40, 2024-18 AND RESPECTIVE DOCUMENT NOS. 2019117041,			
2020162167, 2021082512, 2024031828). ALL ELECTRIC DISTRIBUTION LINES AND INDIVIDUAL SERVICE LINES SHALL BE INSTALLED UNDERGROUND. IF OVERHEAD LINES EXISTED			
PRIOR TO UNDERGROUND INSTALLATION, SUCH POLES, GUY WIRES, AND RELATED STRUCTURES SHALL BE REMOVED FOLLOWING CONSTRUCTION OF THE UNDERGROUND INFRASTRUCTURE.			

e Magee/Parkside Peninsula/03 ACA/DJans/sh2302006 COVR dwg COVER SHEFT August 30 2024 10:35 AM makai muhamr

GEORGETOWN, WILLIAMSON COUNTY, TEXAS 2024-XX-CON

INITIAL SUBMITTAL DATE: 08/30/2024

REVIEWED FOR COMPLIANCE WITH

WILLIAMSON COUNTY M.U.D. NO. 25

			· _ · _ ·	ı
ND. 25			BY DATE	
SHEET NUMBER 1 2 3 4 5 6 7 8	SHEET TITLE SHEET TITLE COVER SHEET GENERAL NOTES TCEQ NOTES PRELIMINARY PLAT PRELIMINARY PLAT EXISTING CONDITIONS & DEMOLITION PLAN PROPOSED CONDITIONS PLAN TREE LIST		REVISION	
9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25	EROSION & SEDIMENTATION CONTROL PLAN A EROSION & SEDIMENTATION CONTROL PLAN B EROSION & SEDIMENTATION CONTROL PLAN C EROSION & SEDIMENTATION CONTROL PLAN D EROSION & SEDIMENTATION CONTROL DETAILS SIGNAGE, STRIPING & LIGHTING PLAN A SIGNAGE, STRIPING & LIGHTING PLAN B SIGNAGE, STRIPING & LIGHTING PLAN C SIGNAGE, STRIPING & LIGHTING PLAN D CYPRESS PAUL STREET PLAN & PROFILE 1+00 - 7+50 CYPRESS PAUL STREET PLAN & PROFILE 7+50 - 15+50 CYPRESS PAUL STREET PLAN & PROFILE 15+50 - 19+75 CYPRESS PAUL STREET PLAN & PROFILE 19+75 - 27+00 CYPRESS PAUL STREET PLAN & PROFILE 27+00 - END PAVING & GRADING PLAN B PAVING & GRADING PLAN B PAVING DETAILS SHEET 1 OF 2	Call	at's below. before you dig.	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	PAVING DETAILS SHEET 2 OF 2 EXISTING DRAINAGE MAP PROPOSED DRAINAGE MAP INLET DRAINAGE AREA MAP INLET DRAINAGE CALCULATIONS WATER QUALITY DRAINAGE AREA MAP WATER QUALITY CALCULATIONS 1 OF 2 WATER QUALITY CALCULATIONS 2 OF 2 WATER QUALITY CALCULATIONS 2 OF 2 WATER QUALITY AND DETENTION POND A POND A SECTIONS POND A OUTLET STRUCTURE DETAILS WATER QUALITY AND DETENTION POND B POND B SECTIONS POND B OUTLET STRUCTURE DETAILS WATER QUALITY AND DETENTION POND C POND C SECTIONS POND C OUTLET STRUCTURE DETAILS POND C OUTLET STRUCTURE DETAILS WATER QUALITY AND DETENTION POND C POND C SECTIONS POND C OUTLET STRUCTURE DETAILS POND DETAILS OVERALL STORM SEWER PLAN A OVERALL STORM SEWER PLAN A OVERALL STORM SEWER PLAN B STORM A-1 & LATERALS PLAN & PROFILE STORM B-1, STORM B-2 & LAT B-2A PLAN & PROFILE	5508 HIGHWAY 290 WEST SUITE 150 AUSTIN, TX 78735	DEVELOPMENT TX 212.872.6696 HRGREEN.COM HRGREEN.COM TEPLS NO: 10194101	
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	STORM B-3 & LATERALS PLAN & PROFILE STORM C-1 & LATERALS PLAN & PROFILE STORM D-1 & STORM D-2 PLAN & PROFILE STORM E-1 & LATERALS PLAN & PROFILE CHANNEL A PLAN & PROFILE CHANNEL B PLAN & PROFILE 1+00 - 10+00 CHANNEL B PLAN & PROFILE 10+00 - END DRAINAGE DETAILS DRAINAGE DETAILS WWL A PLAN & PROFILE 1+00 - 10+25 WWL A PLAN & PROFILE 10+25 - 21+50 WWL A PLAN & PROFILE 10+25 - 21+50 WWL A PLAN & PROFILE 21+50 - END WASTEWATER DETAILS SHT 1 OF 2 WASTEWATER DETAILS SHT 1 OF 2 WL A PLAN & PROFILE 1+00 - 11+00 WL A PLAN & PROFILE 11+00 - 21+50 WL A PLAN & PROFILE 11+00 - 21+50 WL A PLAN & PROFILE 21+50 - END WATER DETAILS SHT 1 OF 2 WATER DETAILS SHT 1 OF 2 L1 - TREE MITIGATION PLAN L2 - TREE MITIGATION NOTES & DETAILS		NE N. CAMPBELL 142536 //CENSED //ONAL ENG 08/30/2024 C U U U U U U U U U U U U U	
DATE		COVER SHEET	PARKSIDE PENINSULA PHA CONSTRUCTION PLANS GEORGETOWN, WILLIAMSON, TE	
		DRAWN Checke	ED BY: <u>CC</u> BY: <u>MM</u> D BY: <u>SN</u> ED BY:	

SHEET <u>1</u> of **68**

2024-XX-CON

GENERAL CONSTRUCTION NOTES

- 1. ALL RESPONSIBILITY FOR THE ADEQUACY OF THESE PLANS REMAINS WITH THE ENGINEER WHO PREPARED THEM. IN REVIEWING THESE PLANS, THE CITY OF GEORGETOWN MUST RELY ON THE ADEQUACY OF THE WORK OF THE DESIGN ENGINEER.
- 2. CONTRACTOR SHALL NOTIFY GEORGETOWN UTILITIES AT 512-930-3555 AT LEAST 24 HOURS PRIOR TO THE INSTALLATION OF ANY DRAINAGE FACILITY WITHIN A DRAINAGE EASEMENT OR STREET R.O.W. THE METHOD OF PLACEMENT AND COMPACTION OF BACKFILL IN THE CITY'S R.O.W. MUST BE APPROVED PRIOR TO THE START OF BACKFILL OPERATIONS.
- 3. FOR SLOPES OR TRENCHES GREATER THAN FIVE (5) FEET IN DEPTH, A NOTE MUST BE ADDED STATING THAT CONSTRUCTION OPERATIONS SHALL BE ACCOMPLISHED IN ACCORDANCE WITH APPLICABLE REGULATIONS OF THE U.S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION. COPIES OF OSHA STANDARDS MAY BE PURCHASED FROM THE U.S. GOVERNMENT PRINTING OFFICE; INFORMATION AND RELATED REFERENCE MATERIALS MAY BE PURCHASED FROM OSHA, 611 E. 6TH STREET, AUSTIN, TEXAS.
- 4. ALL SITE WORK MUST ALSO COMPLY WITH ENVIRONMENTAL REQUIREMENTS. 5. <u>CONTRACTOR INFORMATION</u>
 - CONTRACTOR: UNKNOWN AT TIME OF SUBMITTAL
 - CONTRACTOR ADDRESS: <u>N/A</u>PHONE <u># N/A</u>
 - DEVELOPER'S REPRESENTATIVE RESPONSIBLE FOR PLAN ALTERATIONS:
 - HR GREEN DEVELOPMENT TX, LLC. PHONE# (512) 872-6696
 - PERSON OR FIRM RESPONSIBLE FOR EROSION/SEDMENTATION CONTROL MAINTENANCE: HM 2243 DEVELOPMENT INC. PHONE# 512-481-0303
 - PERSON OF FIRM RESPONSIBLE FOR TREE/NATURAL AREA PROTECTION MAINTENANCE:
- <u>HM 2243 DEVELOPMENT INC. PHONE# 512-481-0303</u>
- 6. TOPOGRAPHIC DATA SHOWN HEREON BASED ON GROUND TOPO SURVEY BY RJ SURVEYING & ASSOCIATES ON SEPTEMBER-OCTOBER 2020 AND AS-BUILT SURVEY BY HR GREEN ON FEBRUARY 2023.
- 7. IF CONTRACTOR FINDS A DISCREPANCY WITH THE TOPOGRAPHIC INFORMATION ON THESE PLANS, HE/SHE SHOULD
- CONTACT THE ENGINEER/SURVEYOR IMMEDIATELY. 8. ALL AREAS DISTURBED BY CONSTRUCTION SHALL BE RESTORED AND GRADED TO DRAIN.
- 9. ANY TEMPORARY SPOILS STOCKPILE MUST BE LOCATED OUTSIDE OF ANY TREE DRIPLINES AND IN THE TEMPORARY SPOILS AREA DESIGNATED ON THE APPROVED PLANS. ALL SURPLUS MATERIAL WILL BE DISPOSED OF OFFSITE
- 10. ALL DEBRIS AND EXCESS MATERIAL SHALL BE REMOVED FROM THE SITE IN A MANNER NOT TO DAMAGE THE OWNER'S PROPERTY PRIOR TO ACCEPTANCE OF THE PROJECT.
- 11. IF CONTRACTOR ENCOUNTERS A VOID ON THE PROJECT, CONTRACTOR IS TO CONTACT ENGINEER AT (512) 633-6256 OR STAN REECE AT ACI CONSULTING AT (512) 347-9000 FOR EVALUATION OF THE FEATURE. ÒNCÉ ACI CONSULTING HAS VERIFIED THAT THE FEATURE IS NÓT AN ENDANGERED SPECIES HABITAT, CONTRACTOR MAY PROCEED AS DIRECTED BY THE DETAILS ON THESE PLANS.
- 12. ALL WATER CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE CITY OF GEORGETOWN CONSTRUCTION SPECIFICATION (MOST CURRENT EDITION).

TRENCH SAFETY NOTES:

- 1. IN ACCORDANCE WITH THE LAWS OF THE STATE OF TEXAS AND THE U. S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION REGULATIONS, ALL TRENCHES OVER 5 FEET IN DEPTH IN EITHER HARD AND COMPACT OR SOFT AND UNSTABLE SOIL SHALL BE SLOPED, SHORED, SHEETED, BRACED OR OTHERWISE SUPPORTED. FURTHERMORE, ALL TRENCHES LESS THAN 5 FEET IN DEPTH SHALL ALSO BE EFFECTIVELY PROTECTED WHEN HAZARDOUS GROUND
- MOVEMENT MAY BE EXPECTED. TRENCH SAFETY SYSTEMS TO BE UTILIZED FOR THIS PROJECT WILL BE PROVIDED BY THE CONTRACTOR 2. IN ACCORDANCE WITH THE U. S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION REGULATIONS, WHEN PERSONS ARE IN TRENCHES 4-FEET DEEP OR MORE, ADEQUATE MEANS OF EXIT, SUCH AS A LADDER OR STEPS,
- MUST BE PROVIDED AND LOCATED SO AS TO REQUIRE NO MORE THAN 25 FEET OF LATERAL TRAVEL. 3. CONSTRUCTION SHALL NOT PROCEED UNTIL APPROPRIATE TRENCH SAFETY SYSTEM DETAILS, AS DESIGNED BY A PROFESSIONAL ENGINEER, ARE RETAINED AND COPIES SUBMITTED TO THE CITY OF GEORGETOWN.

SEQUENCE OF CONSTRUCTION

- INSTALL TREE PROTECTION AND INITIATE TREE MITIGATION MEASURES. INSTALL EROSION CONTROLS AND OFF-SITE EROSION CONTROLS AS INDICATED ON APPROVED PLANS.
- 3. CONTACT CITY OF GEORGETOWN AND WILLIAMSON COUNTY TO SCHEDULE PRE-CONSTRUCTION COORDINATION MFFTIN(
- 4. EVALUATE TEMPORARY EROSION CONTROL INSTALLATION. REVIEW CONSTRUCTION SCHEDULE WITH THE EROSION CONTROL PLAN.
- 5. BEGIN SITE CLEARING AND GRADING. INSPECT AND MAINTAIN ALL CONTROLS AS PER GENERAL NOTES. 5. CONSTRUCT UTILITY LINES I.E. WATER, WASTEWATER, STORM DRAINAGE & PONDS.
- CONSTRUCT SIDEWALK RAMPS. 8. CONSTRUCT PAVING/STREETS.
- 9. REVEGETATE DISTURBED AREAS OR COMPLETE A DEVELOPERS CONTRACT FOR THE REVEGETATION ALONG WITH THE ENGINEERS CONCURRENCE LETTER.
- 10. PROJECT ENGINEER INSPECTS JOB AND WRITES CONCURRENCE LETTER TO THE CITY. FINAL INSPECTION IS SCHEDULED UPON RECEIPT OF LETTER.
- 11. REMOVE TEMPORARY EROSION/SEDIMENTATION CONTROLS AT GRASS GROWTH.

CITY OF GEORGETOWN NOTES:

- THESE CONSTRUCTION PLANS WERE PREPARED, SEALED, SIGNED, AND DATED BY A TEXAS LICENSED PROFESSIONAL ENGINEER. THEREFORE BASED ON THE ENGINEER'S CONCURRENCE OF COMPLIANCE, THE CONSTRUCTION PLANS FOR CONSTRUCTION OF THE

- PROPOSED PROJECT ARE HEREBY APPROVED SUBJECT TO THE STANDARD CONSTRUCTION SPECIFICATIONS AND DETAILS MANUAL

- ND ALL OTHER APPLICABLE CITY, STATE, AND FEDERAL REQUIREMENTS AND CODES.

- 2. THIS PROJECT IS SUBJECT TO ALL CITY STANDARD SPECIFICATIONS AND DETAILS IN EFFECT AT THE TIME OF SUBMITTAL OF THE PROJECT TO THE CITY.
- 3. THE SITE CONSTRUCTION PLANS SHALL MEET ALL REQUIREMENTS OF THE APPROVED SITE PLAN.

- 4. WASTEWATER MAINS AND SERVICE LINES SHALL BE SDR 26 PVC.
- 5. WASTEWATER MAINS SHALL BE INSTALLED WITHOUT HORIZONTAL OR VERTICAL BENDS.
- 6. MAXIMUM DISTANCE BETWEEN WASTEWATER MANHOLES IS 500 FEET.
- 7. WASTEWATER MAINS SHALL BE LOW PRESSURE AIR TESTED AND MANDREL TESTED BY THE CONTRACTOR ACCORDING TO CITY OF GEORGETOWN AND TCEQ REQUIREMENTS.
- 8. WASTEWATER MANHOLES SHALL BE VACUUM TESTED AND COATED BY THE CONTRACTOR ACCORDING TO CITY OF GEORGETOWN AND TCEQ REQUIREMENTS.
- 9. WASTEWATER MAINS SHALL BE CAMERA TESTED BY THE CONTRACTOR AND SUBMITTED TO THE CITY ON DVD FORMAT PRIOR TO
- PAVING THE STREETS.
- 10. PRIVATE WATER SYSTEM FIRE LINES SHALL BE TESTED BY THE CONTRACTOR TO 200 PSI FOR 2 HOURS.
- 11. PRIVATE WATER SYSTEM FIRE LINES SHALL BE DUCTILE IRON PIPING FROM THE WATER MAIN TO THE BUILDING SPRINKLER SYSTEM, AND 200 PSI C900 FOR ALL OTHERS.
- 12. PUBLIC WATER SYSTEM MAINS SHALL BE 150 PSI C900 PVC AND TESTED BY THE CONTRACTOR AT 200 PSI FOR 15 MINUTES AND 150 PSI FOR 2 HOURS.
- 13. ALL BEND AND CHANGES IN DIRECTION ON WATER MAINS SHALL BE RESTRAINED AND THRUST BLOCKED.
- 14. LONG FIRE HYDRANT LEADS SHALL BE RESTRAINED.
- 15. ALL WATER LINES ARE TO BE BACTERIA TESTED BY THE CONTRACTOR ACCORDING TO THE CITY STANDARDS AND SPECIFICATIONS.
- 16. WATER AND SEWER MAIN CROSSINGS SHALL MEET ALL REQUIREMENTS OF THE TCEQ AND THE CITY.
- 17. FLEXIBLE BASE MATERIAL FOR PUBLIC STREETS SHALL BE TXDOT TYPE A GRADE 1
- 18. HOT MIX ASPHALT CONCRETE PAVEMENT SHALL BE TYPE D UNLESS OTHERWISE SPECIFIED AND SHALL BE A MINIMUM OF 2 INCHES THICK ON PUBLIC STREETS AND ROADWAYS. 19. ALL SIDEWALK RAMPS ARE TO BE INSTALLED WITH THE PUBLIC INFRASTRUCTURE.
- 20. A MAINTENANCE BOND IS REQUIRED TO BE SUBMITTED TO THE CITY PRIOR TO ACCEPTANCE OF HTE PUBLIC IMPROVEMENTS. THIS BOND SHALL BE ESTABLISHED FOR 2 YEAR IN THE AMOUNT OF 10% OF THE COST OF THE PUBLIC IMPROVEMENTS AND SHALL FOLLOW THE CITY FORMAT.
- 21. RECORD DRAWINGS OF PUBLIC IMPROVEMENTS SHALL BE SUBMITTED TO THE CITY BY THE DESIGN ENGINEER PRIOR TO ACCEPTANCE OF THE PROJECT. THESE DRAWINGS SHALL BE A PDF EMAILED TO THE CITY DEVELOPMENT ENGINEER.

WATER AND WASTEWATER NOTES:

- 1. PIPE MATERIAL FOR WATER MAINS SHALL BE PVC (AWWA C-900, MIN. CLASS 200), OR DUCTILE IRON (C-115, MIN. CLASS 200) UNLESS SPECIFIED OTHERWISE.
- 2. PIPE MATERIAL FOR GRAVITY WASTEWATER MAINS SHALL BE PVC (ASTM D3034, SDR-26) UNLESS SPECIFIED OTHERWISE.
- 3. THE CONTRACTOR SHALL CONTACT THE CITY INSPECTOR TO COORDINATE UTILITY TIE-INS AND NOTIFY HIM AT LEAST 48 HOURS PRIOR TO CONNECTING TO EXISTING LINES.
- 4. ALL MANHOLES SHALL HAVE ECCENTRIC CONES AND SHALL BE CONCRETE WITH CAST IRON RING AND COVER. ALL MANHOLES LOCATED OUTSIDE OF THE PAVEMENT SHALL HAVE BOLTED COVERS. TAPPING OF FIBERGLASS MANHOLES SHALL NOT BE ALLOWED.
- 5. THE CONTRACTOR MUST OBTAIN A BULK WATER PERMIT OR PURCHASE AND INSTALL A WATER METER FOR ALL WATER USED DURING CONSTRUCTION. A COPY OF THIS PERMIT MUST BE CARRIED AT ALL TIMES BY ALL WHO USE WATER. CONTRACTOR TO INSTALL ABOVE GROUND WATER TANK WITH SUPPLY LINE AS INDICATD ON PLANS.
- 6. LINE FLUSHING OR ANY ACTIVITY USING A LARGE QUANTITY OF WATER MUST BE SCHEDULED WITH THE CITY INSPECTOR.
- 7. THE CONTRACTOR, AT HIS EXPENSE, SHALL PERFORM QUALITY TESTING FOR ALL WASTEWATER PIPE INSTALLED AND SHALL PROVIDE ALL EQUIPMENT (INCLUDING PUMPS AND GAUGES), SUPPLIES AND LABOR NECESSARY TO PERFORM THE TESTS. QUALITY AND PRESSURE TESTING SHALL BE MONITORED BY CITY OF GEORGETOWN PERSONNEL.
- 8. THE CONTRACTOR SHALL COORDINATE TESTING WITH THE CITY OF INSPECTOR AND PROVIDE NO LESS THAN 24 HOURS NOTICE PRIOR TO PERFORMING STERILIZATION, QUALITY TESTING OR PRESSURE TESTING.
- 9. THE CONTRACTOR SHALL NOT OPEN OR CLOSE ANY VALVES UNLESS AUTHORIZED BY THE CITY OF GEORGETOWN. 10. ALL VALVE BOXES AND COVERS SHALL BE CAST IRON.
- 11. TOOLS FOR MARKING THE CURB SHALL BE PROVIDED BY THE CONTRACTOR. OTHER APPROPRIATE MEANS OF MARKING SERVICE AND VALVE LOCATIONS SHALL BE PROVIDED IN AREAS WITHOUT CURBS. SUCH MEANS OF
- MARKING SHALL BE AS SPECIFIED BY THE ENGINEER AND ACCEPTED BY THE CITY OF GEORGETOWN.
- 12. CONTACT CITY OF GEORGETOWN INSPECTION DEPARTMENT FOR ASSISTANCE IN OBTAINING EXISTING WATER AND WASTEWATER LOCATIONS. 13. SAND, AS DESCRIBED IN SPECIFICATION ITEM 510 PIPE, SHALL NOT BE USED AS BEDDING FOR WATER AND
- WASTEWATER LINES. ACCEPTABLE BEDDING MATERIALS ARE PIPE BEDDING STONE, PEA GRAVEL AND IN LIEU OF SAND, A NATURALLY OCCURRING OR MANUFACTURED STONE MATERIAL CONFORMING TO ASTM C33 FOR STONE QUALITY AND MEETING THE FOLLOWING GRADATION SPECIFICATION:

<u>SIEVE SIZE</u>	PERCENT RETAINED BY WEIGH
1/2"	0
1/2" 3/8"	0-2
, #4	40-85
# 10	95–100

- 15. THE CONTRACTOR IS HEREBY NOTIFIED THAT CONNECTING TO, SHUTTING DOWN, OR TERMINATING EXISTING UTILITY LINES MAY HAVE TO OCCUR AT OFF-PEAK HOURS. SUCH HOURS ARE USUALLY OUTSIDE NORMAL WORKING HOURS AND POSSIBLY BETWEEN 12 A.M. AND 6 A.M.
- 16. ALL WASTEWATER CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY (TCEQ) REGULATIONS, 30 TAC CHAPTER 313 AND 317, AS APPLICABLE. WHENEVER TCEQ AND CITY OF GEORGETOWN SPECIFICATIONS CONFLICT, THE MORE STRINGENT SHALL APPLY.
- 17. THE CONTRACTOR SHALL CONTACT THE "DIG TESS" SYSTEM AT 1-800-344-8377 FOR EXISTING UTILITY LOCATIONS PRIOR TO ANY EXCAVATION IN ADVANCE OF CONSTRUCTION. THE CONTRACTOR SHALL VERIFY THE LOCATIONS OF ALL UTILITIES TO BE EXTENDED, TIED TO, OR ALTERED, OR SUBJECT TO DAMAGE/INCONVENIENCE BY THE CONSTRUCTION OPERATIONS. THE CITY OF GEORGETOWN WATER AND WASTEWATER MAINTENANCE RESPONSIBILITY ENDS AT R.O.W. / EASEMENT LINES.
- 18. ALL MANHOLES IN UNPAVED AREAS PROVIDING DIRECT ACCESS TO A WASTEWATER LINE SHALL BE WATERTIGHT AND BEAR THE WORDING AND INSIGNIA FOR THE CITY OF GEORGETOWN.
- 19. THE OWNER IS RESPONSIBLE FOR ALL COST OF RELOCATION OR DAMAGE TO UTILITIES.
- 20. THE CONTRACTOR IS RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH OCCUR DUE TO HIS/HER FAILURE TO LOCATE AND PRESERVE ANY AND ALL UTILITIES.
- 21. THE ENGINEER, IN PREPARING THESE PLANS HAS ATTEMPTED TO LOCATE ALL EXISTING UTILITIES IN THE AREAS OF EXPANSION OR NEW CONSTRUCTION. HOWEVER, THERE MAY BE UTILITIES THAT COULD NOT BE OR WERE NOT LOCATED. UNDERGROUND UTILITIES SHOWN ON THE PLANS ARE SHOWN IN APPROXIMATE LOCATIONS ONLY. CONTRACTOR SHALL DETERMINE THE EXACT LOCATIONS AND ELEVATIONS OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK. THE CONTRACTOR SHALL CALL APPROPRIATE UTILITY COMPANIES FOR LOCATIONS OF THEIR UTILITIES AT LEAST 48 HOURS BEFORE COMMENCING EXCAVATION. IN THE EVENT THAT A UTILITY IS SITUATED SUCH THAT CONSTRUCTION CANNOT PROCEED AS SHOWN ON THE PLANS, THE CONSTRUCTION MANAGER/SUPERVISOR SHALL BE NOTIFIED IMMEDIATELY.
- 22. CONTRACTOR TO COORDINATE WITH APPROPRIATE UTILITY COMPANIES PRIOR TO CONSTRUCTION, ADJUSTMENT, OR RELOCATION OF EXISTING UTILITIES AS DESIGNATED ON PLANS.
- 23. THE MINIMUM HORIZONTAL SEPARATION BETWEEN WATER AND ASSOCIATED VALVING AND SEWER LINES AND ASSOCIATED MANHOLES, IS NINE (9) FEET OUTSIDE DIAMETER TO OUTSIDE DIAMETER. THE MINIMUM VERTICAL SEPARATION BETWEEN WATER AND SEWER LINES IS EIGHTEEN (18) INCHES.
- 24. THE TOP ELEVATION OF MANHOLES IN PAVED AREAS SHALL MATCH FINISH GRADE. THE TOP ELEVATION OF MANHOLES IN UNPAVED AREAS SHALL BE 3" (MIN.) ABOVE FINISH GRADE, UNLESS OTHERWISE NOTED ON PLANS.
- 25. CONTRACTOR SHALL COORDINATE INSPECTION OF UTILITY LINES WITH APPROPRIATE AUTHORITIES PRIOR TO BACKFILLING TRENCHES.
- 26. ALL WATER AND WASTEWATER LINES IN CITY R.O.W. AND EASEMENTS WILL MEET THE CITY OF GEORGETOWN WATER AND WASTEWATER DEPARTMENT DESIGN CRITERIA, AT A MINIMUM.
- 27. CITY MAINTENANCE OF UTILITIES ENDS AT THE PROPERTY LINE UNLESS IN AN EASEMENT.
- 28. EXTEND ALL EXISTING UTILITY MANHOLES, BOXES, COVERS, ETC. TO PROPOSED FINISH GRADE, UNLESS APPROVED OTHERWISE.
- 29. ALL UNDERGROUND UTILITY CONSTRUCTION WITHIN CITY R.O.W. OR PUBLIC EASEMENTS MUST BE ACCOMPLISHED IN ACCORDANCE WITH THE CITY OF GEORGETOWN STANDARD SPECIFICATIONS. 30. AN 80 MIL COAT OF RAVEN LINING SYSTEMS, RAVEN 405 ULTRA HIGH BUILD EPOXY COATING, OR APPROVED
- EQUAL, TO BE APPLIED TO ENTIRE INTERIOR OF EACH WASTEWATER MANHOLE AND UNDERSIDE OF FLAT TOPS. 31. ALL WATER SERVICE, WASTEWATER SERVICE AND VALVE LOCATIONS SHALL BE APPROPRIATELY MARKED AS FOLLOWS:

"W" ON TOP OF CURB WATER SERVICE WASTEWATER SERVICE "S" ON TOP OF CURB "V" ON FACE OF CURB DRY UTILITIES "DU" ON FACE OF CURB

VALVE

32. CENTER ONE 20-FOOT 150 PSI PRESSURE RATED WASTEWATER PIPE SECTION AT ALL WATERLINE CROSSINGS. 33. WHERE WATER LINES AND NEW SEWER LINE ARE INSTALLED WITH A SEPARATION DISTANCE CLOSER THAN NINE FEET (I.E., WATER LINES CROSSING WASTEWATER LINES, WATER LINES PARALLELING WASTEWATER LINES, OR WATER LINES NEXT TO MANHOLES) THE INSTALLATION MUST MEET THE REQUIREMENTS OF 30 TAC CHAPTER 217 (DESIGN CRITERIA FOR DOMESTIC WASTEWATER SYSTEMS) OR 30 TAC CHAPTER 290 (PUBLIC DRINKING WATER).

- EROSION AND SEDIMENTATION CONTROL NOTES
- 1. THE CONTRACTOR SHALL INSTALL EROSION/SEDIMENTATION CONTROLS AND TREE/NATURAL AREA PROTECTIVE FENCING PRIOR TO ANY SITE PREPARATION WORK (CLEARING, GRUBBING OR EXCAVATION).
- 2. THE PLACEMENT OF EROSION/SEDIMENTATION CONTROLS SHALL BE IN ACCORDANCE WITH THE THE APPROVED EROSION AND SEDIMENTATION CONTROL PLAN.
- 3. THE PLACEMENT OF TREE/NATURAL AREA PROTECTIVE FENCING SHALL BE IN ACCORDANCE WITH THE CITY OF GEORGETOWN STANDARD NOTES FOR TREE AND NATURAL AREA PROTECTION AND THE APPROVED GRADING/TREE AND NATURAL ARFA PLAN.
- 4. A PRE-CONSTRUCTION CONFERENCE SHALL BE HELD WITH THE CONTRACTOR, DESIGN ENGINEER/PERMIT APPLICANT AND CITY INSPECTOR AFTER INSTALLATION OF THE EROSION/SEDIMENTATION CONTROLS AND TREE/NATURAL AREA PROTECTION MEASURES AND PRIOR TO BEGINNING ANY SITE PRÉPARATION WORK. THI CONTRACTOR SHALL NOTIFY THE CITY OF GEORGETOWN, AT LEAST THREE DAYS PRIOR TO THE MEETING DATE.
- 5. THE CONTRACTOR IS REQUIRED TO INSPECT THE CONTROLS AND FENCES AT WEEKLY INTERVALS AND AFTER SIGNIFICANT RAINFALL EVENTS TO INSURE THAT THEY ARE FUNCTIONING PROPERLY. THE PERSON(S) RESPONSIBLE FOR MAINTENANCE F CONTROLS AND FENCES SHALL IMMEDIATELY MAKE ANY NECESSARY REPAIRS 1 DAMAGED AREAS. SILT ACCUMULATION AT CONTROLS MUST BE REMOVED WHEN THE DEPTH REACHES SIX (6) INCHES.
- 6. PRIOR TO FINAL ACCEPTANCE BY THE CITY, HAUL ROADS AND WATERWAY CROSSINGS CONSTRUCTED FOR TEMPORARY CONTRACTOR ACCESS MUST E REMOVED, ACCUMULATED SEDIMENT REMOVED FROM THE WATERWAY AND THE AREA RESTORED TO THE ORIGINAL GRADE AND REVEGETATED. ALL LAND CLEARING DEBRIS SHALL BE DISPOSED OF IN APPROVED SPOIL DISPOSAL SITES.

<u>GENER</u>

- 1. ALL C AND A 2. ANY E OR RE 3. THE CO 4. THE CO ALL A AT THE BEFOR PRIOR
- PARTIES WHEN AND DE 8. PRIOR
- 9. AVAILAI DATU
- GPS II R. M. REPO FOUNE
- MAG N ELEVA 10. SIDE W
- 11. CONTR 12. CONTR RECOM REPOR1
- 13. THE DIS TO TH
- 14. WHEN TRANSF 15. ALL PA
- 16. WHEN ACCOR 17. ALL W 18. EARTH SPECIFI
- 19. IF THE ENGINI 20. CONTRA 21. DESIGN
- MAJOR PORTIC AMEND APPRO

<u>TRA</u>

<u>ADD</u>

5. NO 6. NO

WIL 1. TH DIS

				DATE
<u>Е</u>	NERAL NOTES: All construction shall be in accordance with the city of georgetown standard construction specifications as adopted			В
	AND AMENDED UNLESS OTHERWISE SPECIFIED. ANY EXISTING UTILITIES, PAVEMENT, CURBS, SIDEWALKS, STRUCTURES, TREES, ETC., THAT ARE DAMAGED OR REMOVED SHALL BE REPAIRED OR REPLACED BY THE CONTRACTOR AT NO COST TO THE OWNER.			
	THE CONTRACTOR SHALL VERIFY ALL DEPTHS AND LOCATIONS OF EXISTING UTILITIES PRIOR TO ANY CONSTRUCTION. ANY DISCREPANCIES WITH THE CONSTRUCTION PLANS FOUND IN THE FIELD SHALL BE BROUGHT IMMEDIATELY TO THE ATTENTION OF THE ENGINEER. THE CONTRACTOR SHALL GIVE THE CITY OF GEORGETOWN 48 HOURS NOTICE BEFORE BEGINNING EACH PHASE OF CONSTRUCTION.			
	ALL AREAS DISTURBED OR EXPOSED DURING CONSTRUCTION SHALL BE REVEGETATED IN ACCORDANCE WITH THE PLANS AND CITY OF GEORGETOWN STANDARD SPECIFICATIONS. REVEGETATION OF ALL DISTURBED OR EXPOSED AREAS SHALL CONSIST OF SODDING OR SEEDING, AT THE CONTRACTOR'S OPTION. HOWEVER, THE TYPE OF REVEGETATION MUST EQUAL OR EXCEED THE TYPE OF VEGETATION PRESENT BEFORE CONSTRUCTION UNLESS OTHERWISE REQUESTED BY THE OWNER.			
	PRIOR TO ANY CONSTRUCTION, THE CONTRACTOR SHALL CONVENE A PRECONSTRUCTION CONFERENCE BETWEEN THE CITY OF GEORGETOWN, HIMSELF, THE ENGINEER, THE OWNER, THE ENVIRONMENTAL ENGINEER, GEOTECHNICAL ENGINEER, UTILITY COMPANIES, ANY AFFECTED PARTIES AND ANY OTHER ENTITY THE COUNTY OR ENGINEER MAY REQUIRE.			
	WHEN CONSTRUCTION IS BEING CARRIED OUT WITHIN EASEMENTS, THE CONTRACTOR SHALL CONFINE HIS WORK TO WITHIN THE PERMANENT AND ANY TEMPORARY EASEMENTS. PRIOR TO FINAL ACCEPTANCE, THE CONTRACTOR SHALL BE RESPONSIBLE FOR REMOVING ALL TRASH			REVIE
	AND DEBRIS WITHIN THE PERMANENT AND TEMPORARY EASEMENTS. CLEANUP SHALL BE TO THE SATISFACTION OF THE ENGINEER. PRIOR TO ANY CONSTRUCTION, THE CONTRACTOR SHALL APPLY FOR AND SECURE ALL PROPER PERMITS FROM THE APPROPRIATE AUTHORITIES.			
	AVAILABLE BENCHMARK(S) THAT MAY BE UTILIZED FOR THE CONSTRUCTION OF THIS PROJECT ARE DESCRIBED AS FOLLOWS: DATUM NAVD 88 (GEOID 18B) GPS INFORMATION (2 DAYS OF STATIC) DERIVED FROM NATIONAL GEODETIC SURVEY (NGS) ONLINE POSITIONING USER SERVICE (OPUS)			
	BM: 1463_05: 3" BRASS DISC ON CONCRETE CURB ON TIP OF CENTERLINE MEDIAN ON ESCALERA PARKWAY, ALONG THE NORTH RIGHT-OF-WAY LINE OF			
	R. M. 2243. REPORTED RECORD ELEVATION IS 1003.72 FEET (NAVD 88) AS SHOWN ON PLAT DOCUMENT NO. 2022134745, O.P.R.W.C.TX. FOUND BENCHMARK ELEVATION TO BE SAME, 1003.72 FEET, BASED UPON GPS RTK TIES AND DIFFERENTIAL LEVEL LOOP. BM: 1463_02:			
).	MAG NAIL W/ WASHER STAMPED "HR GREEN" SET ON TOP OF CURB. ELEVATION = 808.64" SIDE WALK RAMPS AND SIDEWALKS LOCATED IN FRONT OF COMMON AREAS TO BE INSTALLED WITH INFRASTRUCTURE CONSTRUCTION	G		
	CONTRACTOR IS RESPONSIBLE FOR DAMAGE TO ANY EXISTING UTILITY OR IMPROVEMENTS.			B
٤.	CONTRACTOR SHALL REFER TO THE GEOTECHNICAL REPORT TITLED "GEOTECHNICAL INVESTIGATION PAVEMENT THICKNESS RECOMMENDATIONS — REVISED PARKSIDE PENINSULA PHASE 3", DATED AUGUST 2024 BY MLA GEOTECHNICAL, ENGINEER'S JOB# 24101123.001 FOR PAVEMENT DESIGN RECOMMENDATIONS. ANY CONFLICT BETWEEN THESE CONSTRUCTION PLANS AND THE GEOTECHNICAL REPORT SHALL BE RESOLVED IN FAVOR OF THE GEOTECHNICAL REPORT.			
5 . '	THE DISTRICT ENGINEER, JONES-HEROY & ASSOCIATES, INC. (KEN HEROY, PH: 512-989-2200) SHALL BE CONTACTED 48 HOURS PRIOR TO THE FOLLOWING: 1) PRE-CONSTRUCTION MEETINGS		at's belo v before yo	
	1) PRE-CONSTRUCTION MEETINGS 2) BEGINNING EACH PHASE OF CONSTRUCTION 3) TESTING OF WATER AND/OR WASTEWATER LINES 4) FINAL WALK-THROUGH OF FACILITIES			
ŀ.	WHEN REQUIRED, CONTRACTOR SHALL REMOVE PAVEMENT IN ACCORDANCE WITH THE TEXAS DEPARTMENT OF HIGHWAY AND PUBLIC TRANSPORTATION STANDARD SPECIFICATIONS, LATEST EDITION.	5508 HIGHWAY 290 WEST Suite 150 Austin. TX 78735	84	10194101
5. 5.	ALL PAVEMENT REMOVED SHALL BE DONE SUCH THAT THE REMAINING PAVEMENT IS LEFT WITH A CLEAN STRAIGHT EDGE. WHEN REQUIRED, CONTRACTOR SHALL REMOVE EXISTING PAVEMENT STRIPING BY SAND BLASTING FROM EXISTING PAVEMENT IN	НІ GHWAY : 150 N. TX 7	872. 669(EEN. COM NO: 163	TBPLS NO: 10194
7.	ACCORDANCE WITH ITEM 678 OF THE TXDOT LATEST EDITION. ALL WORK IN STATE R.O.W. AND EASEMENTS SHALL BE IN ACCORDANCE WITH THE TXDOT LATEST EDITION.	5508 SULTE AUSTI	512. E HRGRE TBPE	
3.	EARTHWORK FOR ALL BUILDING FOUNDATIONS AND SLABS SHALL BE IN ACCORDANCE WITH ARCHITECTURAL BUILDING PLANS AND SPECIFICATIONS AND THE GEOTECHNICAL STUDY.		e	ΤX
9. n	IF THE CONTRACTOR FINDS A DISCREPANCY WITH THE TOPOGRAPHIC INFORMATION ON THESE PLANS HE/SHE SHOULD CONTACT THE ENGINEER OR OWNER IMMEDIATELY. CONTRACTOR SHALL PROTECT ALL BENCHMARKS AND PROPERTY MONUMENTATION DISTURBED DURING CONSTRUCTION.	([NT
	DESIGN OF MAJOR DRAINAGE WAYS THROUGH A SUBDIVISION AND MAJOR STRUCTURES SUCH AS BOX CULVERTS OR BRIDGES ACROSS A MAJOR DRAINAGE CHANNEL SHALL BE COORDINATED WITH THE REQUIREMENTS OF THE WILLIAMSON COUNTY HEALTH DISTRICT WHEN ANY		iree	W
	PORTION OF THE SUBDIVISION LIES OUTSIDE THE CITY LIMITS, AND WHEN APPLICABLE, A LETTER REQUESTING A LOCAL FLOOD PLAIN MAP AMENDMENT FROM THE FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) SHALL BE PROVIDED PRIOR TO FINAL CONSTRUCTION PLAN APPROVAL.			L 0 P
	TRAFFIC MARKING NOTE			E < E
	1. ANY METHODS, STREET MARKINGS AND SIGNAGE NECESSARY FOR WARNING MOTORISTS, WARNING PEDESTRIANS OR DIVERTING TRAFFIC DURING CONSTRUCTION SHALL CONFORM TO			D
	THE TEXAS MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES FOR STREETS AND HIGHWAYS, LATEST EDITION.		TE OF TEX	i n
	2. ALL PAVEMENT MARKINGS, MARKERS, PAINT, TRAFFIC BUTTONS, TRAFFIC CONTROLS AND SIGNS SHALL BE INSTALLED IN ACCORDANCE WITH THE TEXAS DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR CONSTRUCTION OF HIGHWAYS, STREETS AND	*	***	``
	BRIDGES AND, <u>THE TEXAS MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES FOR STREETS AND</u> <u>HIGHWAYS</u> , LATEST EDITION.	F gaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	INE N. CAMPBI	
	ADDITIONAL NOTES		CENSED.	<u>ب</u> ال ا
	1. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MOWING AND THE REMOVAL OF ALL LITTER WITHIN THE PROJECT LIMITS SO AS TO KEEP THE SITE OF THE WORK IN A NEAT AND PRESENTABLE CONDITION AT ALL TIMES. THIS WORK WILL BE CONSIDERED SUBSIDIARY TO THE VARIOUS BID ITEMS.	Unit	n (an)	/30/2024
	2. THE CONTRACTOR SHALL PROTECT ALL AREAS WHICH ARE NOT INCLUDED IN THE ACTUAL LIMITS OF THE PROPOSED CONSTRUCTION AREAS FROM DESTRUCTION. CARE SHALL BE		M	ហ្
	EXERCISED TO PREVENT DAMAGE TO TREES, VEGETATION, FENCES, POWER POLES, AND OTHER NATURAL SURROUNDINGS. THE AREAS NOT TO BE DISTURBED INCLUDE ALL GOLF COURSE AREAS, UNLESS SPECIFIED OTHERWISE. THE CONTRACTOR SHALL, AT HIS EXPENSE, RESTORE ANY AREA DISTURBED AS A RESULT OF HIS OPERATIONS TO A CONDITION AS GOOD AS, OR BETTER THAN, THAT PRESENT PRIOR TO CONSTRUCTION.		А С П	EXA
	3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MARKING EVERY 100 FOOT ROAD STATION, AND SHALL MAINTAIN THE MARKINGS FOR THE DURATION OF THE PROJECT. THIS WORK SHALL BE CONSIDERED SUBSIDIARY TO THE ITEMIZED CONSTRUCTION CONTRACT.	ហ	ЧЧ ЧЧ	⊢ Z
	4. THE SUPERINTENDENT SHALL BE AVAILABLE ON THE PROJECT AT ALL TIMES WHEN WORK IS BEING PERFORMED.	ТЕ (┥┛	ດ ເງ
	5. NO BLASTING IS ALLOWED ON THIS PROJECT. 6. NO STORAGE OF HYDROCARBON OR HAZARDOUS MATERIAL IS ALLOWED ON SITE.			Σ Δ
	6. NO STORAGE OF HIDROCARBON OR HAZARDOUS MATERIAL IS ALLOWED ON SITE.		ら い し	
	WILLIAMSON COUNTY M.U.D. No. 25 NOTES	RA	ΖÜ	Ň
	 THE DISTRICT ENGINEER, JONES-HEROY & ASSOCIATES, INC. (KEN HEROY, PH: 512-989-2200) SHALL BE CONTACTED 48 HOURS PRIOR TO: i) PRE-CONSTRUCTION MEETINGS; 		ЧЧ	, Ž
	ii) BEGINNING EACH PHASE OF CONSTRUCTION iii) TESTING OF WATER AND/OR WASTEWATER LINES; AND, iv) FINAL WALK-THROUGH OF FACILITIES	Ц Ш	Ц Ц Ц	≥ □
	 RÉVIEW OF THE PLANS BY THE DISTRICT IS LIMITED TO WATER, WASTEWATER, AND DRAINAGE, AND DOES NOT INDICATE A REVIEW OF THE ADEQUACY OF THE DESIGN FOR THE FACILITIES. IN APPROVING THESE PLANS, THE DISTRICT MUST RELY ON THE ADEQUACY OF THE WORK OF THE DESIGN ENGINEER. 	0		Ē
			У C	52
	<u>GEORGETOWN FIRE DEPARTMENT NOTES</u> 1. 1,500 gpm fire flow shall be provided for this project.		A R	
	 1. 1,500 GPM FIRE FLOW SHALL BE PROVIDED FOR THIS PROJECT. 2. AT THE CONCLUSION OF CONSTRUCTION AND AS PART OF THE PROCESS FOR THE CITY TO ACCEPT THIS PHASE: THE FIRE HYDRANTS SHALL BE FLOWED AND TESTED 		ב	Ü
	•A COPY OF THE REPORT SHALL BE EMAILED INTO THE FIRE DEPARTMENT •THE HYDRANTS SHALL BE PAINTED AND COLOR CODED.		ED BY: _	
	*** <u>CAUTION</u> : IF PRESSURE REDUCING VALVES WERE INSTALLED IN THIS PHASING THEY MUST BE SET PRIOR TO FIRE HYDRANT FLOW TESTING.	DRAWN	ВҮ: _ Ed вү: _	MM SN
	3. PER CITY ORDINANCE SEC. 13.15.120, HYDRANT FLOW CODING STANDARDS. PUBLIC HYDRANTS WILL HAVE THE BONNETS PAINED SILVER, THE HYDRANTS WILL BE FLOW TESTED, AND THE BONNET PAINTED USING THE HYDRANT FLOW STANDARD IN PARAGRAPH C. FLOW COLOR:		/ED BY:_	
	•GREATER THAN 1500 GPM BLUE •1000 TO 1500 GPM GREEN •500 – 999 GPM ORANGE			
	•LASS THAN 500 GPM RED •NOT WORKING BLACK OR BAGGED	SHEET	2 of _	68

SHEET Z OF 68 2024-XX-CON

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY ORGANIZED SEWAGE COLLECTION SYSTEM (SCS) GENERAL CONSTRUCTION NOTES

- 1. THIS ORGANIZED SEWAGE COLLECTION SYSTEM MUST BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY'S (TCEQ) EDWARDS AQUIFER RULES 30 TEXAS ADMINISTRATIVE CODE (TAC) §§213.5(C) AND 217.51 - 217.70 AND 30 TAC CHAPTER 217, SUBCHAPTER D, AND THE CITY OF ROUND ROCK STANDARD SPECIFICATIONS.
- 2. ALL CONTRACTORS CONDUCTING REGULATED ACTIVITIES ASSOCIATED WITH THIS PROPOSED REGULATED PROJECT MUST BE PROVIDED WITH COPIES OF THE SEWAGE COLLECTION SYSTEM PLAN AND THE TCEQ LETTER INDICATING THE SPECIFIC CONDITIONS OF ITS APPROVAL. DURING THE COURSE OF THESE REGULATED ACTIVITIES, THE CONTRACTORS MUST BE REQUIRED TO KEEP ON-SITE COPIES OF THE PLAN AND THE APPROVAL LETTER.
- 3. NO LATER THAN 48 HOURS PRIOR TO COMMENCING ANY REGULATED ACTIVITY, THE APPLICANT OR HIS AGENT MUST NOTIFY THE TCEQ AUSTIN REGIONAL OFFICE, IN WRITING, OF THE DATE ON WHICH THE REGULATED ACTIVITY WILL BEGIN.
- 4. ANY MODIFICATION TO THE ACTIVITIES DESCRIBED IN THE REFERENCED SCS APPLICATION FOLLOWING THE DATE OF APPROVAL MAY REQUIRE THE SUBMITTAL OF AN SCS APPLICATION TO MODIFY THIS APPROVAL, INCLUDING THE PAYMENT OF APPROPRIATE FEES AND ALL INFORMATION NECESSARY FOR ITS REVIEW AND APPROVAL.
- 5. ALL TEMPORARY EROSION AND SEDIMENTATION CONTROLS MUST BE INSTALLED PRIOR TO CONSTRUCTION, MUST BE MAINTAINED DURING CONSTRUCTION, AND MUST BE REMOVED WHEN SUFFICIENT VEGETATION IS ESTABLISHED TO CONTROL THE EROSION AND SEDIMENTATION AND THE CONSTRUCTION AREA IS STABILIZED.
- 6. THE SEWER LINE TRENCH DETAILS SHOWING THE CROSS SECTION WITH THE DIMENSIONS, PIPE PLACEMENT, AND BACKFILL INSTRUCTIONS ARE INCLUDED ON PLAN SHEET 80 OF 124 OF THESE PLANS. ALL SEWER PIPES JOINTS MUST MEET THE REQUIREMENTS IN 30 TAC §§217.53(C) AN 217.65.
- GRAVITY LINES MUST HAVE A SDR 35 OR LESS. PRESSURIZED SEWER SYSTEMS MUST HAVE PIPE WITH A MINIMUM WORKING PRESSURE RATING OF 150 PSI.

THE ASTM, ANSI, OR AWWA SPECIFICATION NUMBERS FOR THE PIPE(S) AND JOINTS ARE ASTM-D3034. THE PIPE MATERIAL, THE PRESSURE CLASSES, AND THE SDR AND/OR DR DESIGNATIONS ARE SDR-26.

- 7. IF ANY SENSITIVE FEATURES ARE DISCOVERED DURING THE WASTEWATER LINE TRENCHING ACTIVITIES, ALL REGULATED ACTIVITIES NEAR THE SENSITIVE FEATURE MUST BE SUSPENDED IMMEDIATELY. THE APPLICANT MUST IMMEDIATELY NOTIFY THE APPROPRIATE REGIONAL OFFICE OF THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY OF THE FEATURE DISCOVERED. A GEOLOGIST'S ASSESSMENT OF THE LOCATION AND EXTENT OF THE FEATURE DISCOVERED MUST BE REPORTED TO THAT REGIONAL OFFICE IN WRITING WITHIN TWO WORKING DAYS. THE APPLICANT MUST SUBMIT A PLAN FOR ENSURING THE STRUCTURAL INTEGRITY OF THE SEWER LINE OR FOR MODIFYING THE PROPOSED COLLECTION SYSTEM ALIGNMENT AROUND THE FEATURE. THE REGULATED ACTIVITIES NEAR THE SENSITIVE FEATURE MAY NOT PROCEED UNTIL THE EXECUTIVE DIRECTOR HAS REVIEWED AND APPROVED THE METHODS PROPOSED TO PROTECT THE SENSITIVE FEATURE AND THE EDWARDS AQUIFER FROM ANY POTENTIALLY ADVERSE IMPACTS TO WATER QUALITY WHILE MAINTAINING THE STRUCTURAL INTEGRITY OF
- 8. SEWER LINES LOCATED WITHIN OR CROSSING THE 5-YEAR FLOODPLAIN OF A DRAINAGE WAY WILL BE PROTECTED FROM INUNDATION AND STREAM VELOCITIES WHICH COULD CAUSE EROSION AND SCOURING OF BACKFILL. THE TRENCH MUST BE CAPPED WITH CONCRETE TO PREVENT SCOURING OF BACKFILL, OR THE SEWER LINES MUST BE ENCASED IN CONCRETE. ALL CONCRETE SHALL HAVE A MINIMUM THICKNESS OF SIX (6)
- 9. BLASTING PROCEDURES FOR PROTECTION OF EXISTING SEWER LINES AND OTHER UTILITIES WILL BE IN ACCORDANCE WITH THE NATIONAL FIRE PROTECTION ASSOCIATION CRITERIA. SAND IS NOT ALLOWED AS BEDDING OR BACKFILL IN TRENCHES THAT HAVE BEEN BLASTED. IF ANY EXISTING SEWER LINES ARE DAMAGED, THE LINES MUST BE REPAIRED AND RETESTED.
- 10. ALL MANHOLES CONSTRUCTED OR REHABILITATED ON THIS PROJECT MUST HAVE WATERTIGHT SIZE ON SIZE RESILIENT CONNECTORS ALLOWING FOR DIFFERENTIAL SETTLEMENT. IF MANHOLES ARE CONSTRUCTED WITHIN THE 100-YEAR FLOODPLAIN, THE COVER MUST HAVE A GASKET AND BE BOLTED TO THE RING. WHERE GASKETED MANHOLE COVERS ARE REQUIRED FOR MORE THAN THREE MANHOLES IN SEQUENCE OR FOR MORE THAN 1500 FEET, ALTERNATE MEANS OF VENTING WILL BE PROVIDED. BRICKS ARE NOT AN ACCEPTABLE CONSTRUCTION MATERIAL FOR ANY PORTION OF THE MANHOLE.

THE DIAMETER OF THE MANHOLES MUST BE A MINIMUM OF FOUR FEET AND THE MANHOLE FOR ENTRY MUST HAVE A MINIMUM CLEAR OPENING DIAMETER OF 30 INCHES. THESE DIMENSIONS AND OTHER DETAILS SHOWING COMPLIANCE WITH THE COMMISSION'S RULES CONCERNING MANHOLES AND SEWER LINE/MANHOLE INVERTS DESCRIBED IN 30 TAC §217.55 ARE INCLUDED ON PLAN SHEET 75 & 77 OF 124.

IT IS SUGGESTED THAT ENTRANCE INTO MANHOLES IN EXCESS OF FOUR FEET DEEP BE ACCOMPLISHED BY MEANS OF A PORTABLE LADDER. THE INCLUSION OF STEPS IN A MANHOLE IS PROHIBITED.

- 11. WHERE WATER LINES AND NEW SEWER LINE ARE INSTALLED WITH A SEPARATION DISTANCE CLOSER THAN NINE FEET (I.E., WATER LINES CROSSING WASTEWATER LINES, WATER LINES PARALLELING WASTEWATER LINES, OR WATER LINES NEXT TO MANHOLES) THE INSTALLATION MUST MEET THE REQUIREMENTS OF 30 TAC §217.53(D) (PIPE DESIGN) AND 30 TAC §290.44(E) (WATER DISTRIBUTION).
- 12. WHERE SEWERS LINES DEVIATE FROM STRAIGHT ALIGNMENT AND UNIFORM GRADE ALL CURVATURE OF SEWER PIPE MUST BE ACHIEVED BY THE FOLLOWING PROCEDURE WHICH IS RECOMMENDED BY THE PIPE MANUFACTURER: N/A.

IF PIPE FLEXURE IS PROPOSED, THE FOLLOWING METHOD OF PREVENTING DEFLECTION OF THE JOINT MUST BE USED: N/A.

SPECIFIC CARE MUST BE TAKEN TO ENSURE THAT THE JOINT IS PLACED IN THE CENTER OF THE TRENCH AND PROPERLY BEDDED IN ACCORDANCE WITH 30 TAC §217.54.

- 13. NEW SEWAGE COLLECTION SYSTEM LINES MUST BE CONSTRUCTED WITH STUB OUTS FOR THE CONNECTION OF ANTICIPATED EXTENSIONS. THE LOCATION OF SUCH STUB OUTS MUST BE MARKED ON THE GROUND SUCH THAT THEIR LOCATION CAN BE EASILY DETERMINED AT THE TIME OF CONNECTION OF THE EXTENSIONS. SUCH STUB OUTS MUST BE MANUFACTURED WYES OR TEES THAT ARE COMPATIBLE IN SIZE AND MATERIAL WITH BOTH THE SEWER LINE AND THE EXTENSION. AT THE TIME OF ORIGINAL CONSTRUCTION, NEW STUB-OUTS MUST BE CONSTRUCTED SUFFICIENTLY TO EXTEND BEYOND THE END OF THE STREET PAVEMENT. ALL STUB-OUTS MUST BE SEALED WITH A MANUFACTURED CAP TO PREVENT LEAKAGE. EXTENSIONS THAT WERE NOT ANTICIPATED AT THE TIME OF ORIGINAL CONSTRUCTION OR THAT ARE TO BE CONNECTED TO AN EXISTING SEWER LINE NOT FURNISHED WITH STUB OUTS MUST BE CONNECTED USING A MANUFACTURED SADDLE AND IN ACCORDANCE WITH ACCEPTED PLUMBING TECHNIQUES.
- 14. TRENCHING, BEDDING AND BACKFILL MUST CONFORM WITH 30 TAC §217.54. THE BEDDING AND BACKFILL FOR FLEXIBLE PIPE MUST COMPLY WITH THE STANDARDS OF ASTM D-2321, CLASSES IA, IB, II OR III, RIGID PIPE BEDDING MUST COMPLY WITH THE REQUIREMENTS OF ASTM C 12 (ANSI A 106.2) CLASSES A, B OR C.
- 15. SEWER LINES MUST BE TESTED FROM MANHOLE TO MANHOLE. WHEN A NEW SEWER LINE IS CONNECTED TO AN EXISTING STUB OR CLEAN-OUT, IT MUST BE TESTED FROM EXISTING MANHOLE TO NEW MANHOLE. IF A STUB OR CLEAN-OUT IS USED AT THE END OF THE PROPOSED SEWER LINE, NO PRIVATE SERVICE ATTACHMENTS MAY BE CONNECTED BETWEEN THE LAST MANHOLE AND THE CLEANOUT UNLESS IT CAN BE CERTIFIED AS CONFORMING WITH THE PROVISIONS OF 30 TAC §213.5(C)(3)(E).
- 16. ALL SEWER LINES MUST BE TESTED IN ACCORDANCE WITH 30 TAC §217.57. THE ENGINEER MUST RETAIN COPIES OF ALL TEST RESULTS WHICH MUST BE MADE AVAILABLE TO THE EXECUTIVE DIRECTOR UPON REQUEST. THE ENGINEER MUST CERTIFY IN WRITING THAT ALL WASTEWATER LINES HAVE PASSED ALL REQUIRED TESTING TO THE APPROPRIATE REGIONAL OFFICE WITHIN 30 DAYS OF TEST COMPLETION AND PRIOR TO USE OF THE NEW COLLECTION SYSTEM. TESTING METHOD WILL BE: (A) OR A COLLECTION SYSTEM PIPE THAT WILL TRANSPORT WASTEWATER BY GRAVITY FLOW. THE DESIGN MÚST SPECIFY AN INFILTRATION AND EXFILTRATION TEST OR A LOW-PRESSURE AIR TEST. A TEST MUST

CONFORM TO THE FOLLOWING REQUIREMENTS: (1) LOW PRESSURE AIR TEST.

- (A) A LOW PRESSURE AIR TEST MUST FOLLOW THE PROCEDURES DESCRIBED IN AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) C-828, ASTM C-924, OR ASTM F-1417 OR OTHER PROCEDURE APPROVED BY THE EXECUTIVE DIRECTOR, EXCEPT AS TO TESTING TIMES AS REQUIRED IN TABLE C.3 IN SUBPARAGRAPH (C) OF THIS PARAGRAPH OR EQUATION C.3 IN SUBPARAGRAPH (B)(II) OF THIS PARAGRAPH.
- (B) FOR SECTIONS OF COLLECTION SYSTEM PIPE LESS THAN 36 INCH AVERAGE INSIDE DIAMETER, THE FOLLOWING PROCEDURE MUST APPLY, UNLESS A PIPE IS TO BE TESTED AS REQUIRED BY PARAGRAPH (2) OF THIS SUBSECTION. (I) A PIPE MUST BE PRESSURIZED TO 3.5 POUNDS PER SQUARE INCH (PSI) GREATER THAN THE PRESSURE EXERTED BY GROUNDWATER ABOVE THE PIPE. (II) ONCE THE PRESSURE IS STABILIZED, THE MINIMUM TIME ALLOWABLE FOR THE PRESSURE TO DROP FROM 3.5 PSI GAUGE TO 2.5 PSI GAUGE IS COMPUTED FROM

THE FOLLOWING EQUATION: 0.085 x D x K EQUATION C.3 T =

WHERE:

- T = TIME FOR PRESSURE TO DROP 1.0 POUND PER SQUARE INCH GAUGE IN SECONDS K = 0.000419 X D X L. BUT NOT LESS THAN 1.0
- D = AVERAGE INSIDE PIPE DIAMETER IN INCHES
- L = LENGTH OF LINE OF SAME SIZE BEING TESTED, IN FEET Q = RATE OF LOSS, 0.0015 CUBIC FEET PER MINUTE PER SQUARE FOOT

Q

- INTERNAL SURFACE (C) SINCE A K VALUE OF LESS THAN 1.0 MAY NOT BE USED, THE MINIMUM
- TESTING TIME FOR EACH PIPE DIAMETER IS SHOWN IN THE FOLLOWING

PIPE DIAMETER (INCHES)	MINIMUM TIME (SECONDS)	MAXIMUM LENGTH FOR MINIMUM TIME (FEET)	TIME FOR LONGER LENGTH (SECONDS/FOOT)
6	340	398	0.855
8	454	298	1.520
10	567	239	2.374
12	680	199	3.419
15	850	159	5.342
18	1020	133	7.693
21	1190	114	10.471
24	1360	100	13.676
27	1530	88	17.309
30	1700	80	21.369
33	1870	72	25.856

FIRST 25% OF THE CALCULATED TESTING TIME

- TESTING PERIOD, THEN THE TEST MUST CONTINUE FOR THE ENTIRE TEST DURATION AS OUTLINED ABOVE OR UNTIL FAILURE.
- PROCEDURE OUTLINED IN THIS SECTION.

(2) INFILTRATION/EXFILTRATION TEST.

- (A) THE TOTAL EXFILTRATION, AS DETERMINED BY A HYDROSTATIC HEAD TEST, MUST NOT MANHOLE.
- WHICHEVER IS GREATER
- PIPE PER 24 HOURS AT THE SAME MINIMUM TEST HEAD AS IN SUBPARGRAPH (C) OF THIS PARAGRAPH
- IS ALSO REQUIRED. THE FOLLOWING PROCEDURES MUST BE FOLLOWED:
- MEASUREMENT REQUIRES A RIGID MANDREL. (A) MANDREL SIZING.
 - APPENDIX (II) IF A MANDREL SIZING DIAMETER IS NOT SPECIFIED IN THE APPROPRIATE STANDARD,
- CONTROLLED PIPE. (III) ALL DIMENSIONS MUST MEET THE APPROPRIATE STANDARD. (B) MANDREL DESIGN.
- (I) A RIGID MANDREL MUST BE CONSTRUCTED OF A METAL OR A RIGID PLASTIC MATERIAL THAT CAN WITHSTAND 200 PSI WITHOUT BEING DEFORMED.
- (III) A BARREL SECTION LENGTH MUST EQUAL AT LEAST 75% OF THE INSIDE DIAMETER OF A PIPE (IV) EACH SIZE MANDREL MUST USE A SEPARATE PROVING RING. (C) METHOD OPTIONS.
- (I) AN ADJUSTABLE OR FLEXIBLE MANDREL IS PROHIBITED. (II) A TEST MAY NOT USE TELEVISION INSPECTION AS A SUBSTITUTE FOR A DEFLECTION TEST.
 - CASE-BY-CASE BASIS
- OTHER TEST METHODS MAY BE USED TO DETERMINE VERTICAL DEFLECTION. (4) AN OWNER SHALL NOT CONDUCT A DEFLECTION TEST UNTIL AT LEAST 30 DAYS AFTER THE FINAL BACKFILL.
- (5) GRAVITY COLLECTION SYSTEM PIPE DEFLECTION MUST NOT EXCEED FIVE PERCENT (5%).
- 18. ALL PRIVATE SERVICE LATERALS MUST BE INSPECTED AND CERTIFIED IN ACCORDANCE WITH 30 TAC
- SUPPLEMENTAL TCEQ NOTES:
- FOR CONNECTING PIPE TO MANHOLES.
- GEOLOGICAL OR GEOTECHNICAL PROFESSIONAL.
- 3. TRENCH WALLS MUST BE VERTICAL TO AT LEAST ONE FOOT ABOVE THE PIPE. TRENCH BACKFILL UNSTABLE MATERIAL.
- 4. ALL WASTEWATER PIPE MATERIAL PVC SDR26-ASTM-3034 USED MUST HAVE A MINIMUM ALLOWABLE TENSILE.

TABLE	C.3:

(D) AN OWNER MAY STOP A TEST IF NO PRESSURE LOSS HAS OCCURRED DURING THE (E) IF ANY PRESSURE LOSS OR LEAKAGE HAS OCCURRED DURING THE FIRST 25% OF A

(F) WASTEWATER COLLECTION SYSTEM PIPES WITH A 27 INCH OR LARGER AVERAGE INSIDE DIAMETER MAY BE AIR TESTED AT EACH JOINT INSTEAD OF FOLLOWING THE

(G) A TESTING PROCEDURE FOR PIPE WITH AN INSIDE DIAMETER GREATER THAN 33 INCHES MUST BE APPROVED BY THE EXECUTIVE DIRECTOR.

EXCEED 50 GALLONS PER INCH OF DIAMETER PER MILE OF PIPE PER 24 HOURS AT A MINIMUM TEST HEAD OF 2.0 FEET ABOVE THE CROWN OF A PIPE AT AN UPSTREAM

(B) AN OWNER SHALL USE AN INFILTRATION TEST IN LIEU OF AN EXFILTRATION TEST WHEN PIPES ARE INSTALLED BELOW THE GROUNDWATER LEVEL. (C) THE TOTAL EXFILTRATION, AS DETERMINED BY A HYDROSTATIC HEAD TEST. MUST NOT EXCEED 50 GALLONS PER INCH DIAMETER PER MILE OF PIPE PER 24 HOURS AT A MINIMUM TEST HEAD OF TWO FEET ABOVE THE CROWN OF A PIPE AT AN UPSTREAM MANHOLE, OR AT LEAST TWO FEET ABOVE EXISTING GROUNDWATER LEVEL,

(D) FOR CONSTRUCTION WITHIN A 25-YEAR FLOOD PLAIN, THE INFILTRATION OR EXFILTRATION MUST NOT EXCEED 10 GALLONS PER INCH DIAMETER PER MILE OF

(E) IF THE QUANTITY OF INFILTRATION OR EXFILTRATION EXCEEDS THE MAXIMUM QUANTITY SPECIFIED, AN OWNER SHALL UNDERTAKE REMEDIAL ACTION IN ORDER TO REDUCE THE INFILTRATION OR EXFILTRATION TO AN AMOUNT WITHIN THE LIMITS SPECIFIED. AN OWNER SHALL RETEST A PIPE FOLLOWING A REMEDIATION ACTION. (F) IF A GRAVITY COLLECTION PIPE IS COMPOSED OF FLEXIBLE PIPE, DEFLECTION TESTING

(1) FOR A COLLECTION PIPE WITH INSIDE DIAMETER LESS THAN 27 INCHES, DEFLECTION (I) A RIGID MANDREL MUST HAVE AN OUTSIDE DIAMETER (OD) NOT LESS THAN 95% OF THE BASE INSIDE DIAMETER (ID) OR AVERAGE ID OF A PIPE, AS SPECIFIED IN THE

APPROPRIATE STANDARD BY THE ASTMS, AMERICAN WATER WORKS ASSOCIATION, UNI-BELL, OR AMERICAN NATIONAL STANDARDS INSTITUTE, OR ANY RELATED

THE MANDREL MUST HAVE AN OD EQUAL TO 95% OF THE ID OF A PIPE. IN THIS CASE, THE ID OF THE PIPE, FOR THE PURPOSE OF DETERMINING THE OD OF THE MANDREL. MUST EQUAL BE THE AVERAGE OUTSIDE DIAMETER MINUS TWO MINIMUM WALL THICKNESSES FOR OD CONTROLLED PIPE AND THE AVERAGE INSIDE DIAMETER FOR ID

(II) A MANDREL MUST HAVE NINE OR MORE ODD NUMBER OF RUNNERS OR LEGS.

(III) IF REQUESTED THE EXECUTIVE DIRECTOR MAY APPROVE THE USE OF A DEFLECTOMETER OR A MANDREL WITH REMOVABLE LEGS OR RUNNERS ON A

(2) FOR A GRAVITY COLLECTION SYSTEM PIPE WITH AN INSIDE DIAMETER 27 INCHES AND GREATER. (3) A DEFLECTION TEST METHOD MUST BE ACCURATE TO WITHIN PLUS OR MINUS 0.2% DEFLECTION.

(6) IF A PIPE SECTION FAILS A DEFLECTION TEST. AN OWNER SHALL CORRECT THE PROBLEM AND CONDUCT A SECOND TEST AFTER THE FINAL BACKFILL HAS BEEN IN PLACE AT LEAST 30 DAYS.

17. ALL MANHOLES MUST BE TESTED TO MEET OR EXCEED THE REQUIREMENTS OF 30 TAC §217.58.

§213.5(C)(3)(I). AFTER INSTALLATION OF AND, PRIOR TO COVERING AND CONNECTING A PRIVATE SERVICE LATERAL TO AN EXISTING ORGANIZED SEWAGE COLLECTION SYSTEM A TEXAS LICENSED. PROFESSIONAL ENGINEER, TEXAS REGISTERED SANITARIAN, OR APPROPRIATE CITY INSPECTOR MUST VISUALLY INSPECT THE PRIVATE SERVICE LATERAL AND THE CONNECTION TO THE SEWAGE COLLECTION SYSTEM AND CERTIFY THAT IT IS CONSTRUCTED IN CONFORMITY WITH THE APPLICABLE PROVISIONS OF THIS SECTION. THE OWNER OF THE COLLECTION SYSTEM MUST MAINTAIN SUCH CERTIFICATIONS FOR FIVE YEARS AND FORWARD COPIES TO THE APPROPRIATE REGIONAL OFFICE UPON REQUEST. CONNECTIONS MAY ONLY BE MADE TO AN APPROVED SEWAGE COLLECTION SYSTEM.

1. WATERTIGHT, SIZE ON SIZE RESILIENT CONNECTORS CONFORMING TO ASTM C-923 ARE REQUIRED

2. IF FAULTS, CAVERNS, OR SUBSIDENCE ARE DISCOVERED DURING CONSTRUCTION, CONSTRUCTION SHOULD BE HALTED TO ALLOW THE FEATURES TO BE INSPECTED BY THE DESIGN ENGINEER OR

MUST BE FREE OF STONES GREATER THAN 6-INCHES AND FREE OF ORGANIC OR ANY OTHER

TCEQ WATER DISTRIBUTION SYSTEM GENERAL CONSTRUCTION NOTES

	GENERAL CONSTRUCTION NOTES
1.	This water distribution system must be constructed in accordance with the current Texas Commission on Environmental Quality (TCEQ) Rules and Regulations for Public Water Systems 30 Texas Administrative Code (TAC) Chapter 290 Subchapter D. When conflicts are noted with local standards, the more stringent requirement shall be applied. At a minimum, construction for public water systems must always meet TCEQ's "Rules and Regulations for Public Water Systems."
2.	All newly installed pipes and related products must conform to American National Standards Institute (ANSI)/NSF International Standard 61 and must be certified by an organization accredited by ANSI [§290.44(a)(1)].
3.	Plastic pipe for use in public water systems must bear the NSF International Seal of Approval (NSF–pw) and have an ASTM design pressure rating of at least 150 psi or a standard dimension ratio of 26 or less [§290.44(a)(2)].
4.	No pipe which has been used for any purpose other than the conveyance of drinking water shall be accepted or relocated for use in any public drinking water supply [§290.44(a)(3)].
5.	All water line crossings of wastewater mains shall be perpendicular [§290.44(e)(4)(B)].
6.	Water transmission and distribution lines shall be installed in accordance with the manufacturer's instructions. However, the top of the water line must be located below the frost line and in no case shall the top of the water line be less than 24 inches below ground surface [§290.44(a)(4)].
7.	The maximum allowable lead content of pipes, pipe fittings, plumbing fittings, and fixtures is 0.25 percent [§290.44(b)].
8.	The contractor shall install appropriate air release devices with vent openings to the atmosphere covered with 16–mesh or finer, corrosion resistant screening material or an acceptable equivalent [§290.44(d)(1)].
9.	The contractor shall not place the pipe in water or where it can be flooded with water or sewage during its storage or installation [\S 290.44(f)(1)].
10.	When waterlines are laid under any flowing or intermittent stream or semi-permanent body of water the waterline shall be installed in a separate watertight pipe encasement. Valves must be provided on each side of the crossing with facilities to allow the underwater portion of the system to be isolated and tested [§290.44(f)(2)].
11.	Pursuant to 30 TAC §290.44(a)(5), the hydrostatic leakage rate shall not exceed the amount allowed or recommended by the most current AWWA formulas for PVC pipe, cast iron and ductile iron pipe. Include the formulas in the notes on the plans.
	• The hydrostatic leakage rate for polyvinyl chloride (PVC) pipe and appurtenances shall not exceed the amount allowed or recommended by formulas in America Water Works Association (AWWA) C-605 as required in 30 TAC §290.44(a)(5). Please ensure that the formula for this calculation is correct and most current formula is in use;
	$Q = \frac{LD\sqrt{P}}{148,000}$
	 Where: Q = the quantity of makeup water in gallons per hour, L = the length of the pipe section being tested in fact.
	 L = the length of the pipe section being tested, in feet, D = the nominal diameter of the pipe in inches, and
	 P = the average test pressure during the hydrostatic test in pounds per square inch (psi).
	• The hydrostatic leakage rate for ductile iron (DI) pipe and appurtenances shall not exceed the amount allowed or recommended by formulas in America Water Works Association (AWWA) C-600 as required in 30 TAC §290.44(a)(5). Please ensure that the formula for this calculation is correct and most current formula is in use;
	$L = \frac{SD\sqrt{P}}{148,000}$
	Where:L = the quantity of makeup water in gallons per hour,
	 S = the length of the pipe section being tested, in feet,
	 D = the nominal diameter of the pipe in inches, and P = the average test pressure during the hydrostatic test in pounds per square
	inch (psi).
12.	The contractor shall maintain a minimum separation distance in all directions of nine feet between the proposed waterline and wastewater collection facilities including manholes. If this distance cannot be maintained, the contractor must immediately notify the project engineer for further direction. Separation distances, installation methods, and materials utilized must meet $\S290.44(e)(1)-(4)$.
13.	The separation distance from a potable waterline to a wastewater main or lateral manhole or cleanout shall be a minimum of nine feet. Where the nine-foot separation distance cannot be achieved, the potable waterline shall be encased in a joint of at least 150 psi pressure class pipe at least 18 feet long and two nominal sizes larger than the new conveyance. The space around the carrier pipe shall be supported at five-foot intervals with spacers or be filled to the springline with washed sand. The encasement pipe shall be centered on the crossing and both ends sealed with cement grout or manufactured sealant [§290.44(e)(5)].
14.	Fire hydrants shall not be installed within nine feet vertically or horizontally of any wastewater line, wastewater lateral, or wastewater service line regardless of construction [§290.44(e)(6)].
15.	Suction mains to pumping equipment shall not cross wastewater mains, wastewater laterals, or wastewater service lines. Raw water supply lines shall not be installed within five feet of any tile or concrete wastewater main, wastewater lateral, or wastewater service line [§290.44(e)(7)].
16.	Waterlines shall not be installed closer than ten feet to septic tank drainfields [§290.44(e)(8)].
17.	The contractor shall disinfect the new waterlines in accordance with AWWA Standard C–651–14 or most recent, then flush and sample the lines before being placed into service.
	Samples shall be collected for microbiological analysis to check the effectiveness of the disinfection procedure which shall be repeated if contamination persists. A minimum of one sample for each 1,000 feet of completed waterline will be required or at the next available sampling point beyond 1,000 feet as designated by the design engineer [§290.44(f)(3)].
18.	Dechlorination of disinfecting water shall be in strict accordance with current AWWA Standard C655-09 or most recent.

12

4

5

6

Texas Commission on Environmental Quality Water Pollution Abatement Plan General Construction Notes

Edwards Aquifer Protection Program Construction Notes – Legal Disclaimer

The following/listed "construction notes" are intended to be advisory in nature only and do not constitute an approval or conditional approval by the Executive Director (ED), nor do they constitute a comprehensive listing of rules or conditions to be followed during construction. Further actions may be required to achieve compliance with TCEQ regulations found in Title 30. Texas Administrative Code (TAC). Chapters 213 and 217, as well as local ordinances and regulations providing for the protection of water quality. Additionally, nothing contained in the following/listed "construction notes" restricts the powers of the ED, the commission or any other governmental entity to prevent, correct, or curtail activities that result or may result in pollution of the Edwards Aquifer or hydrologically connected surface waters. The holder of any Edwards Aquifer Protection Plan containing "construction notes" is still responsible for compliance with Title 30, TAC, Chapters 213 or any other applicable TCEQ regulation, as well as all conditions of an Edwards Aquifer Protection Plan through all phases of plan implementation. Failure to comply with any condition of the ED's approval, whether or not in contradiction of any "construction notes," is a violation of TCEQ regulations and any violation is subject to administrative rules, orders, and penalties as provided under Title 30, TAC § 213.10 (relating to Enforcement). Such violations may also be subject to civil penalties and injunction. The following/listed "construction notes" in no way represent an approved exception by the ED to any part of Title 30 TAC, Chapters 213 and 217, or any other TCEQ applicable regulation

1. A written notice of construction must be submitted to the TCEQ regional office at least 48 hours prior to the start of any regulated activities. This notice must include: - the name of the approved project;

- the activity start date; and
- the contact information of the prime contractor.

2. All contractors conducting regulated activities associated with this project must be provided with complete copies of the approved Water Pollution Abatement Plan (WPAP) and the TCEQ letter indicating the specific conditions of its approval. During the course of these regulated activities, the contractors are required to keep on-site copies of the approved plan and approval letter.

3. If any sensitive feature(s) (caves, solution cavity, sink hole, etc.) is discovered during construction, all regulated activities near the sensitive feature must be suspended immediately. The appropriate TCEQ regional office must be immediately notified of any sensitive features encountered during construction. Construction activities may not be resumed until the TCEQ has reviewed and approved the appropriate protective measures in order to protect any sensitive feature and the Edwards Aquifer from potentially adverse impacts to water quality.

No temporary or permanent hazardous substance storage tank shall be installed within 150 feet of a water supply source, distribution system, well, or sensitive feature.

Prior to beginning any construction activity, all temporary erosion and sedimentation (E&S) control measures must be properly installed and maintained in accordance with the approved plans and manufacturers specifications. If inspections indicate a control has been used inappropriately, or incorrectly, the applicant must replace or modify the control for site situations. These controls must remain in place until the disturbed areas have been permanently stabilized.

Any sediment that escapes the construction site must be collected and properly disposed of before the next rain event to ensure it is not washed into surface streams, sensitive features,

Sediment must be removed from the sediment traps or sedimentation basins not later than when it occupies 50% of the basin's design capacity.

Litter, construction debris, and construction chemicals exposed to stormwater shall be prevented from being discharged offsite.

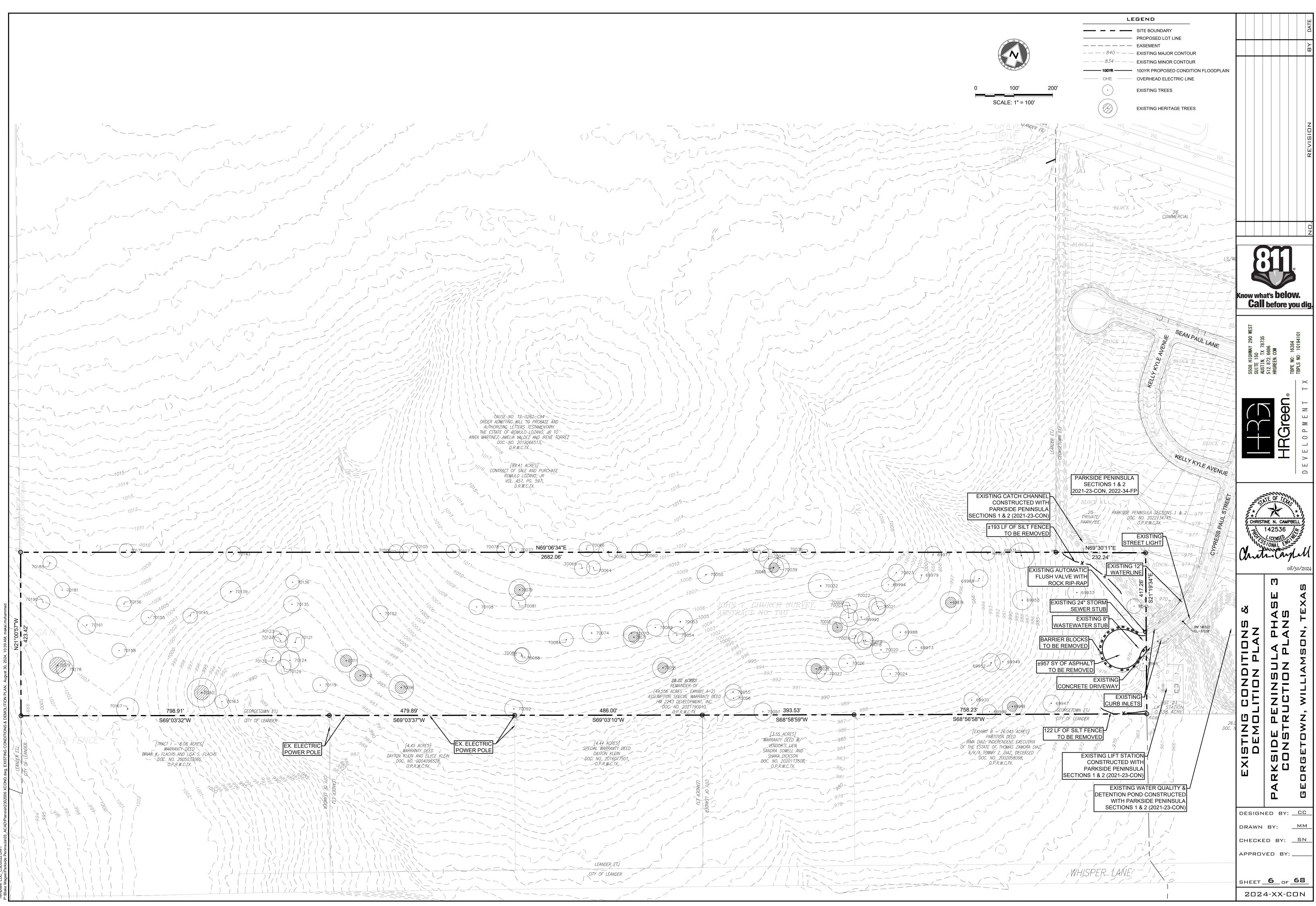
All spoils (excavated material) generated from the project site must be stored on-site with proper E&S controls. For storage or disposal of spoils at another site on the Edwards Aquifer Recharge Zone, the owner of the site must receive approval of a water pollution abatement plan for the placement of fill material or mass grading prior to the placement of spoils at the other site.

If portions of the site will have a temporary or permanent cease in construction activity lastin longer than 14 days, soil stabilization in those areas shall be initiated as soon as possible prior to the 14th day of inactivity. If activity will resume prior to the 21st day, stabilization measures are not required. If drought conditions or inclement weather prevent action by the 14th day, stabilization measures shall be initiated as soon as possible.

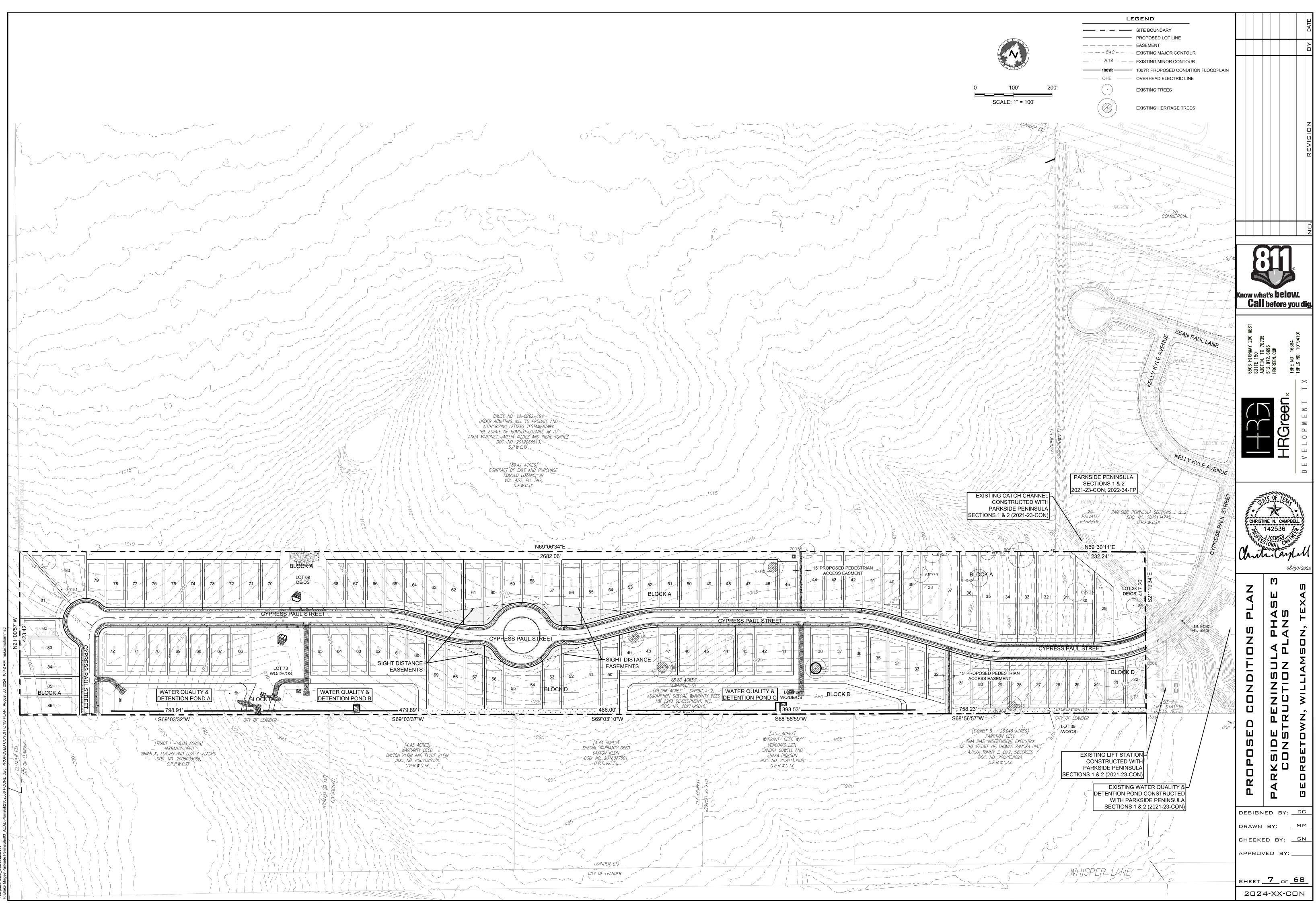
11. The following records shall be maintained and made available to the TCEQ upon request: - the dates when major grading activities occur;

- the dates when construction activities temporarily or permanently cease on a portion of the site; and

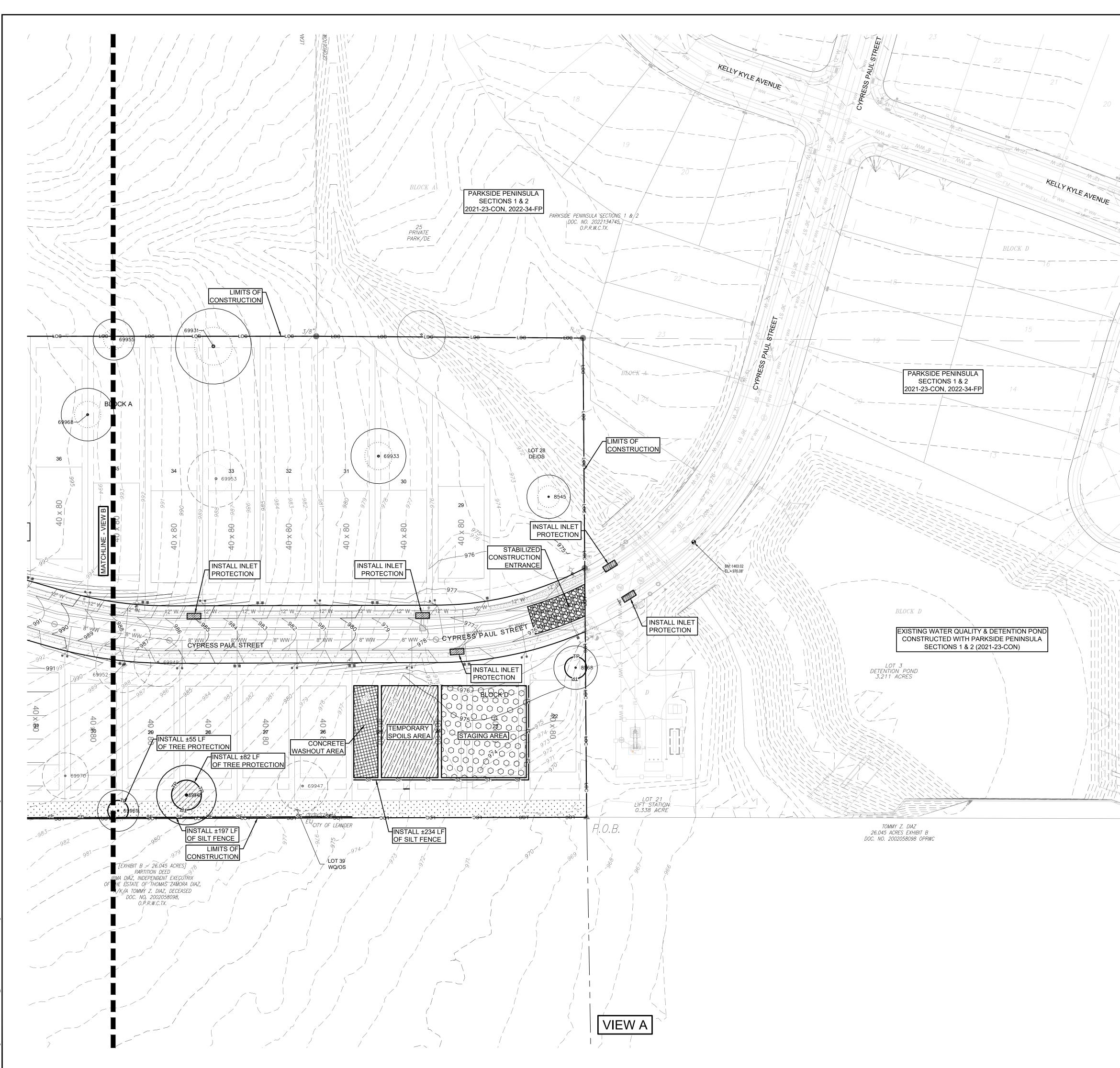
- the dates when stabilization measures are initiated.

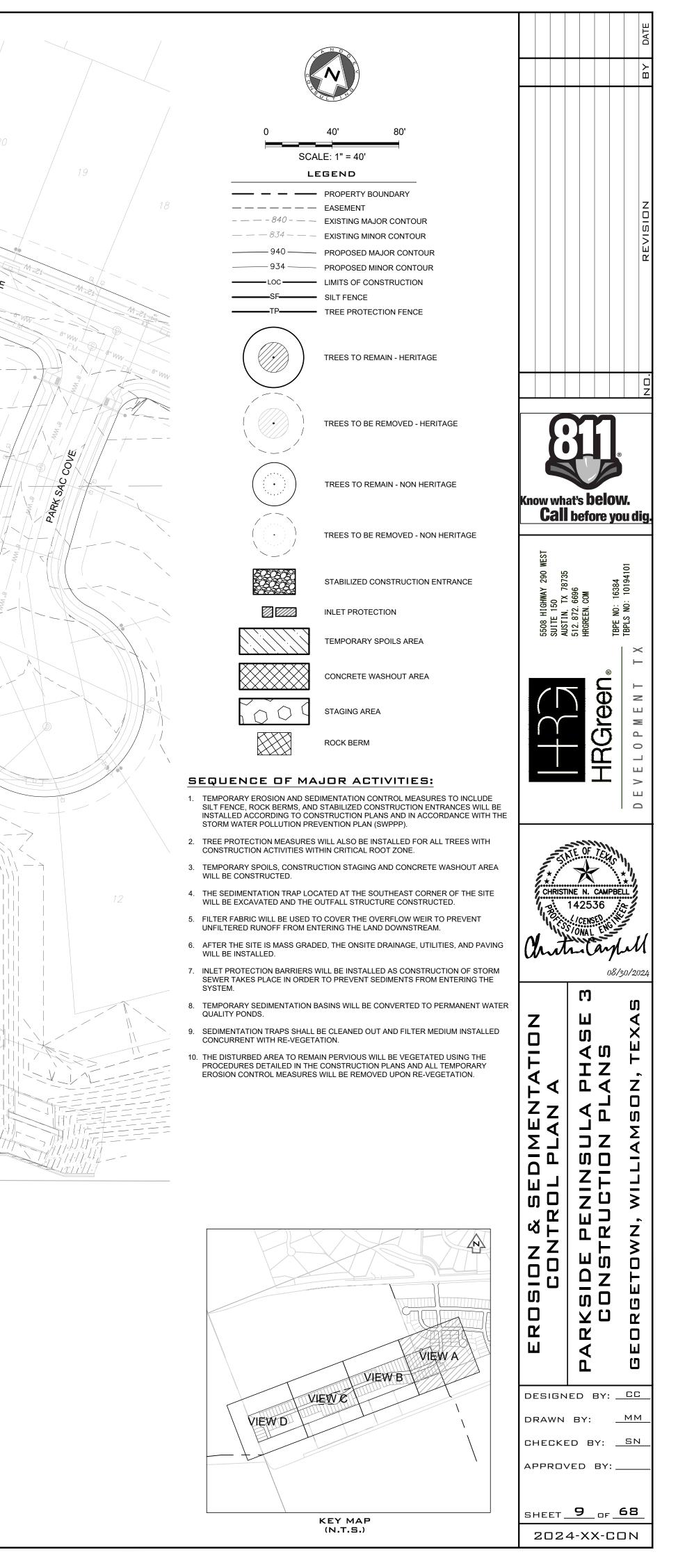

The holder of any approved Edward Aquifer protection plan must notify the appropriate regional office in writing and obtain approval from the executive director prior to initiating any of the following:

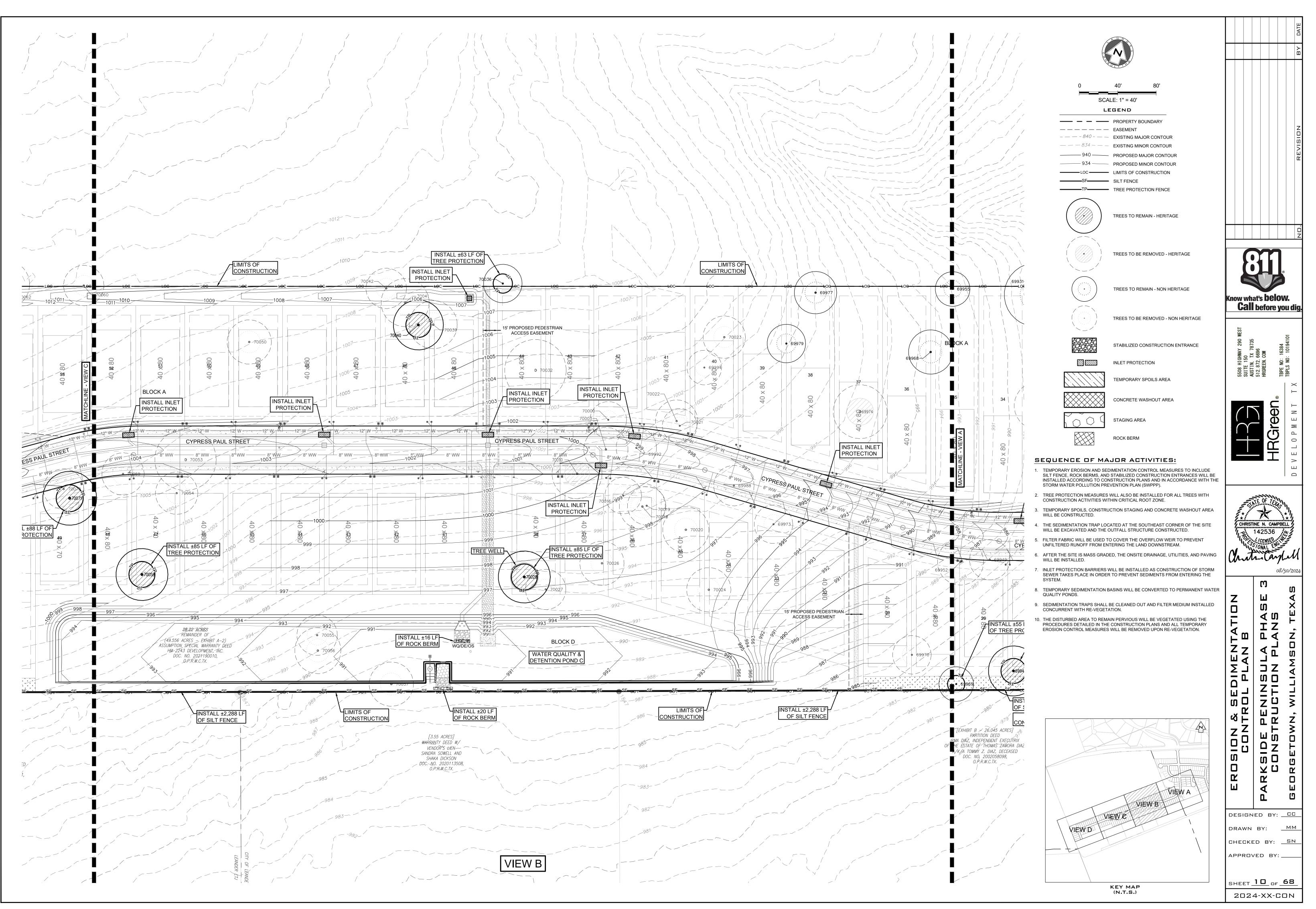
- any physical or operational modification of any water pollution abatement structure(s). including but not limited to ponds, dams, berms, sewage treatment plants, and diversionary structures;
- any change in the nature or character of the regulated activity from that which was originally approved or a change which would significantly impact the ability of the plan to prevent pollution of the Edwards Aquifer;
- C. any development of land previously identified as undeveloped in the original water pollution abatement plan.


Austin Regional Office	San Antonio Regional Office
12100 Park 35 Circle, Building A	14250 Judson Road
Austin, Texas 78753-1808	San Antonio, Texas 78233-4480
Phone (512) 339-2929	Phone (210) 490-3096
Fax (512) 339-3795	Fax (210) 545-4329

THESE GENERAL CONSTRUCTION NOTES MUST BE INCLUDED ON THE CONSTRUCTION PLANS PROVIDED TO THE CONTRACTOR AND ALL SUBCONTRACTORS.




/le: LandDev Global.ctb
te: LDC_C3D2022.DWT



Deriouse 2002au.cu Der C_C39V 20022.DWT Ree Preside Perion 1a/03_ACAD/Plans/sh2302006 PC/OND dwir PR/OPOSED_C/ON

vt Style: LandDev Glob mplate: LDC_C3D202

tyre: Landoev aboar.co late: LDC_C3D2022.DWT ke Magee\Parkside Peninsula\03_ACAD\Plans\sh2302006 EROS.dwg, EROSION & SEDIMENTATION CONTROL PLAN B, August 30, 2024, 10:48 AM, makai.muhamn

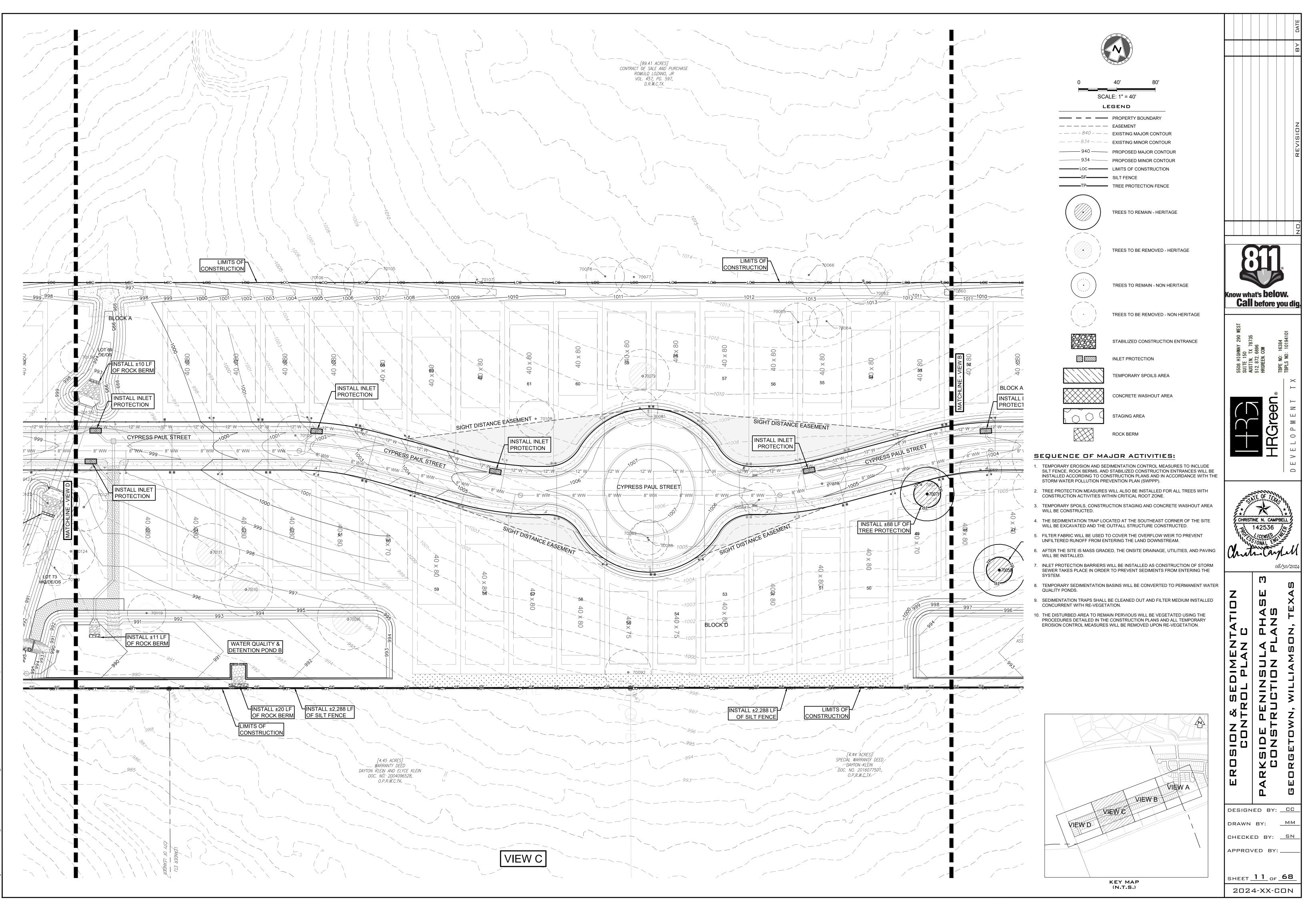


plate: LDC_C3D2022.DWT ake MageekParkside Peninsula\03_ACAD\Plans\sh2302006 EROS.dwg.EROSION & SEDIMENTATION CONTROL PLAN C. September 18. 2024.10:37 AM. mmuhammad

Plot Style: LandDev Gloi Template: LDC_C3D202

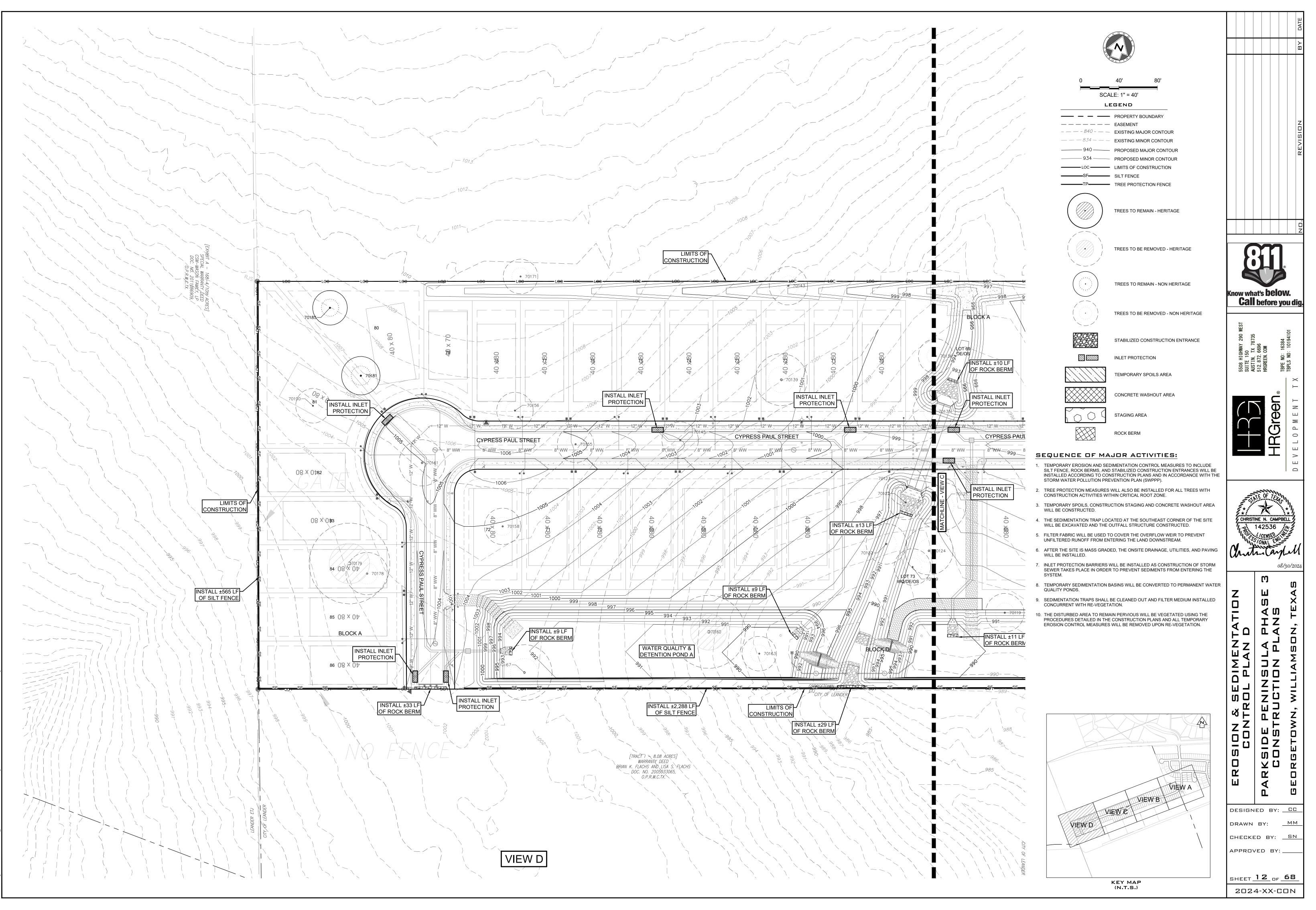
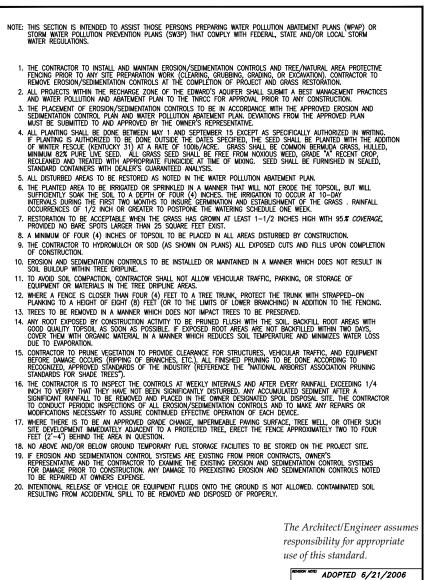
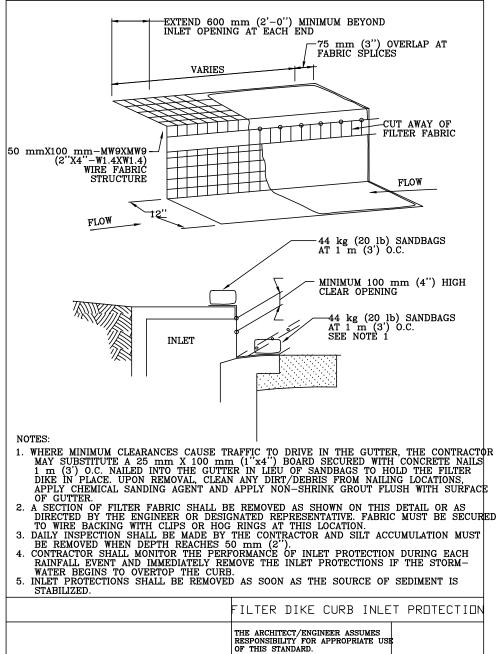
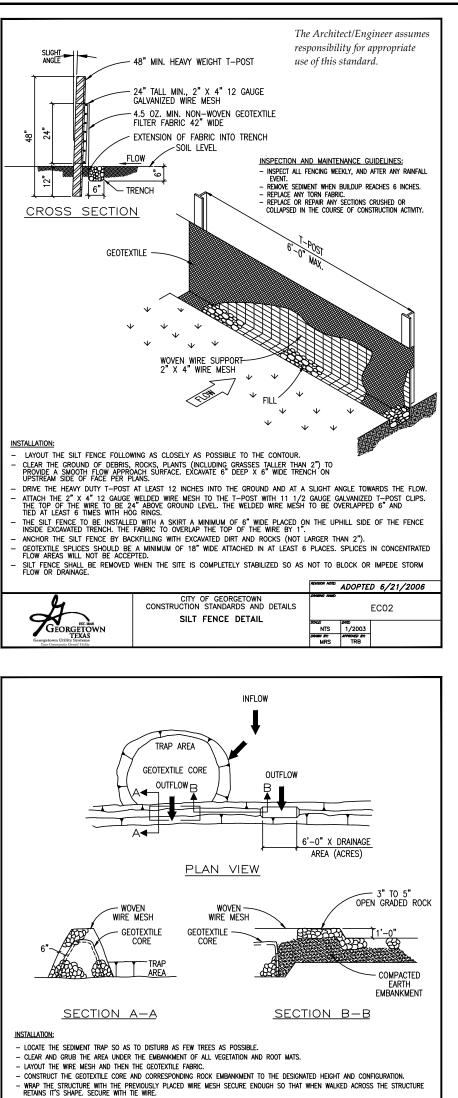



plate: LDC_C3D2022.DWT ake Magee\Parkside Peninsula\03_ACAD\Plans\sh2302006 EROS.dwg, EROSION & SEDIMENTATION CONTROL PLAN D, August 30, 2024, 10:48 AM, makai.mul

	TYPE OF STRUCTURE	REACH LENGTH	MAXIMUM DRAINAGE AREA	SLOPE	
	SILT FENCE	•	2 ACRES		
THANGLE FILTER DIKE 100 FEET 1/2 ACRE 30% SLOPE ROCK BERM *, ** 500 FEET 1/4 ACRE 30% SLOPE ROCK BERM *, ** 500 FEET < 5 ACRES		100 FEET	1 ACRE	20 - 30%	
ROCK BERM *, ** 500 FEET < 5 ACRES 0 - 10% FOR ROCK BERM DESION WHERE PARAMETERS ARE OTHER THAN STATED, DRAINAGE PRACACULATIONS AND ROCK BERM DESION UNST BE SUBMITTED FOR REVEW. FIGH SERVICE AND SERVICE IN ARTICLE STATED OF REVEW. Ignificance AS DETERMINED BY THE CITY OF GEORGETOWN. Interview The Architect/Engineer assumes responsibility for appropriate set of this standard. Interview Image: Standard. Image: Standard. Image: Standard. Image: Standard. Image: Standard. Image: S	TRIANGLE FILTER DIKE	100 FEET	1/2 ACRE	< 30% SLOPE	
HIGH SERVICE ROCK BERMS MAY BE REQUIRED IN AREAS OF ENVIRONMENTAL The Architect/Engineer assumes esponsibility for appropriate set of this standard.	ROCK BERM *, **			4	
Beinsteility for appropriate sort in standard. Image: City of GEORETOR DISAILS Image: City of GEORETOR DISAILS I					
	esponsibility for appropriate		Andrew Address	*	
MIN. 15' WIDE	Georgetown	TEMPORARY EROS		0472: 1/2003	
MAX. SLOPE = 20%					
ENGINEERED VEGETATIVE FILTER STRIP DETAIL N.T.S.		VEGETATE	MIN. 80%		

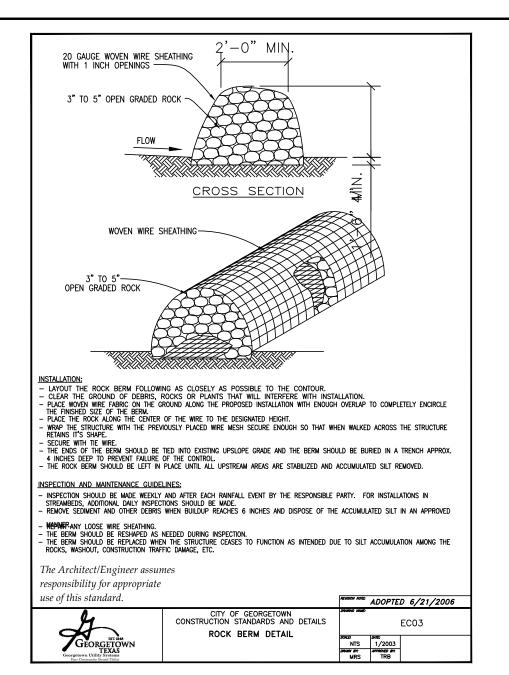

CITY OF GEORGETOWN CONSTRUCTION STANDARDS AND DETAILS

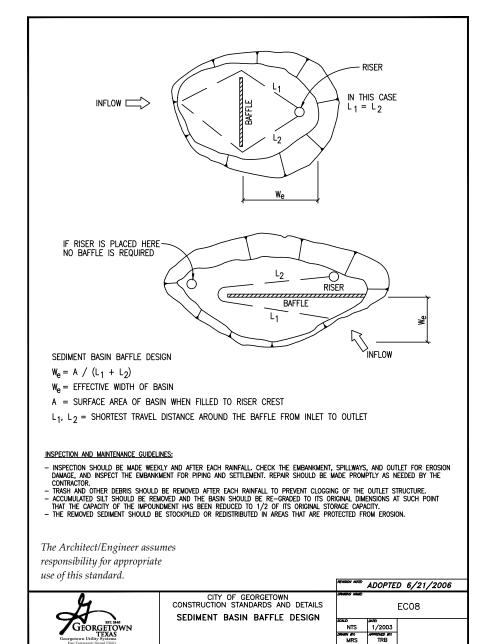

EROSION AND SEDIMENTATION AND TREE PROTECTION NOTES

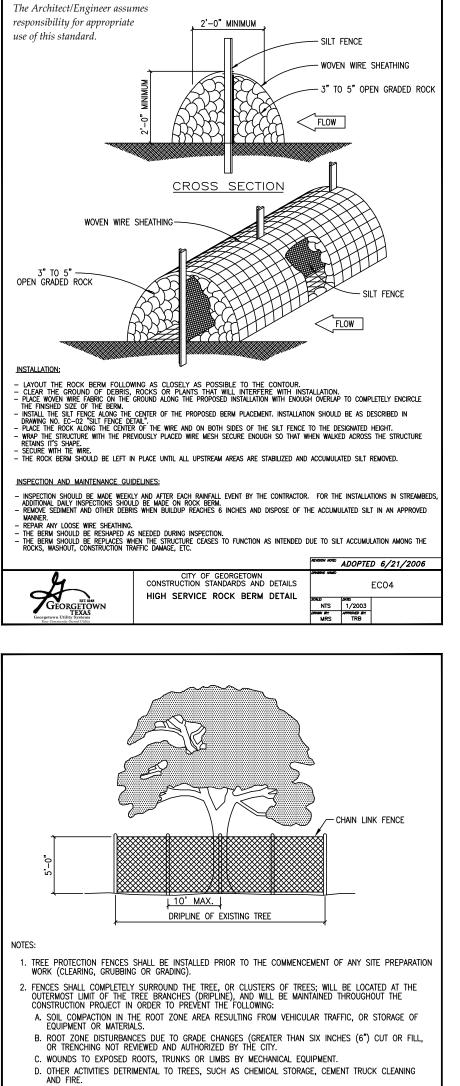
EC01A

1/2003

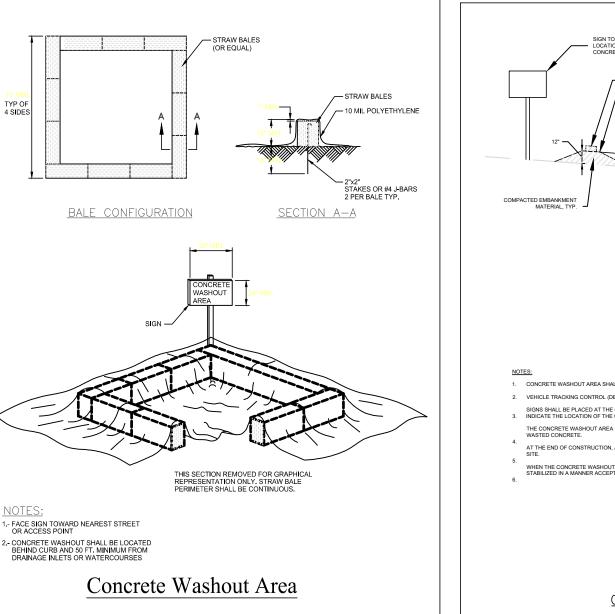
ENSTING ROAD	50' MIN. 4" TO 8" COARSE AGGREGATE CEOTEXTILE FABRIC TO STABILIZE FOUNDATION		t WWW	7
		e Isting Roai	D	
GEOTE: AS API TALLATION:	KTILE FABRIC -> PROVED BY THE CITY			
CLEAR THE AREA OF DEBRIS, F			stabili	ZED CONSTRUCTION
PECTIONS AND MAINTENANCE G	UIDELINES:			
NOHTS-OF-WAY. THIS MAY REQUI ILEANOUT OF ANY MEASURES USED ALL SEDIMENT SPILLED, DROPPED, CONTRACTOR. WHEN NECESSARY, WHEELS SHOULD WHEN WASHING IS REQUIRED, IT SH EDIMENT TRAP OR SEDIMENT BASIN	NED IN A CONDITION, WHICH WILL PREVENT TRACKING OR I RE PERIODIC TOP ORESSING WITH ADDITIONAL STONE AS CC TO TRAP SEDIMENT. WASHED OR TRACKED ON TO PUBLIC RIGHTS-OF-WAY SHO DE CLEANED TO REMOVE SEDIMENT PRIOR TO ENTRANCE IOULD BE DONE ON AN AREA STABILIZED WITH CRUSHED S L ED FROM ENTERING ANY STORM DRAIN, DITCH OR WATER (NDITIONS DEM ULD BE REMO ONTO PUBLIC TONE THAT DF	iand an Ved imi Rights Rains in	id repair and/or Mediately by -of-way. ITO an approved
Architect/Engineer assur				
onsibility for appropriate				
of this standard.		REMSION HOTE AD	OPTEL	0 6/21/2006
G.	CITY OF GEORGETOWN CONSTRUCTION STANDARDS AND DETAILS	DRIVING NUME		EC06
GEORGETOWN	STABILIZED CONSTRUCTION ENTRANCE	DRAWN BY: APPR	/2003	
TEXAS Georgetown Utility Systems Your Consequencity Occored Utility		MRS	TRB	

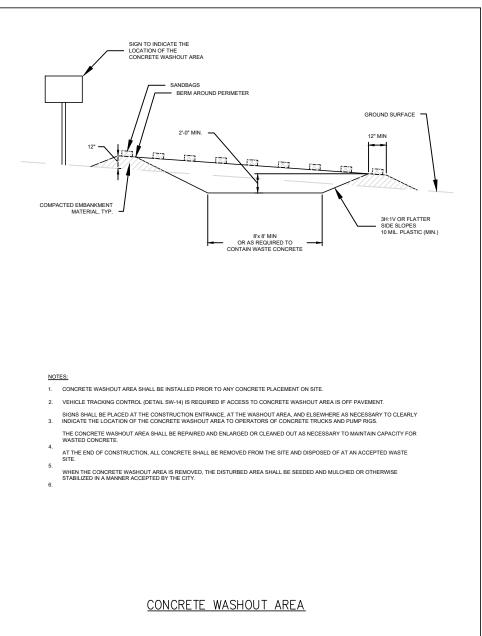


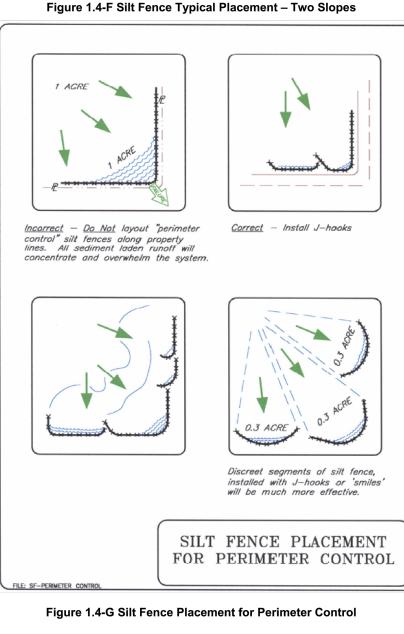


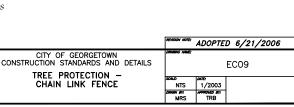

PLACE THE EMBANKMENT MATERIAL IN 8 TO 12 INCH LIFTS AND MACHINE COMPACT. INSPECTION AND MAINTENANCE GUIDELINES: INSPECTION SHOULD BE MADE WEEKLY AND AFTER EACH RAINFALL CHECK THE EMBANKMENT, SPILLWAYS, AND OUTLET FOR EROSION AND INSPECT THE EMBANKMENT FOR PIPING AND SETTLEMENT. REPAIR SHOULD BE MADE PROMPTLY AS NEEDED BY THE Contractor. - Trash and other debris should be removed and the trap restored to its original dimensions when the sediment has accumulated to half of the design depth of the trap. - Sediment removed from the trap should be deposited in an approved spoils area and in such a manner that it will Not cause additional siltation.

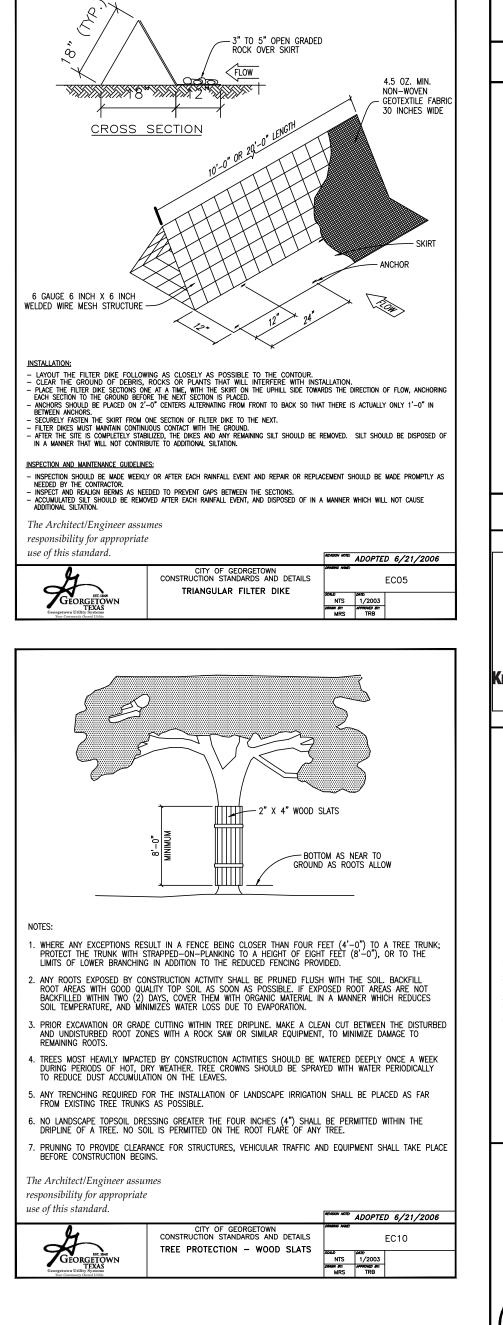
The Architect/Engineer assumes responsibility for appropriate

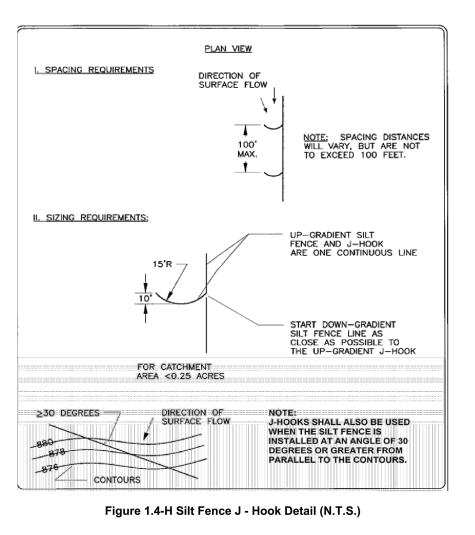

of this standard.		REVISION NOTE:	ADOPTE	D 6/21/2006
Æ	CITY OF GEORGETOWN CONSTRUCTION STANDARDS AND DETAILS SEDIMENT TRAP DETAIL	DRAWING NAME:		EC07
Georgetown Ulity Your Community Owned Ulithiry		NTS DMMN DY: MRS	1/2003	
Tour Community Univer Ching		<u> </u>		



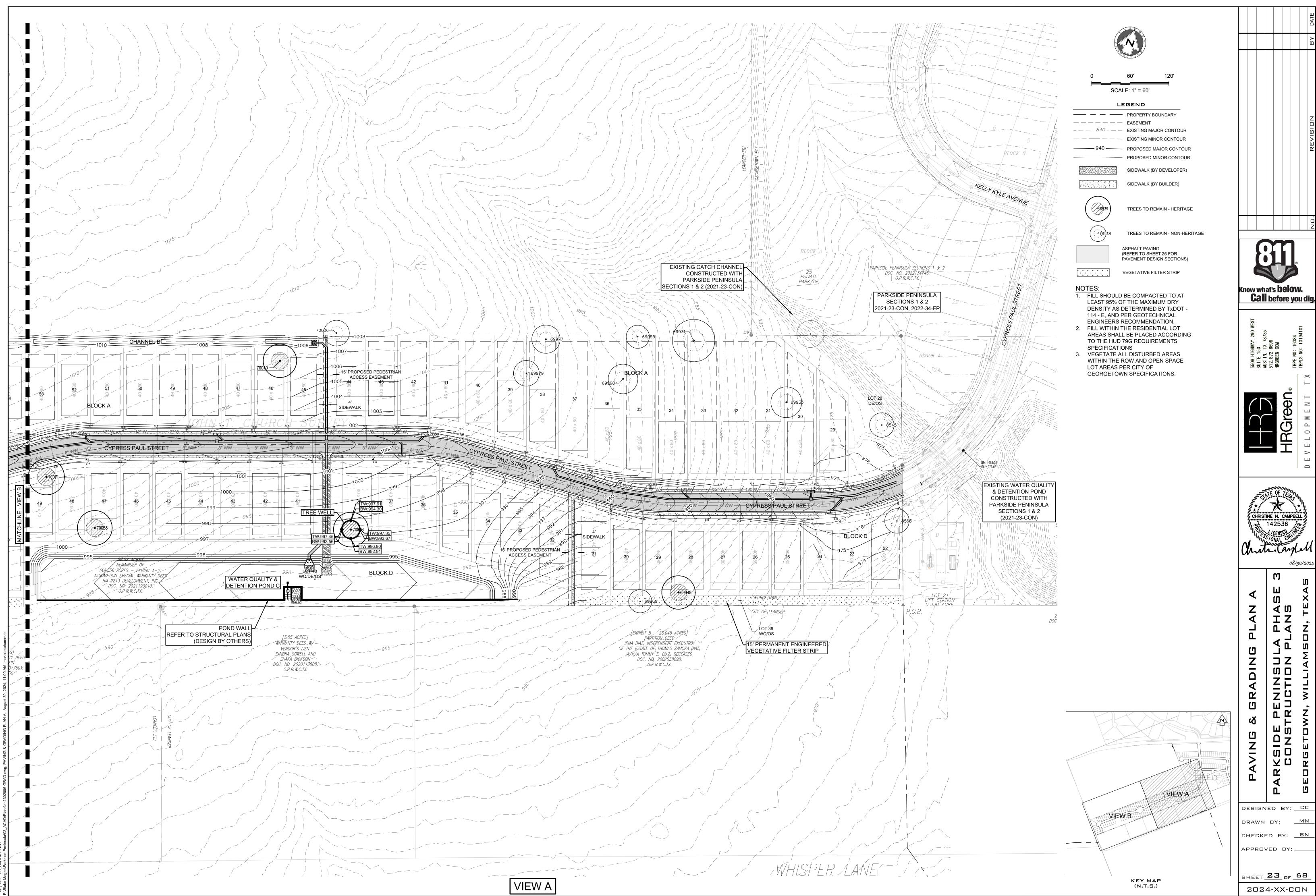



B. WHERE TREES ARE CLOSE TO PROPOSED BUILDINGS, ERECT THE FENCE NO CLOSER THAN SIX FEET (6'-0") TO BUILDING. The Architect/Engineer assumes responsibility for appropriate use of this standard. Georgetown

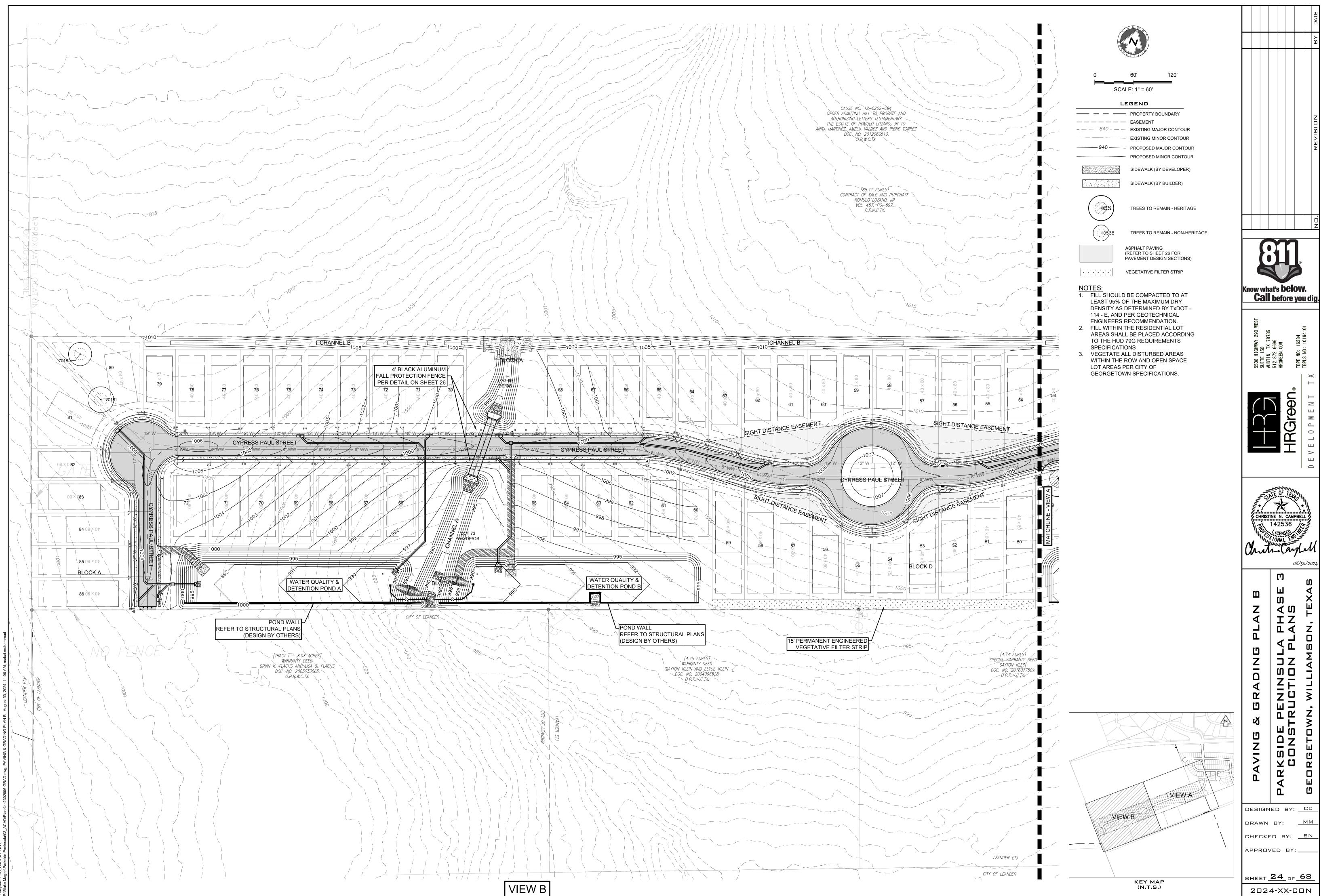


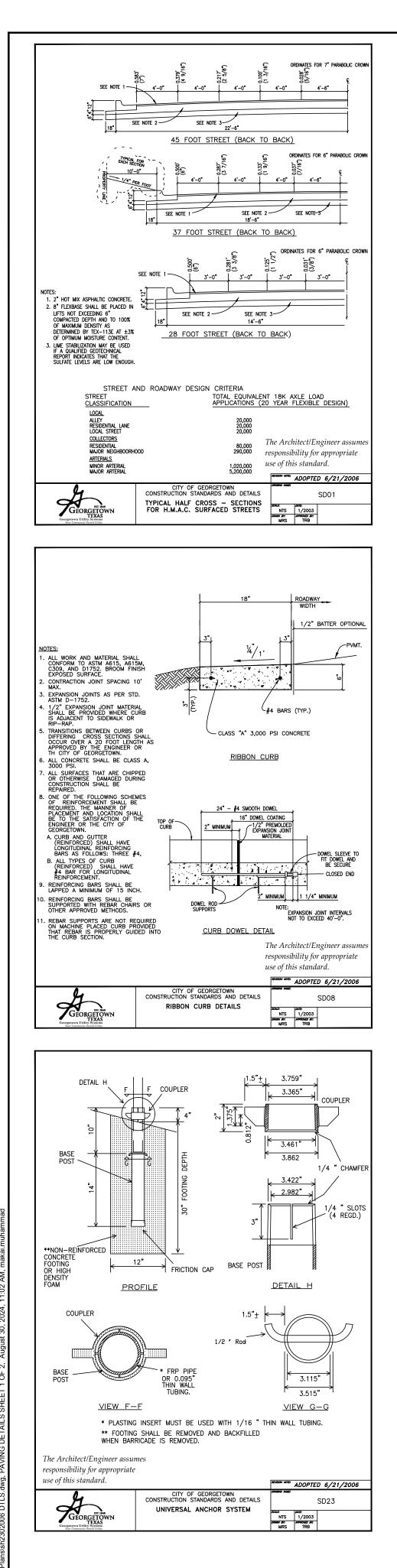


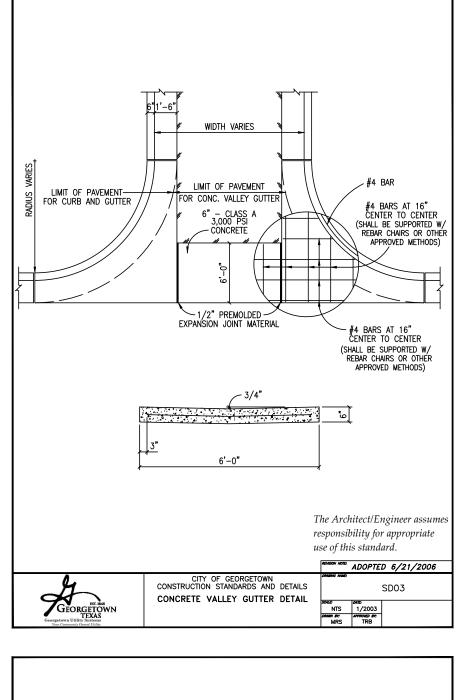
3. EXCEPTIONS TO INSTALLING FENCES AT TREE DRIPLINES MAY BE PERMITTED IN THE FOLLOWING CASES: A. WHERE PERMEABLE PAVING IS TO BE INSTALLED, ERECT THE FENCE AT THE OUTER LIMITS OF THE PERMEABLE PAVING AREA.

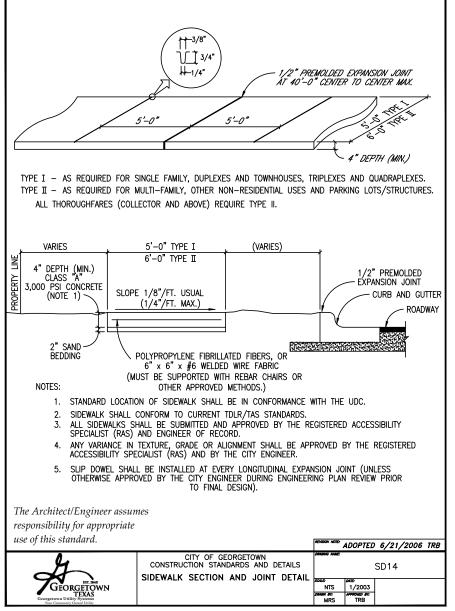

H. Triangular Sediment Filter Dikes.

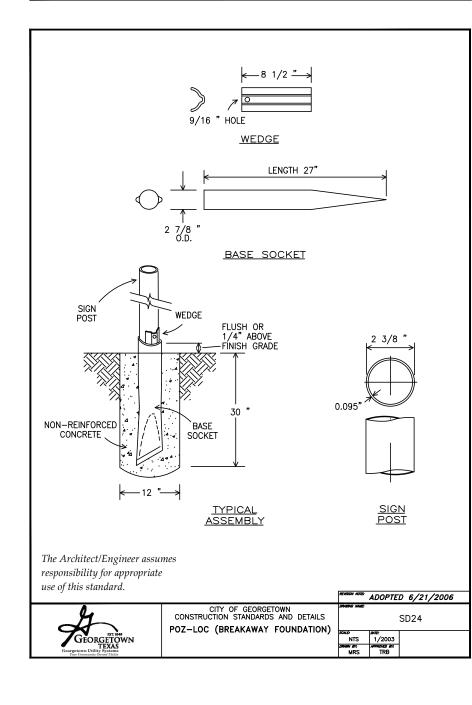
(See Standard Specifications manual item 648S and Specifications manual item <u>648S</u> for detail)

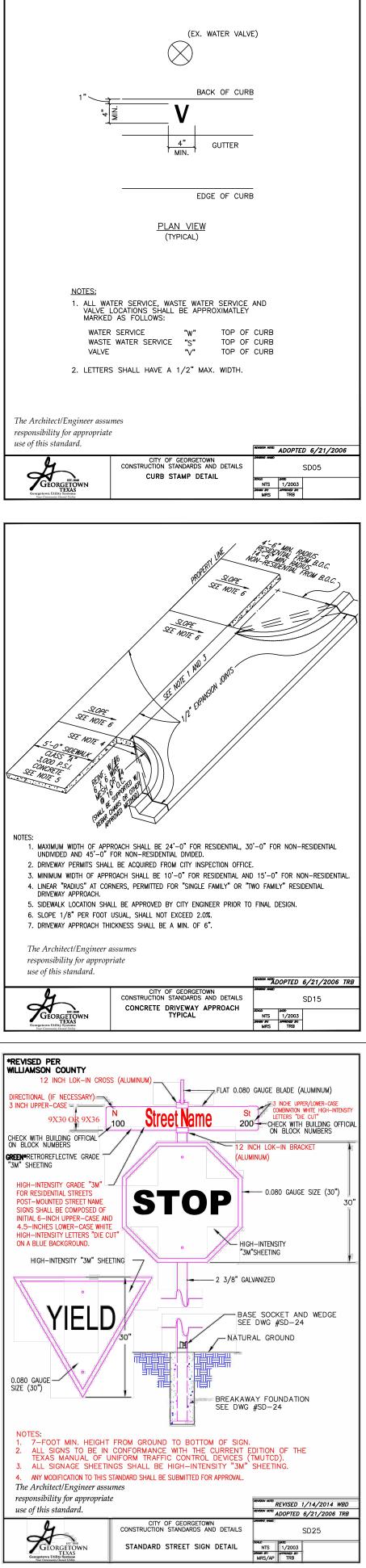

1. Description. A temporary barrier constructed of wire mesh and geotextile fabric, installed along a flat area.

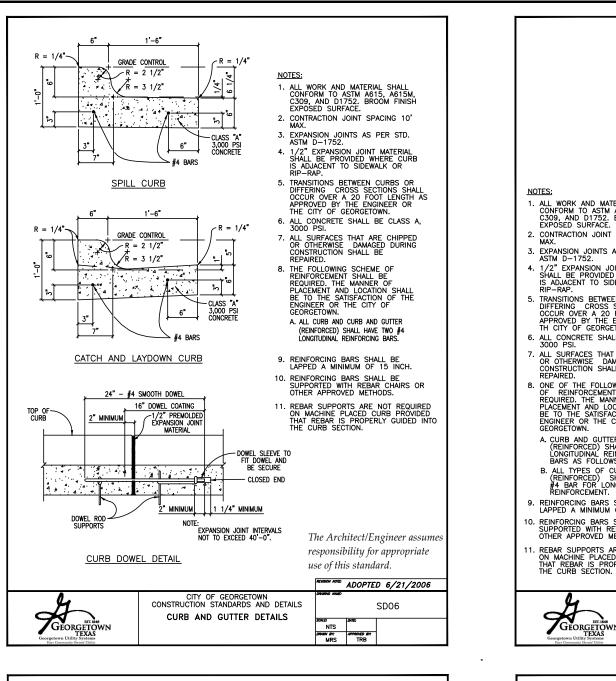

2. Purpose. The purpose of a triangular sediment filter dike is to intercept and detain water-borne sediment from a stabilized construction entrance, roadway

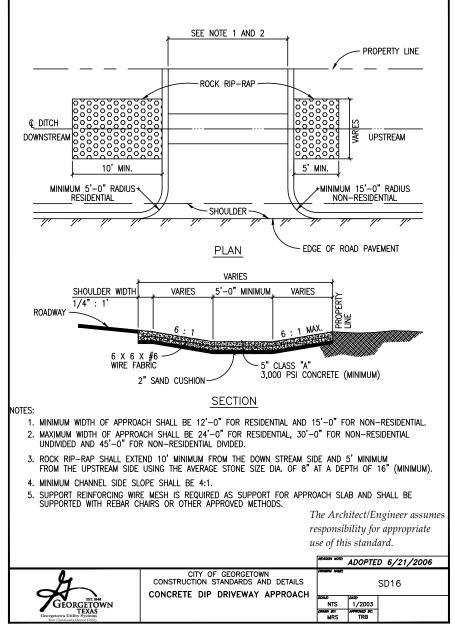


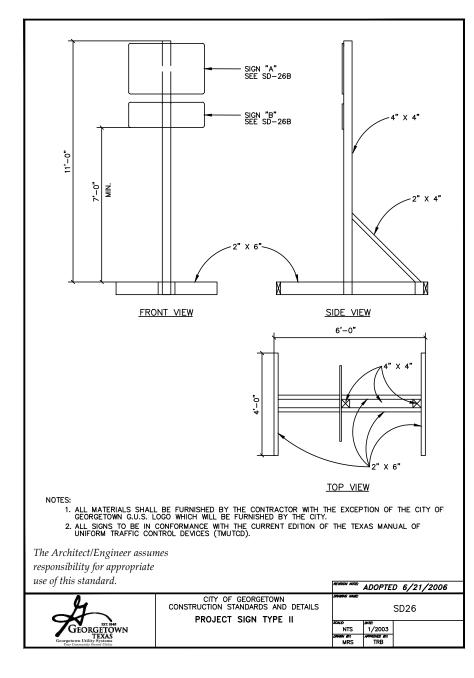


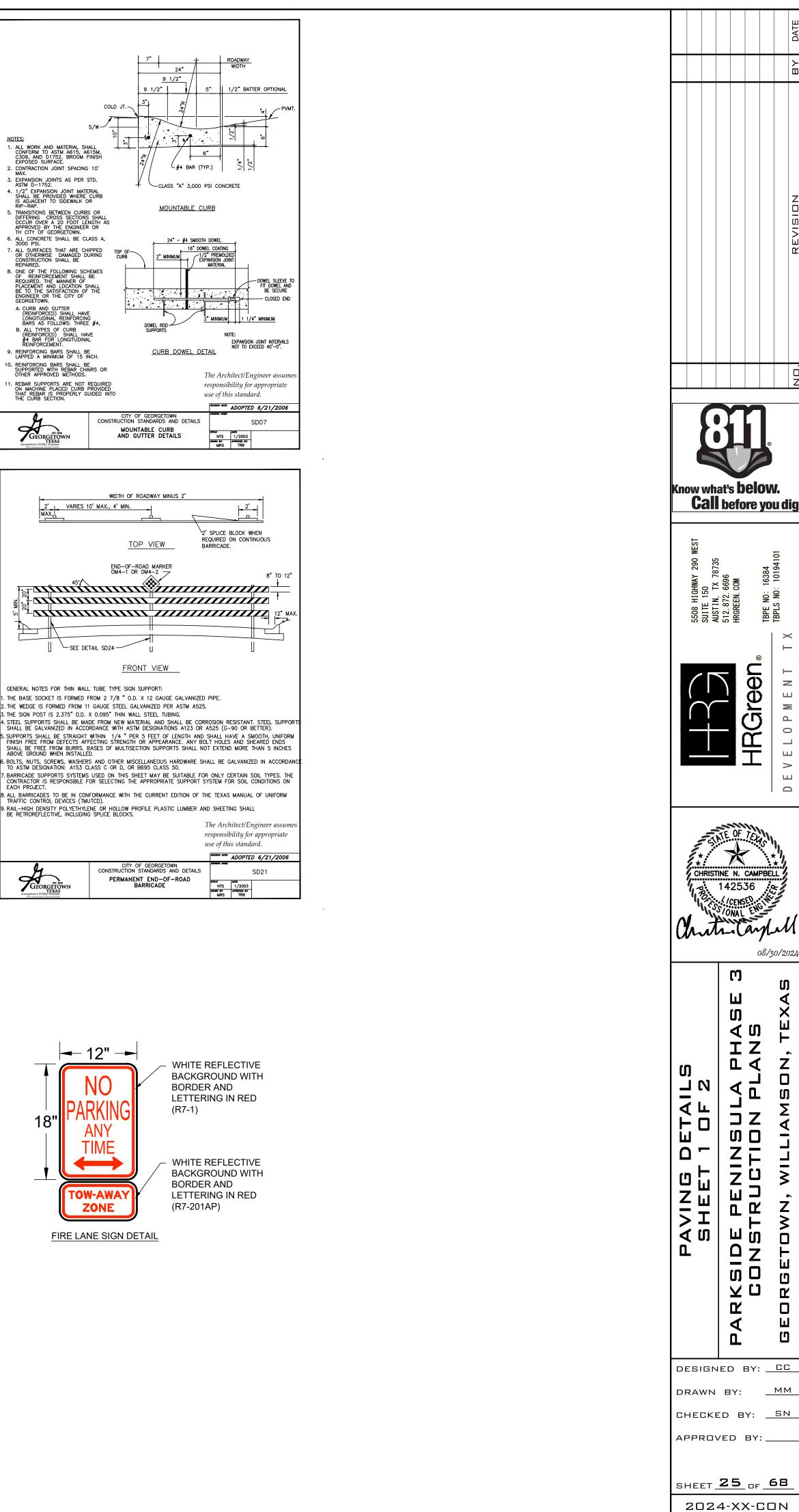

Plot Style: LandDev (Template: LDC_C3D

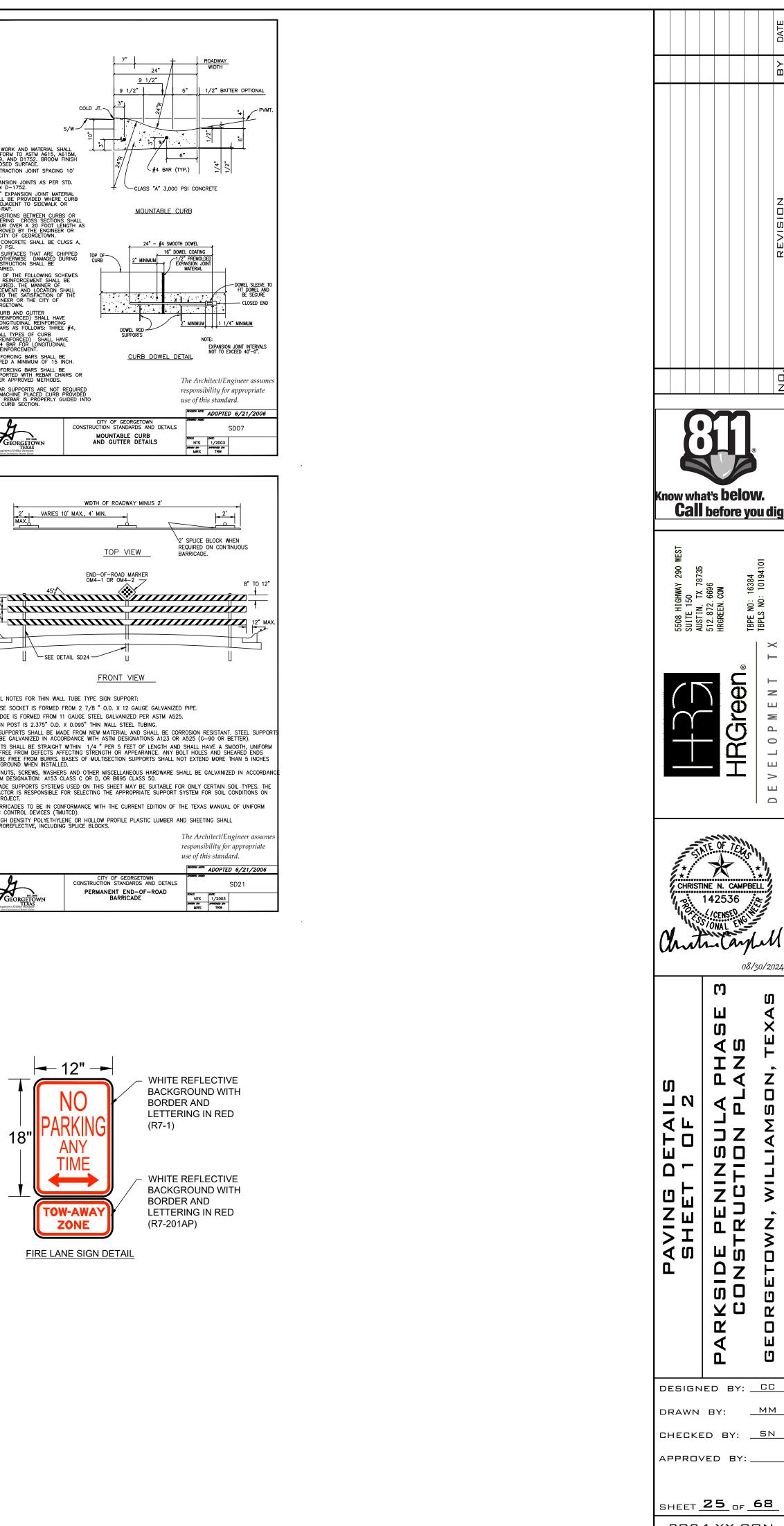


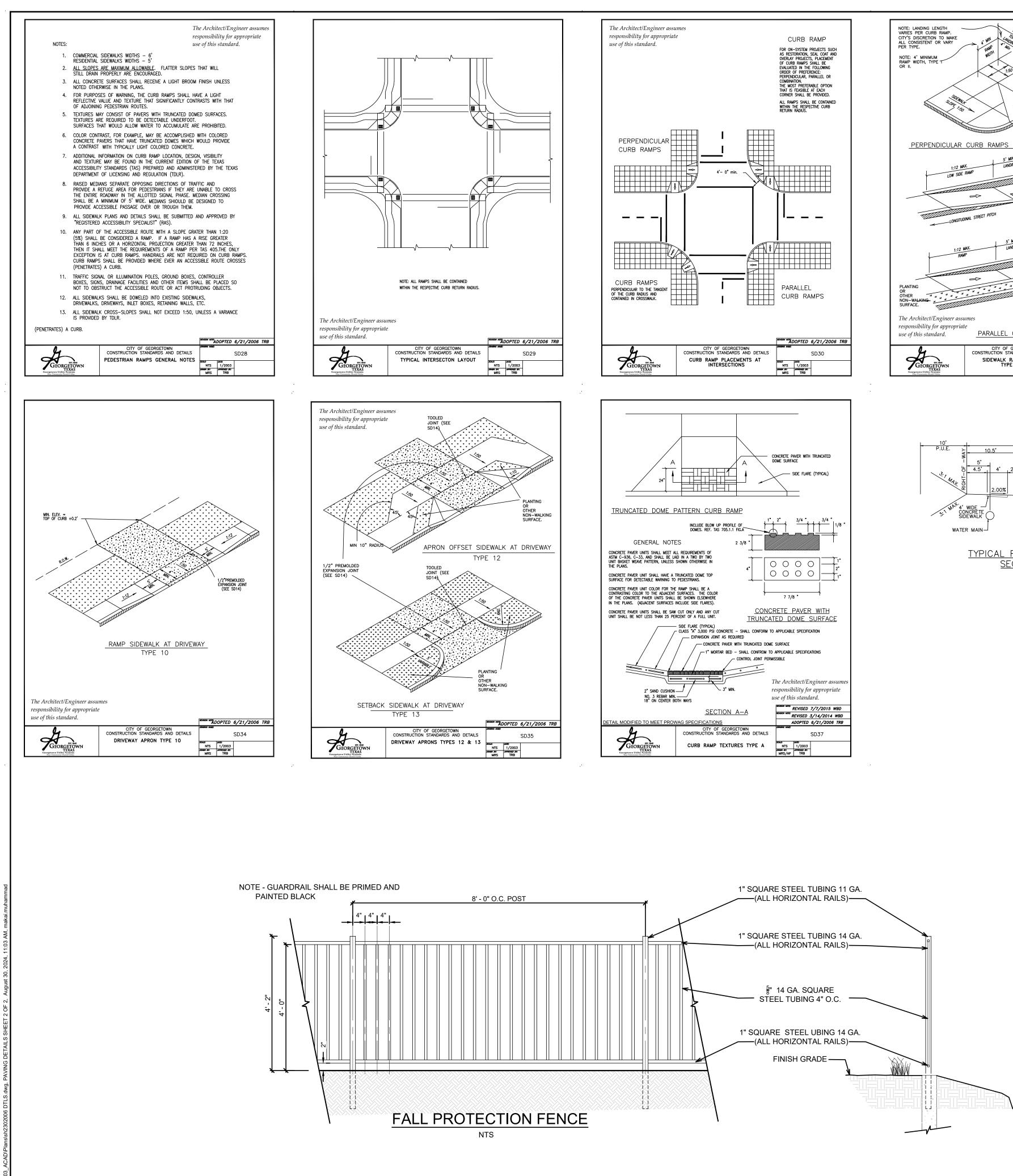


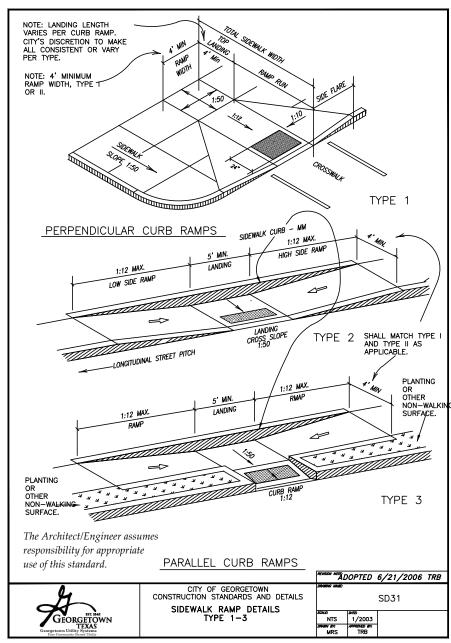


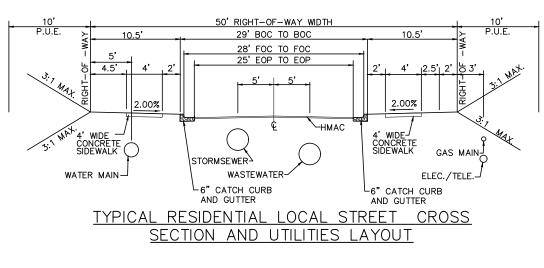












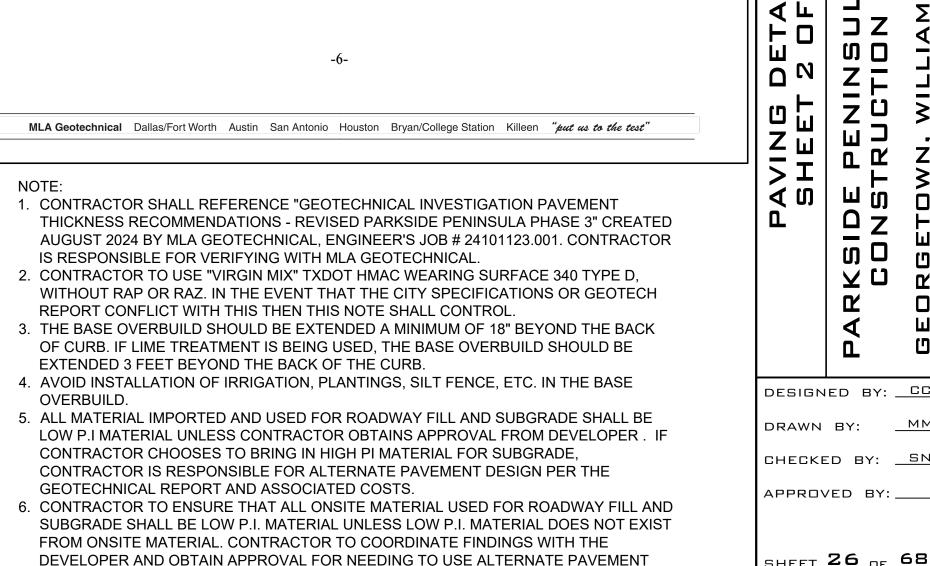
Parkside Peninsula Phase 3 - REVISED Engineer's Job No. 24101123.001

RECOMMENDATIONS - PAVEMENT THICKNESS SECTIONS

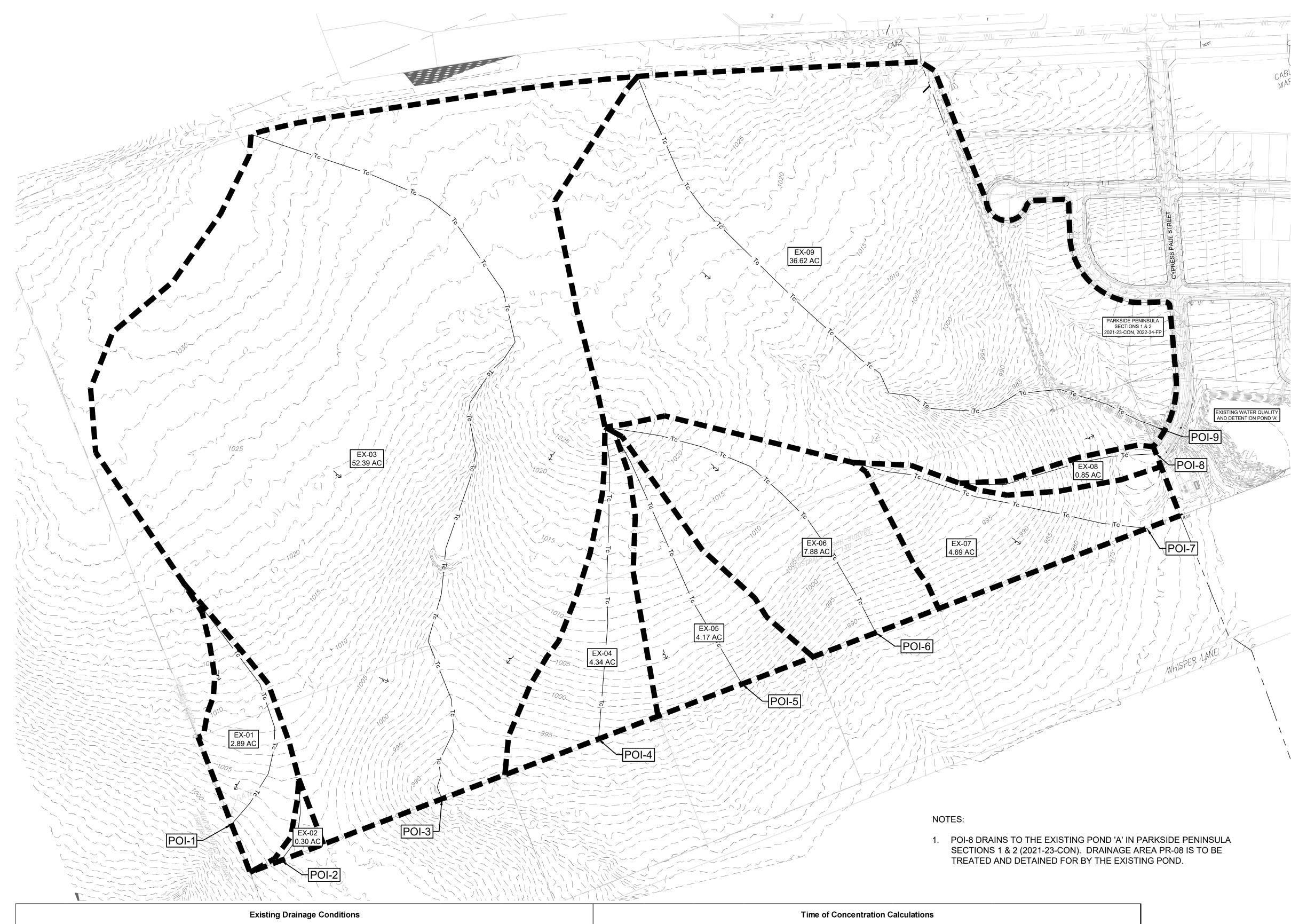
Street Classification	Subgrade Material	Hot Mix Asphaltic Concrete, in	Crushed Limestone Base, in	Low Plasticity Sub-Base, in	Lime Stabilized Subgrade, in
	Subgrade PI greater than 20 – Option 1	2.0	14	-	-
Local	Subgrade PI greater than 20 – Option 2	2.0	8	18**	-
Streets	Subgrade PI greater than 20 – Option 3	2.0	8	-	8
	Subgrade PI less than 20	2.0	8	-	-
	Subgrade PI greater than 20 – Option 1	2.0	15	-	-
Residential	Subgrade PI greater than 20 – Option 2	2.0	10	18**	-
Collector	Subgrade PI greater than 20 – Option 3	2.0	10	-	8
	Subgrade PI less than 20	2.0	10	-	-
	Subgrade PI greater than 20 – Option 1	2.0	20	-	-
Neighborhood	Subgrade PI greater than 20 – Option 2	2.0	13	18**	-
Collector	Subgrade PI greater than 20 – Option 3	2.0	13	_	8
	Subgrade PI less than 20	2.0	13	-	-

1. ** - Or the remaining thickness of surface clay. Natural weathered or intact limestone should not be removed to place a low plasticity subbase.

2. Any expansive fill (PI > 20) placed in the subgrade after test pit completion shall be considered an expansive subgrade. 3. If lime is used, the surface clay must first be tested for sulfate reaction and a mix design should be


- completed to determine the proper lime content, lime type, mixing procedure, and curing conditions required.
- 4. Delineation between these different pavement thickness sections should be completed in the field by observation of open utility trenches and the pavement subgrade by the Geotechnical Engineer or his designate. Given the known variability of surface soils at this site, the Geotechnical Engineer must verify the subgrade before installation of the pavement system can proceed. Multiple site visits may be required depending on the construction schedule. Finalized distinction between pavement thickness section options can be provided as addendum to this report as these observations are completed. Please contact the Geotechnical Engineer when the utility trenches are open.

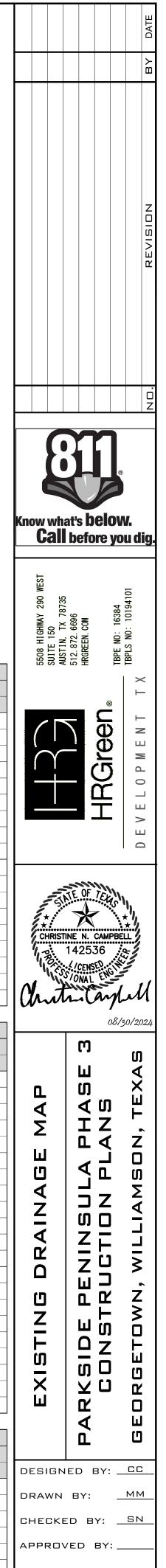
5. The subgrade improvement should be extended 1.5 feet beyond the back of the curb line for PI less than 20 and 3 feet beyond the back of the curb line for PI greater than 20 options. 6. These pavement thickness designs are intended to transfer the load from the anticipated traffic


conditions. 7. The responsibility of assigning street classification to the streets in this project is left to the civil

enginee 8. If pavement designs other than those listed above are desired, please contact MLA Geotechnical.

DESIGN PER THE GEOTECHNICAL REPORT.

				E	cisting Drair	nage Conditi	ons									Time of C	oncentration C	Calculations				
		User Inputs			Auto-Ca	alculation	TOC Calcs		Routing Analy	sis Inputs		Contributing		Shee	t Flow		Shallow Cor	ncentrated Flo	w (Unpaved)	Pip	pe/Channel Flo	ow 1
Contributing Area	Area (sf)	CN (Pervious)	CN (Impervious)	Impervious Cover (sf)	Area (ac)	Impervious Cover (%)	TOC (min)	Area (sq. mi.)	Composite Curve Number	Lag Time	Deachlan	Area	Length	Slope (ft/ft)	Roughness Coefficient	T _{sheet}	Length (ft)	Slope (ft/ft)	T _{unpaved}	Length (ft)	Velocity (ft)	T _{channel} (min)
EX-01	125,888	77	98	0	2.89	0.0%	12.76	0.00452	77.0	7.66		EX-01	100	0.022	0.150	8.50	685	0.028	4.26			0.00
EX-02	13,068	77	98	0	0.30	0.0%	11.14	0.00047	77.0	6.69		EX-02	100	0.015	0.150	9.91	156	0.017	1.24			0.00
EX-03	2,282,108	77	98	0	52.39	0.0%	22.26	0.08186	77.0	13.36		EX-03	100	0.016	0.150	9.65	956	0.013	8.63	1433	6	3.98
EX-04	189,050	77	98	0	4.34	0.0%	11.20	0.00678	77.0	6.72		EX-04	100	0.040	0.150	6.69	815	0.035	4.51			0.00
EX-05	181,645	77	98	0	4.17	0.0%	10.23	0.00652	77.0	6.14		EX-05	100	0.046	0.150	6.33	727	0.037	3.91			0.00
EX-06	343,253	77	98	0	7.88	0.0%	14.83	0.01231	77.0	8.90		EX-06	100	0.015	0.150	9.91	959	0.040	4.93			0.00
EX-07	204,296	77	98	2,801	4.69	1.4%	13.17	0.00733	77.3	7.90		EX-07	100	0.017	0.150	9.42	783	0.046	3.75			0.00
EX-08	37,026	77	98	5,604	0.85	15.1%	9.89	0.00133	80.2	5.93		EX-08	100	0.031	0.150	7.41	486	0.041	2.48			0.00
EX-09	1,595,167	77	98	50,400	36.62	3.2%	20.18	0.05722	77.7	12.11		EX-09	100	0.012	0.150	10.83	1105	0.026	7.04	832	6	2.31


ISULA	
) BE	

0	150 300
SCALE	E: 1" = 150'
I	EGEND
834	EXISTING MINOR CONTOUR
	EXISTING MAJOR CONTOUR
835	PROPOSED MAJOR CONTOUR BOUNDARY
	EASEMENT
	PROPOSED STORM LINE
	FIRE HYDRANT
() -	WATER VALVE
SD	STORM SEWER MAHNOLE
ww	WASTEWATER MANHOLE
0	CURB INLET
	TREES TO REMAIN HERITAGE
	TREES TO REMAIN NON HERITAGE
	DRAINAGE AREA
—— Тс ——	TIME OF CONCENTRATION

		Existing Conditions - Flows &				Volumes - Atlas 14					
		Peak Flo	ows (cfs)			Volume	es (ac-ft)				
ID	2-yr	10-yr	25-yr	100-yr	2-yr	10-yr	25-yr	100-yr			
EX-01	4.75	10.14	14.30	21.91	0.43	0.90	1.28	1.99			
EX-02	0.51	1.09	1.54	2.35	0.04	0.09	0.13	0.21			
EX-03	71.36	152.97	216.03	331.69	7.71	16.34	23.19	36.12			
EX-04	7.37	15.69	22.12	33.90	0.64	1.35	1.92	2.99			
EX-05	7.23	15.41	21.69	33.18	0.61	1.30	1.85	2.88			
EX-06	12.40	26.48	37.31	57.26	1.16	2.46	3.49	5.43			
EX-07	7.75	16.44	23.10	35.37	0.70	1.48	2.09	3.25			
EX-08	1.70	3.42	4.72	7.09	0.14	0.29	0.40	0.62			
EX-09	53.42	113.12	158.87	242.56	5.54	11.64	16.46	25.53			
POI-1	4.75	10.14	14.30	21.91	0.43	0.90	1.28	1.99			
POI-2	0.51	1.09	1.54	2.35	0.04	0.09	0.13	0.21			
POI-3	71.36	152.97	216.03	331.69	7.71	16.34	23.19	36.12			
POI-4	7.37	15.69	22.12	33.90	0.64	1.35	1.92	2.99			
POI-5	7.23	15.41	21.69	33.18	0.61	1.30	1.85	2.88			
POI-6	12.40	26.48	37.31	57.26	1.16	2.46	3.49	5.43			
POI-7	7.75	16.44	23.10	35.37	0.70	1.48	2.09	3.25			
POI-8	1.70	3.42	4.72	7.09	0.14	0.29	0.40	0.62			
POI-9	53.42	113.12	158.87	242.56	5.54	11.64	16.46	25.53			

		Propose	d Conditio	ns - Flows &	& Volumes	- Atlas 14		
Ē		Peak Flo	ows (cfs)			Volume	s (ac-ft)	
ID	2-yr	10-yr	25-yr	100-yr	2-yr	10-yr	25-yr	100-yr
PR-01	3.10	5.70	7.61	11.05	0.24	0.46	0.62	0.92
PR-03A	10.78	20.04	26.86	39.11	0.95	1.80	2.46	3.66
PR-03B	11.88	21.60	28.72	41.51	0.97	1.81	2.44	3.61
PR-03C	66.60	142.80	201.45	309.48	7.08	15.02	21.31	33.19
PR-03D	1.67	3.43	4.76	7.18	0.13	0.27	0.38	0.58
PR-04	2.58	4.75	6.35	9.22	0.20	0.38	0.52	0.77
PR-05	2.60	4.81	6.43	9.34	0.20	0.39	0.52	0.78
PR-06A	19.59	36.05	48.20	70.04	1.60	3.02	4.10	6.09
PR-06B	6.21	13.25	18.66	28.62	0.56	1.19	1.69	2.63
PR-07	6.24	11.30	14.99	21.63	0.49	0.91	1.23	1.82
PR-08	8.40	14.78	19.43	27.78	0.69	1.25	1.67	2.44
PR-09	52.57	111.32	156.35	238.70	5.46	11.45	16.20	25.13
POI-1	3.10	5.70	7.61	11.05	0.24	0.46	0.62	0.92
POI-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
POI-3	70.97	152.61	215.55	331.52	8.51	17.74	25.03	38.74
POI-4	4.43	9.10	12.42	18.69	0.82	1.52	2.06	3.05
POI-5	2.60	4.81	6.43	9.34	0.20	0.39	0.52	0.78
POI-6	10.43	23.70	34.91	56.12	2.16	4.21	5.78	8.71
POI-7	6.24	11.30	14.99	21.63	0.49	0.91	1.23	1.82
POI-8	8.40	14.78	19.43	27.78	0.69	1.25	1.67	2.44
POI-9	52.57	111.32	156.35	238.70	5.46	11.45	16.20	25.13

	Flo	ow & Volum	e Compari	son (Propo	sed - Exist	ing) - Atlas	14		ן ה ס
ID		Peak Flo	ws (cfs)			Volume	s (ac-ft)		
ID	2-yr	10-yr	25-yr	100-yr	2-yr	10-yr	25-yr	100-yr	DESIGNED BY: CC
POI-1	-1.65	-4.44	-6.69	-10.86	-0.19	-0.44	-0.66	-1.07	DRAWN BY' MM
POI-2	-0.51	-1.09	-1.54	-2.35	-0.04	-0.09	-0.13	-0.21	DRAWN BY: <u>MM</u>
POI-3	-0.39	-0.36	-0.48	-0.17	0.80	1.40	1.84	2.62	CHECKED BY: SN
POI-4	-2.94	-6.59	-9.70	-15.21	0.18	0.17	0.14	0.06	
POI-5	-4.63	-10.60	-15.26	-23.84	-0.41	-0.91	-1.33	-2.10	APPROVED BY:
POI-6	-1.97	-2.78	-2.40	-1.14	1.00	1.75	2.29	3.28	
POI-7	-1.51	-5.14	-8.11	-13.74	-0.21	-0.57	-0.86	-1.43	
POI-8	6.70	11.36	14.71	20.69	0.55	0.96	1.27	1.82	SHEET 27 OF 68
POI-9	-0.85	-1.80	-2.52	-3.86	-0.08	-0.19	-0.26	-0.40	2024-XX-CON

85.9

77.0

87.1

89.2

77.7

5.02

7.88

3.60

4.73

12.11

1.09

PR-06A

PR-06B

PR-07

PR-08

PR-09

PR-06A 337,154

PR-09 1,569,902

165,964

98,881

129,373

PR-06B

PR-07

PR-08

77

77

77

77

77

98

98

98

98

98

142,986

0

47,452

75,362

50,400 36.04

7.74

3.81

2.27

2.97

42.4%

0.0%

48.0%

58.3%

3.2%

8.37

7.88

0.01209

0.00464

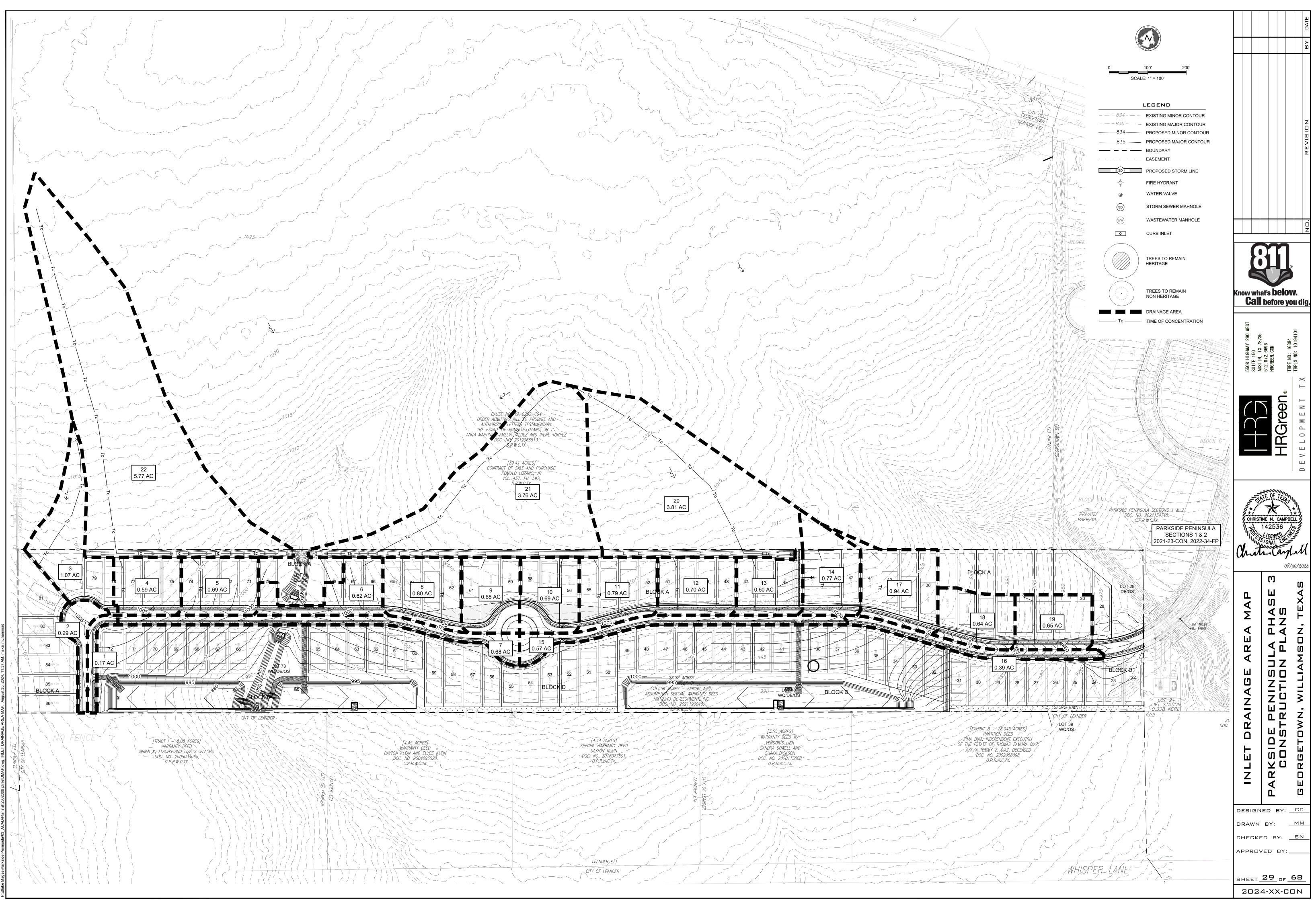
13.14 0.00595

6.00 0.00355

20.18 0.05631

			Time of Co	ncentration C	alculations		1				
	Shee	t Flow		Shallow Con	centrated Flo	w (Unpaved)	Pipe/Channel Flow 1				
Length	Slope (ft/ft)	Roughness Coefficient	T _{sheet}	Length (ft)	Slope (ft/ft)	Tunpaved	Length (ft)	Velocity (ft)	T _{channel} (min)		
30	0.020	0.240	4.91	122	0.020	0.89			0.00		
100	0.029	0.150	7.61	444	0.025	2.90	635	6	1.76		
30	0.020	0.240	4.91	152	0.020	1.11	717	6	1.99		
100	0.016	0.150	9.65	956	0.013	8.63	1115	6	3.10		
30	0.033	0.240	4.02	81	0.110	0.25	158	6	0.44		
30	0.020	0.240	4.91	161	0.020	1.18			0.00		
30	0.020	0.240	4.91	157	0.020	1.15			0.00		
30	0.020	0.240	4.91	151	0.020	1.10	850	6	2.36		
100	0.015	0.150	9.91	538	0.037	2.89	124	6	0.34		
30	0.020	0.240	4.91	103	0.020	0.75			0.00		
30	0.020	0.240	4.91	139	0.020	1.02	704	6	1.96		
100	0.012	0.150	10.83	1105	0.026	7.04	832	6	2.31		

0	150 300
SCALE	E: 1" = 150'
	LEGEND
834	EXISTING MINOR CONTOUR
- — <i>- 835 - — _</i>	EXISTING MAJOR CONTOUR
834	PROPOSED MINOR CONTOU
	PROPOSED MAJOR CONTOU
	BOUNDARY
	EASEMENT
SD	PROPOSED STORM LINE
-\$-	FIRE HYDRANT
۵	WATER VALVE
SD	STORM SEWER MAHNOLE
ww	WASTEWATER MANHOLE
o	CURB INLET
	TREES TO REMAIN HERITAGE
	TREES TO REMAIN NON HERITAGE
	DRAINAGE AREA
Tc	TIME OF CONCENTRATION


Existing Conditions - Flows & Volumes - Atlas 14 Peak Flows (cfs) Volumes (ac-ft) ID 2-yr 10-yr 25-yr 100-yr 2-vr 10-yr 25-vr 100-\ EX-01 4.75 10.14 14.30 21.91 0.90 1.28 0.43 1.99 EX-02 0.51 1.54 0.09 0.13 1.09 2.35 0.04 0.21 EX-03 71.36 152.97 216.03 331.69 16.34 23.19 7.71 36.12 EX-04 7.37 15.69 22.12 33.90 1.35 1.92 0.64 2.99 EX-05 15.41 7.23 21.69 33.18 0.61 1.30 1.85 EX-06 12.40 26.48 37.31 57.26 1.16 2.46 3.49 5.43 EX-07 7.75 16.44 23.10 35.37 0.70 1.48 2.09 3.25 EX-08 1.70 3.42 4.72 7.09 0.14 0.29 0.40 0.62 EX-09 53.42 113.12 158.87 242.56 5.54 11.64 16.46 25.53 POI-1 4.75 10.14 14.30 1.99 21.91 0.43 0.90 1.28 POI-2 0.13 0.21 0.51 1.54 0.09 1.09 2.35 0.04 POI-3 152.97 216.03 331.69 16.34 36.12 71.36 7.71 23.19 POI-4 2.99 7.37 15.69 22.12 33.90 0.64 1.35 1.92 1.30 1.85 2.88 POI-5 7.23 15.41 21.69 33.18 0.61 POI-6 12.40 26.48 37.31 57.26 1.16 2.46 3.49 5.43 POI-7 16.44 23.10 35.37 1.48 2.09 3.25 7.75 0.70 0.62 POI-8 1.70 3.42 4.72 7.09 0.14 0.29 0.40 POI-9 53.42 113.12 158.87 242.56 5.54 11.64 16.46 25.53

		Propose	d Conditio	ns - Flows &	k Volumes	- Atlas 14		
Ē		Peak Flo	ws (cfs)			Volume	s (ac-ft)	
ID	2-yr	10-yr	25-yr	100-yr	2-yr	10-yr	25-yr	100-yr
PR-01	3.10	5.70	7.61	11.05	0.24	0.46	0.62	0.92
PR-03A	10.78	20.04	26.86	39.11	0.95	1.80	2.46	3.66
PR-03B	11.88	21.60	28.72	41.51	0.97	1.81	2.44	3.61
PR-03C	66.60	142.80	201.45	309.48	7.08	15.02	21.31	33.19
PR-03D	1.67	3.43	4.76	7.18	0.13	0.27	0.38	0.58
PR-04	2.58	4.75	6.35	9.22	0.20	0.38	0.52	0.77
PR-05	2.60	4.81	6.43	9.34	0.20	0.39	0.52	0.78
PR-06A	19.59	36.05	48.20	70.04	1.60	3.02	4.10	6.09
PR-06B	6.21	13.25	18.66	28.62	0.56	1.19	1.69	2.63
PR-07	6.24	11.30	14.99	21.63	0.49	0.91	1.23	1.82
PR-08	8.40	14.78	19.43	27.78	0.69	1.25	1.67	2.44
PR-09	52.57	111.32	156.35	238.70	5.46	11.45	16.20	25.13
POI-1	3.10	5.70	7.61	11.05	0.24	0.46	0.62	0.92
POI-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
POI-3	70.97	152.61	215.55	331.52	8.51	17.74	25.03	38.74
POI-4	4.43	9.10	12.42	18.69	0.82	1.52	2.06	3.05
POI-5	2.60	4.81	6.43	9.34	0.20	0.39	0.52	0.78
POI-6	10.43	23.70	34.91	56.12	2.16	4.21	5.78	8.71
POI-7	6.24	11.30	14.99	21.63	0.49	0.91	1.23	1.82
POI-8	8.40	14.78	19.43	27.78	0.69	1.25	1.67	2.44
POI-9	52.57	111.32	156.35	238.70	5.46	11.45	16.20	25.13

	Fle	ow & Volun	ne Compari	ison (Propo	osed - Exist	ting) - Atlas	i 14	
ID		Peak Flo	ows (cfs)			Volume	es (ac-ft)	
U	2-yr	10-yr	25-yr	100-yr	2-yr	10-yr	25-yr	100-yr
POI-1	-1.65	-4.44	-6.69	-10.86	-0.19	-0.44	-0.66	-1.07
POI-2	-0.51	-1.09	-1.54	-2.35	-0.04	-0.09	-0.13	-0.21
POI-3	-0.39	-0.36	-0.48	-0.17	0.80	1.40	1.84	2.62
POI-4	-2.94	-6.59	-9.70	-15.21	0.18	0.17	0.14	0.06
POI-5	-4.63	-10.60	-15.26	-23.84	-0.41	-0.91	-1.33	-2.10
POI-6	-1.97	-2.78	-2.40	-1.14	1.00	1.75	2.29	3.28
POI-7	-1.51	-5.14	-8.11	-13.74	-0.21	-0.57	-0.86	-1.43
POI-8	6.70	11.36	14.71	20.69	0.55	0.96	1.27	1.82
POI-9	-0.85	-1.80	-2.52	-3.86	-0.08	-0.19	-0.26	-0.40
	•			,	•			

RAINAGE MAP	NE N. CAMPE 142536 //CENSED //ONAL ENG	LLIAMSON, TEXAS
5508 HIGHWAY 290 WEST SUITE 150 AUSTIN, TX 78735	Green End The No. 1620	OPMENTX TBPLS NO: 10194101
Call	at's belo before y	® •
		REVISION
		DATE

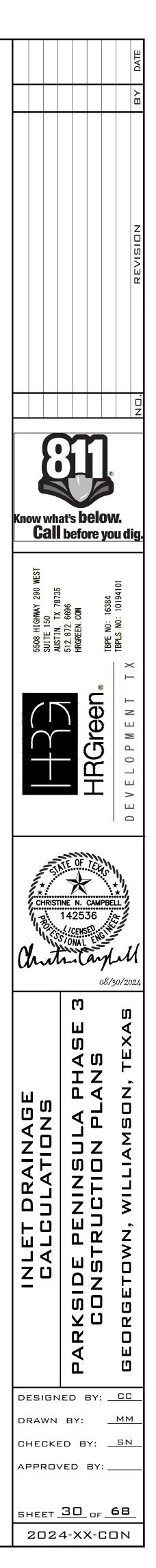
Ū DESIGNED BY: <u>CC</u> DRAWN BY: <u>MM</u> CHECKED BY: <u>SN</u> APPROVED BY: ___ SHEET 28 OF 68 2024-XX-CON

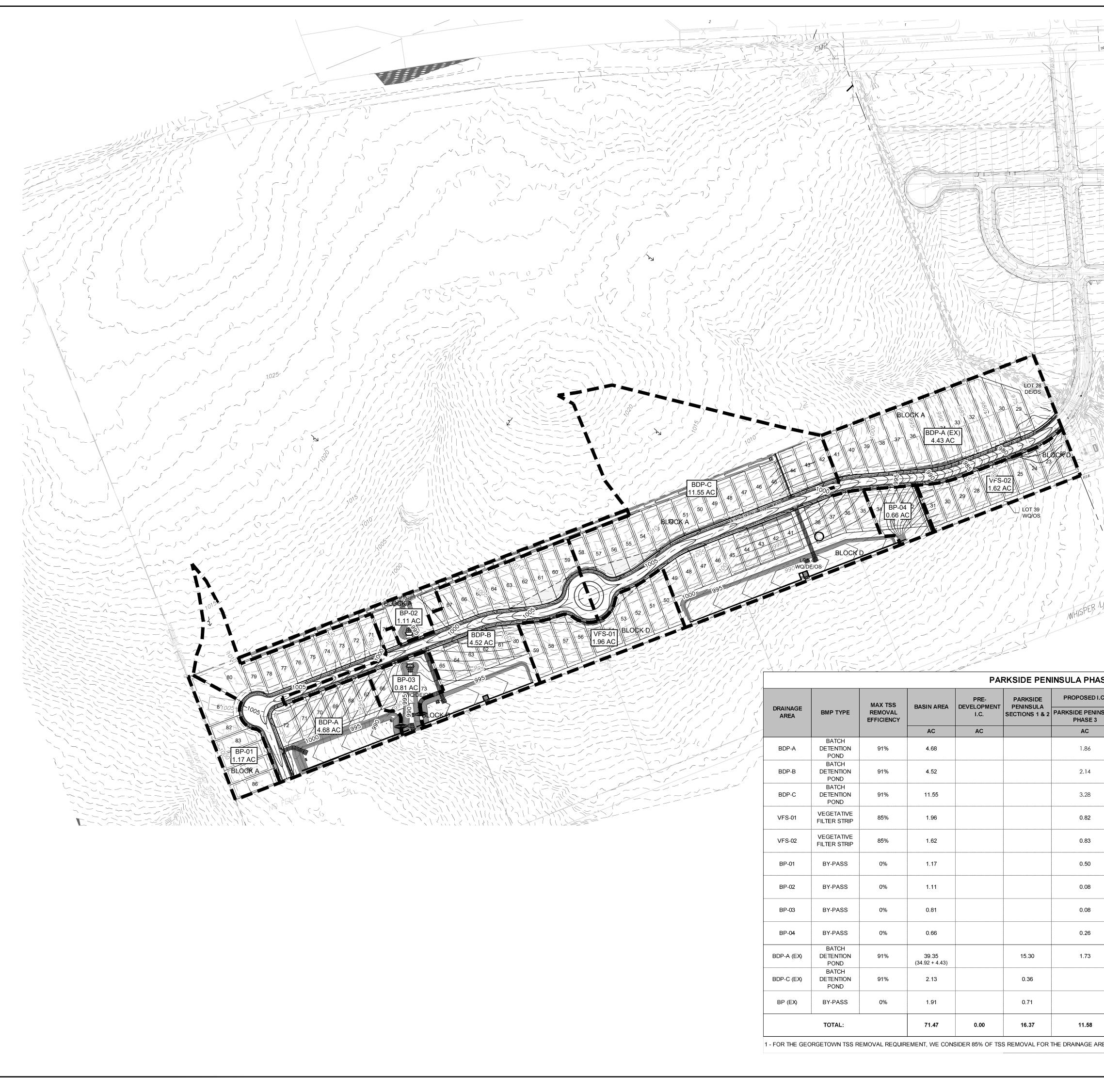
	COG C-Values		
2	10	25	100
0.95	0.95	0.95	0.95
0.24	0.28	0.31	0.36
	2 0.95	0.95 0.95	2 10 25 0.95 0.95 0.95

	COG IDF Cu	ırve Values	
Year	а	b	с
2	106.29	16.81	0.9076
10	96.84	15.88	0.7952
25	111.07	17.23	0.7815
100	129.03	17.83	0.7625

							PARK	SIDE PENIN	ISULA PH	ASE 3																PARKSI	DE PENINS	ULA PHASE	3				
						RATIONA	L METHOD	FLOW CALC	ULATION	S FOR ST	ORM INL	ETS													•	TIME OF CON	CENTRATI	ON CALCUL	ATIONS				
BASIN	INLET	INLET	AREA	AREA	IMPERVIOUS (LOTS)	IMPERVIOUS (ROADS)	IMPERVIOUS	PERVIOUS	тс		2-YR			10-YR			25-YR			100-YR		Contributing		She	et Flow		Shal	low Concentra	ted Flow (Unp	aved)		Gutter Flow	
LABEL	LABEL	TYPE*	(SQ FT)	(AC)	(SF)	(SF)	%	%	(MIN)	С	I	Q	с	I	Q	с	Ι	Q	с	I	Q	Area	Length (ft)	Slope (ft/ft)	Roughness Coefficient	T _{sheet}	Length (ft)	Slope (ft/ft)	Roughness Coefficient	T _{unpaved}	Length (ft)	Velocity (ft/s)	Tpaved
1	E10	CGRD	7,285	0.17	0	5,506	76%	24%	5.0	0.78	6.48	0.84	0.79	8.64	1.14	0.79	9.84	1.31	0.81	11.88	1.60	1				0.00				0.00			0.00
2	E11	CGRD	12,737	0.29	0	10,869	85%	15%	5.0	0.85	6.48	1.60	0.85	8.64	2.15	0.86	9.84	2.46	0.86	11.88	3.00	2				0.00				0.00			0.00
3	E8	CGRD	46,731	1.07	9,000	879	21%	79%	9.1	0.39	5.54	2.32	0.42	7.50	3.39	0.45	8.62	4.12	0.48	10.48	5.45	3	100	0.029	0.15	2.10	443	0.025	0.15	7.00			0.00
4	D11	CGRD	25,891	0.59	12,600	2,940	60%	40%	5.0	0.67	6.48	2.57	0.68	8.64	3.50	0.69	9.84	4.06	0.71	11.88	5.04	4	30	0.02	0.24	1.21	104	0.02	0.24	2.94	143	6	0.40
5	D8	CGRD	30,019	0.69	14,400	3,709	60%	40%	5.0	0.67	6.48	2.98	0.68	8.64	4.07	0.70	9.84	4.72	0.72	11.88	5.86	5	30	0.02	0.24	1.21	111	0.02	0.24	3.14	143	6	0.40
6	C13	CSAG	27,030	0.62	11,200	6,168	64%	36%	5.0	0.70	6.48	2.80	0.71	8.64	3.81	0.72	9.84	4.40	0.74	11.88	5.45	6	30	0.02	0.24	1.21	114	0.02	0.24	3.22	172	6	0.48
7	C11	CSAG	29,817	0.68	0	21,322	72%	28%	5.0	0.75	6.48	3.32	0.76	8.64	4.49	0.77	9.84	5.17	0.78	11.88	6.36	7				0.00				0.00			0.00
8	C14	CGRD	34,689	0.80	14,400	3,867	53%	47%	5.7	0.61	6.29	3.07	0.63	8.41	4.24	0.65	9.59	4.94	0.67	11.60	6.20	8	30	0.02	0.24	1.21	145	0.02	0.24	4.10	149	6	0.41
9	C10	CGRD	29,622	0.68	10,800	4,601	52%	48%	5.7	0.61	6.31	2.61	0.63	8.43	3.60	0.64	9.62	4.20	0.67	11.63	5.27	9	30	0.02	0.24	1.21	152	0.02	0.24	4.30	51	6	0.14
10	B20	CGRD	30,005	0.69	10,800	4,727	52%	48%	5.6	0.61	6.32	2.64	0.63	8.44	3.64	0.64	9.63	4.25	0.67	11.64	5.33	10	30	0.02	0.24	1.21	151	0.02	0.24	4.27	51	6	0.14
11	B23	CGRD	34,491	0.79	14,400	3,844	53%	47%	5.6	0.62	6.33	3.09	0.63	8.46	4.25	0.65	9.65	4.96	0.67	11.66	6.21	11	30	0.02	0.24	1.21	139	0.02	0.24	3.93	149	6	0.41
12	B21	CGRD	30,510	0.70	14,400	3,750	59%	41%	5.0	0.66	6.48	3.01	0.68	8.64	4.11	0.69	9.84	4.76	0.71	11.88	5.92	12	30	0.02	0.24	1.21	106	0.02	0.24	3.00	145	6	0.40
13	B5	CGRD	26,036	0.60	10,800	3,789	56%	44%	5.0	0.64	6.48	2.47	0.66	8.64	3.39	0.67	9.84	3.93	0.69	11.88	4.90	13	30	0.02	0.24	1.21	105	0.02	0.24	2.97	112	6	0.31
14	B11	CGRD	33,368	0.77	10,800	2,799	41%	59%	5.0	0.53	6.47	2.62	0.55	8.63	3.66	0.57	9.83	4.30	0.60	11.87	5.46	14	30	0.02	0.24	1.21	126	0.02	0.24	3.56	92	6	0.26
15	B13	CGRD	24,920	0.57	0	17,674	71%	29%	5.0	0.74	6.48	2.76	0.76	8.64	3.73	0.76	9.84	4.30	0.78	11.88	5.29	15				0.00				0.00			0.00
16	A9	CGRD	16,894	0.39	0	12,516	74%	26%	5.0	0.77	6.48	1.92	0.78	8.64	2.60	0.78	9.84	2.99	0.80	11.88	3.67	16				0.00				0.00			0.00
17	A8	CGRD	40,905	0.94	14,400	3,776	44%	56%	5.5	0.56	6.33	3.30	0.58	8.47	4.59	0.59	9.65	5.39	0.62	11.67	6.82	17	30	0.02	0.24	1.21	139	0.02	0.24	3.93	146	6	0.41
18	A11	CGRD	27,868	0.64	14,400	3,827	65%	35%	5.0	0.70	6.48	2.92	0.72	8.64	3.97	0.73	9.84	4.59	0.75	11.88	5.67	18	30	0.02	0.24	1.21	122	0.02	0.24	3.45	93	6	0.26
19	A10	CGRD	28,429	0.65	14,400	3,685	64%	36%	5.0	0.69	6.48	2.92	0.71	8.64	3.98	0.72	9.84	4.61	0.74	11.88	5.70	19	30	0.02	0.24	1.21	111	0.02	0.24	3.14	142	6	0.39
20	B8	ASAG	166,023	3.81	0	0	0%	100%	10.2	0.24	5.33	4.87	0.28	7.23	7.72	0.31	8.34	9.85	0.36	10.15	13.92	20	100	0.015	0.15	2.92	538	0.037	0.15	6.99	124	6	0.34
21			163,775	3.76	0	0	0%	100%	10.1	0.24	5.36	4.84	0.28	7.27	7.66	0.31	8.38	9.77	0.36	10.20	13.81	21	100	0.028	0.15	2.14	589	0.038	0.15	7.55	133	6	0.37
22	1		251,451	5.77	0	0	0%	100%	18.0	0.24	4.24	5.88	0.28	5.89	9.51	0.31	6.87	12.29	0.36	8.43	17.52	22	100	0.01	0.15	3.57	819	0.024	0.15	13.24	418	6	1.16

Drainage Area No. Inlet No. Q ₂₅ (cfs) Q _{pass} (cfs) Q _{total} (cfs) Slope (cfs) N N N Street Width Crown Height Inlet Depression, (ft) K0 K1 K2 y0 a b Flow Spread, T H1 (ft) (ft) (ft) (ft) (ft) (ft) (ft) K1 K2 y0 a b Flow Spread, T H1	H2Qa/LaLength (ft)QaQpassQpass% CapturedBypass to Inlet(ft)(cfs/ft)10.007.53100%OS
	0.42 0.75 10.00 7.52 10.0% 05
1 E10 1.31 0.00 1.31 0.50% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.30 0.0714 0.0026 5.15 0.72	0.42 0.75 10.00 7.55 10078 05
2 E11 2.46 0.00 2.46 0.50% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.37 0.0714 0.0026 6.86 0.79	0.42 0.83 10.00 8.27 100% OS
3 E8 4.12 0.00 4.12 0.60% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.43 0.0714 0.0026 8.60 0.84	0.42 0.89 10.00 8.86 100% E11
4 D11 4.06 0.00 4.06 2.00% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.35 0.0714 0.0026 6.26 0.76	0.42 0.80 10.00 8.02 100% D8
5 D8 4.72 0.00 4.72 1.50% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.38 0.0714 0.0026 7.22 0.80	0.42 0.84 10.00 8.40 100% C13
8 C14 4.94 0.00 4.94 1.90% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.37 0.0714 0.0026 6.96 0.79	0.42 0.83 10.00 8.30 100% C13
9 C10 4.20 0.00 4.20 1.00% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.39 0.0714 0.0026 7.55 0.81	0.42 0.85 10.00 8.52 100% C14
10 B20 4.25 0.00 4.25 0.70% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.42 0.0714 0.0026 8.37 0.84	0.42 0.88 10.00 8.80 100% B23
11 B23 4.96 0.00 4.96 0.70% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.44 0.0714 0.0026 9.19 0.86	0.42 0.90 10.00 9.03 100% B21
12 B21 4.76 0.00 4.76 0.70% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.44 0.0714 0.0026 8.96 0.85	0.42 0.90 10.00 8.97 100% B5
13 B5 3.93 0.00 3.93 0.70% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.41 0.0714 0.0026 8.01 0.83	0.42 0.87 10.00 8.68 100% B11
14 B11 4.30 0.00 4.30 1.60% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.37 0.0714 0.0026 6.78 0.78	0.42 0.82 10.00 8.23 100% A8
15 B13 4.30 0.00 4.30 1.70% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.36 0.0714 0.0026 6.68 0.78	0.42 0.82 10.00 8.19 100% A9
16 A9 2.99 0.00 2.99 2.20% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.31 0.0714 0.0026 5.35 0.73	0.42 0.76 10.00 7.62 100% OS
17 A8 5.39 0.00 5.39 4.40% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.031 0.0714 0.0026 5.95 0.75	0.42 0.79 10.00 7.89 100% A11
18 A11 4.59 0.00 4.59 3.90% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.32 0.0714 0.0026 5.69 0.74	0.42 0.78 10.00 7.78 100% A10
19 A10 4.61 0.00 4.61 2.70% 0.015 0.560 28.00 0.500 0.42 2.85 0.50 3.03 0.34 0.0714 0.0026 6.19 0.76	0.42 0.80 10.00 7.99 100% OS


										Curb Inlets	s On Grad	e Calculatio	on Sumn	nary: 100	year										
Drainage Area No.	Inlet No.	Q ₁₀₀ (cfs)	Q _{pass} (cfs)	Q _{total} (cfs)	Slope (%)	n	Ku	Street Width (ft)	Crown Height (ft)	Inlet Depression, a (ft)	ко	К1	К2	уО (ft)	а	b	Flow Spread, T (ft)	H1 (ft)	H2 (ft)	Qa/La (cfs/ft)	Length (ft)	Qa	Q _{pass} (cfs)	% Captured	Bypass to Inlet
1	E10	1.60	0.00	1.60	0.50%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.32	0.0714	0.0026	5.62	0.74	0.42	0.77	10.00	7.75		100%	OS
2	E11	3.00	0.00	3.00	0.50%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.39	0.0714	0.0026	7.58	0.81	0.42	0.85	10.00	8.53		100%	OS
3	E8	5.45	0.00	5.45	0.60%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.47	0.0714	0.0026	10.39	0.88	0.42	0.93	10.00	9.32		100%	E11
4	D11	5.04	0.00	5.04	2.00%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.37	0.0714	0.0026	6.94	0.79	0.42	0.83	10.00	8.30		100%	D8
5	D8	5.86	0.00	5.86	1.50%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.41	0.0714	0.0026	8.09	0.83	0.42	0.87	10.00	8.71		100%	C13
8	C14	6.20	0.00	6.20	1.90%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.40	0.0714	0.0026	7.82	0.82	0.42	0.86	10.00	8.61		100%	C13
9	C10	5.27	0.00	5.27	1.00%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.42	0.0714	0.0026	8.55	0.84	0.42	0.89	10.00	8.85		100%	C14
10	B20	5.33	0.00	5.33	0.70%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.45	0.0714	0.0026	9.65	0.87	0.42	0.92	10.00	9.15		100%	B23
11	B23	6.21	0.00	6.21	0.70%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.47	0.0714	0.0026	10.87	0.89	0.42	0.94	10.00	9.41		100%	B21
12	B21	5.92	0.00	5.92	0.70%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.47	0.0714	0.0026	10.43	0.88	0.42	0.93	10.00	9.33		100%	B5
13	B5	4.90	0.00	4.90	0.70%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.44	0.0714	0.0026	9.13	0.86	0.42	0.90	10.00	9.02		100%	B11
14	B11	5.46	0.00	5.46	1.60%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.40	0.0714	0.0026	7.65	0.81	0.42	0.86	10.00	8.56		100%	A8
15	B13	5.29	0.00	5.29	1.70%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.39	0.0714	0.0026	7.41	0.81	0.42	0.85	10.00	8.47		100%	A9
16	A9	3.67	0.00	3.67	2.20%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.33	0.0714	0.0026	5.85	0.75	0.42	0.78	10.00	7.85		100%	OS
17	A8	6.82	0.00	6.82	4.40%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.36	0.0714	0.0026	6.64	0.78	0.42	0.82	10.00	8.18		100%	A11
18	A11	5.67	0.00	5.67	3.90%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.35	0.0714	0.0026	6.26	0.76	0.42	0.80	10.00	8.02		100%	A10
19	A10	5.70	0.00	5.70	2.70%	0.015	0.560	28.00	0.500	0.42	2.85	0.50	3.03	0.37	0.0714	0.0026	6.85	0.79	0.42	0.83	10.00	8.26		100%	OS


							Curb In	lets in Sump C	alculation Sum	mary: 25 ye	ear						
Drainage Area No.	Inlet No I	Q ₂₅ (cfs)	Qpass (cfs)	Qtotal (cfs)	W (ft)	Inlet Depression, a (ft)	Curb opening height, h (ft)	Street Width (ft)	Crown Height (%)	Clogging Factor (%)	Inlet Length (ft)	d _{weir} Above S _x (ft)	d _{orifice} above S _x (ft)	а	b	Depth of Ponding over S _x , y0 (ft)	Ponded Width (ft
6	C13	4.40	0.00	4.40	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.28	0.00	0.07	0.00	0.28	4.78
7	C11	5.17	0.00	5.17	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.32	0.00	0.07	0.00	0.31	5.35

									alculation Sum	mary. 100 y	ear						
Drainage Area No.	t NO.	Q ₁₀₀ (cfs)	Qpass (cfs)	Qtotal (cfs)	W (ft)	Inlet Depression, a (ft)	Curb opening height, h (ft)	Street Width (ft)	Crown Height (%)	Clogging Factor (%)	Inlet Length (ft)	d _{weir} Above S _x (ft)	d _{orifice} above S _x (ft)	a	b	Depth of Ponding over S _x , y0 (ft)	Ponded Width (ft)
6 C1	:13 !	5.45	0.00	5.45	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.33	0.00	0.07	0.00	0.31	5.35
7 C1	211	6.36	0.00	6.36	1.50	0.42	0.52	28.00	0.50	100%	10.00	0.36	0.00	0.07	0.00	0.31	5.35

				Area Inlet i	in Sag Calculati	ion Summa	ary: 25 yea	r			
Drainage Area No.	Inlet No.	Q ₂₅ (cfs)	Qpass (cfs)	Qtotal (cfs)	Throat Height, h	Inlet Length, L	Yard Cross Slope, Sx	Depth above FL	Orifice Depth above FL	Ponded Depth, d	Ponding Spread, T
					(in)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)
20	B8	9.85	0.00	9.85	5.00	16.00	1.67%	0.35	0.28	0.35	20.72

			A	Area Inlet i	n Sag Calculati	on Summa	ry: 100 yea	r			
Drainage Area No.	Inlet No.	Q ₁₀₀ (cfs)	Qpass (cfs)	Qtotal (cfs)	Throat Height, h (in)	Inlet Length, L (ft)	Yard Cross Slope, Sx (%)	Weir Depth above FL (ft)	Orifice Depth above FL (ft)	Ponded Depth, d (ft)	Ponding Spread, T (ft)
					(111)	(11)	(70)	(11)	(11)	(11)	(11)
20	B8	13.92	0.00	13.92	5.00	16.00	1.67%	0.44	0.36	0.44	26.13

		MAX TSS		PRE-	PARKSIDE	PROPOSED I.C.				CITY OF GEORGETOWN	PROVIDED TSS	VOLUME	VOLUME
DRAINAGE AREA	BMP TYPE	REMOVAL	BASIN AREA	DEVELOPMENT	PENINSULA SECTIONS 1 & 2	PARKSIDE PENINSULA PHASE 3	POST-DEVEL	OPMENT I.C.	80% TSS LOAD REMOVAL	REQUIRED 85% POND TSS LOAD REMOVAL	LOAD REMOVAL	REQUIRED	PROVIDED
			AC	AC		AC	AC	%	LB	LB	LB	CF	CF
BDP-A	BATCH DETENTION POND	91%	4.68			1.86	1.86	40%	1,619	1,720	1,842	17,447	20,209
BDP-B	BATCH DETENTION POND	91%	4.52			2.14	2.14	47%	1,863	1,979	2,095	18,926	20,681
BDP-C	BATCH DETENTION POND	91%	11.55			3.28	3.28	28%	2,855	3,033	3,283	35,193	44,784
VFS-01	VEGETATIVE FILTER STRIP	85%	1.96			0.82	0.82	42%	714		788		
VFS-02	VEGETATIVE FILTER STRIP	85%	1.62			0.83	0.83	51%	722		793		
BP-01	BY-PASS	0%	1.17			0.50	0.50	43%	435				
BP-02	BY-PASS	0%	1.11			0.08	0.08	7%	70				
BP-03	BY-PASS	0%	0.81			0.08	0.08	10%	70				
BP-04	BY-PASS	0%	0.66			0.26	0.26	39%	226				
BDP-A (EX)	BATCH DETENTION POND	91%	39.35 (34.92 + 4.43)		15.30	1.73	17.03	43%	14,823	15,749	16,720	143,844	151,783
BDP-C (EX)	BATCH DETENTION POND	91%	2.13		0.36		0.36	17%	313	333	350	2,838	3,344
BP (EX)	BY-PASS	0%	1.91		0.71		0.71	37%	618				
	TOTAL:		71.47	0.00	16.37	11.58	27.95	39%	24,328		25,871		

		_///						
TXDOT	//							
		CABLE MARK			0	150 SCALE: 1" = 150	300	
		3 LS			LEGENI	D		
				834 - 835 - 	EXISTING EXISTING PROPOSE PROPOSE BOUNDAR EASEMEN PROPOSE FIRE HYDI WATER V/ STORM SE	MINOR CONTOUR MAJOR CONTOUR D MINOR CONTOUR D MAJOR CONTOUR MAJOR CONTOUR T T D STORM LINE RANT		
				0	CURB INL	ET		
					TREES TO HERITAGE			
					TREES TO NON HERI			Know w
								5508 HIGHWAY 290 WEST SUITE 150
LANEI ASE 3			ARY					Christer Christer
I.C.			TCEQ REQUIRED 80% TSS LOAD REMOVAL	CITY OF GEORGETOWN REQUIRED 85% POND TSS LOAD REMOVAL	PROVIDED TSS LOAD REMOVAL	VOLUME REQUIRED	VOLUME PROVIDED	ш
	AC	%	LB	LB	LB	CF	CF	
		1	1	1				· · · ·

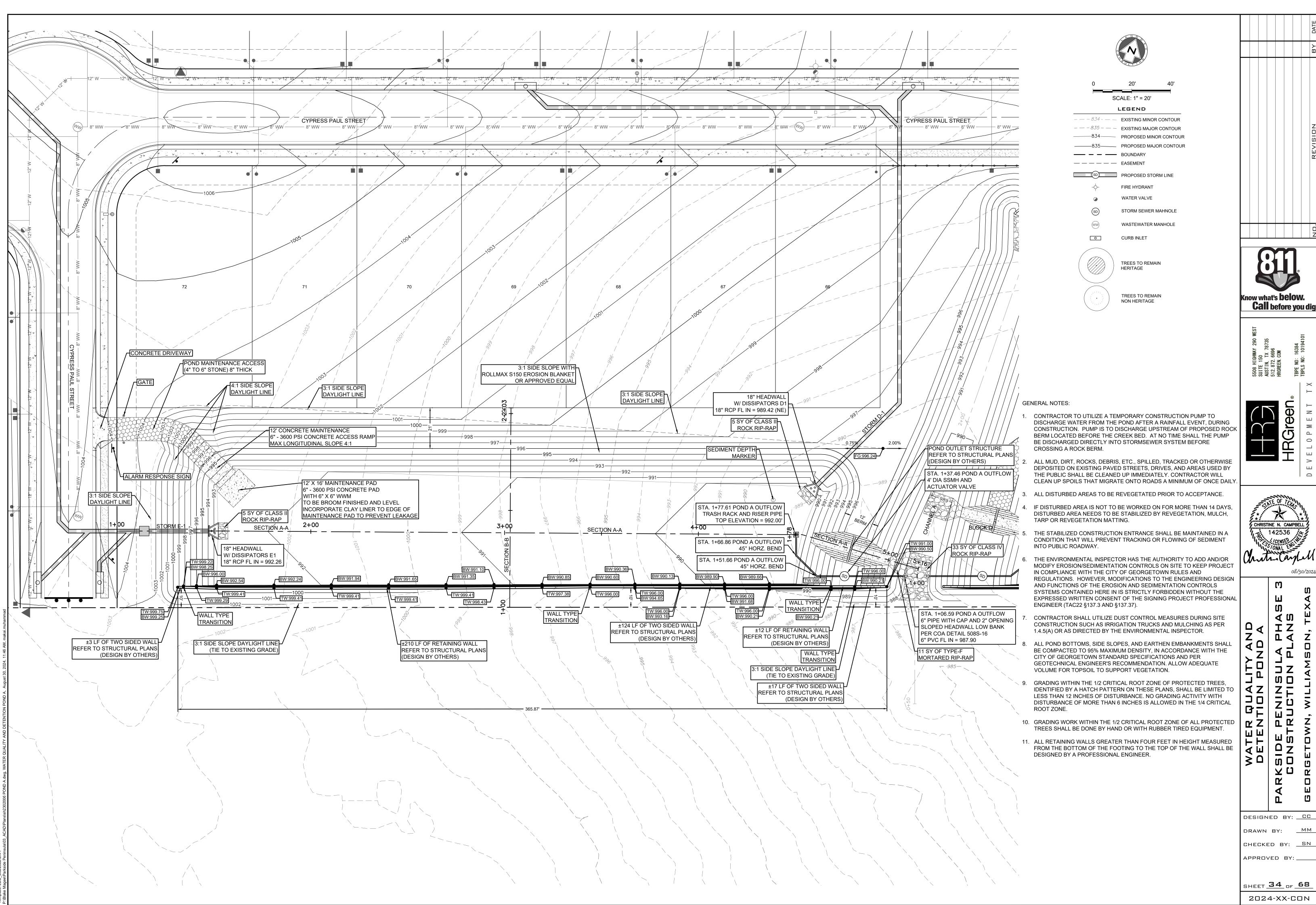
Texas Con	nmission on Environmental Quality						
	·				Parkside Penin	Isula	
TSS Remov	al Calculations 04-20-2009			Project Name:	Phase 3		
				Date Prepared:	9/17/2024		
Additional i	nformation is provided for cells with a red triang	le in the up	per right c	orner. Place the	cursor over the	cell.	
	blue indicate location of instructions in the Technica						
	shown in red are data entry fields.						
Characters	shown in black (Bold) are calculated fields. Cha	anges to the	ese fields v	vill remove the eq	quations used in	n the sp	reads
1. The Require	d Load Reduction for the total project:	Calculations f	om RG-348		Pages 3-27 to 3-30		
	<u> </u>						
	Page 3-29 Equation 3.3: L_{M} =	27.2(A _N x P)					
where:		Required TSS	removal resu	Iting from the propose	d development = 80°	% of incre	ased lo
Whore.				area for the project			
		Average annu					
Site Data [.]	Determine Required Load Removal Based on the Entire Project	nt .					
One Data.	County =	Williamson					
	Total project area included in plan * =		acres				
	redevelopment impervious area within the limits of the plan * = st-development impervious area within the limits of the plan * =		acres acres				
•	Total post-development impervious cover fraction * =	0.41					
	P =	32	inches				
	LM TOTAL PROJECT =	10079	lbs.				
* The values e	entered in these fields should be for the total project area						
Nur	nber of drainage basins / outfalls areas leaving the plan area =	10					
2. Drainage Ba	sin Parameters (This information should be provided for	each basin)					
	Drainage Basin/Outfall Area No. =	BDP-A					
	Total drainage basin/outfall area =	4.68	acres				
	velopment impervious area within drainage basin/outfall area = velopment impervious area within drainage basin/outfall area =		acres				
	popment impervious fraction within drainage basin/outfall area =		acres				
	L _{M THIS} BASIN =	1619	lbs.				
2 Indicate the	proposed BMP Code for this basin.						
<u>5. mulcate the</u>							
	Proposed BMP =						
4. Calculate M	= Removal efficiency aximum TSS Load Removed (L _R) for this Drainage Basin		percent ed BMP Type) .			
	RG-348 Page 3-33 Equation 3.7: L_R =	(BMP efficiend	:y) х Р х (А _I >	(34.6 + A _P x 0.54)			
where:	A _C =	Total On-Site	drainage area	in the BMP catchme	nt area		
	A _I =	Impervious are	a proposed ir	the BMP catchment	area		
			-	the BMP catchment a			
	L _R =	TSS Load rem	loved from this	s catchment area by t	he proposed BMP		
	A _C =	4.68	acres				
	A ₁ =		acres				
	A _P =	2.82	acres				
	L _R =	1918	lbs				
5. Calculate Fr	action of Annual Runoff to Treat the drainage basin / out	tall area					
	Desired L _{M THIS BASIN} =	1842	lbs.				
	F =	0.96					
6. Calculate Ca	apture Volume required by the BMP Type for this drainag	ge basin / out	all area.	Calculations from RG	-348	Pages 3-	34 to 3
	Rainfall Depth =	2.80	inches				
	Post Development Runoff Coefficient =	0.31	out the first				
	On-site Water Quality Volume =	14539	cubic feet				
		0.1.1.1					
		Calculations f	om RG-348	Pages 3-36 to 3-37			
	Off-site area draining to BMP =		acres				
	Off-site Impervious cover draining to BMP = Impervious fraction of off-site area =		acres				
	Off-site Runoff Coefficient =		•				
	Off-site Water Quality Volume =		cubic feet				
	Storage for Sediment =	2908					
		2000					
Total Ca	pture Volume (required water quality volume(s) x 1.20) =	17447	cubic feet				

	BATCH DETEN		ND - B	DP-B				
Texas Cor	nmission on Environmental Quality						Texas Cor	nmission on Environn
TSS Remov	al Calculations 04-20-2009			Project Name: Date Prepared:		sula	TSS Remov	al Calculations 04-20-20
	nformation is provided for cells with a red triang n blue indicate location of instructions in the Technica				cursor over the o	cell.		nformation is provided f n blue indicate location of i
	shown in red are data entry fields.	al Guiuance r	vialiuai - r	G-340.				shown in red are data e
	shown in black (Bold) are calculated fields. Cha	anges to the	se fields	will remove the e	quations used in	the spreadsheet.		shown in black (Bold) a
		O de la latione f	DO 040					
1. The Require	ed Load Reduction for the total project:	Calculations fr	om RG-348		Pages 3-27 to 3-30		<u>1. The Require</u>	ed Load Reduction for the to
	Page 3-29 Equation 3.3: $L_M =$	27.2(A _N x P)						
		Deguined TOO		ultimer frame the surgers as	d development = 000/	of increased load		
where:	A _N =	Net increase in	n impervious	ulting from the propose area for the project	ed development = 80%	of increased load	where:	
	P =	Average annua	al precipitatio	on, inches				
Site Data:	Determine Required Load Removal Based on the Entire Project						Site Data:	Determine Required Load Rem
	County = Total project area included in plan * =	Williamson 28.22	acres					Total
	Predevelopment impervious area within the limits of the plan $*$ =	0.00	acres					redevelopment impervious area
Total po	st-development impervious area within the limits of the plan * = Total post-development impervious cover fraction * =		acres				Total pos	st-development impervious area Total post-developme
	P =		inches					
* The sectors			lbs.				*	
^ The values	entered in these fields should be for the total project area	1.					^ The values e	entered in these fields should
Nu	mber of drainage basins / outfalls areas leaving the plan area =	10					Nur	nber of drainage basins / outfal
2 Drainage B	asin Parameters (This information should be provided for	each hasin):					2 Drainage B	asin Parameters (This inform
Z. Diamaye D							2. Dialitage Da	tsin Fatameters (This monit
	Drainage Basin/Outfall Area No. =	BDP-B						Drain
	Total drainage basin/outfall area =		acres					То
	evelopment impervious area within drainage basin/outfall area = evelopment impervious area within drainage basin/outfall area =		acres					velopment impervious area with velopment impervious area with
	lopment impervious fraction within drainage basin/outfall area =		acres					opment impervious fraction with
	L _{M THIS BASIN} =	1863	lbs.					
3. Indicate the	proposed BMP Code for this basin.						3. Indicate the	proposed BMP Code for this
	Proposed BMP = Removal efficiency =		percent					
4. Calculate N	laximum TSS Load Removed (L _R) for this Drainage Basin	by the selecte	ed BMP Typ	<u>be.</u>			4. Calculate M	aximum TSS Load Removed
	RG-348 Page 3-33 Equation 3.7: L _R =	(BMP efficience	v) x P x (A	x 34.6 + A⊳ x 0.54)				RG-348
where:	-		-	a in the BMP catchme			where:	
		-		in the BMP catchment the BMP catchment a				
	-			is catchment area by				
				,				
	A _C =		acres					
	A ₁ =		acres					
	A _P = L _R =		acres Ibs					
5. Calculate F	raction of Annual Runoff to Treat the drainage basin / ou	tfall area					5. Calculate Fr	action of Annual Runoff to T
	Desired L _{M THIS BASIN} =	2095	lbs.					
	F =	0.96						
6. Calculate C	apture Volume required by the BMP Type for this drainag	ge basin / outf	<u>all area.</u>	Calculations from RG	G-348 F	Pages 3-34 to 3-36	<u>6. Calculate Ca</u>	apture Volume required by t
	Rainfall Depth =	-	inches					
	Post Development Runoff Coefficient = On-site Water Quality Volume =	0.34 15771	cubic feet					Post De
		Calculations fr	om RG-348	Pages 3-36 to 3-37				
	Off-site area draining to BMP = Off-site Impervious cover draining to BMP =		acres acres					Off-site Impe
	Impervious fraction of off-site area =	0	45155					Impe
	Off-site Runoff Coefficient = Off-site Water Quality Volume =		cubic feet					
		0						
	Storage for Sediment =							
Total Ca	pture Volume (required water quality volume(s) x 1.20) =	18926	cubic feet				Total Ca	pture Volume (required wat
	1/2 WQV =	9463						

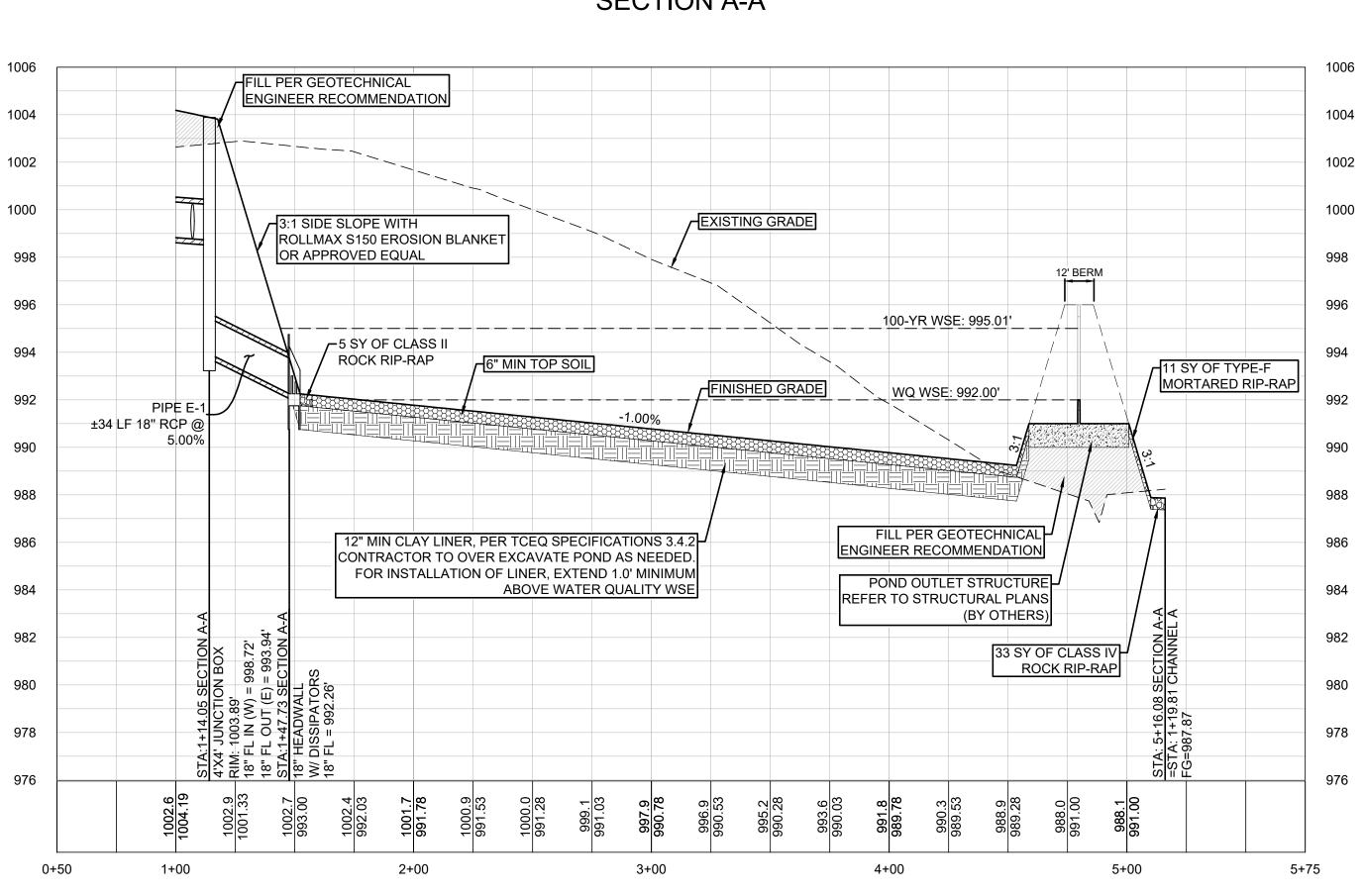
ental Quality						
				Parkside Penin	sula	
99			Project Name: Date Prepared:			
r cells with a red triang structions in the Technica				cursor over the	cell.	
try fields.		vialiuai - K	G-340.			
e calculated fields. Cha	anges to the	se fields	will remove the e	quations used ir	n the sp	readsheet
l project:	Calculations fr	om RG-348		Pages 3-27 to 3-30		
Page 3-29 Equation 3.3: L_{M} =	= 27.2(A _N x P)					
L _{M TOTAL PROJECT} =	Required TSS	removal res	ulting from the propose	d development = 80%	6 of incre	ased load
	Net increase ir Average annua		area for the project			
al Based on the Entire Proje Countv =	ct Williamson	•				
ect area included in plan * =	28.22	acres				
thin the limits of the plan * = thin the limits of the plan * =		acres acres				
t impervious cover fraction * = P =	0.41	inches				
۲ -	52					
L _{M TOTAL PROJECT} =		lbs.				
be for the total project area	a.					
areas leaving the plan area =	10	•				
ion should be provided for	r each basin):					
ge Basin/Outfall Area No. =						
l drainage basin/outfall area = n drainage basin/outfall area =		acres acres				
n drainage basin/outfall area =	3.28	acres				
n drainage basin/outfall area = L _{M THIS BASIN} =		lbs.				
basin.						
Proposed BMP = Removal efficiency =						
(L _R) for this Drainage Basin		percent ed BMP Typ	<u>be.</u>			
Page 3-33 Equation 3.7: L _R =	: (BMP efficienc		x 34 6 + A _P x 0 54)			
-		-	a in the BMP catchme			
	-		in the BMP catchment the BMP catchment a			
			is catchment area by t			
A _C =	11.55	acres				
$A_1 =$		acres				
A _P =	8.27	acres				
L _R =	3435	lbs				
at the drainage basin / ou	tfall area					
Desired L _{M THIS BASIN} =	3283	lbs.				
	5205	103.				
F =	. 0.96					
e BMP Type for this drainag	ge basin / outfa	all area.	Calculations from RG	-348	Pages 3-	34 to 3-36
Rainfall Depth = elopment Runoff Coefficient =		inches				
	0.25 29327	cubic feet				
site Water Quality Volume =						
•		om RG-348	Pages 3-36 to 3-37			
•	Calculations fr	1				
site Water Quality Volume =		acres				
site Water Quality Volume = -site area draining to BMP = ous cover draining to BMP =	0.00 0.00	acres acres				
ite Water Quality Volume = site area draining to BMP = bus cover draining to BMP = bus fraction of off-site area =	0.00 0.00 0					
•	0.00 0.00 0.00					
te Water Quality Volume = site area draining to BMP = us cover draining to BMP = us fraction of off-site area = Off-site Runoff Coefficient =	0.00 0.00 0 0.00 0 0	acres				
te Water Quality Volume = site area draining to BMP = us cover draining to BMP = us fraction of off-site area = Off-site Runoff Coefficient = te Water Quality Volume =	0.00 0.00 0 0.00 0 5865	acres				

VEGETATIVE FILTER STRIP - VFS-01	VEGETATIVE F	ILIEK SIKIP -	VF3-UZ		EXIS
Texas Commission on Environmental Quality	Texas Commission on Environmental Quality				Texas Commission on Environme
Parkside Peninsula			Parkside Peninsula		
TSS Removal Calculations 04-20-2009 Project Name: Phase 3	TSS Removal Calculations 04-20-2009		Project Name: Phase 3		TSS Removal Calculations 04-20-200
Date Prepared: 9/17/2024			Date Prepared: 9/17/2024		
Additional information is provided for cells with a red triangle in the upper right corner. Place the cursor over the cell.	Additional information is provided for cells with a red triang	ale in the upper right (corner. Place the cursor over the cell		Additional information is provided for
Text shown in blue indicate location of instructions in the Technical Guidance Manual - RG-348.	Text shown in blue indicate location of instructions in the Technica				Text shown in blue indicate location of ins
Characters shown in red are data entry fields.	Characters shown in red are data entry fields.				Characters shown in red are data ent
Characters shown in black (Bold) are calculated fields. Changes to these fields will remove the equations used in the spreadsheet.	Characters shown in black (Bold) are calculated fields. Cha	anges to these fields	will remove the equations used in the sprea	adsheet.	Characters shown in black (Bold) are
1. The Required Load Reduction for the total project: Calculations from RG-348 Pages 3-27 to 3-30	1. The Required Load Reduction for the total project:	Calculations from RG-348	Pages 3-27 to 3-30		1. The Required Load Reduction for the total
Page 3-29 Equation 3.3: L _M = 27.2(A _N x P)	Page 3-29 Equation 3.3: L _M =	= 27.2(A _N x P)			F
where: L _{M TOTAL PROJECT} = Required TSS removal resulting from the proposed development = 80% of increased load			ulting from the proposed development = 80% of increase	dload	where:
$A_{N} = Net increase in impervious area for the project$		 Net increase in impervious 		u loau	where.
P = Average annual precipitation, inches		 Average annual precipitation 			
		, troidge dimindi precipitati			
Site Data: Determine Required Load Removal Based on the Entire Project	Site Data: Determine Required Load Removal Based on the Entire Proje				Site Data: Determine Required Load Remov
County = Williamson Total project area included in plan * = 28.22 acres	County = Total project area included in plan * =	Williamson 28.22 acres			Total pro
Predevelopment impervious area within the limits of the plan * = 0.00 acres	Predevelopment impervious area within the limits of the plan * =				Predevelopment impervious area w
Total post-development impervious area within the limits of the plan * = 11.58 acres	Total post-development impervious area within the limits of the plan * =				Total post-development impervious area w
Total post-development impervious cover fraction * = 0.41	Total post-development impervious cover fraction * =	= 0.41			Total post-development
P = 32 inches	P =	= 32 inches			
L _{M TOTAL PROJECT} = 10079 Ibs.		= 10079 Ibs.			
L _{M TOTAL PROJECT} = 10079 lbs. * The values entered in these fields should be for the total project area. Image: Comparison of the total project area. Image: Comparison of the total project area.	L _{M TOTAL PROJECT} = * The values entered in these fields should be for the total project area				* The values entered in these fields should I
Number of drainage basing / outfalls areas loging the plan area =10					Number of drainage heating / auti-li-
Number of drainage basins / outfalls areas leaving the plan area = 10	Number of drainage basins / outfalls areas leaving the plan area =	= 10			Number of drainage basins / outfalls
2. Drainage Basin Parameters (This information should be provided for each basin):	2. Drainage Basin Parameters (This information should be provided for	r each basin):			2. Drainage Basin Parameters (This informat
Drainage Basin/Outfall Area No. = VFS-01	Drainage Basin/Outfall Area No. =	= VFS-03			Drainag
Total drainage basin/outfall area = 1.96 acres	Total drainage basin/outfall area =				Total
Predevelopment impervious area within drainage basin/outfall area = 0.00 acres Post-development impervious area within drainage basin/outfall area = 0.82 acres	Predevelopment impervious area within drainage basin/outfall area = Post-development impervious area within drainage basin/outfall area =				Predevelopment impervious area within Post-development impervious area within
Post-development impervious fraction within drainage basin/outfall area = 0.42	Post-development impervious fraction within drainage basin/outfall area =				Post-development impervious fraction within
$L_{\rm M THIS BASIN} = 714$ lbs.	L _M This basin =				
3. Indicate the proposed BMP Code for this basin.	3. Indicate the proposed BMP Code for this basin.				3. Indicate the proposed BMP Code for this b
Proposed BMP = Vegetated Filter Strips Removal efficiency = 85 percent	Proposed BMP = Removal efficiency =	Vegetated Filter Strips 85 percent			
4. Calculate Maximum TSS Load Removed (L _R) for this Drainage Basin by the selected BMP Type.	Removal emclency = 4. Calculate Maximum TSS Load Removed (L _R) for this Drainage Basin		oe.		4. Calculate Maximum TSS Load Removed (
RG-348 Page 3-33 Equation 3.7: L _R = (BMP efficiency) x P x (A _I x 34.6 + A _P x 0.54)	RG-348 Page 3-33 Equation 3.7: L _R =	= (BMP efficiency) x P x (A ₁	x 34.6 + A _P x 0.54)		RG-348 P
where: A _C = Total On-Site drainage area in the BMP catchment area	where: A _C =	- Total On-Site drainage are	a in the BMP catchment area		where:
A_1 = Impervious area proposed in the BMP catchment area	A ₁ =	Impervious area proposed	in the BMP catchment area		
A_{P} = Pervious area remaining in the BMP catchment area	A _P =	Pervious area remaining in	the BMP catchment area		
L_R = TSS Load removed from this catchment area by the proposed BMP	L _R =	TSS Load removed from the	nis catchment area by the proposed BMP		
$A_{\rm C} = 1.96$ acres	A _C =	= 1.62 acres			
$A_{l} = 0.82 \text{acres}$					
$A_{\rm P} = 1.14 \text{acres}$					
$L_R = 788$ lbs	L _R =				
5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area	5. Calculate Fraction of Annual Runoff to Treat the drainage basin / ou	tfall area			5. Calculate Fraction of Annual Runoff to Tre
Desired L _{M THIS BASIN} = 788 Ibs.					
	Desired L _{M THIS BASIN} =	- 133 IDS.			
F = 1.00	F =	= 1.00			
1.00	F =	= 1.00			6. Calculate Capture Volume required

BY PASS - BP-01

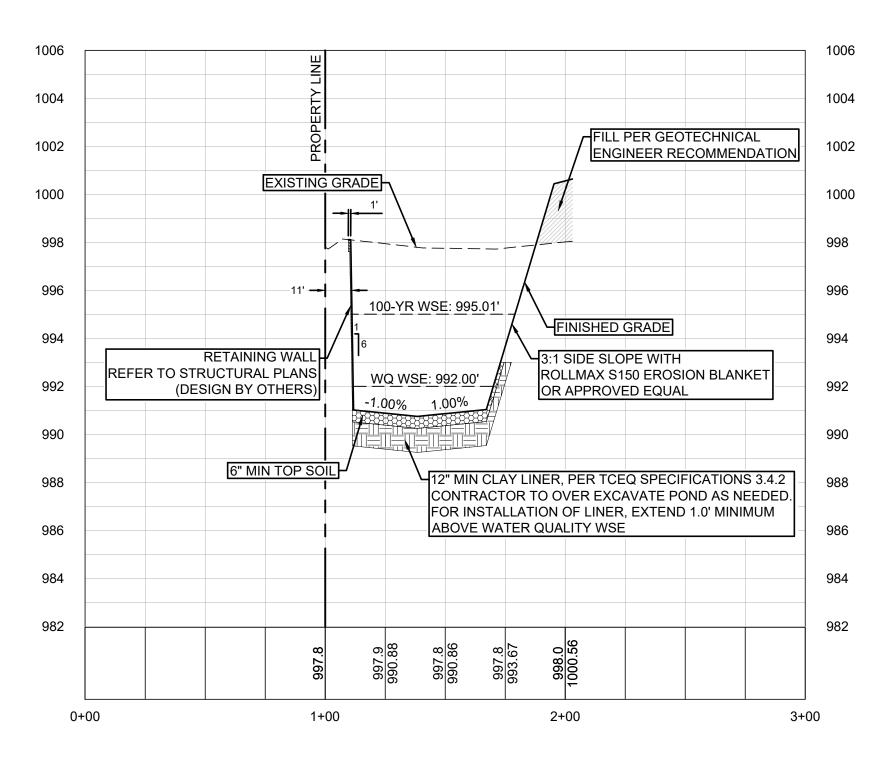

DII	- 007	DF-01				DIF	A33 -	DF-UZ		
Texas Commission on Environmental Quality					Texas Cor	nmission on Environmental Quality				
				Parkside Peninsula					Parkside Penins	sula
TSS Removal Calculations 04-20-2009			Project Name		TSS Remov	al Calculations 04-20-2009			Project Name: Phase 3	
			Date Prepared						Date Prepared: 9/17/2024	
			Date Prepared	9/17/2024					Date Frepareu. 3/17/2024	
Additional information is previded for calls with a real trian.	ula in the sur		Disco dis		Additional	nformation is provided for cells with a red triang	la in tha un	nor right oor	or Diaco the ourser over the c	a all
Additional information is provided for cells with a red trian				cursor over the cell.						cen.
Text shown in blue indicate location of instructions in the Technic	al Guidance	e Manual - R	G-348.			n blue indicate location of instructions in the Technica	al Guidance	Manual - RG-3	48.	
Characters shown in red are data entry fields.						shown in red are data entry fields.				
Characters shown in black (Bold) are calculated fields. Ch	anges to th	nese fields v	will remove the e	quations used in the spreadshee	Characters	shown in black (Bold) are calculated fields. Cha	anges to th	ese fields will	remove the equations used in	the spreadsh
1. The Required Load Reduction for the total project:	Calculations	from RG-348		Pages 3-27 to 3-30	1. The Require	ed Load Reduction for the total project:	Calculations	rom RG-348	Pages 3-27 to 3-30	
Page 3-29 Equation 3.3: L_{M} =	= 27.2(A _N x P))				Page 3-29 Equation 3.3: L_M =	27.2(A _N x P)			
	Required TS	S removal resu	Iting from the propos	ed development = 80% of increased load	where:	LM TOTAL PROJECT =	Required TSS	removal resulting	g from the proposed development = 80%	of increased load
			area for the project	•				in impervious area		
		ual precipitatio						al precipitation, in		
	, tionago ann						j			
Site Data: Determine Required Load Removal Based on the Entire Proje	ect				Site Data:	Determine Required Load Removal Based on the Entire Project	ct			
County =	Williamson	n 🎙				County =	Williamson			
Total project area included in plan * =	28.22	acres				Total project area included in plan * =	28.22	acres		
Predevelopment impervious area within the limits of the plan * =	0.00	acres				redevelopment impervious area within the limits of the plan * =	0.00	acres		
Total post-development impervious area within the limits of the plan * =	= <u>11.58</u>	acres			Total po	st-development impervious area within the limits of the plan $*$ =	11.58	acres		
Total post-development impervious cover fraction * =	= 0.41					Total post-development impervious cover fraction * =	0.41			
P =	- 32	inches				P =	32	inches		
L _{M TOTAL PROJECT}	= 10079	lbs.				L _M total project =	10079	lbs.		
^t The values entered in these fields should be for the total project are	a.				* The values	entered in these fields should be for the total project area	a.			
Number of drainens begins / sutfills every locing the plan ever	= 10	_			Niu	nber of drainage basins / outfalls areas leaving the plan area =	10			
Number of drainage basins / outfalls areas leaving the plan area =	- 10						10			
		N-			2 Drainago B	asin Parameters (This information should be provided for	oach basin):			
2. Drainage Basin Parameters (This information should be provided fo	r each basin)	<u>):</u>			z. Diamage D	asin ratameters (this information should be provided for	each basinj.			
Drainage Basin/Outfall Area No	BP-01					Drainage Basin/Outfall Area No. =	BP-02	•		
						Total drainage basis (suffell area -	4.44	00700		
Total drainage basin/outfall area =		acres			Diada	Total drainage basin/outfall area =	1.11	acres		
Predevelopment impervious area within drainage basin/outfall area =		acres				evelopment impervious area within drainage basin/outfall area = evelopment impervious area within drainage basin/outfall area =		acres		
Post-development impervious area within drainage basin/outfall area =		acres				opment impervious fraction within drainage basin/outial area =		aures		
Post-development impervious fraction within drainage basin/outfall area					Post-deve			lha		
L _{M THIS} BASIN =	- 435	lbs.				L _{M THIS BASIN} =	70	lbs.		

BY PASS - BP-03

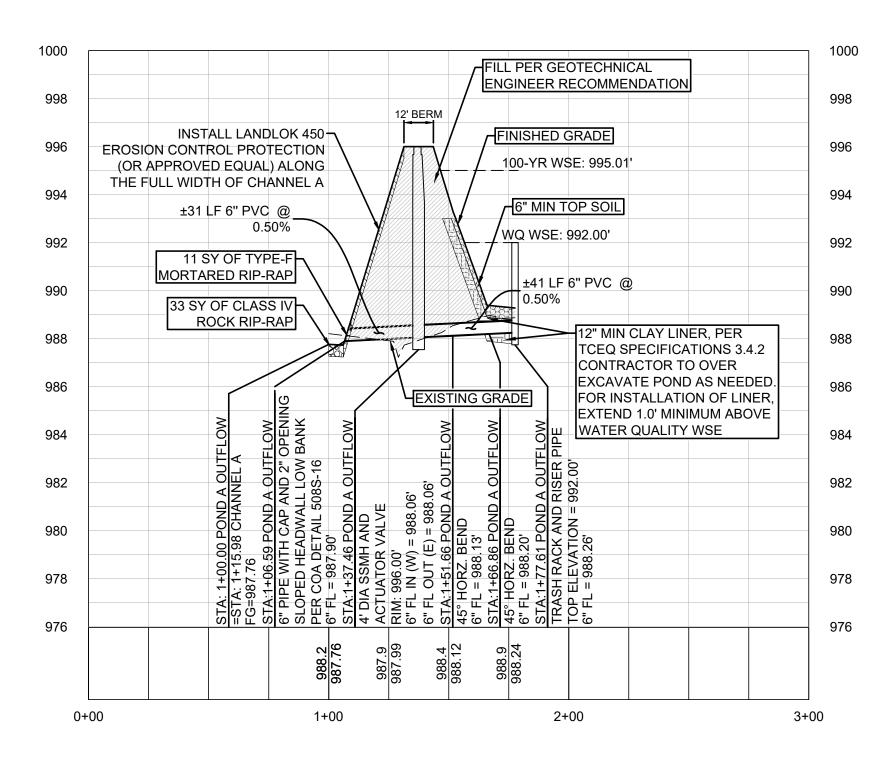

Texas Com	mission on Environmental Quality					
					Parkside Penins	ula
TSS Removal	Calculations 04-20-2009			Project Name:	Phase 3	
				Date Prepared:	9/17/2024	
				•		
Additional inf	ormation is provided for cells with a red triang	le in the up	oer right co	rner. Place the	cursor over the c	ell.
	blue indicate location of instructions in the Technica					
	nown in red are data entry fields.			0.10.		
	nown in black (Bold) are calculated fields. Cha	nges to the	se fields w	vill remove the ev	nuations used in	the spreadsheet
Characters Si	iowit in black (boid) are calculated helds. Ona	inges to the	Se lielus w	in remove the et		ine spreadsneed
1 The Required	Load Reduction for the total project:	Calculations fr	om RG-348		Pages 3-27 to 3-30	
1. The Required	Eoau Reduction for the total project.		011110-040		r ages 5-27 to 5-50	
	Page 3-29 Equation 3.3: $L_{\rm M}$ =	27.2(A v D)				
	Page 3-29 Equation 5.5. $L_{\rm M}$ =	27.2(A _N X P)				
where:	=	Required TSS	removal result	ing from the propose	d development = 80%	of increased load
wilere.		-			u uevelopment – oo /8	of increased load
				rea for the project		
	P =	Average annua	i precipitation	, inches		
Site Data: D	etermine Required Load Removal Based on the Entire Projec	:t				
one butu. b		Williamson				
	Total project area included in plan * =	28.22	acres			
Pre	development impervious area within the limits of the plan * =	0.00	acres			
Total post-	development impervious area within the limits of the plan * =	11.58	acres			
	Total post-development impervious cover fraction * =	0.41				
	P =	32	inches			
	L _{M TOTAL PROJECT} =	10079	lbs.			
* The values en	tered in these fields should be for the total project area					
Numb	er of drainage basins / outfalls areas leaving the plan area =	10				
2. Drainage Basi	n Parameters (This information should be provided for	each basin):				
		<u>ouon puonji</u>				
	Drainage Basin/Outfall Area No. =	BP-03				
	-					
	Total drainage basin/outfall area =	0.81	acres			
	lopment impervious area within drainage basin/outfall area =	0.00	acres			
	lopment impervious area within drainage basin/outfall area =	0.08	acres			
Post-develop	ment impervious fraction within drainage basin/outfall area =	0.10				
	L _{M THIS BASIN} =	70	lbs.			

BY PASS - BP-02

EXISTI exas Commission on Environment	NG BATCH D	ETENTIC	JN PON	ID - BDP-A (I	,			
SS Removal Calculations 04-20-2009				Project Name: Date Prepared:		sula		
dditional information is provided for c	ells with a red triand	le in the up	per right c			cell.		
ext shown in blue indicate location of instru haracters shown in red are data entry	ictions in the Technic fields.	al Guidance	Manual - RO	G-348.				
haracters shown in black (Bold) are ca						n the spreadsheet.		
The Required Load Reduction for the total pr	o <u>ject:</u> e 3-29 Equation 3.3: L _M =	Calculations f	rom RG-348		Pages 3-27 to 3-30			
where:			removal resu	Ilting from the propose	d development = 80%	6 of increased load		
		Net increase i Average annu		area for the project n, inches				
Site Data: Determine Required Load Removal I		ct Williamson	•					
Total projec Predevelopment impervious area withi Total post-development impervious area withi		0.00	acres acres acres					
Total post-development im		0.41	inches					
	L _{M TOTAL PROJECT} =		lbs.					
The values entered in these fields should be Number of drainage basins / outfalls are			•					$\mathbf{}$
Transor or drainage basins / outidits afe	ייסמאווא מוכ אומון מופּא = מי יסמאווא מוכ							
Drainage Basin Parameters (This information								
Total dra	Basin/Outfall Area No. = iinage basin/outfall area =	39.35	acres	34.92 acres from the appre + 4.43 acres from	oved Parkside Peninsula Se n Parkside Peninsula Phase			vhaťs below.
Predevelopment impervious area within dra Post-development impervious area within dra Post-development impervious fraction within dra	inage basin/outfall area =	17.03	acres acres		ved Parkside Peninsula Seo n Parkside Peninsula Phase			111 before you d
	L _{M THIS} BASIN =		lbs.				WEST	5
Indicate the proposed BMP Code for this basi	Proposed BMP =		tion				5508 HIGHWAY 290 WEST SUITE 150	TX 78735 6696 COM 16384 10194101
Calculate Maximum TSS Load Removed (L _R)	Removal efficiency =	91	percent	e.			5508 HIGH	
RG-348 Page	e 3-33 Equation 3.7: L _R =	BMP efficien	cy) x P x (A _l :	x 34.6 + A _P x 0.54)			SC 22	<pre></pre>
where:	A ₁ =	Impervious are	ea proposed i	a in the BMP catchmein n the BMP catchment	area			e l
			_	the BMP catchment a is catchment area by t				
	A _C =		acres					
	A _P =	22.32	acres					
Calculate Fraction of Annual Runoff to Treat								
	Desired L _{M THIS BASIN} =		lbs.				4	ATE OF TEL
Calculate Capture Volume required by the B			fall area.	Calculations from RG	-348	Pages 3-34 to 3-36	· · · · · · · · · · · · · · · · · · ·	
	Rainfall Depth =	2.60	inches				CHR	ISTINE N. CAMPBELL
	ment Runoff Coefficient = Water Quality Volume =		cubic feet					S/ONAL ENG
		Calculations f	rom RG-348	Pages 3-36 to 3-37			an	08/30/2
	e area draining to BMP = s cover draining to BMP =		acres acres					m
0	s fraction of off-site area = ff-site Runoff Coefficient = Water Quality Volume =	0.00	Cubic feet					
	Storage for Sediment =						N	2 7 7 7 0 E 7 7
Total Capture Volume (required water qu	ality volume(s) x 1.20) = 1/2 WQV =		cubic feet				L	
								, ¹ ¹ ¹
				BY PASS -	BP-04		し て い し し し い に の	. Ξ - Σ
Parkside Peninsula ect Name: Phase 3	Texas Commissio			y	Projec	Parkside Penins t Name: Phase 3		
Prepared: 9/17/2024 Place the cursor over the cell.	Additional informatic	on is provided f	or cells with a	a red triangle in the up		epared: 9/17/2024 ce the cursor over the		
ove the equations used in the spreadsheet.	Text shown in blue indi Characters shown in	cate location of i I red are data e	instructions in t ntry fields.	the Technical Guidance I	Manual - RG-348.	e the equations used in		(ш⊃ .
Pages 3-27 to 3-30	1. The Required Load Re			Calculations f		Pages 3-27 to 3-30		
he proposed development = 80% of increased load	where:			tion 3.3: $L_M = 27.2(A_N \times P)$	removal resulting from the	proposed development = 80%	≥ □) 凹の C 1 0 7 F
e project			⊾ _M ⊤	A _N = Net increase i	n impervious area for the p al precipitation, inches			
	Site Data: Determine	Total p	project area includ	County = Williamson ded in plan * = 28.22	acres			
	Total post-developm	ent impervious area ent impervious area otal post-developme	within the limits	of the plan * = 11.58 ver fraction * = 0.41	acres acres			L L L
				OTAL PROJECT = 10079	lbs.		DESIG	INED BY:C
	* The values entered in	these fields should						N BY: <u>M</u>
			3.				CHEC	KED BY: <u>51</u>
		eters (This inform	ation should be	provided for each basin):				
		Drain	age Basin/Outfa	III Area No. = BP-04			APPR	OVED BY:
	2. Drainage Basin Param	Drain To mpervious area with mpervious area with	age Basin/Outfa tal drainage basin nin drainage basin nin drainage basin	II Area No. = BP-04 /outfall area = 0.66 /outfall area = 0.00 /outfall area = 0.26				



SECTION A-A


VERT. SCALE: 1 HORZ. SCALE: 7	-	
		GRADE - CEN GRADE - CEN

SECTION B-B

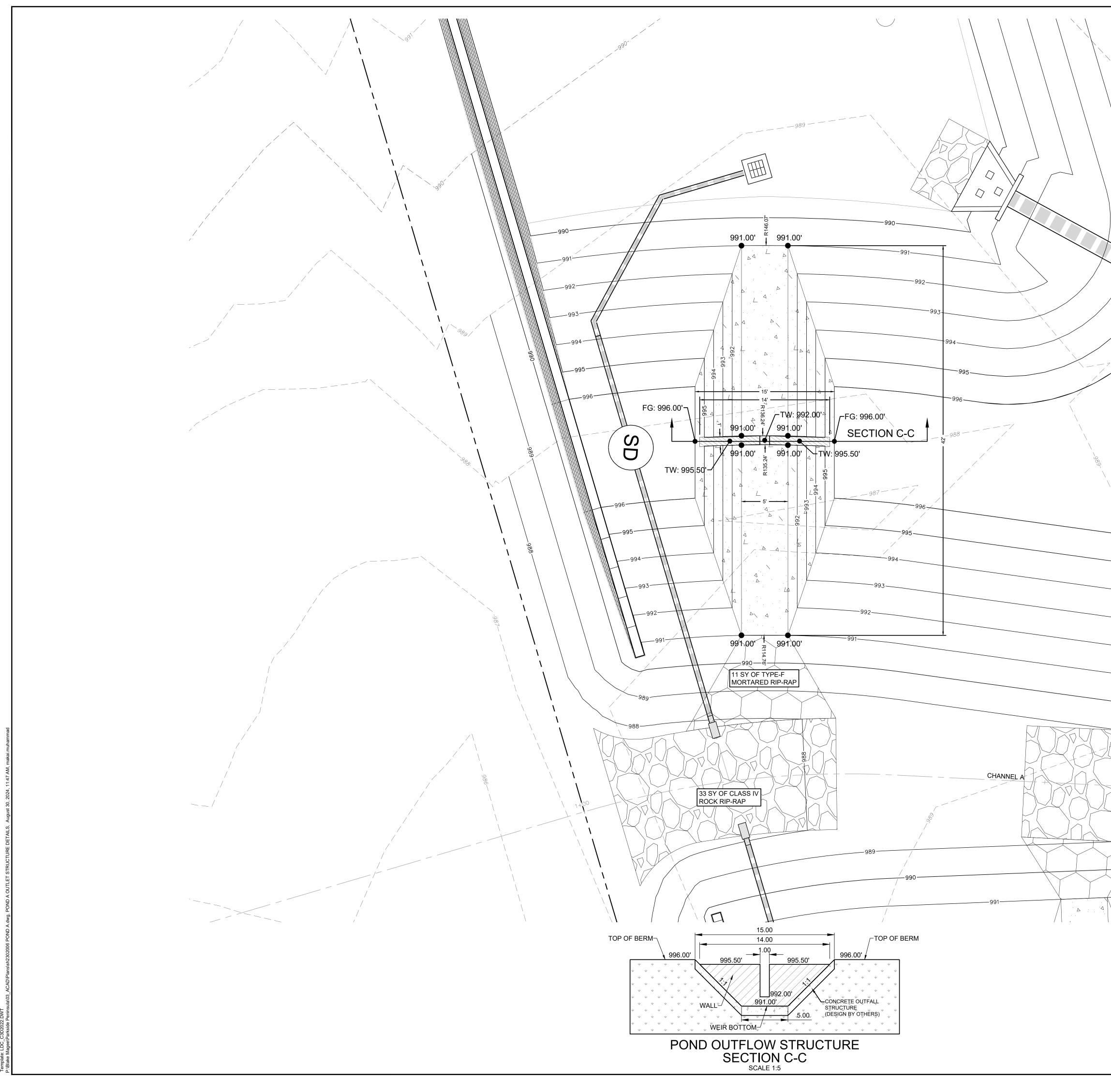
┌ा 4' NTERLINE ∎⊥ o NTERLINE VERT. SCALE

POND A OUTFLOW

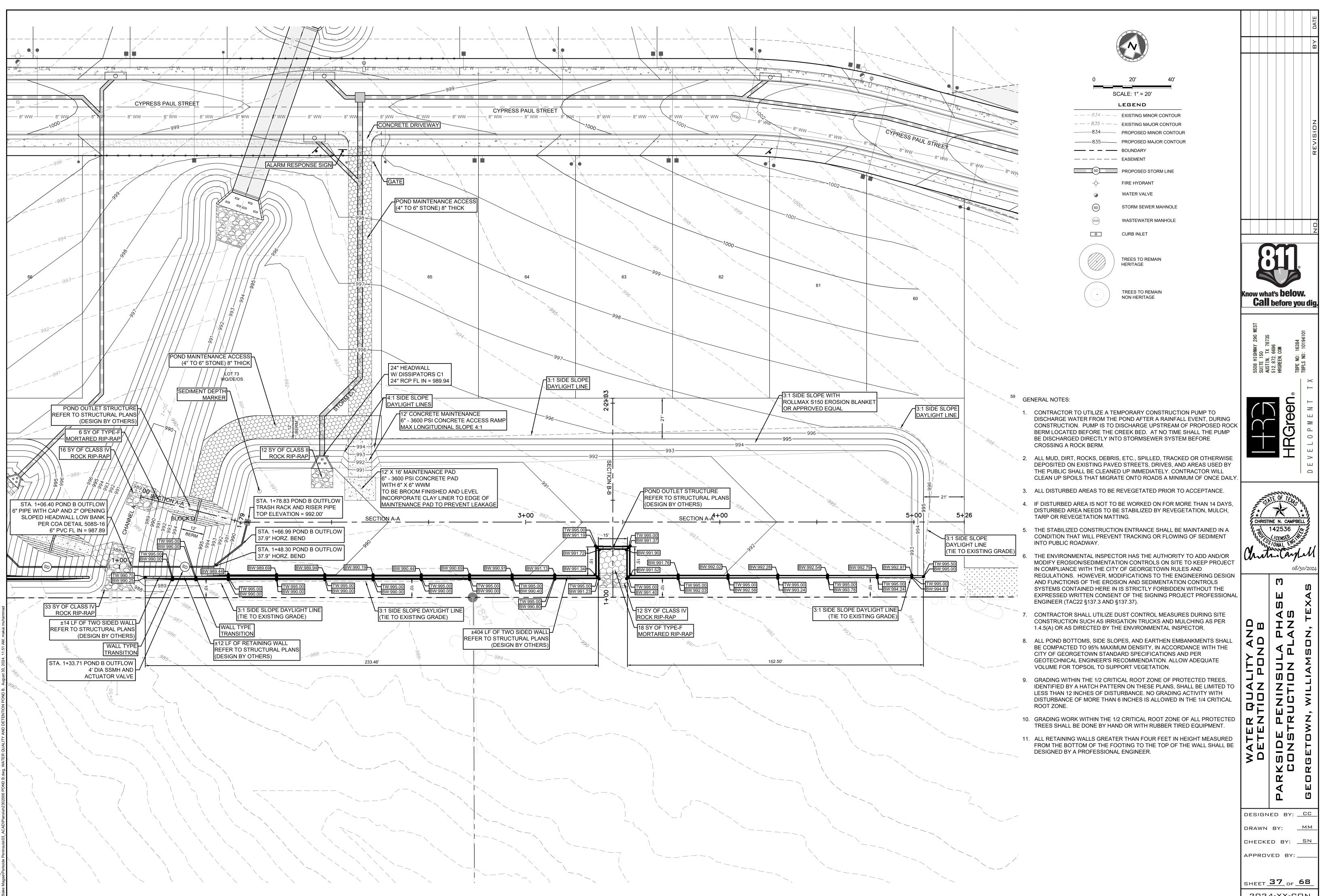
Pond A Volume												
	Are	ea	Volu	me	Cumulativ	Cumulative Volume						
Elevation	SF	ас	cf	ac*ft	cf	ac*ft	Comments					
989.25	0	0.00	0	0.00	0	0.00						
990	3,429	0.08	1,286	0.03	1,286	0.03	Water Quality					
991	9,299	0.21	6,364	0.15	7,650	0.18	Volume					
992	15,819	0.36	12,559	0.29	20,209	0.46						
993	19,428	0.45	17,624	0.40	37,832	0.87						
994	20,812	0.48	20,120	0.46	57,952	1.33	Detention					
995	22,226	0.51	21,519	0.49	79,471	1.82						
996	23,671	0.54	22,949	0.53	102,420	2.35	Freeboard					

OUTFLOW STRUCTURE Elevation Flow ft cfs

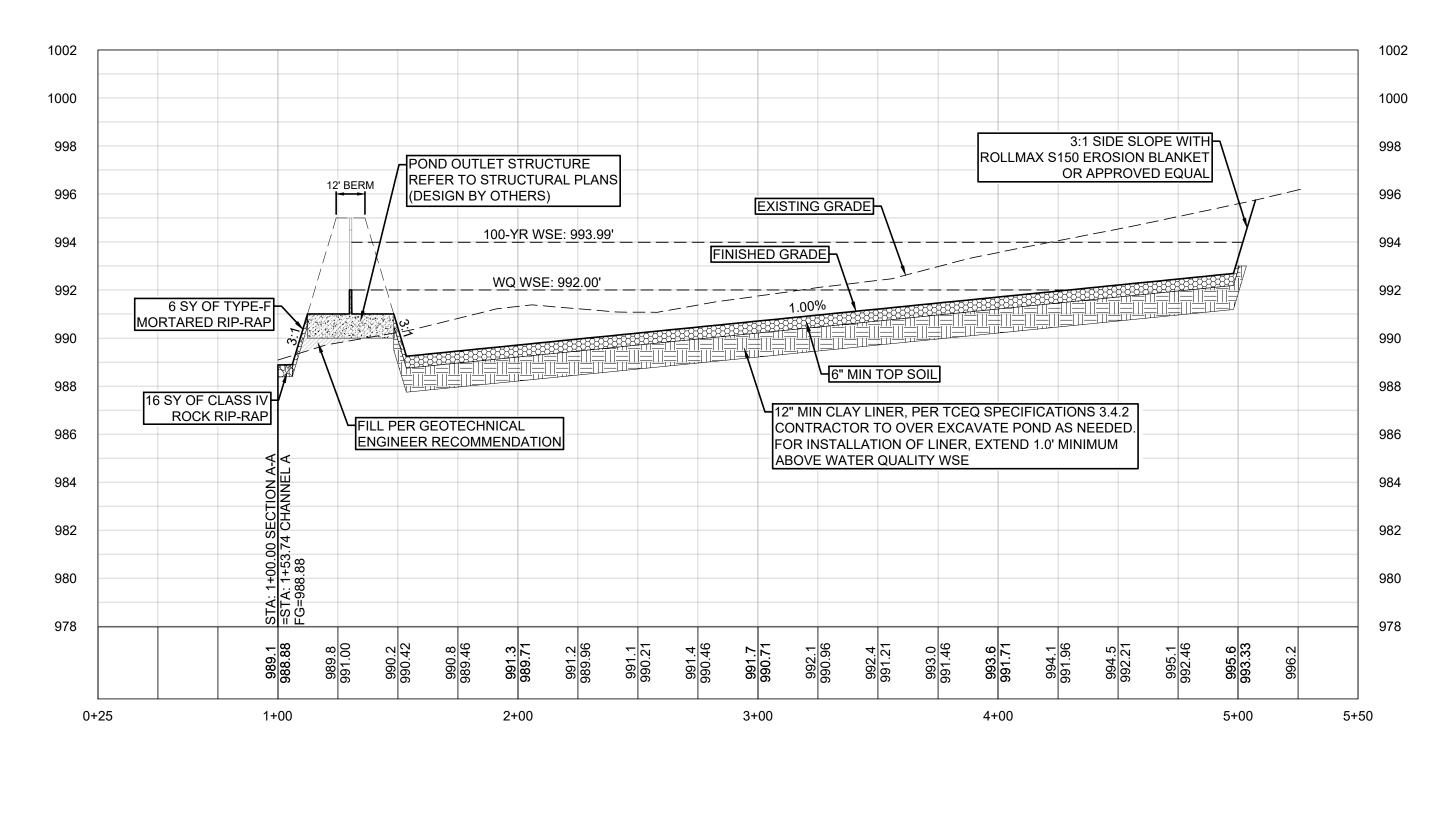
IL	CIS
992.00	0.0
992.50	0.9
993.00	2.6
993.50	4.8
994.00	7.4
994.50	10.3
995.00	13.5
995.50	17.0
996.00	29.1


DRAWDOWN CALCUATIONS FOR A ROUND ORIFICE PROJECT NAME: PARKSIDE PENINSULA PHASE 3 - POND A

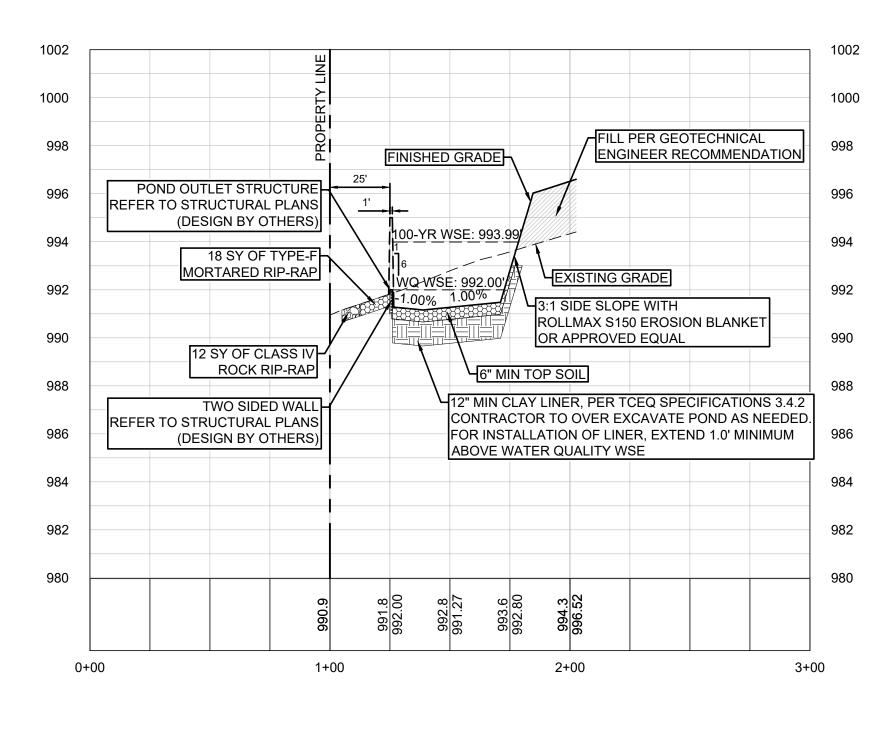
Pipe Dia	meter =	6.00	IN		W.Q.'	20,209	CF	
Orifice Dia		2.00	IN		WQ E	992.00	MSL	
Outflow Ori	fice Elev =	987.90	MSL		Pond Botto	om Elev =	989.25	MSL
Drainin	g time	34.00	HR		Initial H	ead =	4.10	FT
TIME	HEAD	OUTFLOW	VOL.	dV	Total dV	н	dH	W.E.
HRS	FT	CFS	CF	CF	CF	FT	FT	MSL
0.00	4.10	0.21	20,209	766	766	0.10	4.00	992.0
1.00	4.00	0.21	19,443	756	1,522	0.10	3.89	992.0
2.00	3.89	0.21	18,687	746	2,268	0.10	3.79	991.7
3.00	3.79	0.20	17,941	736	3,004	0.10	3.69	991.6
4.00	3.69	0.20	17,941	730	3,731	0.10	3.59	991.5
5.00	3.59	0.20	16,478	717	4,447	0.10	3.49	991.4
6.00	3.49	0.20	15,762	707	5,154	0.10	3.40	991.3
7.00	3.40	0.19	15,055	697	5,852	0.09	3.30	991.3
8.00	3.30	0.19	14,357	687	6,539	0.09	3.21	991.20
9.00	3.30	0.19	13,670	678	7,217	0.09	3.12	991.20
10.00	3.12	0.19	12,992	668	7,884	0.09	3.12	991.02
11.00	3.03	0.19	12,395	658	8,542	0.09	2.94	991.02
12.00	2.94	0.18	12,323	648	9,190	0.09	2.85	990.84
13.00	2.94	0.18	11,019	638	9,829	0.09	2.76	990.7
14.00	2.85	0.18	10,380	629	10,457	0.09	2.68	990.6
15.00	2.78	0.17	9,752	619	11,076	0.09	2.66	990.5
16.00	2.68	0.17	9,732	609	11,685	0.08	2.59	990.4
17.00	2.59	0.17	8,524	599	12,284	0.08	2.51	990.4
18.00	2.31	0.17	7,925	589	12,284	0.08	2.43	990.4
19.00	2.45	0.16	7,925	579	13,453	0.08	2.35	990.2
20.00	2.35	0.16	6,756	579	13,455	0.08	2.27	990.2
20.00	2.27	0.16	6,186	560	14,023	0.08	2.19	990.0
22.00	2.19	0.18	5,627	550	14,582	0.08	2.12	990.0
22.00	2.12	0.15	5,076	540	15,673	0.07	1.97	990.02
23.00	1.97	0.15	4,536	530	16,203	0.07	1.97	989.8
24.00 25.00	1.97	0.13	4,006	521	16,724	0.07	1.80	989.80
26.00	1.90	0.14	3,485	521	17,235	0.07	1.02	989.72
27.00	1.75	0.14	2,974	501	17,735	0.07	1.69	989.6
28.00	1.75	0.14	2,974	491	18,227	0.07	1.69	989.5
28.00	1.69	0.14	1,982	491	18,708	0.07	1.55	989.5
30.00	1.62	0.13	1,982	401	19,179	0.07	1.55	989.4
31.00	1.55	0.13	1,030	471	19,179	0.06	1.49	989.39
32.00	1.49	0.13	568	462	20,093	0.06	1.43	989.3
33.00	1.43	0.13	116	452	20,093	0.06	1.37	989.3
34.00	1.37	0.12	0	0	20,209	0.00	1.35	989.2
35.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
36.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
37.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
38.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
39.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
40.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
40.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
41.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
	1.35				20,209			989.2
43.00		0.00	0	0		0.00	1.35	
44.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
45.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
46.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2
47.00	1.35	0.00	0	0	20,209	0.00	1.35	989.25
48.00	1.35	0.00	0	0	20,209	0.00	1.35	989.2


$$Q = C_w L H^{1.5}$$

- Q weir flow rate (cfs)
- C_w Weir Coefficient BROAD: 2.60
- *L horizontal length of weir crest (ft)* BROAD: 1 FT
- H head above weir crest elevation (ft)



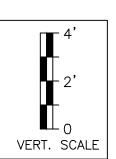
$0 \qquad 5' \qquad 10'$ $SCALE: 1" = 5'$	BY DATE
	REVISION
	Know what's below. Call before you dig.
	FOR MERICALFOR MERICALFOR MERICALFOR MERICALFOR MERICALFOR MERICALFOR MERICALFOR MENTLOPMENTLOPMENTTANAFOR MERICALFOR MENTFOR MERICALFOR MENTFOR MERICALFOR MENTFOR
	CHRISTINE N. CAMPBELL
	142536 142558 142558 142558 142558 14258
	POND A OUTLET STRUCTURE DETAILS PARKSIDE PENINSULA PH CONSTRUCTION PLAN GEORGETOWN, WILLIAMSON,
	DESIGNED BY: <u>CC</u> DRAWN BY: <u>MM</u> CHECKED BY: <u>SN</u> APPROVED BY: <u>SHEET 36 OF 68</u> 2024-XX-CON


2024-XX-CON

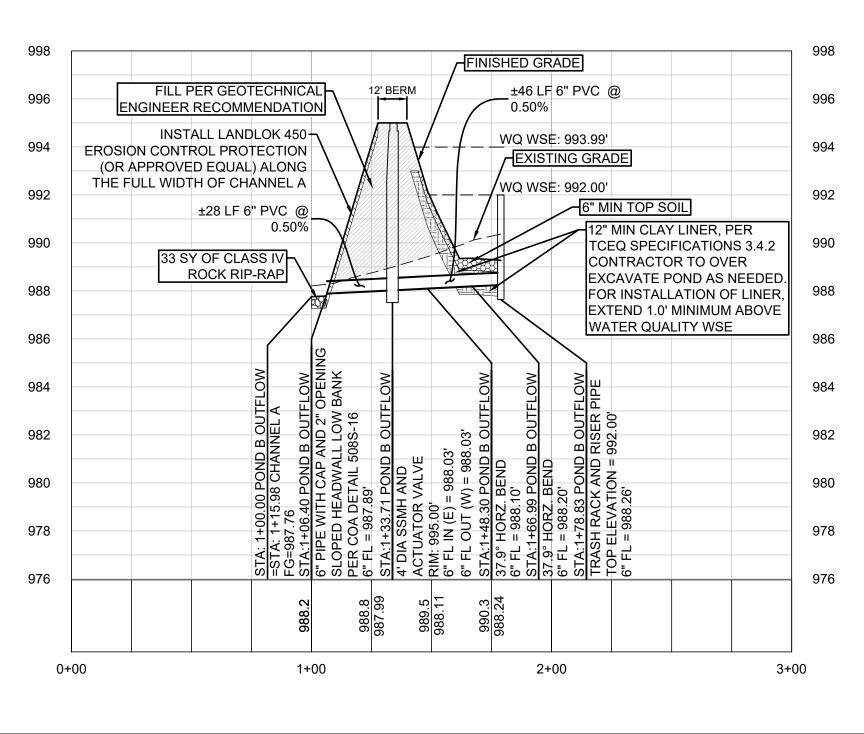
SECTION A-A

VERT. SCALE: 1" = 4' HORZ. SCALE: 1" = 40' EXISTING GRADE - CENTERLINE FINISHED GRADE - CENTERLINE

SECTION B-B

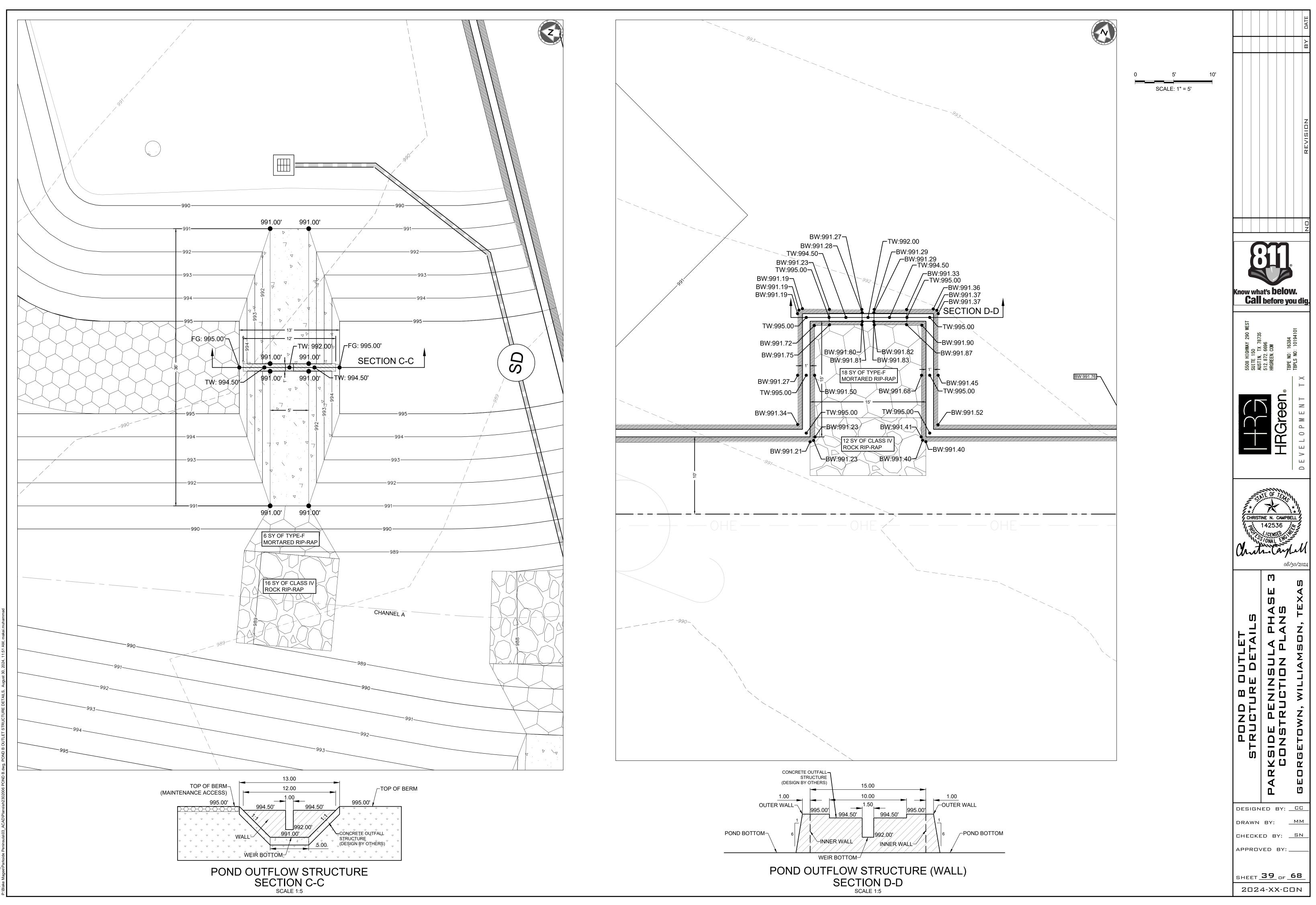

rio style: LandDev Gooal.cto Mahates LDC_C3D22022. Vatake Manace/Darkide Pen.DVT

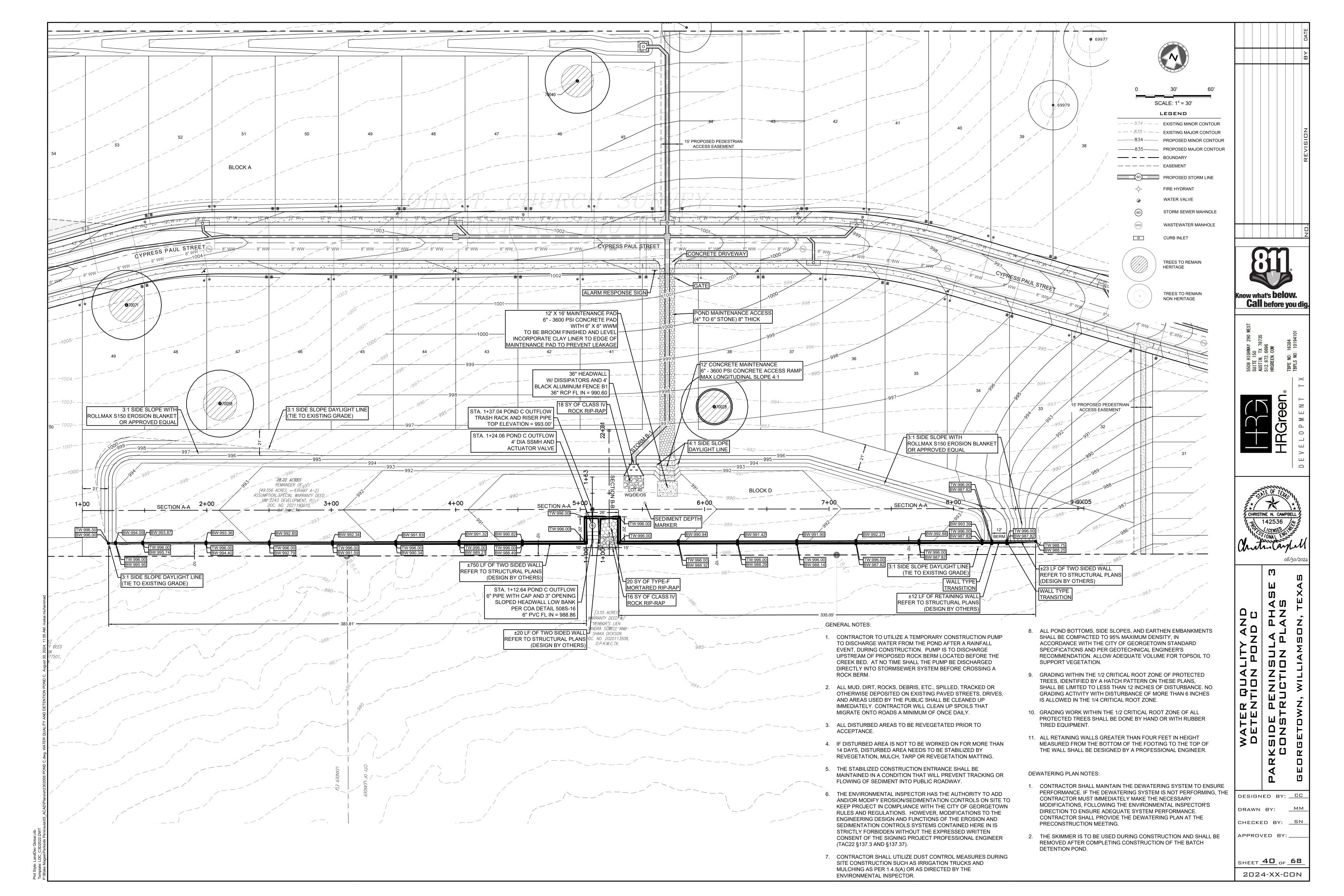
OUTFLOW STRUCTURE				
Elevation	Flow			
ft	cfs			
992.00	0			
992.50	0.9			
993.00	2.6			
993.50	4.8			
994.00	7.4			
994.50	10.3			
995.00	21.8			

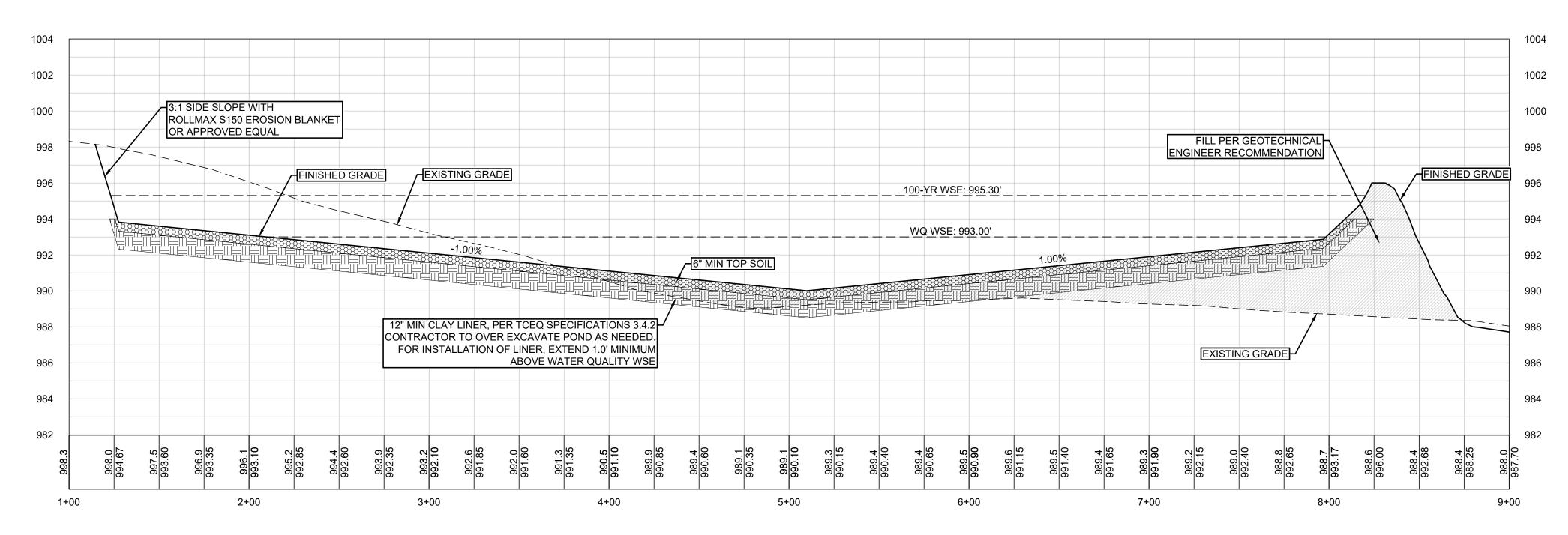

 $Q = C_w L H^{1.5}$

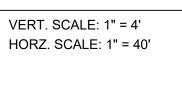
- Q weir flow rate (cfs)
- C_w Weir Coefficient BROAD: 2.60
- *L horizontal length of weir crest (ft)* BROAD: 1 FT
- *H* head above weir crest elevation (ft)

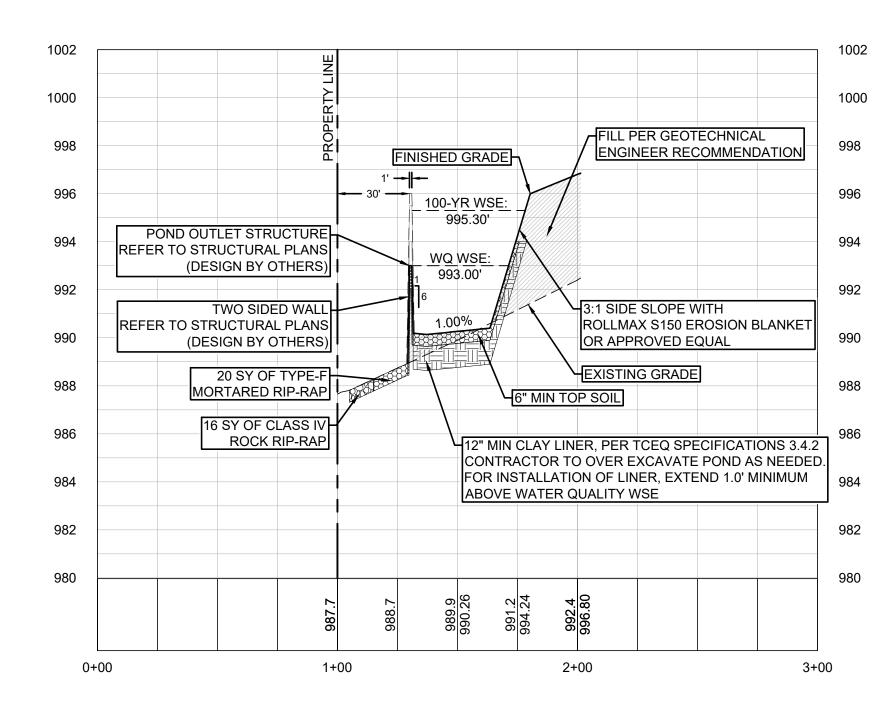
Pipe Dia	meter =	6.00	IN		W.Q.	V. =	20,681	CF
Orifice Di		2.00	IN		WQ E		992.00	MSL
Outflow Orifice Elev =		987.89 34.00	MSL HR			Pond Bottom Elev =		MSL
					Initial Head =		4.11	
ТІМЕ	HEAD	OUTFLOW	VOL.	dV	Total dV	н	dH	W.E.
HRS	FT	CFS	CF	CF	CF	FT	FT	MSL
0.00	4.11	0.21	20,681	767	767	0.10	4.01	992.0
1.00	4.01	0.21	19,914	757	1,524	0.10	3.91	991.9
2.00	3.91	0.21	19,157	748	2,271	0.10	3.81	991.8
3.00	3.81	0.20	18,410	738	3,009	0.10	3.71	991.7
4.00	3.71	0.20	17,672	728	3,738	0.10	3.61	991.6
5.00	3.61	0.20	16,943	719	4,456	0.10	3.52	991.5
6.00	3.52	0.20	16,225	709	5,166	0.09	3.42	991.4
7.00	3.42	0.19	15,515	700	5,865	0.09	3.33	991.3
8.00	3.33	0.19	14,816	690	6,555	0.09	3.24	991.2
9.00	3.24	0.19	14,126	681	7,236	0.09	3.15	991.1
10.00	3.15	0.19	13,445	671	7,907	0.09	3.06	991.0
11.00	3.06	0.18	12,774	661	8,568	0.09	2.97	990.9
12.00	2.97	0.18	12,113	652	9,220	0.09	2.88	990.8
13.00	2.88	0.18	11,461	642	9,862	0.09	2.80	990.7
14.00	2.80	0.18	10,819	633	10,495	0.08	2.71	990.6
15.00	2.71	0.17	10,186	623	11,118	0.08	2.63	990.6
16.00	2.63	0.17	9,563	613	11,731	0.08	2.55	990.5
17.00	2.55	0.17	8,950	604	12,335	0.08	2.47	990.4
18.00	2.47	0.17	8,346	594	12,930	0.08	2.39	990.3
19.00	2.39	0.16	7,751	585	13,514	0.08	2.31	990.2
20.00	2.31	0.16	7,167	575	14,090	0.08	2.24	990.2
21.00	2.24	0.16	6,591	566	14,655	0.08	2.16	990.1
22.00	2.16	0.15	6,026	556	15,211	0.07	2.09	990.0
23.00	2.09	0.15	5,470	546	15,757	0.07	2.01	989.9
24.00	2.01	0.15	4,924	537	16,294	0.07	1.94	989.9
25.00	1.94	0.15	4,387	527	16,821	0.07	1.87	989.8
26.00	1.87	0.14	3,860	518	17,339	0.07	1.80	989.7
27.00	1.80	0.14	3,342	508	17,847	0.07	1.74	989.6
28.00	1.74	0.14	2,834	498	18,345	0.07	1.67	989.6
29.00	1.67	0.14	2,336	489	18,834	0.06	1.61	989.5
30.00	1.61	0.13	1,847	479	19,313	0.06	1.54	989.5
31.00	1.54	0.13	1,368	470	19,783	0.06	1.48	989.4
32.00	1.48	0.13	898	460	20,243	0.06	1.42	989.3
33.00	1.42	0.13	438	450	20,681	0.06	1.36	989.3
34.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
35.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
36.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
37.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
38.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
39.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
40.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
41.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
42.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
43.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
44.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
45.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
46.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
47.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2
48.00	1.36	0.00	0	0	20,681	0.00	1.36	989.2

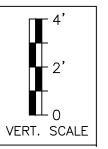

Pond B Volume							
Elovation	Area		Volume		Cumulativ	e Volume	Comments
Elevation	SF	ac	cf	ac*ft	cf	ac*ft	
989.25	0	0.00					Water Quality Volume
990	3,523	0.08	1,321	0.03	1,321	0.03	
991	9,569	0.22	6,546	0.15	7,867	0.18	
992	16,058	0.37	12,814	0.29	20,681	0.47	
993	22,516	0.52	19,287	0.44	39,968	0.92	Detention
994	24,015	0.55	23,266	0.53	63,233	1.45	
995	25,550	0.59	24,783	0.57	88,016	2.02	Freeboard


OUTFLOW STRUCTURE				
Elevation	Flow			
ft	cfs			
992.00	0			
992.50	1.4			
993.00	3.9			
993.50	7.2			
994.00	11.0			
994.50	15.4			
995.00	28.1			

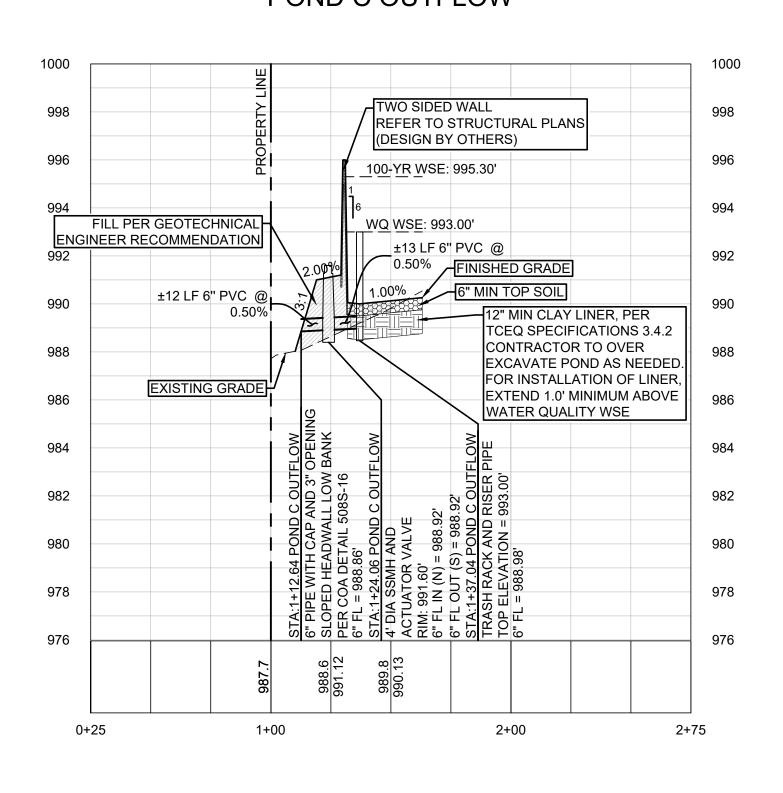

Q =	C_{w}	$LH^{1.5}$


- Q weir flow rate (cfs)
- C_w Weir Coefficient SHARP: 3.00
- *L horizontal length of weir crest (ft)* SHARP: 1.5 FT
- *H head above weir crest elevation (ft)*




EXISTING GRADE - CENTERLINE

SECTION B-B



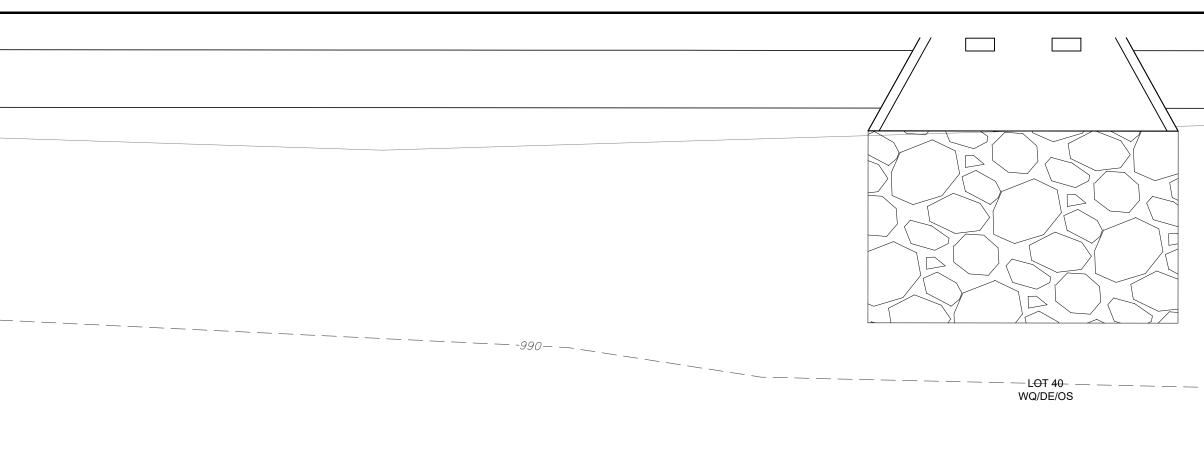
Template: LDC_C3D2020.000 Template: LDC_C3D2022.000 P:\Blake Magee(Partiside Peninsula\03_ACAD\Plans\sh2302006 POND C.dwg. POND C SECTIONS. August 30. 2024. 11:55 AM. makai.muhammad

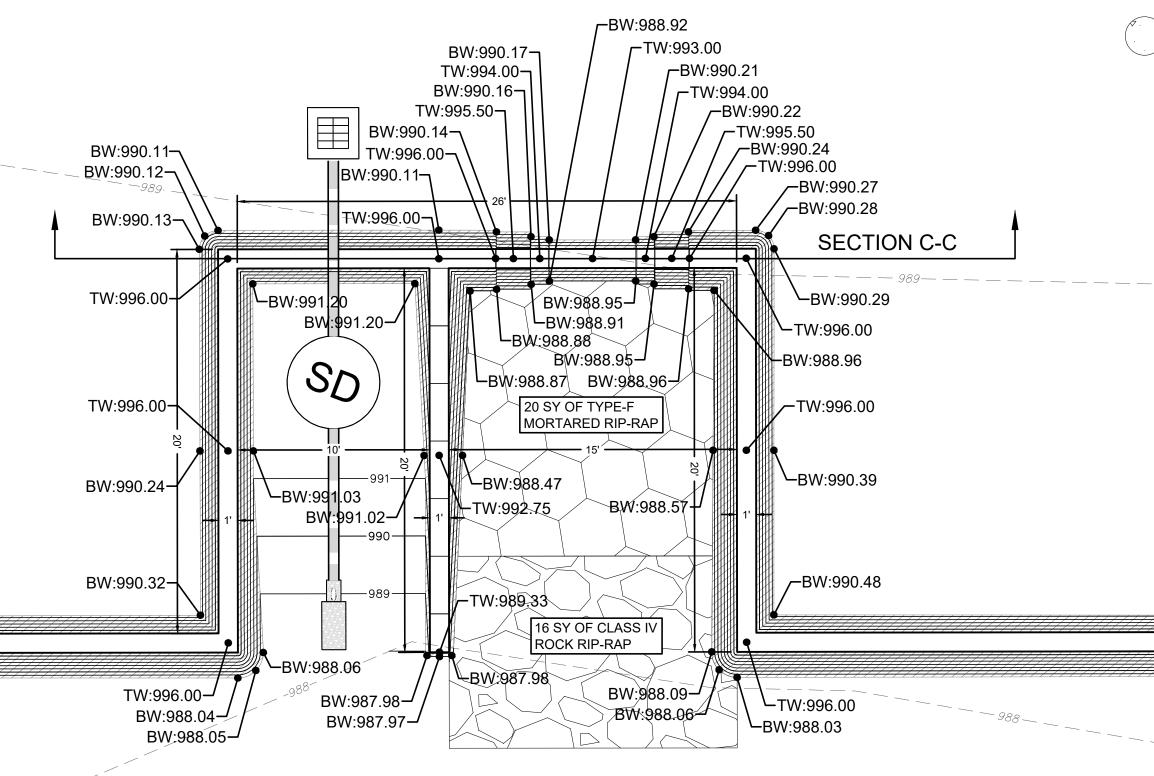
Pond C Volume							
Flowetien	Are	Area		Volume		Cumulative Volume	
Elevation	SF	ac	cf	ac*ft	cf	ac*ft	
990	0	0.00					
991	8,581	0.20	4,291	0.10	4,291	0.10	Water Quality
992	20,382	0.47	14,482	0.33	18,772	0.43	Volume
993	31,641	0.73	26,012	0.60	44,784	1.03	
994	40,169	0.92	35,905	0.82	80,689	1.85	Detention
995	42,866	0.98	41,518	0.95	122,206	2.81	Detention
996	45,359	1.04	44,113	1.01	166,319	3.82	Freeboard

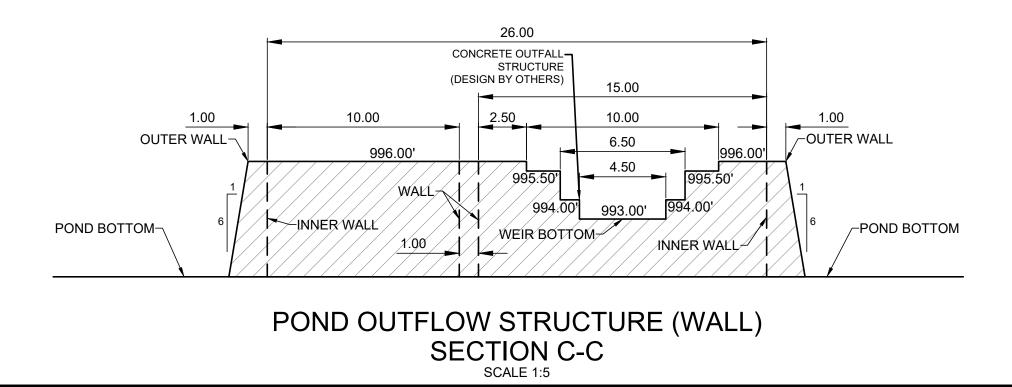
OUTFLOWS	TRUCTU
Elevation	Flow
ft	cfs
993.00	0
993.50	4.8
994.00	13.5
994.50	26.9
995.00	44.2
995.50	64.4
996.00	90.8

DRAWDOWN CALCUATIONS FOR A ROUND ORIFICE PROJECT NAME: PARKSIDE PENINSULA PHASE 3 - POND C

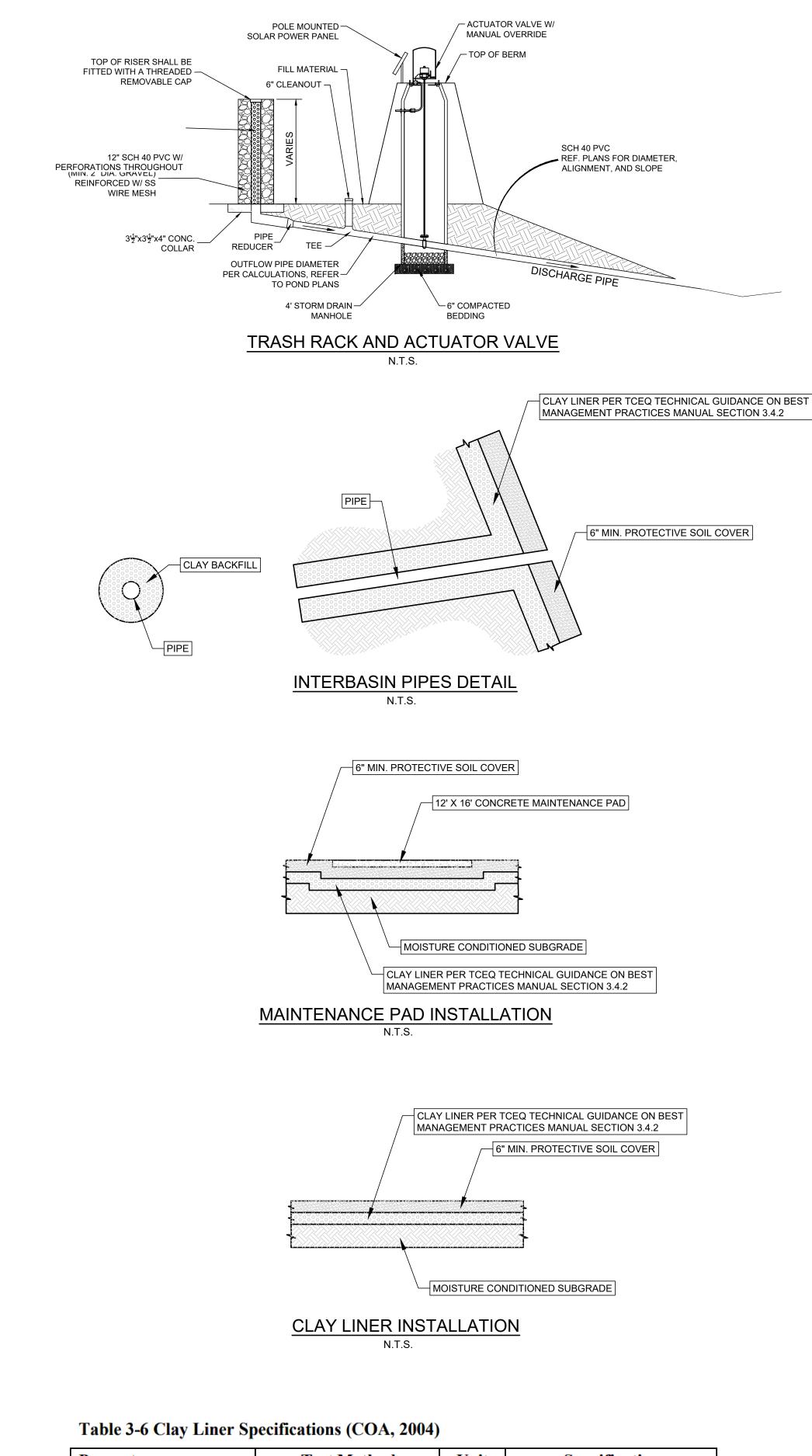
Pipe Dia Orifice Dia Outflow Ori		6.00 3.00 988.86	IN IN MSL		W.Q. WQ E Pond Botto	lev =	44,784 993.00 990.00	CF MS MS
Drainin	g time	34.00	HR		Initial H	lead =	4.14	FT
ТІМЕ	HEAD	OUTFLOW	VOL.	dV	Total dV	н	dH	W.E
HRS	FT	CFS	CF	CF	CF	FT	FT	MSI
0.00	4.14	0.48	44,784	1,731	1,731	0.12	4.02	993.
1.00	4.02	0.40	43,053	1,707	3,438	0.12	3.91	992.
2.00	3.91	0.47	41,346	1,682	5,121	0.11	3.80	992.
3.00	3.80	0.46	39,663	1,658	6,779	0.11	3.69	992.
4.00	3.69	0.45	38,005	1,634	8,412	0.11	3.58	992.
5.00	3.58	0.45	36,372	1,609	10,021	0.11	3.47	992.
6.00	3.47	0.44	34,763	1,585	11,606	0.11	3.36	992.
7.00	3.36	0.43	33,178	1,560	13,166	0.10	3.26	992.
8.00	3.26	0.43	31,618	1,536	14,702	0.10	3.16	992.
9.00	3.16	0.42	30,082	1,511	16,213	0.10	3.05	992.
10.00	3.05	0.41	28,571	1,487	17,700	0.10	2.95	991.
11.00	2.95	0.41	27,084	1,462	19,163	0.10	2.86	991.
12.00	2.86	0.40	25,621	1,438	20,601	0.10	2.76	991.
13.00	2.76	0.39	24,183	1,414	22,015	0.09	2.67	991.
14.00	2.67	0.39	22,769	1,389	23,404	0.09	2.57	991.
15.00	2.57	0.38	21,380	1,365	24,768	0.09	2.48	991.
16.00	2.48	0.37	20,016	1,340	26,108	0.09	2.39	991.
17.00	2.39	0.37	18,676	1,316	27,424	0.09	2.30	991.
18.00	2.30	0.36	17,360	1,291	28,715	0.09	2.22	991.
19.00	2.22	0.35	16,069	1,267	29,982	0.08	2.13	991.
20.00	2.13	0.35	14,802	1,242	31,224	0.08	2.05	990.
21.00	2.05	0.34	13,560	1,218	32,442	0.08	1.97	990.
22.00	1.97	0.33	12,342	1,193	33,635	0.08	1.89	990.
23.00	1.89	0.32	11,149	1,169	34,804	0.08	1.81	990.
24.00	1.81	0.32	9,980	1,144	35,949	0.08	1.73	990.
25.00	1.73	0.31	8,835	1,120	37,068	0.08	1.66	990.
26.00	1.66	0.30	7,716	1,095	38,164	0.07	1.58	990.
27.00	1.58	0.30	6,620	1,071	39,234	0.07	1.51	990.
28.00	1.51	0.29	5,550	1,046	40,280	0.07	1.44	990.
29.00	1.44	0.28	4,504	1,022	41,302	0.07	1.37	990.
30.00	1.37	0.28	3,482	997	42,299	0.07	1.31	990.
31.00	1.31	0.27	2,485	973	43,272	0.07	1.24	990.
32.00	1.24	0.26	1,512	948	44,220	0.06	1.18	990.
33.00	1.18	0.26	564	923	44,784	0.06	1.14	990.
34.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
35.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
36.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
37.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
38.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
39.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
40.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
41.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
42.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
43.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
44.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
45.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
46.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
47.00	1.14	0.00	0	0	44,784	0.00	1.14	990.
48.00	1.14	0.00	0	0	44,784	0.00	1.14	990.

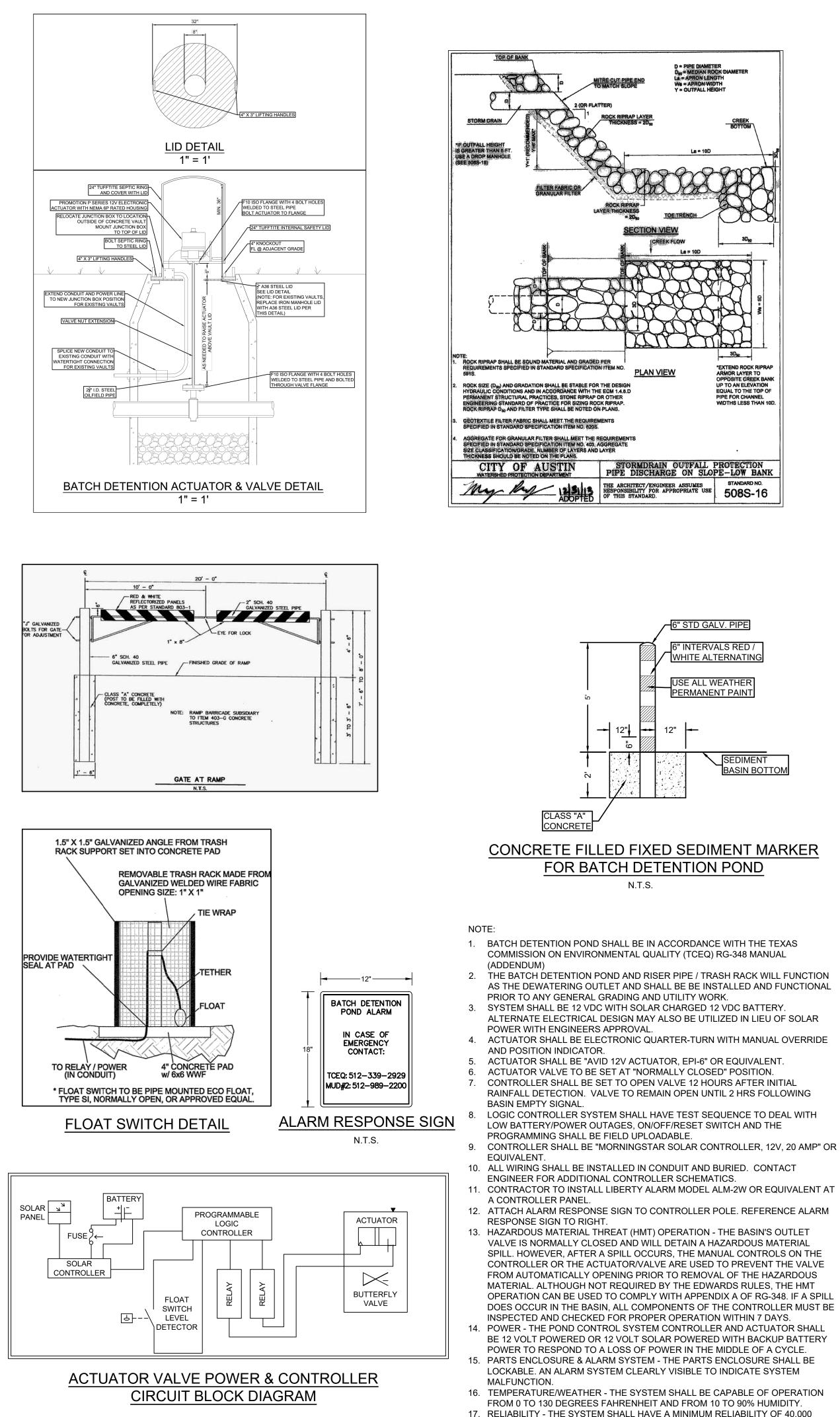

$$Q = C_w L H^{1.5}$$


Q - weir flow rate (cfs)

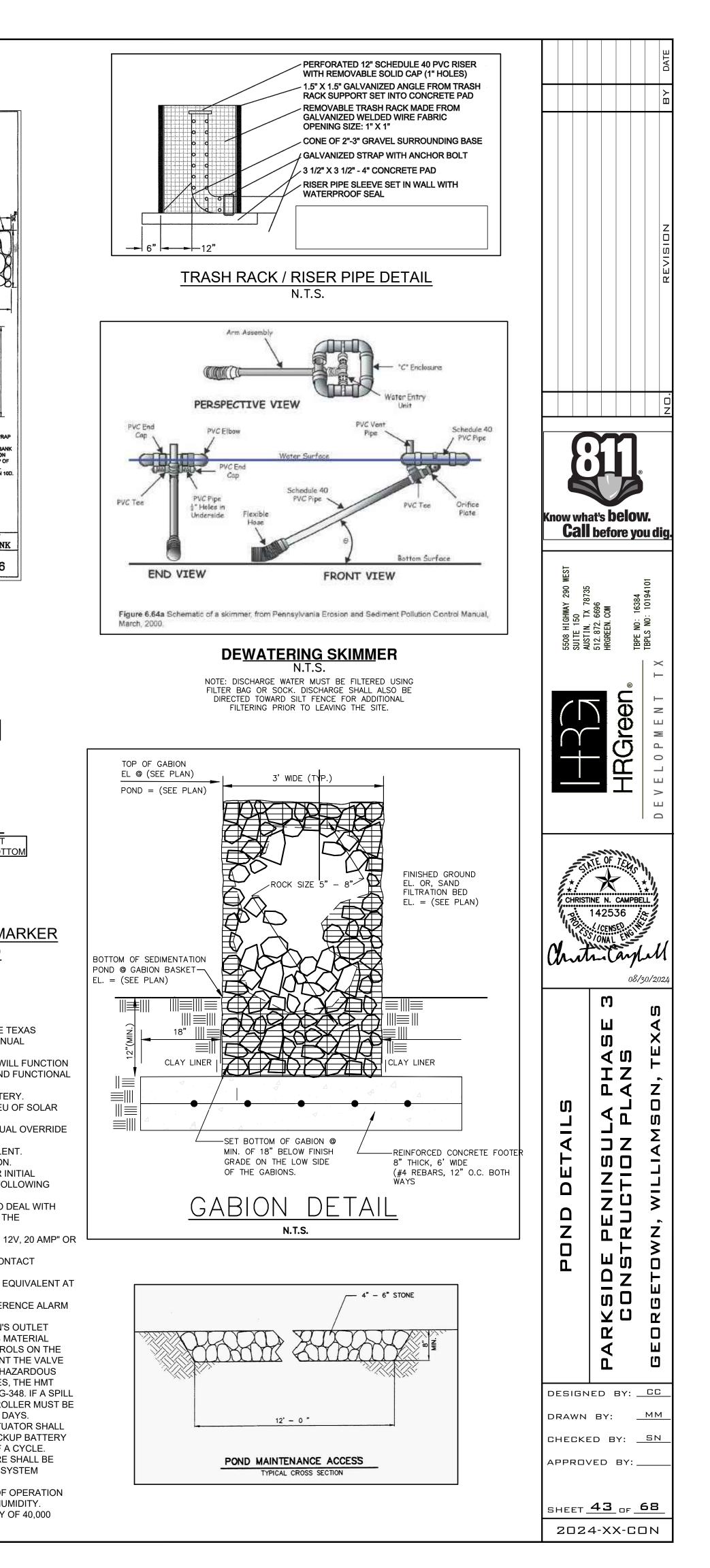

 C_w - Weir Coefficient SHARP: 3.00

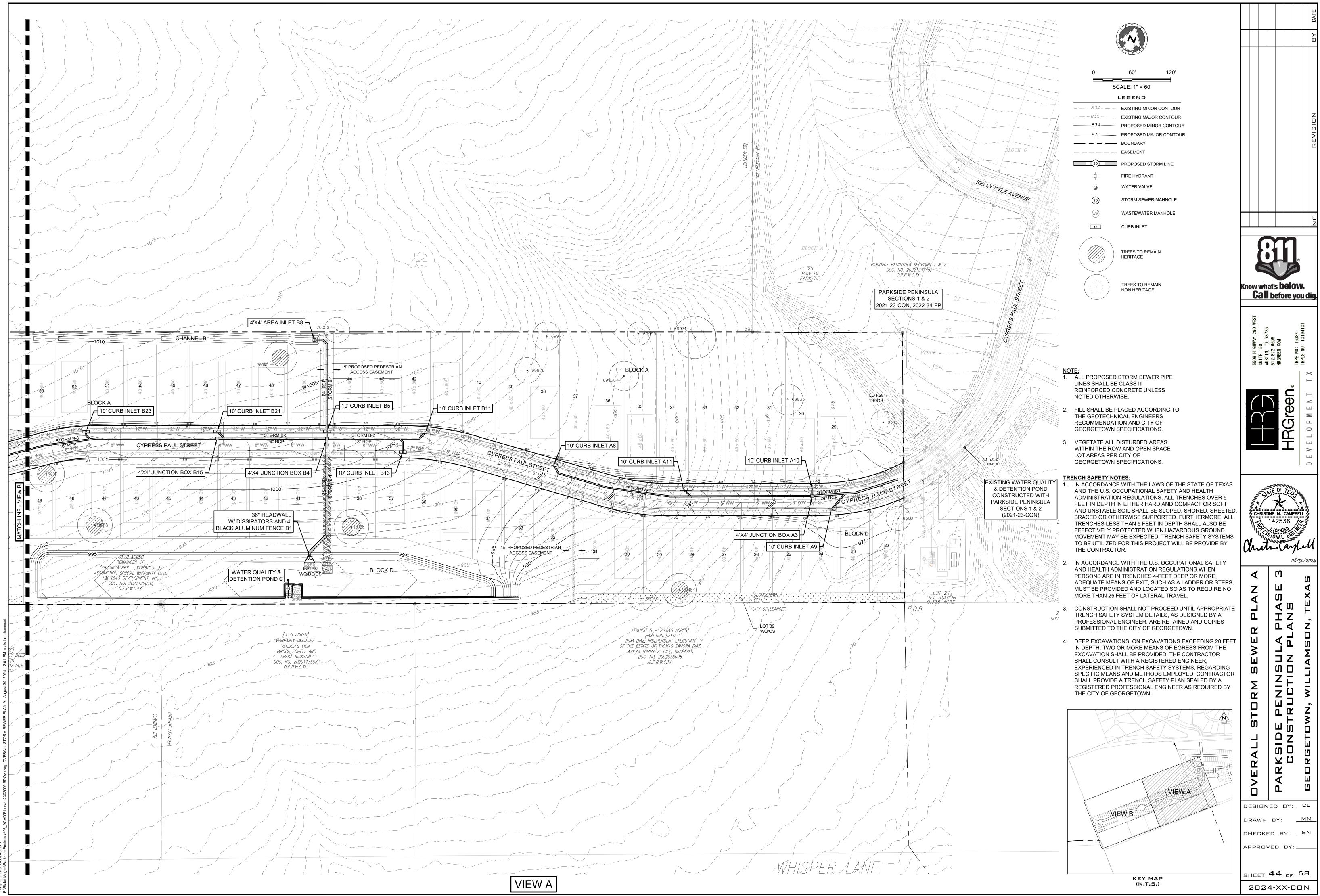
- *L horizontal length of weir crest (ft)* SHARP: 4.5 FT SHARP: 6.5 FT
- *H* head above weir crest elevation (ft)

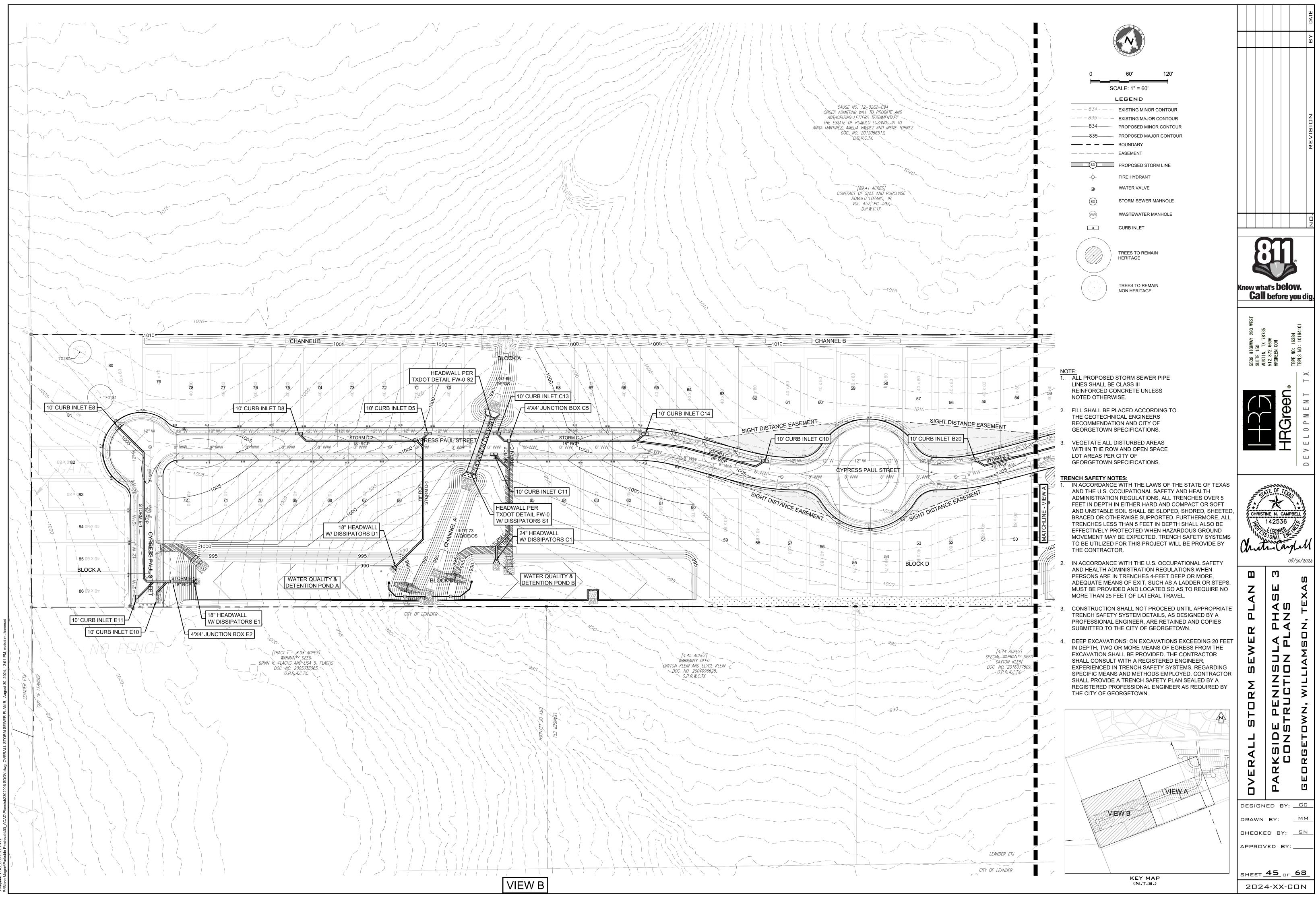


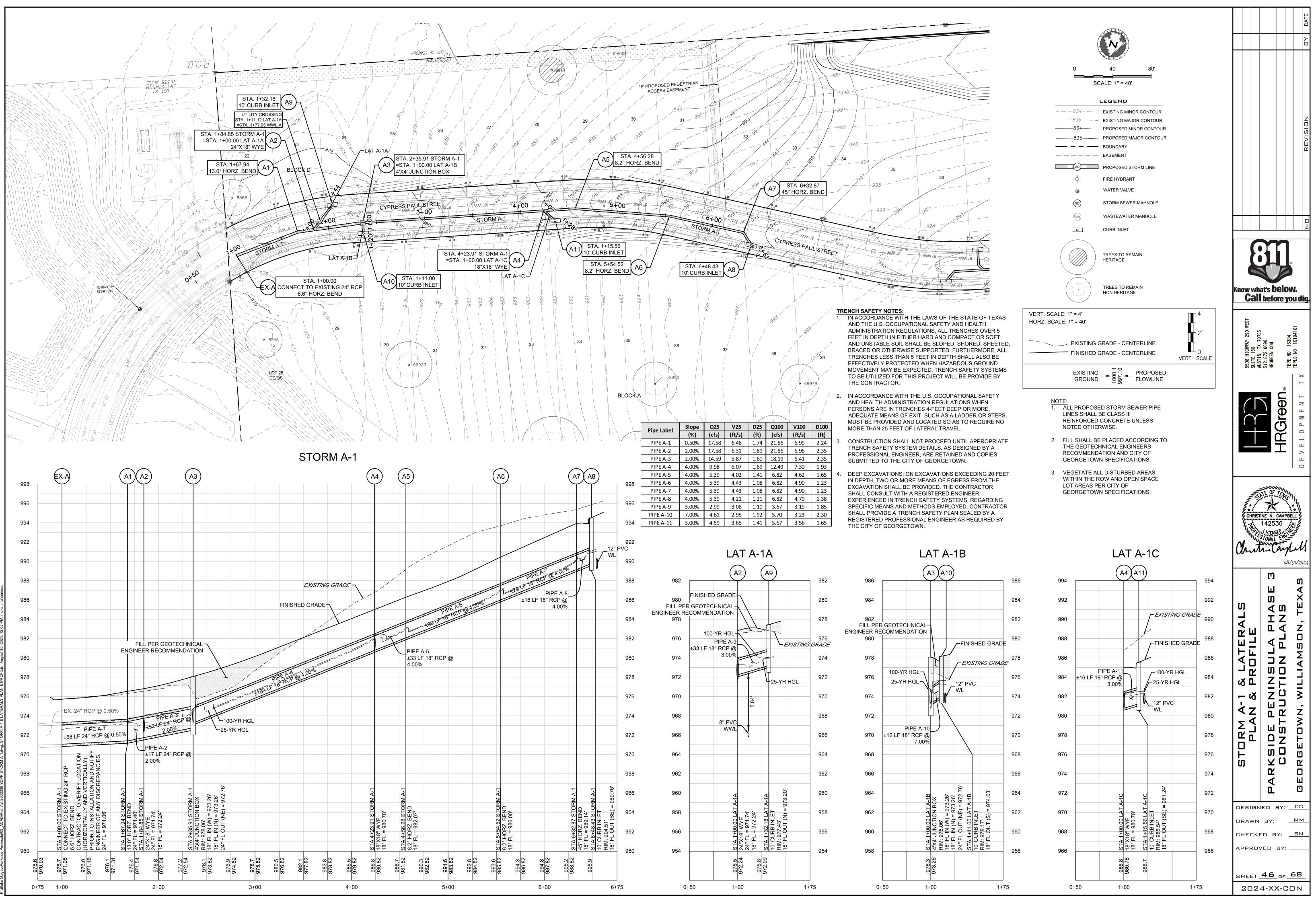

_ 987 — -

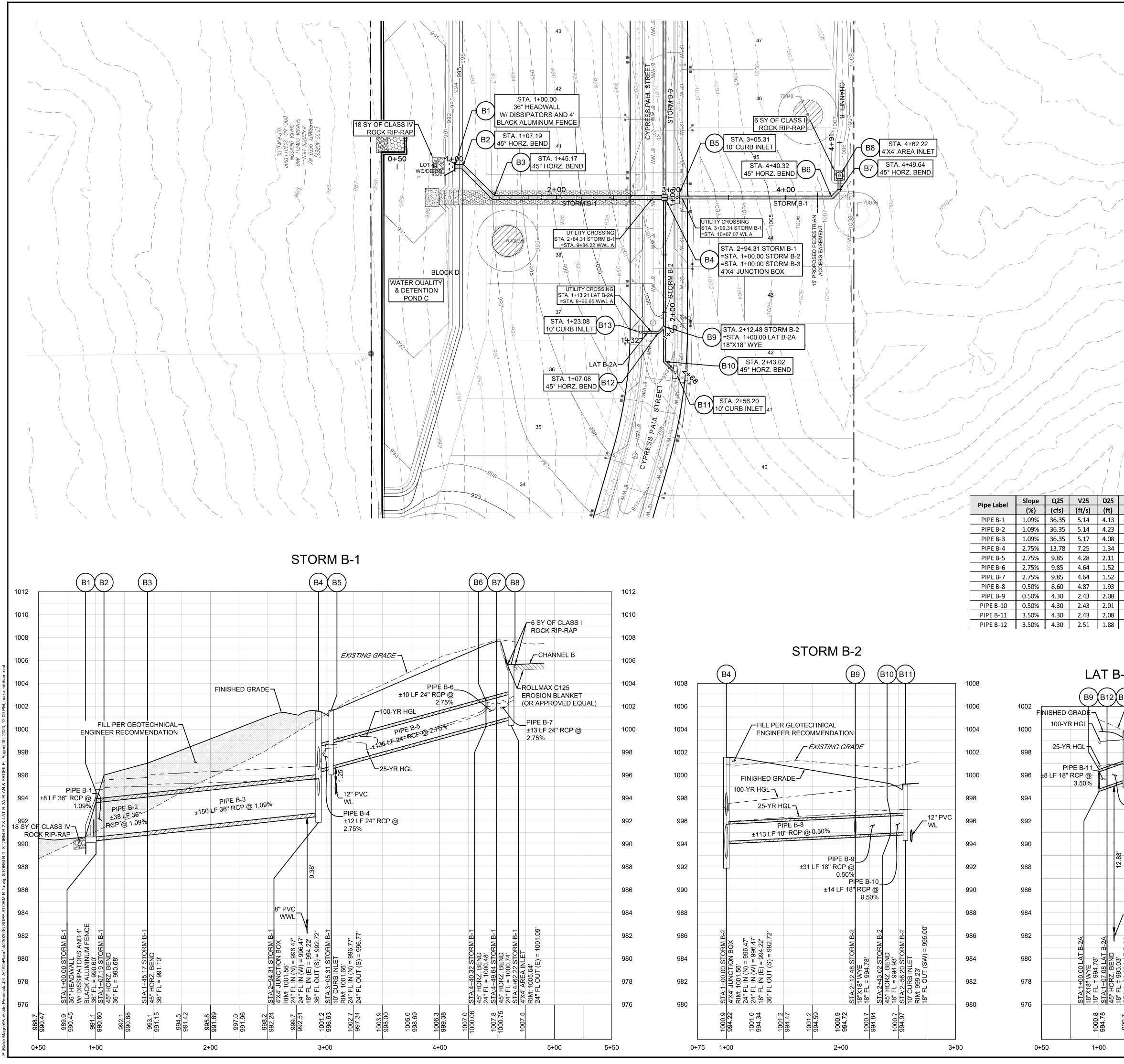
	REVISION BY DATE
WODEROS	The second secon
SECTION C-C BW:990.29 BW:990.29 TW:996.00 BW:988.96 TW:988.96 TW:996.00 BW:980.39 BW:990.48 CLASS IV BW:990.48	DEVELOPMEN 5508 HIGHWAY 290 WEST 5508 HIGHWAY 290 WEST 5508 HIGHWAY 290 WEST 5512.872.6696 HIGGREEN.COM BPE NOT TX
BW:988.09 BW:988.06 BW:988.03	CHRISTINE N. CAMPBELL 142536 142536 CHRISTINE N. CAMPBELL 142536 CHRISTINE N. CAMPBELL 08/30/2024
20 20 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	POND C OUTLET STRUCTURE DETAILS PARKSIDE PENINSULA PHASE 3 CONSTRUCTION PLANS GEORGETOWN, WILLIAMSON, TEXAS
Be (WALL)	DESIGNED BY: <u>CC</u> DRAWN BY: <u>MM</u> CHECKED BY: <u>SN</u> APPROVED BY: <u>68</u> 2024-XX-CON

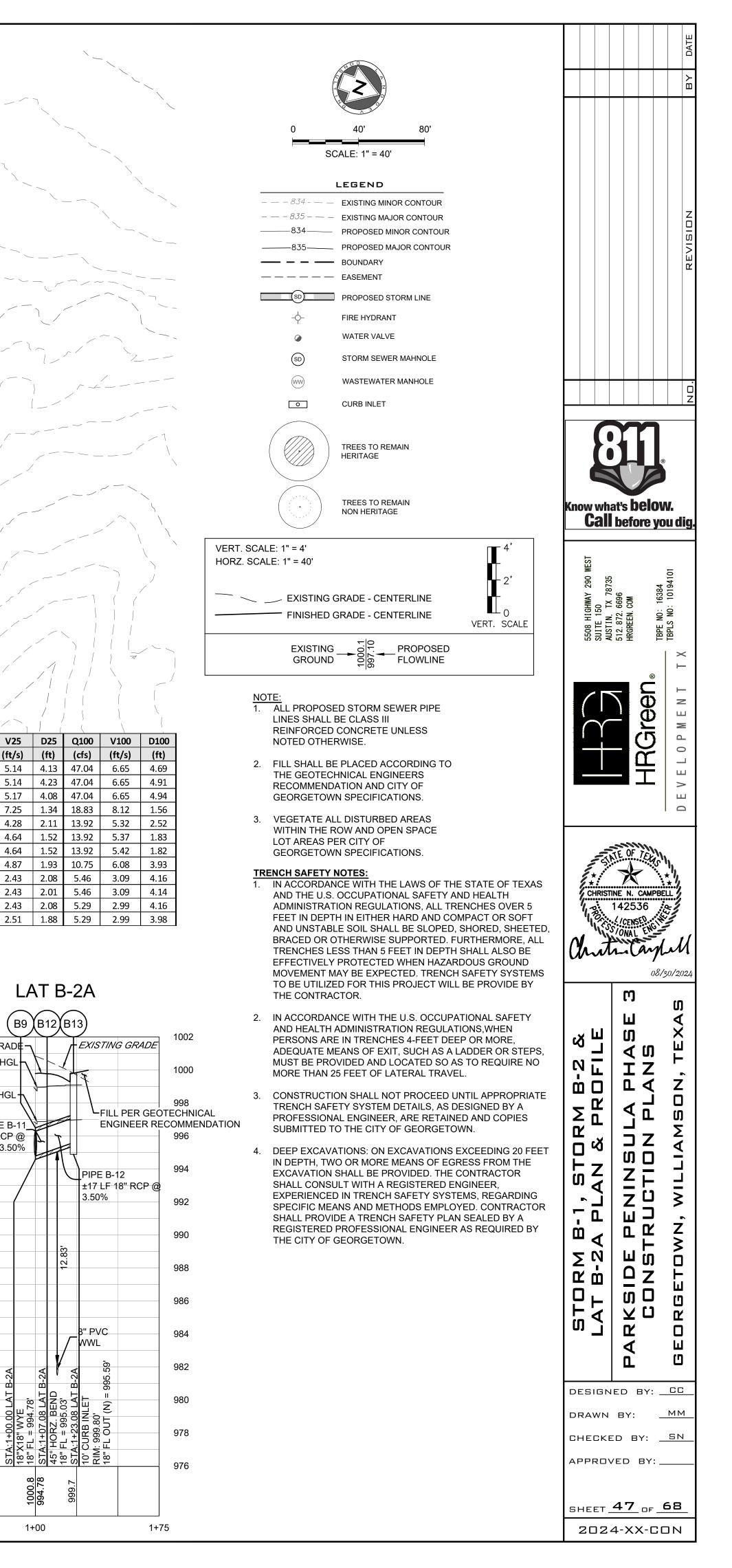


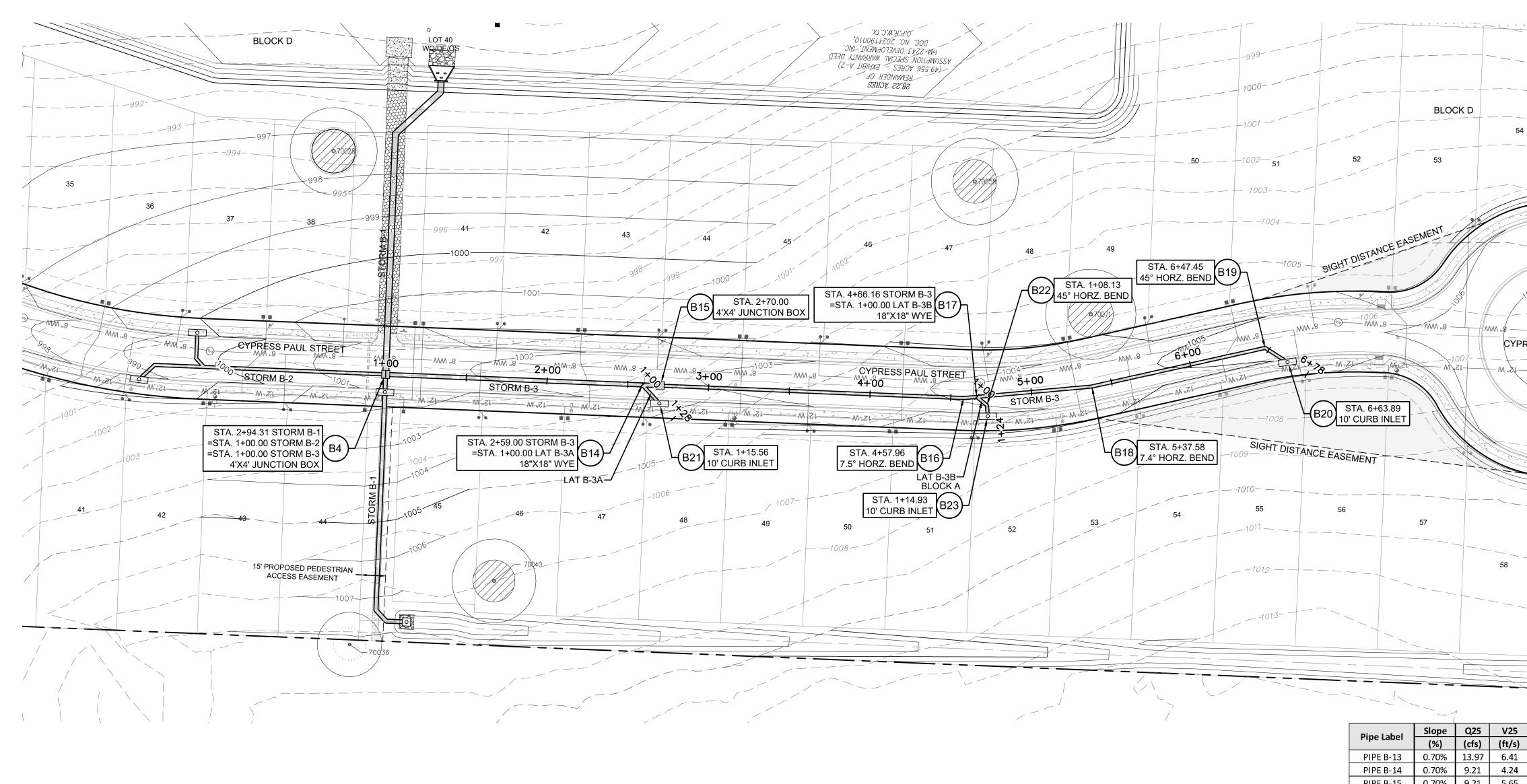

Property	Test Method	Unit	Specification
Permeability	ASTM D-2434	cm/sec	1 x 10 ⁻⁶
Plasticity Index of Clay	ASTM D-423 & D-424	%	Not less than 15
Liquid Limit of Clay	ASTM D-2216	%	Not less than 30
Clay Particles Passing	ASTM D-422	%	Not less than 30
Clay Compaction	ASTM D-2216	%	95% of Standard Proctor
			Density

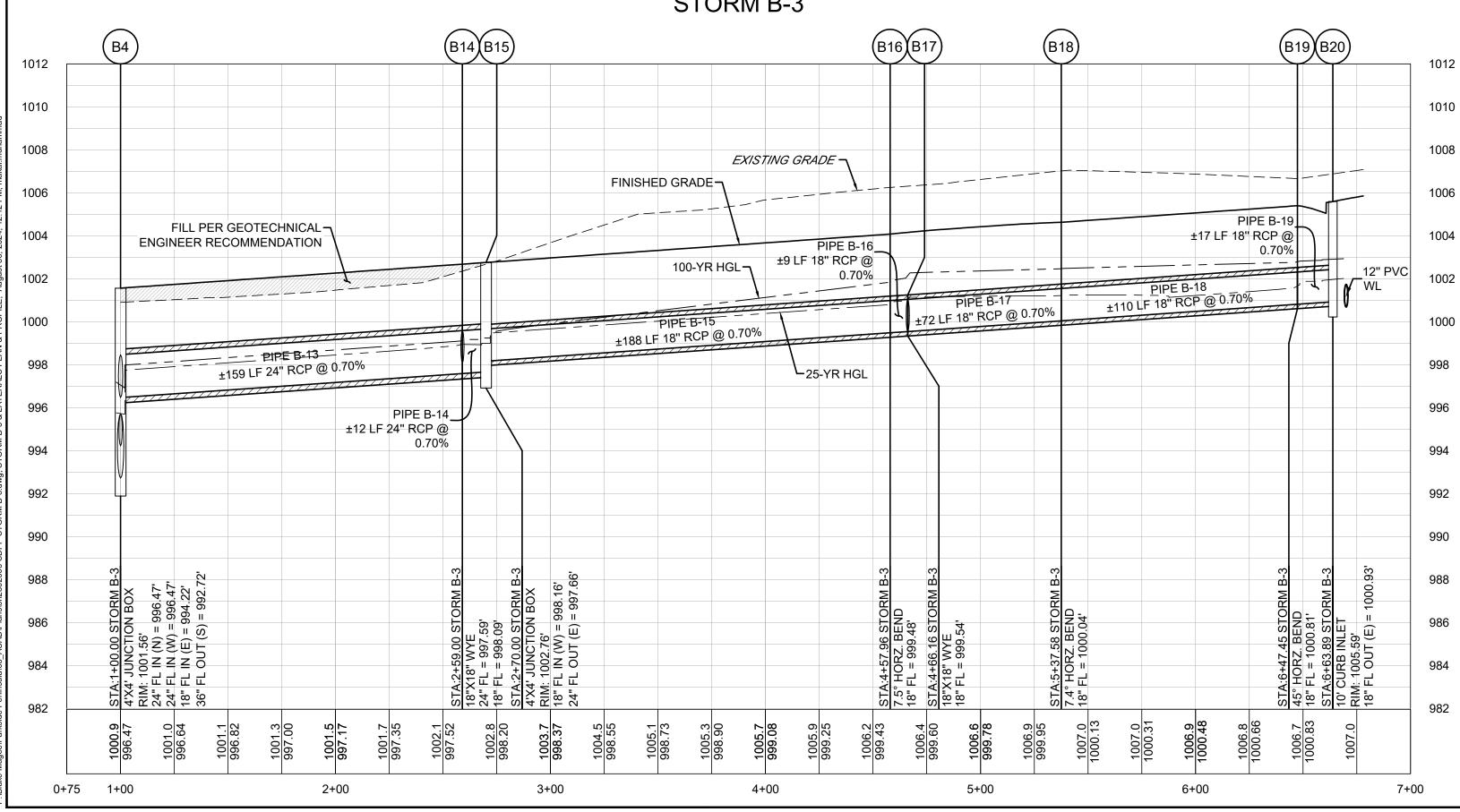

CLAY LINER SPECIFICATIONS PER TCEQ SPECIFICATIONS 3.4.2



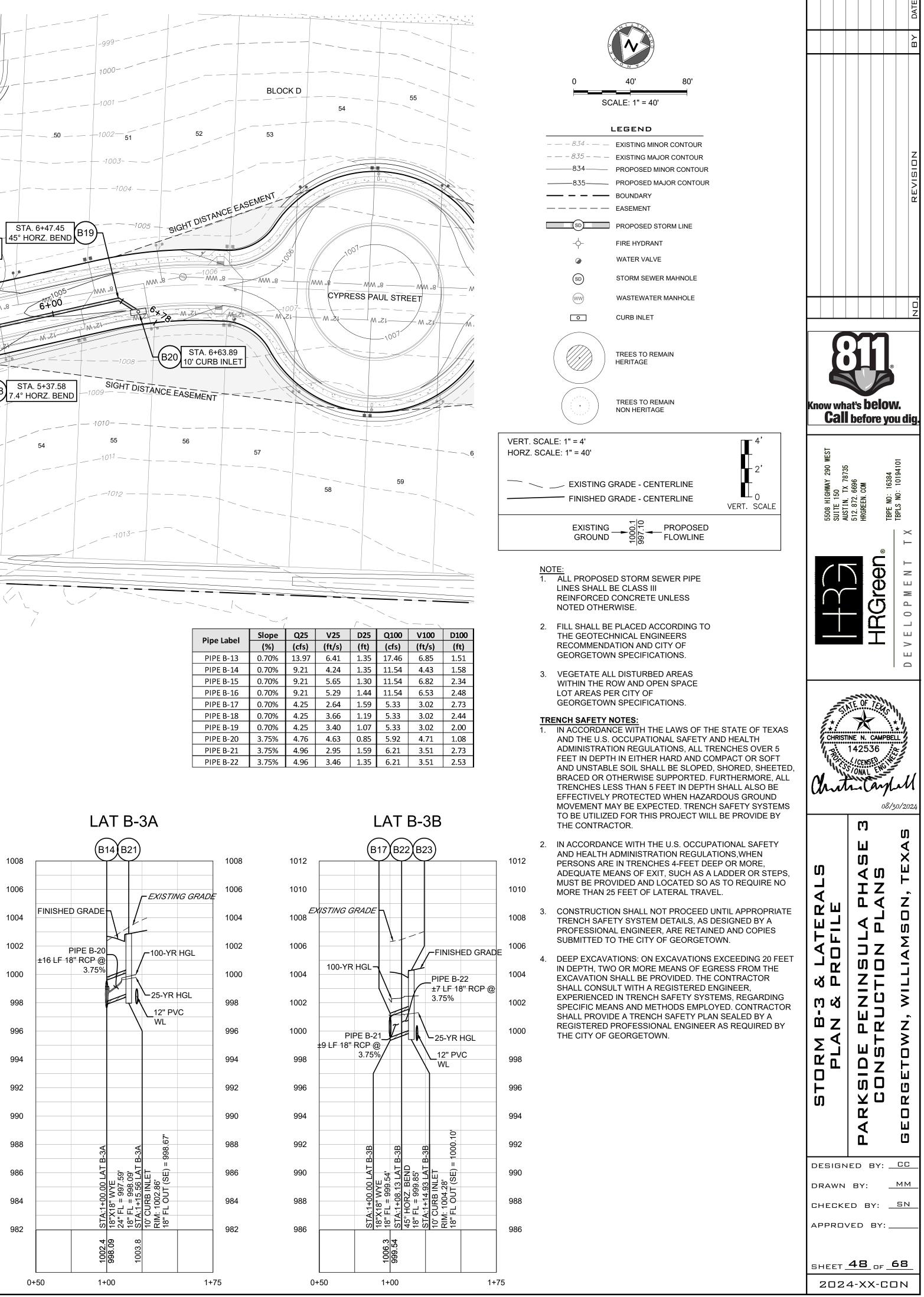

FROM 0 TO 130 DEGREES FAHRENHEIT AND FROM 10 TO 90% HUMIDITY. 17. RELIABILITY - THE SYSTEM SHALL HAVE A MINIMUM RELIABILITY OF 40,000 HOURS (4.6 YEARS).

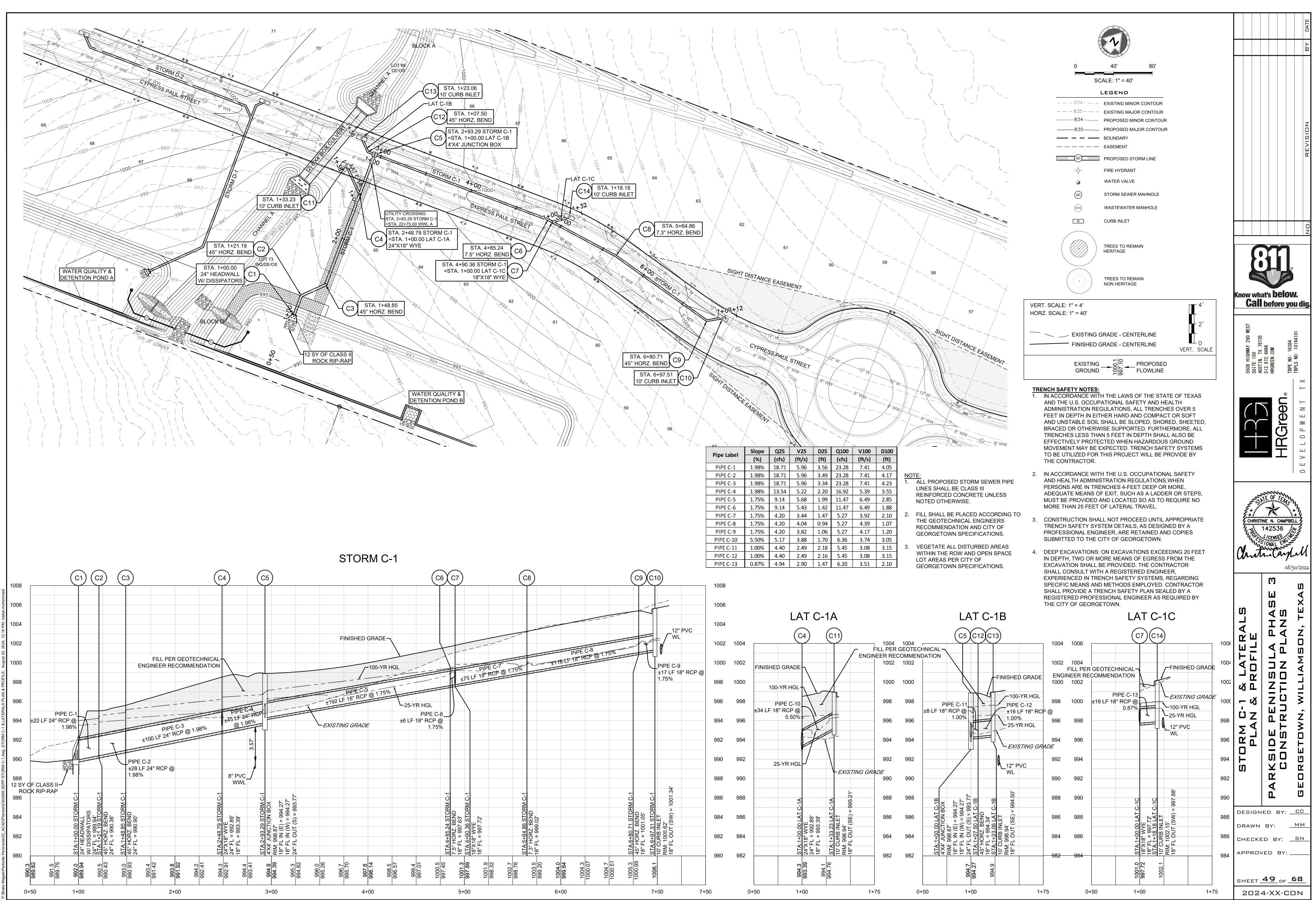


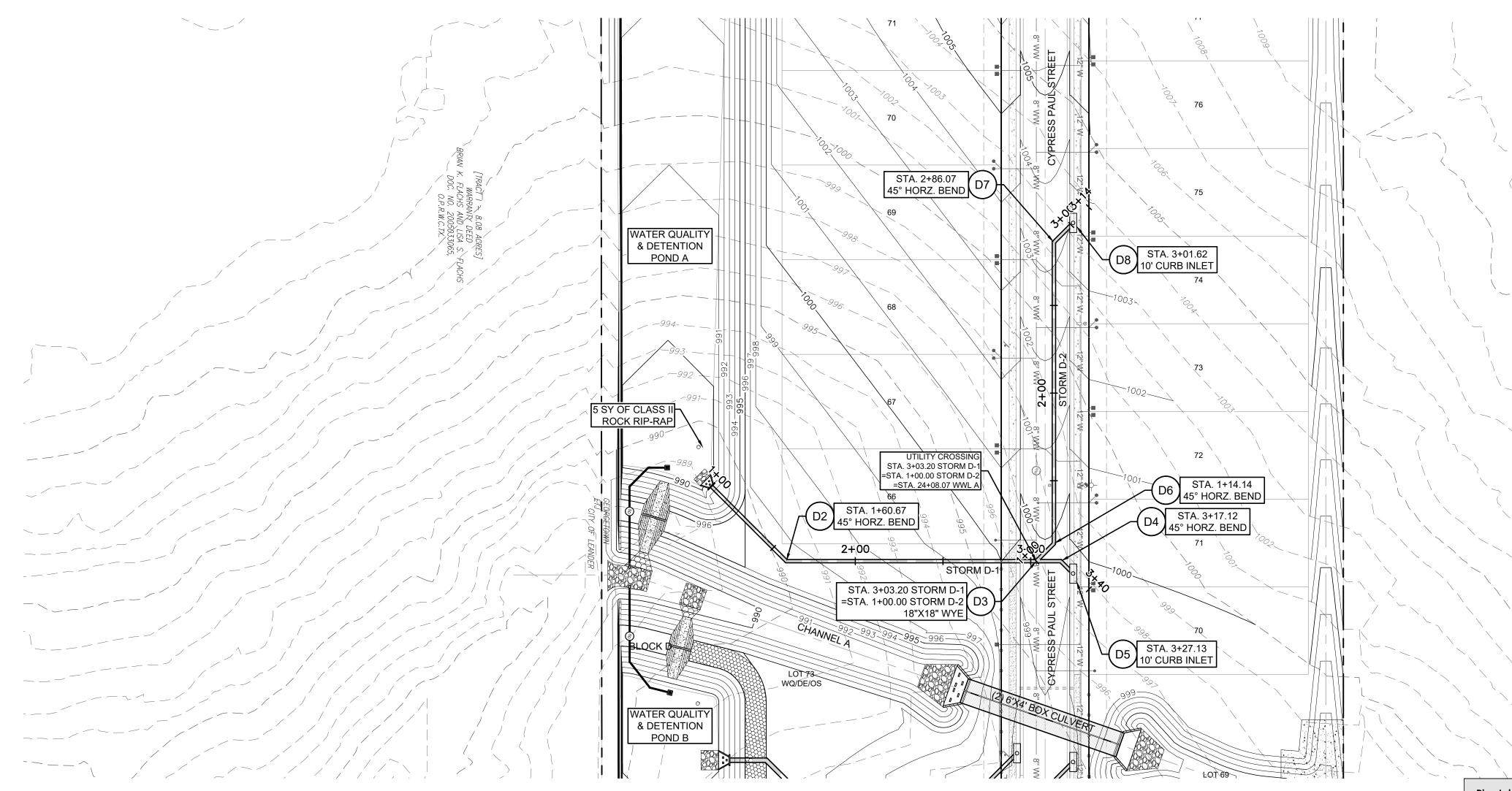


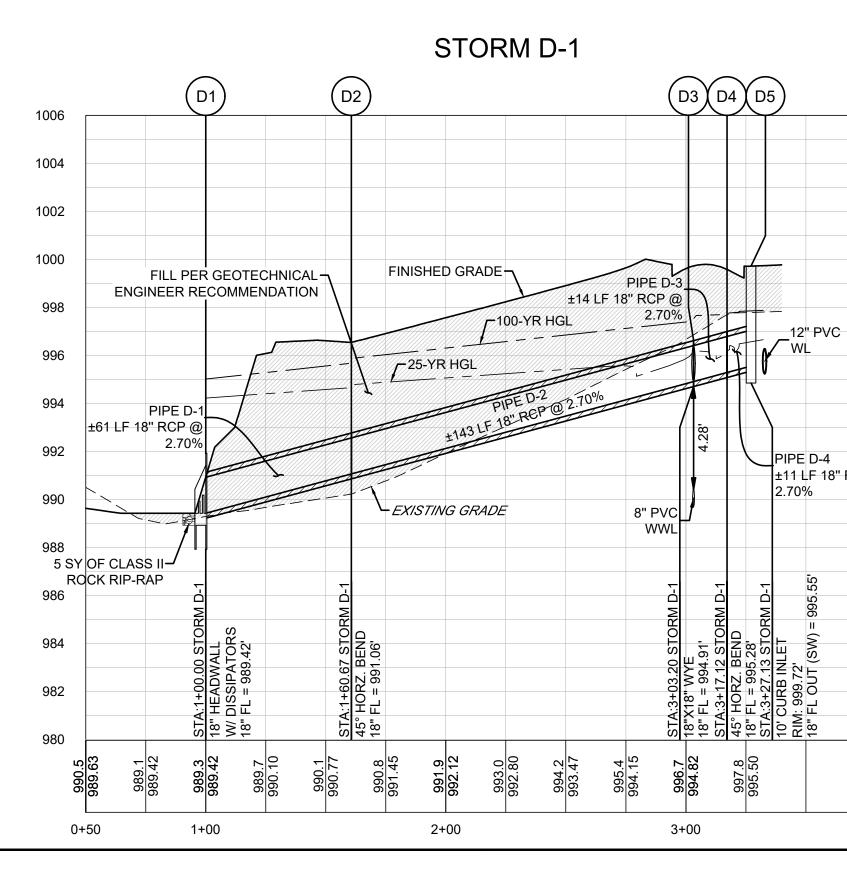


, '				
	Pipe Label	Slope	Q25	V25
	Fipe Laber	(%)	(cfs)	(ft/s)
	PIPE B-1	1.09%	36.35	5.14
	PIPE B-2	1.09%	36.35	5.14
	PIPE B-3	1.09%	36.35	5.17
	PIPE B-4	2.75%	13.78	7.25
	PIPE B-5	2.75%	9.85	4.28
	PIPE B-6	2.75%	9.85	4.64
	PIPE B-7	2.75%	9.85	4.64
	PIPE B-8	0.50%	8.60	4.87
	PIPE B-9	0.50%	4.30	2.43
	PIPE B-10	0.50%	4.30	2.43
	PIPE B-11	3.50%	4.30	2.43
	PIPE B-12	3.50%	4.30	2.51

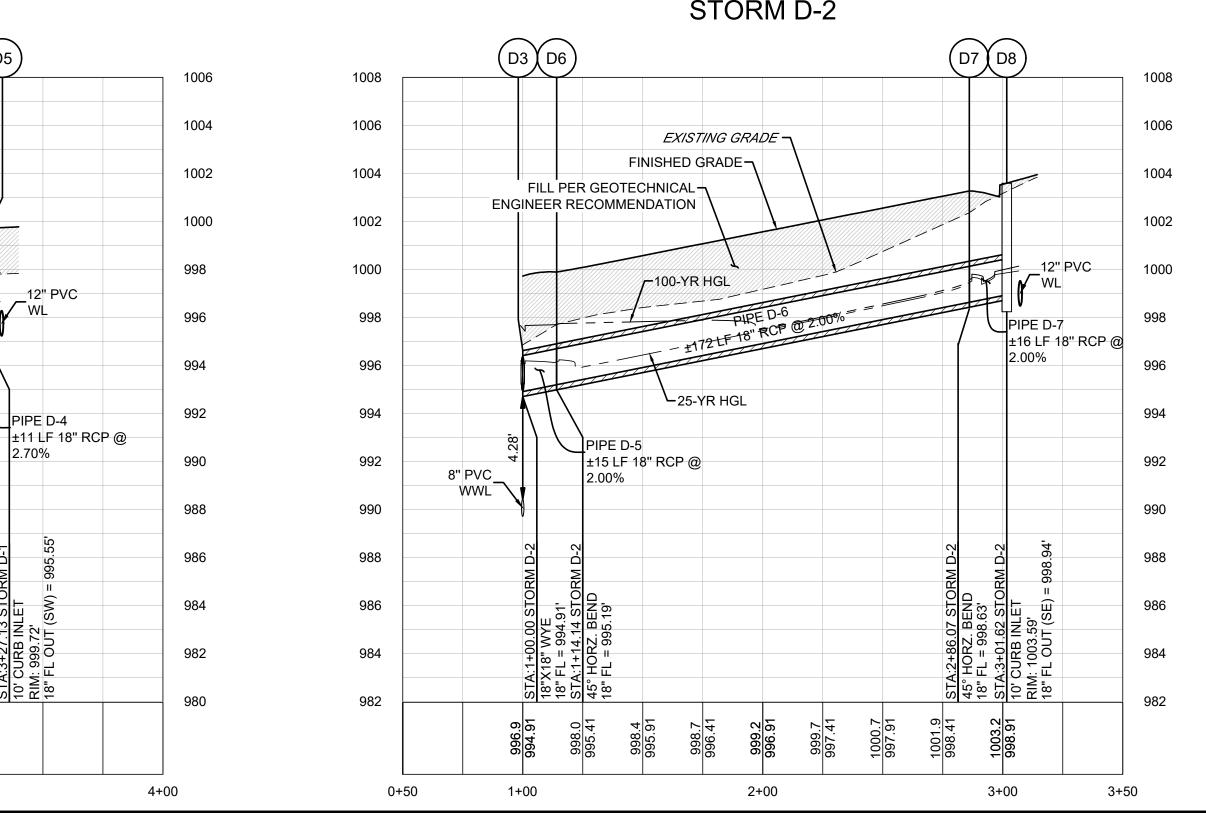


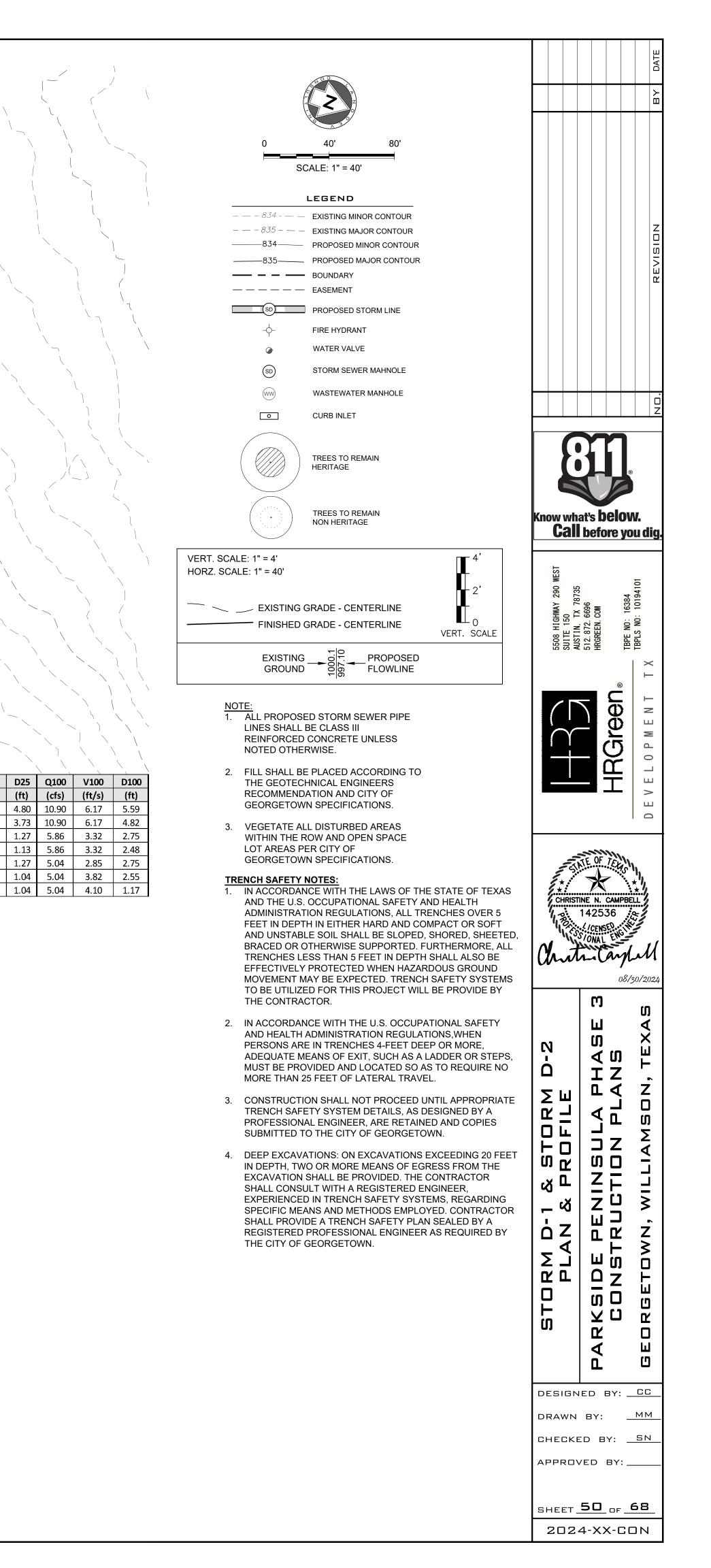


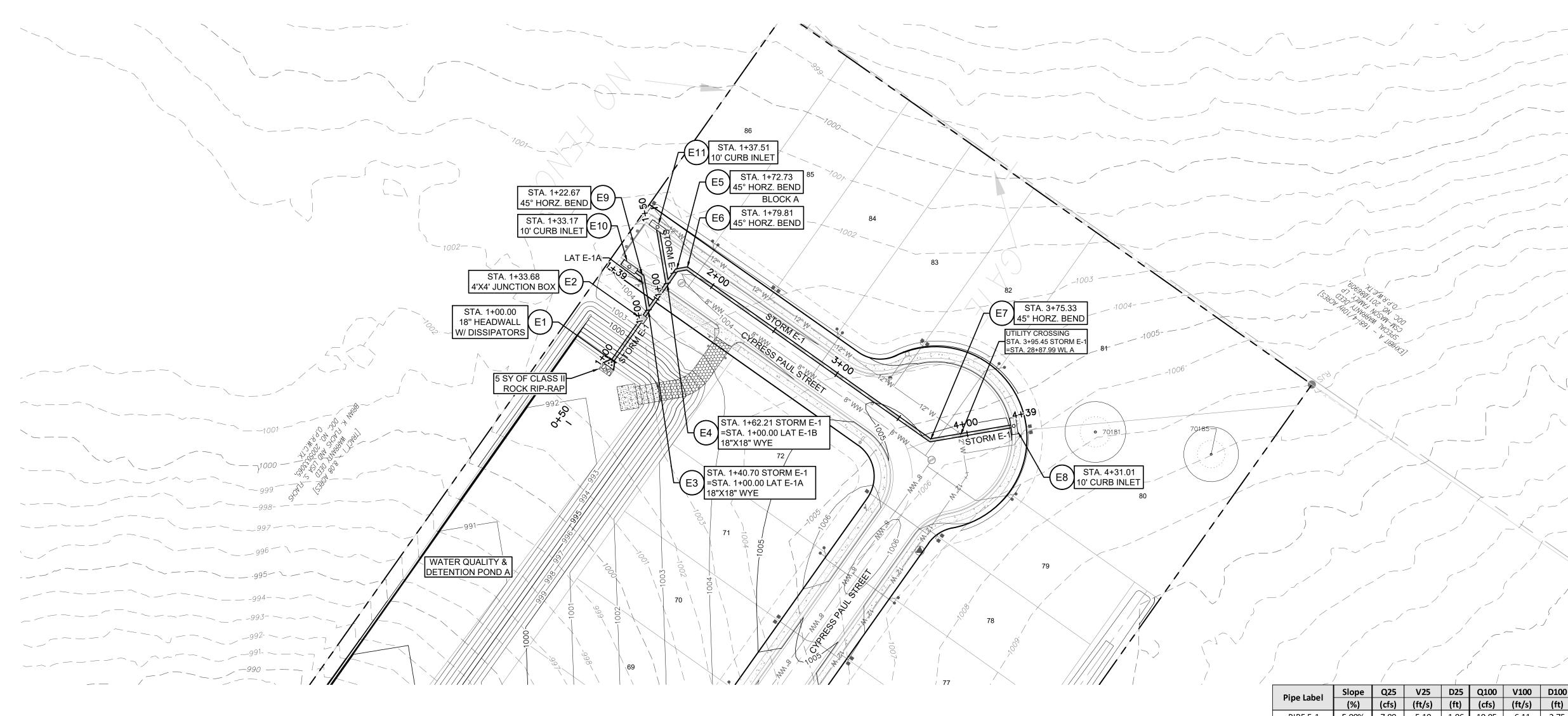


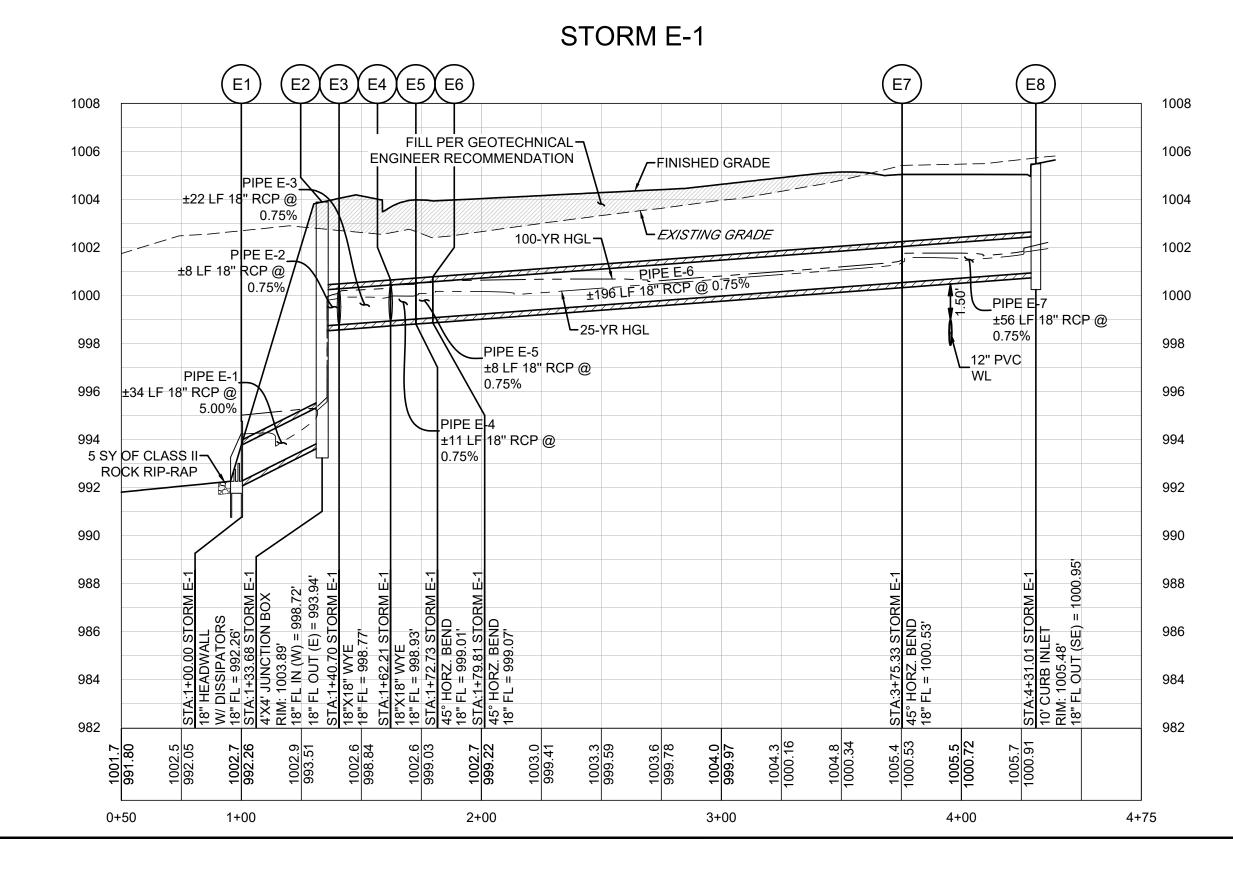

STORM B-3

	(
Pipe Label	Slope	Q25	V25
Pipe Label	(%)	(cfs)	(ft/s)
PIPE B-13	0.70%	13.97	6.41
PIPE B-14	0.70%	9.21	4.24
PIPE B-15	0.70%	9.21	5.65
PIPE B-16	0.70%	9.21	5.29
PIPE B-17	0.70%	4.25	2.64
PIPE B-18	0.70%	4.25	3.66
PIPE B-19	0.70%	4.25	3.40
PIPE B-20	3.75%	4.76	4.63
PIPE B-21	3.75%	4.96	2.95
PIPE B-22	3.75%	4.96	3.46

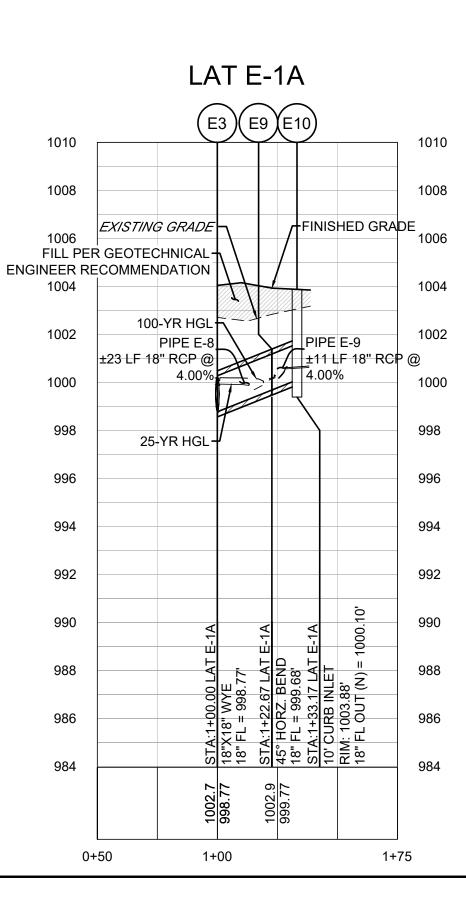


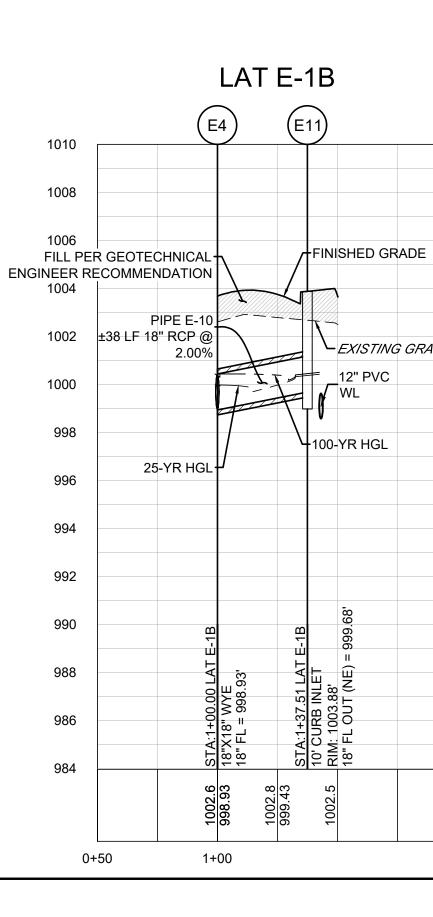


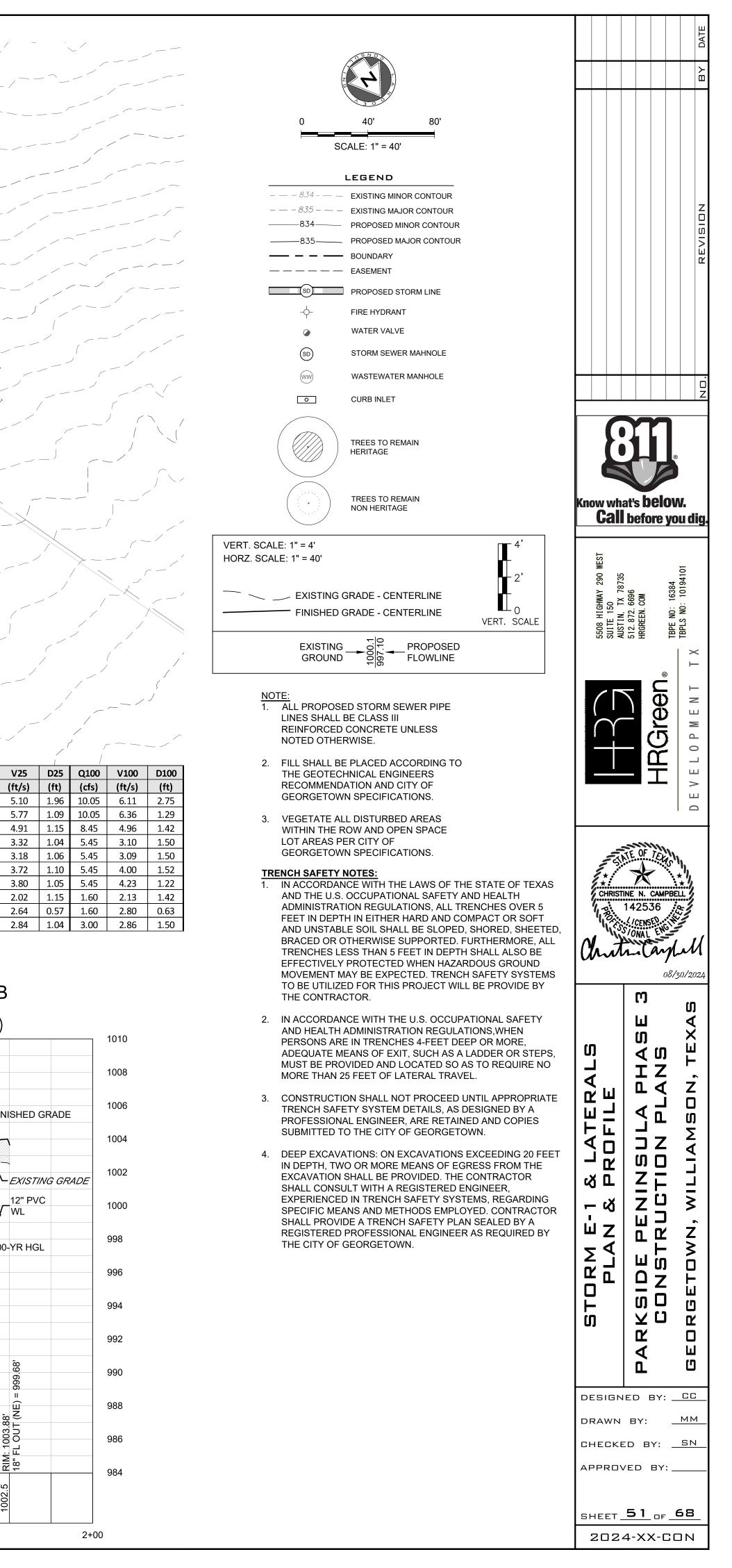


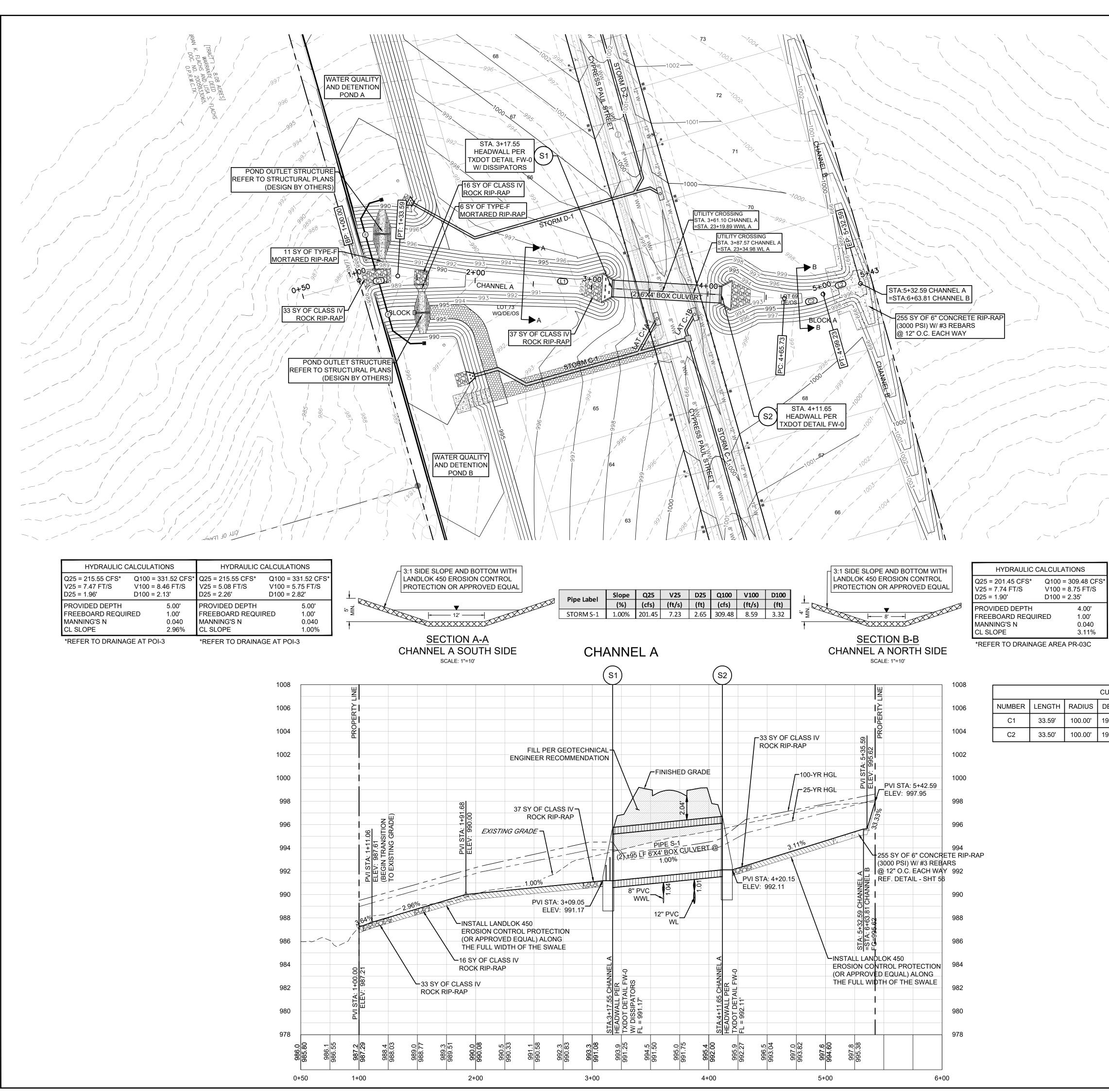

, \			
Pipe Label	Slope	Q25	V25
Ріре Labei	(%)	(cfs)	(ft/s)
PIPE D-1	2.70%	8.78	4.97
PIPE D-2	2.70%	8.78	5.51
PIPE D-3	2.70%	4.72	3.81
PIPE D-4	2.70%	4.72	3.99
PIPE D-5	2.00%	4.06	3.05
PIPE D-6	2.00%	4.06	3.77
PIPE D-7	2.00%	4.06	3.77

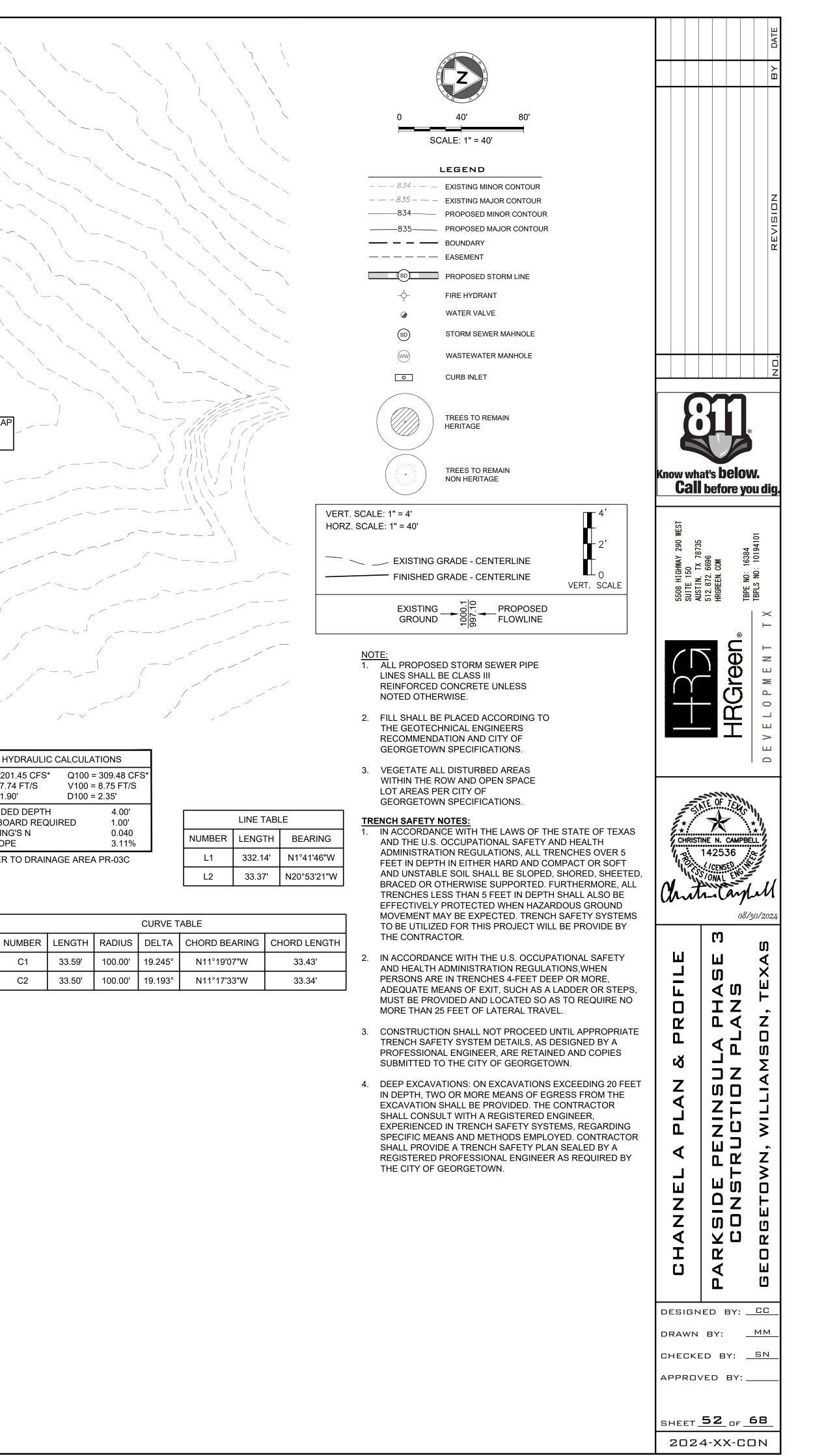
STORM D-2

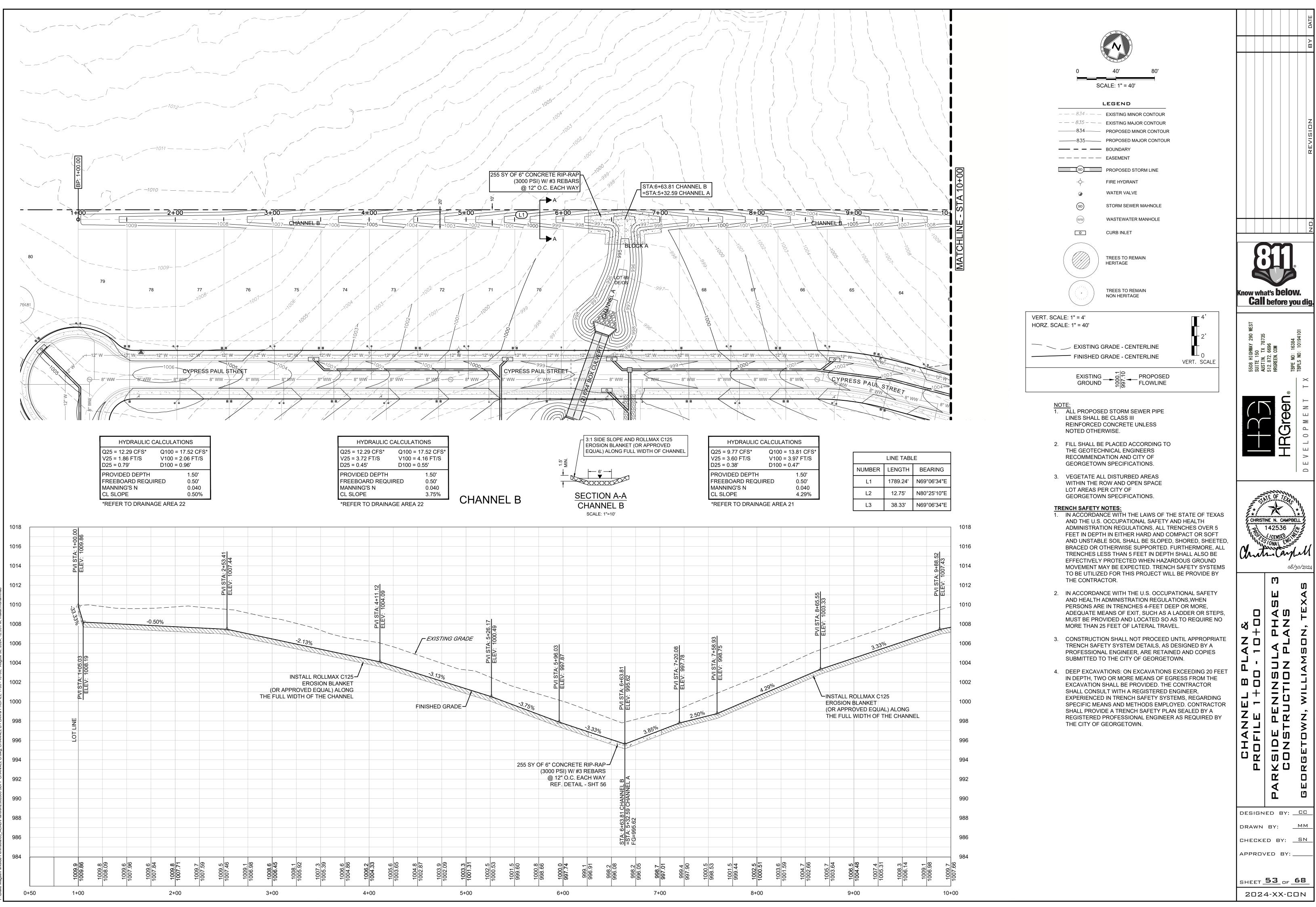


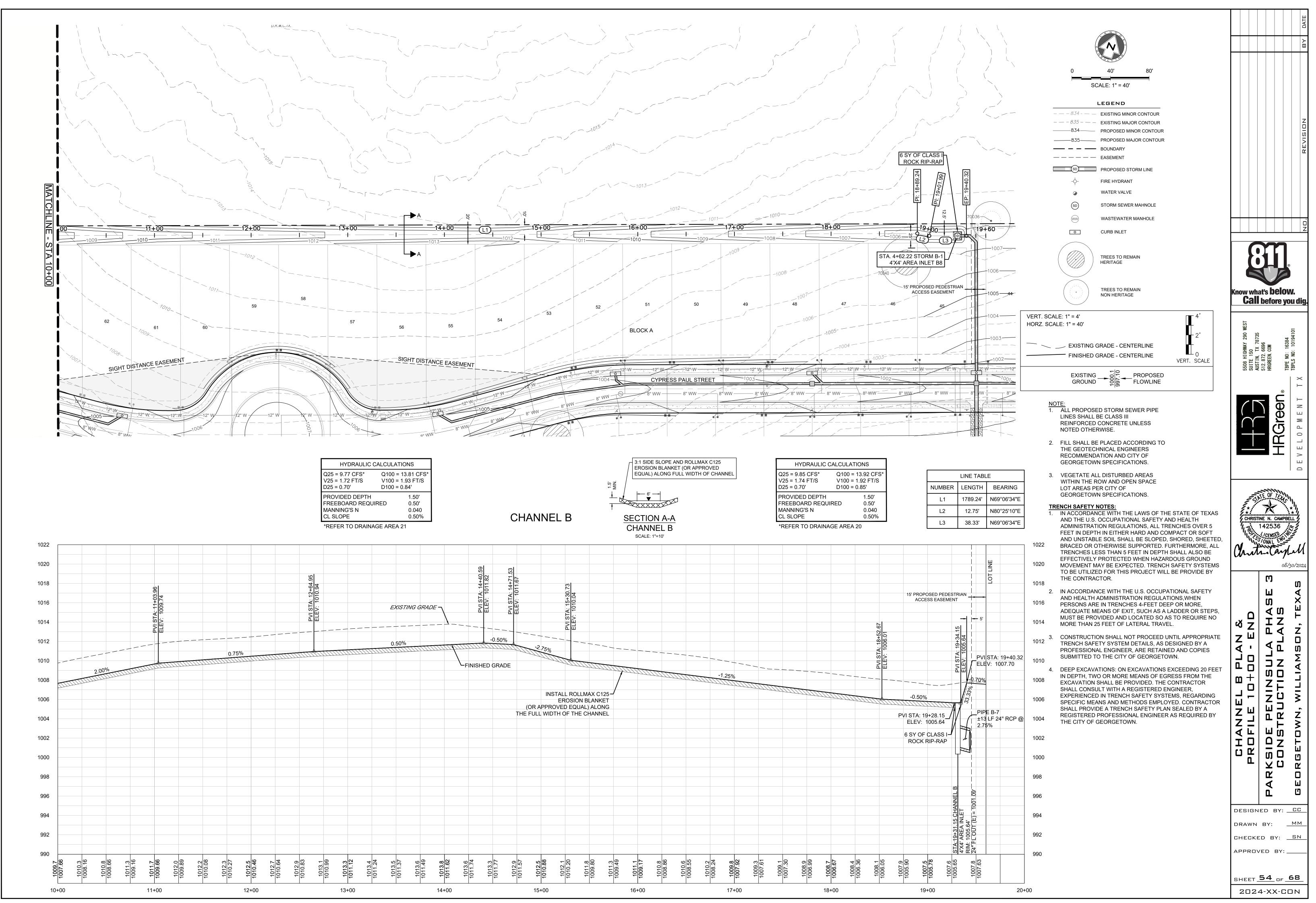


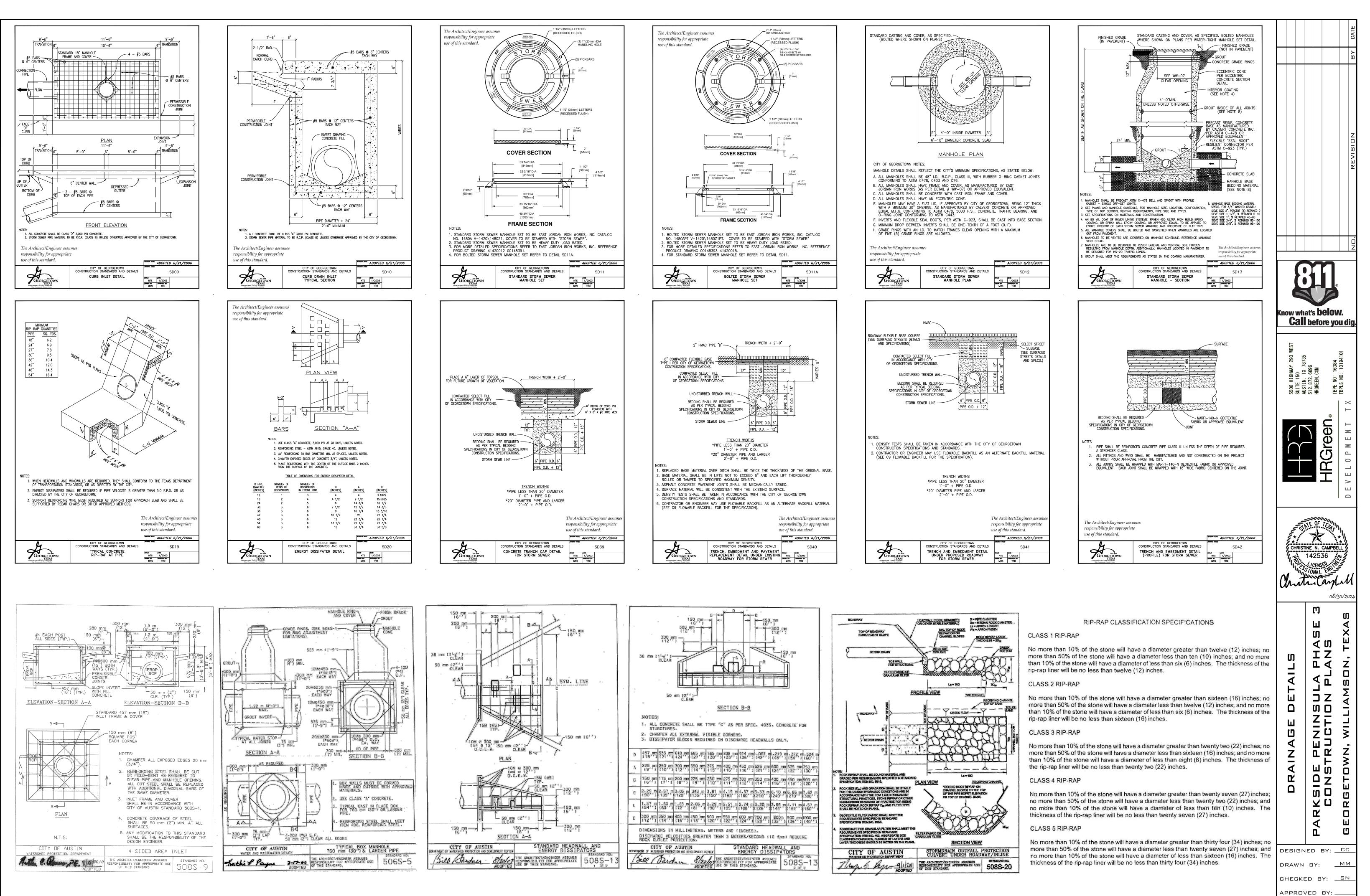



\Parkside Peninsula\03_ACAD\Plans\sh2302006 SDPP STORM E-1.dwg, STORM E-1 & LATERALS PLAN & PROFILE, August 30, 2024, 12:25 PM, makai.muhammad

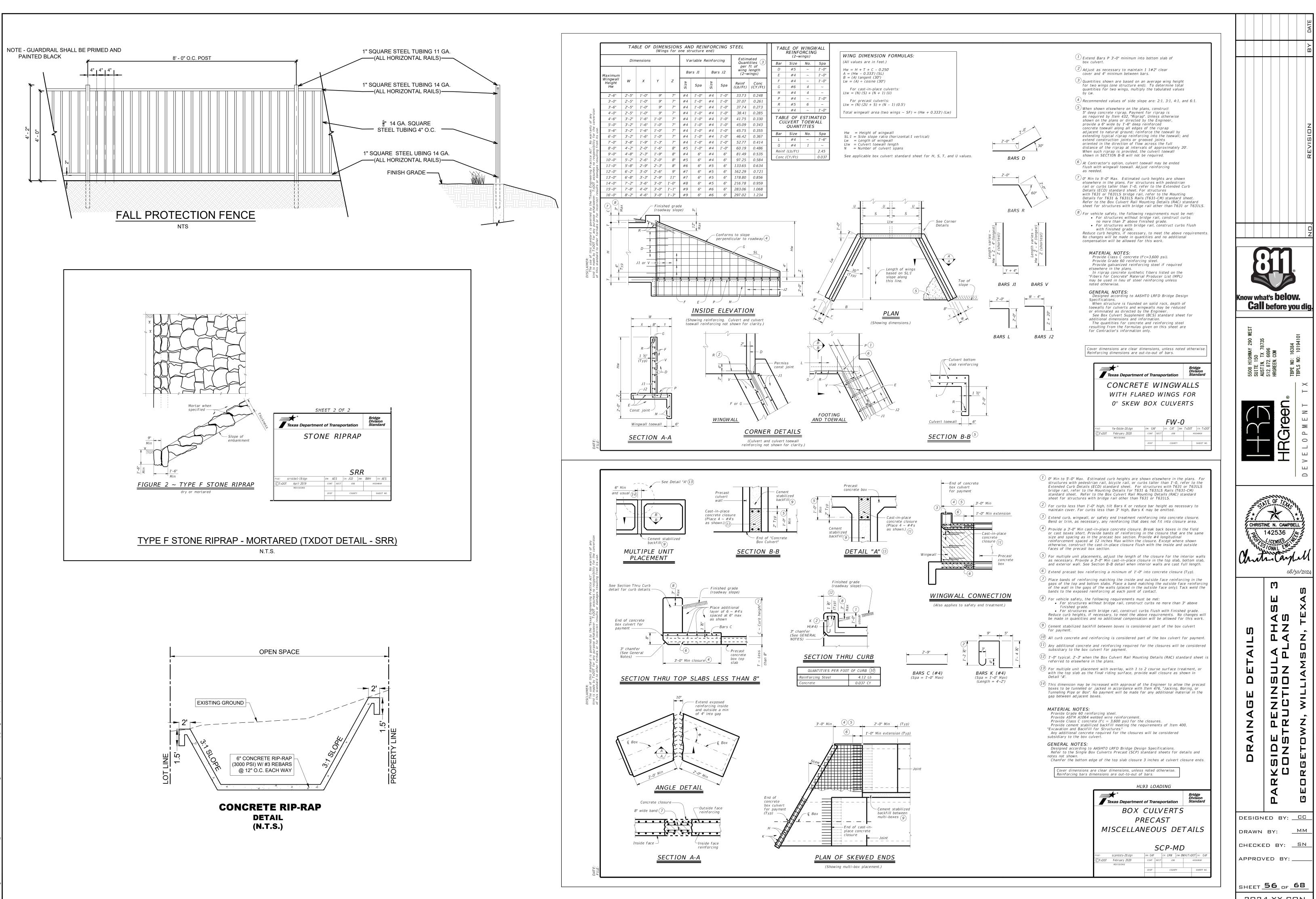

Pipe Label	(%)	(cfs)	(ft/s)
PIPE E-1	5.00%	7.89	5.10
PIPE E-2	0.75%	7.89	5.77
PIPE E-3	0.75%	6.58	4.91
PIPE E-4	0.75%	4.12	3.32
PIPE E-5	0.75%	4.12	3.18
PIPE E-6	0.75%	4.12	3.72
PIPE E-7	0.75%	4.12	3.80
PIPE E-8	4.00%	1.31	2.02
PIPE E-9	4.00%	1.31	2.64
PIPE E-10	2.00%	2.46	2.84

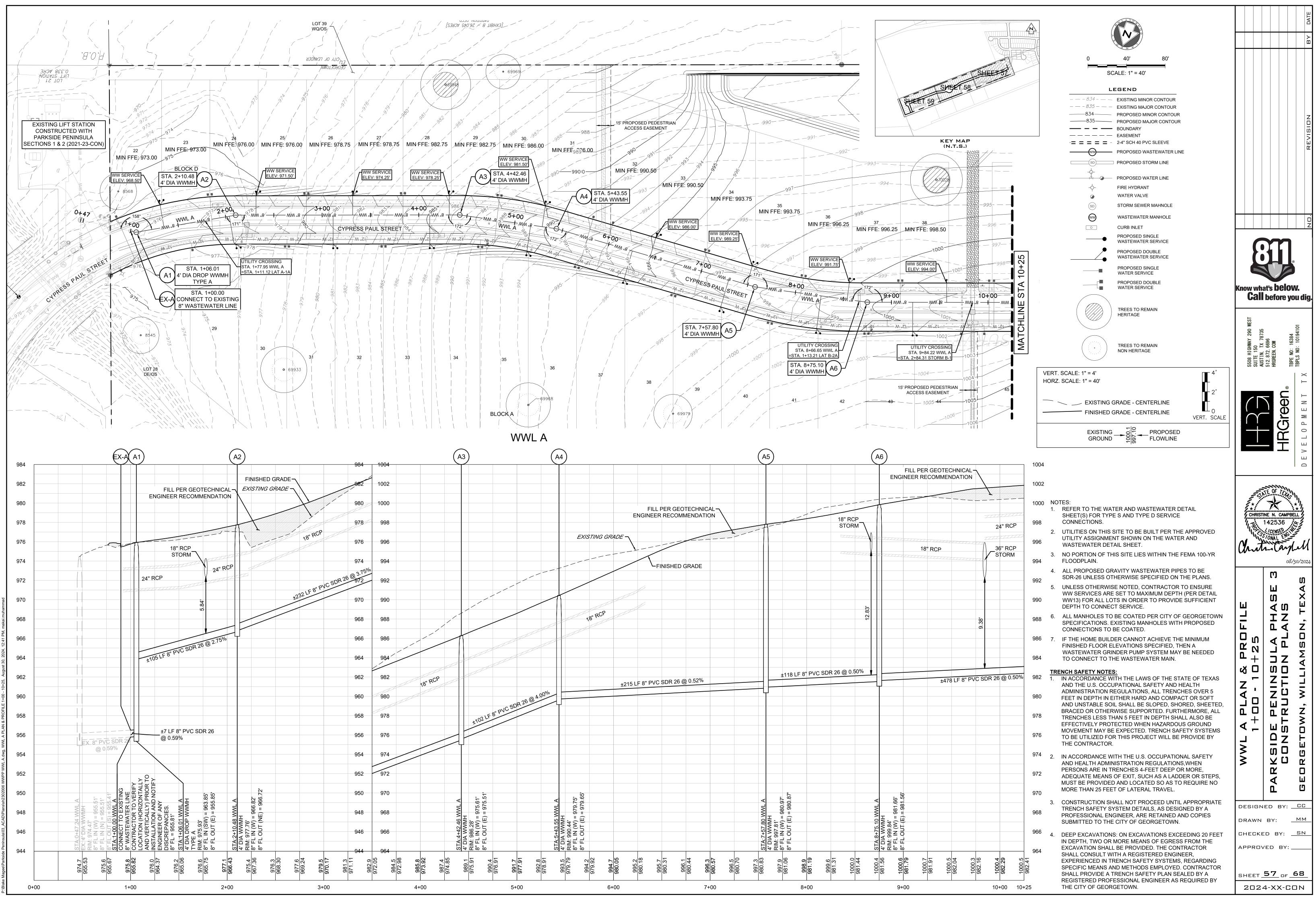


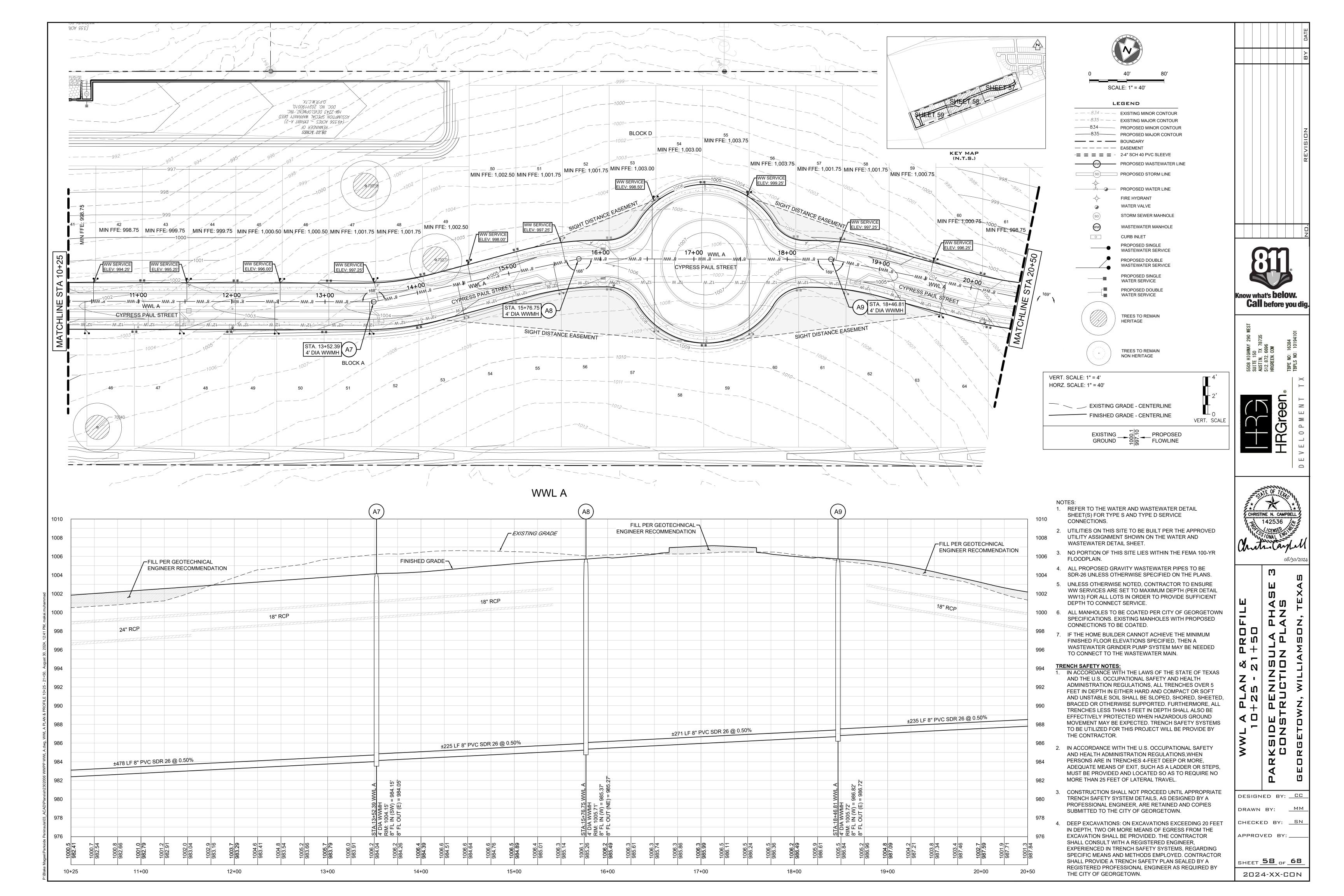




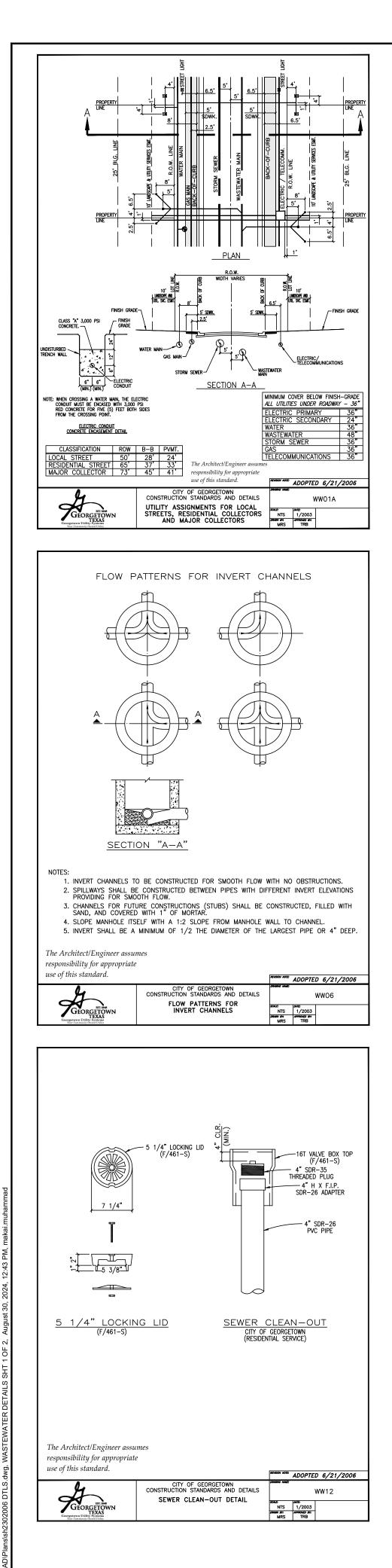
e\Parkside Peninsula\03_ACAD\Plans\sh2302006 SDPP CHANNEL B.dwg, CHANNEL B PLAN & PROFILE 1+00 - 10+00, August 30, 2024, 12:33 F

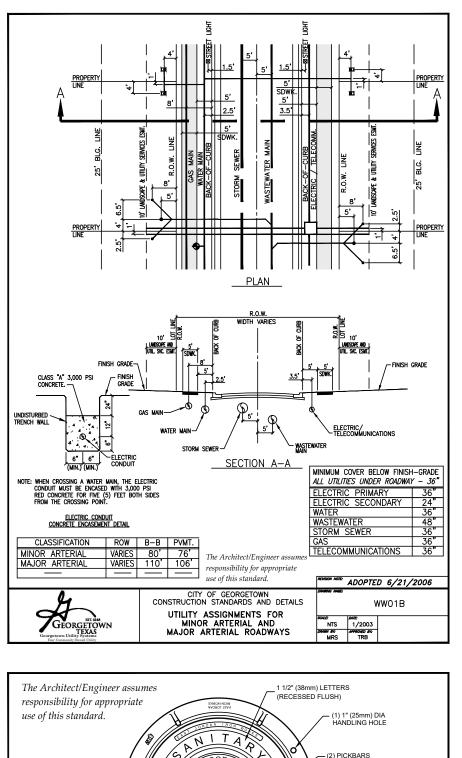

lagee\Parkside Peninsula\03_ACAD\Plans\sh2302006 SDPP CHANNEL B.dwg, CHANNEL B PLAN & PROFILE 10+00 - END, August 30, 2024, 12:33 PM, makai.muhammad

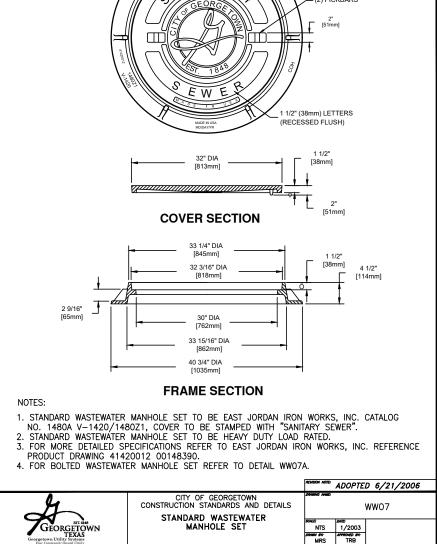

_DC_C3D2022.DWT igee\Parkside Peninsula\03_ACAD\Plans\sh2302006 DTLS.dwg, DRAINAGE DETAILS, August 30, 2024, 12:36 PM, makai.muhar


vie: LandDev Global.ctb te: LDC_C3D2022.DWT

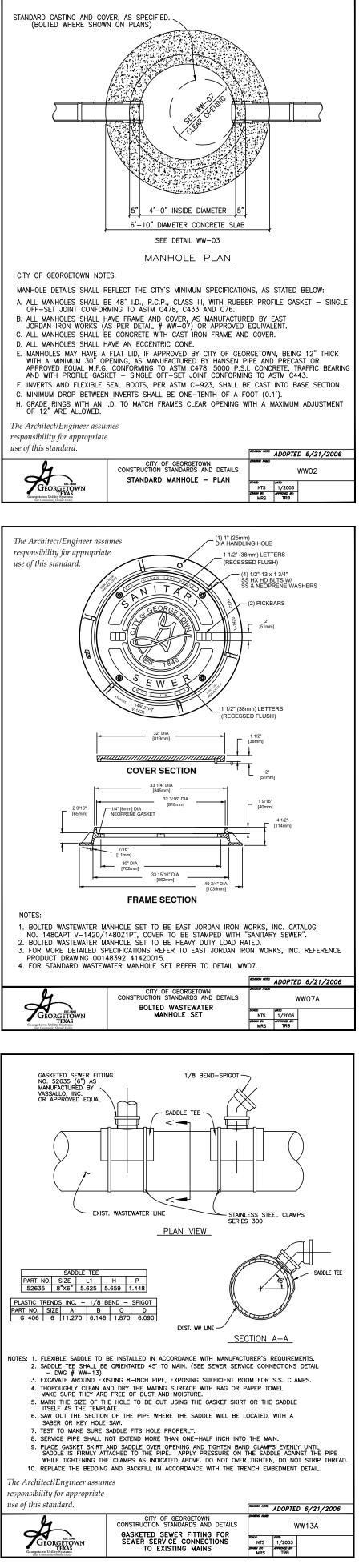

_{SHEET} <u>55</u> _{ог} <u>68</u> 2024-XX-CON

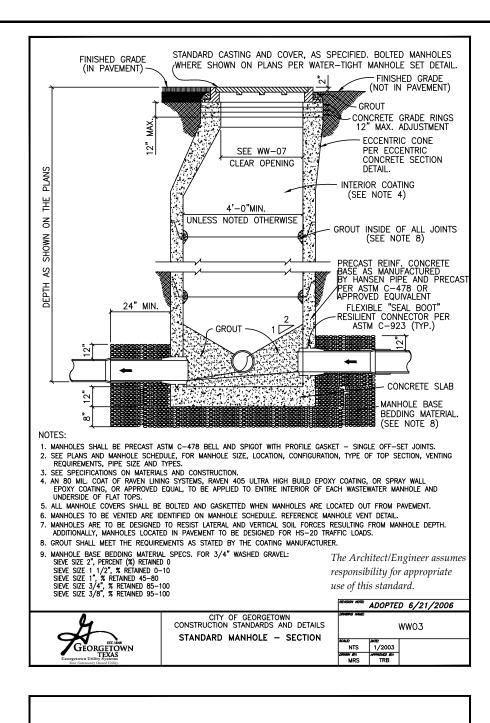


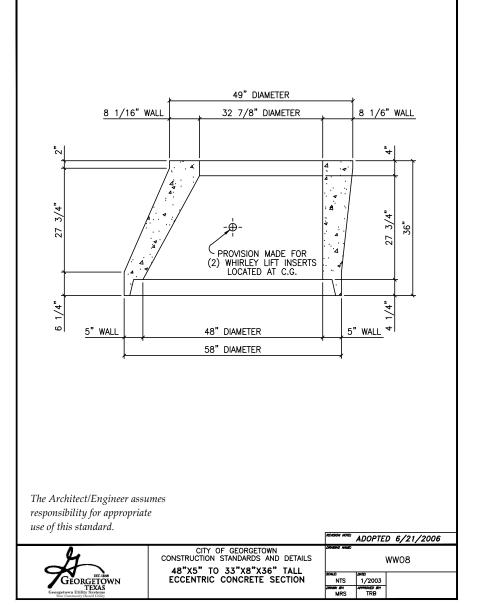

²⁰²⁴⁻XX-CON

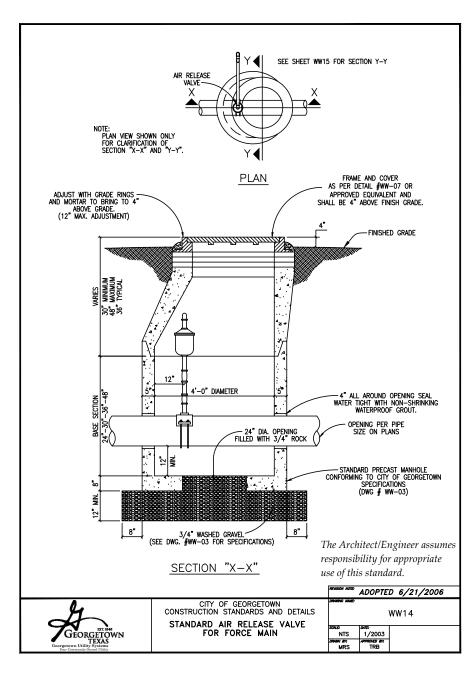


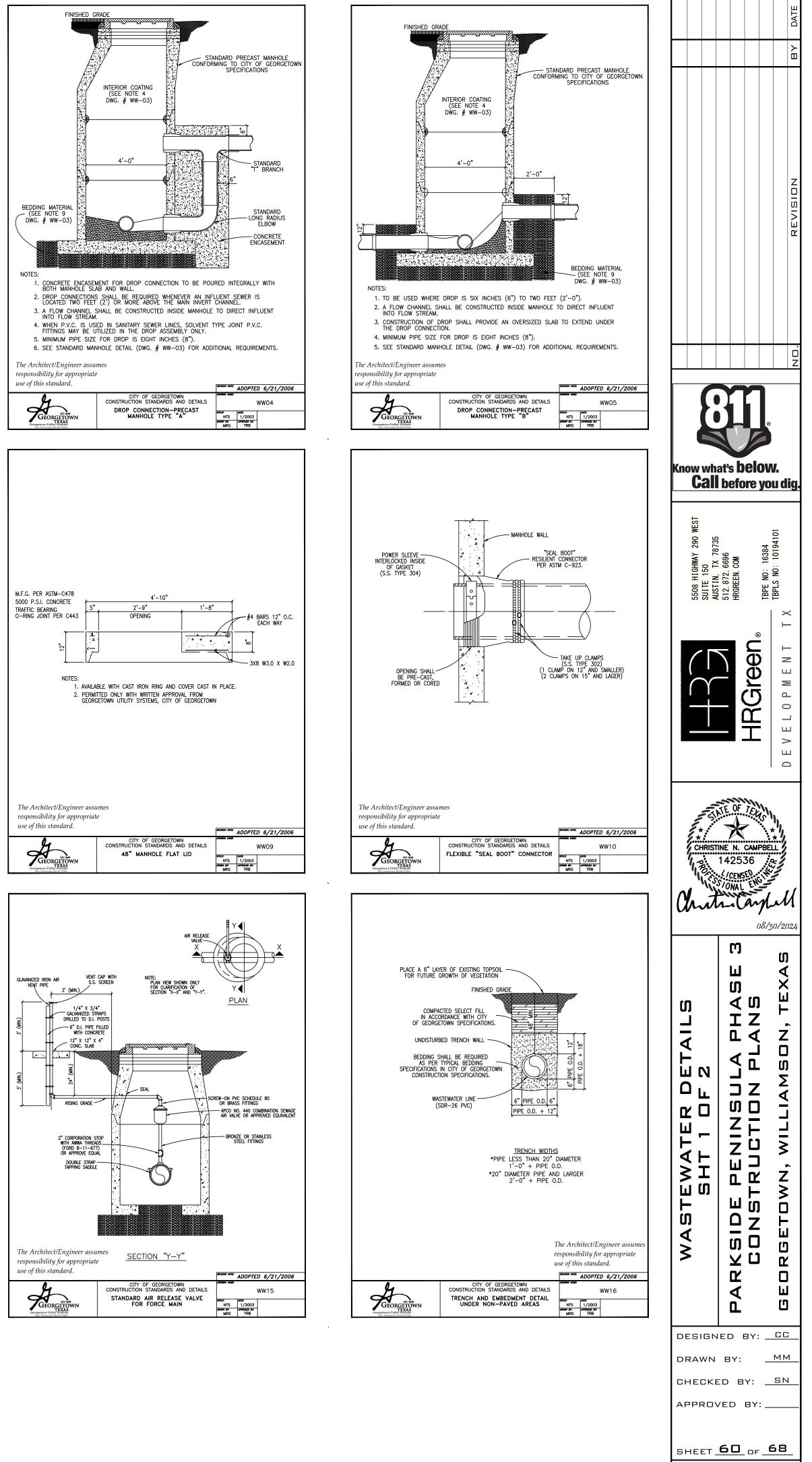


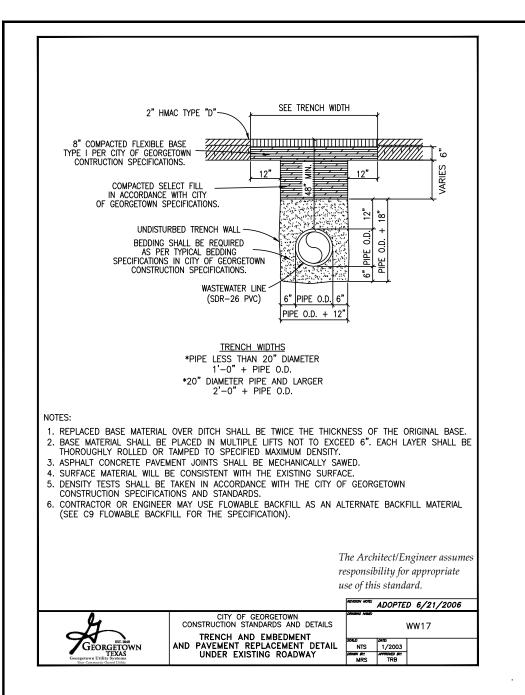


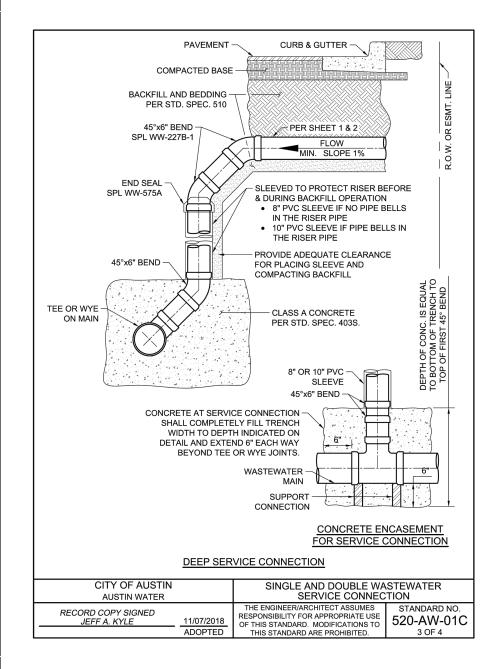


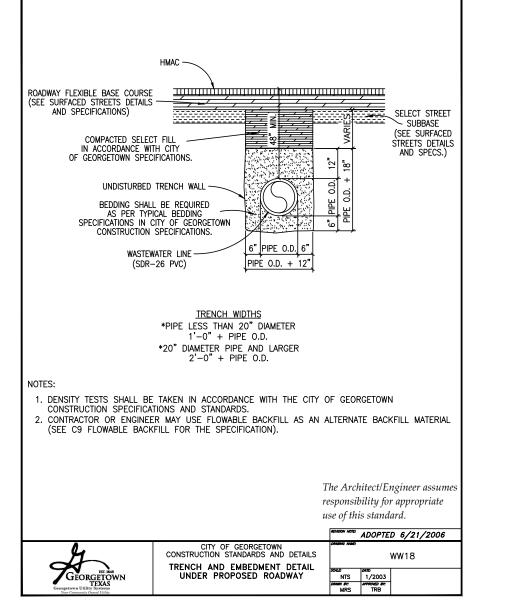


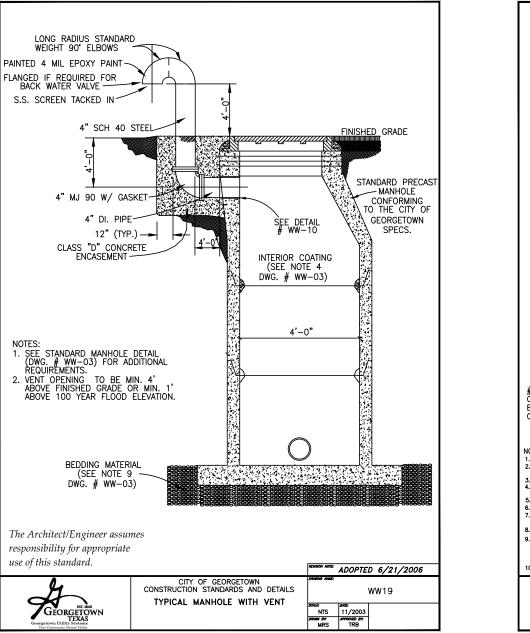


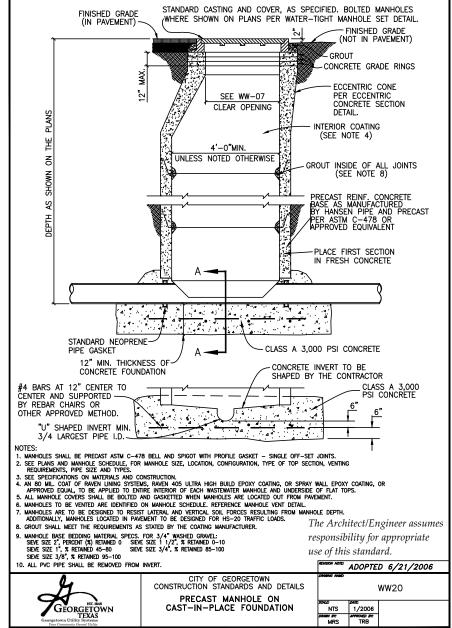


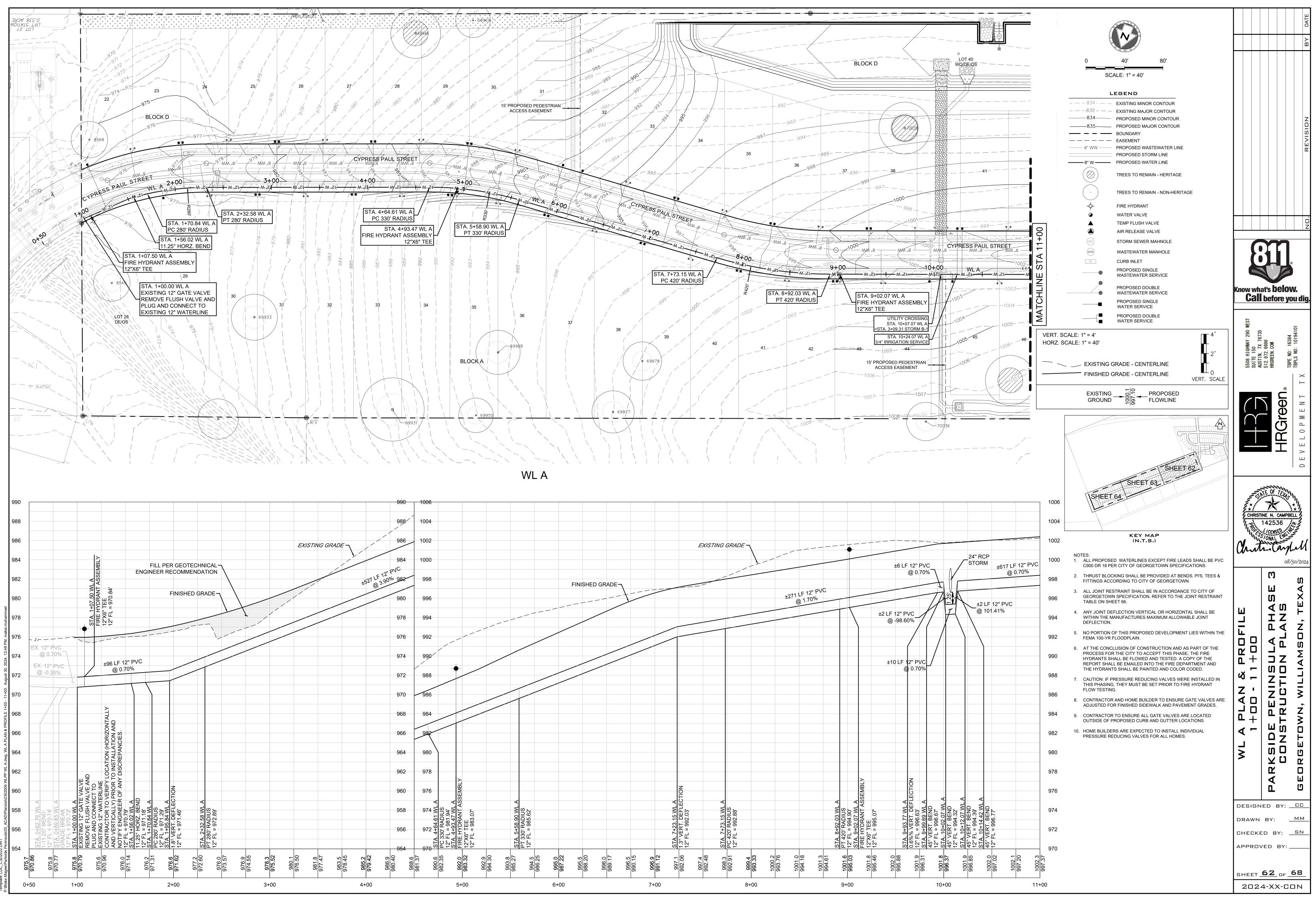


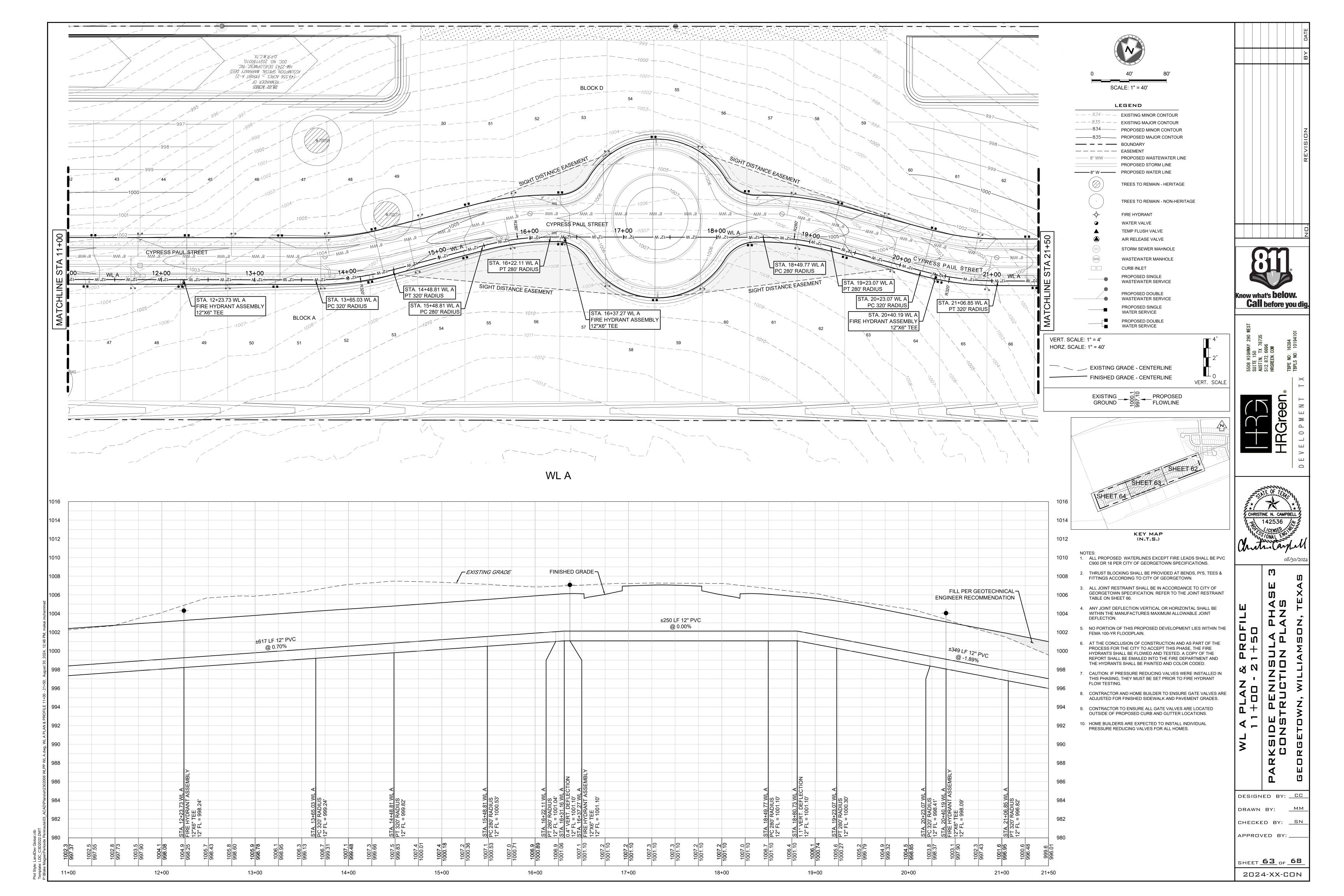


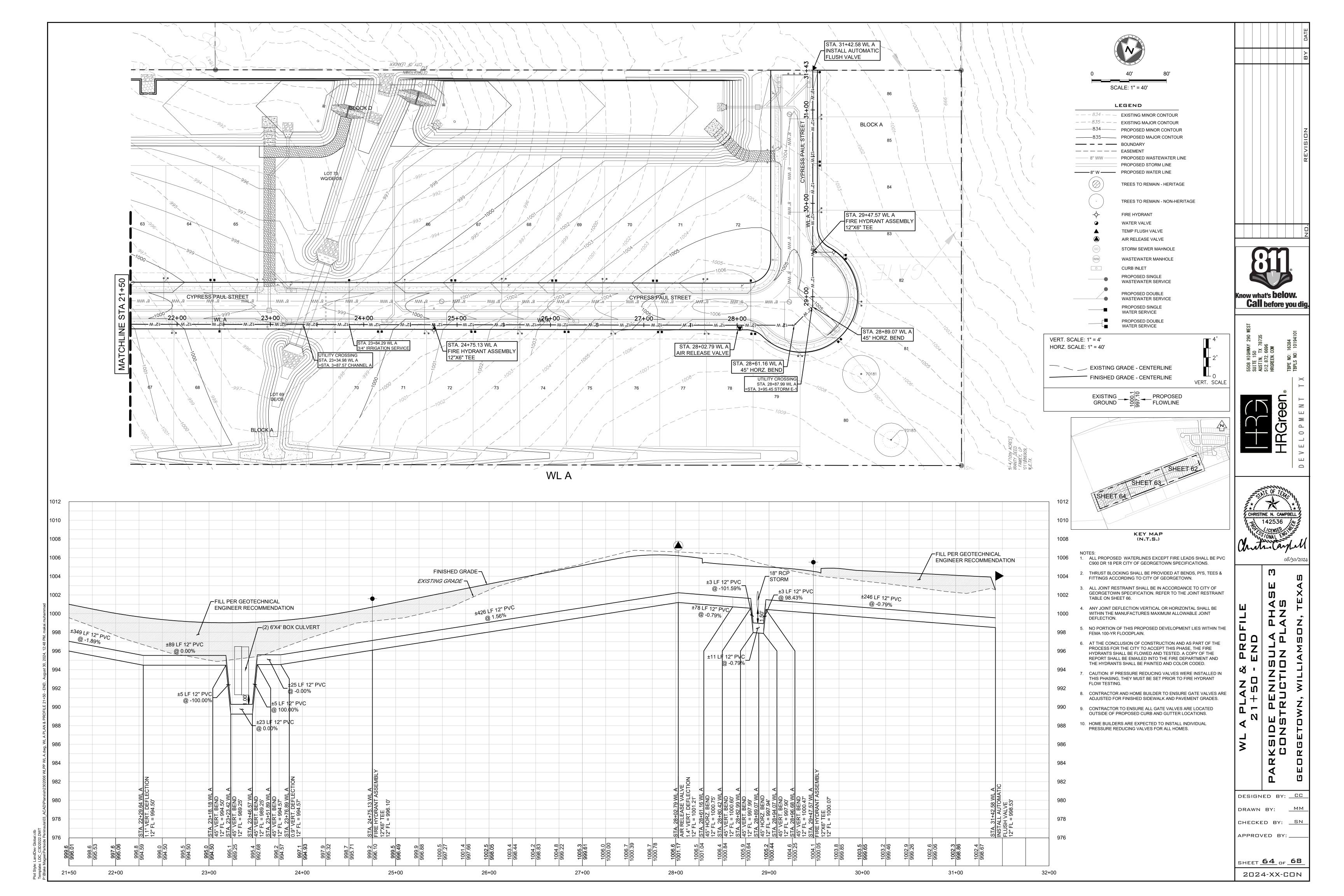


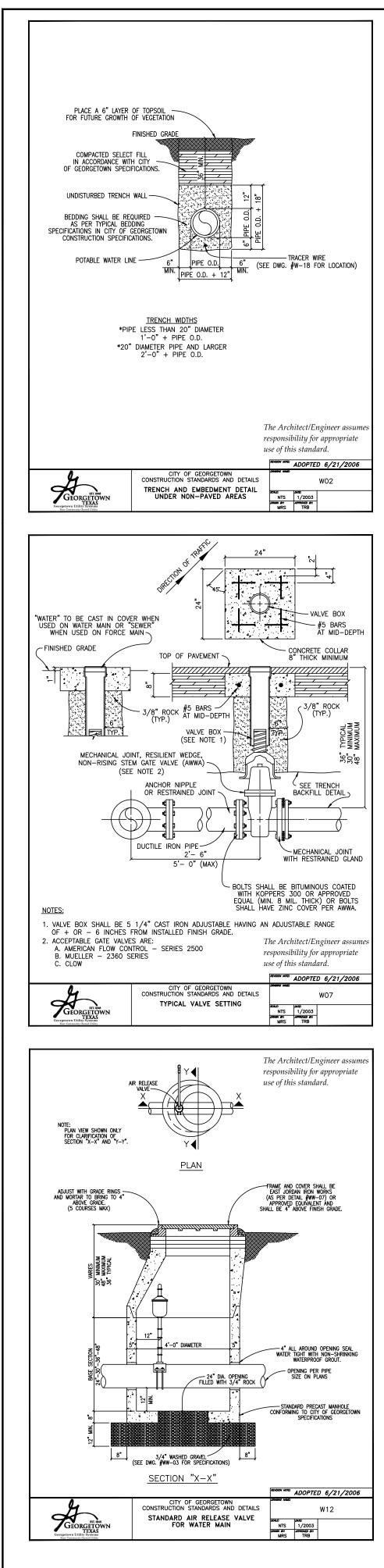


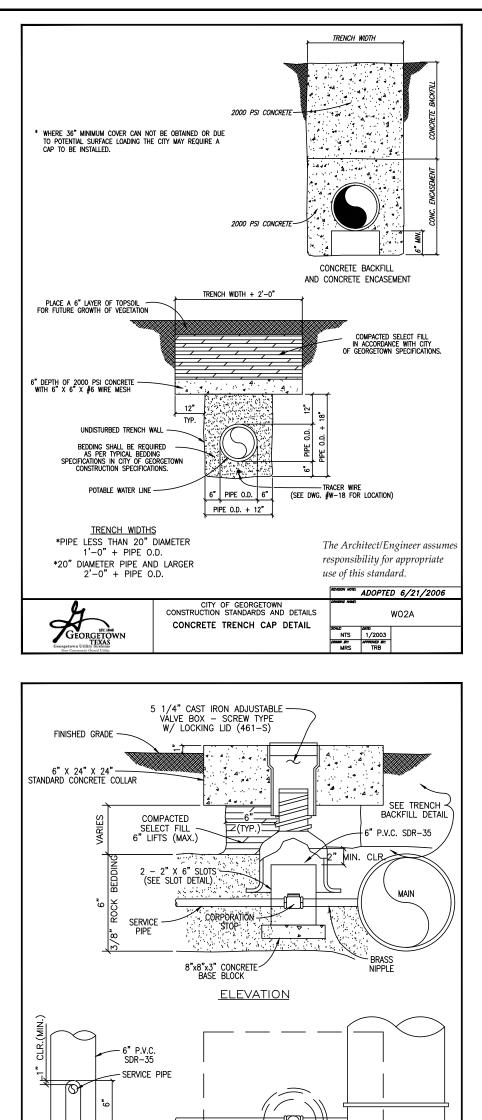

2024-XX-CON

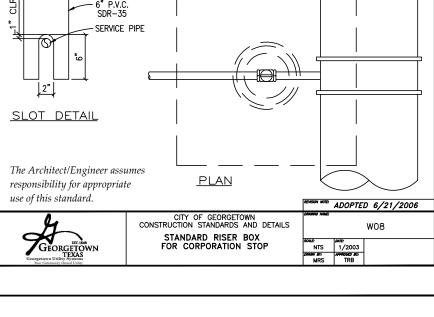


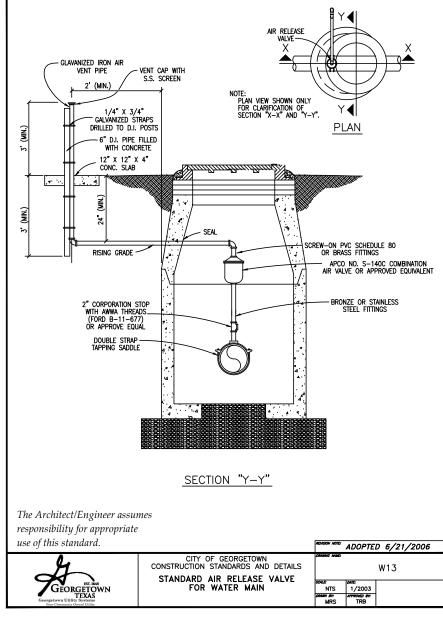


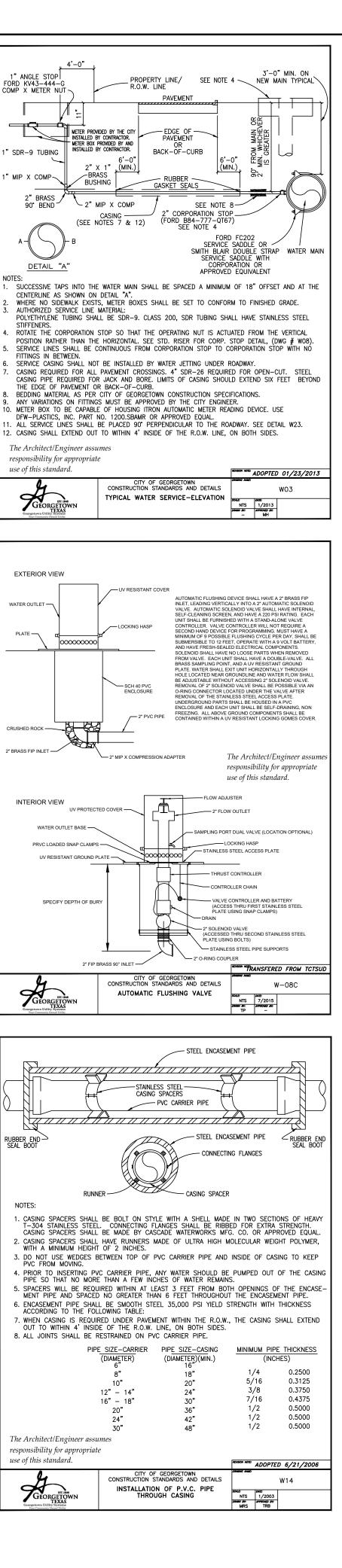


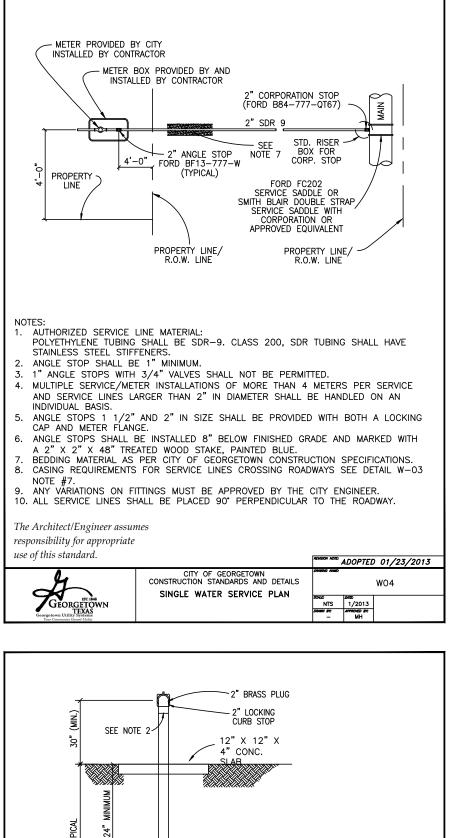


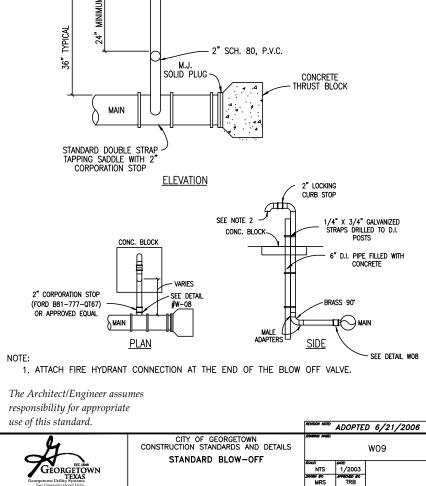


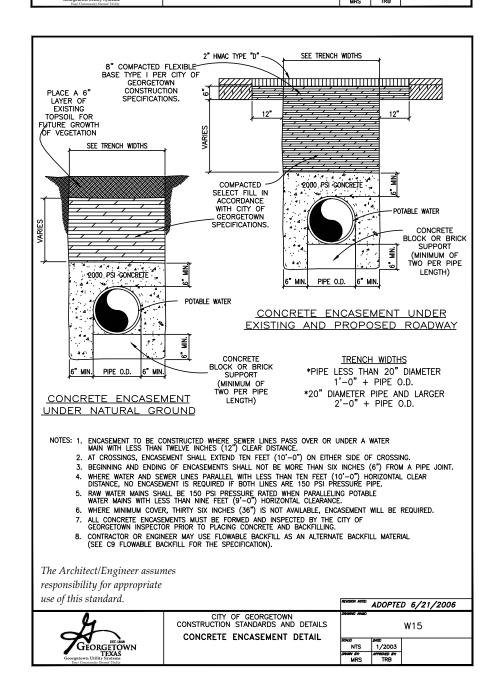


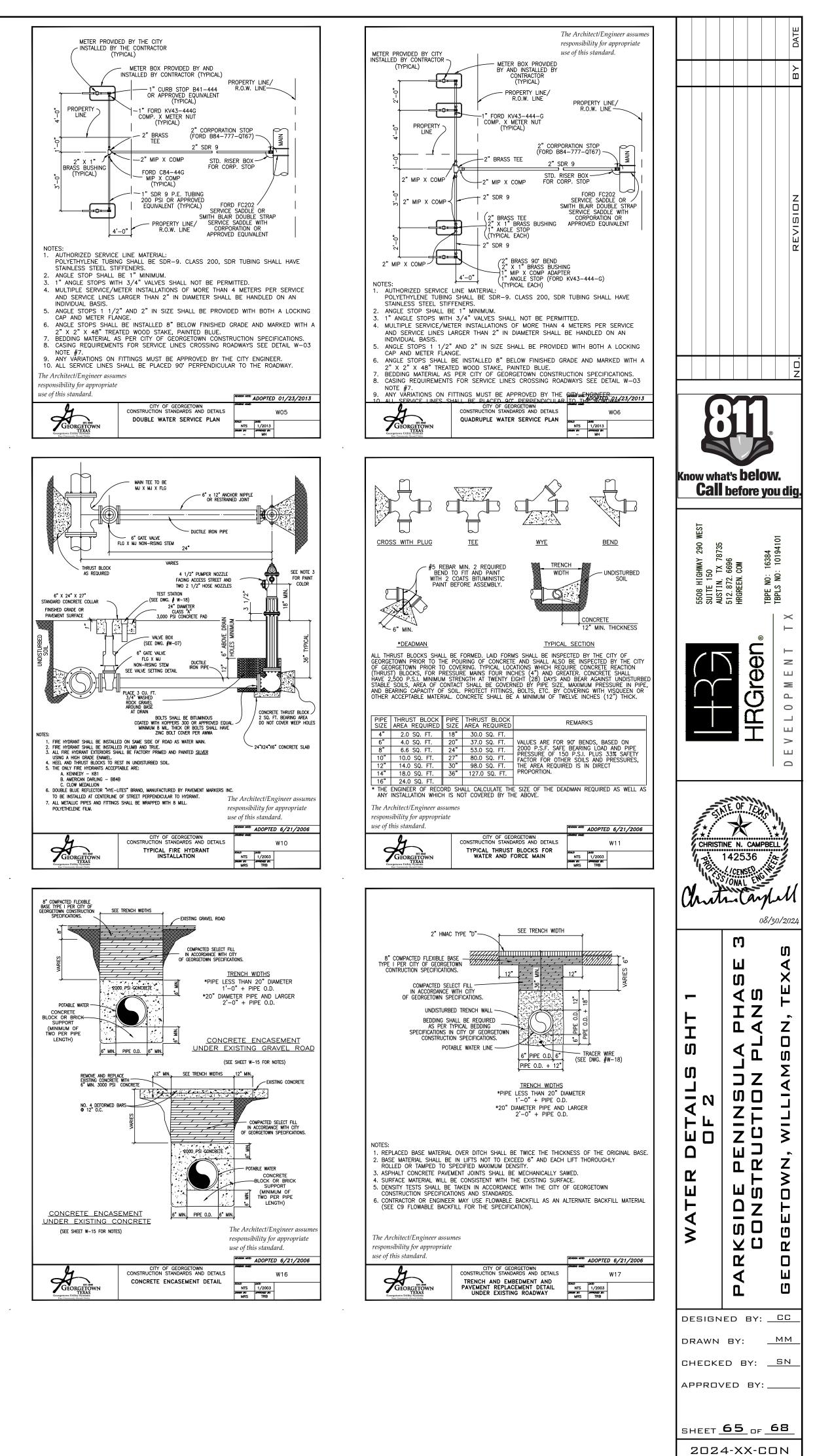


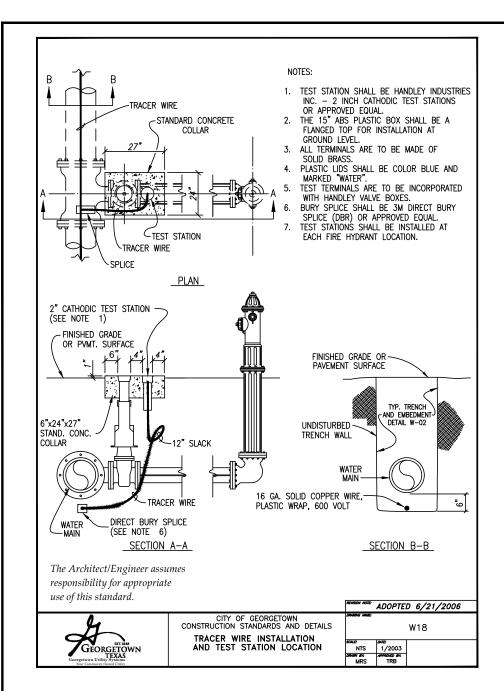


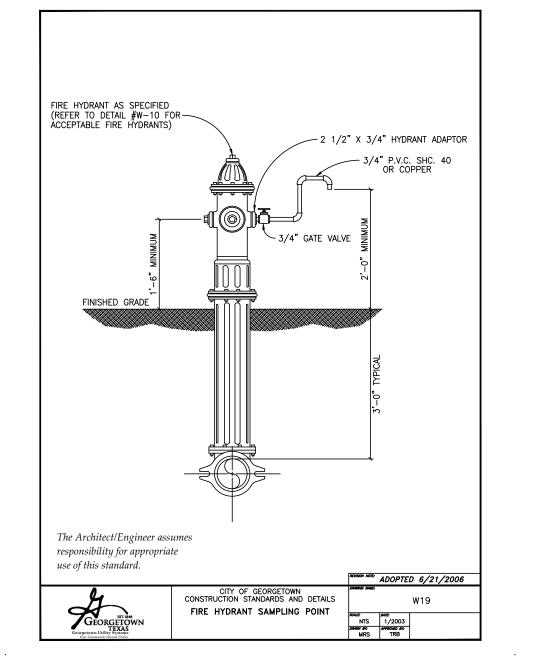


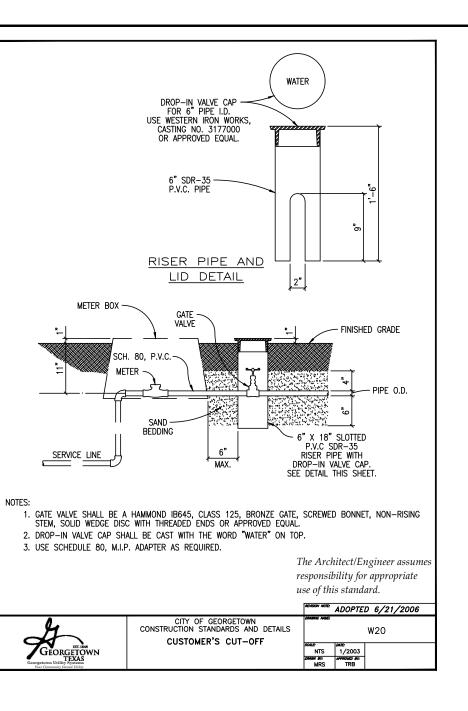


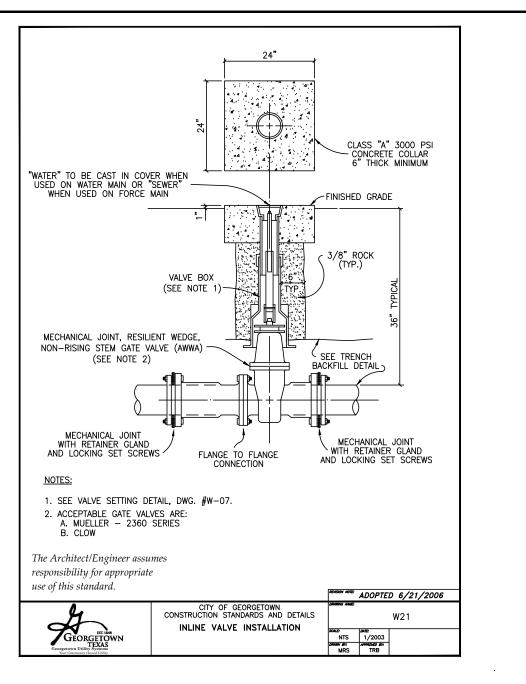


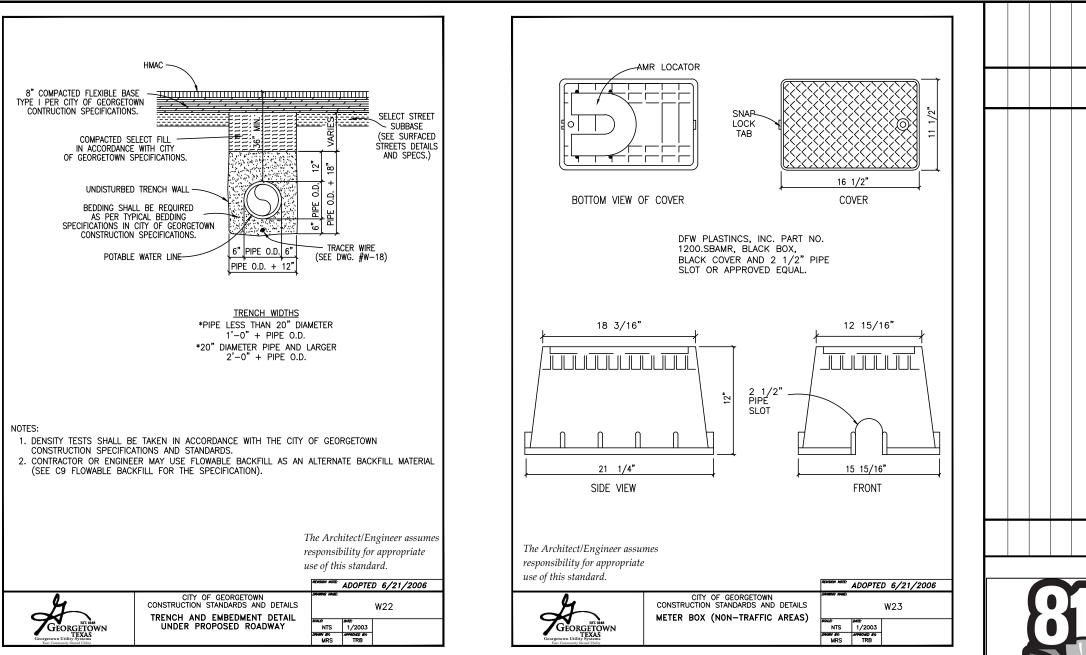

_DC_C3D2022.DWT ggee/Parkside Peninsula\03_ACAD\Plans\sh2302006 DTLS.dwg, WATER DETAILS SHT 1 OF 2, August 30, 2024, 12:51 PM, makai.muhamm:

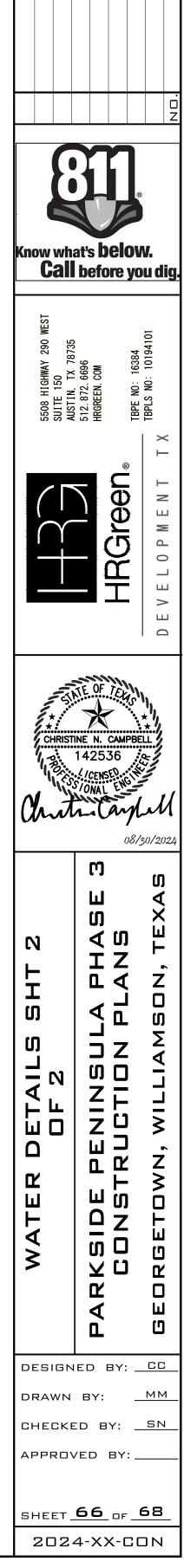











Pipe Size Fitting Bend Angle Restraint Ler						
8"	Horizontal Bend	11.25	4'			
8"	Horizontal Bend	22.5	8'			
8"	Horizontal Bend	45	16'			
8"	Horizontal Bend	90	38'			
8"	Vertical Bend	11.25	11'			
8"	Vertical Bend	22.5	21'			
8"	Vertical Bend	45	43'			
8"	Gate Valve	-	103'			
12"	Horizontal Bend	11.25	6'			
12"	Horizontal Bend	22.5	11'			
12"	Horizontal Bend	45	22'			
12"	Horizontal Bend	90	53'			
12"	Vertical Bend	11.25	15'			
12"	Vertical Bend	22.5	30'			
12"	Vertical Bend	45	61'			
12"	Reducer (12" to 8")	_	78'			
12"	Gate Valve	-	146'			
* Assumes 4' bury depth, 200 psi test pressure, trench type of 5, safety factor of 2.0, and CH granular soil						

Template: LDC_C3D2022.DWT P:\Blake Magee\Parkside Peninsula\03_ACAD\Plans\sh2302006 DTLS.dwg, WATER DETAILS SHT 2 OF 2, August 30, 2024, 12:51 PM, makai.muhammad

